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Teaser 
Predictive modelling studies can enrich our understanding of human cognition but must prioritize 
interpretability.  
 
Abstract 
A growing body of research predicts individual cognitive ability from brain characteristics including 
functional brain connectivity. Most of this research aims for high prediction performances but lacks 
insight into neurobiological processes underlying the predicted concepts. Here, we encourage designing 
predictive modelling studies with an emphasis on interpretability to enhance our understanding of human 
cognition. As an example, we investigated in a preregistered study which functional brain links 
successfully predict general, crystallized, and fluid intelligence of 806 healthy adults (replication: N=322). 
The choice of the predicted intelligence component as well as the task during which connectivity was 
measured proved crucial for better understanding intelligence at the neural level. Further, partially 
redundant, system-wide functional characteristics better predicted intelligence than connectivity of brain 
regions proposed by established intelligence theories. In sum, our study showcases how future predictive 
studies on human cognition can enhance explanatory value by prioritizing comprehensive outcomes over 
maximizing prediction performance. 
 
Significance Statement 
Our preregistered study “Can machine learning-based predictive modelling improve our understanding of 
human cognition?” builds on the lack of conceptual insights into the neural underpinnings of human 
behavior and thought despite the considerable surge in the number of published predictive modelling 
studies. Exemplarily, we demonstrate how predictive modelling can be applied strategically to enhance 
our understanding of general intelligence – a hallmark of human behavior. Our study unveils crucial 
findings about intelligence, e.g., it suggests differences in the neural code of distinct intelligence facets 
not detectable on a behavioral level and a brain-wide distribution of functional brain characteristics 
relevant to intelligence that go beyond those proposed by major intelligence theories. In a broader context, 
it offers a framework for future prediction studies that prioritize meaningful insights into the neural basis 
of complex human traits over predictive performance. 
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Introduction 
  
Neuroscientific research on human behavior and cognition has methodologically moved from unimodal 
explanatory approaches to machine learning-based predictive modelling (1). This implies a shift from 
standard approaches testing for associations between behavior and single neurobiological variables within 
one sample (unimodal explanatory research) to the identification of relationships between behavior and 
multiple neurobiological variables to forecast behavior of unseen individuals across samples [multimodal 
predictive research; (2)]. Modern machine learning techniques can learn such general relations in neural 
data (2, 3) and have consequently become increasingly prominent also in research on fundamental 
psychological constructs like intelligence (4).  
 
Intelligence captures the general cognitive ability level of an individual person and predicts crucial life 
outcomes, such as academic achievement, health, and longevity (5, 6). Multiple psychometrical theories 
about the underlying conceptual structure of intelligence have been proposed. For example, Spearman (7) 
noticed that a person's performances in different cognitive tasks correlate positively with each other and 
suggested that this ‘positive manifold’ results from an underlying common factor – general intelligence 
(g). A decomposition of the g-factor into fluid (gF) and crystallized (gC) components was later proposed 
by Cattell (8, 9). While fluid intelligence is assumed to mainly consist of inductive and deductive 
reasoning abilities that are rather independent of prior knowledge and cultural influences, crystallized 
intelligence reflects the ability to apply acquired knowledge and thus depends on experience and culture 
(10).  
 
Neurobiological correlates of intelligence differences were identified in brain structure (11) and brain 
function (12). However, rather than disclose a single ‘intelligence brain region’, metanalyses and 
systematic reviews suggest the involvement of a distributed brain network (13–15), thus paving the way 
for proposals of whole-brain structural and functional connectivity underlying intelligence (16, 17). While 
the great majority of such studies used an explanatory approach, recently, an increasing number of 
machine learning-based techniques were developed and applied to predict intelligence from brain features 
(4, 18, 19). Although intrinsic functional connectivity measured during the (task-free) resting state has 
enabled robust prediction of intelligence (19), prediction performance can be boosted by measuring 
connectivity during task performance (18, 20).  
 
However, despite extensive research, predictive modelling has provided only limited insight into 
neurobiological processes underlying cognition and intelligence (4, 21). Reasons include the mostly 
restricted focus on the prediction of fluid intelligence, hindering examination of theories comprising 
multiple intelligence components, and the use of different versions of Raven’s Progressive Matrices (22) 
to measure fluid intelligence (23), partially characterized by suboptimal psychometric properties [e.g., 
Penn Progressive Matrices; (24)]. Additionally, most predictive studies used linear machine learning 
algorithms (4), excluding the possibility to detect non-linear relations (25), and 32 % of studies reviewed 
in Vieira et al. (4) based their analyses on connectome-based predictive modeling [CPM; (26, 27)]. As 
CPM includes strict threshold-based feature selection, elimination of sub-threshold relevant information 
presents a concern (28). Last, previous studies strived for maximizing prediction performance, rather than 
for deriving predictive brain features exhaustively (4, 21). Although first attempts were made, e.g., by 
estimating relative importance of model inputs by evaluating regression weights, such methods are 
criticized to lack reliability (21) and to provide misleading information (29, 30). Deeper insight into the 
relationship between functional brain connectivity and human intelligence therefore requires a 
comprehensive approach that compares predictions of different intelligence components, considers 
nonlinear relations, and includes a variety of different brain connectivity features. 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.04.569974doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569974
http://creativecommons.org/licenses/by-nc/4.0/


Predicting Human Cognition 

                                                                                                                         Page 3 of 24 
 

Here, we aim to close this gap by providing exemplary means and methods to enhance the 
comprehensiveness of outcomes in predictive research on human traits. Specifically, we used functional 
connectivity (brain links) of 806 healthy adults assessed during resting state and seven task states to predict 
general, crystallized, and fluid intelligence with non-linear machine learning models. We systematically 
estimated the contribution of different brain connectivity features a) by testing the predictive performance 
of single brain networks and network combinations with functional brain link selection (19, 31), b) by 
comparing prediction performances from randomly selected functional brain links with links proposed as 
relevant by established intelligence theories, and c) by identifying a novel network of brain links most 
critical for intelligence prediction using a modification of layerwise relevance propagation (LRP) – a 
method for estimating feature relevance (32). To ensure robustness and generalizability of findings, we 
cross-validated prediction models developed on the main part of the sample internally, in a lockbox 
sample, and in two independent samples. 
 
Results  
 
Intelligence and functional brain connectivity 
 
General g, crystallized gC, and fluid gF intelligence components were estimated from 12 cognitive 
measures (Table S1) for subjects of the Human Connectome Project [HCP; (33)]. Intelligence components 
were approximately normally distributed (Fig. S1) and significantly positively correlated with each other: 
general and crystallized intelligence r = 0.78 (P < 0.001), general and fluid intelligence r = 0.76 (P < 
0.001), crystallized and fluid intelligence r = 0.49 (P < 0.001). Individual functional connectivity (FC) 
between 100 cortical nodes (34) was constructed from resting state and from seven task states. Further, 
two latent FCs (35), one across rest and task states and one only across task states, were formed. This 
resulted in FCs of 10 conditions that are referred to as (cognitive) states. Group mean functional 
connectivity was highly similar across states and higher within than between different brain networks 
(Fig. S2A). Between-subject variance in functional connectivity showed a network-specific pattern (Fig. 
S2B). Descriptives of the combined samples (PIOP1, PIOP2) from the Amsterdam Open MRI collection 
[AOMIC; (36)], which were used for replication, are illustrated in Fig. S3. 
 
Functional connectivity better predicts general and crystallized intelligence than fluid intelligence  
 
Performances to predict intelligence were investigated with a functional brain link selection approach 
involving the systematic training and testing of prediction models with varying sets of brain links 
(functional connections, Fig. 1) in the main sample (HCP, 610 subjects). First, all functional brain links 
served as input features (whole-brain prediction). Averaged across all cognitive states, predictions of 
general, crystallized, and fluid intelligence reached statistical significance: prediction performance, 
computed as Pearson correlations (r) between predicted and observed intelligence scores, was highest for 
general intelligence (r = 0.31, P < 0.001), followed by crystallized intelligence (r = 0.27, P < 0.001), and 
fluid intelligence (r = 0.20, P < 0.001; Fig. 2). These differences were statistically significant: g vs. gC: 
t(9) = 2.77, P = 0.022; gC vs. gF: t(9) = 4.91, P < 0.001. 
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Fig. 1. Schematic study overview. (A) Predicting intelligence scores from functional brain connectivity. 1 - 
Functional connectivity (FC) was estimated from fMRI data assessed during eight different cognitive states (resting 
state, seven tasks). Additionally, two latent FCs (35) were estimated based on a) resting state and all task states, 
and b) all task states. Functional brain links were assigned to seven functional networks (37). 2 - Different selections 
of brain links served as input features for prediction models, i.e., all links, links within a network or between two 
networks, links of all but one network, all within- and between-network links of one network, links between brain 
regions (nodes) proposed as relevant by established intelligence theories, randomly selected brain links, and links 
between randomly selected nodes. 3 - Prediction of general g, crystallized gC, or fluid gF intelligence with models, 
separately trained with the different selections of brain links. 4 – Estimation of link-wise contributions to the 
prediction of intelligence in models trained with all brain links via stepwise layer-wise relevance propagation. (B) 
Overview of study samples and cross-validation. The Human Connectome Project (HCP) sample was first divided 
into a main (610 subjects) and a lockbox (196 subjects) sample. Main analyses were conducted with 5-fold cross-
validation (validation step 1, internal validation) in which models are trained on four subsamples of the main sample 
and tested on the withheld fifth subsample. Second, models were trained on the main sample and used to predict 
intelligence scores in the lockbox sample (validation step 2, lockbox validation). Lastly, models trained on the HCP 
sample were used to predict intelligence scores in two independent samples of the Amsterdam Open MRI Collection 
(AOMIC: PIOP1 and PIOP2, validation step 3, external replication).  
 
Prediction performances depend on cognitive brain states 
 
All cognitive states except the emotion task allowed for significant predictions of all three intelligence 
components (Fig. 2). Error measures (Fig. S4, see Methods) indicated comparable patterns. General 
intelligence was significantly better predicted by functional connectivity of the language task, the working 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.04.569974doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569974
http://creativecommons.org/licenses/by-nc/4.0/


Predicting Human Cognition 

                                                                                                                         Page 5 of 24 
 

memory task, and both latent functional connectivity factors than by the gambling, the relational, the 
emotion, and the motor task (model difference test: all P < 0.05). Crystallized intelligence was best 
predicted from both latent functional connectivity factors, followed by the social and working memory 
task, while predictions from the emotion and motor task were significantly worse (model difference test: 
all P < 0.05). Most predictive states for fluid intelligence were the language task, followed by latent 
functional connectivity factors, the working memory and the social task all of which performed 
significantly better than the emotion task (model difference test: P < 0.05). 

 

 

Fig. 2. Performances of predicting intelligence from whole-brain functional connectivity. (A) Prediction of 
general g, (B) crystallized gC, and (C) fluid gF intelligence in the main sample (N=610, HCP). Prediction 
performances were calculated as Pearson correlations between observed and predicted intelligence scores 𝑟(𝑦, 𝑦%). 
Performances of 10 prediction models trained with varying stratified folds are illustrated with colored dots (general 
intelligence red, crystallized intelligence blue, fluid intelligence green). Mean performances across these 10 models 
are indicated by black horizontal bars. Mean performances across states are highlighted with colored dashed lines. 
Significant mean prediction performances (P < 0.05, permutation test, 100 permutations) are marked with asterisks. 
RES, resting state; WM, working memory task; GAM, gambling task; MOT, motor task; LAN, language processing 
task; SOC, social cognition task; REL, relational processing task; EMO, emotion processing task; LAT, latent 
functional connectivity of resting state and all task states; LAT-T, latent functional connectivity of all task states. 
 
Brain networks differ in their ability to predict intelligence 
 
Next, the ability to predict intelligence from different functional brain networks (37) as well as from 
different network combinations was investigated. Three selections of brain links served as input features: 
a) all functional brain links within a specific network or between two specific networks, b) all links 
(whole-brain) but those of one specific network, and c) all within- and between-network links of one 
specific brain network.  
 
Across selections (a,b,c), general intelligence was predicted significantly best, while fluid intelligence 
was predicted significantly worst (all P < 0.05, paired t-test between components for each selection 
approach; Figs. 3,4; for error measures: Figs. S5-S8). Further, connectivity of the language and the 
working memory task, as well as both latent connectivity factors significantly outperformed connectivity 
of the relational, emotion, and gambling task (P < 0.05, significant differences between prediction 
performances of two states, paired t-tests for each selection approach). Both confirmed the whole-brain 
prediction results.  
 
Focusing on the level of brain networks, selection (a) revealed that despite overall better prediction of 
general and crystalized intelligence compared to fluid intelligence, the patterns of which networks or 
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network combinations perform better and which worse were relatively similar across intelligence 
components (Pearson correlation between all within- and between-network combination performances of 
predicting g vs. gC: r = 0.87, P < 0.001; g vs. gF: r = 0.79, P < 0.001; and gF vs. gC: r = 0.61, P < 0.001). 
Averaged across states, highest prediction performances were achieved from the default, control, and both 
attention networks, while visual, somatomotor, and limbic networks performed worse (mean performance 
over all within- and between-network combinations a respective network was involved in, averaged across 
all states). For the prediction of general and crystallized intelligence this effect reached statistical 
significance (paired t-tests for each combination of two networks, all P < 0.05). Similar findings were 
observed for predictions from all within- and between-network links of one specific network (selection c) 
with the default, control, and both attention networks outperforming somatomotor and limbic networks 
(significant for general, crystallized, and fluid intelligence: paired t-tests for each combination of two 
networks, all P < 0.05). Note however, that despite these general trends some specific network 
combinations differed markedly in their predictive performances (Fig. S9). 
 
Finally, selections (b) and (c) revealed a high ability for compensating intelligent-relevant information: 
for all intelligence components, prediction performances did not significantly deviate from whole-brain 
prediction when excluding one brain network (selection b). For most cognitive states this even holds true 
when excluding all brain links but those of only one brain network (selection c). Note that the latter refers 
only to ‘cognitive brain networks’ i.e., the default, control, or an attention network (model difference tests 
between models with all links and models with all but one network or models trained with one network, 
Fig. 4, for error measures: Fig. S8). 
 
To rule out that results depend on the selected brain parcellation, we repeated the prediction of general 
intelligence from whole-brain and network-specific connectivity using the 200 node parcellation of 
Schaefer et al. (34). Prediction performances were highly similar (Pearson correlation between prediction 
performances of all 10 (states) x 43 (brain link selections) = 430 models: r = 0.94, P < 0.001).  

 
In sum, different approaches of functional brain link selection revealed that the performance to predict 
intelligence depends on intelligence components (general intelligence best, fluid intelligence worst), 
cognitive states (cognitively demanding states and latent connectivity best), and brain networks (cognitive 
networks outperform other networks), while all brain networks contain intelligence relevant information 
and predictions are only minimally affected by removing entire brain networks.  
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Fig. 3. State- and network-specific performances of intelligence prediction from functional brain links within 
a specific network or between two specific networks (selection approach a). (A) Prediction of general g, (B) 
crystallized gC, and (C) fluid gF intelligence in the main sample (N=610, HCP). Prediction performances (Pearson 
correlations between observed and predicted intelligence scores 𝑟(𝑦, 𝑦%)) were calculated as average across 10 
models trained with varying stratified folds. Significant prediction performances (P < 0.05, permutation test, 100 
permutations) are marked with asterisks. RES, resting state; WM, working memory task; GAM, gambling task; 
MOT, motor task; LAN, language processing task; SOC, social cognition task; REL, relational processing task; 
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EMO, emotion processing task; LAT, latent functional connectivity of resting state and all task states; LAT-T, 
latent functional connectivity of all task states; VIS, visual network; SMN, somatomotor network; DAN, dorsal 
attention network; VAN, salience/ventral attention network; LIM, limbic network; CON, control network; DMN, 
default mode network. 
 
 

 

Fig. 4. Performances of predicting intelligence from all function brain links but those of one specific brain 
network (selection approach b) versus from links of one brain network only (selection approach c). Models 
for predicting general g (left panels), crystallized gC (center panels), or fluid gF (right panels) intelligence in the 
main sample (N=610, HCP). (A) Separate models were trained with all links but those of one specific network. (B) 
Models were trained with links of one specific network. Prediction performances (Pearson correlations between 
observed and predicted intelligence scores 𝑟(𝑦, 𝑦%)) were calculated as average across 10 models trained with 
varying stratified folds. Significant prediction performances (P < 0.05, permutation test, 100 permutations) are 
marked with asterisks. RES, resting state; WM, working memory task; GAM, gambling task; MOT, motor task; 
LAN, language processing task; SOC, social cognition task; REL, relational processing task; EMO, emotion 
processing task; LAT, latent functional connectivity of resting state and all task states; LAT-T, latent functional 
connectivity of all task states; VIS, visual network; SMN, somatomotor network; DAN, dorsal attention network; 
VAN, salience/ventral attention network; LIM, limbic network; CON, control network; DMN, default mode 
network. 
 
Limited support for neurocognitive models of intelligence 

 
To inform established intelligence theories, we implemented a fourth selection approach and predicted 
general intelligence from functional brain links between brain regions (node clusters) proposed by the 
revised Parieto-Frontal Integration Theory [P-FIT; (13)], the multiple demand theory [MD; (14, 38)], and 
the lateral PFC hypothesis [LPFC; (39)]. The resulting prediction performances were tested against 
performances of links between the same number of randomly chosen nodes (100 permutations, null 
models). In multiple cases, theory-driven models predicted significantly better than null models, while 
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performances generally improved with increasing numbers of brain links (Fig. 5). Importantly, all theory-
driven models predicted worse than whole-brain models (Figs. 2A, 5F). These results support a brain-
wide distribution of intelligence-predictive information, thus indicating that theoretically proposed brain 
regions contribute to intelligence prediction but are not the sole determinants. 
 
Given the brain-wide distribution of intelligence-relevant information, and the dependence of prediction 
performance on the number of brain links, we next implemented a fifth selection approach and compared 
the prediction performances of models trained with different numbers of randomly selected links with 
models trained with all possible links between randomly selected nodes. Models based on randomly 
selected brain links outperformed models based on links between randomly selected nodes (Fig. 5F), while 
prediction performance generally increased with increasing numbers (45 to 780) of brain links, 
approaching but not reaching the performance of whole-brain prediction. This underscores the assumption 
of a large, distributed network of intelligence-relevant brain links and raises the question which and how 
many brain links are required to enable the best possible prediction performance. 
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Fig. 5. Performances of predicting general intelligence from theory-driven selections of functional brain 
links. (A-E) Performances of models trained with links between brain regions (nodes) proposed by established 
intelligence theories were tested against performances of models trained with same numbers of links between 
randomly selected nodes (null models). Performances of single theory-driven models (varying stratified folds) are 
displayed by red dots, mean performances across those models by the black horizontal bars. Single performances 
of null models are illustrated with gray dots, their mean performances with grey horizontal bars. Models were 
trained with all brain links between (A) eight nodes of the revised P-FIT (13), (B) 13 nodes of the MD system (14), 
(C) 26 nodes of the MD system (38), (D) four LPFC nodes (39), and (E) an extension of LPFC nodes (14 nodes). 
Node cluster locations for each theory are illustrated on the right. (F) State-average prediction performances of 
models trained with different numbers of a) most relevant brain links (black circles), b) randomly selected links 
(gray circles), and c) links between randomly selected nodes (white circles). The black dashed line reflects state-
average performance of models trained with all brain links. The gray dashed line illustrates state-average 
performance of models trained with links from the best performing intelligence theory, MD by Diachek et al. (38) 
(for clarity, significant differences to other performances are not displayed). Prediction performances were 
calculated as Pearson correlations between observed and predicted intelligence scores 𝑟(𝑦, 𝑦%). Significant 
differences (P < 0.05, paired t-test) are marked with asterisks. RES, resting state; WM, working memory task; 
GAM, gambling task; MOT, motor task; LAN, language processing task; SOC, social cognition task; REL, 
relational processing task; EMO, emotion processing task; LAT, latent functional connectivity of resting state and 
all task states; LAT-T, latent functional connectivity of all task states; A, anterior; S, superior; R, right.  
 
Intelligence is best predicted from a widely distributed connectivity network 
 
To identify a network of functional brain links best predicting intelligence, we estimated link-specific 
contributions using stepwise layer-wise relevance propagation (LRP, see Methods) and compared models 
trained with different numbers of most relevant links. Overall, models trained with most relevant links 
outperformed models trained with randomly selected links (Fig. 5F), while whole-brain performance was 
reached at 1000 links for general and crystallized but not for fluid intelligence (no significant differences 
between the performance of models based on most relevant links vs. all links, Fig. 6A).  
 
The 1000 most relevant brain links were widely distributed across the entire cortex and varied markedly 
between states with 19-27 % overlap between tasks, 28-38 % between tasks and latent connectivity, and 
71-75 % between both latent connectivity factors (within each intelligence component; Figs. 6B,C, S10, 
S11). The overlaps in the 1000 most relevant links between the three intelligence components (across 
states) were 45 % between g and gC, 49 % between g and gF, and 28 % between gC and gF. Post-hoc 
analyses revealed that the 1000 most relevant links did not systematically differ from randomly selected 
brain links (1000 permutations) neither in their correlations with age, sex, handedness, or head motion nor 
in their test-retest reliability [ICC between FC of RL and LR phase; (40)]. In contrast, nodes connected to 
the 1000 most relevant links had lower within-module degree z-scores and a tendency of higher 
participation coefficients (average of products of the number of occurrences of each node and the 
corresponding module-degree z-score or participation coefficient across all subjects) compared to 
randomly selected links (1000 permutations, P < 0.05). This was observed across all states.  
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Fig. 6. Intelligence is best predicted from a data-driven selection of 1000 most relevant functional brain links 
defining a widely distributed network.  
(A) Performances of predicting general (red dots), crystallized (blue dots), and fluid (green dots) intelligence from 
models trained with different numbers of most relevant links identified by stepwise layer-wise relevance 
propagation (LRP; N=610, HCP). Prediction performances were calculated as average of Pearson correlations 
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between observed and predicted intelligence scores 𝑟(𝑦, 𝑦%) across all states and 10 iterations (varying stratified 
folds). Dashed lines indicate state-average prediction performances of models trained with all functional links (Fig. 
2). Significant differences (P < 0.05, paired t-test) between prediction performances of specific numbers of most 
relevant links and whole-brain predictions are marked with asterisks. (B) Matrices of the 1000 most relevant links. 
Red and blue indicate whether the mean strength of a functional brain link is positive or negative (across subjects), 
while the saturation of the color displays a link’s relevance (averaged over 10 iterations with varying stratified 
folds). (C) Connectograms of most relevant links (for clarity, only the 100 most relevant brain links are displayed; 
averaged over 10 iterations with varying stratified folds). RES, resting state; WM, working memory task; GAM, 
gambling task; MOT, motor task; LAN, language processing task; SOC, social cognition task; REL, relational 
processing task; EMO, emotion processing task; LAT, latent functional connectivity of resting state and all task 
states; LAT-T, latent functional connectivity of all task states; VIS, visual network; SMN, somatomotor network; 
DAN, dorsal attention network; VAN, salience/ventral attention network; LIM, limbic network; CON, 
control/frontoparietal network; DMN, default mode network.  
 
Lockbox and external validation indicate robust results 
 
For lockbox validation, we applied prediction models trained on the main sample (N=610, HCP) to a 
withheld subsample of the HCP (N=196). Prediction performances of the lockbox sample were 
significantly correlated with those of the main sample (Pearson correlations between performances of 
whole-brain and network-specific predictions). This holds for general (r = 0.88, P < 0.001), crystallized 
(r = 0.84, P < 0.001) and fluid (r = 0.70, P < 0.001) intelligence (Figs. S12, S13, S14). The 1000 most 
relevant brain links identified in the main sample predicted intelligence also significantly better in the 
lockbox sample than random links, and links between randomly selected nodes performed significantly 
worst. Again, prediction performances increased with increasing numbers of brain links (Fig. S15). 
 
For external replication, we used models trained on the main sample (HCP) to predict intelligence scores 
in two combined samples of the AOMIC. Due to different fMRI tasks and intelligence assessments, only 
HCP’s g and gF models from: a) resting-state functional connectivity, b) task-connectivity (working 
memory task, emotion task), c) latent connectivity of resting state and all task states, and d) latent 
connectivity of all task states were tested for transferability. While individual results vary between 
samples, performances of whole-brain and network-specific predictions were significantly correlated (g: 
r = 0.71, P < 0.001; gF: r = 0.64, P < 0.001; Fig. S16). The 1000 most relevant brain links identified in 
the HCP predicted intelligence also significantly better in the replication sample than random links, while 
links between random nodes, again, performed significantly worst, and prediction performances increased 
with increasing numbers of links (Fig. S15).   
 
In sum, this two-step validation process suggests the robustness of our main findings and demonstrates 
the generalizability of the here constructed prediction models to other samples that differ with respect to 
data acquisition parameters, preprocessing pipelines, and intelligence assessments.  
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Discussion  
 
Our study builds on extensive research predicting complex human traits from neuroimaging data. At first, 
we replicated that general, crystallized, and fluid intelligence can be predicted from functional brain 
connectivity measured during different cognitive states. Then, we demonstrated that predictions were 
significantly better for general and crystallized intelligence than for fluid intelligence, although only the 
latter was mostly addressed in previous work. Further, prediction results varied systematically between 
different states and brain networks associated with cognitive functions predicted best. Finally, different 
approaches of functional brain link selection revealed that brain-wide connectivity predicted significantly 
better than connectivity between isolated brain regions including those proposed by leading intelligence 
theories, and that the impact of excluding complete functional networks was remarkably low. 
 
Better prediction of general and crystallized intelligence than fluid intelligence 
 
Across all analyses, prediction performances varied systematically between intelligence components. This 
is remarkable, as individual contributions of cognitive states and functional brain networks were relatively 
similar between general, crystallized, and fluid intelligence and all three components were highly 
correlated on the behavioral level [r = 0.76 - 0.79; (41, 42)]. The observed differences in prediction 
performances suggest distinctions in components’ neural underpinnings which elude detection on a purely 
behavioral level (43) and inform future work to systematically evaluate their shared and specific neural 
correlates, also in comparison to existing intelligence theories [e.g., the process overlap theory; (44)]. In 
this context, it might be instructive to consider more delineated cognitive processes (42, 45) like memory 
capacity (46), attentional control (47), and processing speed (48, 49) to enlighten their involvement in 
general intelligence from a neural perspective.  
 
General intelligence was predicted best, followed by crystallized intelligence and fluid intelligence. This 
pattern aligns with the systematic review of Vieira et al. (4), who observed a consistent trend of better 
prediction of general compared to fluid intelligence, however, it contrasts their challenging distinction at 
the behavioral level (41, 42). A potential reason for the poorer predictability of fluid intelligence is the 
lower validity of fluid intelligence’s measurements, especially when measured by single tests like the 
Penn Progressive Matrices (4, 50). We attempted to estimate fluid intelligence more validly with a 
composite score of different cognitive tasks but observed the same effect. Besides poor measurement of 
(fluid) intelligence, the observed pattern could also result from differing neural correlates like those that 
have been found in brain structure and function, specifically between fluid and crystallized intelligence 
(51–53). However, variations in the underlying neural processes remain largely unknown. We speculate 
that neural strategies, which involve distinct sets of functional brain links, underlying crystallized and 
general intelligence may be more similar between individuals than those of fluid intelligence, rendering 
general and crystallized intelligence more predictable. For example, crystallized intelligence may be based 
on general knowledge stored in brain-wide fragments [knowledge networks; (52)] with relatively similar 
localization and retrieval strategies. In contrast, fluid intelligence may involve complex interactions of 
different processes, such as working memory, attention, visuo-spatial reasoning (51) and processing speed 
(49), each of which may vary more strongly between individuals than the neural implementation of 
knowledge networks. The present study cannot differentiate between both explanations (poorer 
measurement vs. more variable neural substrates), however, this question is an interesting subject for 
future research.   
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Critical dependence on cognitive states during fMRI recording 
 
General and fluid intelligence were best predicted from functional connectivity assessed during the 
language task, while crystallized intelligence was best predicted by latent connectivity calculated from all 
states. Task-induced connectivity outperforming resting-state connectivity has also been observed in 
previous intelligence prediction studies (18), particularly when tasks induce high cognitive load (20). Our 
study additionally suggests that this dependence on cognitive load refers specifically to the prediction of 
fluid and general intelligence but less to crystallized intelligence. Speculatively, tasks requiring higher 
cognitive effort induce changes in functional connectivity that support inductive and deductive reasoning 
thereby enhancing the prediction of fluid intelligence. In contrast, crystallized intelligence might be best 
reflected in task-general connectivity characteristics represented in latent functional connectivity (35). 
Thus, a hypothesis that requires future investigation would be that crystallized intelligence is primarily 
coded in latent communication patterns possibly reflecting static structural brain characteristics that form 
a brain-wide knowledge network (52), whereas fluid intelligence relies on more specific neural 
communication processes that become particular visible during cognitively demanding tasks. If this holds 
true, it would indicate a differentiability between processes of crystallized and fluid intelligence at the 
level of macroscale hemodynamics, which can be made observable by adequate task selection.  
 
Brain-wide networks best predict intelligence 
 
Addressing comprehensive insights, we developed a systematic approach to predict intelligence from 
different selections of functional brain links. Specifically, we show that significant prediction of 
intelligence was possible alone with connectivity of most individual networks as well as with connectivity 
between most combinations of two specific networks. The ability to compensate for missing intelligent-
relevant links was, thus, remarkably high and suggests that similarly successful prediction models can be 
constructed from different combinations of input features. Notably, this hinders the determination of all 
intelligence-related links post-hoc with relevance estimation methods such as feature weight interpretation 
(21, 29, 30). Means like systematic functional brain link selection can partially overcome this problem. 

 
Despite brain-wide distribution of intelligence-relevant functional links, the default mode, the fronto-
parietal control, and both attention networks showed highest predictive power, while the somatomotor 
and limbic networks were least predictive. This coincides with previous research. First, functional 
connectivity within the fronto-parietal network for cognitive control and executive functioning has widely 
been associated with fluid intelligence (54) and general cognitive performance (19, 20) and also the default 
mode network was stressed in previous studies (19). The importance of connectivity within attentional 
brain systems for intelligence has been demonstrated in previous work (55–57), proposing mechanisms 
of attentional control, salience processing and the filtering of irrelevant information crucial for intelligence 
differences. Second, also connectivity between different networks was suggested to play an important role 
in cognitive processing. Particularly, the anti-correlation between task-positive (frontoparietal and 
attention networks) and task-negative (default mode) networks has been related to intelligence (20, 58, 
59). Our results confirm the predictive potential of this between-networks interplay and undermine the 
assumption that counter-regulation of task-relevant and task-irrelevant processes is essential for cognitive 
functions relevant to intelligence. Based on these considerations, we recommend future research to 
disentangle the importance of fronto-parietal, default-mode, and attention networks for intelligence more 
in detail a) by testing differences in networks’ abilities to predict more circumscribed intelligence-related 
abilities involving processes like working memory, attentional control and processing speed, b) by 
designing in-scanner tasks in a way that they differ in their demands on such specific cognitive abilities 
(e.g., tasks requiring different degrees of attention), and c) by exploring differences in network’s relevance 
between healthy individuals and patients with impairments in specific cognitive functions (e.g., 
hemineglect). 
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In applying theory-driven functional brain link selection, we demonstrated that models trained with links 
between brain regions proposed in neurocognitive intelligence theories [PFIT: (13, 15), MD: (14, 38), 
LPFC: (39)] only partly outperformed models trained with links between the same number of randomly 
chosen regions and performed significantly worse than models trained with all brain links (60), while 
performance generally improved with increasing numbers of links. Taken together, this suggests that links 
between theoretically proposed brain regions include important but not complete intelligence-predictive 
information. 
 
The identification of brain links most relevant for intelligence prediction by stepwise LRP revealed that 
approximately 1000 links are required to achieve similar performances as whole-brain models. Those 
most relevant brain links differed between cognitive states and varied for fluid, crystallized, and general 
intelligence. However, regardless of state and intelligence component, most relevant functional brain links 
span a distributed network involving all 100 analyzed nodes and all major functional brain systems. 
Notably, the 1000 most relevant links significantly outperformed randomly selected links, confirming that 
indeed some links are more relevant to intelligence prediction than others. Nodes connected to these links 
were characterized by higher participation coefficients thus facilitating information transfer between brain 
modules and lower within-module degree z-scores reflecting less hub-like character (61).  
 
Redundancy of intelligence relevant information 
 
Together, the good performances of randomly selected links and the system’s high compensatory ability 
suggest the existence of a certain degree of redundancy in intelligence relevant information within 
functional brain connectivity (19). A potential cause for such redundancy may be that important traits like 
intelligence involve acting over different neural pathways possibly reflecting diverse cognitive strategies. 
This hypothesis aligns with studies indicating that neural redundancy plays a protective role in cognitive 
aging (62) and neurodegeneration (63), and enhances neural computation (64). Relatedly, a greater brain 
‘resilience’ was observed in people with higher cognitive ability (65, 66).  
 
Limitations and future directions 
 
Our study has several limitations. First, we only included three broad intelligence components (g, gC, gF). 
The consideration of additional or more circumscribed sub-components of intelligence may provide 
supplementary insights into its neural bases, specifically, into involved behavioral and neural 
subprocesses and strategies. Second, our analyses were restricted to static functional connectivity. 
However, the dynamics of neural processes could also include intelligence-predictive information (67) 
requiring further investigation. Third, we employed a relatively coarse brain parcellation [100 nodes; 
(34)]. Although findings were similar when using a finer 200 nodes parcellation, finer-grained analyses 
could increase performances further (68). Fourth, in-scanner tasks were limited to few and not highly 
demanding cognitive tasks. Comparing tasks of different difficulty levels might amplify observable neural 
characteristics underlying intelligence (20). Fifth, our sample was restricted to 22-37 year-old subjects, 
leaving the question of generalizability to a broader age range for future investigations. 

 
Conclusion 
 
Despite an extensive body of research predicting intelligence from functional brain connectivity exists, 
understanding of its neural foundation is limited. We here propose systematic functional brain link 
selection as a means to gain insights into the neural code of individual differences in general, crystallized, 
and fluid intelligence. General and crystallized intelligence were better predicted from functional 
connectivity than fluid intelligence, proposing differences in their underlying neural substrates. Further, 
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prediction performances depended critically on the cognitive states during fMRI assessment with 
demanding tasks performing best. Notably, predictive functional brain links were distributed across the 
whole brain, going beyond those proposed by major intelligence theories. Finally, we identified brain-
wide networks of the most predictive 1000 brain links. These depended critically on cognitive state and 
differed between general, crystallized, and fluid intelligence. In sum, our results suggest intelligence as 
emerging from global brain characteristics, rather than from isolated brain regions or single neural 
networks. In a broader context, our study offers a framework for future prediction studies that prioritize 
meaningful insights into the neural basis of complex human traits over predictive performance. 
 
Materials and Methods 
 
Preregistration 
 
Before data analysis, all analyses, sample sizes, and variables of interest were preregistered on the Open 
Science Framework: https://osf.io/nm7xy. Note that the study also includes a not registered post-hoc 
analysis to further characterize brain links identified as most relevant for intelligence prediction. 
 
Participants 
 
The Human Connectome Project (HCP) Young Adult Sample S1200 including 1200 subjects of age 22–
37 years (656 female, 1089 right-handed) was used for main analyses. Study procedures were approved 
by the Washington University Institutional Review Board, and informed consent, in accordance with the 
declaration of Helsinki, was obtained from all participants (33). Subjects with missing cognitive data or a 
mini-mental state examination score ≤ 26 (serious cognitive impairment) were excluded. Performance 
scores of 12 cognitive tests of the remaining 1186 subjects were used to estimate latent factors of general 
and fluid intelligence, and to generate composite scores of crystallized intelligence (next section). After 
additional exclusion due to missing fMRI data, missing in-scanner task performance scores, and excessive 
head motion (see below), the final sample comprised 806 subjects (418 female, 733 right-handed, 22-37 
years, 28.6 years mean age). 
 
Intelligence 
 
To estimate general intelligence as latent factor, bi-factor analysis (69) was performed according to 
Dubois et al. (19) from 12 cognitive measures (Table S1) of 1186 subjects. Fluid intelligence was 
estimated as latent factor (one factor, exploratory factor analysis, oblimin rotation) from seven measures 
(picture sequence memory, dimensional change card sort, flanker task, Penn progressive matrices, 
processing speed, variable short Penn line orientation test, list sorting). Crystallized intelligence was 
operationalized as sum of standardized scores from the picture vocabulary and the oral reading recognition 
task.  
 
 
Data acquisition and preprocessing 
 
Resting-state fMRI data (four runs) and fMRI data acquired during seven tasks (working memory, 
gambling, motor, language processing, relational processing, social cognition, emotion processing; two 
runs each) were used for analyses. Resting-state runs span 14:33 min, while task runs range from 2:16 
min to 5:01 min. For general data acquisition details see Van Essen et al. (33), for information concerning 
the resting state refer to Smith et al. (70), and for fMRI tasks see Barch et al. (71). In brief, fMRI data 
were acquired with a gradient-echo EPI sequence (TR = 720 ms, TE = 33.1 ms, flip angle = 52°, 2-mm 
isotropic voxel resolution, multiband factor = 8) on a 3 T Siemens Skyra with a 32-channel head coil. We 
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used the minimally preprocessed fMRI data (72). Further preprocessing steps comprised a nuisance 
regression strategy with 24 head motion parameters, eight mean signals from white matter and 
cerebrospinal fluid, and four global signals (73). As task activation can produce systematic inflation of 
task functional connectivity estimates (74), basis-set task regressors were applied together with the other 
nuisance regressors to remove task-evoked neural activation (74). In-scanner head motion was measured 
by framewise displacement [FD; (75)] and subjects were only included if mean FD < 0.2 mm, proportion 
of spikes (FD > 0.25 mm) < 20%, and no spikes were above 5 mm (73). Lastly, time series of neural 
activation were extracted from 100 regions (nodes) covering the entire cortex (34).  
 
Functional connectivity 
 
Eight subject-specific weighted functional connectivity (FC) matrices (one per state: rest, seven tasks) 
were constructed from Fisher z-transformed Pearson correlations between the time series of neural 
activation from the 100 cortical regions. FC was first computed for RL and LR phase directions separately 
and averaged afterwards. In addition, two latent FC matrices were constructed via link-wise factor analysis 
(35), i.e., one latent FC across resting state and all task states, and one latent FC across all task states. All 
regions were assigned to seven functional brain networks as defined in Yeo et al. (37).  
 
Prediction features  
 
To compare different brain networks in their performance to predict intelligence, a functional brain link 
selection approach was developed including systematic training and testing of multiple prediction models 
with different sets of brain links as input features (Fig. 1A): a) one whole-brain model including all links, 
b) seven models of within-network links, c) 21 models of between-network links, d) seven models with 
links of all but one network, and e) seven models with links within a specific network and between this 
network and all other networks. Models were trained for each state-specific FC separately, resulting in 10 
(rest + 7 tasks + 2 latent) x 43 (selection-specific) models for each intelligence component (general, 
crystallized, and fluid intelligence). Additional models were trained with different numbers (45, 190, 435, 
780, and 1000 out of 4950) of randomly selected links as well as with the same numbers of links between 
randomly selected nodes (100 permutations each).  

 
Next, we tested with five additional models the predictive performance of functional links between 
clusters of brain regions proposed by prominent intelligence theories. The first model was trained on links 
between eight clusters corresponding to the meta-analytically derived revised P-FIT model (13, 15). 
Second, two models containing links between brain clusters specified in the Multi-Demand (MD) theory 
(14) were tested: one model included links between 13 clusters proposed by Duncan (14), while the other 
model comprised links between 26 clusters from a newer version of the theory (38). Third, the role of the 
lateral PFC for predicting intelligence was tested with a model including functional brain links between 
four clusters similar to Cole et al. (39) and a model extending these clusters to 14 lateral PFC nodes. To 
best capture brain clusters proposed by the revised P-FIT, the MD (Duncan), and the LPFC (Cole) theory, 
nodes of the Schaefer parcellation [100 nodes; (34)] closest to the clusters proposed by the respective 
theory were selected (smallest Euclidean distance to the original coordinates). For Diachek’s MD theory, 
nodes best matching a mask provided by the authors and for the extended PFC theory, all lateral PFC 
nodes from the Schaefer parcellation were selected. Performances of these models were tested against 100 
permutations of models with links between an identical number of randomly selected nodes. 
 
Prediction models 
 
For all analysis, the preregistered pipeline and parameters were used. Specifically, all prediction models 
were trained and tested with 5-fold cross-validation within an HCP subsample (N=610). Confounding 
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variables (age, sex, handedness, mean framewise displacement FD, mean number of spikes – FD > 0.25 
mm) were regressed out via linear regression (19) from both the dependent and independent variables (76) 
in the training sample of every fold and residuals were z-standardized. To avoid leakage between training- 
and test data, the regression coefficients and standardization parameters (M and SD) were estimated in the 
training sample and then applied to the test sample of the respective fold. Feed forward Neural Networks 
[implemented with Pytorch; (77)] with hidden layers and Rectified Linear Unit activation functions were 
trained to predict intelligence scores. A learning rate of 0.01, a Mean Squared Error (MSE) loss function, 
a dropout of 0.25, and a Stochastic Gradient Descent (SGD) optimizer for training via backpropagation 
were implemented. The number of hidden layers (1-3) and the number of neurons per hidden layer (10, 
50, 100) were chosen via hyperparameter optimization in a further internal cross-validation loop (3-fold). 
Early stopping (the stopping of the training process before completing the specified number of training 
epochs if a specific criterion is fulfilled) was applied to prevent overfitting (78): herein, a proportion of 
the training data of each fold was used as validation sample (20% of training data in 5-fold cross-
validation, and 30% of training data in hyperparameter optimization). Specifically, after each training 
step, the performance in predicting intelligence scores of the validation sample of the respective model 
under training was evaluated and training was stopped if the validation loss did not decrease within the 
last 100 training epochs, or if the training exceeded a maximal number of training epochs (20,000).  
 
Interpreting prediction models with relevance back-mapping 
 
To localize brain links most contributing to predictions, importance of model features was evaluated with 
layer-wise relevance propagation [LRP; (32)], a methodology ascertaining contributions of single input 
features to predictions based on backpropagation. During this process, shares that each model neuron has 
on the output are calculated back from the last layer to the input layer of the neural network (32). We 
applied stepwise LRP [implemented with Captum; (79)] to models trained on the main sample (10 
iterations with varying stratified folds). Specifically, within each fold (5-fold cross-validation), models 
were trained starting with all brain links and then the most contributing links were removed iteratively. 
Following, models were trained with different numbers (45 to 1000) of the most contributing links. 
Finally, all models were applied to the test sample to evaluate prediction performances.  
 
External replication 
 
For external replication, two independent datasets (PIOP1, PIOP2) from the AOMIC (36) were combined. 
Study procedures were approved by the faculty’s ethical committee (EC numbers: 2015-EXT-4366, 2017-
EXT-7568), including informed consent according to the declaration of Helsinki. PIOP1 (N=216) contains 
fMRI data from six cognitive states (resting state, five tasks: emotion matching, gender-stroop, working 
memory, face perception, anticipation); PIOP2 (N=226) from four states (resting state, three tasks: 
emotion matching, working memory, stop signal). Replication was conducted with resting-state FC, with 
two task FCs (working memory, emotion matching), and two latent FCs. Again, latent FCs were estimated 
from resting state and all task states, and from all task states only. For latent FCs, all tasks (PIOP1 or 
PIOP2) were used. FMRI data were acquired with a gradient-echo EPI on a Philips 3T scanner with a 32-
channel coil (3-mm isotropic voxel resolution). For face perception and resting-state scans of PIOP2, 
multiband scans were acquired (TR = 750 ms, TE = 28 ms, flip angle = 60°, and multiband factor = 3). 
For resting state of PIOP2, and for working memory, emotion matching, gender-stroop, anticipation, and 
stop signal scans of PIOP1 and PIOP2, sequential scans were recorded (TR = 2000 ms, TE = 28 ms, and 
flip angle = 76.1°). Subjects with missing imaging data, missing descriptive or behavioral data, or 
excessive head motion (same criteria as in the HCP) were excluded, resulting in 138 (PIOP1) and 184 
(PIOP2) subjects. The minimally preprocessed fMRI data were downloaded [different preprocessing than 
in the HCP, fMRIprep v1.4.1; (80)]. Further preprocessing (extracting nuisance regressed time series) and 
subsequent analyses followed the same pipeline as specified previously.  
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Statistical analysis 
 
Prediction performances were assessed with Pearson correlations (r) between predicted and observed 
intelligence scores and three error-based metrics: mean squared error (MSE), root mean squared error 
(RMSE), mean absolute error (MAE). For error metrics, predicted and observed intelligence scores were 
normalized by the range of observed scores. Statistical significance of model performances was assessed 
with non-parametric permutation tests and relied on Fisher z-transformed Pearson correlations between 
observed and predicted intelligence scores. Precisely, 100 models were trained to predict randomly 
shuffled intelligence scores (random assignment between subjects and scores) and performances of these 
null models were evaluated against the mean performance of 10 models (varying stratified folds) trained 
with correct scores. Significance of model differences was assessed with non-parametric model difference 
permutation tests (100 permutations): differences in prediction performances (r) between both models 
trained with the correct scores were compared to differences in performances using permuted scores. To 
compare prediction performances between different intelligence components and specific cognitive states, 
paired t-tests were applied. P-values < 0.05 were considered as statistically significant.  
 
Robustness and generalizability of results were assessed with a three-level validation procedure (Fig. 1B): 
first, models were trained on an HCP subsample (N=610) with 5-fold cross-validation (internal 
validation). Second, models trained on this subsample were evaluated on the lock-box sample (separated 
before any analyses, N=196, lockbox validation). Third, generalizability (external replication) was tested 
in two samples of the AOMIC (36). Note that because of differing fMRI tasks and the Raven’s Advanced 
Progressive Matrices Test [RAPM, 36 item version set II; (22)] was assessed in the AOMIC samples as 
measure of intelligence, external replication was not possible in all specific cases.   
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