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Teaser
Predictive modelling studies can enrich our understanding of human cognition but must prioritize
interpretability.

Abstract

A growing body of research predicts individual cognitive ability from brain characteristics including
functional brain connectivity. Most of this research aims for high prediction performances but lacks
insight into neurobiological processes underlying the predicted concepts. Here, we encourage designing
predictive modelling studies with an emphasis on interpretability to enhance our understanding of human
cognition. As an example, we investigated in a preregistered study which functional brain links
successfully predict general, crystallized, and fluid intelligence of 806 healthy adults (replication: N=322).
The choice of the predicted intelligence component as well as the task during which connectivity was
measured proved crucial for better understanding intelligence at the neural level. Further, partially
redundant, system-wide functional characteristics better predicted intelligence than connectivity of brain
regions proposed by established intelligence theories. In sum, our study showcases how future predictive
studies on human cognition can enhance explanatory value by prioritizing comprehensive outcomes over
maximizing prediction performance.

Significance Statement

Our preregistered study “Can machine learning-based predictive modelling improve our understanding of
human cognition?” builds on the lack of conceptual insights into the neural underpinnings of human
behavior and thought despite the considerable surge in the number of published predictive modelling
studies. Exemplarily, we demonstrate how predictive modelling can be applied strategically to enhance
our understanding of general intelligence — a hallmark of human behavior. Our study unveils crucial
findings about intelligence, e.g., it suggests differences in the neural code of distinct intelligence facets
not detectable on a behavioral level and a brain-wide distribution of functional brain characteristics
relevant to intelligence that go beyond those proposed by major intelligence theories. In a broader context,
it offers a framework for future prediction studies that prioritize meaningful insights into the neural basis
of complex human traits over predictive performance.
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Introduction

Neuroscientific research on human behavior and cognition has methodologically moved from unimodal
explanatory approaches to machine learning-based predictive modelling (7). This implies a shift from
standard approaches testing for associations between behavior and single neurobiological variables within
one sample (unimodal explanatory research) to the identification of relationships between behavior and
multiple neurobiological variables to forecast behavior of unseen individuals across samples [multimodal
predictive research; (2)]. Modern machine learning techniques can learn such general relations in neural
data (2, 3) and have consequently become increasingly prominent also in research on fundamental
psychological constructs like intelligence (4).

Intelligence captures the general cognitive ability level of an individual person and predicts crucial life
outcomes, such as academic achievement, health, and longevity (3, 6). Multiple psychometrical theories
about the underlying conceptual structure of intelligence have been proposed. For example, Spearman (7)
noticed that a person's performances in different cognitive tasks correlate positively with each other and
suggested that this ‘positive manifold’ results from an underlying common factor — general intelligence
(). A decomposition of the g-factor into fluid (gF) and crystallized (gC) components was later proposed
by Cattell (8, 9). While fluid intelligence is assumed to mainly consist of inductive and deductive
reasoning abilities that are rather independent of prior knowledge and cultural influences, crystallized
intelligence reflects the ability to apply acquired knowledge and thus depends on experience and culture
(10).

Neurobiological correlates of intelligence differences were identified in brain structure (//) and brain
function (/2). However, rather than disclose a single ‘intelligence brain region’, metanalyses and
systematic reviews suggest the involvement of a distributed brain network (/3-15), thus paving the way
for proposals of whole-brain structural and functional connectivity underlying intelligence (16, /7). While
the great majority of such studies used an explanatory approach, recently, an increasing number of
machine learning-based techniques were developed and applied to predict intelligence from brain features
(4, 18, 19). Although intrinsic functional connectivity measured during the (task-free) resting state has
enabled robust prediction of intelligence (/9), prediction performance can be boosted by measuring
connectivity during task performance (/8, 20).

However, despite extensive research, predictive modelling has provided only limited insight into
neurobiological processes underlying cognition and intelligence (4, 27). Reasons include the mostly
restricted focus on the prediction of fluid intelligence, hindering examination of theories comprising
multiple intelligence components, and the use of different versions of Raven’s Progressive Matrices (22)
to measure fluid intelligence (23), partially characterized by suboptimal psychometric properties [e.g.,
Penn Progressive Matrices; (24)]. Additionally, most predictive studies used linear machine learning
algorithms (4), excluding the possibility to detect non-linear relations (25), and 32 % of studies reviewed
in Vieira et al. (4) based their analyses on connectome-based predictive modeling [CPM; (26, 27)]. As
CPM includes strict threshold-based feature selection, elimination of sub-threshold relevant information
presents a concern (28). Last, previous studies strived for maximizing prediction performance, rather than
for deriving predictive brain features exhaustively (4, 27). Although first attempts were made, e.g., by
estimating relative importance of model inputs by evaluating regression weights, such methods are
criticized to lack reliability (27) and to provide misleading information (29, 30). Deeper insight into the
relationship between functional brain connectivity and human intelligence therefore requires a
comprehensive approach that compares predictions of different intelligence components, considers
nonlinear relations, and includes a variety of different brain connectivity features.
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Here, we aim to close this gap by providing exemplary means and methods to enhance the
comprehensiveness of outcomes in predictive research on human traits. Specifically, we used functional
connectivity (brain links) of 806 healthy adults assessed during resting state and seven task states to predict
general, crystallized, and fluid intelligence with non-linear machine learning models. We systematically
estimated the contribution of different brain connectivity features a) by testing the predictive performance
of single brain networks and network combinations with functional brain link selection (/9, 37), b) by
comparing prediction performances from randomly selected functional brain links with links proposed as
relevant by established intelligence theories, and c) by identifying a novel network of brain links most
critical for intelligence prediction using a modification of layerwise relevance propagation (LRP) — a
method for estimating feature relevance (32). To ensure robustness and generalizability of findings, we
cross-validated prediction models developed on the main part of the sample internally, in a lockbox
sample, and in two independent samples.

Results
Intelligence and functional brain connectivity

General g, crystallized gC, and fluid gF intelligence components were estimated from 12 cognitive
measures (Table S1) for subjects of the Human Connectome Project [HCP; (33)]. Intelligence components
were approximately normally distributed (Fig. S1) and significantly positively correlated with each other:
general and crystallized intelligence » = 0.78 (P < 0.001), general and fluid intelligence » = 0.76 (P <
0.001), crystallized and fluid intelligence » = 0.49 (P < 0.001). Individual functional connectivity (FC)
between 100 cortical nodes (34) was constructed from resting state and from seven task states. Further,
two latent FCs (35), one across rest and task states and one only across task states, were formed. This
resulted in FCs of 10 conditions that are referred to as (cognitive) states. Group mean functional
connectivity was highly similar across states and higher within than between different brain networks
(Fig. S2A). Between-subject variance in functional connectivity showed a network-specific pattern (Fig.
S2B). Descriptives of the combined samples (PIOP1, PIOP2) from the Amsterdam Open MRI collection
[AOMIC; (36)], which were used for replication, are illustrated in Fig. S3.

Functional connectivity better predicts general and crystallized intelligence than fluid intelligence

Performances to predict intelligence were investigated with a functional brain link selection approach
involving the systematic training and testing of prediction models with varying sets of brain links
(functional connections, Fig. 1) in the main sample (HCP, 610 subjects). First, all functional brain links
served as input features (whole-brain prediction). Averaged across all cognitive states, predictions of
general, crystallized, and fluid intelligence reached statistical significance: prediction performance,
computed as Pearson correlations () between predicted and observed intelligence scores, was highest for
general intelligence (» = 0.31, P <0.001), followed by crystallized intelligence (» = 0.27, P <0.001), and
fluid intelligence (» = 0.20, P < 0.001; Fig. 2). These differences were statistically significant: g vs. gC:
#9)=2.77, P=0.022; gC vs. gF: 1(9) =4.91, P < 0.001.
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Fig. 1. Schematic study overview. (A) Predicting intelligence scores from functional brain connectivity. 1 -
Functional connectivity (FC) was estimated from fMRI data assessed during eight different cognitive states (resting
state, seven tasks). Additionally, two latent FCs (35) were estimated based on a) resting state and all task states,
and b) all task states. Functional brain links were assigned to seven functional networks (37). 2 - Different selections
of brain links served as input features for prediction models, i.e., all links, links within a network or between two
networks, links of all but one network, all within- and between-network links of one network, links between brain
regions (nodes) proposed as relevant by established intelligence theories, randomly selected brain links, and links
between randomly selected nodes. 3 - Prediction of general g, crystallized gC, or fluid gF intelligence with models,
separately trained with the different selections of brain links. 4 — Estimation of link-wise contributions to the
prediction of intelligence in models trained with all brain links via stepwise layer-wise relevance propagation. (B)
Overview of study samples and cross-validation. The Human Connectome Project (HCP) sample was first divided
into a main (610 subjects) and a lockbox (196 subjects) sample. Main analyses were conducted with 5-fold cross-
validation (validation step 1, internal validation) in which models are trained on four subsamples of the main sample
and tested on the withheld fifth subsample. Second, models were trained on the main sample and used to predict
intelligence scores in the lockbox sample (validation step 2, lockbox validation). Lastly, models trained on the HCP
sample were used to predict intelligence scores in two independent samples of the Amsterdam Open MRI Collection

3 External replication
(out-of-sample prediction)
PIOP2

(AOMIC: PIOP1 and PIOP2, validation step 3, external replication).

Prediction performances depend on cognitive brain states

All cognitive states except the emotion task allowed for significant predictions of all three intelligence
components (Fig. 2). Error measures (Fig. S4, see Methods) indicated comparable patterns. General
intelligence was significantly better predicted by functional connectivity of the language task, the working
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memory task, and both latent functional connectivity factors than by the gambling, the relational, the
emotion, and the motor task (model difference test: all P < 0.05). Crystallized intelligence was best
predicted from both latent functional connectivity factors, followed by the social and working memory
task, while predictions from the emotion and motor task were significantly worse (model difference test:
all P < 0.05). Most predictive states for fluid intelligence were the language task, followed by latent
functional connectivity factors, the working memory and the social task all of which performed
significantly better than the emotion task (model difference test: P < 0.05).
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Fig. 2. Performances of predicting intelligence from whole-brain functional connectivity. (A) Prediction of
general g, (B) crystallized gC, and (C) fluid gF intelligence in the main sample (N=610, HCP). Prediction
performances were calculated as Pearson correlations between observed and predicted intelligence scores r(y, 7).
Performances of 10 prediction models trained with varying stratified folds are illustrated with colored dots (general
intelligence red, crystallized intelligence blue, fluid intelligence green). Mean performances across these 10 models
are indicated by black horizontal bars. Mean performances across states are highlighted with colored dashed lines.
Significant mean prediction performances (P < 0.05, permutation test, 100 permutations) are marked with asterisks.
RES, resting state; WM, working memory task; GAM, gambling task; MOT, motor task; LAN, language processing
task; SOC, social cognition task; REL, relational processing task; EMO, emotion processing task; LAT, latent
functional connectivity of resting state and all task states; LAT-T, latent functional connectivity of all task states.

Brain networks differ in their ability to predict intelligence

Next, the ability to predict intelligence from different functional brain networks (37) as well as from
different network combinations was investigated. Three selections of brain links served as input features:
a) all functional brain links within a specific network or between two specific networks, b) all links
(whole-brain) but those of one specific network, and c) all within- and between-network links of one
specific brain network.

Across selections (a,b,c), general intelligence was predicted significantly best, while fluid intelligence
was predicted significantly worst (all P < 0.05, paired #-test between components for each selection
approach; Figs. 3,4; for error measures: Figs. S5-S8). Further, connectivity of the language and the
working memory task, as well as both latent connectivity factors significantly outperformed connectivity
of the relational, emotion, and gambling task (P < 0.05, significant differences between prediction
performances of two states, paired #-tests for each selection approach). Both confirmed the whole-brain
prediction results.

Focusing on the level of brain networks, selection (a) revealed that despite overall better prediction of
general and crystalized intelligence compared to fluid intelligence, the patterns of which networks or
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network combinations perform better and which worse were relatively similar across intelligence
components (Pearson correlation between all within- and between-network combination performances of
predicting g vs. gC: r=0.87, P <0.001; g vs. gF: r=0.79, P <0.001; and gF vs. gC: r=0.61, P <0.001).
Averaged across states, highest prediction performances were achieved from the default, control, and both
attention networks, while visual, somatomotor, and limbic networks performed worse (mean performance
over all within- and between-network combinations a respective network was involved in, averaged across
all states). For the prediction of general and crystallized intelligence this effect reached statistical
significance (paired #-tests for each combination of two networks, all P < 0.05). Similar findings were
observed for predictions from all within- and between-network links of one specific network (selection c)
with the default, control, and both attention networks outperforming somatomotor and limbic networks
(significant for general, crystallized, and fluid intelligence: paired #-tests for each combination of two
networks, all P < 0.05). Note however, that despite these general trends some specific network
combinations differed markedly in their predictive performances (Fig. S9).

Finally, selections (b) and (c) revealed a high ability for compensating intelligent-relevant information:
for all intelligence components, prediction performances did not significantly deviate from whole-brain
prediction when excluding one brain network (selection b). For most cognitive states this even holds true
when excluding all brain links but those of only one brain network (selection c). Note that the latter refers
only to ‘cognitive brain networks’ i.e., the default, control, or an attention network (model difference tests
between models with all links and models with all but one network or models trained with one network,
Fig. 4, for error measures: Fig. S8).

To rule out that results depend on the selected brain parcellation, we repeated the prediction of general
intelligence from whole-brain and network-specific connectivity using the 200 node parcellation of
Schaefer et al. (34). Prediction performances were highly similar (Pearson correlation between prediction
performances of all 10 (states) x 43 (brain link selections) = 430 models: » = 0.94, P <0.001).

In sum, different approaches of functional brain link selection revealed that the performance to predict
intelligence depends on intelligence components (general intelligence best, fluid intelligence worst),
cognitive states (cognitively demanding states and latent connectivity best), and brain networks (cognitive
networks outperform other networks), while all brain networks contain intelligence relevant information
and predictions are only minimally affected by removing entire brain networks.
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Fig. 3. State- and network-specific performances of intelligence prediction from functional brain links within
a specific network or between two specific networks (selection approach a). (A) Prediction of general g, (B)
crystallized gC, and (C) fluid gF intelligence in the main sample (N=610, HCP). Prediction performances (Pearson
correlations between observed and predicted intelligence scores r(y,J)) were calculated as average across 10
models trained with varying stratified folds. Significant prediction performances (P < 0.05, permutation test, 100
permutations) are marked with asterisks. RES, resting state; WM, working memory task; GAM, gambling task;
MOT, motor task; LAN, language processing task; SOC, social cognition task; REL, relational processing task;
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EMO, emotion processing task; LAT, latent functional connectivity of resting state and all task states; LAT-T,
latent functional connectivity of all task states; VIS, visual network; SMN, somatomotor network; DAN, dorsal
attention network; VAN, salience/ventral attention network; LIM, limbic network; CON, control network; DMN,
default mode network.
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Fig. 4. Performances of predicting intelligence from all function brain links but those of one specific brain
network (selection approach b) versus from links of one brain network only (selection approach c). Models
for predicting general g (left panels), crystallized gC (center panels), or fluid gF (right panels) intelligence in the
main sample (N=610, HCP). (A) Separate models were trained with all links but those of one specific network. (B)
Models were trained with links of one specific network. Prediction performances (Pearson correlations between
observed and predicted intelligence scores r(y,y)) were calculated as average across 10 models trained with
varying stratified folds. Significant prediction performances (P < 0.05, permutation test, 100 permutations) are
marked with asterisks. RES, resting state; WM, working memory task; GAM, gambling task; MOT, motor task;
LAN, language processing task; SOC, social cognition task; REL, relational processing task; EMO, emotion
processing task; LAT, latent functional connectivity of resting state and all task states; LAT-T, latent functional
connectivity of all task states; VIS, visual network; SMN, somatomotor network; DAN, dorsal attention network;
VAN, salience/ventral attention network; LIM, limbic network; CON, control network; DMN, default mode
network.

Limited support for neurocognitive models of intelligence

To inform established intelligence theories, we implemented a fourth selection approach and predicted
general intelligence from functional brain links between brain regions (node clusters) proposed by the
revised Parieto-Frontal Integration Theory [P-FIT; (/3)], the multiple demand theory [MD; (14, 38)], and
the lateral PFC hypothesis [LPFC; (39)]. The resulting prediction performances were tested against
performances of links between the same number of randomly chosen nodes (100 permutations, null
models). In multiple cases, theory-driven models predicted significantly better than null models, while
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performances generally improved with increasing numbers of brain links (Fig. 5). Importantly, all theory-
driven models predicted worse than whole-brain models (Figs. 2A, 5F). These results support a brain-
wide distribution of intelligence-predictive information, thus indicating that theoretically proposed brain
regions contribute to intelligence prediction but are not the sole determinants.

Given the brain-wide distribution of intelligence-relevant information, and the dependence of prediction
performance on the number of brain links, we next implemented a fifth selection approach and compared
the prediction performances of models trained with different numbers of randomly selected links with
models trained with all possible links between randomly selected nodes. Models based on randomly
selected brain links outperformed models based on links between randomly selected nodes (Fig. SF), while
prediction performance generally increased with increasing numbers (45 to 780) of brain links,
approaching but not reaching the performance of whole-brain prediction. This underscores the assumption
of a large, distributed network of intelligence-relevant brain links and raises the question which and how
many brain links are required to enable the best possible prediction performance.
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Fig. 5. Performances of predicting general intelligence from theory-driven selections of functional brain
links. (A-E) Performances of models trained with links between brain regions (nodes) proposed by established
intelligence theories were tested against performances of models trained with same numbers of links between
randomly selected nodes (null models). Performances of single theory-driven models (varying stratified folds) are
displayed by red dots, mean performances across those models by the black horizontal bars. Single performances
of null models are illustrated with gray dots, their mean performances with grey horizontal bars. Models were
trained with all brain links between (A) eight nodes of the revised P-FIT (13), (B) 13 nodes of the MD system (/4),
(C) 26 nodes of the MD system (38), (D) four LPFC nodes (39), and (E) an extension of LPFC nodes (14 nodes).
Node cluster locations for each theory are illustrated on the right. (F) State-average prediction performances of
models trained with different numbers of a) most relevant brain links (black circles), b) randomly selected links
(gray circles), and c) links between randomly selected nodes (white circles). The black dashed line reflects state-
average performance of models trained with all brain links. The gray dashed line illustrates state-average
performance of models trained with links from the best performing intelligence theory, MD by Diachek et al. (38)
(for clarity, significant differences to other performances are not displayed). Prediction performances were
calculated as Pearson correlations between observed and predicted intelligence scores r(y,¥). Significant
differences (P < 0.05, paired #-test) are marked with asterisks. RES, resting state; WM, working memory task;
GAM, gambling task; MOT, motor task; LAN, language processing task; SOC, social cognition task; REL,
relational processing task; EMO, emotion processing task; LAT, latent functional connectivity of resting state and
all task states; LAT-T, latent functional connectivity of all task states; A, anterior; S, superior; R, right.

Intelligence is best predicted from a widely distributed connectivity network

To identify a network of functional brain links best predicting intelligence, we estimated link-specific
contributions using stepwise layer-wise relevance propagation (LRP, see Methods) and compared models
trained with different numbers of most relevant links. Overall, models trained with most relevant links
outperformed models trained with randomly selected links (Fig. 5F), while whole-brain performance was
reached at 1000 links for general and crystallized but not for fluid intelligence (no significant differences
between the performance of models based on most relevant links vs. all links, Fig. 6A).

The 1000 most relevant brain links were widely distributed across the entire cortex and varied markedly
between states with 19-27 % overlap between tasks, 28-38 % between tasks and latent connectivity, and
71-75 % between both latent connectivity factors (within each intelligence component; Figs. 6B,C, S10,
S11). The overlaps in the 1000 most relevant links between the three intelligence components (across
states) were 45 % between g and gC, 49 % between g and gF, and 28 % between gC and gF. Post-hoc
analyses revealed that the 1000 most relevant links did not systematically differ from randomly selected
brain links (1000 permutations) neither in their correlations with age, sex, handedness, or head motion nor
in their test-retest reliability [ICC between FC of RL and LR phase; (40)]. In contrast, nodes connected to
the 1000 most relevant links had lower within-module degree z-scores and a tendency of higher
participation coefficients (average of products of the number of occurrences of each node and the
corresponding module-degree z-score or participation coefficient across all subjects) compared to
randomly selected links (1000 permutations, P < 0.05). This was observed across all states.
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Fig. 6. Intelligence is best predicted from a data-driven selection of 1000 most relevant functional brain links
defining a widely distributed network.

(A) Performances of predicting general (red dots), crystallized (blue dots), and fluid (green dots) intelligence from
models trained with different numbers of most relevant links identified by stepwise layer-wise relevance
propagation (LRP; N=610, HCP). Prediction performances were calculated as average of Pearson correlations
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between observed and predicted intelligence scores r(y, y) across all states and 10 iterations (varying stratified
folds). Dashed lines indicate state-average prediction performances of models trained with all functional links (Fig.
2). Significant differences (P < 0.05, paired #-test) between prediction performances of specific numbers of most
relevant links and whole-brain predictions are marked with asterisks. (B) Matrices of the 1000 most relevant links.
Red and blue indicate whether the mean strength of a functional brain link is positive or negative (across subjects),
while the saturation of the color displays a link’s relevance (averaged over 10 iterations with varying stratified
folds). (C) Connectograms of most relevant links (for clarity, only the 100 most relevant brain links are displayed;
averaged over 10 iterations with varying stratified folds). RES, resting state; WM, working memory task; GAM,
gambling task; MOT, motor task; LAN, language processing task; SOC, social cognition task; REL, relational
processing task; EMO, emotion processing task; LAT, latent functional connectivity of resting state and all task
states; LAT-T, latent functional connectivity of all task states; VIS, visual network; SMN, somatomotor network;
DAN, dorsal attention network; VAN, salience/ventral attention network; LIM, limbic network; CON,
control/frontoparietal network; DMN, default mode network.

Lockbox and external validation indicate robust results

For lockbox validation, we applied prediction models trained on the main sample (N=610, HCP) to a
withheld subsample of the HCP (N=196). Prediction performances of the lockbox sample were
significantly correlated with those of the main sample (Pearson correlations between performances of
whole-brain and network-specific predictions). This holds for general (» = 0.88, P < 0.001), crystallized
(r=0.84, P <0.001) and fluid (» = 0.70, P < 0.001) intelligence (Figs. S12, S13, S14). The 1000 most
relevant brain links identified in the main sample predicted intelligence also significantly better in the
lockbox sample than random links, and links between randomly selected nodes performed significantly
worst. Again, prediction performances increased with increasing numbers of brain links (Fig. S15).

For external replication, we used models trained on the main sample (HCP) to predict intelligence scores
in two combined samples of the AOMIC. Due to different fMRI tasks and intelligence assessments, only
HCP’s g and gF models from: a) resting-state functional connectivity, b) task-connectivity (working
memory task, emotion task), c) latent connectivity of resting state and all task states, and d) latent
connectivity of all task states were tested for transferability. While individual results vary between
samples, performances of whole-brain and network-specific predictions were significantly correlated (g:
r=0.71, P <0.001; gF: r = 0.64, P < 0.001; Fig. S16). The 1000 most relevant brain links identified in
the HCP predicted intelligence also significantly better in the replication sample than random links, while
links between random nodes, again, performed significantly worst, and prediction performances increased
with increasing numbers of links (Fig. S15).

In sum, this two-step validation process suggests the robustness of our main findings and demonstrates
the generalizability of the here constructed prediction models to other samples that differ with respect to
data acquisition parameters, preprocessing pipelines, and intelligence assessments.
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Discussion

Our study builds on extensive research predicting complex human traits from neuroimaging data. At first,
we replicated that general, crystallized, and fluid intelligence can be predicted from functional brain
connectivity measured during different cognitive states. Then, we demonstrated that predictions were
significantly better for general and crystallized intelligence than for fluid intelligence, although only the
latter was mostly addressed in previous work. Further, prediction results varied systematically between
different states and brain networks associated with cognitive functions predicted best. Finally, different
approaches of functional brain link selection revealed that brain-wide connectivity predicted significantly
better than connectivity between isolated brain regions including those proposed by leading intelligence
theories, and that the impact of excluding complete functional networks was remarkably low.

Better prediction of general and crystallized intelligence than fluid intelligence

Across all analyses, prediction performances varied systematically between intelligence components. This
is remarkable, as individual contributions of cognitive states and functional brain networks were relatively
similar between general, crystallized, and fluid intelligence and all three components were highly
correlated on the behavioral level [r = 0.76 - 0.79; (41, 42)]. The observed differences in prediction
performances suggest distinctions in components’ neural underpinnings which elude detection on a purely
behavioral level (43) and inform future work to systematically evaluate their shared and specific neural
correlates, also in comparison to existing intelligence theories [e.g., the process overlap theory; (44)]. In
this context, it might be instructive to consider more delineated cognitive processes (42, 45) like memory
capacity (46), attentional control (47), and processing speed (48, 49) to enlighten their involvement in
general intelligence from a neural perspective.

General intelligence was predicted best, followed by crystallized intelligence and fluid intelligence. This
pattern aligns with the systematic review of Vieira et al. (4), who observed a consistent trend of better
prediction of general compared to fluid intelligence, however, it contrasts their challenging distinction at
the behavioral level (41, 42). A potential reason for the poorer predictability of fluid intelligence is the
lower validity of fluid intelligence’s measurements, especially when measured by single tests like the
Penn Progressive Matrices (4, 50). We attempted to estimate fluid intelligence more validly with a
composite score of different cognitive tasks but observed the same effect. Besides poor measurement of
(fluid) intelligence, the observed pattern could also result from differing neural correlates like those that
have been found in brain structure and function, specifically between fluid and crystallized intelligence
(51-53). However, variations in the underlying neural processes remain largely unknown. We speculate
that neural strategies, which involve distinct sets of functional brain links, underlying crystallized and
general intelligence may be more similar between individuals than those of fluid intelligence, rendering
general and crystallized intelligence more predictable. For example, crystallized intelligence may be based
on general knowledge stored in brain-wide fragments [knowledge networks; (52)] with relatively similar
localization and retrieval strategies. In contrast, fluid intelligence may involve complex interactions of
different processes, such as working memory, attention, visuo-spatial reasoning (5/) and processing speed
(49), each of which may vary more strongly between individuals than the neural implementation of
knowledge networks. The present study cannot differentiate between both explanations (poorer
measurement vs. more variable neural substrates), however, this question is an interesting subject for
future research.
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Critical dependence on cognitive states during fMRI recording

General and fluid intelligence were best predicted from functional connectivity assessed during the
language task, while crystallized intelligence was best predicted by latent connectivity calculated from all
states. Task-induced connectivity outperforming resting-state connectivity has also been observed in
previous intelligence prediction studies (/8), particularly when tasks induce high cognitive load (20). Our
study additionally suggests that this dependence on cognitive load refers specifically to the prediction of
fluid and general intelligence but less to crystallized intelligence. Speculatively, tasks requiring higher
cognitive effort induce changes in functional connectivity that support inductive and deductive reasoning
thereby enhancing the prediction of fluid intelligence. In contrast, crystallized intelligence might be best
reflected in task-general connectivity characteristics represented in latent functional connectivity (335).
Thus, a hypothesis that requires future investigation would be that crystallized intelligence is primarily
coded in latent communication patterns possibly reflecting static structural brain characteristics that form
a brain-wide knowledge network (52), whereas fluid intelligence relies on more specific neural
communication processes that become particular visible during cognitively demanding tasks. If this holds
true, it would indicate a differentiability between processes of crystallized and fluid intelligence at the
level of macroscale hemodynamics, which can be made observable by adequate task selection.

Brain-wide networks best predict intelligence

Addressing comprehensive insights, we developed a systematic approach to predict intelligence from
different selections of functional brain links. Specifically, we show that significant prediction of
intelligence was possible alone with connectivity of most individual networks as well as with connectivity
between most combinations of two specific networks. The ability to compensate for missing intelligent-
relevant links was, thus, remarkably high and suggests that similarly successful prediction models can be
constructed from different combinations of input features. Notably, this hinders the determination of all
intelligence-related links post-hoc with relevance estimation methods such as feature weight interpretation
(21, 29, 30). Means like systematic functional brain link selection can partially overcome this problem.

Despite brain-wide distribution of intelligence-relevant functional links, the default mode, the fronto-
parietal control, and both attention networks showed highest predictive power, while the somatomotor
and limbic networks were least predictive. This coincides with previous research. First, functional
connectivity within the fronto-parietal network for cognitive control and executive functioning has widely
been associated with fluid intelligence (54) and general cognitive performance (19, 20) and also the default
mode network was stressed in previous studies (/9). The importance of connectivity within attentional
brain systems for intelligence has been demonstrated in previous work (55-57), proposing mechanisms
of attentional control, salience processing and the filtering of irrelevant information crucial for intelligence
differences. Second, also connectivity between different networks was suggested to play an important role
in cognitive processing. Particularly, the anti-correlation between task-positive (frontoparietal and
attention networks) and task-negative (default mode) networks has been related to intelligence (20, 58,
59). Our results confirm the predictive potential of this between-networks interplay and undermine the
assumption that counter-regulation of task-relevant and task-irrelevant processes is essential for cognitive
functions relevant to intelligence. Based on these considerations, we recommend future research to
disentangle the importance of fronto-parietal, default-mode, and attention networks for intelligence more
in detail a) by testing differences in networks’ abilities to predict more circumscribed intelligence-related
abilities involving processes like working memory, attentional control and processing speed, b) by
designing in-scanner tasks in a way that they differ in their demands on such specific cognitive abilities
(e.g., tasks requiring different degrees of attention), and c) by exploring differences in network’s relevance
between healthy individuals and patients with impairments in specific cognitive functions (e.g.,
hemineglect).
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In applying theory-driven functional brain link selection, we demonstrated that models trained with links
between brain regions proposed in neurocognitive intelligence theories [PFIT: (13, 15), MD: (14, 38),
LPFC: (39)] only partly outperformed models trained with links between the same number of randomly
chosen regions and performed significantly worse than models trained with all brain links (60), while
performance generally improved with increasing numbers of links. Taken together, this suggests that links
between theoretically proposed brain regions include important but not complete intelligence-predictive
information.

The identification of brain links most relevant for intelligence prediction by stepwise LRP revealed that
approximately 1000 links are required to achieve similar performances as whole-brain models. Those
most relevant brain links differed between cognitive states and varied for fluid, crystallized, and general
intelligence. However, regardless of state and intelligence component, most relevant functional brain links
span a distributed network involving all 100 analyzed nodes and all major functional brain systems.
Notably, the 1000 most relevant links significantly outperformed randomly selected links, confirming that
indeed some links are more relevant to intelligence prediction than others. Nodes connected to these links
were characterized by higher participation coefficients thus facilitating information transfer between brain
modules and lower within-module degree z-scores reflecting less hub-like character (617).

Redundancy of intelligence relevant information

Together, the good performances of randomly selected links and the system’s high compensatory ability
suggest the existence of a certain degree of redundancy in intelligence relevant information within
functional brain connectivity (/9). A potential cause for such redundancy may be that important traits like
intelligence involve acting over different neural pathways possibly reflecting diverse cognitive strategies.
This hypothesis aligns with studies indicating that neural redundancy plays a protective role in cognitive
aging (62) and neurodegeneration (63), and enhances neural computation (64). Relatedly, a greater brain
‘resilience’ was observed in people with higher cognitive ability (65, 66).

Limitations and future directions

Our study has several limitations. First, we only included three broad intelligence components (g, gC, gF).
The consideration of additional or more circumscribed sub-components of intelligence may provide
supplementary insights into its neural bases, specifically, into involved behavioral and neural
subprocesses and strategies. Second, our analyses were restricted to static functional connectivity.
However, the dynamics of neural processes could also include intelligence-predictive information (67)
requiring further investigation. Third, we employed a relatively coarse brain parcellation [100 nodes;
(34)]. Although findings were similar when using a finer 200 nodes parcellation, finer-grained analyses
could increase performances further (68). Fourth, in-scanner tasks were limited to few and not highly
demanding cognitive tasks. Comparing tasks of different difficulty levels might amplify observable neural
characteristics underlying intelligence (20). Fifth, our sample was restricted to 22-37 year-old subjects,
leaving the question of generalizability to a broader age range for future investigations.

Conclusion

Despite an extensive body of research predicting intelligence from functional brain connectivity exists,
understanding of its neural foundation is limited. We here propose systematic functional brain link
selection as a means to gain insights into the neural code of individual differences in general, crystallized,
and fluid intelligence. General and crystallized intelligence were better predicted from functional
connectivity than fluid intelligence, proposing differences in their underlying neural substrates. Further,
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prediction performances depended critically on the cognitive states during fMRI assessment with
demanding tasks performing best. Notably, predictive functional brain links were distributed across the
whole brain, going beyond those proposed by major intelligence theories. Finally, we identified brain-
wide networks of the most predictive 1000 brain links. These depended critically on cognitive state and
differed between general, crystallized, and fluid intelligence. In sum, our results suggest intelligence as
emerging from global brain characteristics, rather than from isolated brain regions or single neural
networks. In a broader context, our study offers a framework for future prediction studies that prioritize
meaningful insights into the neural basis of complex human traits over predictive performance.

Materials and Methods
Preregistration

Before data analysis, all analyses, sample sizes, and variables of interest were preregistered on the Open
Science Framework: https://osf.io/nm7xy. Note that the study also includes a not registered post-hoc
analysis to further characterize brain links identified as most relevant for intelligence prediction.

Participants

The Human Connectome Project (HCP) Young Adult Sample S1200 including 1200 subjects of age 22—
37 years (656 female, 1089 right-handed) was used for main analyses. Study procedures were approved
by the Washington University Institutional Review Board, and informed consent, in accordance with the
declaration of Helsinki, was obtained from all participants (33). Subjects with missing cognitive data or a
mini-mental state examination score < 26 (serious cognitive impairment) were excluded. Performance
scores of 12 cognitive tests of the remaining 1186 subjects were used to estimate latent factors of general
and fluid intelligence, and to generate composite scores of crystallized intelligence (next section). After
additional exclusion due to missing fMRI data, missing in-scanner task performance scores, and excessive
head motion (see below), the final sample comprised 806 subjects (418 female, 733 right-handed, 22-37
years, 28.6 years mean age).

Intelligence

To estimate general intelligence as latent factor, bi-factor analysis (69) was performed according to
Dubois etal. (/9) from 12 cognitive measures (Table S1) of 1186 subjects. Fluid intelligence was
estimated as latent factor (one factor, exploratory factor analysis, oblimin rotation) from seven measures
(picture sequence memory, dimensional change card sort, flanker task, Penn progressive matrices,
processing speed, variable short Penn line orientation test, list sorting). Crystallized intelligence was
operationalized as sum of standardized scores from the picture vocabulary and the oral reading recognition
task.

Data acquisition and preprocessing

Resting-state fMRI data (four runs) and fMRI data acquired during seven tasks (working memory,
gambling, motor, language processing, relational processing, social cognition, emotion processing; two
runs each) were used for analyses. Resting-state runs span 14:33 min, while task runs range from 2:16
min to 5:01 min. For general data acquisition details see Van Essen et al. (33), for information concerning
the resting state refer to Smith et al. (70), and for fMRI tasks see Barch et al. (77). In brief, fMRI data
were acquired with a gradient-echo EPI sequence (TR = 720 ms, TE = 33.1 ms, flip angle = 52°, 2-mm
isotropic voxel resolution, multiband factor = 8) on a 3 T Siemens Skyra with a 32-channel head coil. We
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used the minimally preprocessed fMRI data (72). Further preprocessing steps comprised a nuisance
regression strategy with 24 head motion parameters, eight mean signals from white matter and
cerebrospinal fluid, and four global signals (73). As task activation can produce systematic inflation of
task functional connectivity estimates (74), basis-set task regressors were applied together with the other
nuisance regressors to remove task-evoked neural activation (74). In-scanner head motion was measured
by framewise displacement [FD; (75)] and subjects were only included if mean FD < 0.2 mm, proportion
of spikes (FD >0.25 mm) < 20%, and no spikes were above 5 mm (73). Lastly, time series of neural
activation were extracted from 100 regions (nodes) covering the entire cortex (34).

Functional connectivity

Eight subject-specific weighted functional connectivity (FC) matrices (one per state: rest, seven tasks)
were constructed from Fisher z-transformed Pearson correlations between the time series of neural
activation from the 100 cortical regions. FC was first computed for RL and LR phase directions separately
and averaged afterwards. In addition, two latent FC matrices were constructed via link-wise factor analysis
(35), i.e., one latent FC across resting state and all task states, and one latent FC across all task states. All
regions were assigned to seven functional brain networks as defined in Yeo et al. (37).

Prediction features

To compare different brain networks in their performance to predict intelligence, a functional brain link
selection approach was developed including systematic training and testing of multiple prediction models
with different sets of brain links as input features (Fig. 1 A): a) one whole-brain model including all links,
b) seven models of within-network links, ¢) 21 models of between-network links, d) seven models with
links of all but one network, and e) seven models with links within a specific network and between this
network and all other networks. Models were trained for each state-specific FC separately, resulting in 10
(rest + 7 tasks + 2 latent) x 43 (selection-specific) models for each intelligence component (general,
crystallized, and fluid intelligence). Additional models were trained with different numbers (45, 190, 435,
780, and 1000 out of 4950) of randomly selected links as well as with the same numbers of links between
randomly selected nodes (100 permutations each).

Next, we tested with five additional models the predictive performance of functional links between
clusters of brain regions proposed by prominent intelligence theories. The first model was trained on links
between eight clusters corresponding to the meta-analytically derived revised P-FIT model (/3, 15).
Second, two models containing links between brain clusters specified in the Multi-Demand (MD) theory
(14) were tested: one model included links between 13 clusters proposed by Duncan (/4), while the other
model comprised links between 26 clusters from a newer version of the theory (38). Third, the role of the
lateral PFC for predicting intelligence was tested with a model including functional brain links between
four clusters similar to Cole et al. (39) and a model extending these clusters to 14 lateral PFC nodes. To
best capture brain clusters proposed by the revised P-FIT, the MD (Duncan), and the LPFC (Cole) theory,
nodes of the Schaefer parcellation [100 nodes; (34)] closest to the clusters proposed by the respective
theory were selected (smallest Euclidean distance to the original coordinates). For Diachek’s MD theory,
nodes best matching a mask provided by the authors and for the extended PFC theory, all lateral PFC
nodes from the Schaefer parcellation were selected. Performances of these models were tested against 100
permutations of models with links between an identical number of randomly selected nodes.

Prediction models

For all analysis, the preregistered pipeline and parameters were used. Specifically, all prediction models
were trained and tested with 5-fold cross-validation within an HCP subsample (N=610). Confounding
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variables (age, sex, handedness, mean framewise displacement FD, mean number of spikes — FD > 0.25
mm) were regressed out via linear regression (/9) from both the dependent and independent variables (76)
in the training sample of every fold and residuals were z-standardized. To avoid leakage between training-
and test data, the regression coefficients and standardization parameters (M and SD) were estimated in the
training sample and then applied to the test sample of the respective fold. Feed forward Neural Networks
[implemented with Pytorch; (77)] with hidden layers and Rectified Linear Unit activation functions were
trained to predict intelligence scores. A learning rate of 0.01, a Mean Squared Error (MSE) loss function,
a dropout of 0.25, and a Stochastic Gradient Descent (SGD) optimizer for training via backpropagation
were implemented. The number of hidden layers (1-3) and the number of neurons per hidden layer (10,
50, 100) were chosen via hyperparameter optimization in a further internal cross-validation loop (3-fold).
Early stopping (the stopping of the training process before completing the specified number of training
epochs if a specific criterion is fulfilled) was applied to prevent overfitting (78): herein, a proportion of
the training data of each fold was used as validation sample (20% of training data in 5-fold cross-
validation, and 30% of training data in hyperparameter optimization). Specifically, after each training
step, the performance in predicting intelligence scores of the validation sample of the respective model
under training was evaluated and training was stopped if the validation loss did not decrease within the
last 100 training epochs, or if the training exceeded a maximal number of training epochs (20,000).

Interpreting prediction models with relevance back-mapping

To localize brain links most contributing to predictions, importance of model features was evaluated with
layer-wise relevance propagation [LRP; (32)], a methodology ascertaining contributions of single input
features to predictions based on backpropagation. During this process, shares that each model neuron has
on the output are calculated back from the last layer to the input layer of the neural network (32). We
applied stepwise LRP [implemented with Captum; (79)] to models trained on the main sample (10
iterations with varying stratified folds). Specifically, within each fold (5-fold cross-validation), models
were trained starting with all brain links and then the most contributing links were removed iteratively.
Following, models were trained with different numbers (45 to 1000) of the most contributing links.
Finally, all models were applied to the test sample to evaluate prediction performances.

External replication

For external replication, two independent datasets (PIOP1, PIOP2) from the AOMIC (36) were combined.
Study procedures were approved by the faculty’s ethical committee (EC numbers: 2015-EXT-4366, 2017-
EXT-7568), including informed consent according to the declaration of Helsinki. PIOP1 (N=216) contains
fMRI data from six cognitive states (resting state, five tasks: emotion matching, gender-stroop, working
memory, face perception, anticipation); PIOP2 (N=226) from four states (resting state, three tasks:
emotion matching, working memory, stop signal). Replication was conducted with resting-state FC, with
two task FCs (working memory, emotion matching), and two latent FCs. Again, latent FCs were estimated
from resting state and all task states, and from all task states only. For latent FCs, all tasks (PIOP1 or
PIOP2) were used. FMRI data were acquired with a gradient-echo EPI on a Philips 3T scanner with a 32-
channel coil (3-mm isotropic voxel resolution). For face perception and resting-state scans of PIOP2,
multiband scans were acquired (TR = 750 ms, TE = 28 ms, flip angle = 60°, and multiband factor = 3).
For resting state of PIOP2, and for working memory, emotion matching, gender-stroop, anticipation, and
stop signal scans of PIOP1 and PIOP2, sequential scans were recorded (TR = 2000 ms, TE = 28 ms, and
flip angle = 76.1°). Subjects with missing imaging data, missing descriptive or behavioral data, or
excessive head motion (same criteria as in the HCP) were excluded, resulting in 138 (PIOP1) and 184
(PIOP2) subjects. The minimally preprocessed fMRI data were downloaded [different preprocessing than
in the HCP, fMRIprep v1.4.1; (80)]. Further preprocessing (extracting nuisance regressed time series) and
subsequent analyses followed the same pipeline as specified previously.

Page 18 of 24


https://doi.org/10.1101/2023.12.04.569974
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.04.569974; this version posted December 7, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license. Predicting Human Cognition

Statistical analysis

Prediction performances were assessed with Pearson correlations () between predicted and observed
intelligence scores and three error-based metrics: mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE). For error metrics, predicted and observed intelligence scores were
normalized by the range of observed scores. Statistical significance of model performances was assessed
with non-parametric permutation tests and relied on Fisher z-transformed Pearson correlations between
observed and predicted intelligence scores. Precisely, 100 models were trained to predict randomly
shuffled intelligence scores (random assignment between subjects and scores) and performances of these
null models were evaluated against the mean performance of 10 models (varying stratified folds) trained
with correct scores. Significance of model differences was assessed with non-parametric model difference
permutation tests (100 permutations): differences in prediction performances () between both models
trained with the correct scores were compared to differences in performances using permuted scores. To
compare prediction performances between different intelligence components and specific cognitive states,
paired t-tests were applied. P-values < 0.05 were considered as statistically significant.

Robustness and generalizability of results were assessed with a three-level validation procedure (Fig. 1B):
first, models were trained on an HCP subsample (N=610) with 5-fold cross-validation (internal
validation). Second, models trained on this subsample were evaluated on the lock-box sample (separated
before any analyses, N=196, lockbox validation). Third, generalizability (external replication) was tested
in two samples of the AOMIC (36). Note that because of differing fMRI tasks and the Raven’s Advanced
Progressive Matrices Test [RAPM, 36 item version set II; (22)] was assessed in the AOMIC samples as
measure of intelligence, external replication was not possible in all specific cases.
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