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Abstract 

 

INTRODUCTION: Three-dimensional (3D) histology analyses are essential to overcome 

sampling variability and understand pathological differences beyond the dissection axis. 

We present Path2MR, the first pipeline allowing 3D reconstruction of sparse human 

histology without an MRI reference. We implemented Path2MR with post-mortem 

hippocampal sections to explore pathology gradients in Alzheimer’s Disease. 

METHODS: Blockface photographs of brain hemisphere slices are used for 3D 

reconstruction, from which an MRI-like image is generated using machine learning. 

Histology sections are aligned to the reconstructed hemisphere and subsequently to an 

atlas in standard space.  

RESULTS: Path2MR successfully registered histological sections to their anatomical 

position along the hippocampal longitudinal axis. Combined with histopathology 

quantification, we found an expected peak of tau pathology at the anterior end of the 

hippocampus, while amyloid-β displayed a quadratic anterior-posterior distribution. 

CONCLUSION: Path2MR, which enables 3D histology using any brain bank dataset, 

revealed significant differences along the hippocampus between tau and amyloid-β. 
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1. Background  

A wealth of information regarding region-specific cellular and pathological features has 

been obtained from human post-mortem brain specimens1-4. For this purpose, brains are 

typically cut into slices, from which smaller, thin sections are sampled and analyzed under 

the microscope. The ensuing observations are assigned to the anatomical structure of 

origin and compared across subjects. However, since in standard practice sampled regions 

are visually identified and manually processed, histological sections from different subjects 

rarely originate from the same exact brain position. This results in a lack of anatomical 

generalizability of the sophisticated cellular and pathological quantifications which are 

attracting increasing interest5-7. Identifying the precise structural location of each section 

would allow performing anatomically relevant comparisons of histological observations. 

Moreover, this would enable pooling data from different individuals into a common space 

to study histological measurements beyond the sectioning plane. 

To achieve such fine-grained mapping, three-dimensional (3D) histology reconstruction 

approaches have been developed, which rely on image registration to align consecutive 

histological sections8. Without a reference of the original shape, inferring the 3D volume 

conformation represents a challenge, and often leads to artifacts such as z-shift 

(accumulation of errors along the stack) and the “banana effect” (straightening of curved 

structures)8. Several strategies are available to optimize reconstruction outcome8-12. These 

methods have been applied for brain reconstruction using animal13-15 and human 

histology9,16. However, they require dense, serial sectioning of the whole brain or structure 

of interest to ensure accurate representation of its 3D configuration17. Such dense 
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histological sampling is rarely performed in routine brain bank procedures and may be 

unfeasible due to time limitations or sample requests for other purposes.  

Alternative efforts towards histology reconstruction have relied on Magnetic Resonance 

Imaging (MRI) as a 3D reference. Using subject-specific in vivo18,19 or ex vivo20-24 scans, 

these approaches overcome shape uncertainty by registering sections to the MRI volume. 

With this strategy, serial histology reconstruction allows accurate unbiased registrations to 

an atlas. Additionally, other MRI-based methods have enabled reconstruction of sparse 

histological images18,19,25-27. Although entailing less accurate slice-to-volume 

registrations28, this option avoids dense sampling of the whole specimen. Unfortunately, in 

vivo MRI is only available for special cases or in planned follow-up initiatives such as the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)29. Similarly, many brain banks have 

no access to ex vivo scanning due to financial and logistic constraints. As these 

approaches rely on highly specialized setups and equipment, their applicability to the large 

histological datasets generated in brain banks and clinical facilities is limited. 

Here, we present Path2MR, a histology mapping pipeline that enables 3D studies using 

sparse sampling and without a specific MRI reference. Our strategy uses blockface images 

of brain hemisphere slices to recover the 3D structure by geometrical stacking. Then, deep 

learning is employed to obtain a 1mm3 resolution 3D prediction of the hemisphere with 

MRI-like contrast, which is subsequently registered to the widely used Montreal 

Neurological Institute (MNI) atlas. Histological sections are then registered to the 

corresponding coronal slice within the reconstructed hemisphere, and deformations are 

concatenated to register them to MNI standard space.  
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We demonstrate the applicability of Path2MR by analyzing pathological gradients of 

Alzheimer’s Disease (AD), for which neuropathology serves as ground truth for diagnosis 

and biomarker validation30. Specifically, we explore the distribution of tau and amyloid-β 

(Aβ) pathologies along the anterior-posterior axis of the hippocampus in 26 patients with 

no co-pathologies aside from AD. We take advantage of the spatial variability inherent to 

histological sampling to achieve a fine depiction of this axis using only three sections per 

subject. Our results show an anterior-posterior gradient of hippocampal tau pathology, 

consistent with previous work using ex vivo MRI and dense sampling31. In contrast, Aβ 

pathology displays a quadratic-shaped distribution, with more variable patterns of 

deposition across hippocampal subfields. Our 3D histology pipeline is widely applicable to 

any prospective or retrospective brain bank histology dataset. 

2. Methods 

Path2MR is summarized in Figure 1, and steps are detailed in Sections 2.1 to 2.5. Steps 

described in Sections 2.1-2.4 (3D reconstruction and registration to MNI) are performed 

once for every subject, while histology registration (Section 2.5) is performed independently 

for each section included in population analyses. This pipeline is agnostic to the brain 

processing procedures. As many brain banks limit histology to one hemisphere, the 

pipeline has been developed for single hemisphere reconstruction; however, it is easily 

adaptable to 3D reconstruction of the whole brain. Steps described in Sections 2.1 and 2.2 

are available as part of the neuroimaging suite FreeSurfer, and steps from Sections 2.3-

2.5 are publicly available at https://github.com/ortegacruzd/Path2MR.  

2.1 Blockface photography  
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The procedure for blockface photography of specimen slices has been recently described32 

and photograph processing is available in FreeSurfer 7.433 (and subsequent versions). As 

shown in Fig. 1A, the specimen destined for histology should be cut by an experienced 

pathologist into slices of regular thickness (ideally under 10 mm to optimize the 

reconstruction result). Specimen slices are placed on a flat (preferably dark) surface 

including four fiducial markers on the corners of a rectangle of known dimensions (Fig. 1B). 

All slices are placed in the same orientation (either anterior or posterior), and photographs 

are then taken with homogeneous lighting. The fiducials are automatically detected with 

Scale Invariant Feature Transform (SIFT)34 and Random Sample Consensus (RANSAC)35, 

or alternatively, four reference points of known distance between them can be manually 

selected within each photograph. The distance between fiducials or reference points is 

used to compute a perspective transform that corrects geometric distortion of the 

photographs, while calibrating their pixel size32. This correction overcomes the variable 

angles of different elements in the image to the camera, and can also adjust for potential 

variations in camera distance across photographs. After photography, blocks are sampled 

from the slices for histological processing (Fig. 1C). 

2.2 3D photograph reconstruction 

From corrected photographs, slices are segmented from the background using automatic 

color thresholding (easier with dark backgrounds) or manual correction (if background is 

light-colored) in any image editing software, such as the open-source package GIMP 

(https://www.gimp.org). Then, we define the order of the slices using a simple graphic user 

interface (GUI), also available in FreeSurfer 7.4.  
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Next, the slices are reconstructed into a 3D volume32 (Fig. 1D) using a joint registration 

framework for MRI-free reconstruction36. This framework takes advantage of prior 

knowledge about brain slice thickness and uses an MRI atlas (MNI) as 3D reference 

volume. The orientation of slices in the image, either anterior (default) or posterior can be 

specified, resulting in interchangeable results.  

2.3 Deep learning synthesis  

The reconstructed volume is aligned to the reference MNI atlas only linearly, so accurate 

mapping requires subsequent nonlinear registration. In order to increase the accuracy of 

nonlinear alignment, it is desirable to synthesize a 1 mm isotropic synthetic MRI (Fig. 1E) 

from the 3D reconstructed volume37. For this purpose, we use SynthSR38,39, which we 

finetuned to adapt the method to the features of slice photography: absence of cerebellum 

or brainstem; single hemisphere; and different brightness variations for every coronal slice. 

As shown previously38, SynthSR confers reliable results across brain structures, and  was 

trained using data from subjects with varying degrees of atrophy, making it robust to 

severely atrophied brain specimens. 

2.4 Registration to MNI 

As shown in Figure 1, SynthSR produces a 1 mm isotropic volume with T1-weighted MRI-

like contrast. We register the T1-weighted version of the MNI atlas to this volume (Fig. 1F) 

using NiftyReg40, an open-source software for linear and non-linear registration of medical 

images (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg). NiftyReg is a widely used tool 

showing highly accurate results, with a validated  performance compared to other 

registration methods41,42. Registration includes a linear step (function reg_aladin) followed 

by a non-linear diffeomorphic registration, using 15mm control point spacing and a local 
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normalized cross correlation objective function with 4mm gaussian window (function 

reg_f3d -vel -sx -15 --lncc 4.0).  

2.5 Histology registration and pathology map computation 

Direct slice-to-volume registration of a histological section to MNI space is extremely ill-

posed and ambiguous, particularly for nonlinear registration28. To circumvent this 

challenge, our pipeline takes advantage of prior knowledge of the brain slices from which 

tissue blocks (and histology sections) were derived. This correspondence is used to 

register each histological section to its approximate location and rotation in the brain slice. 

Manual initialization is performed by selecting two anatomical gyrification landmarks (e.g., 

for hippocampal sections, the hippocampal fissure and the border of the temporal horn) in 

both the histology section and its corresponding hemisphere slice (Fig. 1G). To account for 

block trimming during sectioning, if slice photos and tissue blocks were obtained from the 

anterior side, we shift the initial coronal position of the section 2.5mm posteriorly. This shift 

was chosen assuming histology sections were obtained from the center of the tissue block 

(commonly 5mm thick), entailing an error of ±2.5mm in registration initialization. Finally, 

the MNI atlas registered to subject-specific space (Section 2.4) is used to enhance 

registration accuracy in the coronal plane based on gradient magnitude correlation, within 

a range of ±10mm. This last step is particularly useful if working with thicker dissection 

blocks, which would entail a higher initialization error.  

 

To register histology to atlas space, the coronal level of each section resulting from the 

prior registration step is used as a reference. To model uncertainty in the anterior-posterior 

direction as the main source of error in this pipeline, we use kernel regression, whereby 
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kernels account for both the density of the data (for interpolation purposes) and registration 

error. To that end, a gaussian distribution around each section’s resulting coronal position 

is obtained, serving as a position probability function. Linear and nonlinear deformations 

obtained in step 2.4 are then concatenated to nonlinearly deform gaussian distributions to 

MNI space (Figure 2). Subsequently, a weighted average of measured pathology burdens 

(or any other histological measurement) is obtained, using their gaussian position 

distributions as weights. A mask of the brain structure of interest is then applied to the 

resulting average burden maps, thereby enabling population analyses (Fig. 1H). 

To obtain MNI coronal coordinates for Path2MR validation compared to visual positions, 

after registration to MNI, gaussian distributions of each histology section were applied a 

mask of the hippocampus. Within each masked distribution, the coronal slice with highest 

number of high-intensity voxels (equal to 1) was selected as the coronal coordinate of the 

section (the center of the distribution). Intensity measures per coronal plane were derived 

from masked distributions and pathology maps using commands from FSL software43, 

specifically fslslice, fslmaths and fslstats. Throughout the manuscript, the uncus was used 

as reference for the transition from hippocampal head to body, delimiting y=-22 as the first 

MNI coronal coordinate within the hippocampal body44.  

2.6 Experimental donor cohort  

To evaluate the applicability of the presented pipeline, we used samples from donors with 

dementia from the BT-CIEN brain bank (Madrid, Spain). Standard diagnostic procedures 

at BT-CIEN45 include qualitative assessment of global and medial temporal lobe (MTL) 

atrophy (0-3) immediately after extraction. Subsequently, the left hemisphere is fixed in 4% 

phosphate-buffered formaldehyde and cut into 10mm-thick coronal slices for tissue block 
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dissection, while the right hemisphere is frozen. Neuropathological evaluation is performed 

according to published criteria for AD46, vascular pathology47, presence of Lewy Bodies4, 

LATE48 and hippocampal sclerosis of aging (HS)49.  

To minimize heterogeneity from co-pathology, we included all patients with a 

neuropathological diagnosis of “pure” non-familial AD according to the following criteria: i) 

high AD neuropathologic change (ADNC)46; ii) no Lewy Bodies, LATE nor classical HS, 

and low or no vascular pathology; iii) extent of global and MTL atrophy lower than the 

maximum (i.e., score 0-2), as neuropathologic criteria could not be reliably evaluated in 

samples from extremely atrophic cases (score of 3). Intermediate ADNC cases with no co-

pathology commonly present milder clinical profiles50 and are therefore rare in dementia 

autopsy series. Out of all donations received at BT-CIEN between 2007 and 2020, a total 

of 26 amnestic dementia patients complied with these criteria and were included in the 

study. 

Reconstruction was performed from retrospective photographs of stored hemisphere slices 

previously processed for histology. For all subjects, reconstruction was carried out using 

anterior blockface photographs. If any slice had missing information due to tissue 

dissection, with the posterior side of its consecutive slice being intact, the latter was 

replaced by the former (horizontally flipped) prior to segmentation from the background 

(Section 2.2) using GIMP 2.10.28. 

2.7 Histology and quantification 

Given the extensively studied vulnerability of the hippocampus to AD pathology, we 

employed Path2MR to analyze the distribution of tau and Aβ pathologies along the 

hippocampal longitudinal axis. As shown in Figure 3A, we used histology sections obtained 
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from three coronal blocks of the left hippocampus: hippocampal head, body and tail. Blocks 

were processed using the HistoCore PEARL (Leica Biosystems), placed within paraffin, 

and the Microm HM355S microtome (ThermoFisher) was used to obtain 4μm-thick 

sections. Immunohistochemistry was carried out using primary antibodies for tau AT100 

(ThermoFisher Invitrogen, code: MN1060, 1:100 dilution) or Aβ (Dako, code: M087201-2; 

1:40 dilution), together with hematoxylin. For each pathology, analyses were designed to 

include a total of 78 sections (three per subject). Out of these, nine blocks could not be 

included in tau analysis due to dim staining or tissue unavailability, and six could not be 

obtained for Aβ staining, resulting in 69 and 72 sections included, respectively. For 

histology registration (Section 2.5), a 1X digital image of each section was obtained using 

a Nikon Coolscan V-Ed scanner. The anatomical position of each section was determined 

by KSB and AR, blind to Path2MR outcome. This was performed based on the micro-atlas 

by Mai et al.51, determining the distance to the anterior commissure (AC) of each section 

(ranging from 10.7 to 39.5 mm) by visual inspection under the Nikon 90i light microscope.  

To obtain an average measure of tau neurofibrillary tangle (NFT) and Aβ burden per 

section, we measured these in five hippocampal subfields: CA1, CA2, CA3, as well as the 

medial (MDG) and lateral (LDG) regions of the dentate gyrus (Figure 3B). The selected 

CA1 region included the medial portion of the subfield (with proximal meaning close to 

CA2, and distal close to the subiculum). Three micrographs were acquired in each subfield 

using a Nikon 90i microscope with 20X magnification. Pathology burden was quantified 

using CellProfiler 4.0.7, performing segmentation based on the color of the stain followed 

by intensity correction to homogenize across micrographs. Then, in tau images, the 

following items of interest were identified based on size: NFT+ neurons (mature tangles, 
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covering the whole neuronal soma) and hematoxylin-stained nuclei of NFT- neurons. In Aβ 

images, diffuse, cored, cotton-wool or coarse-grained plaques were identified, without 

separate classification of each type. As previously described, tau burden was measured 

as the percentage of NFT+/total neurons in the image52, and amyloid burden was 

measured as the area percentage covered by Aβ plaques53 (Figure 3C). As neuron size 

differs between pyramidal CA layers and granular DG layers, independent projects were 

used for tau quantification in CA and DG subfields. To normalize counts by layer area, as 

CA images only included the pyramidal layer, the whole area of the image was used. 

Conversely, DG images included the neuron-containing granular layer and neighboring 

(polymorphic and molecular) layers, and thus segmented neurons were dilated (to a size 

of 15 pixels) and merged to delimit the area of the granular layer. Our CellProfiler projects 

for tau and Aβ quantification are also available at https://github.com/ortegacruzd/Path2MR. 

Subfield burden was obtained as the average between the three micrographs within a 

subfield, and global section burden was obtained as the average among the five subfields. 

2.8  Ground truth experiment 

To validate Path2MR reconstruction performance, we used MRI scans from the Human 

Connectome Project (HCP)54 as ground truth dataset, adapting methodology by Gazula et 

al.32. T1 and T2 sequences (slice thickness of 0.7mm) from 100 subjects were first skull 

stripped using FreeSurfer, followed by extraction of the left hemisphere. The T1 was used 

as ground truth structure, and the T2 was used for reconstruction (Figure S1). To that end, 

we simulated 10mm-thick dissection photographs from T2 hemispheres by extracting one 

coronal slice every 14 (0.7mm*14=9.8mm spacing). To mimic variability in experimental 

data, each extracted slice was applied a distortion transform Tdist that comprised random 
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rotations (within ±20º), translations (within ±0.5 pixels in both axes), shearings (within 10% 

in both axes), and smooth illumination fields. Larger random translations were not required, 

since 3D reconstruction is initialized by matching centers of gravity of the slices. Distorted 

T2 slices were then used for 3D reconstruction, deep learning synthesis and nonlinear MNI 

registration (Path2MR steps in Sections 2.2, 2.3 and 2.4, respectively). Finally, the T1 

hemisphere was also applied a 3D random rigid transform (rotation within ±30º and 

translation within ±20mm) and nonlinearly registered to MNI using the same configuration 

as in Section 2.4 . 

On one side, MNI registration of the T1 ground truth hemisphere yielded a deformation 

transform D1. On the other side, reconstruction of T2-derived slices yielded a restoration 

transform Trest,  and after SynthSR processing, MNI registration of the resulting isotropic 

scan yielded a transform D2. We can then compare D1 with the composition: Tdist ∘ Trest ∘ 
D2. In an ideal scenario, Tdist=Trest

-1 such that the two cancel each other, with SynthSR 

generating perfect isotropic images and D1 and D2 being identical. In practice, mistakes 

are made in the 3D reconstruction (which affects the error directly) and in deep learning 

synthesis (which affects the error indirectly, via impact on the NiftyReg registration). 

Therefore, the error was computed as the module of the difference between D1 and D2, 

averaged across non-zero voxels in every reconstructed slice. 

2.9 Statistics 

Statistical comparisons and associated plots were performed using RStudio 1.4.1106, 

including the following packages: ggpubr, tidyverse, readxl, rstatix and viridis. Tau and Aβ 

distributions along the longitudinal hippocampal axis were compared using Kolmogorov-

Smirnov test. To find the most appropriate fit to the data, we used linear, quadratic, and 
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cubic functions and selected the fit with highest adjusted R2 and lowest Akaike information 

criterion (AIC) value. Pathology burdens were compared between subfields using repeated 

measures analysis of variance (ANOVA) and post-hoc pairwise T tests.  

2.10 Ethical approval 

The BT-CIEN brain bank is officially registered by the Carlos III Research Institute (Ref: 

741), by which donation is carried out under informed consent by a relative or proxy. BT-

CIEN procedures, have been approved by local health authorities of the Madrid 

Autonomous Community (Ref: MCB/RMSFC, Expte: 12672). The study of these data was 

independently approved by the Ethics Committee of the Universidad Politécnica de Madrid 

(Nº Expte: 2021-062). 

3 Results 

3.1 Validation of reconstruction performance 

First, the accuracy of Path2MR in recovering the original structure of the specimen was 

quantitatively assessed using scans from 100 subjects from the Human Connectome 

Project. T1-weighted scans were used as ground truth, and corresponding T2-weighted 

scans were used to simulate 10mm-thick slices for 3D reconstruction, deep learning 

synthesis and registration to MNI (Figure S1). Resulting deformations were compared at 

every voxel with those obtained from MNI registration of the T1 ground truth, revealing an 

average 3D error of 3.27±0.42 mm. Evaluating separate contributions from each axis, we 

found an error of 1.22±0.18 in medial-lateral, 1.71±0.33 in superior-inferior, and 

1.91±0.26mm in the anterior-posterior direction. The comparable error between the three 

axes, while dealing with discrete sampling in the anterior-posterior axis, shows that 
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Path2MR steps prior to histology registration achieve an accurate estimation of the 

specimen’s 3D structure. 

3.2 Validation of histology localization 

Together with reconstruction performance, the reliability of results obtained with Path2MR 

depends on its ability to accurately localize histologic sections. To validate this step using 

our hippocampal histology dataset, we compared Path2MR-based histology localization 

with visually determined positioning using a hippocampus micro-atlas as reference51. The 

Path2MR coronal level of each histology section was obtained as the center of its gaussian 

distribution (width: σ=3mm), obtained around the predicted position to model registration 

error and registered to MNI. For the 72 Aβ histology sections included, resulting coronal 

MNI coordinates ranged between y=-8 (hippocampal head) and y=-42 (hippocampal tail). 

As shown in Figure 4A, these Path2MR coordinates presented a strongly significant 

correlation with visually determined anatomical positions (Pearson’s correlation, R=0.77, 

p=2.5x10-15). Additionally, we used the visual location of each section to generate a 3D 

position map using Path2MR, applying Equation 1 as explained in Figure 2 and Section 

2.5: 

끫殆끫殆끫殆ℎ끫殸끫殸끫殸끫殸끫殸 끫殴끫殆끫殴 =  � � 끫歴끫殆끫歴끫歴끫歴끫歴끫殆끫歴 끫殢끫歴끫歴끫殆끫殢끫歴끫殢끫歴끫殆끫歴끫殸끫歴 · 끫殆끫殆끫殆ℎ끫殸끫殸끫殸끫殸끫殸 끫殢끫歴끫殢끫殢끫殞끫歴끫殂    [1]

 끫毀끫毀끫毀끫毀끫毀끫毀끫毀 끫殂
   끫毀끫毀끫毀끫毀끫毀끫毀끫毀 끫歨

끫殌끫殌끫殌끫殌끫毀끫毀끫毀 끫毀
끫殌끫殌끫殌끫殌끫毀끫毀끫毀 1  

In this case, the visually determined distance to the AC was used as the “pathology burden” 

measure. The resulting hippocampal position map showed the expected distribution, with 

distance increasing progressively from the head to the tail of the hippocampus (Figure 4B). 

Both results were similar when using tau sections instead (R=0.77, p=5x10-15). Therefore, 

Path2MR conveys an anatomically consistent representation of histology localization, while 

overcoming the subjective character of visual comparison to a reference. 
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3.3 Anterior-posterior AD pathology distribution 

The hippocampal long axis (anterior-posterior in humans) shows gradual and discrete 

transitions in terms of anatomical connectivity, genetics, receptor expression and 

pathology vulnerability55. To illustrate the utility of Path2MR for population analyses, we 

assessed the distribution along this axis of tau and Aβ pathologies, hallmarks of AD. For 

each pathology, we multiplied the gaussian distribution (σ=10mm) of each section by its 

quantified pathology burden, normalizing by the number of sections per subject and adding 

results from the 26 subjects (Equation 1, Section 2.5). Followed by applying a mask of the 

hippocampus, this strategy resulted in smooth pathology maps for tau and Aβ (Figure 5). 

For both pathologies, burden was highest at the hippocampal head, reaching lowest values 

at the hippocampal tail. To inspect these distributions closely, we obtained the mean 

intensity per coronal slice of each burden map, showing the highest tau burden at the 

anterior end of the hippocampus (MNI coordinate y=-7). Tau burden remained stable for 

the contiguous slices within the hippocampal head, followed by a linear decrease from y=-

17 towards the posterior end of the hippocampus. In contrast, Aβ distribution resembled a 

quadratic curve, peaking at y=-18 within the hippocampal head. High-burden slices 

covered a more widespread region, with a decrease initiating at the hippocampal body and 

continuing throughout the tail. 

These two anterior-posterior distributions were compared through a Kolmogorov-Smirnov 

test, showing a statistically significant difference between both (D=1, p=7x10-16). We also 

explored within-subject pathology gradients (Figure S2A), using MNI section positions 

obtained in Section 3.2. Given the low number of data points included per subject, 

individual pathology distributions were variable. However, in accordance with distributions 
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from 3D pathology maps, a linear fit was found to be most appropriate for tau density, 

based on selection of fit with highest R2 and lowest AIC.  Conversely, a quadratic function 

represented a better fit for Aβ pathology (Figure S2B). Results were similar when 

employing visually determined histology positions (Figure S2C), although this classification 

comprises a lower density of coronal levels through the hippocampus, and thus lower 

resolution. Therefore, Path2MR allowed population analyses at a finer resolution compared 

to a visual reference, revealing significant differences between tau and Aβ deposition along 

the long axis of the human hippocampus.  

3.4 Pathology distributions for each subfield 

Given that global section burden was obtained by averaging pathology values from five 

hippocampal subfields, we also evaluated differences across subfields. Mean tau 

(F(264)=248.4, p=7x10-40) and Aβ (F(295)=56.8, p=6x10-13) burden was significantly higher 

in CA1 and CA2 compared to CA3, LDG and MDG. Anterior-posterior differences were 

also found within each subfield for both pathologic proteins (Figure S3), as well as for 

separate measures of neuron and NFT areal densities (Figure S4). Neuron density in CA1, 

CA2 and CA3, and NFTs in all subfields, were higher at the anterior portion of the 

hippocampus, which explains the observed tau (NFT/neuron) distributions. We then 

generated subfield-specific 3D maps of tau and Aβ using Path2MR (Equation 1), from 

which the mean burden of every coronal slice was obtained (Figure 6). We found that, while 

all subfields presented their highest tau burden at the anterior end of the hippocampus, Aβ 

distribution was more variable across subfields. The anterior-posterior Aβ distribution of 

CA1, CA3 and LDG reached a maximum at the hippocampal head (MNI coordinates y=-

21, -7, and -8, respectively). In contrast, CA2 and MDG presented their maximum burden 
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at the hippocampal body (y=-25 and -33, respectively). Therefore, the anterior-posterior 

gradient for Aβ pathology is intertwined with gradients in the proximo-distal axis (between 

subfields). 

 

3 Discussion  

We present Path2MR, a novel pipeline for histology mapping into a 3D framework enabling 

data integration for population analyses. This pipeline requires only blockface images of 

slices obtained upon sampling of the organ of interest – in this case, the left brain 

hemisphere. These images are stacked into a sparse 3D volume, which is then brought to 

isotropic 1mm3 resolution using deep learning and registered to atlas space using standard 

MRI processing methods. We implement Path2MR for population analysis using blockface 

images and hippocampal histology sections from 26 subjects with AD. In these 

experiments, the spatial interpretability of the method was verified by comparing histology 

mapping results in MNI space to visual section localization. While the MNI reference 

overcomes visual bias and provides a higher resolution compared to the anatomical micro-

atlas (1 vs 1.4 mm), results from both methods showed a high correlation, and thus 

comparable outcomes. This supports the reliability of the method despite using specimens 

with severe atrophy. Moreover, Path2MR reconstruction, synthesis and MNI registration 

steps were quantitatively evaluated using ground truth data, revealing a 3D error of 

3.27mm, which is within the previously reported 2-6mm error range from registration of 

brain MRIs to MNI42,56,57.  

The critical advantage of our sparse histology reconstruction pipeline lies in its 

independence of a 3D reference image. Previous reconstruction methods were based on 
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keystones obtained with highly specialized equipment and expertise: either a subject-

specific MRI26,27,58, dense sampling of the specimen9,12, or both21,23. While dense sampling 

methods rely on stacking histological sections for reconstruction, Path2MR recovers 3D 

structure by stacking blockface images, which are straightforward to obtain. The proposed 

pipeline, however, entails several assumptions such as the depth of the histological section 

from the face of the tissue block. In contrast, direct stacking of serial histology sections 

allows considering different deformation sources during histology processing59,60. Using a 

specific 3D reference is also valuable to reduce uncertainty8, with sophisticated 

approaches such as mold-guided sectioning further facilitating the correspondence 

between MRI and histology61,62. Although Path2MR involves a larger registration error, we 

show it overcomes histological sampling variability for the hippocampus, which spans 

several centimeters along the coronal axis. As all steps of Path2MR are based on whole-

brain methods, this approach can also be applied for histological analyses in any other 

brain structure, including cortical regions. This would be of great interest towards a more 

anatomically complete understanding of AD histopathological topographies. 

The experiments included in this study revealed an anterior-posterior gradient of 

hippocampal tau NFT pathology. These results are in line with the recently reported higher 

anterior tau burden in the hippocampus and other MTL structures31, further supporting the 

reliability of the pipeline. In a PET study, tau radiotracer uptake was also found to be higher 

in anterior temporal regions63. The anatomical and functional connectivity between the 

human entorhinal cortex, where tau deposition initiates3, and the anterior hippocampus55, 

could provide insights into this increased regional burden. Interestingly, we also found a 

gradient of Aβ pathology which peaked towards the middle portion of the hippocampal long 
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axis. To our knowledge, no other pathology studies have explored the distribution of Aβ 

along this axis. We also report intriguing neuronal density gradients in CA subfields of the 

hippocampus, with areal densities decreasing in the anterior-posterior direction. While 

these results are in contrast with previous studies in healthy subjects, which reported the 

opposite trend64, or no anterior-posterior differences65, new studies employing more recent 

methodology and including samples from AD patients are required to validate the gradients 

observed here.  

Hippocampal anterior-posterior gradients have been consistently observed in other 

dimensions including gene expression66, as well as functional55 and anatomical67 

connectivity. An additional axis of functional connectivity from the middle of the 

hippocampus towards anterior and posterior ends has been recently described using 

gradient mapping68. This gradient predicted episodic memory performance throughout the 

lifespan and could be linked to the Aβ distribution reported here. The topological distribution 

of amyloid PET binding has been shown to overlap with the “default mode” resting state 

network69. Evidence is emerging from analyses of functional gradients within the 

hippocampus and the cortical mantle that the default mode network may show strongest 

hippocampal connectivity at the transition between the head and body70. This has relevant 

implications for the understanding of clinical manifestations and progression of AD. In this 

context, it is pertinent to investigate hippocampal gradients of other proteopathies that 

commonly coexist with AD, such as TDP-43 and α-synuclein. 

In line with previous studies71,72, we found both tau and Aβ burdens to be highest in 

hippocampal subfield CA1, followed by CA2. Differences between subfields were 

especially notable for Aβ, presenting a high variability in anterior-posterior distributions. 
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This is coherent with the extracellular propagation pattern of Aβ, while tau spreads on a 

cell-to-cell basis through axonal connections73. As our analyses were performed by 

averaging burdens across subfields, whose relative positions differ along the long axis51, 

the obtained anterior-posterior distributions are conditioned by proximo-distal (between-

subfield) differences. Recent approaches take advantage of histology digitalization for 

high-throughput quantification across the whole section, typically using deep learning6,74. 

Unfortunately, digitalization was not available for the studied dataset, limiting our ability to 

explore 3D topographical interactions in greater detail. In future work, Path2MR can be 

readily exploited using high-resolution digital histology data, to investigate pathological 

differences in medial-lateral and superior-inferior directions. This will provide a fine-grained 

understanding of spatial gradients within structures severely affected by 

neurodegenerative pathologies, as well as their associated cellular vulnerabilities. 

Together with the lack of digital histology data, the presented experiments entail some 

limitations, including the unavailability of right-hemisphere pathological information. 

Another limitation is the use of blockface photographs acquired after histological 

processing. Brain slices used for reconstruction were non-intact, inducing uncertainty in 

subsequent steps of the pipeline. Kernel regression was therefore employed to model 

registration error, in a similar fashion to smoothing strategies typically used in 

neuroimaging analyses75. On the other hand, the robustness of the method to these 

experimental limitations is also a strength of this study, as it demonstrates the applicability 

of Path2MR to any brain bank dataset with access to preserved tissue. Its implementation 

with blockface photographs of intact brain slices will further improve the accuracy of its 

results, enabling more lenient error corrections. Another strength of this work is the use of 
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spatial variability inherent to histological sampling to obtain a dense between-subject 

representation along the hippocampus, considering only 3 sections per subject. Combined 

with kernel regression, such dense representation over multiple subjects resulted in the 

smooth pathology maps presented here. Moreover, in our experiments, the possible effects 

of other co-pathologies on tau and Aβ patterns were isolated by studying a homogeneous 

set of patients with AD as the only substantial neuropathology. 

In conclusion, Path2MR is a widely applicable 3D reconstruction pipeline. Using 

information extracted from routine dissection, Path2MR can be implemented with sparse 

histology and in the absence of an MRI reference. These features unlock the possibility to 

analyze in 3D the rich histological information obtained routinely at brain banks, as well as 

clinical and research institutions. We demonstrate the utility of Path2MR in population 

analyses including sections from three regions of the hippocampus (head, body and tail) 

from 26 AD patients. We found both tau NFTs and Aβ deposits predominate at the 

hippocampal head, while showing significantly different anterior-posterior distributions. 

Using this pipeline, future studies could validate these results and integrate them with data 

from earlier AD stages, as well as with other pathologies, to constitute a comprehensive 

map of combined hippocampal pathology in dementia. 
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Figure captions. 

 

Figure 1. Summary of Path2MR. Steps in the top row include tissue processing and photography (Section 

2.1), and the bottom shaded pentagon includes steps of the reconstruction method (Sections 2.2 to 2.5). 

Briefly, the fixed specimen is: A. sliced (coronally and unilaterally in our case), B. photographed including 

fiducial markers, and C. dissected for histological processing. The 3D reconstruction method uses blockface 

photographs as the starting point (D., Section 2.2), followed by deep learning synthesis of a 1mm3 resolution 

prediction of the hemisphere (E., Section 2.3). To enable population analyses, an atlas in MNI space is 

registered to this hemisphere prediction (F., Section 2.4). Linear and non-linear transforms obtained at this 

step (represented with a T) are used after registration of histology sections to the 3D reconstruction, for which 

manual initialization is used (G., Section 2.5), to in turn register histology to MNI. Subsequently, any histology-

derived measure can be compared for population analysis in standard space (H.). 3D: three-dimensional. 

MNI: Montreal Neurological Institute. 
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Figure 2. Steps followed to perform population analysis of histology in standard space. First, gaussian 

distributions are obtained around the position of each section in subject-specific space. These are then 

registered to MNI space using transforms derived from registration of the atlas to the synthetic MRI for each 

subject (T1, T2,…Tn). The gaussian position distribution of each section in MNI space is multiplied by its 

quantified pathology burden and normalized by the total number of sections included for that subject. Finally, 

burden maps for all sections and subjects are added and masked to obtain the pathology distribution of the 

population within the region of interest (ROI). MNI: Montreal Neurological Institute; n: number of subjects; N: 

number of sections per subject; ROI: region of interest. 
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Figure 3. Summary of steps carried out for AD pathology quantification along the hippocampal 

longitudinal axis. A. Three anatomical blocks were sectioned for histology: head, body, and tail of the 

hippocampus. Sections from each of these levels were stained with antibodies against tau (AT100) and Aβ. 

B. Three micrographs at 20X magnification were taken per subfield: CA1, CA2, CA3, medial (MDG) and 

lateral dentate gyrus (LDG). C. Each 20X micrograph from sections stained against tau or Aβ was quantified 

with CellProfiler 4.0.7, measuring the percentage of NFT+ neurons (outlined in green, versus NFT- neurons 

outlined in purple) or area covered by Aβ plaques (outlined in green), respectively. Aβ: amyloid-β; LDG: 

lateral dentate gyrus; MDG: medial dentate gyrus; NFT: neurofibrillary tangles.  
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Figure 4. Comparison of histology localization with Path2MR with visually determined section 

positions. Visual positions were determined by using a micro-atlas of the hippocampus 51 as reference. A. 

Scatter plot and correlation between visually determined positions and coronal MNI position obtained from 

Path2MR. For each section, the slice with highest number of high-intensity voxels from the gaussian position 

distribution was used as its coronal MNI position. MNI coordinates have been reversed to ease visualization 

(from anterior to posterior). Anterior (A) and posterior (P) ends of x and y axes are indicated. Grey shaded 

region shows 95% confidence interval. B. Distribution map of distance to anterior commissure (AC) obtained 

with Path2MR, showing the shortest and largest distances in the hippocampal head and tail, respectively. 

AC: anterior commissure; MNI: Montreal Neurological Institute. 
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Figure 5. Distribution of tau and Aβ pathology burdens along the hippocampal long axis. A. 

Distribution map for tau pathology, quantified as the percentage of NFTs over the total neuron count, obtained 

with Path2MR. Mean tau burden per coronal slice of this map is shown in the right. B. Distribution map of Aβ 

burden, quantified as percentage area covered by Aβ plaques, together with plot of mean burden for every 

coronal slice. In graphs on the right, the grey shade shows standard deviation, and MNI coordinates have 

been reversed to ease visualization from anterior (A) to posterior (P). Aβ: amyloid-β; MNI: Montreal 

Neurological Institute. 
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Figure 6. Individual distributions of tau and Aβ along the hippocampus for each subfield. A. Tau 

burden distribution obtained with Path2MR independently for each subfield, showing mean burden per 

coronal slice within the hippocampus. B. Mean Aβ burden in each subfield for every hippocampal coronal 

slice. Grey shades show standard deviation, and x axis coordinates are reversed for visualization from 

anterior (A) to posterior (P). Aβ: amyloid-β; LDG: lateral dentate gyrus; MDG: medial dentate gyrus; MNI: 

Montreal Neurological Institute; NFT: neurofibrillary tangles. 
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