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Abstract

In neuroimaging studies, combining data collected from multiple study sites or scanners is becom-

ing common to increase the reproducibility of scientific discoveries. At the same time, unwanted

variations arise by using different scanners (inter-scanner biases), which need to be corrected before

downstream analyses to facilitate replicable research and prevent spurious findings. While statisti-

cal harmonization methods such as ComBat have become popular in mitigating inter-scanner biases

in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous co-

variances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in

spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes

a new statistical harmonization method called SAN (Spatial Autocorrelation Normalization) that

preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We

use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations

to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and

it easily allows the integration of existing harmonization methods. We demonstrate the utility

of the proposed method using cortical thickness data from the Social Processes Initiative in the

Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.
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1. Introduction

Emerging techniques facilitate the quantification of human cerebral cortex properties through

magnetic resonance imaging (MRI), such as cortical thickness, surface area, and gyrification [1].

These advancements have profound implications in the study of brain structures and functions.

Cortical thickness is defined as the spatial span between the gray matter and white matter surfaces

of the cerebral cortex, for which subtle variations in brain structure may enhance the understand-

ing of neurological disorders, developmental changes, and potential cognitive processes. Notably,

alterations in cortical thickness have been implicated in normal aging [2, 3], as well as conditions

such as Alzheimer’s disease [4, 5], schizophrenia [6, 7], and multiple sclerosis [8, 9].

There are two main approaches for analyzing cortical thickness data: the region-level analysis

and the whole-brain analysis (vertex-level). The region-level analysis first uses a brain parcellation

atlas (e.g., Desikan-Killiany atlas) and obtains averaged cortical thickness data for each region of

interest (ROI) [10, 11]. It offers the simplicity of achieving dimension reduction and alleviating

multiple comparison problems better than whole-brain univariate analysis. However, it is limited

to predefined regions, so it is unable to localize ‘signal clusters’ (patterns associated with certain

conditions) that might emerge in smaller areas within ROIs or that span across multiple ROIs.

Another approach is whole-brain analysis to analyze cortical thickness from all vertices throughout

the brain [1, 12, 13], which offers better localization of signals at the expense of an increased burden

in multiple comparisons [14]. On a positive note, recent studies on leveraging spatial dependencies

inherent in vertex-level cortical thickness data have led to high power and effectively controlled

the false positives [15, 16, 17]. Moreover, spatial covariance modelling in neuroimaging has shown

evidence for promising performance in other neuroimaging modalities when integrated with cluster

enhancement [18, 19].

Large-scale neuroimaging studies often use multi-site, multi-scanner protocols to recruit study

participants quickly and in large numbers. However, a major challenge of combining neuroimaging

studies across sites/scanners is inter-scanner biases that are introduced due to several technical

variabilities in these studies, including disparities in scanner manufacturers, variations in scanner

parameters, and heterogeneities in acquisition protocols [20, 21, 22]. As with other imaging modali-

ties, these inter-scanner biases have been shown to be present in vertex-level cortical thickness data

[21], which motivates a need for addressing inter-scanner biases and providing high-quality cortical

thickness data for downstream whole-brain analysis.

Several statistical harmonization methods have been developed to identify and parameterize

the source of inter-scanner biases and mitigate them by reconstructing new homogenized data for

downstream analysis. One prominent approach, ComBat [23], first proposed in genomics, has

been adapted for the removal of inter-scanner biases across various neuroimaging data modalities,

including DTI mean diffusivity and fractional anisotropy [24], region-level cortical thickness [25],

and functional connectivity [26]. ComBat characterizes scanner effects into an additive (mean)
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and a multiplicative (variance) scanner effect for each imaging feature. Moreover, ComBat has

been extended to harmonize imaging data collected in a longitudinal manner [27] and to harmonize

MRI scans at the voxel level by incorporating the superpixel technique [28]. Recent harmonization

methods (CovBat and RELIEF) have been shifted to expand the scope of statistical harmonization

to address heterogeneous covariances, going beyond the mean-variance specifications in ComBat [29,

30]. However, their existing applications have primarily centred around regional-level neuroimaging

data, and there is limited empirical evidence to assess their efficacy for vertex-level data. Also,

the low-rank decomposition used by both CovBat and RELIEF might be sub-optimal and lose

efficiency in vertex-level cortical thickness data, which exhibits significant spatial autocorrelation,

which is because principal components loose rich local spatial information. Furthermore, CovBat

and RELIEF do not preserve the spatial smoothness of the harmonized data, which would raise a

critical issue when they are used in downstream analysis with spatial covariance modelling. This

motivates a need for a new method that homogenizes spatial covariances of cortical thickness data

in multi-site/-scanner studies and preserves the smoothness of the harmonized data.

To address these challenges, we propose a novel harmonization method called Spatial Auto-

correlation Normalization (SAN) to identify and parameterize the sources of inter-scanner biases

in vertex-level cortical thickness data and reconstruct homogenized and spatially smooth data. A

central challenge of SAN lies in modelling scanner-specific covariances, differentiating them into

heterogeneous non-spatial variations and spatial variations, all the while preserving the underly-

ing homogeneous autocorrelation structures across scanners. In SAN, we use the spatial Gaussian

process to leverage pairwise dependence in the characterization of covariance heterogeneity, which

effectively addresses the local patterns of covariance heterogeneity and preserves spatial smooth-

ness in the data. We propose a simple two-stage approach to model and estimate scanner-specific

parameters for the heterogeneous means and covariances accordingly. Our method of moments

(MoM) estimators provide a scalable and computationally efficient procedure for estimating these

heterogeneous covariances. We apply our method to the Social Processes Initiative in the Neu-

robiology of the Schizophrenia(s) (SPINS) study, a multi-site, multi-scanner neuroimaging study

including participants with schizophrenia spectrum disorders and healthy controls, to validate SAN,

then construct a data-driven simulation to compare SAN to other harmonization methods.

2. Methods

2.1. Notations and model specifications

2.1.1. Characterization of heterogeneous means and variances

We let yijv be an imaging feature measured at vertex v (v = 1, . . . V ) of a hemisphere of the

brain from subject j (j = 1, . . . , ni) in scanner i (i = 1, . . . ,M). Let xij = (xij1, . . . , xijq)
¦ be the

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.04.569619doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569619
http://creativecommons.org/licenses/by-nc-nd/4.0/


q-dimensional covariate vector for subject j in scanner i (e.g., age and sex). We model yijv by

(Stage 1) yijv = ³v + x¦
ij´v + ¹iv + sivϵijv, (1)

where ³v is the intercept, ´v is the regression coefficient vector, ¹iv is the scanner-specific intercept

for scanner i, s2iv is the scanner-specific variance for scanner i, and ϵijv is the noise term with the unit

variance. Note that, at the vertex level, the Stage 1 model is equivalent to ComBat’s specification

of batch effects [23, 25] that models heterogeneous means and variances across scanners.

2.1.2. Characterization of heterogeneous spatial covariances

To account for spatial dependence of cortical thickness, we model ϵij = (ϵij1, . . . , ϵijV )
¦ using

the spatial Gaussian process (GP), that is, ϵij
i.i.d
∼ MVN (0V ,Σi) for j = 1, . . . , ni. Specifically, we

decompose ϵij into three additive random effects as

(Stage 2) ϵij = µS
ij + µE

ij + ¶ij , (2)

with an assumption that µS
ij ,µ

E
ij , ¶ij are independent to each other.

• µS
ij and µE

ij are spatial random effects that are modeled by µS
ij ∼ MVN (0V , Ã

2
S,i · ΦS(ϕS))

and µE
ij ∼ MVN (0V , Ã

2
E,i · ΦE(ϕE)). Here, we assume that the covariances of µS

ij and µE
ij

are characterized by (i) heterogeneous spatial variances which represented by scanner-specific

parameters Ã2
S,i and Ã2

E,i and (ii) homogeneous underlying autocorrelations across scanners

which represented by the spatial autocorrelation functions (SACFs). For vertices v and v∗,

(Squared exponential SACF) ΦS(ϕS)[v, v
∗] = exp(−ϕS · d2v,v∗),

(Exponential SACF) ΦE(ϕE)[v, v
∗] = exp(−ϕE · dv,v∗),

where dv,v∗ is the geodesic distance between vertices v and v∗, and the scanner-invariant

parameters ϕS and ϕE determine how fast the spatial autocorrelation decreases with distance.

The exponential SACF falls off rapidly with small distances but then tails off much slower than

the squared exponential SACF as distance increases. Combining these two forms provides

the flexibility to simultaneously account for spatial correlation at shorter distances through

the squared exponential SACF and capture the heavy-tailed nature of spatial dependence

within the brain through the exponential SACF. The integration of squared exponential and

exponential SACFs has shown its utility when modeling spatial autocorrelations in fMRI data

[31].

• ¶ij is the non-spatial effect modeled by ¶ij ∼ MVN (0V , Ä
2
i IV ). Its covariance structure Ä

2
i IV

includes scanner-specific parameter Ä2i represents heterogeneous non-spatial variances across

scanners.
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Altogether, the marginal covariance of ϵij is Σi = Ã2
S,iΦS(ϕS) + Ã2

E,iΦE(ϕE) + Ä2i IV .

2.2. Spatial autocorrelation normalization (SAN)

2.2.1. Stage 1

The Stage 1 model requires estimating ³v, ´v, ¹iv and s2iv, with an important data-specific

consideration that the additive and multiplicative batch effects (¹iv and s2iv) would be smooth

over space. Considering such smoothness in the estimation step would reduce the variance of the

parameter estimates, which is expected to improve the performance of the Stage 2 of SAN especially

when the number of subjects is small. To achieve this, SAN pools information within a series of

prespecified local neighbors [32]. Specifically, we define local neighbors Nr(v) for each vertex as the

set of vertices whose geodesic distances from vertex v are less than or equal to r.

• Collapsing: The first method is to apply average smoothing locally on Nr(v). After con-

structing vertex-wise linear regressions between yijv and xij to obtain ³̂v, ˆ́
v and residuals

êijv = yijv − ³̂v − x¦
ij
ˆ́
v, we iteratively obtain ¹̂iv, ŝ

2
iv, and ϵ̂ijv by

¹̂iv =
1

ni|Nr(v)|

∑

v
′∈Nr(v)

ni∑

j=1

êijv∗ and ŝ2iv =


 1

ni|Nr(v)| −M − q

∑

v∗∈|Nr(v)|

ni∑

j=1

(êijv∗ − ¹̂iv)
2




and obtain ϵ̂ijv =
êijv−θ̂iv

ŝiv

√
ni|Nr(v)|

ni|Nr(v)|−M−q
.

• ComBat: We apply ComBat [23, 25] to each Nr(v). In ComBat, we obtain ³̂v, ˆ́
v and

residuals êijv using the same way as the Collapsing model. However, in contrast to the

collapsing approach, which assumes that local neighbors share identical values of ¹iv and s2iv,

ComBat imposes normal-inverse-gamma priors to ¹iv and s2iv and estimates them through the

empirical Bayes approach, which would shrink these estimates towards the overall means and

variances of Nr(v).

The difference between local collapsing and local ComBat is whether the fixed effect or random

effect is used to achieve smooth estimates of ¹iv and s2iv. In both approaches, the performance

of the proposed method depends on the selection of the radius r. When r = 0, we estimate ¹iv

and s2iv separately for each vertex without borrowing any information from local neighbors. When

r = ∞, we estimate ¹iv and s2iv by using all vertices in the data, which would result in ‘too smooth’

estimates shrunk towards the brain-level means and variances. An appropriate level of r needs to

be chosen by considering the bias-variance tradeoff [32]. In this paper, we choose ComBat model

with r = 5mm as a default to borrow information across neighbors without inducing too much bias.
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2.2.2. Stage 2

We generalize the covariance regression proposed by Zou et al. [33] to estimate (ϕS , ϕE , Ã
2
S,i, Ã

2
E,i, Ä

2
i ).

The covariance regression approach uses the method of moments (MoM) estimators, which provide

a highly computationally efficient and consistent estimator of the variance component parame-

ters, with some loss in efficiency compared to the likelihood-based methods. We note that the

likelihood-based methods would be intractable as the number of vertices gets larger or the number

of scanners/sites increases [33]. Previous work from Park and Fiecas [18] has also shown empirically

that the MoM estimators yielded nearly unbiased estimates of parameters. In SAN, the parameters

are estimated by minimizing the following objective function:

{ϕ̂S , ϕ̂E , Ã̂
2
S,i, Ã̂

2
E,i, Ä̂

2
i } = argmin

{φS ,φE ,σ2
S,i

,σ2
E,i

,τ2i }





M∑

i=1

ni∑

j=1

∥ϵ̂ij ϵ̂
¦
ij − Ã2

S,iΦS(ϕS)− Ã2
E,iΦE(ϕE)− Ä2i IV ∥

2
F



 ,

(3)

where || · ||2F is the squared Frobenius norm of a matrix. For optimization, we first note that, when

ϕS and ϕE are given (so that ΦG ≡ ΦG(ϕG) and ΦE ≡ ΦE(ϕE)), a closed-form solution for other

parameters minimizing the objective (3) is provided by





























σ̂2
S,1

σ̂2
E,1

τ̂2
1

...

σ̂2
S,M

σ̂2
E,M

τ̂2
M





























=





























n1tr(ΦSΦS) n1tr(ΦSΦE) n1V . . . 0 0 0

n1tr(ΦSΦE) n1tr(ΦEΦE) n1V . . . 0 0 0

n1V n1V n1V . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . nM tr(ΦSΦS) nM tr(ΦSΦE) nMV

0 0 0 . . . nM tr(ΦSΦE) nM tr(ΦEΦE) nMV

0 0 0 . . . nMV nMV nMV





























−1 



























∑n1

j=1 ϵ
¦

1jΦSϵ1j
∑n1

j=1 ϵ
¦

1jΦEϵ1j
∑n1

j=1 ϵ
¦

1jϵ1j

...
∑nM

j=1 ϵ
¦

MjΦSϵMj
∑nM

j=1 ϵ
¦

MjΦEϵMj
∑nM

M=1 ϵ
¦

MjϵMj





























.

Subsequently, when we plug in (Ã̂2
S,i, Ã̂

2
E,i, Ä̂

2
i ) to the closed-form solution in Equation (3), it simpli-

fies the optimization process, reducing it to finding the minimum of the updated objective function

with respect to (ϕS , ϕE). This step reduces the number of parameters for the optimization from

2+3M to 2, significantly enhancing the computational efficiency regardless of the number of scan-

ners (M) used in a study. In our implementation in R, the Nelder-Mead method [34] was used to

solve this nonlinear optimization problem.

Under the GP assumption, the conditional expectations of µS
ij , µ

E
ij and ¶ij are given by

µ̂S
ij = Ê[µS

ij |ϵ̂ij ] = Ã̂2
S,iΦS(ϕ̂S)Σ̂

−1

i ϵ̂ij ,

µ̂E
ij = Ê[µE

ij |ϵ̂ij ] = Ã̂2
E,iΦE(ϕ̂E)Σ̂

−1

i ϵ̂ij ,

¶̂ij = Ê[¶ij |ϵ̂ij ] = Ä̂2i Σ̂
−1

i ϵ̂ij .
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2.2.3. Construction of harmonized data

With all decompositions and estimations made in both stages, we remove scanner-specific means

and normalize scanner-specific covariances to construct the harmonized data. Since the sources of

covariance heterogeneity are characterized by scanner-specific parameters (Ã2
S,i, Ã

2
E,i, Ä

2
i ), we nor-

malize µ̂S
ij , µ̂

E
ij and ¶̂ij by

µ
S(n)
ij =

Ã
(n)
S

Ã̂S,i
µ̂S
ij , µ

E(n)
ij =

Ã
(n)
E

Ã̂E,i

µ̂E
ij , ¶

(n)
ij =

Ä (n)

Ä̂i
¶̂ij ,

where Ã
(n)
S =

√
(
∑

i ni · Ã̂2
S,i)/n, Ã

(n)
E =

√
(
∑

i ni · Ã̂2
E,i)/n and Ä (n) =

√
(
∑

i ni · Ä̂2i )/n. Therefore,

the final normalized data is given by

y
(n)
ijv = ³̂v + x¦

ij
ˆ́
v + s(n)v × (µ

S(n)
ijv + µ

E(n)
ijv + ¶

(n)
ijv ),

where s
(n)
v =

√
(
∑

i ni · ŝ2iv)/n.

2.3. Integrating SAN with other harmonization methods

Stage 2 of SAN provides a model-based framework for characterizing scanner-specific covariances

into heterogeneous spatial variations (modeled by µS
ij and µE

ij) and non-spatial variations (modeled

by ¶ij). While the primary focus of SAN lies in modelling and normalizing scanner-specific spatial

autocorrelations, it is worth noting that spatial heterogeneity might not be the only source of the

scanner effects. In such a case, SAN’s formulation could suffer from oversimplification, failing to

address the full complexity associated with heterogeneous non-spatial variations. Therefore, we con-

sidered applying covariance harmonization methods to ¶̂ij from Stage 2 of SAN to capture potential

remaining scanner effects. In this paper, we consider CovBat [29] (“SAN+CovBat”) and RELIEF

[30] (“SAN+RELIEF”) as these are methods primarily developed to harmonize covariances.

3. Data Analysis

3.1. Data preparation and preprocessing

We used cortical thickness data from the Social Processes Initiative in the Neurobiology of

the Schizophrenia(s) (SPINS) study to evaluate SAN’s performance. The SPINS study includes

multimodal neuroimaging data in individuals diagnosed with schizophrenia spectrum disorders

(SSDs) and control participants. Participants aged 18-59 were recruited for SPINS between 2014-

2020. All participants signed an informed consent agreement, and the protocol was approved by the

respective research ethics and institutional review boards. All research was conducted in accordance

with the Declaration of Helsinki. See Viviano et al. [35] and Oliver et al. [36] for details.
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Scans were obtained from three different imaging sites: Centre for Addiction and Mental Health

(CAMH), Maryland Psychiatric Research Center (MPRC), and Zucker Hillside Hospital (ZHH).

General Electric (GE) 3T MRI scanners were used at CAMH and ZHH (750w Discovery and Signa,

respectively), while MPRC used the Siemens Tim Trio 3T (ST). However, in the third year of the

study, all sites switched to the Siemens Prisma (SP) scanner. Given the limited number of samples

from the Siemens Tim Trio 3T (60 samples), we excluded ST data and focused our analysis on the

two scanner types: GE and SP. Our final dataset comprised 357 subjects across these two scanner

types: 164 were imaged on the GE (66 females, 104 patients, aged 18-55) and 193 on the SP (79

females, 105 patients, aged 18-55) after visual quality control.

MRI data preprocessing was performed using fMRIPrep 1.5.8 [37], based on Nipype 1.4.1 [38].

T1-weighted images were corrected for intensity non-uniformity and skull-stripped using ANTs

[39]. Cortical surfaces were reconstructed using FreeSurfer 6.0.1 [40]. Cortical thickness data were

resampled to fsaverage5 space, including gaussian smoothing with FWHM of 0, 5, and 10 mm,

leaving 9,354 cortical vertices for the left hemisphere and 9,361 for the right hemisphere after

excluding vertices on the medial wall. Upon visual inspection of the preprocessed T1 images, we

excluded 29 images that did not pass quality control or passed with small issues, including minor bad

skull stripping, MNI warping, and tiny under-inclusive Freesurfer masking. The pairwise geodesic

distance was computed from the pial surface to reflect surface geometry.

3.2. Smoothing increases heterogeneity in covariances across scanners

In terms of cortical thickness data preprocessing pipelines, there is currently no consensus

on whether smoothing should be done before or after harmonization However, our study provides

empirical evidence that spatial smoothing can exacerbate the complexity of covariance heterogeneity

among different scanners. To quantify the inter-scanner variabilities in covariances, we introduce a

measure called CovarF statistic that extends the idea of F statistic. This measure is defined as the

ratio of inter-scanner variabilities and within-scanner variabilities in empirical covariances given by

CovarF (N ) =

∑
(v,v∗)∈N (

∑M
i=1 ni(Ã̂i(v, v

∗)− Ã̂(v, v∗))2)/(M − 1)
∑

(v,v∗)∈N (
∑M

i=1

∑ni

j=1(Ã̂ij(v, v
∗)− Ã̂i(v, v∗))2)/(n−M)

, (4)

where Ã̂ij(v, v
∗) = (yijv − ³̂v − x¦

ij
ˆ́
v − ¹̂iv)(yijv∗ − ³̂v∗ − x¦

ij
ˆ́
v∗ − ¹̂iv∗). Here, Ã̂i(v, v

∗) =
1
ni

∑
j Ã̂ij(v, v

∗) represents the covariance of cortical thickness between vertex v and v∗ for all

subjects within scanner i, and Ã̂(v, v∗) = 1
n

∑M
i=1

∑ni

j=1 Ã̂ij(v, v
∗) represents the covariance between

vertex v and v∗ for pooled cortical thickness data across both subjects and scanners. N is the

set of vertex pairs that meet certain conditions, and we will provide several variants of N in the

following sections. For the current context, we define N = Nr(v) with r = 5mm, denoting the local

neighbors for each vertex v. Then we map these CovarF statistics onto the inflated brain surface.

A severe inter-scanner bias in covariances is reflected in the larger CovarF statistic.
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Figure 1: CovarF statistic brain maps obtained from unsmoothed and smoothed data before applying any harmo-
nization methods. A larger CovarF statistic at a vertex implies higher covariance heterogeneity in local neighbors
surrounding the vertex.

In our experiments, we use three sets of cortical thickness data: unsmoothed data, 5mm

smoothed data and 10mm smoothed data. From Figure 1, we first observe from results of the

unsmoothed data that covariance heterogeneity is localized and prominent in regions including,

but not limited to, pericalcarine, caudal anterior cingulate, paracentral, precentral, postcentral,

superior temporal, midtemporal, and insula and entorhinal cortices. We also see that smoothing

not only intensifies inter-scanner covariance biases but also spreads these biases to a larger spatial

extent compared to unsmoothed data. This effect is further magnified when a larger smoothing

kernel is used. We illustrate in a simplified setting with mathematical proof in Appendix A to

show how spatial smoothing can amplify the covariance heterogeneity between different scanners.

With all these results, we recommend performing data harmonization before spatial smoothing.

Therefore, SAN’s performance is evaluated using the unsmoothed data throughout this paper, with

sensitivity analysis regarding the effect of smoothing provided in Section 3.6.

3.3. Brain-level analysis

3.3.1. Covariogram analysis

Covariograms quantify spatial dependence and variability between locations. Specifically, for

subject j from scanner i, the covariogram is defined as:

Cij(d) =
1

|N (d)|

∑

(v,v∗)∈N (d)

Ã̂ij(v, v
∗), (5)

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.04.569619doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569619
http://creativecommons.org/licenses/by-nc-nd/4.0/


where Ã̂ij(v, v
∗) is as provided in Section 3.2. Here, N (d) is the set of vertex pairs such that their

geodesic distance is between d − ¸ and d + ¸ for a small bandwidth ¸ > 0. |N (d)| is the number

of elements in this set. Similarly, we also applied Equation (5) to the harmonized data (denoted

by Cij(n)), by replacing yijv with y
(n)
ijv in the same formula and subsequently deriving C

(n)
ij (d)

by using Ã̂
(n)
ij . To assess spatial variations in the pooled original data, we obtain the averaged

empirical covariogram across scanners, known as C(d), by C(d) = 1
n

∑M
i=1

∑ni

j=1Cij(d). We also

obtain scanner-averaged empirical covariograms for harmonized data analogously by C
(n)
i (d) =

1
ni

∑
j C

(n)
ij (d).

To visualize whether spatial variations are homogeneous across scanners after harmonization, we

compute covariogram ratios, C
(n)
i (d)/C(d), between C

(n)
i (d) using different harmonization methods

and C(d) for pooled original data. Because C(d) considers averaged covariogram across scanners

and subjects (after regressing out scanner-specific means), a harmonization method that homoge-

nizes spatial covariances better would result in the scanner-averaged covariogram shrunk C
(n)
i (d)

towards C(d), leading to a ratio closer to 1. In Figure 2(a), when considering the covariogram ratios

for both GE and SP within the range of 0mm to 40mm, SAN consistently outperforms the other

methods across most distances. While CovBat effectively aligns the SP-averaged covariogram closer

to the pooled covariogram, it introduces more deviations in the covariogram ratios for GE when

distances exceed 20mm. AdjRes and ComBat exhibit similar covariogram ratios, consistently larger

than those of SAN. Notably, RELIEF displays distinct behavior compared to the other methods;

it demonstrates the smallest ratios for SP but the largest ratios for GE, even surpassing AdjRes in

the latter case. This observation suggests that RELIEF’s performance exhibits an imbalance across

scanners, potentially arising from an excessive elimination of spatial variation specific to GE.

3.3.2. CovarF statistic

To quantify how much harmonization methods reduce the inter-scanner variabilities in covari-

ances, we also use CovarF statistics in Equation (4) with some modifications; specifically, we re-

place Ã̂ij(v, v
∗) and Ã̂i(v, v

∗) with Ã̂
(n)
ij (v, v∗) and Ã̂

(n)
i (v, v∗) for each harmonized data, and we use

N = N (d) as provided in Section 3.3.1. This allows us to evaluate the average degree of covariance

heterogeneity in the brain depending on distances, and effectiveness in mitigating inter-scanner

biases in covariances is reflected in smaller CovarF statistics. The unitless property of this CovarF

statistic allows for easy interpretation and comparison of different harmonization methods.

Figure 2(b) presents CovarF statistics across distances from 0mm to 40mm. As shown in Fig-

ure 2(b), noticeable performance differences among harmonization methods are observed within the

0-20mm range. Specifically, SAN, SAN+RELIEF, SAN+CovBat, and CovBat exhibit markedly

smaller CovarF statistics compared to other methods. Within this range, our methods outper-

form CovBat within the 10mm interval. However, for distances ranging from 10mm to 20mm,

CovBat shows slightly smaller CovarF statistics. Beyond the 20mm threshold, all methods demon-
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Figure 2: Summary of covariogram ratios and CovarF statistics obtained from different harmonization methods. The
left panel shows covariogram ratios, with the solid horizontal line representing a ratio of 1. The results SAN+RELIEF
and SAN+CovBat are not shown as they exhibited the same covariogram ratios as SAN. The right panel shows CovarF
statistics.

strate similar performance, with CovarF statistics decreasing and then stabilizing. It could be

because (spatial) heterogeneity in covariances would be marginal as the distance increases. Still,

SAN, SAN+RELIEF and SAN+CovBat consistently produce slightly smaller CovarF statistics,

supporting the empirical performance of SAN.

3.3.3. CovarF statistic brain maps

To clearly visualize the decrease in covariance heterogeneity between scanners both globally

and locally on the brain surface after harmonization, we compute CovarF statistics for each har-

monization method as done in Section 3.2. Figure 3 shows the brain maps of CovarF statistics.

Overall, these maps generally show similar patterns and are also similar to CovarF map in the

unsmoothed data from Figure 1, with pronounced CovarF statistics concentrated around specific

spatial clusters. Notably, SAN, SAN+RELIEF and SAN+CovBat show great improvement in re-

ducing CovarF statistics compared to other methods. Covariance heterogeneity between scanners
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Figure 3: CovarF statistic brain maps obtained from different harmonization methods.

remains prominent in RELIEF brain maps. ComBat and CovBat perform slightly better, though

some minor spatial clusters still present large CovarF statistics.

3.4. Within-ROI analysis

The purpose of this section is to investigate how brain-wise spatial harmonization affects locally

within a predefined region. We use Desikan-Killiany Atlas [41], which includes 34 regions of interest

(ROIs) in each hemisphere (after excluding corpus callosum). With each harmonized dataset, we

segment the cortical thickness values into 34 subsets for the left hemisphere according to this atlas.

To evaluate and compare the performance of harmonization methods in reducing the inter-scanner

variabilities in covariances across different ROIs, we also use CovarF statistics but averaging across

each region at a time (e.g., N = N (R), denoting the set of vertex pairs within region R).
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Figure 4: CovarF statistics obtained from different harmonization methods for the top 10 regions with the highest
CovarF statistics in the AdjRes harmonized data. Below the corresponding bar plots, diagrams of the ROI complete
with vertex counts are displayed.

Figure 4 shows the barplots of CovarF statistics for the top 10 regions with the highest CovarF

statistics from the original data (which provides the same CovarF statistic as AdjRes). Overall,

these regions are relatively smaller in size, having 142 vertices on average, which is less than the

average of 265 vertices for all regions. This observation is also consistent with our findings in

section 3.3, where the inter-scanner heterogeneity in covariances is most pronounced at shorter

distances. Also, among these regions, SAN, SAN+RELIEF and SAN+CovBat show the lowest

CovarF statistics for 6 regions. CovBat showed the lowest CovarF statistics for 3 regions, which

partially supports that there might be some degrees of spatial nonstationarity in cortical thickness

data such that SAN (which assumes spatial stationarity) would perform worse than CovBat in some

localized areas. Lastly, the performance of ComBat was poor in harmonizing covariances within

most ROIs. While ComBat shows the lowest CovarF statistic for caudal anterior cingulate, the

disparities between ComBat and SAN are marginal.

3.5. Between-ROI analysis

The purpose of this section is to investigate whether brain-wise harmonization before parcel-

lation is effective in homogenizing covariances in region-level data. Using Desikan-Killiany atlas,
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we derive ROI-level cortical thickness data by averaging cortical thickness values within each cor-

responding region. In this section, we assess two types of harmonized data: (i) the vertex-level

harmonization followed by parcellation and (ii) partitioning the data to construct the average cor-

tical thickness for each ROI and then harmonizing the ROI-level cortical thickness data. For (ii),

we use ComBat, CovBat, and RELIEF (denoted as ROI-level ComBat, ROI-level CovBat and

ROI-level RELIEF). Although vertex-level data may not be directly applicable to ROI-level anal-

yses, the advantages observed in capturing and retaining the underlying shared spatial correlation

across scanners can still be leveraged when working with ROI-level data by representing averaged

measurements within regions.

In addition to the CovarF statistic, we also use Quadratic Discriminant Analysis (QDA) to

assess the predictive capability of each harmonized data in relation to scanners. It is important

to note that a harmonization method that exhibits superior performance in mitigating scanner

effects will yield inferior predictive performance. Similarly to Zhang et al. [30], we choose QDA

because it relies solely on mean vectors and covariance matrices. Therefore, any variations in

predictive performance can be directly attributed to the harmonization of scanner-specific means

and covariances. Using leave-one-out cross-validation, we calculate the average accuracy as well as

ROC curve’s area under the curve (AUC) for each harmonized dataset after regressing out covariate

effects.

The results for the CovarF statistics, accuracy and AUC for scanner prediction are shown in

Table 1. For CovarF statistics, the ROI-level ComBat and ROI-level CovBat exhibit the most

effective performance in minimizing inter-scanner variabilities. It can be attributed to the fa-

vorable utilization of ROI-level data in ROI-level ComBat/CovBat for harmonization. However,

SAN, SAN+RELIEF, and SAN+CovBat show noticeably smaller CovarF statistics than all other

vertex-level harmonization methods. This suggests that our methods excel in recovering underly-

ing homogeneous spatial correlations across scanners. For evaluating the predictive performance

of scanners, we see that ROI-level RELIEF and vertex-level RELIEF achieve the lowest prediction

accuracy and AUC values, which is consistent with the findings by Zhang et al. [30]. Considering

that RELIEF performed worse in reducing the CovarF statistics, this result suggests that an opti-

mal harmonization method should be chosen carefully based on the purpose of the desired research

(e.g., prediction vs. inference).

3.6. Sensitivity analysis of the impact of smoothing

As discussed in Section 3.2, researchers may perform spatial smoothing before harmonization.

To understand the impact of smoothing on harmonization performance, we investigate the sensitiv-

ity of harmonization methods to varying levels of smoothing, specifically at 5mm and 10mm. We

again use CovarF statistics as defined in Section 3.2. Then we map their CovarF statistics onto

the inflated brain surface.
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Measure CovarF Accuracy AUC

SAN 2.351 0.608 0.601
SAN+RELIEF 2.352 0.608 0.601
SAN+CovBat 2.360 0.611 0.603

AdjRes 4.546 0.641 0.628
ComBat 3.648 0.605 0.593
CovBat 4.152 0.622 0.61
RELIEF 4.349 0.529 0.517

ROI-level ComBat 1.746 0.605 0.602
ROI-level CovBat 1.823 0.555 0.549
ROI-level RELIEF 3.827 0.527 0.517

Table 1: The summary of CovarF statistic, the accuracy and AUC of predicting scanners. The smallest values for
vertex-level/ROI-level methods are bolded respectively.

Figure 5 shows CovarF statistic brain maps for both 5mm smoothed and 10mm smoothed

harmonized data. Brain maps corresponding to the 5mm smoothing level are similar to those

observed in unsmoothed harmonized data. SAN, SAN+RELIEF and SAN+CovBat outperform

other harmonization methods in reducing inter-scanner variabilities. However, these perform poorly

with the 10mm smoothing, as indicated by the appearance of large spatial clusters characterized

by notably high CovarF statistics on the maps. This limitation is likely due to the nonstationarity

induced by spatial smoothing, which could lead to a severe violation of the stationary Gaussian

process assumption made by SAN. Using a smoothing kernel size of 10mm may include multiple

anatomically distinct regions, and it might introduce or exaggerate nonstationarity at broader

scales. It is also worth noting that ComBat (which does not address covariance heterogeneity) seems

to be the best model for harmonizing covariances when 10mm smoothing is applied. Therefore, we

note that SAN is preferably applied to unsmoothed data or data with minimal smoothing levels

(e.g., less than 5mm) to ensure optimal harmonization outcomes.

3.7. Data-driven simulations

The CovarF statistics of SPINS cortical thickness data are based on a single realization, which is

inadequate to draw conclusions about its precision and uncertainty. The underlying population dis-

tribution of SPINS cortical thickness data may reveal nonstationarity, making evaluations through

simulations with stationary assumptions less suitable. To address these limitations, we perform 1000

bootstraps. Bootstrapping allows us to draw inferences about precision and uncertainty directly

from the observed data. Additionally, it ensures that our analysis remains data-driven and reflects

the characteristics of the actual dataset. Each bootstrap involves randomly selecting 75 individuals

from GE and 75 individuals from SP. To streamline computations and enhance result presentation,

we introduce some modifications in the calculation of CovarF statistics. Given the large number

of bootstrapping samples, we select distance ranges as: 0mm-5mm, 5mm-10mm, 10mm-15mm,
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Figure 5: CovarF statistic brain maps on smoothed data obtained from different harmonization methods.

15mm-20mm, 20mm-30mm and 30mm-40mm. With each of these ranges, we compute this mea-

sure using vertex pairs that fall within the specified range. For Ã̂
(n)
ij (v, v∗) and Ã̂

(n)
i (v, v∗), we apply

harmonization methods to each bootstrap dataset and then calculate them as we do in section 3.3.2.

For Ã̂(v, v∗), we use the overall original dataset to estimate the underlying pooled covariances.
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Figure 6: Boxplots illustrating CovarF statistics for seven harmonization methods across different intervals in the
Bootstrapping results.

Figure 6 shows boxplots of CovarF statistics from bootstrapping, which align with the findings in

Figure 2(b). Across the six ranges, SAN, SAN+RELIEF, and SAN+CovBat consistently exhibited

smaller medians of CovarF statistics compared to other methods, particularly for CovarF statistics

below 15mm. This can be attributed to their ability to capture and harmonize most of the scanner-

specific local spatial dependencies in the data. Following them are CovBat and RELIEF. CovBat

shows comparable performance to SAN in the 15mm-30mm range, while RELIEF shows similar

CovarF statistics to SAN in 30mm-40mm.

4. Discussion

In this paper, we propose a novel harmonization method, SAN, that identifies and parameterizes

sources of heterogeneity in vertex-level cortical thickness data collected from different scanners or

sites. We use Gaussian process to model and homogenize spatial covariances, and its probabilistic

modeling ensures the smoothness of the harmonized cortical thickness data, which existing methods

do not provide. SAN aligns with the growing need for providing high-quality data to downstream

whole-brain analysis, especially those involving spatial covariance modelling. We use a two-stage

approach to estimate scanner-specific parameters for the heterogeneous means and covariances,

and use the method-of-moments estimators for scalability. SAN’s flexible framework allows for

integration with other covariance harmonization methods (e.g. CovBat, RELIEF) to further reduce

potential latent scanner effects, although our data analysis suggests that spatial covariance explains

most of the inter-scanner covariance heterogeneity of cortical thickness. Our analysis of the SPINS

study suggests that there are specific anatomical regions that reveal a high degree of covariance

heterogeneity across scanners, for which SAN’s brain-level harmonization successfully homogenized.

Although initially designed for vertex-wise data, SAN also proves advantageous for within-ROI and

between-ROI analyses by ensuring scanner-specific spatial normalization at the foundational level,

which is critical for constructing accurate ROI-level metrics.
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In the analysis of vertex-level cortical thickness data from the SPINS study, we observe that a

wide range of smoothing is discouraged before applying SAN (and other harmonization methods).

In multi-site/scanner studies with inter-scanner biases in means and covariances, we provide empir-

ical and theoretical evidence of higher mean and covariance heterogeneity induced by smoothing.

Covariance harmonization methods (SAN, CovBat, RELIEF) appeared to be ineffective and per-

formed worse than ComBat with highly smoothed data. Our sensitivity analysis of harmonization

methods to varying levels of smoothing suggests that SAN is preferably applied to unsmoothed

data or data with minimal smoothing levels (e.g., 5mm), but high smoothing levels (e.g., 10mm)

negatively impact its performance. One possible explanation of this phenomenon is that spatial

smoothing greatly increases the degree of spatial nonstationarity making it difficult for statistical

harmonization methods to parametrize its sources appropriately. For these reasons, we recommend

applying SAN to minimally smoothed (or unsmoothed) data, while more empirical and theoretical

evidence is required to determine the optimal data processing pipeline.

SAN’s harmonization aims to recover an optimal ‘pooled’ covariance from the parametrizations

of the Gaussian process, which reduces the CovarF statistic significantly than other harmonization

methods we considered. However, a cautionary note is needed in choosing the harmonization

method that meets users’ research purposes. SAN is recommended when covariance modeling of

the vertex-level cortical thickness data is critical in improving statistical inference. In contrast,

RELIEF performs best in impeding the detection of scanners at the ROI level. However, RELIEF

does not seem effective in reducing the CovarF statistic as RELIEF primarily focuses on removing

scanner-specific latent factors. These results suggest that, despite higher power shown in Zhang

et al. [30] in massive univariate analysis, SAN would perform more promisingly in the spatial-extent

inference that requires explicit spatial aucorrelation modeling.

SAN has room for improvement. First, we downsampled cortical thickness data to fsaverage5

space (V ≈ 10, 000) in our analysis, which seems to be sufficient in capturing dense spatial infor-

mation without significant loss of information [42, 43]. However, SAN would be computationally

limited when applied to higher resolutions (e.g., fsaverage6 or fsaverage7). Although implementing

SAN is computationally feasible when V ≈ 10, 000, more research is needed to make it even more

computationally efficient in higher dimensions. Second, longitudinal studies (e.g., Alzheimer’s Dis-

ease Neuroimaging Initiatives) have identified inter-scanner biases in cortical thickness data [27].

Extending SAN to longitudinal neuroimaging studies would simultaneously account for both the

within-subject variability and covariance heterogeneity across scanners. This enhancement could

maintain within-subject dependencies in the harmonization process, thereby improving data qual-

ity for longitudinal designs not currently addressed by our existing SAN framework. Finally, there

are also other structural imaging metrics based on the human cerebral cortex, such as surface area,

and gyrification, which have shown discrepancies in their measurements across scanners [44, 45, 46].

Although this paper primarily focuses on harmonizing cortical thickness data, future research could
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explore the validity of SAN in these imaging modalities.

5. Software

The R package for implementing SAN is publicly available at https://github.com/junjypark/

SAN. Our harmonization took approximately 1 hour on a Macbook Air (M2,2022) with 16GB RAM

to harmonize data with 9,354 imaging features from 357 subjects, which supports the computa-

tional feasibility of the proposed method. For server users, the harmonization was completed in

approximately 36 minutes on a server cluster node (Lenovo SD350) equipped with 40 Intel “Sky-

lake” cores (2.4GHz) and 202GB RAM. Parallel computing is supported by the package to mitigate

computational costs working with a large number of scanners or sites.
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Appendix A

For simplicity, suppose that a pair of imaging features is measured from two different scanners

(i = 1, 2, ni = n). We assume that (yij1, yij2)
¦ follows spatial Gaussian process with mean zeros

and scanner-specific variance-covariance structure,

(
yij1

yij2

)
∼ MVN

((
0

0

)
,

[
Ä2i + Ã2

i Ã2
i Ä

Ã2
i Ä Ä2i + Ã2

i

])
,
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where 0 < Ä < 1 is analogous to exp(−ϕ · d) or exp(−ϕ · d2) in SAN. If we apply smoothing,

consider weights w1 > 0 and w2 > 0 that are w1 + w2 = 1. We have ysij1 = w1yij1 + w2yij2 and

ysij2 = w2yij1 + w1yij2 where

(
ysij1
ysij2

)
∼ MVN

((
0

0

)
,

[
(w2

1 + w2
2)(Ä

2
i + Ã2

i ) + 2w1w2Ã
2
i Ä (w2

1 + w2
2)Ã

2
i Ä+ 2w1w2(Ä

2
i + Ã2

i )

(w2
1 + w2

2)Ã
2
i Ä+ 2w1w2(Ä

2
i + Ã2

i ) (w2
1 + w2

2)(Ä
2
i + Ã2

i ) + 2w1w2Ã
2
i Ä

])
.

To examine the covariance differences between scanners, we use the F statistic formula by

plugging the true parameters:

F =
[E(y1j1y1j2)− E(y2j1y2j2)]

2

[V ar(y1j1y1j2) + V ar(y2j1y2j2)]/n

=
(Ã2

1Ä− Ã2
2Ä)

2

[(Ä21 + Ã2
1)

2 + Ã4
1Ä

2 + (Ä22 + Ã2
2)

2 + Ã4
2Ä

2]/n
,

which follows from E(yij1yij2) = Ã2
i Ä and V ar(yij2yij2) = (Ä2i + Ã2

i )
2 + Ã4

i Ä
2. Similarly, the F

statistic for the smoothed data, denoted by F s, is

F s =
[E(ys1j1y

s
1j2)− E(ys2j1y

s
2j2)]

2

(V ar(ys1j1y
s
1j2) + V ar(ys2j1y

s
2j2))/n

=
[Ã2

1Ä+ w(Ä21 + Ã2
1)− (Ã2

2Ä+ w(Ä22 + Ã2
2))]

2

[((Ä21 + Ã2
1) + wÃ2

1Ä)
2 + (Ã2

1Ä+ w(Ä21 + Ã2
1))

2 + ((Ä22 + Ã2
2) + wÃ2

2Ä)
2 + (Ã2

2Ä+ w(Ä22 + Ã2
2))

2]/n
,

where w = 2w1w2

w2
1+w2

2
. If smoothed features show a larger covariance heterogeneity between scanners

than unsmoothed features, the statistic F s of smoothed features will be larger than the unsmoothed
F . When Äi and Ã2

i are monotonic (e.g., Ä21 > Ä22 , then Ã2
1 > Ã2

2) we have F s > F because
F s/F = A×B where

A =

(

w
2
1 + w

2
2 +

2w1w2

ρ

(

1 +
τ2
1 − τ2

2

σ2
1 − σ2

2

))2

B =
(τ2

1 + σ2
1)

2 + σ4
1ρ

2 + (τ2
2 + σ2

2)
2 + σ4

2ρ
2

(w2
1 + w2

2)[((τ
2
1 + σ2

1) + wσ2
1ρ)

2 + (σ2
1ρ+ w(τ2

1 + σ2
1))

2 + ((τ2
2 + σ2

2) + wσ2
2ρ)

2 + (σ2
2ρ+ w(τ2

2 + σ2
2))

2]
.

Here, A > 1 follows from 2w1w2 <
2w1w2

ρ

(
1 +

τ21−τ22
σ2
1−σ2

2

)
, and B > 1 is derived by using

((w2
1 + w2

2)(Ä
2
i + Ã2

i ) + 2w1w2Ã
2
i Ä)

2 + ((w2
1 + w2

2)Ã
2
i Ä+ 2w1w2(Ä

2
i + Ã2

i ))
2 < (Ä2i + Ã2

i )
2 + Ã4

i Ä
2.
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