
1 

 

TSpred: a robust prediction framework for TCR-epitope 

interactions based on an ensemble deep learning approach 

using paired chain TCR sequence data 

Ha Young Kim1, Sungsik Kim2, Woong-Yang Park2,3,4, Dongsup Kim1,* 

 

1Department of Bio and Brain Engineering, Korea Advanced Institute of Science and 

Technology, Daejeon 34141, South Korea 

2GENINUS Inc., Seoul, South Korea 

3Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea 

4Deparment of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 

South Korea 

 

* To whom correspondence should be addressed. Tel: 82-42-350-4317; Email: kds@kaist.ac.kr 

 

 

ABSTRACT 

Prediction of T-cell receptor (TCR)-epitope interactions is important for many applications 

such as cancer immunotherapy. However, due to the scarcity of available data, it is known to 

be a challenging task particularly for novel epitopes. Here, we propose TSpred, a new 

ensemble learning-based method for the pan-specific prediction of TCR binding specificity. 

This method utilizes paired chain data and combines the predictive power of the CNN and 

the attention mechanism to learn the patterns underlying TCR-epitope interactions. We 

perform a comprehensive evaluation of of our model and observe that TSpred achieves the 

state-of-the-art performances in both seen and unseen epitope specificity prediction tasks. 

Also, the reciprocal attention component of our model allows for model interpretability by 

capturing structurally important binding regions. Results indicate that TSpred is a robust and 

reliable method in the task of TCR-epitope binding prediction.  
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INTRODUCTION 

T-cells are known to play a critical role in adaptive immune responses, detecting and 

eliminating infected cells in the body upon the activation of T-cell receptors (TCRs). TCRs are 

activated when it binds to a peptide presented on major histocompatibility complex 

molecule (pMHC) on the surface of infected cells. TCR sequences have an enormously large 

sequence diversity, which enables the recognition of a large number of different epitopes, 

thereby protecting the host from a wide variety of pathogens (1). This sequence diversity is 

observed in the complementarity determining regions (CDRs) of the TCR. TCRs possess the 

property of cross-reactivity, such that a single TCR can bind to a number of different 

epitopes (2). At the same time, TCRs bind to epitopes in a highly specific manner, meaning 

that it is highly unlikely that a single TCR will bind to any randomly chosen epitope (3). 

Experimental approaches such as tetramer analysis (4) and single-cell TCR sequencing (5) are 

used to detect TCR-epitope interacting pairs. Despite an increasing amount of available data, 

it is still a challenge to predict which TCRs target specific epitopes. This is because data 

available at the current moment is still too sparse, compared to the huge sequence space of 

TCRs (6). In particular, the prediction of TCR binding specifities for unseen epitopes—

epitopes not seen in the training data—is difficult, due to the lack of available data. Although 

many methods have been developed in this field, most of them fail to extrapolate well 

enough to unseen epitopes (7). Still, it is a very active area of research, as there are many 

practical applications associated with the prediction of TCR-epitope binding. For example, a 

reliable method for TCR-epitope binding prediction can be used for the prediction of 

immunogenic neoantigens, which has significant implications in the development of cancer 

vaccines (8).  

Many machine learning and deep learning-based methods have been developed to 

predict the interaction between TCRs and epitopes. Deep learning-based methods use a 

wide variety of architectures, such as the convolutional neural networks (CNNs) (9-12), long 

short-term memory (LSTM) (13), autoencoder (13), and attention mechanism (6,14,15). Some 

tools, such as TITAN (6), ImRex (12), pMTnet (16), epiTCR (17), and TEINet (18), consider only 

the information of the TCR beta chain. Other methods, such as ERGO (13), MixTCRpred (15), 

NetTCR-2.0 (11), NetTCR-2.1 (10), and NetTCR-2.2 (9), take into consideration the paired 
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alpha and beta chain information. A recent benchmark study from the IMMREP 2022 

workshop (19) has reported that using paired chain data leads to more accurate predictions. 

Furthermore, some works (9,10,15) make a distinction between the epitope-specific and pan-

specific predictors. Epitope-specific predictors are specifically trained and tested for 

predicting the binding TCRs for the particular epitope, whereas pan-specific predictors can 

be applied to the prediction of binding TCRs for any given epitope. The authors of NetTCR-

2.1 and MixTCRpred (10,15) pointed out that models tend to perform worse when trained in 

a pan-specific manner, compared to an epitope-specific manner. However, it is important for 

a model to be a reliable pan-specific predictor, so that it can generalize well to unseen 

epitopes. Also, a recent study (7) investigated how the peptide imbalance in the dataset 

affects the performances of different predictors. The authors found that the peptide 

imbalance leads to the overestimation of model performances and that the models learn 

only on a few number of peptides appearing most frequently in the dataset.  

In this work, we present TSpred (T-cell receptor binding Specificity predictor), a pan-

specific approach for the prediction of TCR binding specificity using an ensemble of a CNN-

based model and an attention-based model. The model takes paired alpha and beta chain 

data as input. The attention-based model takes advantage of a reciprocal attention layer, 

which is designed to capture the patterns underlying TCR-epitope binding. We leverage the 

predictive power of the CNN and the attention mechanism to build a robust model that can 

generalize well to unseen epitopes. Based on a thorough evaluation of the model and 

comparison with other recent methods, we show that our model achieves the state-of-the-

art performances, in both seen epitope datasets and unseen epitope datasets. Also, based on 

an assessment of our model on a balanced dataset generated by down-sampling, we find 

that our model is the most robust to bias caused by peptide imbalance in the dataset. 

Furthermore, we analyze the attention maps generated by the attention-based model and 

show that our model can capture the structurally important residue pairs that contribute to 

TCR-epitope binding.  

 

MATERIAL AND METHODS 

Dataset 
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We conduct a comprehensive and rigorous evaluation of our model on four datasets, two of 

which are provided by the authors of NetTCR-2.2 (9), and two of which are newly constructed 

based on the previous two datasets (Table 1). The NetTCR_full dataset, refered to as the ‘full 

dataset’ in NetTCR-2.2 (9), is derived from public databases such as VDJDB (20) and IEDB 

(21), and a 10x sequencing study (22). The data is restricted to human and MHC class I data 

and contains paired chain information, including all three CDR sequences for both α and β 
chains. The positive pairs in this data, comprising 6353 examples across 26 peptides, are 

randomly split into five partitions. Within each partition, negative pairs are sampled in a 1 :5 

ratio by random shuffling. This means that for each peptide-TCR pair, five negative samples 

are generated by randomly sampling from TCRs binding to other peptides. Whereas the 

nested five-fold cross validation has been performed in the original paper, we use a modified 

nested five-fold cross validation with only one inner loop and five outer loops 

(Supplementary Fig 1). This training strategy is used throughout this work. In addition, we 

use the IMMREP dataset which has been generated from the IMMREP 2022 benchmark (19) 

and post-processed by the authors of NetTCR-2.2 (9). The negative samples in this dataset 

have been generated by a combination of random shuffling and sampling from negative 

control data. The negative control data come from the IMMREP benchmark study (19) and 

consist of TCR sequences with no known binding specificity obtained by 10x sequencing 

from 11 control individuals. This dataset consists of 17 different peptides. 

Based on NetTCR_full dataset, we create two other datasets, NetTCR_bal and 

NetTCR_strict. NetTCR_bal is a balanced dataset which is generated by down-sampling the 

number of data samples in NetTCR_full to 100 samples for each peptide. This dataset was 

created in order to minimize the impact of peptide imbalance in the model performance. The 

negatives are generated by random shuffling in a 1 :2 ratio. Finally, NetTCR_strict dataset is 

constructed to assess our model on the task of predicting TCR specificity for unseen 

epitopes. When dividing all the positive data into five partitions, the ‘strict split’ method is 

used, so that peptides are non-overlapping across different partitions. In order to limit the 

influence of randomness, we conducted the cross validation five times with five different 

random seeds for splitting the data. For the negative samples, we use the previously 

mentioned negative control data from IMMREP benchmark (19). This dataset also has a 

positive to negative ratio of 1 :2.  
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Table 1. Summary of the datasets used for model training and evaluation in this study.  

Dataset NetTCR_full IMMREP NetTCR_bal NetTCR_strict 

Task Prediction for seen epitopes 
Prediction for 

unseen epitopes 

Training strategy 5-fold cross validation (random split) 

5-fold cross 
validation (strict 
split) five times 

with five different 
random seeds 

Data origin 

NetTCR_full 
dataset from 

Jensen et al., 2023 
(9) 

IMMREP 2022 
benchmark (19) 

NetTCR_full NetTCR_full 

Negative 
sampling strategy 

Random shuffling 
within each 

partition 

Random 
shuffling (1 :3) + 

negative 
controls (1 :2) 

Random 
shuffling within 
each partition 

Negative controls 

Number of 
peptides 

26 17 26 26 

Total data size 
(positive, 
negative) 

(6353, 31368) (1960, 9848) (1893, 3786) (6353, 12706) 

Positive : negative 
ratio 

1 :5 1 :5 1 :2 1 :2 

 

 

Model Architecture 

The model framework proposed in this study is an ensemble model of two different models, 

a CNN-based model and an attention-based model (Figure 1, Supplementary Note 1). In the 

CNN-based model (Figure 1a), each of the peptide and the 6 CDR sequences are one-hot 

encoded and forwarded through a convolution module. The convolution module is 

composed of a 1D convolutional layer with kernel size of 2, a max pooling layer of kernel size 

of 2, and a fully-connected layer. The outputs from each module are concatenated and 

passed through three fully-connected layers with a sigmoid activation to produce the final 

output.  
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In the attention-based model (Figure 1b), the inputs are the peptide, CDRα, and 

CDRβ sequences, where the three CDRs from α chain are concatentated and the three CDRs 

from β chain are concatenated. Each input is fed into a learnable embedding layer, followed 

by a multi-head self-attention layer. Then the vectors are each passed through a multi-head 

reciprocal attention layer, which takes the input sequence as the query and the other 

sequences as the key and value. Specifically, for the layer with the peptide as the query, the 

key and value are both the concatenated sequences of CDRα and CDRβ. For the layer with 

CDRα as the query, the key and value are both the peptide. The same applies to the layer 

with CDRβ as the query. This layer is designed so that the model can focus more on the 

relevant parts of the sequences of the interacting partners. After the reciprocal attention 

layer, each output is passed through two fully-connected layers. The three resulting vectors 

are then concatentated, flattened, and fed into two fully-connected layers with a sigmoid 

activation to produce the final output.  

The final ensemble model of the CNN- and attention-based models is obtained by 

taking the average of the predictions of each model. We use different training 

hyperparameters for the CNN- and attention-based models (Supplementary Note 1). The 

criterion for choosing the number of epochs is based on the ROC-AUC on the validation set.  

 

Figure 1. Overview of TSpred model architecture. (a) CNN-based model. Each of the peptide and 6 

CDRs pass through a 1D convolutional layer, pooling layer, and a fully connected layer. All vectors 

are concatenated and forwarded through a series of fully connected layers to output the final value. 
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(b) Attention-based model. In this model, the peptide, CDRα, and CDRβ sequences are the input. 
Each input is passed through a sequence embedding layer, self-attention layer, reciprocal attention 

layer, and a feed-forward neural network (FFN) layer. All vectors are concatenated and forwarded 

through a series of fully connected layers to output the final value. The final TSpred model is an 

ensemble model of (a) and (b). 

 

Performance Evaluation 

For the model performance evaluation, we report the average of the model performances on 

the test set across the five folds. We use the metrics of ROC-AUC (Area Under the Receiver 

Operating Characteristic Curve) and PR-AUC (Area Under the Precision-Recall Curve). We 

also report accuracy, precision, recall and F1-score based on a cutoff of 0.5. These metrics are 

calculated as follows: 

Accuracy =  
끫殎끫殎 + 끫殎끫殎끫殎끫殎 + 끫歲끫殎 + 끫殎끫殎 + 끫歲끫殎 

Precision =
끫殎끫殎끫殎끫殎 + 끫歲끫殎 

Specificity =
끫殎끫殎끫歲끫殎 + 끫殎끫殎 

Recall =
끫殎끫殎끫殎끫殎 + 끫歲끫殎 

F1 = 2
끫殎끫殆끫殆끫殆끫殆끫殆끫殆끫殆끫殆 × 끫殊끫殆끫殆끫殊끫殊끫殊끫殎끫殆끫殆끫殆끫殆끫殆끫殆끫殆끫殆 + 끫殊끫殆끫殆끫殊끫殊끫殊 

where TP, TN, FP, and FN are the number of True Positives, True Negatives, False Positives, 

and False Negatives, respectively.  

 

Comparison to Other Methods 

We compare our method with four other recent state-of-the-art methods, TEINet (18), 

epiTCR (17), MixTCRpred (15), and NetTCR-2.2 (9), which use a variety of model architectures. 

TEINet and epiTCR takes only CDRβ3 and peptide as input, while MixTCRpred and NetTCR-

2.2 takes as input peptide and all the three CDRs from both α and β chains. TEINet is a 
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method based on pre-trained encoders, and epiTCR is a method based on a random forest 

model. MixTCRpred is constructed using the transformer encoder architecture, and NetTCR-

2.2 is built using the convolutional neural networks. In this study, MixTCRpred is re-

implemented based on the source code made available by the authors. For both MixTCRpred 

and NetTCR-2.2, the pan-specific models are used for assessment. We compare all models 

using the same training, validation, and test datasets. 

 

RESULTS 

Prediction on Seen Epitopes 

We evaluated the performances of the final TSpred model (TSpred_ensemble) as well as the 

individual model components (TSpred_CNN and TSpred_attention) and the other methods 

on NetTCR_full dataset using ROC-AUC and PR-AUC (Fig 2A, 2B). TSpred_CNN and 

TSpred_attention both achieve the state-of-the-art results in terms of both metrics. By 

combining the predictive power of the two individual models, TSpred_ensemble achieves an 

even higher performance, with a mean ROC-AUC of 0.86 and a mean PR-AUC of 0.66. For 

this dataset, the methods using the paired chain data outperform the methods using only 

the beta chain data. Upon evaluation in terms of classification metrics, we observe 

performances similar to or better than the other methods in most cases (Supplementary 

Figure 2). We also inspect the performances in terms of ROC-AUC for each peptide in the 

dataset (Figure 3). The five most frequent peptides have an average ROC-AUC of 0.85, and 

the five least frequent peptides had an average ROC-AUC of 0.79. The peptide ELAGIGILTV, 

which have 426 positive samples, show the highest performance with a ROC-AUC of 0.96. 

The peptide SLFNTVATLY, with 38 positive samples, achieved the lowest performance, with a 

ROC-AUC of 0.65.  

Furthermore, we assess the performances of different methods on the IMMREP 

benchmark dataset for the task of predicting specificity for seen epitopes (Fig 2C, 2D). Again, 

we observe that TSpred_CNN and TSpred_attention show better performances compared to 

the other tools, and that TSpred_ensemble even outperforms these two models. We once 

again observe that using the paired chain data as the model input leads to better prediction 
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accuracies compared to using only the beta chain data. In terms of classification metrics, our 

models show a high accuracy, specificity and f1-score (Supplementary Figure 3).  

 

 

Figure 2. Performances of TSpred and other models on the seen epitope datasets. The colored dots 

represent the mean and the whiskers represent the standard deviation. (A) and (B) show the model 

performances in terms of ROC-AUC and PR-AUC on the NetTCR-full dataset, respectively. (C) and (D) 

show the model performances in terms of ROC-AUC and PR-AUC on the IMMREP dataset, 

respectively. The upper part of each subplot shows the results of the compared state-of-the-art 

methods, whereas the lower part of each subplot shows the results of TSpred and its individual 

components (CNN and attention).  
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Figure 3. TSpred performances in terms of ROC-AUC per peptide on the NetTCR_full dataset. The 

numbers shown in parentheses refer to the number of positive samples for each peptide. 

 

Assessment on a Balanced Dataset 

In order to rule out the bias caused by peptide imbalance on model performances, which has 

been pointed out by a recent study (7), we evaluate our model on a balanced dataset named 

NetTCR_bal, which is constructed by down-sampling from NetTCR_full dataset. We measure 

and compare ROC-AUC and PR-AUC of different methods (Figure 4). As expected, the 

performances drop significantly, due to the reduced amount of data. Nevertheless, our 

models demonstrate higher performances compared to other methods. When evaluated 

using the classification metrics, our models show a good accuracy, precision, and specificity 

(Supplementary Figure 4). Overall, these results demonstrate the robustness of TSpred, and 

show that TSpred is least influenced by the bias caused by the peptide imbalance in the 

dataset.  
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Figure 4. Performances of TSpred and other models on the NetTCR_bal dataset. The colored dots 

represent the mean and the whiskers represent the standard deviation. (A) and (B) show the model 

performances in terms of ROC-AUC and PR-AUC, respectively. The upper part of each subplot shows 

the results of the compared state-of-the-art methods, whereas the lower part of each subplot shows 

the results of TSpred and its individual components (CNN and attention). 

 

Prediction on Unseen Epitopes 

We next move onto the task of specificity prediction for unseen epitopes, which is a much 

harder problem. Model performances in terms of ROC-AUC and PR-AUC on the 

NetTCR_strict dataset are analyzed (Figure 5). Here, we notice that the ROC-AUC values are 

mostly in between 0.6 and 0.7, and that there is less variation among the results of different 

predictors. Also, predictors based on the beta chain data do not show results that are much 

different from the ones based on the paired chain data. We find that TSpred_ensemble 

achieves the highest performances among all methods in terms of ROC-AUC and PR-AUC. In 

terms of classification metrics, our methods demonstrate a good accuracy, precision, and 

specificity (Supplementary Figure 5). In particular, TEINet shows a noticeably higher overall 

performance in the unseen epitope prediction task compared to the seen epitope prediction 

task. In TEINet, the model has been pre-trained on a large number of TCR sequences as well 

as a large number of epitope sequences (18). We speculate that this may have led to a 

higher generalizability of the model to unseen epitopes, which resulted in good predictive 

performances for this task.  
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Figure 5. Performances of TSpred and other models on the NetTCR_strict dataset. The colored dots 

represent the mean and the whiskers represent the standard deviation. (A) and (B) show the model 

performances in terms of ROC-AUC and PR-AUC, respectively. The upper part of each subplot shows 

the results of the compared state-of-the-art methods, whereas the lower part of each subplot shows 

the results of TSpred and its individual components (CNN and attention). 

 

Attention Map Analysis 

The reciprocal attention layer in TSpred_attention model has been conceived to capture the 

interaction patterns underpinning the TCR-epitope binding. In order to examine whether our 

attention model can capture the structurally interacting residue pairs, we train and validate 

our model on the full NetTCR_full dataset and make predictions on a test dataset consisting 

of unseen peptide-TCR pairs derived from the STCRDab database (downloaded Aug. 2022) 

(23). We compare the experimentally determined 3D structures to the attention maps 

generated by the reciprocal attention layer (Figure 6). One example is the case with PDB 

code 4JFF, for which the attention map shows a high score for the L98 residue in CDRβ3 and 

the G6 residue in the peptide (Figure 6A). Upon examination of the structure, we find that 

the two residues are in close contact (3.1Å). Another example is the case with PDB code 

3QEQ (Figure 6B). The attention map indicates a high score for the G97 residue in CDRβ3 
and the T8 residue in the peptide. In the 3D structure, these two residues are in close contact 

with each other (4.8Å). These results indicate that the reciprocal attention layer used in our 

model can efficiently learn the patterns underlying the binding of TCRs and epitopes.  
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Figure 6. Analysis of 3D structures (left) and the attention maps from the reciprocal attention layer 

(right). (A) analysis of structure with PDB code 4JFF. (B) analysis of structure with PDB code 3QEQ. In 

the 3D structures, TCR alpha chain is shown in green, TCR beta chain is shown in blue, and the 

peptide is shown in magenta. 

 

 

DISCUSSION 

In this work, we propose TSpred, a new ensemble framework combining a CNN architecture 

with attention mechanism for the prediction of TCR binding specificity. We take advantage of 

the unique advantages of each model: the strong ability of CNNs in feature extraction and 

pattern recognition, and the ability of the attention-based model to focus on more 

important regions of the input. By formulating an integrated ensemble network, we are able 

to construct a reliable pan-specific prediction method by harnessing the predictive power of 

both models in learning TCR-epitope interactions. Based on a comprehensive assessment of 

our model, we find that our model achieves the state-of-the-art performances on the 
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prediction task for seen epitopes as well as the task for unseen epitopes. This is a meaningful 

achievement since most practical applications, such as the development of neoantigen-

based vaccines, is related to the prediction of TCR specificity for unseen epitopes (8). Also, in 

our analysis on the seen epitope dataset, we observe that using paired chain data leads to a 

significant increase in model performance compared to using beta chain alone. Furthermore, 

a major question raised in this field is the model bias caused by peptide imbalance in the 

training data (7). Although it is truly a critical factor that affects all predictive methods 

including ours, TSpred demonstrates the most robust results among all compared predictors 

when assessed on a balanced dataset. In addition, the reciprocal attention mechanism offers 

model interpretability by showing which residues are key to the interactions of two binding 

partners. Analysis of the attention maps generated by the model gives us insight into which 

residue pairs are structurally interacting and thus important to TCR-epitope binding.  

With the amount of currently available data, we believe that we have almost reached 

the limit in increasing the performances of sequence-based prediction methods. In particular, 

model performances for unseen epitopes are still unsatisfactory for use in real clinical 

applications. In order to increase the model accuracies in the future, we will need a greater 

amount of high-quality paired chain data. Current single-cell TCR sequencing data are 

reported to contain a considerable amount of noise (24). We expect that development of 

methods such as ITRAP (24) for denoising single-cell TCR sequencing data will be important 

in the future. Also, there are many prediction tools developed in this field, using different 

types of data, different negative sampling strategies, and different training and testing 

strategies. As noted out in the IMMREP benchmark study (19), there is a need for an 

independent and rigorous benchmark for a thorough evaluation of different methods. 

Another possible direction of the research in this field is the development of models 

based on structural information. Currently, experimental structures of TCR-pMHC complexes 

are still lacking. However, the latest version of AlphaFold (25) has reportedly achieved a 

considerable progress in the prediction of antibody-antigen complexes, which share many 

similarities with TCR-pMHC complexes. We anticipate that such progress will lead to better 

predictions of the TCR-pMHC structures, which will be helpful for advancing our 

understanding of TCR-pMHC interactions.  
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