

1 **Unravelling effects of fine-scale changes within wild-bird flocks on sociality**

2

3 **Troisi C.A.^{1,2*}, Firth J.A.³, Crofts S.J.³, Davidson G.L.^{1,4}, Reichert M.S.^{1,5}, Quinn J.L.^{1,6*}**

4 ¹ School of Biology, Earth and Environmental Sciences, University College Cork, Ireland

5 ² Department of Experimental Psychology, Ghent University, Belgium

6 ³ Edward Grey Institute, Department of Biology, University of Oxford, Oxford, United Kingdom

7 ⁴ School of Biological Sciences, University of East Anglia, Norwich, United Kingdom

8 ⁵ Department of Integrative Biology, Oklahoma State University, Stillwater, USA

9 ⁶ Environmental Research Institute, University College Cork, Cork, Ireland

10 ^{*} Corresponding author: camille.troisi@mail.mcgill.ca; j.quinn@ucc.ie

11

12 **Acknowledgements**

13 We thank Keith McMahon for assisting with fieldwork and bird ringing; Karen Cogan for assisting
14 with equipment sourcing and purchasing; Martin Whitaker for helping design the selective feeders;
15 Ella Cole for logistical advice at Whytham; Ipek Kulahci, James Savage and Iván de la Hera for
16 helping with their constructions. Ben Sheldon provided access to the main study system at Wytham
17 Woods and funding (ERC AdG 250164) to maintain the long-term study.

18 **Conflict of Interest:**

19 The authors declare no conflict of interests.

20 **Funding**

21 This research was funded by the European Research Council under the European Union's Horizon
22 2020 Programme (FP7/2007-2013)/ERC Consolidator Grant 'EVOLECOG' Project No. 617509,
23 awarded to J.L.Q., and by a Science Foundation Ireland ERC Support Grant 14/ERC/B3118 to J.L.Q.
24 C.A.T is funded by a Marie Skłodowska-Curie Action fellowship 'UrbanCog' Project No. 101062662
25 under the European Union's Horizon Europe Programme. J.A.F was supported by grants from NERC
26 (NE/S010335/1 & NE/V013483/1) and BBSRC (BB/S009752/1).

27 **Authors contribution**

28 Conceptualization: J.L.Q., M.S.R., J.A.F., G.L.D and C.A.T.; Methodology: J.L.Q., J.A.F, M.S.R.,
29 G.L.D., and C.A.T.; Field Work: J.A.F, S.J.C. and M.S.R.; Data curation: C.A.T and J.A.F.; Formal
30 analysis: C.A.T. and J.A.F.; Visualization: C.A.T and J.L.Q. Writing – original draft: C.A.T with
31 J.L.Q.; Writing – review and editing: C.A.T., J.A.F, S.J.C, G.L.D, M.S.R and J.L.Q.; Supervision:
32 J.L.Q.; Funding acquisition: J.L.Q.; Project administration: J.L.Q.; All authors gave final approval for
33 publication.

34 **Data availability**

35 Data and code are available on OSF: <https://osf.io/vygw3/>

36

37 **Abstract**

38 1. Social structure and individual sociality impact a wide variety of behavioural and ecological
39 processes. Although it is well known that changes in the physical and social environment
40 shape sociality, how perturbations govern sociality at a fine spatial scale remains poorly
41 understood. By applying automated experimental treatments to RFID-tracked wild great tits
42 (*Parus major*) in a field experiment, we examined how individual social network metrics
43 changed when food resources and social stability were experimentally manipulated at the
44 within-group spatial scale.

45 2. First, we examined how individual sociality responds when food resources changed from a
46 dispersed distribution (50m apart) to a clustered distribution (1m apart). Second, we tested
47 how sociality changed when individuals were restricted to feeding in a manner that mimics
48 assortative behaviour within flocks. Third, we tested the effects of experimentally
49 manipulating the stability of these social groupings. Finally, we returned the feeders to the
50 original dispersed distribution to test whether effects carried over.

51 3. Repeatability analyses showed consistent differences among individuals in their social
52 phenotypes across the various manipulations; dyadic association preferences also showed
53 consistency. Nevertheless, average flock size and social centrality measures increased after
54 the food was clustered. Some of these metrics changed further when birds were then forced to
55 feed from only one of the five clustered feeders. There was some support for group stability at
56 individual feeders also impacting individual social network metrics: increase in flock size was
57 more pronounced in the stable than the unstable group. Most of the differences in sociality
58 were maintained when the food distribution returned to the dispersed pattern, and this was
59 caused primarily by the change in resource distribution rather than the social manipulation.

60 4. Our results show that perturbations in the access to resources and social group stability can
61 change sociality at a surprisingly fine spatial scale. These small-scale changes could arise
62 through a variety of mechanisms, including assortative positioning within groups due to, for

63 instance, similarity among individuals in their preferences for different resource patches. Our
64 results suggest that small-scale effects could lead to social processes at larger scales and yet
65 are typically overlooked in social groups.

66 **Keywords:** fine scale experimental manipulation of social networks, great tits, individual-level social
67 network, resource distribution, social stability

68 **Introduction**

69 Social interactions have important and diverse consequences for individuals and for populations.
70 These include effects on disease transmission, mating partner choice, access to shared information,
71 the spread of innovations, and patterns of selection among many others (Cantor et al., 2021; Cheney et
72 al., 2016; Ellis et al., 2019). Resource distribution is a major driver of social network structure (Beck
73 et al., 2011; Foster et al., 2012; Heinen et al., 2022; Tavares et al., 2017). For instance, more clustered
74 food resources can increase recurring aggregation and may be linked to stronger social bonds between
75 individuals (Tavares et al., 2017). Increasingly social network analyses are being used to understand
76 social interactions, often revealing important effects that would otherwise go undetected in studies of
77 individual behaviour (e.g. Godfrey et al., 2009). Social networks and individual social connections are
78 often stable over time (Farine & Sheldon, 2019; Fisher et al., 2016; Shizuka et al., 2014; Stanley et al.,
79 2018) and contexts (Firth & Sheldon, 2015, 2016; Lehmann & Ross, 2011). Inevitably, individual
80 sociality and social networks are also highly plastic (e.g. Heinen et al., 2022; Proops et al., 2021),
81 especially in fission-fusion systems. Most evidence for the stability or plasticity of social interactions
82 comes from observational studies or from large scale manipulations (e.g. over kilometres, between
83 groups) (but see Heinen et al., 2022). However, individual social interactions can take place at fine
84 spatial scales within the broader social group (Wolf et al., 2007), but less is known about how these
85 scale up to affect broader patterns of social interaction. Likewise, broad effects on social group
86 structure can feed back on individual social interactions (Firth et al., 2016). Here we conduct
87 experimental manipulations, in a natural population, of i) resource distribution at a fine spatial scale
88 (within a group) and ii) social group stability, and examine their effects on individual sociality.
89 Food patch distribution is a large cause of variation in social interactions (Beck et al., 2011; Foster et
90 al., 2012; Heinen et al., 2022; Tavares et al., 2017). Dispersed food patches can increase the
91 opportunity to interact with individuals from other groups (Tavares et al., 2017), but may also require
92 individuals to invest more time in finding food, reducing the opportunity for social interactions
93 (Foster et al., 2012). Resource distribution is highly variable over time, which affects individual
94 sociality and social network stability (Cantor et al., 2021; He et al., 2019). All of these effects are

95 likely scale-dependent (Levin, 1992; Wiens, 1989), and although they have been investigated from
96 centimetres in captivity (Tanner & Jackson, 2011) to hundreds of kilometres in the wild (Beck et al.,
97 2011; Cortés-Avizanda et al., 2011; Foster et al., 2012; Tavares et al., 2017), generally little is known
98 about how small-scale variation in resource distribution affects individual sociality dynamics under
99 natural conditions.

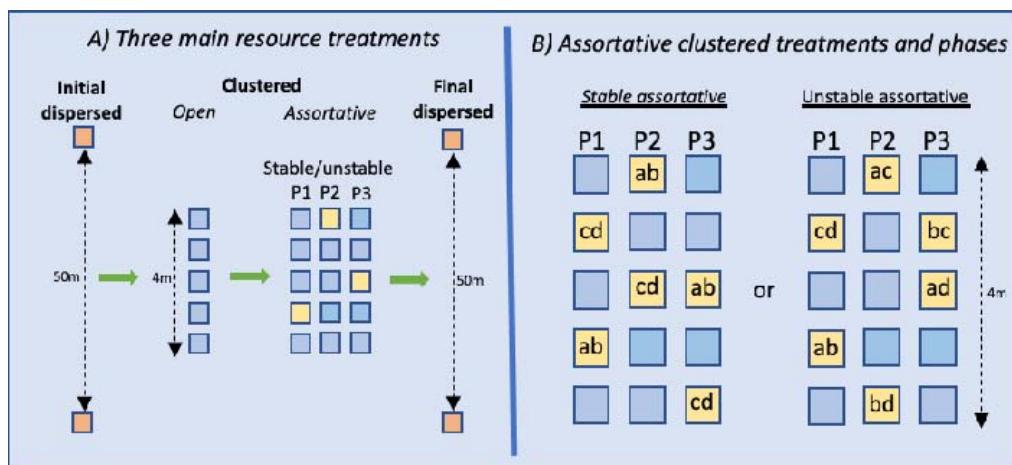
100 Group membership is clearly the main driver of sociality. It follows that changes in group
101 membership are likely to lead to changes in individual social network metrics and social structure
102 (Shizuka & Johnson, 2020). These changes can have long-lasting effects on individual social metrics -
103 for instance, in macaques, the absence of policing after the loss of key male individuals led the
104 remaining members of the group to have smaller, less diverse and less integrated networks (Flack et
105 al., 2006) - and can also impact functional behaviour (Carter & Wilkinson, 2015; Ebensperger et al.,
106 2016, 2017; Gazda et al., 2005; Maldonado-Chaparro et al., 2018). At the same time, individual social
107 network positions can remain remarkably stable across years even with population turnover (Aplin et
108 al., 2015; Farine & Sheldon, 2019; Shizuka et al., 2014) and when individuals lose close associates
109 (Boucherie et al., 2017; Firth et al., 2017).

110 In all of these group membership studies, however, changes in individual sociality in the group are
111 perhaps inevitable, since typically individuals were removed or added to social groups in the
112 experimental manipulations (Boucherie et al., 2017; Firth et al., 2017; Maldonado-Chaparro et al.,
113 2018). Behavioural changes within groups of constant membership could also lead to changes in who
114 individuals interact with. For example, an individual that develops a new innovative behaviour
115 (Kulahci & Quinn, 2019; Wascher et al., 2018) can become more central in the group (Kulahci et al.,
116 2018). The development of persistent assortative interactions among individuals within groups - due
117 to, for instance, similarity among individuals in their preferences for different resource patches
118 (Caillaud & Via, 2000; Crook, 1999; Martin, 2013; Snowberg & Bolnick, 2008), or in their preferred
119 positions within groups linked to predation risk (Heathcote et al., 2017; Lambert et al., 2021) - could
120 similarly feed back onto individual social network metrics and social structure generally. However, to
121 date this latter possibility has not been tested experimentally.

122 In this study we manipulated fine-scale resource distribution and social stability in great tits (*Parus*
123 *major*). Great tits form fission-fusion flocks during the non-breeding season in woodland habitat and
124 readily come to feeders where their behaviour can be automatically detected using passive integrated
125 transponders (Aplin et al., 2013; Cauchoux et al., 2022; Cooke, 2021; Reichert et al., 2020). We
126 estimated flock sizes and individual social centrality - among the most important descriptors of
127 network positioning. First, we describe patterns of visitation over time and use repeatability analyses
128 (Stoffel et al., 2017) to test whether our social centrality measures captured consistent behaviour, i.e.,
129 intrinsic differences among individuals in their sociability. We then explore our four main hypotheses.
130 First, we tested whether fine-scale variation in resource distribution affects individual social network
131 metrics (SNM). We expected that by moving feeders closer together from an initially dispersed to a
132 clustered treatment, flock sizes and individual social connectedness should increase. Second, we
133 tested whether forcing groups of individuals to use specific feeders in the clustered 5-feeder array,
134 mimicking, for example, assortative patch use or assortative positioning within flocks, modified
135 individual sociality. We predicted that forcing individuals to forage at a specific feeder might disrupt
136 the connections previously formed, and as such their flock sizes and individual social connectedness
137 would decrease. Third, we tested whether individual social network metrics were affected by social
138 stability, where groups of individuals were allocated to one of the five feeders for two additional
139 phases, either with the same individuals in each group across each phase (stable treatment), or with a
140 random selection of new individuals (unstable). We predicted that, at the end of the treatment,
141 individuals in the stable treatment would have stronger ties with fewer individuals, because they had
142 more opportunities to interact repeatedly with the same individuals, compared to those who shared
143 feeders with different individuals across each of the three phases and therefore more individuals over
144 the three phases cumulatively. Finally, we tested whether the effects of our manipulations collectively
145 were transient or if they would persist in a different context by returning the feeders to the original
146 dispersed distribution. On the one hand, because great tits live in a fission-fusion society and are
147 adapted to regular small-scale changes in their (physical and social) environment, any effects
148 observed during the manipulations might be expected to be transient, in which case we expected that
149 individuals would associate with the same individuals at the start and the end of the experiment, and

150 individual social network metrics would revert back to their initial value. On the other hand, if
151 prolonged associations between individuals have longer term carry-over effects, we predicted that the
152 manipulations observed would be persistent, and especially so in the stable treatment, where
153 individuals had more opportunity to interact with the same individuals and create stronger bonds.

154 **Methods**


155 **Study site and species**

156 The study took place in Wytham Woods, Oxford, UK. Great tits and blue tits (*Cyanistes caeruleus*)
157 were fitted with PIT tags following Reichert et al. (2020). During the winter, these birds form fission-
158 fusion foraging flocks and move around the woodland (Farine et al., 2015; Firth & Sheldon, 2016).
159 Data collection took place during the winter season from November 2017 to February 2018. Four sites
160 were used early in the season (November-December 2017), and four different sites were used later in
161 the season (January-February 2018). Only data from great tits were used in this study because a very
162 high proportion of the population is tagged: an estimated ~80-90% of great tits were tagged at this
163 time based on previous studies with similar trapping effort (Aplin et al., 2013; Matechou et al., 2015)
164 and 258 individuals used our feeders (see Table S1 for age and sex profiles following the STRANGE
165 recommendations (Webster & Rutz, 2020)).

166 **Treatments**

167 Feeders containing sunflower seeds and equipped with an RFID antenna were active each day during
168 daylight hours from 0700 to 1630, and PIT tagged birds had ad libitum access to food, at some or all
169 of these feeders, during those times (see Reichert et al., 2020 for details). At each of the eight sites,
170 feeders were arranged according to four main treatments: the initial dispersed, the open clustered, the
171 assortative clustered, and the final dispersed treatment (see Figure 1.A). Note that we use the word
172 “assortative” in the sense that restricting individual access to individual feeders in effect placed them
173 into groups of individuals that shared a feeder, even if they had not been grouped based on any a
174 priori shared characteristic. The initial and final dispersed treatments consisted of one feeder at each
175 of two locations that were 50m apart, during which all birds could feed from either feeder. The two

176 clustered treatments were sandwiched in time between the two dispersed treatments, and consisted of
177 five feeders 1m apart at one location. We acknowledge that the availability of food could also have
178 been higher in the clustered treatment, and therefore the treatment may reflect a combination of
179 resource distribution and food availability. However, we think the distribution was the dominant
180 effect because i) the number of individuals that visited the feeders was lower in the clustered
181 treatment than in the previous initial dispersed treatment (see below); ii) food availability was likely
182 not a limiting factor because seeds were always available from all allocated feeders and delivery of
183 the single seed reward was effectively instantaneous, notwithstanding any queuing that took place
184 around the feeders.

185
186 **Figure 1:** A) Layout of the experiment showing the food distribution across the three main treatments
187 where food distribution was manipulated (initial dispersed; clustered; final dispersed). The clustered
188 treatment was further split into open clustered and assortative clustered subtreatments, and B) the
189 assortative treatment in turn was further split into stable and unstable subtreatments, each of which
190 ran over three phases (P1; P2; P3)

191 In the open clustered treatment, birds could obtain food from any of the 5 feeders. In the assortative
192 clustered treatment, birds could only access one feeder, to which they were randomly allocated. If
193 birds landed on their assigned feeder, the feeder would open and they had access to the food. If they
194 landed on any of the 4 other feeders, the feeder would remain closed, and the bird would not have
195 access to the food, but its visit would still be recorded feeding into the social network metrics. Great
196 tits quickly learned which feeder they were allocated to, usually within the first day and usually after
197 less than 30 visits (Reichert et al., 2020).

198 The assortative clustered treatment further consisted of 3 phases (see Figure 1.B). After eight to ten
199 days (eight days in 2017 and ten days owing to operational differences in 2018) of the initial feeder
200 assignment in the assortative clustered treatment, we manipulated social stability by randomly
201 allocating birds to a different feeder, either with the same individuals as in their original feeder
202 assignment (the stable assortative clustered treatment; run at four sites) or with a random selection of
203 predominantly different individuals (the unstable assortative clustered treatment; run at the remaining
204 four sites). After another eight to ten days we then repeated the feeder reassignment procedure; birds
205 in the stable treatment were again reassigned along with the same individuals from their original
206 feeder assignment and birds in the unstable treatment were again reassigned with a new randomly
207 selected group of individuals.

208 The raw dataset consisted of rows containing the date, time and PIT tag for each detected visit at each
209 feeder. We considered consecutive detections of the same bird to the same feeder within 2s of each
210 other to be a single visit (following Evans et al., 2018; and Reichert et al., 2020).

211 **Individual network metrics**

212 Using the spatio-temporal data of visits to feeders, “flocks” (or ‘flocking events’) were identified at
213 each location using a machine learning algorithm (Psorakis et al., 2012, 2015). A Gaussian mixture
214 model assigned each individual visit from each bird to the flocking event for which it had the highest
215 probability of belonging, without imposing assumptions about the temporal boundaries of flocks
216 (Psorakis et al., 2012). This allowed us to calculate an average flock size for each individual at each
217 location, during each treatment, or each phase of the clustered treatment, separately.

218 Edges in the social network were assigned to each individual appearing in the same flocking event.
219 For each possible pair of individuals, we then counted the number of flocking events in which both
220 individuals were present. We used these data to quantify the association strength for each dyad as a
221 “simple ratio index”: the number of times both individuals were seen in the same flocking events ÷
222 (the number of times individual A was seen in a flocking event without B + the number of times

223 individual B was seen in a flocking event without A + the number of times individuals A and B were
224 both seen in the same flocking event) (Cairns & Schwager, 1987; Whitehead, 2008).

225 For each individual, we also calculated two commonly used social network centrality metrics: 1)
226 weighted degree - the sum of all the focal individual's weighted associations (i.e. the number of times
227 each association between two individuals was observed) with all other individuals (also known as
228 node 'strength'); and 2) weighted eigenvector centrality - a measure of the total amount of social
229 associations of an individual's associates (i.e. the centrality of their flockmates); for instance, an
230 individual that associates with highly sociable individuals would have high eigenvector centrality
231 whilst an individual that associates with peripheral individuals would have low eigenvector centrality.
232 As such, these network metrics represent a range of measures of individual centrality (Albery et al.,
233 2020) on an increasing scale of complexity.

234 **Ethics**

235 We performed the experiment in accordance with the Association for the Study of Animal Behaviour
236 ethical guidelines, under permission of Oxford University Internal Animal Welfare Committee
237 (Zoology), and the Animal Experimentation Ethics Committee of the University College Cork. The
238 Health Products Regulatory Authority approved the ethics for the project number AE19130/P017. All
239 bird ringing and tagging was carried out under standard licencing permissions from the British Trust
240 for Ornithology (BTO).

241 **Data analysis**

242 All analyses were conducted in R version 4.0.2 (R Core Team, 2020). The package *ggplot2* was used
243 for plotting graphs (Wickham, 2016).

244 ***General analyses***

245 Initially we tested whether our measures of individual sociality captured intrinsic differences among
246 individuals in social behaviour by estimating the repeatability of flock sizes (for each individual,
247 averaged across all flocking events within a treatment) and social network metrics (calculated for each

248 treatment separately) across the experiment, resulting in 6 measures per individual (Figure 1). We
249 included only birds that appeared in all 6 treatment levels (N=70; 68 individuals, with 2 individuals
250 present at two sites). We used the *rptR* package to calculate repeatability (Stoffel et al., 2017), using
251 1mms with a Gaussian error distribution.

252 To provide context for the main analyses, and to test whether temporal variation in feeder usage over
253 the course of the experiment might confound the main hypotheses testing, we explored whether i) the
254 number of individuals detected per treatment, ii) the number of visits per individual per day, and iii)
255 the number of flocks an individual was found in varied across all 6 treatment levels. The first of these
256 was analysed using a Poisson distribution, and the remaining two as Gaussian distributions, and the
257 package *lmerTest* was used for linear mixed models (Kuznetsova et al., 2017). For the site level
258 analysis (number of individuals per treatment) we included experimental treatment as a fixed factor
259 and site as a random effect. For the individual level analyses (number of visits per individual and
260 number of flocks) we included, sex, age (adult vs juvenile), and experimental treatment as fixed
261 factors as well as individual identity and site as random effects.

262 ***Hypothesis testing***

263 In all of the analyses below, we used linear mixed models with Gaussian error distribution from the
264 *lmerTest* package (Kuznetsova et al., 2017), with separate models for each of the individual social
265 network metrics as the dependent variable (flock size, weighted degree, eigenvector centrality). Social
266 network based metrics necessarily violate the assumption of independence, so in all cases we also
267 compared the model estimates to those calculated from null models using node-based permutations
268 (Whitehead, 2008). We report p-values showing where the observed estimates fall within the
269 distribution of estimates from the 1000 permutations for each model i.e. if $p < 0.05$ then the observed
270 estimate falls outside of the 95% range of the null expectation (Whitehead, 2008). A small number of
271 birds (usually 1-3 in any one analysis) were present at several of our eight sites (as four sites were
272 used early in the season, and 4 sites later in the season) and this was accounted for using individual as
273 a random effect in all analyses. If they were present at two sites, they were only ever allocated to a
274 feeder at one site during the assortative clustered treatments. In the analyses of dyadic association

275 strength, sex was considered unimportant so the sample sizes indicated included birds of unknown
276 sex.

277 *Changing from dispersed to clustered food distribution influences social behaviour (H1)*

278 Birds of known sex present in both initial dispersed and open clustered treatment levels were included
279 (N = 121 individuals; N=3 individuals appeared at more than one site; Table S1). The model structure
280 for each of the three social network metrics included individual and site as random effects, and fixed
281 effects of resource treatment (initial dispersed vs open clustered), sex, age, the number of flocking
282 events individuals took part in, and the number of individuals in the network at that site during that
283 treatment. The latter two variables ensured that any observed treatment effects were not simply due to
284 changes in general activity or the total numbers of individuals present over time. Finally, we estimated
285 whether individuals associated with the same individuals in both treatments of the experiment using a
286 linear mixed model, with the simple ratio index (a measure of association strength) during the open
287 clustered treatment as the response variable and the simple ratio index during the initial dispersed
288 treatment as a fixed effect, using the *lmerTest* package (Kuznetsova et al., 2017) (N=131 individuals;
289 N=3 individuals appeared at more than one site). We included the identity of both individuals of each
290 dyad and site as random effects.

291 *Assortative feeding on a fine spatial scale changes social behaviour (H2)*

292 Birds of known sex were included in these analyses only if present in both the open clustered and the
293 first assortative clustered (P1) treatment levels (N=100 unique individuals; N=2 individuals appeared
294 at more than one site; Table S1). Once again, three separate models were run for each social network
295 metric and included the same random and fixed effects as for H1. We then tested whether dyadic
296 associations during the open clustered phase predicted the assortative clustered P1 phase in the same
297 manner as described in H1, and the sample size was N=107 individuals (2 individuals appeared at
298 more than one site).

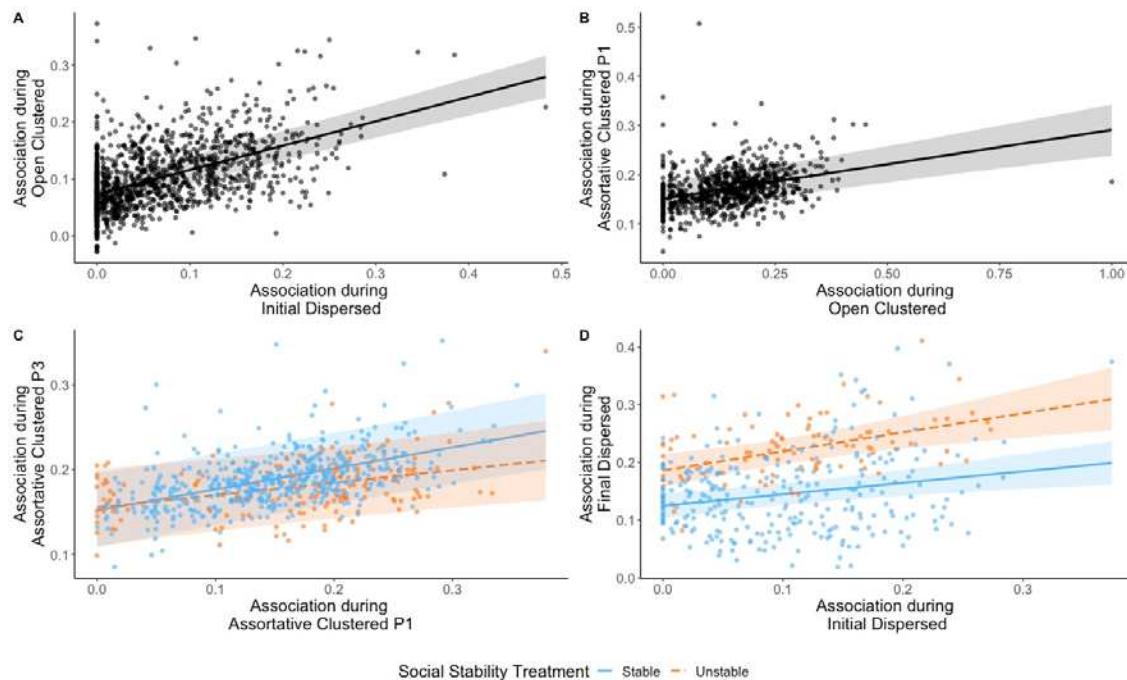
299 *Social stability influences the effect of the assortative feeding on social behaviour (H3)*

300 Birds of known sex were included in these analyses only if present in each of the three assortative
301 clustered treatment phases, but the main factor used for hypothesis testing included only the first and

302 third assortative clustered treatment phases to examine the overall effect of the assortative clustered
303 treatment (N=91 unique individuals; N=3 individuals appeared at more than one site; Table S1). Here
304 we tested the hypothesis using an interaction between resource treatment (assortative clustered P1 and
305 P3) and social stability (stable vs unstable), predicting that individuals in the stable treatment would
306 have stronger ties (higher weighted degree and weighted eigenvector centrality) with fewer
307 individuals (smaller flock size) after the assortative treatment compared to those who shared feeders
308 with different individuals across each of the three phases. Random and additional fixed effects
309 included were the same as for H1, with the addition of the social stability treatment (stable vs
310 unstable) as main effect, and the interaction between social stability treatment and resources
311 treatment. We ran posthoc tests with the *emmeans* package to examine the effects of the resource
312 treatment on social network metrics for birds in each social treatment (Lenth, 2019). We also
313 examined whether the social stability treatment influenced the simple ratio index of association using
314 a similar model to H2, but again adding the interaction between the simple ratio index during the
315 assortative clustered P1 treatment and social stability treatment. The sample size was N= 94
316 individuals (3 individuals appeared at more than one site).

317 *Observed changes in sociality persisted when dispersed food treatment was restored (H4)*
318 To examine the persistence of the observed changes we compared the social metrics from the initial
319 dispersed to the final dispersed treatment levels, controlling for sex, age, number of flocking events an
320 individual took part in, and the number of individuals in the social network. We tested the effect of
321 resource treatment (initial and final dispersed) as well as the interaction between resource treatment
322 and social stability treatment (stable vs unstable) to examine whether any observed differences
323 between stable and unstable groups at the end of the assortative clustered treatment were still
324 observed at the final dispersed stages. In this analysis, we included only individuals of known sex that
325 were present at all 6 stages of the experiment (N=67 unique individuals; N=2 individuals appeared at
326 more than one site; Table S1). Posthoc tests of the interaction were carried out with the *emmeans*
327 package (Lenth, 2019). We also tested whether the dyadic association score in the final dispersed
328 treatment was predicted by the dyadic association score in the initial dispersed treatment, and whether

329 the association depended on the social stability treatment by including the resource treatment, social
330 stability treatment (stable vs unstable), and their interaction as fixed effects. We included the identity
331 of both individuals of each dyad and site as random effects. The sample size for this analysis was N=


332 68 individuals (2 individuals appeared at more than one site).

333 **Results**

334 All individual social metrics showed moderate repeatability, and our measures therefore capture
335 intrinsic among-individual differences in their sociality (flock size: $R = 0.353$, CI = 0.232 - 0.459, $p <$
336 0.001; weighted degree, $R = 0.256$, CI = 0.150 - 0.359; $p < 0.001$; weighted eigenvector centrality, $R =$
337 0.104, CI = 0.023 - 0.190, $p = 0.002$). The number of individuals at each site was significantly lower
338 in the open clustered and final dispersed treatment than in the initial dispersed treatment, but remained
339 similar between the initial dispersed and the three assortative clustered treatments (Table S2; Figure
340 S1a). The number of visits each bird made per day remained similar between the initial dispersed and
341 open clustered treatments, but birds made significantly fewer visits per day in the initial dispersed
342 than in the three assortative clustered and the final dispersed phases (Table S2; Figure S1b). The
343 number of flocking events per individual per day remained similar between the initial dispersed and
344 open clustered treatments, but individuals took part in significantly fewer flocks per day in the initial
345 dispersed than in the three assortative clustered and the final dispersed phases (Table S2; Figure S1c).
346 Thus, for each treatment level in all further analyses, we controlled for the number of individuals at
347 sites and the number of flocks it took part in. We did not include the number of visits each bird made
348 because it was strongly colinear with the number of flocking events it took part in ($r=0.911$).

349 *From dispersed to clustered (H1)*

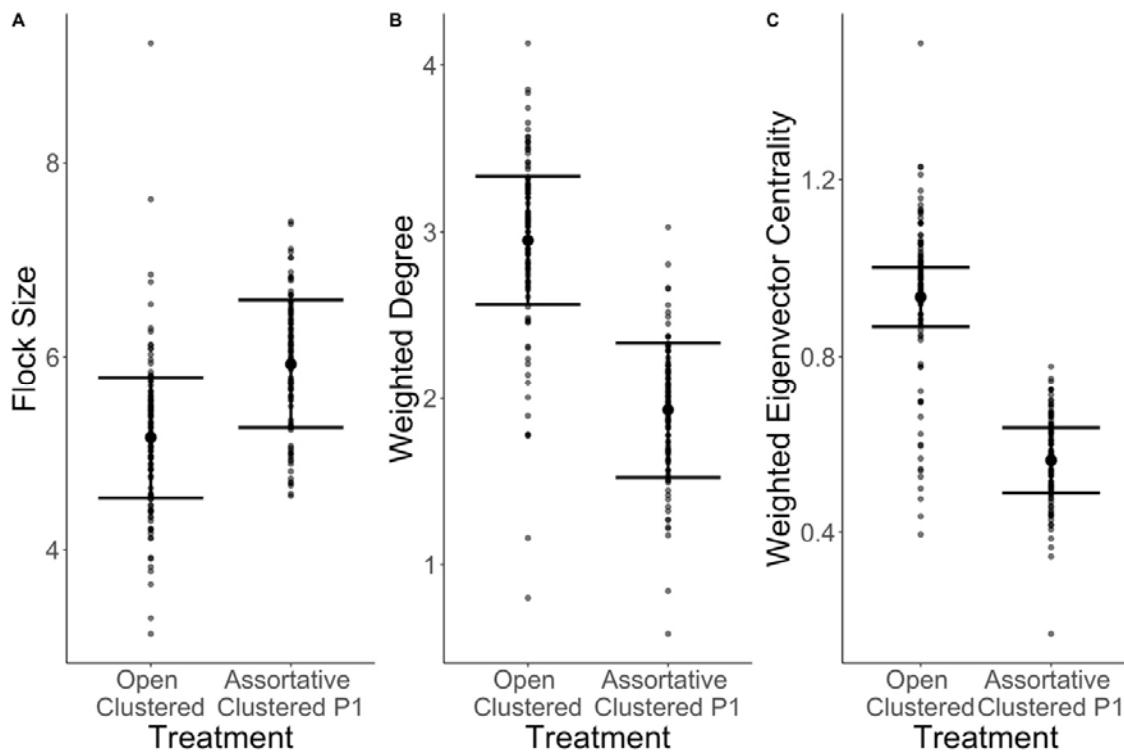
350 All measures of sociality were significantly higher in the open clustered treatment than in the
351 preceding initial dispersed treatment (Figure S2; Table S3; null model tests Table S4). Dyadic
352 associations in the initial dispersed treatment predicted associations in the open clustered treatment (B
353 = 0.43 (95%CI = 0.358-0.497); intercept $B = 0.073$ (95%CI = 0.046-0.099); $N = 1271$ pairs and 131
354 unique individuals; Figure 2a).

355
356 **Figure 2:** Partial residual plots showing how pairwise associations in one treatment predicted these in
357 the next for: a) the initial dispersed treatment and the open clustered treatment; b) the open clustered
358 treatment and the assortative clustered treatment (P1); c) the assortative clustered P1 treatment and P3
359 treatment; and d) the initial dispersed and final dispersed treatments. For c) and d), separate lines are
360 shown for birds in the stable (blue) and unstable (orange) social stability treatments. Interaction was
361 ns. for c) and d). Shaded areas are the 95% confidence intervals from corresponding models in the
362 main text and in Table S7 and S10. We added random effects for the identity of both individuals of
363 each dyad and site.

364 *From open clustered to assortative clustered (H2)*

365 Restricting individuals to being able to access food from only one of the five feeders in the array led
366 to a significant increase in flock size, and a significant decrease in weighted degree and weighted
367 eigenvector centrality (open clustered vs. assortative clustered P1 treatment level; Table 1, Figure 3).
368 Comparison to the null models gave qualitatively similar results (Table S5).

369 Once again, social preferences during the open clustered treatment predicted those in the assortative
370 clustered P1 treatment ($B = 0.139$ (95% CI = 0.092-0.187); Intercept: $B = 0.151$ (95% CI = 0.117-
371 0.188); N pairs = 800; N unique individuals = 107; Figure 2b).


372

373

374 **Table 1:** Linear mixed models of how each of four individual social network metrics changed from
 375 the open clustered to the assortative clustered treatments. Site and individual identity were included as
 376 random effects. ¹baseline = female; ²baseline = adult; ³baseline = open clustered

Dependent variable	Independent variables	Estimate (SE)	95% CI	P value
Flock Size	Intercept	1.35 (0.504)	0.391; 2.30	0.011
	Flocking events	0.001 (0.002)	-0.002; 0.004	0.565
	Individuals in local network	0.180 (0.018)	0.145; 0.216	<0.001
	Sex (male) ¹	-0.089 (0.115)	-0.313; 0.135	0.441
	Age (juveniles) ²	-0.030 (0.125)	-0.273; 0.212	0.808
	Resource (assortative clustered P1) ³	0.765 (0.217)	0.346; 1.18	<0.001
Weighted Degree	Intercept	-0.318 (0.310)	-0.917; 0.279	0.311
	Flocking events	0.018 (0.001)	0.016; 0.020	<0.001
	Individuals in local network	0.085 (0.012)	0.063; 0.107	<0.001
	Sex (male) ¹	0.010 (0.071)	-0.129; 0.148	0.891
	Age (juveniles) ²	-0.069 (0.077)	-0.219; 0.081	0.374
	Resource (assortative clustered P1) ³	-1.02 (0.134)	-1.28 -0.762	<0.001
WEVC	Intercept	0.567 (0.071)	0.433; 0.702	<0.001
	Flocking events	0.005 (0.0003)	0.005; 0.006	<0.001
	Individuals in local network	-0.004 (0.003)	-0.009; 0.002	0.190
	Sex (male) ¹	0.001 (0.022)	-0.043; 0.043	0.955
	Age (juveniles) ²	-0.053 (0.024)	-0.100; -0.006	0.031
	Resource (assortative clustered P1) ³	-0.371 (0.039)	-0.445; -0.295	<0.001

377

378
379 **Figure 3:** Partial residual plots showing changes in (A) flock size, (B) weighted degree and (C)
380 weighted eigenvector centrality, across the open clustered and assortative clustered P1 treatment.
381 Error bars are 95% confidence intervals based on the linear mixed models in Table 1.

382

383 *Social stability (H3)*

384 Social stability from the first to the third assortative clustered phases (P1-P3) significantly influenced
385 the effect of resource treatment on flock size (Resource \times social stability effect; Table 2; Table S6,

386 Figure 4), and again the null models gave qualitatively similar results (Table S7). A significant

387 increase in flock size was more pronounced in the stable group than in the unstable group (Table S6;

388 Figure 4a). Weighted degree significantly increased across the assortative clustered phases, but this

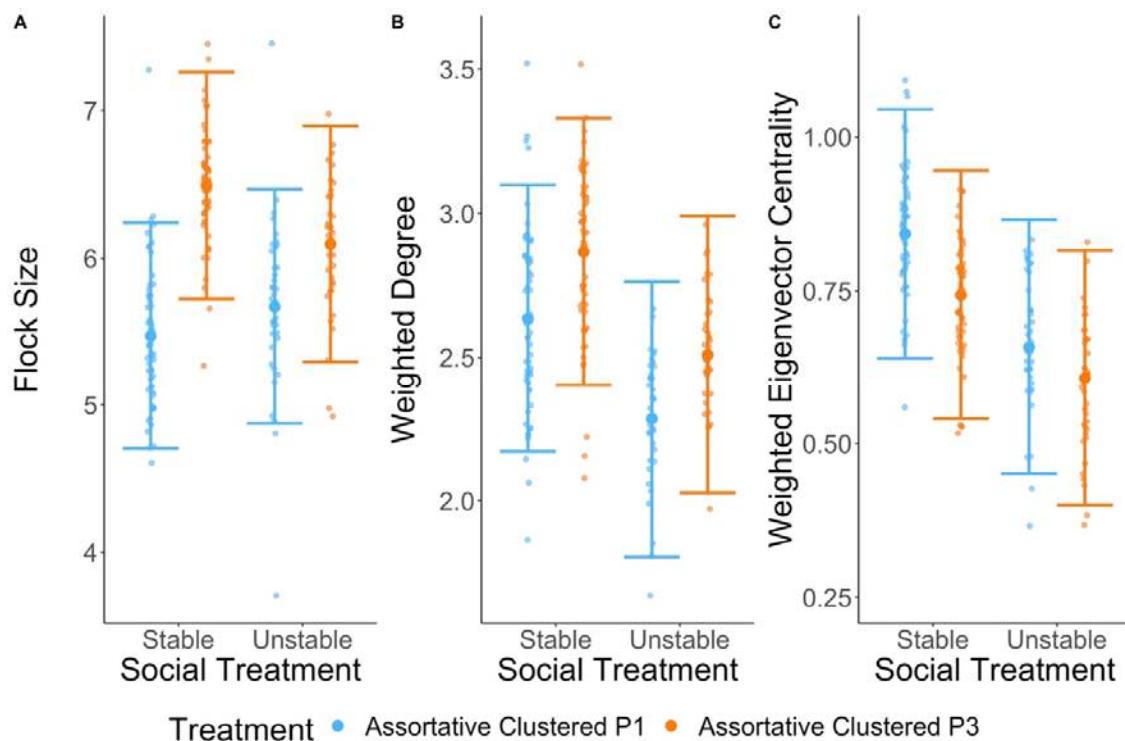
389 increase in weighted degree was similar for both social stability treatments (Table S6, Figure 4b).

390 There was weak (non-significant) support for the stability treatment influencing weighted eigenvector
391 centrality, which decreased more for the stable than for the unstable treatment (Table S6, Figure 4c)

392 Dyadic associations during the assortative clustered P1 treatment predicted the associations during the
393 assortative clustered P3 treatment (Table S8; Figure 2c; N pairs = 670; N unique individuals = 94).

394 There was weak (non-significant) support for this correlation being stronger in the stable than in the

395 unstable treatment (Association during P1 \times social stability, $B \pm SE = -0.101 \pm 0.065$, $P = 0.121$;
 396 Figure 2c).


397 **Table 2:** Linear mixed models of how changes in each of four individual social network metrics, from
 398 the start (P1) to the end (P3) of the assortative clustered resource treatment level, were influenced by
 399 social stability, as tested by their interaction. Site and individual identity were included as random
 400 effects. ¹baseline = female; ²baseline = adult; ³baseline = assortative clustered P1; ⁴baseline = stable

Dependent variable	Independent variables	Estimate (SE)	95% CI	P value
Flock Size	Intercept	0.946 (0.507)	0.006; 1.88	0.082
	Flocking events	-0.0005 (0.001)	-0.002; 0.001	0.530
	Individuals in local network	0.255 (0.021)	0.216; 0.293	<0.001
	Sex (male) ¹	-0.017 (0.075)	-0.158; 0.125	0.811
	Age (juveniles) ²	0.040 (0.089)	-0.158; 0.125	0.626
	Resource (assortative clustered P3) ³	1.02 (0.097)	0.830; 1.21	<0.001
	Social stability (unstable) ⁴	0.199 (0.548)	-0.844; 1.25	0.731
	Resource (assortative clustered P3) \times social stability (unstable)	-0.596 (0.153)	-0.885; -0.305	<0.001
Weighted Degree	Intercept	0.124 (0.302)	-0.465; 0.696	0.690
	Flocking events	0.012 (0.0004)	0.011; 0.013	<0.001
	Individuals in local network	0.042 (0.012)	0.019; 0.069	0.001
	Sex (male) ¹	0.039 (0.0423)	-0.043; 0.122	0.361
	Age (juveniles) ²	0.044 (0.047)	-0.048; 0.135	0.354
	Resource (assortative clustered P3) ³	0.232 (0.057)	0.120; 0.341	<0.001
	Social stability treatment (unstable) ⁴	-0.350 (0.334)	-0.976; 0.260	0.346
	Resource (assortative clustered P3) \times social stability (unstable)	-0.007 (0.087)	-0.173; 0.165	0.934
WEVC	Intercept	1.09 (0.123)	0.859; 1.33	<0.001
	Flocking events	0.004 (0.0001)	0.003; 0.004	<0.001
	Individuals in local network	-0.042 (0.004)	-0.050; -0.032	<0.001
	Sex (male) ¹	0.063 (0.015)	-0.022; 0.035	0.672
	Age (juveniles) ²	-0.007 (0.016)	-0.039; 0.025	0.683
	Resource (assortative clustered P3) ³	-0.099 (0.020)	-0.138; -0.061	<0.001
	Social stability (unstable) ⁴	-0.184 (0.145)	-0.460; 0.087	0.262
	Resource (assortative clustered P3) \times social stability (unstable)	0.049 (0.030)	-0.009; 0.108	0.108

401

402

403

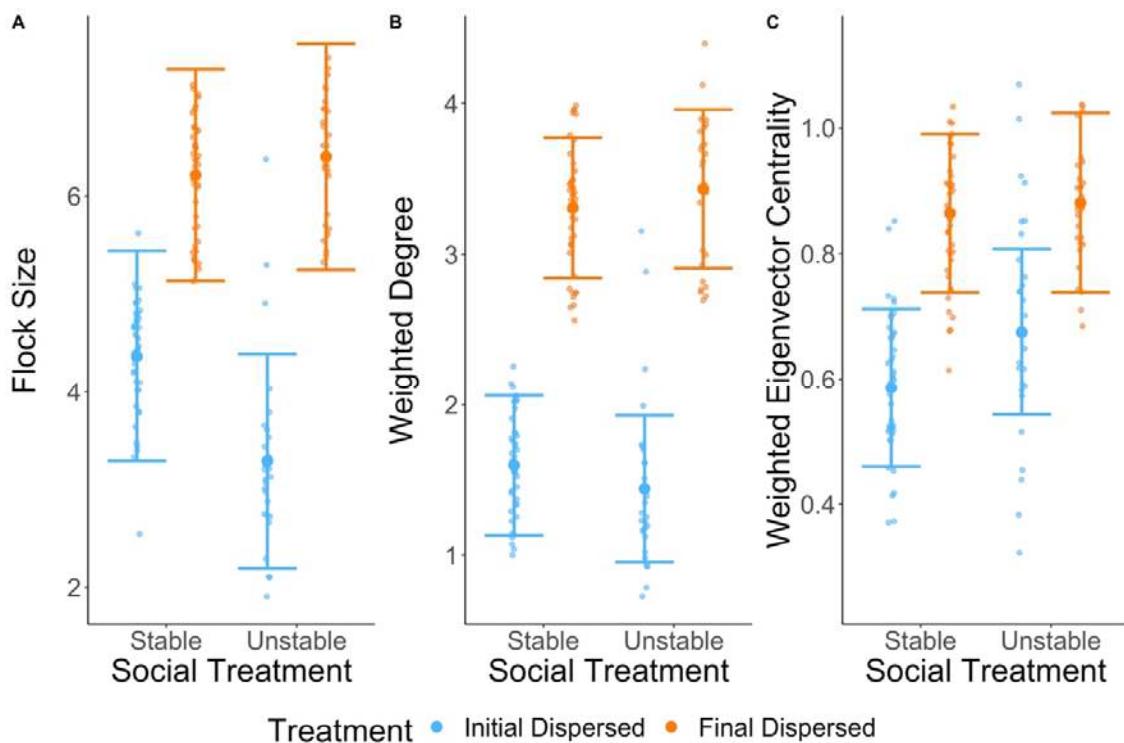
404

405

406

407

408


Figure 4: Plots showing the partial residuals for (A) flock size, (B) weighted degree and (C) weighted eigenvector centrality, and how these changed across the assortative clustered P1 and assortative clustered P3 treatment for each social stability treatment. Error bars are 95% confidence intervals based on models in Table 3.

409

Persistence of effects: initial vs final dispersed treatment level (H4)

410

All three social network metrics were higher in the final dispersed treatment level than they had been in the initial dispersed treatment level, even after controlling for changes in network membership and increases in visit rates (main effects of treatment in Table S9 for mixed models, and Table S10 for null models; Figure 5). The increase in flock size was significantly greater for the unstable than the stable treatment level; there was no evidence that stability significantly affected the change in weighted degree or weighted eigenvector centrality from initial to final dispersed stages (Resource \times stability treatment effects in Table S9; Table S11; Figure 5).

417
418 **Figure 5:** Plots showing the partial residuals for (A) flock size, (B) weighted degree and (C) weighted
419 eigenvector centrality, across the initial dispersed and final dispersed treatment, for each social
420 stability treatment. Error bars are 95% confidence intervals based on models in Table S8.

421 Dyadic associations during the initial dispersed treatment level predicted those in the final dispersed
422 treatment level ($B=0.228$ (95% CI: 0.125; 0.335); Intercept $B=0.157$ (95% CI: 0.120-0.196); N pairs =
423 379; N unique individuals = 68; Figure 2d). There was no evidence that the social stability treatment
424 significantly influenced the relationship between dyadic associations at the two time points
425 (association initial dispersed \times social stability, $B \pm SE = 0.132 \pm 0.109$, $P = 0.229$; Table S12, Figure
426 2d). During the final dispersed treatment level, dyadic associations were stronger for birds that
427 experienced the unstable treatment than for birds that experienced the stable treatment ($B=0.074$ (95%
428 CI: 0.037-0.110); Intercept $B=0.143$ (95% CI: 0.118-0.169)). This was not the case during the initial
429 dispersed treatment level ($B=0.002$ (95% CI: -0.054-0.057); Intercept $B=0.097$ (95% CI: 0.059-
430 0.134)).

431 **Discussion**

432 Individuals had repeatable social network metrics, and were consistent in whom they associated with
433 throughout the experiment. However, we found that at a small scale, changes in both food distribution

434 and social stability influenced individual level social network metrics. Some of these effects lasted
435 even when food distribution and social groupings were reverted back to their original structure.

436 *Resource distribution and individual sociality (H1 & H2)*

437 Manipulating resource distribution from two feeders 50m apart (dispersed) to a clustered array of five
438 feeders only 1m apart led to an immediate increase in individual sociality for all metrics, in line with
439 previous studies (Tanner & Jackson, 2011; Tavares et al., 2017; Zahavi, 1971). This is unsurprising
440 simply because the total numbers of birds at the site only declined by about 20% and yet suddenly the
441 remaining birds were feeding on additional food resources at one location instead of two. The
442 response observed, therefore, reflects the fact that when birds have to find new foraging patches they
443 ultimately converge on similar feeding locations, likely through a variety of mechanisms linked to
444 shared information (Ward & Webster, 2016).

445 Our more novel finding was that sociality changed considerably when individuals were then restricted
446 to separate single group locations on a fine-spatial scale, even though the spatial scale and location of
447 the food resources remained unchanged. Flock sizes increased, which was likely caused by reduced
448 feeder access, forcing individuals to spend more time at the location to get the food (presumably being
449 forced to queue for longer, and/or learning which feeder provides food) and being registered in the
450 same flocks. As predicted, the same manipulation reduced both the strength of connections, as
451 indicated by declines in weighted degree, and individuals' overall social connectedness, as indicated
452 by a reduction in weighted eigenvector centrality. Individuals occurred in larger but less well-
453 connected flocks. This decrease in social connectedness could imply a strong trade-off between
454 ensuring access to resources (without being able to rely on social information) - which may have
455 required individuals to stay at feeders to attempt to get food and in the process overlapping with many
456 more individuals but having less reliable connections to specific individuals - and maintaining strong
457 connections. To our knowledge this is the first experimental demonstration that restricting where
458 individuals feed at a spatial scale smaller than that encompassed by a single social ostensible group,
459 can change the sociality of individuals, demonstrating the importance of scale in understanding the
460 effects of resource use on social interactions (Cortés-Avizanda et al., 2011; Johnson et al., 2002).

461 Constraints on where individuals feed within group foraging locations can arise through a variety of
462 mechanisms, for example because of competitive ability when patch quality varies, risk taking
463 behaviour when risk varies and personality (Quinn et al., 2012; Webster & Ward, 2011). Our
464 experimental manipulation supports the hypothesis that these constraints can have implications for
465 individual sociality even on a very fine scale.

466

467 *The effect of social group stability treatment on flock size and social network centrality (H3)*

468 We expected individuals in the stable treatment to have stronger ties with fewer individuals at the end
469 of the assortative treatment because they had more opportunities to interact repeatedly with the same
470 individuals compared to individuals who shared feeders with different individuals across each of the
471 three phases. Flock size increased in both the stable and unstable social group treatments, which is to
472 be expected since restricting access to a single feeder led to queuing, or individuals being around the
473 feeders for longer as they determined which feeder they could access. However, against our
474 prediction, the increase in flock size was larger in the stable treatment. We suggest that one possible
475 mechanism for this finding is that there may have been greater synchrony in arrival times among birds
476 in flocks in the stable treatment because, for example, social information should be more reliable, i.e.,
477 individuals in stable flocks knew which flock mates to rely on for information in the context of shared
478 vigilance or finding the correct feeder. Other systems have shown how individuals differ in their
479 reliability with respect to sharing information about predators and how this is linked to their network
480 positions (Croft et al., 2009) and how learning about a food resource shapes the social network, where
481 individuals who reliably have information become more central (Kulahci et al., 2018).

482 We had also predicted that individuals in the stable social group would have higher strength of
483 connections (weighted degree and weighted eigenvector centrality) because they had more
484 opportunity to create bonds with the same individuals, and the information about feeder choice from
485 those individuals would be more reliable, compared to those who shared feeders with different
486 individuals across each of the three phases. Although the presence of more individuals in the stable

487 treatment (larger increase in flock size) may have been helpful to find the appropriate feeder (e.g.
488 through stimulus enhancement (Heyes, 1994)), the strength of connections (weighted degree) changed
489 in a similar way in the stable and unstable treatment. Against our prediction, there was weak evidence
490 that the overall connectedness (weighted eigenvector centrality) decreased more for the stable than the
491 unstable group, but in support of our hypothesis, the relationship between the dyadic associations in
492 the two phases during the manipulation was stronger in the stable group than the unstable group. This
493 is suggestive of a trade-off between forming stable social relationships and having larger social
494 groups (Heathcote et al., 2017). We predicted that if the environment was too unpredictable, and led
495 to too many changes in who individuals are feeding with (i.e., in the unstable social group treatment),
496 this could have increased the costs of retaining previous associations. Yet, we found that despite these
497 regular changes at the feeder level, individuals were still able to maintain their weighted degree in a
498 similar way to birds from the stable treatment, and they maintained their previous associations as
499 measured by dyadic interaction strength, demonstrating that fine-scale changes in resource access do
500 not always affect social ties at a larger scale of the feeding patch. Previous studies found that, in
501 contrast, fine-scale social disturbances weakened associations between individuals (Formica et al.,
502 2017; Maldonado-Chaparro et al., 2018). However, those studies involved disturbances that included
503 visually separating individuals for several days. In our study, there was no manipulation of which
504 individuals could be a member of the social group, but we did manipulate the fine-scale access to food
505 within the larger feeder array. This difference in methodologies may explain the difference between
506 our results and those of previous studies: physically separating individuals for several days had
507 stronger negative effects on social bonds between individuals than did our manipulation that merely
508 forced individuals to forage at different micro-sites but otherwise allowed them to remain in the same
509 social group.

510

511 *Persistence of effects (H4)*

512 We also aimed to understand how perturbations carried over into time periods following the
513 perturbations. Some effects of our food distribution and sociality manipulations persisted over time,

514 even across subsequent changes in food distribution. We found that at the end of the experiment –
515 during the final dispersed phase – individuals came to the feeders in larger flocks, had stronger
516 associations with other individuals, and had more central associates, compared to the same dispersed
517 configuration at the beginning of the experiment. This persistence observed in our experiment may
518 have both spatial and temporal explanations. First, the clustered treatment had a high density of
519 feeders, forcing individuals to interact at close range. This may have increased opportunities for social
520 bond formation, and indeed we observed an increase in social connectedness. Once these social
521 associations had been formed, they may have carried over into new contexts. For instance, Firth and
522 Sheldon (2015) found that controlling access to feeders changed the social network in a foraging
523 context not only at those feeders, but also at unrestricted feeders, and even while prospecting for nests
524 in the context of breeding. Second, the clustered phase of the experiment was relatively long duration
525 compared to the other phases. This would have again given individuals increased opportunities to
526 interact and form stable relationships. Once solidified, these were then likely to continue for some
527 time after the distribution of resources changed. However, Heinen et al. (2022), who used a similar
528 timeline as our experiment, found that no significant assortment persisted beyond the initial
529 manipulation. Time spent together does not necessarily influence the strength of the relationship
530 (Boucherie et al., 2017, 2018; Proops et al., 2021), as relationships are dynamic and change overtime.
531 However, a threshold of time spent together may be necessary to create bonds, which then take a
532 certain time to change. This raises important questions for the study of social networks: over what
533 time scale are social bonds formed, and how does this interact with the duration of continued social
534 ties following an environmental disturbance?

535 Given the temporal set up of our experiment, it is difficult to determine which specific treatment led
536 to those persistent effects. Flock size increased through both the physical and social manipulations
537 throughout the experiment, suggesting that the higher flock size observed at the end is due to either
538 additive or non-additive effects that carried over from the different manipulations to affect sociality in
539 the final dispersed phase. Weighted degree and weighted eigenvector centrality showed increases or
540 decreases throughout our experiment, depending on the treatment applied. It is therefore difficult to

541 disentangle the effect of each manipulation. However, effect sizes were larger for the dispersed to
542 clustered manipulation (H1), compared to the manipulation restricting access to feeders (H2), and the
543 manipulation of social stability (H3). The direction and size of the effect during H1 are similar to
544 those comparing the final to the initial dispersed phase (H4), suggesting that this initial manipulation
545 of food distribution may have had the strongest effect of any of our manipulations in the long term.
546 Along the same line, by the end of the experiment, we did not find any significant effects of social
547 stability treatment on our social network metrics, except for group size, but such differences could be
548 explained entirely by the fact that groups that were later assigned to the unstable social treatment had
549 smaller flock sizes at the start of the experiment. This suggests that our social manipulation mostly
550 influenced changes in social network while the manipulation occurred, but had little long-lasting
551 effects. Likewise, Heinen et al. (2022) - unlike Firth and Sheldon (2015) - found that after assorting
552 individuals at food patches, in a similar manner to our social stability treatment, the assortment did
553 not persist into a new feeding context.

554

555 *Dyadic associations*

556 We also show that dyadic associations between individuals were maintained over time. Despite the
557 fine scale of the manipulation, and its persistent impact on social network metrics, we found evidence
558 of consistent social ties across periods. Great tits appear to be highly consistent in their social
559 associations: spring breeding territorial distributions reflected winter foraging network positions (Firth
560 & Sheldon 2016), and individuals temporarily removed from the flock resumed their prior social
561 associations upon reintroduction (Firth et al. 2017). However, such consistency is not found in all
562 species. For instance, work in gannets (*Morus serrator*) found that the identity of associates was not
563 consistent across different foraging contexts (Jones et al., 2020), and an experimental manipulation
564 showed that chickadees (*Poecile gambeli*) restructure their network by assorting mostly with birds
565 assigned to the same resource (Heinen et al., 2022). To determine the true cause of variation across
566 species in social network stability in the face of disturbance, additional experiments in other species
567 like the ones presented here (manipulating habitat-based and social factors) would be very valuable.

568 Here we show that despite both physical and social experimental changes in their environment, the
569 social bonds individual great tits formed with conspecifics were preserved. Living in fission-fusion
570 flocks might have selected for strategies that allow some buffering against perturbation and allow for
571 individuals to consistently associate with the same conspecifics. This raises the question of how
572 individuals buffer such environmental changes in their network, and whether this has consequences
573 for their fitness and life history strategies. For instance, while associations are maintained even when
574 individuals are assorted at different feeders, scrounging might increase as individuals still use feeders
575 where they don't have access to food in order to maintain previously established relationships (Regan
576 et al., 2022). Data outside of the feeding context might also prove useful in understanding how
577 individuals adjust their behaviour to stay with their associates despite changes in their foraging
578 environment. Further work to better understand the underlying mechanisms from which such social
579 stability emerges and is maintained will be important in understanding the evolutionary forces acting
580 on social structure (Farine & Sheldon, 2019).

581

582 **Conclusion**

583 We show that even in the face of direct fine-scale manipulations of the physical and social
584 environment, individual differences in social behaviour (flock size and social network centralities) are
585 maintained in a wild population of birds. We also found that dyadic social associations remained
586 consistent under these perturbations, as individuals consistently associated with the same individuals.
587 Such consistency is in line with previous work, and suggests personality differences in social
588 behaviour during foraging, and some resilience of social associations to environmental change. But
589 the environment also drives plasticity in social network metrics. We found that manipulating a
590 combination of habitat-based and social factors can have persistent effects (i.e. beyond the initial
591 manipulation) on social network structure. Even fine scale-changes in food distribution and
592 interactions at a feeder can have effects on network metrics, showing that social traits are dynamic.
593 Our results provide a novel insight into how fine scale manipulations of socio-environmental factors

594 have persistent effects on group structure and stability, and that relative social differences among
595 individuals may be robust to these perturbations.

596 **References**

597 Albery, G. F., Morris, A., Morris, S., Pemberton, J. M., Clutton-Brock, T. H., Nussey, D. H., & Firth,
598 J. A. (2020). *Spatial point locations explain a range of social network positions in a wild ungulate*
599 [Preprint]. *Ecology*. <https://doi.org/10.1101/2020.06.04.135467>

600 Aplin, L. M., Farine, D. R., Morand-Ferron, J., Cole, E. F., Cockburn, A., & Sheldon, B. C. (2013).
601 Individual personalities predict social behaviour in wild networks of great tits (*Parus major*). *Ecology*
602 *Letters*, 16(11), 1365–1372. <https://doi.org/10.1111/ele.12181>

603 Beck, S., Kuningas, S., Esteban, R., & Foote, A. D. (2011). The influence of ecology on sociality in
604 the killer whale (*Orcinus orca*). *Behavioral Ecology*, 23(2), 246–253.
605 <https://doi.org/10.1093/beheco/arr151>

606 Boucherie, P. H., Poulin, N., & Dufour, V. (2018). Not much ado about something: Behavioural
607 mechanisms of pair bond separation and formation in long-term pairing rooks. *Écoscience*, 25(1), 71–
608 83. <https://doi.org/10.1080/11956860.2017.1414671>

609 Boucherie, P. H., Sosa, S., Pasquaretta, C., & Dufour, V. (2017). A longitudinal network analysis of
610 social dynamics in rooks *corvus frugilegus*: Repeated group modifications do not affect social
611 network in captive rooks. *Current Zoology*, 63(4), 379–388. <https://doi.org/10.1093/cz/zow083>

612 Caillaud, M. C., & Via, S. (2000). Specialized Feeding Behavior Influences Both Ecological
613 Specialization and Assortative Mating in Sympatric Host Races of Pea Aphids. *The American*
614 *Naturalist*, 156(6), 606–621.

615 Cairns, S. J., & Schwager, S. J. (1987). A comparison of association indices. *Animal Behaviour*,
616 35(5), 1454–1469. [https://doi.org/10.1016/S0003-3472\(87\)80018-0](https://doi.org/10.1016/S0003-3472(87)80018-0)

617 Cantor, M., Maldonado □ Chaparro, A. A., Beck, K. B., Brandl, H. B., Carter, G. G., He, P.,
618 Hillemann, F., Klarevas □ Irby, J. A., Ogino, M., Papageorgiou, D., Prox, L., & Farine, D. R. (2021).
619 The importance of individual □ to □ society feedbacks in animal ecology and evolution. *Journal of*
620 *Animal Ecology*, 90(1), 27–44. <https://doi.org/10.1111/1365-2656.13336>

621 Carter, G. G., & Wilkinson, G. S. (2015). Social benefits of non-kin food sharing by female vampire
622 bats. *Proceedings of the Royal Society B: Biological Sciences*, 282(1819), 20152524.
623 <https://doi.org/10.1098/rspb.2015.2524>

624 Cauchoux, M., Barragan Jason, G., Biganzoli, A., Briot, J., Guiraud, V., El Ksabi, N., Lieuré, D.,
625 Morand □ Ferron, J., & Chaine, A. S. (2022). The OPENFEEDER: A flexible automated RFID feeder to
626 measure interspecies and intraspecies differences in cognitive and behavioural performance in wild
627 birds. *Methods in Ecology and Evolution*, 2041-210X.13931. <https://doi.org/10.1111/2041-210X.13931>

629 Cheney, D. L., Silk, J. B., & Seyfarth, R. M. (2016). Network connections, dyadic bonds and fitness
630 in wild female baboons. *Royal Society Open Science*, 3(7), 160255.
631 <https://doi.org/10.1098/rsos.160255>

632 Cortés-Avizanda, A., Almaraz, P., Carrete, M., Sánchez-Zapata, J. A., Delgado, A., Hiraldo, F., &
633 Donázar, J. A. (2011). Spatial Heterogeneity in Resource Distribution Promotes Facultative Sociality

634 in Two Trans-Saharan Migratory Birds. *PLoS ONE*, 6(6), e21016.
635 <https://doi.org/10.1371/journal.pone.0021016>

636 Croft, D. P., Krause, J., Darden, S. K., Ramnarine, I. W., Faria, J. J., & James, R. (2009). Behavioural
637 trait assortment in a social network: Patterns and implications. *Behavioral Ecology and Sociobiology*,
638 63(10), 1495–1503. <https://doi.org/10.1007/s00265-009-0802-x>

639 Crook, A. C. (1999). Quantitative evidence for assortative schooling in a coral reef fish. *Marine
640 Ecology Progress Series*, 176, 17–23.

641 Ebensperger, L. A., Aracena, S., Avendaño, N., Toro, A., León, C., Ramírez-Estrada, J., & Abades, S.
642 (2017). Social instability decreases alloparental care and quality of weaned offspring in a communally
643 rearing rodent. *Animal Behaviour*, 133, 195–205. <https://doi.org/10.1016/j.anbehav.2017.09.021>

644 Ebensperger, L. A., Correa, L. A., León, C., Ramírez-Estrada, J., Abades, S., Villegas, Á., & Hayes,
645 L. D. (2016). The modulating role of group stability on fitness effects of group size is different in
646 females and males of a communally rearing rodent. *Journal of Animal Ecology*, 85(6), 1502–1515.
647 <https://doi.org/10.1111/1365-2656.12566>

648 Ellis, S., Snyder-Mackler, N., Ruiz-Lambides, A., Platt, M. L., & Brent, L. J. N. (2019).
649 Deconstructing sociality: The types of social connections that predict longevity in a group-living
650 primate. *Proceedings of the Royal Society B: Biological Sciences*, 286(1917), 20191991.
651 <https://doi.org/10.1098/rspb.2019.1991>

652 Evans, J. C., Devost, I., Jones, T. B., & Morand-Ferron, J. (2018). Inferring dominance interactions
653 from automatically recorded temporal data. *Ethology*, 124(3), 188–195.
654 <https://doi.org/10.1111/eth.12720>

655 Farine, D. R., Firth, J. A., Aplin, L. M., Crates, R. A., Culina, A., Garroway, C. J., Hinde, C. A., Kidd,
656 L. R., Milligan, N. D., Psorakis, I., Radersma, R., Verhelst, B., Voelkl, B., & Sheldon, B. C. (2015).
657 The role of social and ecological processes in structuring animal populations: A case study from
658 automated tracking of wild birds. *Royal Society Open Science*, 2(4), 150057.
659 <https://doi.org/10.1098/rsos.150057>

660 Farine, D. R., & Sheldon, B. C. (2019). Stable multi-level social structure is maintained by habitat
661 geometry in a wild bird population. *bioRxiv*. <https://doi.org/10.1101/085944>

662 Firth, J. A., & Sheldon, B. C. (2015). Experimental manipulation of avian social structure reveals
663 segregation is carried over across contexts. *Proceedings of the Royal Society B: Biological Sciences*,
664 282(1802), 20142350. <https://doi.org/10.1098/rspb.2014.2350>

665 Firth, J. A., & Sheldon, B. C. (2016). Social carry-over effects underpin trans-seasonally linked
666 structure in a wild bird population. *Ecology Letters*, 19(11), 1324–1332.
667 <https://doi.org/10.1111/ele.12669>

668 Fisher, D. N., Rodríguez-Muñoz, R., & Tregenza, T. (2016). Wild cricket social networks show
669 stability across generations. *BMC Evolutionary Biology*, 16(1), 151. [016-0726-9](https://doi.org/10.1186/s12862-
670 016-0726-9)

671 Flack, J. C., Girvan, M., de Waal, F. B. M., & Krakauer, D. C. (2006). Policing stabilizes construction
672 of social niches in primates. *Nature*, 439(7075), 426–429. <https://doi.org/10.1038/nature04326>

673 Formica, V., Wood, C., Cook, P., & Brodie, E. (2017). Consistency of animal social networks after
674 disturbance. *Behavioral Ecology*, 28(1), 85–93. <https://doi.org/10.1093/beheco/arw128>

675 Foster, E. A., Franks, D. W., Morrell, L. J., Balcomb, K. C., Parsons, K. M., van Ginneken, A., &
676 Croft, D. P. (2012). Social network correlates of food availability in an endangered population of
677 killer whales, *Orcinus orca*. *Animal Behaviour*, 83(3), 731–736.
678 <https://doi.org/10.1016/j.anbehav.2011.12.021>

679 Gazda, S. K., Connor, R. C., Edgar, R. K., & Cox, F. (2005). A division of labour with role
680 specialization in group-hunting bottlenose dolphins (*Tursiops truncatus*) off Cedar Key, Florida.
681 *Proceedings of the Royal Society B: Biological Sciences*, 272(1559), 135–140.
682 <https://doi.org/10.1098/rspb.2004.2937>

683 Godfrey, S. S., Bull, C. M., James, R., & Murray, K. (2009). Network structure and parasite
684 transmission in a group living lizard, the gidgee skink, *Egernia stokesii*. *Behavioral Ecology and*
685 *Sociobiology*, 63(7), 1045–1056. <https://doi.org/10.1007/s00265-009-0730-9>

686 He, P., Maldonado-Chaparro, A. A., & Farine, D. R. (2019). The role of habitat configuration in
687 shaping social structure: A gap in studies of animal social complexity. *Behavioral Ecology and*
688 *Sociobiology*, 73(1), 9. <https://doi.org/10.1007/s00265-018-2602-7>

689 Heathcote, R. J. P., Darden, S. K., Franks, D. W., Ramnarine, I. W., & Croft, D. P. (2017). Fear of
690 predation drives stable and differentiated social relationships in guppies. *Scientific Reports*, 7(1),
691 41679. <https://doi.org/10.1038/srep41679>

692 Heinen, V. K., Benedict, L. M., Sonnenberg, B. R., Bridge, E. S., Farine, D. R., & Pravosudov, V. V.
693 (2022). Experimental manipulation of food distribution alters social networks and information
694 transmission across environments in a food-caching bird. *Animal Behaviour*, 193, 1–12.
695 <https://doi.org/10.1016/j.anbehav.2022.08.007>

696 Heyes, C. M. (1994). Social learning in animals: Categories and mechanisms. *Biological Reviews*,
697 69(2), 207–231. <https://doi.org/10.1111/j.1469-185X.1994.tb01506.x>

698 Johnson, D. D. P., Kays, R., Blackwell, P. G., & Macdonald, D. W. (2002). Does the resource
699 dispersion hypothesis explain group living? *Trends in Ecology & Evolution*, 17(12), 563–570.
700 [https://doi.org/10.1016/S0169-5347\(02\)02619-8](https://doi.org/10.1016/S0169-5347(02)02619-8)

701 Kulahci, I. G., Ghazanfar, A. A., & Rubenstein, D. I. (2018). Knowledgeable Lemurs Become More
702 Central in Social Networks. *Current Biology*, 28(8), 1306-1310.e2.
703 <https://doi.org/10.1016/j.cub.2018.02.079>

704 Kulahci, I. G., & Quinn, J. L. (2019). Dynamic relationships between information transmission and
705 social connections. *Trends in Ecology & Evolution*, 34(6), 545–554.
706 <https://doi.org/10.1016/j.tree.2019.02.007>

707 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear
708 mixed effects models. *Journal of Statistical Software*, 82(13), 1–26.

709 Lambert, P. J., Herbert-Read, J. E., & Ioannou, C. C. (2021). The measure of spatial position within
710 groups that best predicts predation risk depends on group movement. *Proceedings of the Royal*
711 *Society B: Biological Sciences*, 288(1959).

712 Lehmann, J., & Ross, C. (2011). Baboon (*Papio anubis*) social complexity-a network approach.
713 *American Journal of Primatology*, 73(8), 775–789. <https://doi.org/10.1002/ajp.20967>

714 Lenth, R. (2019). *emmeans: Estimated Marginal Means, aka Least-Squares Means* (1.3.5.1).
715 <https://CRAN.R-project.org/package=emmeans>

716 Levin, S. A. (1992). The Problem of Pattern and Scale in Ecology. *Ecology*, 73(6), 1943–1967.
717 <https://doi.org/10.2307/1941447>

718 Maldonado-Chaparro, A. A., Alarcón-Nieto, G., Klarevas-Irby, J. A., & Farine, D. R. (2018).
719 Experimental disturbances reveal group-level costs of social instability. *Proceedings of the Royal
720 Society B: Biological Sciences*, 285(1891), 20181577. <https://doi.org/10.1098/rspb.2018.1577>

721 Martin, C. H. (2013). Strong assortative mating by diet, color, size and morphology but limiter
722 process toward sympatric speciation in a classic example: Cameroon crater lake cichlids. *Evolution*,
723 67(7), 2114–2123.

724 Matechou, E., Cheng, S. C., Kidd, L. R., & Garroway, C. J. (2015). *Reproductive consequences of the
725 timing of seasonal movements in a nonmigratory wild bird population*. 96(6), 9.

726 Proops, L., Troisi, C. A., Kleinhappel, T. K., & Romero, T. (2021). Non-random associations in group
727 housed rats (*Rattus norvegicus*). *Scientific Reports*, 11(1), 15349. [https://doi.org/10.1038/s41598-021-94608-4](https://doi.org/10.1038/s41598-021-
728 94608-4)

729 Psorakis, I., Roberts, S. J., Rezek, I., & Sheldon, B. C. (2012). Inferring social network structure in
730 ecological systems from spatio-temporal data streams. *Journal of The Royal Society Interface*, 9(76),
731 3055–3066. <https://doi.org/10.1098/rsif.2012.0223>

732 Psorakis, I., Voelkl, B., Garroway, C. J., Radersma, R., Aplin, L. M., Crates, R. A., Culina, A., Farine,
733 D. R., Firth, J. A., Hinde, C. A., Kidd, L. R., Milligan, N. D., Roberts, S. J., Verhelst, B., & Sheldon,
734 B. C. (2015). Inferring social structure from temporal data. *Behavioral Ecology and Sociobiology*,
735 69(5), 857–866. <https://doi.org/10.1007/s00265-015-1906-0>

736 Quinn, J. L., Cole, E. F., Bates, J., Payne, R. W., & Cresswell, W. (2012). Personality predicts
737 individual responsiveness to the risks of starvation and predation. *Proceedings of the Royal Society B:
738 Biological Sciences*, 279(1735), 1919–1926. <https://doi.org/10.1098/rspb.2011.2227>

739 R Core Team. (2020). *R: A language and environment for statistical computing* [Computer software].
740 R Foundation for Statistical Computing. <https://www.R-project.org/>

741 Regan, C. E., Beck, K. B., McMahon, K., Crofts, S., Firth, J. A., & Sheldon, B. C. (2022). Social
742 phenotype-dependent selection of social environment in wild great and blue tits: An experimental
743 study. *Proceedings of the Royal Society B: Biological Sciences*, 289(1986), 20221602.
744 <https://doi.org/10.1098/rspb.2022.1602>

745 Reichert, M. S., Crofts, S. J., Davidson, G. L., Firth, J. A., Kulahci, I. G., & Quinn, J. L. (2020).
746 Multiple factors affect discrimination learning performance, but not between-individual variation, in
747 wild mixed-species flocks of birds. *Royal Society Open Science*, 7(4), 192107.
748 <https://doi.org/10.1098/rsos.192107>

749 Shizuka, D., Chaine, A. S., Anderson, J., Johnson, O., Laursen, I. M., & Lyon, B. E. (2014). Across-
750 year social stability shapes network structure in wintering migrant sparrows. *Ecology Letters*, 17(8),
751 998–1007. <https://doi.org/10.1111/ele.12304>

752 Shizuka, D., & Johnson, A. E. (2020). How demographic processes shape animal social networks.
753 *Behavioral Ecology*, 31(1), 1–11. <https://doi.org/10.1093/beheco/arz083>

754 Snowberg, L. K., & Bolnick, D. I. (2008). Assortative Mating by Diet in a Phenotypically Unimodal
755 but Ecologically Variable Population of Stickleback. *The American Naturalist*, 172(5), 733–739.

756 Stanley, C. R., Mettke-Hofmann, C., Hager, R., & Shultz, S. (2018). Social stability in semiferal
757 ponies: Networks show interannual stability alongside seasonal flexibility. *Animal Behaviour*, 136,
758 175–184. <https://doi.org/10.1016/j.anbehav.2017.04.013>

759 Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: Repeatability estimation and variance
760 decomposition by generalized linear mixed-effects models. *Methods in Ecology and Evolution*, 8(11),
761 1639–1644. <https://doi.org/10.1111/2041-210X.12797>

762 Tanner, C. J., & Jackson, A. L. (2011). Social structure emerges via the interaction between local
763 ecology and individual behaviour. *Journal of Animal Ecology*, 81(1), 260–267.
764 <https://doi.org/10.1111/j.1365-2656.2011.01879.x>

765 Tavares, S. B., Samarra, F. I. P., & Miller, P. J. O. (2017). A multilevel society of herring-eating killer
766 whales indicates adaptation to prey characteristics. *Behavioral Ecology*, 28(2), 500–514.
767 <https://doi.org/10.1093/beheco/arw179>

768 Ward, A., & Webster, M. (2016). *Sociality: The Behaviour of Group-Living Animals*. Springer
769 International Publishing. <https://doi.org/10.1007/978-3-319-28585-6>

770 Wascher, C. A. F., Kulahci, I. G., Langley, E. J. G., & Shaw, R. C. (2018). How does cognition shape
771 social relationships? *Philosophical Transactions of the Royal Society B: Biological Sciences*,
772 373(1756), 20170293. <https://doi.org/10.1098/rstb.2017.0293>

773 Webster, M. M., & Rutz, C. (2020). How STRANGE are your study animals? *Nature*, 582, 337–340.

774 Webster, M. M., & Ward, A. J. W. (2011). Personality and social context. *Biological Reviews*, 86(4),
775 759–773. <https://doi.org/10.1111/j.1469-185X.2010.00169.x>

776 Whitehead, H. (2008). *Analyzing animal societies: Quantitative methods for vertebrate social*
777 *analysis*. The University of Chicago Press.

778 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.
779 <https://ggplot2.tidyverse.org>

780 Wiens, J. A. (1989). Spatial Scaling in Ecology. *Functional Ecology*, 3(4), 385.
781 <https://doi.org/10.2307/2389612>

782 Wolf, J. B. W., Mawdsley, D., Trillmich, F., & James, R. (2007). Social structure in a colonial
783 mammal: Unravelling hidden structural layers and their foundations by network analysis. *Animal*
784 *Behaviour*, 74(5), 1293–1302. <https://doi.org/10.1016/j.anbehav.2007.02.024>

785 Zahavi, A. (1971). The social behaviour of the white wagtail *Motacilla alba alba* in Israel. *Ibis*,
786 113(2), 203–211. <https://doi.org/10.1111/j.1474-919X.1971.tb05145.x>

787