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ABSTRACT

Prediction of T-cell receptor (TCR)-epitope interactions is important for many applications
such as cancer immunotherapy. However, due to the scarcity of available data, it is known to
be a challenging task particularly for novel epitopes. Here, we propose TSpred, a new
ensemble learning-based method for the pan-specific prediction of TCR binding specificity.
This method utilizes paired chain data and combines the predictive power of the CNN and
the attention mechanism to learn the patterns underlying TCR-epitope interactions. We
perform a comprehensive evaluation of of our model and observe that TSpred achieves the
state-of-the-art performances in both seen and unseen epitope specificity prediction tasks.
Also, the reciprocal attention component of our model allows for model interpretability by
capturing structurally important binding regions. Results indicate that TSpred is a robust and

reliable method in the task of TCR-epitope binding prediction.
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INTRODUCTION

T-cells are known to play a critical role in adaptive immune responses, detecting and
eliminating infected cells in the body upon the activation of T-cell receptors (TCRs). TCRs are
activated when it binds to a peptide presented on major histocompatibility complex
molecule (pMHC) on the surface of infected cells. TCR sequences have an enormously large
sequence diversity, which enables the recognition of a large number of different epitopes,
thereby protecting the host from a wide variety of pathogens (1). This sequence diversity is
observed in the complementarity determining regions (CDRs) of the TCR. TCRs possess the
property of cross-reactivity, such that a single TCR can bind to a number of different
epitopes (2). At the same time, TCRs bind to epitopes in a highly specific manner, meaning
that it is highly unlikely that a single TCR will bind to any randomly chosen epitope (3).
Experimental approaches such as tetramer analysis (4) and single-cell TCR sequencing (5) are
used to detect TCR-epitope interacting pairs. Despite an increasing amount of available data,
it is still a challenge to predict which TCRs target specific epitopes. This is because data
available at the current moment is still too sparse, compared to the huge sequence space of
TCRs (6). In particular, the prediction of TCR binding specifities for unseen epitopes—
epitopes not seen in the training data—is difficult, due to the lack of available data. Although
many methods have been developed in this field, most of them fail to extrapolate well
enough to unseen epitopes (7). Still, it is a very active area of research, as there are many
practical applications associated with the prediction of TCR-epitope binding. For example, a
reliable method for TCR-epitope binding prediction can be used for the prediction of
immunogenic neoantigens, which has significant implications in the development of cancer

vaccines (8).

Many machine learning and deep learning-based methods have been developed to
predict the interaction between TCRs and epitopes. Deep learning-based methods use a
wide variety of architectures, such as the convolutional neural networks (CNNs) (9-12), long
short-term memory (LSTM) (13), autoencoder (13), and attention mechanism (6,14,15). Some
tools, such as TITAN (6), ImRex (12), pMTnet (16), epiTCR (17), and TEINet (18), consider only
the information of the TCR beta chain. Other methods, such as ERGO (13), MixTCRpred (15),
NetTCR-2.0 (11), NetTCR-2.1 (10), and NetTCR-2.2 (9), take into consideration the paired
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alpha and beta chain information. A recent benchmark study from the IMMREP 2022
workshop (19) has reported that using paired chain data leads to more accurate predictions.
Furthermore, some works (9,10,15) make a distinction between the epitope-specific and pan-
specific predictors. Epitope-specific predictors are specifically trained and tested for
predicting the binding TCRs for the particular epitope, whereas pan-specific predictors can
be applied to the prediction of binding TCRs for any given epitope. The authors of NetTCR-
2.1 and MixTCRpred (10,15) pointed out that models tend to perform worse when trained in
a pan-specific manner, compared to an epitope-specific manner. However, it is important for
a model to be a reliable pan-specific predictor, so that it can generalize well to unseen
epitopes. Also, a recent study (7) investigated how the peptide imbalance in the dataset
affects the performances of different predictors. The authors found that the peptide
imbalance leads to the overestimation of model performances and that the models learn

only on a few number of peptides appearing most frequently in the dataset.

In this work, we present TSpred (T-cell receptor binding Specificity predictor), a pan-
specific approach for the prediction of TCR binding specificity using an ensemble of a CNN-
based model and an attention-based model. The model takes paired alpha and beta chain
data as input. The attention-based model takes advantage of a reciprocal attention layer,
which is designed to capture the patterns underlying TCR-epitope binding. We leverage the
predictive power of the CNN and the attention mechanism to build a robust model that can
generalize well to unseen epitopes. Based on a thorough evaluation of the model and
comparison with other recent methods, we show that our model achieves the state-of-the-
art performances, in both seen epitope datasets and unseen epitope datasets. Also, based on
an assessment of our model on a balanced dataset generated by down-sampling, we find
that our model is the most robust to bias caused by peptide imbalance in the dataset.
Furthermore, we analyze the attention maps generated by the attention-based model and
show that our model can capture the structurally important residue pairs that contribute to

TCR-epitope binding.

MATERIAL AND METHODS

Dataset
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We conduct a comprehensive and rigorous evaluation of our model on four datasets, two of
which are provided by the authors of NetTCR-2.2 (9), and two of which are newly constructed
based on the previous two datasets (Table 1). The NetTCR_full dataset, refered to as the ‘full
dataset’ in NetTCR-2.2 (9), is derived from public databases such as VDJDB (20) and IEDB
(21), and a 10x sequencing study (22). The data is restricted to human and MHC class | data
and contains paired chain information, including all three CDR sequences for both o and f3
chains. The positive pairs in this data, comprising 6353 examples across 26 peptides, are
randomly split into five partitions. Within each partition, negative pairs are sampled ina 1:5
ratio by random shuffling. This means that for each peptide-TCR pair, five negative samples
are generated by randomly sampling from TCRs binding to other peptides. Whereas the
nested five-fold cross validation has been performed in the original paper, we use a modified
nested five-fold cross validation with only one inner loop and five outer loops
(Supplementary Fig 1). This training strategy is used throughout this work. In addition, we
use the IMMREP dataset which has been generated from the IMMREP 2022 benchmark (19)
and post-processed by the authors of NetTCR-2.2 (9). The negative samples in this dataset
have been generated by a combination of random shuffling and sampling from negative
control data. The negative control data come from the IMMREP benchmark study (19) and
consist of TCR sequences with no known binding specificity obtained by 10x sequencing

from 11 control individuals. This dataset consists of 17 different peptides.

Based on NetTCR_full dataset, we create two other datasets, NetTCR_bal and
NetTCR_strict. NetTCR_bal is a balanced dataset which is generated by down-sampling the
number of data samples in NetTCR_full to 100 samples for each peptide. This dataset was
created in order to minimize the impact of peptide imbalance in the model performance. The
negatives are generated by random shuffling in a 1 :2 ratio. Finally, NetTCR _strict dataset is
constructed to assess our model on the task of predicting TCR specificity for unseen
epitopes. When dividing all the positive data into five partitions, the ‘strict split’ method is
used, so that peptides are non-overlapping across different partitions. In order to limit the
influence of randomness, we conducted the cross validation five times with five different
random seeds for splitting the data. For the negative samples, we use the previously
mentioned negative control data from IMMREP benchmark (19). This dataset also has a

positive to negative ratio of 1 :2.
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Table 1. Summary of the datasets used for model training and evaluation in this study.

Dataset NetTCR full IMMREP NetTCR_bal NetTCR _strict
Task Prediction for seen epitopes Predlctloh for
unseen epitopes
5-fold cross
validation (strict
Training strategy 5-fold cross validation (random split) split) five times
with five different
random seeds
NetTCR_full
- dataset from IMMREP 2022
Data origin Jensen et al, 2023 | benchmark (19) NetTCR_full NetTCR_full
9
Nedative Random shuffling shuf:‘{I?r?d%mB) N Random
9 within each gil: shuffling within | Negative controls
sampling strategy artition negative each partition
P controls (1 :2) P
Number of 26 17 26 26
peptides
Total data size
(positive, (6353, 31368) (1960, 9848) (1893, 3786) (6353, 12706)
negative)
Positive : pegatwe 15 15 19 19
ratio
Model Architecture

The model framework proposed in this study is an ensemble model of two different models,
a CNN-based model and an attention-based model (Figure 1, Supplementary Note 1). In the
CNN-based model (Figure 1a), each of the peptide and the 6 CDR sequences are one-hot
encoded and forwarded through a convolution module. The convolution module is
composed of a 1D convolutional layer with kernel size of 2, a max pooling layer of kernel size
of 2, and a fully-connected layer. The outputs from each module are concatenated and
passed through three fully-connected layers with a sigmoid activation to produce the final

output.
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In the attention-based model (Figure 1b), the inputs are the peptide, CDRa, and
CDRB sequences, where the three CDRs from a chain are concatentated and the three CDRs
from B chain are concatenated. Each input is fed into a learnable embedding layer, followed
by a multi-head self-attention layer. Then the vectors are each passed through a multi-head
reciprocal attention layer, which takes the input sequence as the query and the other
sequences as the key and value. Specifically, for the layer with the peptide as the query, the
key and value are both the concatenated sequences of CDRa and CDRp. For the layer with
CDRa as the query, the key and value are both the peptide. The same applies to the layer
with CDRP as the query. This layer is designed so that the model can focus more on the
relevant parts of the sequences of the interacting partners. After the reciprocal attention
layer, each output is passed through two fully-connected layers. The three resulting vectors
are then concatentated, flattened, and fed into two fully-connected layers with a sigmoid

activation to produce the final output.

The final ensemble model of the CNN- and attention-based models is obtained by
taking the average of the predictions of each model. We use different training
hyperparameters for the CNN- and attention-based models (Supplementary Note 1). The

criterion for choosing the number of epochs is based on the ROC-AUC on the validation set.

(b)
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Figure 1. Overview of TSpred model architecture. (a) CNN-based model. Each of the peptide and 6
CDRs pass through a 1D convolutional layer, pooling layer, and a fully connected layer. All vectors
are concatenated and forwarded through a series of fully connected layers to output the final value.
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(b) Attention-based model. In this model, the peptide, CDRa, and CDRp sequences are the input.
Each input is passed through a sequence embedding layer, self-attention layer, reciprocal attention
layer, and a feed-forward neural network (FFN) layer. All vectors are concatenated and forwarded
through a series of fully connected layers to output the final value. The final TSpred model is an
ensemble model of (a) and (b).

Performance Evaluation

For the model performance evaluation, we report the average of the model performances on
the test set across the five folds. We use the metrics of ROC-AUC (Area Under the Receiver
Operating Characteristic Curve) and PR-AUC (Area Under the Precision-Recall Curve). We
also report accuracy, precision, recall and F1-score based on a cutoff of 0.5. These metrics are

calculated as follows:

A ~ TP + TN
Ay = TP Y FN+TN + FP
b TP
recision = TP n FP
Specificity = —
pecificity = -
Recall = —
A= TP Y FN

Precision X Recall
F1=2

Precision + Recall

where TP, TN, FP, and FN are the number of True Positives, True Negatives, False Positives,

and False Negatives, respectively.

Comparison to Other Methods

We compare our method with four other recent state-of-the-art methods, TEINet (18),
epiTCR (17), MixTCRpred (15), and NetTCR-2.2 (9), which use a variety of model architectures.
TEINet and epiTCR takes only CDRB3 and peptide as input, while MixTCRpred and NetTCR-
2.2 takes as input peptide and all the three CDRs from both o and B chains. TEINet is a
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method based on pre-trained encoders, and epiTCR is a method based on a random forest
model. MixTCRpred is constructed using the transformer encoder architecture, and NetTCR-
2.2 is built using the convolutional neural networks. In this study, MixTCRpred is re-
implemented based on the source code made available by the authors. For both MixTCRpred
and NetTCR-2.2, the pan-specific models are used for assessment. We compare all models

using the same training, validation, and test datasets.

RESULTS
Prediction on Seen Epitopes

We evaluated the performances of the final TSpred model (TSpred_ensemble) as well as the
individual model components (TSpred_CNN and TSpred_attention) and the other methods
on NetTCR_full dataset using ROC-AUC and PR-AUC (Fig 2A, 2B). TSpred_CNN and
TSpred_attention both achieve the state-of-the-art results in terms of both metrics. By
combining the predictive power of the two individual models, TSpred_ensemble achieves an
even higher performance, with a mean ROC-AUC of 0.86 and a mean PR-AUC of 0.66. For
this dataset, the methods using the paired chain data outperform the methods using only
the beta chain data. Upon evaluation in terms of classification metrics, we observe
performances similar to or better than the other methods in most cases (Supplementary
Figure 2). We also inspect the performances in terms of ROC-AUC for each peptide in the
dataset (Figure 3). The five most frequent peptides have an average ROC-AUC of 0.85, and
the five least frequent peptides had an average ROC-AUC of 0.79. The peptide ELAGIGILTV,
which have 426 positive samples, show the highest performance with a ROC-AUC of 0.96.
The peptide SLFNTVATLY, with 38 positive samples, achieved the lowest performance, with a
ROC-AUC of 0.65.

Furthermore, we assess the performances of different methods on the IMMREP
benchmark dataset for the task of predicting specificity for seen epitopes (Fig 2C, 2D). Again,
we observe that TSpred_CNN and TSpred_attention show better performances compared to
the other tools, and that TSpred_ensemble even outperforms these two models. We once

again observe that using the paired chain data as the model input leads to better prediction
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accuracies compared to using only the beta chain data. In terms of classification metrics, our

models show a high accuracy, specificity and f1-score (Supplementary Figure 3).

(A)

NetTCR_full

TEINet 4

epiTCR A

MixTCRpred (pan)

NetTCR-2.2 (pan)

TSpred_CNN -

TSpred_attention 4

Tspred_ensemble

{®| 0.7020+0.0078
) 0.74600.0044
| 0.8306£0.0034
B 0.8358+0.0047
B o 08s00:0.0004

# 0.8448=0.0041

4 0.8578+0.0035

T T T T T T T
065 070 07> 080 085 090 09

(B)

NetTCR_full

TEINet 4

epiTCR -

MixTCRpred (pan)

NetTCR-2.2 (pan)

TSpred_CNN A

TSpred_attention

Tspred_ensemble q

j@f 0.4141x0.0111
'®| 0.475420.0123
18} 0.6121+0.0076
{@| 0.6238+0.0097
"""""""""""""" o 06375500005

8} 0.640320.0081

|8 0.6623+0.0079

T T T T
0.5 0.6

0.60 1.00 0.3 0.4 0.7 0.8 0.
ROC-AUC PR-AUC
(€ IMMREP (D) IMMREP
TEINet | {®| 0.6867+0.0104 TEINet [-#— 0.4006+0.0196
epiTCR - |@| 0.7263+0.0077 epiTCR A |8 0.5106%0.0155
MixTCRpred (pan) - {@ 0.7464+0.0085 MixTCRpred (pan} - {8~ 0.5290+0.0176
NetTCR-2.2 (pan) j# 0.783620.0060 NetTCR-2.2 {pan) e 05643+0.0144
TSpred_CNN | f@{ 0.78810.0125 TSpred_CNN [ 0.5687+0.0168
TSpred_attention - h 0.7926+0.0075 TSpred_attention 4 |-H 0.6036+0.0162
Tspred_ensemble - '@ 0.8021+0.0064 Tspred_ensemble | {8 0.6096+0.0147
0.5 06 07 0.8 09 1.0 0.3 0.4 05 06 07 0.8
ROC-AUC PR-AUC

Figure 2. Performances of TSpred and other models on the seen epitope datasets. The colored dots
represent the mean and the whiskers represent the standard deviation. (A) and (B) show the model
performances in terms of ROC-AUC and PR-AUC on the NetTCR-full dataset, respectively. (C) and (D)
show the model performances in terms of ROC-AUC and PR-AUC on the IMMREP dataset,
respectively. The upper part of each subplot shows the results of the compared state-of-the-art
methods, whereas the lower part of each subplot shows the results of TSpred and its individual
components (CNN and attention).
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Figure 3. TSpred performances in terms of ROC-AUC per peptide on the NetTCR_full dataset. The
numbers shown in parentheses refer to the number of positive samples for each peptide.

Assessment on a Balanced Dataset

In order to rule out the bias caused by peptide imbalance on model performances, which has
been pointed out by a recent study (7), we evaluate our model on a balanced dataset named
NetTCR_bal, which is constructed by down-sampling from NetTCR_full dataset. We measure
and compare ROC-AUC and PR-AUC of different methods (Figure 4). As expected, the
performances drop significantly, due to the reduced amount of data. Nevertheless, our
models demonstrate higher performances compared to other methods. When evaluated
using the classification metrics, our models show a good accuracy, precision, and specificity
(Supplementary Figure 4). Overall, these results demonstrate the robustness of TSpred, and
show that TSpred is least influenced by the bias caused by the peptide imbalance in the

dataset.
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Figure 4. Performances of TSpred and other models on the NetTCR_bal dataset. The colored dots
represent the mean and the whiskers represent the standard deviation. (A) and (B) show the model
performances in terms of ROC-AUC and PR-AUC, respectively. The upper part of each subplot shows
the results of the compared state-of-the-art methods, whereas the lower part of each subplot shows
the results of TSpred and its individual components (CNN and attention).

Prediction on Unseen Epitopes

We next move onto the task of specificity prediction for unseen epitopes, which is a much
harder problem. Model performances in terms of ROC-AUC and PR-AUC on the
NetTCR_strict dataset are analyzed (Figure 5). Here, we notice that the ROC-AUC values are
mostly in between 0.6 and 0.7, and that there is less variation among the results of different
predictors. Also, predictors based on the beta chain data do not show results that are much
different from the ones based on the paired chain data. We find that TSpred_ensemble
achieves the highest performances among all methods in terms of ROC-AUC and PR-AUC. In
terms of classification metrics, our methods demonstrate a good accuracy, precision, and
specificity (Supplementary Figure 5). In particular, TEINet shows a noticeably higher overall
performance in the unseen epitope prediction task compared to the seen epitope prediction
task. In TEINet, the model has been pre-trained on a large number of TCR sequences as well
as a large number of epitope sequences (18). We speculate that this may have led to a
higher generalizability of the model to unseen epitopes, which resulted in good predictive

performances for this task.
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Figure 5. Performances of TSpred and other models on the NetTCR_strict dataset. The colored dots
represent the mean and the whiskers represent the standard deviation. (A) and (B) show the model
performances in terms of ROC-AUC and PR-AUC, respectively. The upper part of each subplot shows
the results of the compared state-of-the-art methods, whereas the lower part of each subplot shows
the results of TSpred and its individual components (CNN and attention).

Attention Map Analysis

The reciprocal attention layer in TSpred_attention model has been conceived to capture the
interaction patterns underpinning the TCR-epitope binding. In order to examine whether our
attention model can capture the structurally interacting residue pairs, we train and validate
our model on the full NetTCR_full dataset and make predictions on a test dataset consisting
of unseen peptide-TCR pairs derived from the STCRDab database (downloaded Aug. 2022)
(23). We compare the experimentally determined 3D structures to the attention maps
generated by the reciprocal attention layer (Figure 6). One example is the case with PDB
code 4JFF, for which the attention map shows a high score for the L98 residue in CDR[33 and
the G6 residue in the peptide (Figure 6A). Upon examination of the structure, we find that
the two residues are in close contact (3.1A). Another example is the case with PDB code
3QEQ (Figure 6B). The attention map indicates a high score for the G97 residue in CDR[33
and the T8 residue in the peptide. In the 3D structure, these two residues are in close contact
with each other (4.8A). These results indicate that the reciprocal attention layer used in our

model can efficiently learn the patterns underlying the binding of TCRs and epitopes.
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Figure 6. Analysis of 3D structures (left) and the attention maps from the reciprocal attention layer
(right). (A) analysis of structure with PDB code 4JFF. (B) analysis of structure with PDB code 3QEQ. In
the 3D structures, TCR alpha chain is shown in green, TCR beta chain is shown in blue, and the
peptide is shown in magenta.

DISCUSSION

In this work, we propose TSpred, a new ensemble framework combining a CNN architecture
with attention mechanism for the prediction of TCR binding specificity. We take advantage of
the unique advantages of each model: the strong ability of CNNs in feature extraction and
pattern recognition, and the ability of the attention-based model to focus on more
important regions of the input. By formulating an integrated ensemble network, we are able
to construct a reliable pan-specific prediction method by harnessing the predictive power of
both models in learning TCR-epitope interactions. Based on a comprehensive assessment of

our model, we find that our model achieves the state-of-the-art performances on the
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prediction task for seen epitopes as well as the task for unseen epitopes. This is a meaningful
achievement since most practical applications, such as the development of neoantigen-
based vaccines, is related to the prediction of TCR specificity for unseen epitopes (8). Also, in
our analysis on the seen epitope dataset, we observe that using paired chain data leads to a
significant increase in model performance compared to using beta chain alone. Furthermore,
a major question raised in this field is the model bias caused by peptide imbalance in the
training data (7). Although it is truly a critical factor that affects all predictive methods
including ours, TSpred demonstrates the most robust results among all compared predictors
when assessed on a balanced dataset. In addition, the reciprocal attention mechanism offers
model interpretability by showing which residues are key to the interactions of two binding
partners. Analysis of the attention maps generated by the model gives us insight into which

residue pairs are structurally interacting and thus important to TCR-epitope binding.

With the amount of currently available data, we believe that we have almost reached
the limit in increasing the performances of sequence-based prediction methods. In particular,
model performances for unseen epitopes are still unsatisfactory for use in real clinical
applications. In order to increase the model accuracies in the future, we will need a greater
amount of high-quality paired chain data. Current single-cell TCR sequencing data are
reported to contain a considerable amount of noise (24). We expect that development of
methods such as ITRAP (24) for denoising single-cell TCR sequencing data will be important
in the future. Also, there are many prediction tools developed in this field, using different
types of data, different negative sampling strategies, and different training and testing
strategies. As noted out in the IMMREP benchmark study (19), there is a need for an

independent and rigorous benchmark for a thorough evaluation of different methods.

Another possible direction of the research in this field is the development of models
based on structural information. Currently, experimental structures of TCR-pMHC complexes
are still lacking. However, the latest version of AlphaFold (25) has reportedly achieved a
considerable progress in the prediction of antibody-antigen complexes, which share many
similarities with TCR-pMHC complexes. We anticipate that such progress will lead to better
predictions of the TCR-pMHC structures, which will be helpful for advancing our

understanding of TCR-pMHC interactions.
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