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Abstract

INTRODUCTION: Three-dimensional (3D) histology analyses are essential to overcome
sampling variability and understand pathological differences beyond the dissection axis.
We present Path2MR, the first pipeline allowing 3D reconstruction of sparse human
histology without an MRI reference. We implemented Path2MR with post-mortem

hippocampal sections to explore pathology gradients in Alzheimer’s Disease.

METHODS: Blockface photographs of brain hemisphere slices are used for 3D
reconstruction, from which an MRI-like image is generated using machine learning.
Histology sections are aligned to the reconstructed hemisphere and subsequently to an

atlas in standard space.

RESULTS: Path2MR successfully registered histological sections to their anatomical
position along the hippocampal longitudinal axis. Combined with histopathology
quantification, we found an expected peak of tau pathology at the anterior end of the

hippocampus, while amyloid-f3 displayed a quadratic anterior-posterior distribution.

CONCLUSION: Path2MR, which enables 3D histology using any brain bank dataset,

revealed significant differences along the hippocampus between tau and amyloid-p3.
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1. Background

A wealth of information regarding region-specific cellular and pathological features has
been obtained from human post-mortem brain specimens'*. For this purpose, brains are
typically cut into slices, from which smaller, thin sections are sampled and analyzed under
the microscope. The ensuing observations are assigned to the anatomical structure of
origin and compared across subjects. However, since in standard practice sampled regions
are visually identified and manually processed, histological sections from different subjects
rarely originate from the same exact brain position. This results in a lack of anatomical
generalizability of the sophisticated cellular and pathological quantifications which are
attracting increasing interest®”’. Identifying the precise structural location of each section
would allow performing anatomically relevant comparisons of histological observations.
Moreover, this would enable pooling data from different individuals into a common space
to study histological measurements beyond the sectioning plane.

To achieve such fine-grained mapping, three-dimensional (3D) histology reconstruction
approaches have been developed, which rely on image registration to align consecutive
histological sections®. Without a reference of the original shape, inferring the 3D volume
conformation represents a challenge, and often leads to artifacts such as z-shift
(accumulation of errors along the stack) and the “banana effect” (straightening of curved
structures)®. Several strategies are available to optimize reconstruction outcome®'2. These
methods have been applied for brain reconstruction using animal'' and human
histology®'6. However, they require dense, serial sectioning of the whole brain or structure

of interest to ensure accurate representation of its 3D configuration'”. Such dense
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histological sampling is rarely performed in routine brain bank procedures and may be
unfeasible due to time limitations or sample requests for other purposes.

Alternative efforts towards histology reconstruction have relied on Magnetic Resonance
Imaging (MRI) as a 3D reference. Using subject-specific in vivo'®'° or ex vivo?%-?* scans,
these approaches overcome shape uncertainty by registering sections to the MRI volume.
With this strategy, serial histology reconstruction allows accurate unbiased registrations to
an atlas. Additionally, other MRI-based methods have enabled reconstruction of sparse
histological images'®192527  Although entailing less accurate slice-to-volume
registrations??, this option avoids dense sampling of the whole specimen. Unfortunately, in
vivo MRI is only available for special cases or in planned follow-up initiatives such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)?°. Similarly, many brain banks have
no access to ex vivo scanning due to financial and logistic constraints. As these
approaches rely on highly specialized setups and equipment, their applicability to the large
histological datasets generated in brain banks and clinical facilities is limited.

Here, we present Path2MR, a histology mapping pipeline that enables 3D studies using
sparse sampling and without a specific MRI reference. Our strategy uses blockface images
of brain hemisphere slices to recover the 3D structure by geometrical stacking. Then, deep
learning is employed to obtain a 1mm? resolution 3D prediction of the hemisphere with
MRI-like contrast, which is subsequently registered to the widely used Montreal
Neurological Institute (MNI) atlas. Histological sections are then registered to the
corresponding coronal slice within the reconstructed hemisphere, and deformations are

concatenated to register them to MNI standard space.
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We demonstrate the applicability of PathZMR by analyzing pathological gradients of
Alzheimer’s Disease (AD), for which neuropathology serves as ground truth for diagnosis
and biomarker validation®°. Specifically, we explore the distribution of tau and amyloid-B
(AB) pathologies along the anterior-posterior axis of the hippocampus in 26 patients with
no co-pathologies aside from AD. We take advantage of the spatial variability inherent to
histological sampling to achieve a fine depiction of this axis using only three sections per
subject. Our results show an anterior-posterior gradient of hippocampal tau pathology,
consistent with previous work using ex vivo MRI and dense sampling®'. In contrast, AR
pathology displays a quadratic-shaped distribution, with more variable patterns of
deposition across hippocampal subfields. Our 3D histology pipeline is widely applicable to

any prospective or retrospective brain bank histology dataset.

2. Methods

Path2MR is summarized in Figure 1, and steps are detailed in Sections 2.1 to 2.5. Steps
described in Sections 2.1-2.4 (3D reconstruction and registration to MNI) are performed
once for every subject, while histology registration (Section 2.5) is performed independently
for each section included in population analyses. This pipeline is agnostic to the brain
processing procedures. As many brain banks limit histology to one hemisphere, the
pipeline has been developed for single hemisphere reconstruction; however, it is easily
adaptable to 3D reconstruction of the whole brain. Steps described in Sections 2.1 and 2.2
are available as part of the neuroimaging suite FreeSurfer, and steps from Sections 2.3-
2.5 are publicly available at https://github.com/ortegacruzd/Path2MR.

2.1 Blockface photography
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The procedure for blockface photography of specimen slices has been recently described?
and photograph processing is available in FreeSurfer 7.433 (and subsequent versions). As
shown in Fig. 1A, the specimen destined for histology should be cut by an experienced
pathologist into slices of regular thickness (ideally under 10 mm to optimize the
reconstruction result). Specimen slices are placed on a flat (preferably dark) surface
including four fiducial markers on the corners of a rectangle of known dimensions (Fig. 1B).
All slices are placed in the same orientation (either anterior or posterior), and photographs
are then taken with homogeneous lighting. The fiducials are automatically detected with
Scale Invariant Feature Transform (SIFT)** and Random Sample Consensus (RANSAC)3S,
or alternatively, four reference points of known distance between them can be manually
selected within each photograph. The distance between fiducials or reference points is
used to compute a perspective transform that corrects geometric distortion of the
photographs, while calibrating their pixel size®2. This correction overcomes the variable
angles of different elements in the image to the camera, and can also adjust for potential
variations in camera distance across photographs. After photography, blocks are sampled
from the slices for histological processing (Fig. 1C).

2.2 3D photograph reconstruction

From corrected photographs, slices are segmented from the background using automatic
color thresholding (easier with dark backgrounds) or manual correction (if background is
light-colored) in any image editing software, such as the open-source package GIMP
(https://www.gimp.org). Then, we define the order of the slices using a simple graphic user

interface (GUI), also available in FreeSurfer 7.4.
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Next, the slices are reconstructed into a 3D volume?®? (Fig. 1D) using a joint registration
framework for MRI-free reconstruction®. This framework takes advantage of prior
knowledge about brain slice thickness and uses an MRI atlas (MNI) as 3D reference
volume. The orientation of slices in the image, either anterior (default) or posterior can be
specified, resulting in interchangeable results.

2.3 Deep learning synthesis

The reconstructed volume is aligned to the reference MNI atlas only linearly, so accurate
mapping requires subsequent nonlinear registration. In order to increase the accuracy of
nonlinear alignment, it is desirable to synthesize a 1 mm isotropic synthetic MRI (Fig. 1E)
from the 3D reconstructed volume®’. For this purpose, we use SynthSR3839 which we
finetuned to adapt the method to the features of slice photography: absence of cerebellum
or brainstem; single hemisphere; and different brightness variations for every coronal slice.
As shown previously®®, SynthSR confers reliable results across brain structures, and was
trained using data from subjects with varying degrees of atrophy, making it robust to
severely atrophied brain specimens.

2.4 Registration to MNI

As shown in Figure 1, SynthSR produces a 1 mm isotropic volume with T1-weighted MRI-
like contrast. We register the T1-weighted version of the MNI atlas to this volume (Fig. 1F)
using NiftyReg*°, an open-source software for linear and non-linear registration of medical
images (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg). NiftyReg is a widely used tool
showing highly accurate results, with a validated performance compared to other
registration methods*'#2. Registration includes a linear step (function reg_aladin) followed

by a non-linear diffeomorphic registration, using 15mm control point spacing and a local
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normalized cross correlation objective function with 4mm gaussian window (function
reg _f3d -vel -sx -15 --Incc 4.0).

2.5 Histology registration and pathology map computation

Direct slice-to-volume registration of a histological section to MNI space is extremely ill-
posed and ambiguous, particularly for nonlinear registration?®. To circumvent this
challenge, our pipeline takes advantage of prior knowledge of the brain slices from which
tissue blocks (and histology sections) were derived. This correspondence is used to
register each histological section to its approximate location and rotation in the brain slice.
Manual initialization is performed by selecting two anatomical gyrification landmarks (e.g.,
for hippocampal sections, the hippocampal fissure and the border of the temporal horn) in
both the histology section and its corresponding hemisphere slice (Fig. 1G). To account for
block trimming during sectioning, if slice photos and tissue blocks were obtained from the
anterior side, we shift the initial coronal position of the section 2.5mm posteriorly. This shift
was chosen assuming histology sections were obtained from the center of the tissue block
(commonly 5mm thick), entailing an error of £2.5mm in registration initialization. Finally,
the MNI atlas registered to subject-specific space (Section 2.4) is used to enhance
registration accuracy in the coronal plane based on gradient magnitude correlation, within
a range of £10mm. This last step is particularly useful if working with thicker dissection

blocks, which would entail a higher initialization error.

To register histology to atlas space, the coronal level of each section resulting from the
prior registration step is used as a reference. To model uncertainty in the anterior-posterior

direction as the main source of error in this pipeline, we use kernel regression, whereby
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kernels account for both the density of the data (for interpolation purposes) and registration
error. To that end, a gaussian distribution around each section’s resulting coronal position
is obtained, serving as a position probability function. Linear and nonlinear deformations
obtained in step 2.4 are then concatenated to nonlinearly deform gaussian distributions to
MNI space (Figure 2). Subsequently, a weighted average of measured pathology burdens
(or any other histological measurement) is obtained, using their gaussian position
distributions as weights. A mask of the brain structure of interest is then applied to the
resulting average burden maps, thereby enabling population analyses (Fig. 1H).

To obtain MNI coronal coordinates for Path2ZMR validation compared to visual positions,
after registration to MNI, gaussian distributions of each histology section were applied a
mask of the hippocampus. Within each masked distribution, the coronal slice with highest
number of high-intensity voxels (equal to 1) was selected as the coronal coordinate of the
section (the center of the distribution). Intensity measures per coronal plane were derived
from masked distributions and pathology maps using commands from FSL software*?,
specifically fsislice, fsimaths and fslstats. Throughout the manuscript, the uncus was used
as reference for the transition from hippocampal head to body, delimiting y=-22 as the first
MNI coronal coordinate within the hippocampal body*“.

2.6 Experimental donor cohort

To evaluate the applicability of the presented pipeline, we used samples from donors with
dementia from the BT-CIEN brain bank (Madrid, Spain). Standard diagnostic procedures
at BT-CIEN“ include qualitative assessment of global and medial temporal lobe (MTL)
atrophy (0-3) immediately after extraction. Subsequently, the left hemisphere is fixed in 4%

phosphate-buffered formaldehyde and cut into 10mm-thick coronal slices for tissue block
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dissection, while the right hemisphere is frozen. Neuropathological evaluation is performed
according to published criteria for AD*®, vascular pathology*’, presence of Lewy Bodies?*,
LATE“*® and hippocampal sclerosis of aging (HS)*°.

To minimize heterogeneity from co-pathology, we included all patients with a
neuropathological diagnosis of “pure” non-familial AD according to the following criteria: i)
high AD neuropathologic change (ADNC)*¢; ii) no Lewy Bodies, LATE nor classical HS,
and low or no vascular pathology; iii) extent of global and MTL atrophy lower than the
maximum (i.e., score 0-2), as neuropathologic criteria could not be reliably evaluated in
samples from extremely atrophic cases (score of 3). Intermediate ADNC cases with no co-
pathology commonly present milder clinical profiles®® and are therefore rare in dementia
autopsy series. Out of all donations received at BT-CIEN between 2007 and 2020, a total
of 26 amnestic dementia patients complied with these criteria and were included in the
study.

Reconstruction was performed from retrospective photographs of stored hemisphere slices
previously processed for histology. For all subjects, reconstruction was carried out using
anterior blockface photographs. If any slice had missing information due to tissue
dissection, with the posterior side of its consecutive slice being intact, the latter was
replaced by the former (horizontally flipped) prior to segmentation from the background
(Section 2.2) using GIMP 2.10.28.

2.7 Histology and quantification

Given the extensively studied vulnerability of the hippocampus to AD pathology, we
employed Path2MR to analyze the distribution of tau and AP pathologies along the

hippocampal longitudinal axis. As shown in Figure 3A, we used histology sections obtained
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from three coronal blocks of the left hippocampus: hippocampal head, body and tail. Blocks
were processed using the HistoCore PEARL (Leica Biosystems), placed within paraffin,
and the Microm HM355S microtome (ThermoFisher) was used to obtain 4um-thick
sections. Immunohistochemistry was carried out using primary antibodies for tau AT100
(ThermoFisher Invitrogen, code: MN1060, 1:100 dilution) or AR (Dako, code: M087201-2;
1:40 dilution), together with hematoxylin. For each pathology, analyses were designed to
include a total of 78 sections (three per subject). Out of these, nine blocks could not be
included in tau analysis due to dim staining or tissue unavailability, and six could not be
obtained for AB staining, resulting in 69 and 72 sections included, respectively. For
histology registration (Section 2.5), a 1X digital image of each section was obtained using
a Nikon Coolscan V-Ed scanner. The anatomical position of each section was determined
by KSB and AR, blind to Path2ZMR outcome. This was performed based on the micro-atlas
by Mai et al.>!, determining the distance to the anterior commissure (AC) of each section

(ranging from 10.7 to 39.5 mm) by visual inspection under the Nikon 90i light microscope.

To obtain an average measure of tau neurofibrillary tangle (NFT) and AB burden per
section, we measured these in five hippocampal subfields: CA1, CA2, CA3, as well as the
medial (MDG) and lateral (LDG) regions of the dentate gyrus (Figure 3B). The selected
CA1 region included the medial portion of the subfield (with proximal meaning close to
CAZ2, and distal close to the subiculum). Three micrographs were acquired in each subfield
using a Nikon 90i microscope with 20X magnification. Pathology burden was quantified
using CellProfiler 4.0.7, performing segmentation based on the color of the stain followed
by intensity correction to homogenize across micrographs. Then, in tau images, the

following items of interest were identified based on size: NFT+ neurons (mature tangles,
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covering the whole neuronal soma) and hematoxylin-stained nuclei of NFT- neurons. In A
images, diffuse, cored, cotton-wool or coarse-grained plaques were identified, without
separate classification of each type. As previously described, tau burden was measured
as the percentage of NFT+/total neurons in the image®, and amyloid burden was
measured as the area percentage covered by AR plaques® (Figure 3C). As neuron size
differs between pyramidal CA layers and granular DG layers, independent projects were
used for tau quantification in CA and DG subfields. To normalize counts by layer area, as
CA images only included the pyramidal layer, the whole area of the image was used.
Conversely, DG images included the neuron-containing granular layer and neighboring
(polymorphic and molecular) layers, and thus segmented neurons were dilated (to a size
of 15 pixels) and merged to delimit the area of the granular layer. Our CellProfiler projects
for tau and AB quantification are also available at https://github.com/ortegacruzd/Path2MR.
Subfield burden was obtained as the average between the three micrographs within a
subfield, and global section burden was obtained as the average among the five subfields.
2.8 Ground truth experiment

To validate Path2ZMR reconstruction performance, we used MRI scans from the Human
Connectome Project (HCP)%* as ground truth dataset, adapting methodology by Gazula et
al.32. T1 and T2 sequences (slice thickness of 0.7mm) from 100 subjects were first skull
stripped using FreeSurfer, followed by extraction of the left hemisphere. The T1 was used
as ground truth structure, and the T2 was used for reconstruction (Figure S1). To that end,
we simulated 10mm-thick dissection photographs from T2 hemispheres by extracting one
coronal slice every 14 (0.7mm*14=9.8mm spacing). To mimic variability in experimental

data, each extracted slice was applied a distortion transform Taist that comprised random
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rotations (within £20°), translations (within £0.5 pixels in both axes), shearings (within 10%
in both axes), and smooth illumination fields. Larger random translations were not required,
since 3D reconstruction is initialized by matching centers of gravity of the slices. Distorted
T2 slices were then used for 3D reconstruction, deep learning synthesis and nonlinear MNI
registration (Path2MR steps in Sections 2.2, 2.3 and 2.4, respectively). Finally, the T1
hemisphere was also applied a 3D random rigid transform (rotation within +30° and
translation within £20mm) and nonlinearly registered to MNI using the same configuration
as in Section 2.4 .

On one side, MNI registration of the T1 ground truth hemisphere yielded a deformation
transform D1. On the other side, reconstruction of T2-derived slices yielded a restoration
transform Trest, and after SynthSR processing, MNI registration of the resulting isotropic
scan yielded a transform D2. We can then compare D1 with the composition: Tadist © Trest ©
D2. In an ideal scenario, Tdist=Trest’ such that the two cancel each other, with SynthSR
generating perfect isotropic images and D1 and D2 being identical. In practice, mistakes
are made in the 3D reconstruction (which affects the error directly) and in deep learning
synthesis (which affects the error indirectly, via impact on the NiftyReg registration).
Therefore, the error was computed as the module of the difference between D1 and Do,
averaged across non-zero voxels in every reconstructed slice.

2.9 Statistics

Statistical comparisons and associated plots were performed using RStudio 1.4.1106,
including the following packages: ggpubr, tidyverse, readxl, rstatix and viridis. Tau and A
distributions along the longitudinal hippocampal axis were compared using Kolmogorov-

Smirnov test. To find the most appropriate fit to the data, we used linear, quadratic, and
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cubic functions and selected the fit with highest adjusted R? and lowest Akaike information
criterion (AIC) value. Pathology burdens were compared between subfields using repeated
measures analysis of variance (ANOVA) and post-hoc pairwise T tests.

2.10 Ethical approval

The BT-CIEN brain bank is officially registered by the Carlos Ill Research Institute (Ref:
741), by which donation is carried out under informed consent by a relative or proxy. BT-
CIEN procedures, have been approved by local health authorities of the Madrid
Autonomous Community (Ref: MCB/RMSFC, Expte: 12672). The study of these data was
independently approved by the Ethics Committee of the Universidad Politécnica de Madrid
(N° Expte: 2021-062).

3 Results

3.1 Validation of reconstruction performance

First, the accuracy of Path2ZMR in recovering the original structure of the specimen was
quantitatively assessed using scans from 100 subjects from the Human Connectome
Project. T1-weighted scans were used as ground truth, and corresponding T2-weighted
scans were used to simulate 10mm-thick slices for 3D reconstruction, deep learning
synthesis and registration to MNI (Figure S1). Resulting deformations were compared at
every voxel with those obtained from MNI registration of the T1 ground truth, revealing an
average 3D error of 3.27+0.42 mm. Evaluating separate contributions from each axis, we
found an error of 1.22+0.18 in medial-lateral, 1.71£0.33 in superior-inferior, and
1.91+£0.26mm in the anterior-posterior direction. The comparable error between the three

axes, while dealing with discrete sampling in the anterior-posterior axis, shows that
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Path2MR steps prior to histology registration achieve an accurate estimation of the
specimen’s 3D structure.

3.2 Validation of histology localization

Together with reconstruction performance, the reliability of results obtained with Path2ZMR
depends on its ability to accurately localize histologic sections. To validate this step using
our hippocampal histology dataset, we compared Path2MR-based histology localization
with visually determined positioning using a hippocampus micro-atlas as reference®'. The
Path2MR coronal level of each histology section was obtained as the center of its gaussian
distribution (width: 0=3mm), obtained around the predicted position to model registration
error and registered to MNI. For the 72 AP histology sections included, resulting coronal
MNI coordinates ranged between y=-8 (hippocampal head) and y=-42 (hippocampal tail).
As shown in Figure 4A, these PathZMR coordinates presented a strongly significant
correlation with visually determined anatomical positions (Pearson’s correlation, R=0.77,
p=2.5x10-1%). Additionally, we used the visual location of each section to generate a 3D
position map using Path2MR, applying Equation 1 as explained in Figure 2 and Section

2.5

Subjectn section N

z Gaussian distribution - Pathology burden
N

Pathology map =

Subject 1 section A

In this case, the visually determined distance to the AC was used as the “pathology burden”
measure. The resulting hippocampal position map showed the expected distribution, with
distance increasing progressively from the head to the tail of the hippocampus (Figure 4B).
Both results were similar when using tau sections instead (R=0.77, p=5x10-"°). Therefore,
Path2MR conveys an anatomically consistent representation of histology localization, while

overcoming the subjective character of visual comparison to a reference.
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3.3 Anterior-posterior AD pathology distribution

The hippocampal long axis (anterior-posterior in humans) shows gradual and discrete
transitions in terms of anatomical connectivity, genetics, receptor expression and
pathology vulnerability®®. To illustrate the utility of Path2MR for population analyses, we
assessed the distribution along this axis of tau and A pathologies, hallmarks of AD. For
each pathology, we multiplied the gaussian distribution (0=10mm) of each section by its
quantified pathology burden, normalizing by the number of sections per subject and adding
results from the 26 subjects (Equation 1, Section 2.5). Followed by applying a mask of the
hippocampus, this strategy resulted in smooth pathology maps for tau and A (Figure 5).
For both pathologies, burden was highest at the hippocampal head, reaching lowest values
at the hippocampal tail. To inspect these distributions closely, we obtained the mean
intensity per coronal slice of each burden map, showing the highest tau burden at the
anterior end of the hippocampus (MNI coordinate y=-7). Tau burden remained stable for
the contiguous slices within the hippocampal head, followed by a linear decrease from y=-
17 towards the posterior end of the hippocampus. In contrast, AB distribution resembled a
quadratic curve, peaking at y=-18 within the hippocampal head. High-burden slices
covered a more widespread region, with a decrease initiating at the hippocampal body and
continuing throughout the tail.

These two anterior-posterior distributions were compared through a Kolmogorov-Smirnov
test, showing a statistically significant difference between both (D=1, p=7x10-16). We also
explored within-subject pathology gradients (Figure S2A), using MNI section positions
obtained in Section 3.2. Given the low number of data points included per subiject,

individual pathology distributions were variable. However, in accordance with distributions
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from 3D pathology maps, a linear fit was found to be most appropriate for tau density,
based on selection of fit with highest R? and lowest AIC. Conversely, a quadratic function
represented a better fit for AR pathology (Figure S2B). Results were similar when
employing visually determined histology positions (Figure S2C), although this classification
comprises a lower density of coronal levels through the hippocampus, and thus lower
resolution. Therefore, Path2ZMR allowed population analyses at a finer resolution compared
to a visual reference, revealing significant differences between tau and A deposition along
the long axis of the human hippocampus.

3.4 Pathology distributions for each subfield

Given that global section burden was obtained by averaging pathology values from five
hippocampal subfields, we also evaluated differences across subfields. Mean tau
(F(264)=248.4, p=7x104%) and AB (F(295)=56.8, p=6x10-'3) burden was significantly higher
in CA1 and CA2 compared to CA3, LDG and MDG. Anterior-posterior differences were
also found within each subfield for both pathologic proteins (Figure S3), as well as for
separate measures of neuron and NFT areal densities (Figure S4). Neuron density in CA1,
CA2 and CAS3, and NFTs in all subfields, were higher at the anterior portion of the
hippocampus, which explains the observed tau (NFT/neuron) distributions. We then
generated subfield-specific 3D maps of tau and AR using Path2ZMR (Equation 1), from
which the mean burden of every coronal slice was obtained (Figure 6). We found that, while
all subfields presented their highest tau burden at the anterior end of the hippocampus, AB
distribution was more variable across subfields. The anterior-posterior A distribution of
CA1, CA3 and LDG reached a maximum at the hippocampal head (MNI coordinates y=-

21, -7, and -8, respectively). In contrast, CA2 and MDG presented their maximum burden
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at the hippocampal body (y=-25 and -33, respectively). Therefore, the anterior-posterior
gradient for AB pathology is intertwined with gradients in the proximo-distal axis (between

subfields).

3 Discussion

We present Path2ZMR, a novel pipeline for histology mapping into a 3D framework enabling
data integration for population analyses. This pipeline requires only blockface images of
slices obtained upon sampling of the organ of interest — in this case, the left brain
hemisphere. These images are stacked into a sparse 3D volume, which is then brought to
isotropic 1mm?3 resolution using deep learning and registered to atlas space using standard
MRI processing methods. We implement Path2MR for population analysis using blockface
images and hippocampal histology sections from 26 subjects with AD. In these
experiments, the spatial interpretability of the method was verified by comparing histology
mapping results in MNI space to visual section localization. While the MNI reference
overcomes visual bias and provides a higher resolution compared to the anatomical micro-
atlas (1 vs 1.4 mm), results from both methods showed a high correlation, and thus
comparable outcomes. This supports the reliability of the method despite using specimens
with severe atrophy. Moreover, Path2ZMR reconstruction, synthesis and MNI registration
steps were quantitatively evaluated using ground truth data, revealing a 3D error of
3.27mm, which is within the previously reported 2-6mm error range from registration of
brain MRIs to MNI|42:56:57,

The critical advantage of our sparse histology reconstruction pipeline lies in its

independence of a 3D reference image. Previous reconstruction methods were based on
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keystones obtained with highly specialized equipment and expertise: either a subject-
specific MRI26:27:%8  dense sampling of the specimen®'2, or both?"23, While dense sampling
methods rely on stacking histological sections for reconstruction, Path2ZMR recovers 3D
structure by stacking blockface images, which are straightforward to obtain. The proposed
pipeline, however, entails several assumptions such as the depth of the histological section
from the face of the tissue block. In contrast, direct stacking of serial histology sections
allows considering different deformation sources during histology processing®%°. Using a
specific 3D reference is also valuable to reduce uncertainty?, with sophisticated
approaches such as mold-guided sectioning further facilitating the correspondence
between MRI and histology®'62. Although Path2MR involves a larger registration error, we
show it overcomes histological sampling variability for the hippocampus, which spans
several centimeters along the coronal axis. As all steps of Path2MR are based on whole-
brain methods, this approach can also be applied for histological analyses in any other
brain structure, including cortical regions. This would be of great interest towards a more
anatomically complete understanding of AD histopathological topographies.

The experiments included in this study revealed an anterior-posterior gradient of
hippocampal tau NFT pathology. These results are in line with the recently reported higher
anterior tau burden in the hippocampus and other MTL structures?!, further supporting the
reliability of the pipeline. In a PET study, tau radiotracer uptake was also found to be higher
in anterior temporal regions®. The anatomical and functional connectivity between the
human entorhinal cortex, where tau deposition initiates®, and the anterior hippocampus®®,
could provide insights into this increased regional burden. Interestingly, we also found a

gradient of AB pathology which peaked towards the middle portion of the hippocampal long
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axis. To our knowledge, no other pathology studies have explored the distribution of A
along this axis. We also report intriguing neuronal density gradients in CA subfields of the
hippocampus, with areal densities decreasing in the anterior-posterior direction. While
these results are in contrast with previous studies in healthy subjects, which reported the
opposite trend®, or no anterior-posterior differences®, new studies employing more recent
methodology and including samples from AD patients are required to validate the gradients
observed here.

Hippocampal anterior-posterior gradients have been consistently observed in other
dimensions including gene expression®®, as well as functional®® and anatomical®”
connectivity. An additional axis of functional connectivity from the middle of the
hippocampus towards anterior and posterior ends has been recently described using
gradient mapping®8. This gradient predicted episodic memory performance throughout the
lifespan and could be linked to the AB distribution reported here. The topological distribution
of amyloid PET binding has been shown to overlap with the “default mode” resting state
network®. Evidence is emerging from analyses of functional gradients within the
hippocampus and the cortical mantle that the default mode network may show strongest
hippocampal connectivity at the transition between the head and body°. This has relevant
implications for the understanding of clinical manifestations and progression of AD. In this
context, it is pertinent to investigate hippocampal gradients of other proteopathies that
commonly coexist with AD, such as TDP-43 and a-synuclein.

In line with previous studies’’72, we found both tau and AB burdens to be highest in
hippocampal subfield CA1, followed by CAZ2. Differences between subfields were

especially notable for AB, presenting a high variability in anterior-posterior distributions.
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This is coherent with the extracellular propagation pattern of AB, while tau spreads on a
cell-to-cell basis through axonal connections’. As our analyses were performed by
averaging burdens across subfields, whose relative positions differ along the long axis®’,
the obtained anterior-posterior distributions are conditioned by proximo-distal (between-
subfield) differences. Recent approaches take advantage of histology digitalization for
high-throughput quantification across the whole section, typically using deep learning®74.
Unfortunately, digitalization was not available for the studied dataset, limiting our ability to
explore 3D topographical interactions in greater detail. In future work, Path2ZMR can be
readily exploited using high-resolution digital histology data, to investigate pathological
differences in medial-lateral and superior-inferior directions. This will provide a fine-grained
understanding of spatial gradients within structures severely affected by
neurodegenerative pathologies, as well as their associated cellular vulnerabilities.

Together with the lack of digital histology data, the presented experiments entail some
limitations, including the unavailability of right-hemisphere pathological information.
Another limitation is the use of blockface photographs acquired after histological
processing. Brain slices used for reconstruction were non-intact, inducing uncertainty in
subsequent steps of the pipeline. Kernel regression was therefore employed to model
registration error, in a similar fashion to smoothing strategies typically used in
neuroimaging analyses’™. On the other hand, the robustness of the method to these
experimental limitations is also a strength of this study, as it demonstrates the applicability
of Path2ZMR to any brain bank dataset with access to preserved tissue. Its implementation
with blockface photographs of intact brain slices will further improve the accuracy of its

results, enabling more lenient error corrections. Another strength of this work is the use of
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spatial variability inherent to histological sampling to obtain a dense between-subject
representation along the hippocampus, considering only 3 sections per subject. Combined
with kernel regression, such dense representation over multiple subjects resulted in the
smooth pathology maps presented here. Moreover, in our experiments, the possible effects
of other co-pathologies on tau and A patterns were isolated by studying a homogeneous
set of patients with AD as the only substantial neuropathology.

In conclusion, Path2MR is a widely applicable 3D reconstruction pipeline. Using
information extracted from routine dissection, PathZMR can be implemented with sparse
histology and in the absence of an MRI reference. These features unlock the possibility to
analyze in 3D the rich histological information obtained routinely at brain banks, as well as
clinical and research institutions. We demonstrate the utility of Path2ZMR in population
analyses including sections from three regions of the hippocampus (head, body and tail)
from 26 AD patients. We found both tau NFTs and AP deposits predominate at the
hippocampal head, while showing significantly different anterior-posterior distributions.
Using this pipeline, future studies could validate these results and integrate them with data
from earlier AD stages, as well as with other pathologies, to constitute a comprehensive

map of combined hippocampal pathology in dementia.
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Figure 1. Summary of Path2MR. Steps in the top row include tissue processing and photography (Section
2.1), and the bottom shaded pentagon includes steps of the reconstruction method (Sections 2.2 to 2.5).
Briefly, the fixed specimen is: A. sliced (coronally and unilaterally in our case), B. photographed including
fiducial markers, and C. dissected for histological processing. The 3D reconstruction method uses blockface
photographs as the starting point (D., Section 2.2), followed by deep learning synthesis of a 1mm? resolution
prediction of the hemisphere (E., Section 2.3). To enable population analyses, an atlas in MNI space is
registered to this hemisphere prediction (F., Section 2.4). Linear and non-linear transforms obtained at this
step (represented with a T) are used after registration of histology sections to the 3D reconstruction, for which
manual initialization is used (G., Section 2.5), to in turn register histology to MNI. Subsequently, any histology-
derived measure can be compared for population analysis in standard space (H.). 3D: three-dimensional.

MNI: Montreal Neurological Institute.
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Figure 2. Steps followed to perform population analysis of histology in standard space. First, gaussian
distributions are obtained around the position of each section in subject-specific space. These are then
registered to MNI space using transforms derived from registration of the atlas to the synthetic MRI for each
subject (T4, T2,...Tn). The gaussian position distribution of each section in MNI space is multiplied by its
quantified pathology burden and normalized by the total number of sections included for that subject. Finally,
burden maps for all sections and subjects are added and masked to obtain the pathology distribution of the
population within the region of interest (ROI). MNI: Montreal Neurological Institute; n: number of subjects; N:

number of sections per subject; ROI: region of interest.
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Figure 3. Summary of steps carried out for AD pathology quantification along the hippocampal
longitudinal axis. A. Three anatomical blocks were sectioned for histology: head, body, and tail of the
hippocampus. Sections from each of these levels were stained with antibodies against tau (AT100) and A.
B. Three micrographs at 20X magnification were taken per subfield: CA1, CA2, CA3, medial (MDG) and
lateral dentate gyrus (LDG). C. Each 20X micrograph from sections stained against tau or AR was quantified
with CellProfiler 4.0.7, measuring the percentage of NFT+ neurons (outlined in green, versus NFT- neurons
outlined in purple) or area covered by AB plaques (outlined in green), respectively. AB: amyloid-B; LDG:

lateral dentate gyrus; MDG: medial dentate gyrus; NFT: neurofibrillary tangles.
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Figure 4. Comparison of histology localization with Path2MR with visually determined section
positions. Visual positions were determined by using a micro-atlas of the hippocampus 51 as reference. A.

Scatter plot and correlation between visually determined positions and coronal MNI position obtained from
Path2MR. For each section, the slice with highest number of high-intensity voxels from the gaussian position
distribution was used as its coronal MNI position. MNI coordinates have been reversed to ease visualization
(from anterior to posterior). Anterior (A) and posterior (P) ends of x and y axes are indicated. Grey shaded
region shows 95% confidence interval. B. Distribution map of distance to anterior commissure (AC) obtained
with Path2MR, showing the shortest and largest distances in the hippocampal head and tail, respectively.

AC: anterior commissure; MNI: Montreal Neurological Institute.
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Figure 5. Distribution of tau and AR pathology burdens along the hippocampal long axis. A.
Distribution map for tau pathology, quantified as the percentage of NFTs over the total neuron count, obtained
with Path2MR. Mean tau burden per coronal slice of this map is shown in the right. B. Distribution map of Ap
burden, quantified as percentage area covered by AB plaques, together with plot of mean burden for every
coronal slice. In graphs on the right, the grey shade shows standard deviation, and MNI coordinates have
been reversed to ease visualization from anterior (A) to posterior (P). AB: amyloid-B; MNI: Montreal

Neurological Institute.
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Figure 6. Individual distributions of tau and AB along the hippocampus for each subfield. A. Tau
burden distribution obtained with Path2ZMR independently for each subfield, showing mean burden per
coronal slice within the hippocampus. B. Mean AB burden in each subfield for every hippocampal coronal
slice. Grey shades show standard deviation, and x axis coordinates are reversed for visualization from
anterior (A) to posterior (P). AB: amyloid-B; LDG: lateral dentate gyrus; MDG: medial dentate gyrus; MNI:

Montreal Neurological Institute; NFT: neurofibrillary tangles.
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