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Abstract. In this paper, we study the upper tail large deviation for the one-dimensional frog model. In this model,
sleeping and active frogs are assigned to vertices on Z. While sleeping frogs do not move, the active ones move as
independent simple random walks and activate any sleeping frogs. The main object of interest in this model is the
asymptotic behavior of the first passage time T(0, n), which is the time needed to activate the frog at the vertex n,
assuming there is only one active frog at 0 at the beginning. While the law of large numbers and central limit theorems
have been well established, the intricacies of large deviations remain elusive. Using renewal theory, Bérard and Ramírez
[2] have pointed out a slowdown phenomenon where the probability that the first passage time T(0, n) is significantly
larger than its expectation decays sub-exponentially and lies between exp(−n1/2+o(1)) and exp(−n1/3+o(1)). In this
article, using a novel covering process approach, we confirm that 1/2 is the correct exponent, i.e., the rate of upper
large deviations is given by n1/2. Moreover, we obtain an explicit rate function that is characterized by properties of
Brownian motion and is strictly concave.

1. Introduction

In this paper, we treat the interacting particle system consisting of “active” and “sleeping” states as follows: First of
all, we place infinitely many particles in some space, according to a deterministic rule. Active particles can randomly
move around in the space and sleeping particles do not move at first. However, sleeping particles become active and
start moving around as soon as they are touched by active particles. Initially, only one particle is active and the others
are sleeping. When the system starts, the first active particle gradually generates active particles by touching sleeping
ones, and they propagate across space, with time.

We call the interacting particle system above the frog model and regard particles as frogs in the present paper.
However, the frog model has several names circumstantially. The frog model was originally introduced in the image of
information spreading (see the introduction of [4]): every active frog has some information and shares it with sleeping
frogs touched by active ones. In [29, Section 2.4] (which is the first published article on the frog model), the frog model
is called the egg model. It is said that R. Durrett coined the name “frog model” proposing a discrete space-time version
(see the introduction of [4] again). On the other hand, a continuous-time version of the frog model is interpreted as
a combustion phenomena described by a system composed of two types of frogs. In this case, the frog model is often
called the “combustion model” or “the reaction A+B → 2A” (see for instance [28]). One of interest object of the frog
model is the diffusion speed of active particles, and it has been investigated in the view of the probabilistic theory for
several decades: the law of large numbers, the central limit theorem and the large deviation principle, which provide
the asymptotic behavior, the fluctuation around the average behavior, and the decay rate of the tail probability for
the diffusion speed, respectively.

The study of the diffusion speed has mainly made progress in the case where an underlying space is the d-dimensional
lattice Zd (d ≥ 1) and each site of Zd initially has one frog (the genetic active frog is put on the origin 0 of Zd). We
hereafter focus on this frog model. Alves et al. [4] and Ramírez and Sidoravicius [28] completely solved the law of
large numbers for the diffusion speed in all dimensions and both discrete and continuous-time settings. On the other
hand, the central limit theorem and the large deviation principle on Z are studied in [7] and [5], respectively.

This paper deals with a part of the large deviation principle for the diffusion speed in the discrete-time frog model
on Z. Bérard and Ramírez [5] investigated this topic in the continuous-time setting. In particular, they observed the
so-called slowdown phenomenon for the propagation of active frogs by giving some partial estimates for the upper tail
large deviation probability for the diffusion speed, which is the probability that the diffusion speed deviates upward
from its typical behavior (see the discussion above Theorem 1.2 for more details). The argument used in [5] might
work for the discrete-time setting as well. However, in this paper, we take a different approach using a novel energy
coming from the one-dimensional Brownian motion (see (1.3)), and completely solve the upper tail large deviation
probability for the diffusion speed in the discrete-time setting.
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1.1. The main result. We first state the dynamics of frogs and define the diffusion speed precisely. Let d ≥ 1. The
dynamics of frogs are given by independent simple, symmetric random walks on Zd (we drop the adjective “symmetric”
below, as is customary). For each x ∈ Zd, write (Sx

n)
∞
n=0 for these random walks on Zd with Sx

0 = x. This describes
the trajectory of the frog initially sitting on x after becoming active. For any x, y ∈ Zd, the first passage time from x
to y is defined by

T(x, y) := inf

{
k−1∑
i=0

t(xi, xi+1) :
k ≥ 1 and x0, x1, . . . , xk ∈ Zd

with x0 = x and xk = y

}
,

where

t(xi, xi+1) := inf
{
n ≥ 0 : Sxi

n = xi+1

}
.

The main object of interest in this paper is the first passage time T(0, ·), which represents the diffusion speed at which
active frogs propagate from the origin 0. Let us now explain the dynamics of our frog model and the intuitive meaning
of the first passage time T(0, y): First, we put the particle on all sites of Zd. The behavior of the frog sitting on a
site x is controlled by the simple random walk Sx

· , but not all particles move around from the beginning. At first, the
only frog sitting on 0 are active and perform a simple random walk. On the other hand, the other frogs are sleeping
and do not move. Each sleeping frog becomes active and starts to perform a simple random walk once it is touched
by an active frog. When we repeat this procedure for the remaining sleeping frogs, T(0, y) represents the minimum
time at which an active frog reaches y. It is clear that the first passage time is subadditive in the following sense:

T(x, z) ≤ T(x, y) + T(y, z), x, y, z ∈ Zd.

Furthermore, Alves et al. [4, Section 3] showed the integrability of the first passage time T(x, y). Combining these
with the subadditive ergodic theorem (see for instance [13, Theorem 6.4.1]) yields the following asymptotic behavior
of the first passage time: there exists a (nonrandom) norm µ(·) on the d-dimensional Euclidean space Rd such that
P-a.s.,

lim
|y|1→∞

T(0, y)− µ(y)

|y|1
= 0,(1.1)

where | · |1 denotes the ℓ1-norm on Rd. Furthermore, µ(·) is invariant under permutations of the coordinates and
under reflections in the coordinate hyperplanes. The norm µ(·) is called the time constant and T(0, y) asymptotically
behaves like µ(y) as |y|1 → ∞.

From now on, we assume d = 1 and set µ := µ(1). Before stating our main result, we shall explain the motivation
for the present work. As stated at the beginning of this section, Bérard and Ramírez [5]1 studied large deviation
principles for the continuous-time frog model on Z. In particular, they observed that the slowdown phenomenon for
the propagation of active frogs, i.e., the upper tail large deviation probability for the first passage time decays slower
than exponential [5, Theorem 2]: for any ξ > 0,

e−t1/2+o(1)

≤ P
(
T(0, ⌊t⌋) ≥ (µ+ ξ)t

)
≤ e−t1/3+o(1)

as t→ ∞,(1.2)

where ⌊t⌋ is the greatest integer less than or equal to t. However, this estimate is not optimal, and hence the present
work is motivated by the desire to complete the upper tail large deviation estimate.

Let us prepare some notation to state our main result. First, for any ξ > 0, denote by C(ξ) the set of all functions
f : R → [0,∞) satisfying the following three conditions:

• f is non-increasing and non-decreasing over (−∞, 0] and [0,∞), respectively;
• limx→0 f(x) = 0 holds;
• ∥f∥∞ := supx∈R f(x) ≤ ξ and limx→∞ f(x) = ξ.

Next, for each x ∈ R, let PBM
x be the law of one-dimensional Brownian motion starting at x. In addition, write (Bt)t≥0

for the trajectory of Brownian motion, and τy := inf{t ≥ 0 : Bt = y} stands for the hitting time to y ∈ R. Then, for
any f ∈ C(ξ), the energy of f is defined by

E(f) := −
∫
R
logPBM

x

(
τy ≥ f(y)− f(x) ∀y ∈ R

)
dx.(1.3)

In addition, set for any ξ > 0,

r(ξ) := inf
{
E(f) : f ∈ C(ξ)

}
,(1.4)

1Actually, [5] adopts a little different setting from the one-particle-per-site frog model on Z as follows: Initially, every site of the left of
0 has a random number of active frogs, and every site on non-negative integers has a common fixed number of sleeping frogs. Although
it seems that arguments used in [5] also run along the same lines for the discrete-time, one-particle-per-site frog model on Z, we use a
completely different approach in the present article to complete the upper tail large deviation estimate.
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which is the minimum energy over C(ξ).

Remark 1.1. As we will see later (Step 2 in Section 1.3), the key of the present work is to observe a localization
phenomenon of the upper tail large deviation event {T(0, n) ≥ (µ + ξ)n}. More precisely, {T(0, n) ≥ (µ + ξ)n} is
mainly affected by frogs siting on a bad interval, whose length has order

√
n but whose passage time is more than

ξn. The ensemble C(ξ) can be referred as the set of functions recording all possible profiles of the space-time rescaled
first passage time on a bad interval whose left endpoint is 0, i.e., f(u) = T(0, u

√
n)/n for u ∈ R. Moreover, as

explained Section 4.1, given f ∈ C(ξ), the event that the scaled passage time T(x
√
n, y

√
n)/n is approximated by the

(f(y) − f(x))+ has probability roughly equal to e−
√
nE(f). Hence, we refer to E(f) as the energy of f , following the

custom of statistical mechanics.

We are now in a position to state our main result. For the discrete-time, one-particle-per-site frog model on Z, the
following theorem completely provides the upper tail large deviation.

Theorem 1.2. Let r∗ := r(1) and µ := µ(1). Then, r∗ is positive and finite, and the first passage time of the frog
model on Z satisfies the upper tail large deviation with speed

√
n and rate function ξ 7−→ r∗

√
ξ (ξ > 0). More precisely,

for all ξ > 0,

lim
n→∞

1√
n
logP

(
T(0, n) ≥ (µ+ ξ)n

)
= −r∗

√
ξ.

1.2. Related works. Let us finally comment on earlier literature for the frog model. The recurrence/transience
problem was the first published result on the frog model. Telcs and Wormald [29, Section 2.4] treated the one-particle-
per-site frog model and proved that it is recurrent for all d ≥ 1, i.e., almost surely, active particles infinitely often
visit 0 (the frog model is said to be transient if it is not recurrent). This result was developed into the relation
between the strength of transience for a single random walk and the number of frogs. Actually, Popov [25] introduced
the frog model with random initial configurations and exhibited phase transitions of the recurrence and transience
in terms of the density of initial configuration. After that, Alves et al. introduced the frog model on an arbitrary
graph with random initial configurations and random lifetimes, and studied phase transitions of the survival of frogs
and recurrence/transience (see [4] and [26] for more details). Recently, Kosygina and Zerner [18] obtained a zero-
one law of recurrence and transience for the frog model with random initial configurations. Furthermore, in [12, 14]
and [15, 16, 22, 23, 24], the recurrence/transience problem is also studied for the frog model with drift (this means
that active frogs perform asymmetric random walks) and on (some d-ary, Galton–Watson and non-amenable) trees,
respectively.

The spread of active frogs, which is the interest of the present paper, was first investigated for the frog model on
Zd in the discrete- and continuous-time settings (see [4] and [27]). More precisely, they showed that the asymptotic
behavior of the first passage time can be controlled by the time constant, which is a (nonrandom) norm on Rd (see
(1.1)). Hence, the central limit theorem and the large deviation principle are the next step to understand the behavior
of the first passage time in details. However, there are a few results for these topics. In the multi-dimensional case,
the authors proved that the first passage time has a sublinear variance and satisfies a concentration inequality, and
its tail probability decays sub-exponentially (see [6] and [19]). These results give some clues for the central limit
theorem and the large deviation principle for the first passage time, but are not enough to solve these problems
completely. Moreover, since the main tools used in [6] and [19] are percolation arguments, those do not work in the
one-dimensional case. This means that we need completely different approaches to study the central limit theorem
and the large deviation principle in the frog model on Z. Actually, Ramírez et al. [5, 7] discussed the central limit
theorem and the large deviation principle for the frog model on Z by using a renewal structure, which is developed
in the study of random walks in random environments. Moreover, in the present article, we complete the upper tail
large deviation estimate by using the energy E(f), which is never seen in previous works.

In forthcoming papers, we will study large deviations for the first passage time in higher dimensions. Then, for the
upper tail large deviation, it is also useful to observe a localization phenomenon: let e1 be the first coordinate vector
of Zd, and the upper tail large deviation event {T(0, ne1) ≥ (µ+ξ)n} is affected by frogs sitting on a bad region which
is the ball centered at ne1 and of radius O(

√
n). Due to the geometry of the bad ball, the results in higher dimensions

are different. Particularly, when d = 2 (resp. d ≥ 3), the speed is n/ log n (resp. n) and the rate function is linear
ξ 7→ cdξ (where cd is a constant depending on d). In contrast, it appears that the lower tail large deviation event
{T(0, ne1) ≤ (µ− ξ)n} is affected by overall frogs and the lower tail large deviation probability decays exponentially
regardless of the dimension.

Similar localization phenomena have been observed in other models, including First-passage percolation and the
chemical distance in percolation. In a study of First-passage percolation with weights under tail estimates, Cosco
and Nakajima [9] established a specific rate function for upper tail large deviations, known as the discrete p-capacity.
Furthermore, Dembin and Nakajima [10] demonstrated the existence of the rate function for upper tail large deviations
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of the chemical distance in super-critical percolation when the dimension is three or higher. This is characterized by a
space-time cut-point that all paths between the endpoints must pass through later than a specified time. These upper
tail large deviations share similarities in the sense that the passage times are abnormally large due to the environments
surrounding the endpoints. In our current study of the one-dimensional frog model, we also confirm the appearance
of localization phenomena on the event of upper-tail large deviations. However, we do not know its location, which
makes the structure complicated. Moreover, the analysis of the models mentioned above heavily depends on the slab
argument, a concept introduced by Kesten, which is not applicable in our current study due to its one-dimensional
nature. Instead, we introduce a new argument of covering process (see Section 5 for details), which will be also used
for upper tail large deviations in the two-dimensional frog model in the forthcoming paper.

1.3. Sketch of proof. In this subsection, we summarize the main steps in the proof of Theorem 1.2. The symbol
oM (1) stands for some constants satisfying limM→∞ lim supn→∞ |oM (1)| = 0, which may change from line to line.

Step 0: Scaling invariance of energy. In Lemma 2.2 (see Section 2.1 below), we demonstrate the scaling invariance
of the rate function taking advantage of the scaling invariance of Brownian motion:

(1.5) r(ξ) := inf
f∈C(ξ)

E(f) = r∗
√
ξ, r∗ := r(1).

Step 1: Localization of upper tail large deviation event. Let us next observe that a certain localization
phenomenon affects the upper tail large deviation event. Intuitively, a good strategy to delay the transmission on Z
is to retard the propagation of active frogs on a bad interval whose length is of order

√
n, but the passage time is of

order n: for all sufficiently large M ∈ N, as n→ ∞,

−1√
n
logP(T(0, n) ≥ (µ+ ξ)n) ≈ −1√

n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
+ oM (1).

However, this strategy does not work directly. Instead, we show the following inequalities in Proposition 3.1 (see
Section 3 below), which are weaker versions of the above approximation:

P(T(0, n) ≥ (µ+ ξ)n) ≥ exp(oM (1)
√
n)P

(
T(0, ⌊M

√
n⌋) ≥ (ξ + oM (1))n

)
,

P(T(0, n) ≥ (µ+ ξ)n) ≤ exp(oM (1)
√
n) sup

ξ1,...,ξM≥0
ξ1+...+ξM=ξ

M∏
i=1

P
(
T(0, ⌊M

√
n⌋) ≥ (ξi − oM (1)/M)n

)
.

These inequalities tell us that the upper tail large deviation event can be localized around several bad intervals whose
length is of order

√
n and where the total passage time is approximately greater than ξn.

Step 2: Upper tail estimate for the first passage time on the bad interval. Thanks to Step 1, it suffices
to take care of the upper tail probability of the form P(T(0, ⌊M

√
n⌋) ≥ ξn). Our task is now to prove that for all

sufficiently large M ∈ N, as n→ ∞,

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≈ inf

f∈C(ξ)
E(f) + oM (1).(1.6)

The heuristic ideas of the above approximation is as follows: Let f(u) := T(0, u
√
n)/n be the space-time rescaled

passage time on the bad interval. Then, T(0,M
√
n) ≥ ξn if and only if f ∈ CM (ξ) := {f ∈ C(ξ) : f(M) ≥ ξ}. In

addition, it always holds by the triangle inequality that

t(x, y) ≥ T(0, y)− T(0, x) = n
(
f(y/

√
n)− f(x/

√
n)
)

∀ x, y ∈ Z.

Since t(x, y)’s are the hitting times of simple random walks, one can expect by Donsker’s invariance principle that as
n→ ∞,

P
(
∀x, y ∈ J−M

√
n, M

√
nK, t(x, y) ≥ n(f(y/

√
n)− f(x/

√
n))
)
≈ exp

(
−
√
n(E(f) + oM (1))

)
,

where for any a, b ∈ R, Ja, bK is the set of integers on the interval [a, b] (see Section 4.1 for more detailed explanation
of this approximation). These observations imply (1.6). It should be noted that the final approximation is essentially
heuristic in nature, even though we have chosen f as a random quantity included in the class CM (ξ) in our previous
discussion. Specifically, certain approximations are only valid when applied to step functions. Consequently, we will
establish the final outcome through a two-step proof.
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Step 2a: Arising of energy functional. Let CStep(ξ) be the set of all step functions in C(ξ). In Proposition 3.2
(see Section 3 below), we estimate the left-hand side of (1.6) precisely:

lim sup
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≤ inf

f∈CStep(ξ)
E(f) + oM (1)

and

lim inf
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≥ inf

f∈C(ξ)
E(f)− oM (1).

Step 2b: Energy approximation. In Proposition 3.3 (see Section 3 below), we show that the ground state energy
in C(ξ) can be approximated by the energy of step functions:

(1.7) inf
f∈C(ξ)

E(f) = inf
f∈CStep(ξ)

E(f).

Conclusion: It directly follows from Steps 0 and 2 that as n→ ∞,

(1.8)
−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≈ r∗

√
ξ + oM (1).

Plugging this into Step 1, we arrive at

lim sup
n→∞

−1√
n
logP(T(0, n) ≥ (µ+ ξ)n) ≤ r∗

√
ξ,

lim inf
n→∞

−1√
n
logP (T(0, n) ≥ (µ+ ξ)n) ≥ lim inf

M→∞
lim inf
n→∞

 sup
ξ1,...,ξM≥0

ξ1+...+ξM=ξ

r∗
(√

ξ1 + . . .+
√
ξM
)
−oM (1)

 ≥ r∗
√
ξ,

by using the inequality
√
x1 + . . .+

√
xm ≥

√
x1 + . . .+ xm. Therefore, the proof of Theorem 1.2 is complete.

1.4. Organization of the paper. Let us describe how the present article is organized. The rest of the paper is
devoted to justifying the steps in Section 1.3. First of all, in Section 2, we summarize properties of the simple random
walk, the Brownian motion and the frog model, which are used throughout this paper. In particular, by using the
scaling invariance of Brownian motion, Lemma 2.2 gives the scaling invariance of energy and completes Step 0 in
Section 1.3.

Section 3 is devoted to the proof of our main result (Theorem 1.2). Proposition 3.1 guarantees the validity of
Step 1 in Section 1.3. In particular, we can also observe a slowdown phenomenon for the first passage time (see
Proposition 3.1-(iii)). This is a weaker version of Theorem 1.2 but tells us that r∗ = r(1) ∈ (0,∞). Furthermore,
Proposition 3.2 and 3.3 deal with Steps 2a and 2b in Section 1.3, respectively. We just give the statements of the
above propositions in Section 3, and complete the proof of Theorem 1.2 for now.

The aim of Section 4 is to show Proposition 3.2. This section consists of two parts: In Subsections 4.2, we optimize
the energy for the lower bound of the upper tail probability (see Proposition 3.2-(i)). Note that at this stage, the energy
on CStep(ξ) (not C(ξ)) is used for the lower bound (In Section 6, we check that the energy on C(ξ) is approximated by
that on CStep(ξ)). On the other hand, in Subsections 4.2, we optimally estimate the upper tail probability from above
by using the energy on C(ξ) (see Proposition 3.2-(ii)).

Section 5 gives the proof of Proposition 3.1. This proposition consists of parts (i)–(iii), and those proofs are mainly
given in Sections 5.1, 5.3 and 5.4. The proof of part (ii) is the most difficult, and the key lemma is Lemma 5.1 stated
in Section 5.1. Since its proof is a little bit long, we postpone it into Section 5.2.

In Section 6, we prove Proposition 3.3, which guarantees that the energy on C(ξ) is approximated by that on
CStep(ξ). More precisely, we shall use a delicate multi step deformation that gradually transforms a function in C(ξ)
to another in CStep(ξ) with approximated energy.

In Appendix, we prove some technical lemmas used in the paper. In particular, we show a version of conditional
FKG inequality for Brownian motion, which may be of independent interest.

We close this section with some general notation:
• For any a ∈ R, ⌊a⌋ is the greatest integer less than or equal to a. In addition, ⌈a⌉ is the smallest integer larger

than or equal to a.
• For any a, b ∈ R, Ja, bK is the set of integers on the interval [a, b].
• For any subset A of Z, denote by |A| the cardinality of A.
• For any A,B ⊂ R, d(A,B) denotes the Euclidean distance between two sets A and B:

d(A,B) := inf{|x− y| : x ∈ A, y ∈ B}.
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• For x ∈ A ⊂ Z and y ∈ Z, we denote by TA(x, y) the first passage time from x to y using only frogs inside A,
or more formally

TA(x, y) := inf

{
k−1∑
i=0

t(xi, xi+1) :
k ≥ 1 and x1, . . . , xk−1 ∈ A,
and x0 = x and xk = y

}
.

Moreover, define for A,U, V ⊂ Zd,

TA(U, V ) := inf{TA(x, y) : x ∈ U ∩A, y ∈ V }.

Note that we have TA ≥ T for all subsets A of Zd.
• Throughout the paper, c, c′, C, C ′, ci and Ci (i = 0, 1, . . . ) denote some constants with 0 < c, c′, C, C ′, ci, Ci <
∞. If it is necessary to emphasize the dependence on some parameter a, then we write c(a) for instance.

2. Preliminaries

In this paper, we use often properties for the Brownian motion, the simple random walk and the frog model. Hence,
this section summarizes those properties. In particular, Lemma 2.2 proves the scaling invariance of energy, which
corresponds to Step 0 in Section 1.3.

2.1. Some properties of simple random walk and Brownian motion. We start with some simple estimates for
the hitting time and the range of the simple random walk.

Lemma 2.1. For simplicity of notation, we use the notation (Si)
∞
i=0 to express the simple random walk (S0

i )
∞
i=0

starting at 0. Then, the following results hold:
(i) Let Rt be the range of the random walk up to time t, i.e., Rt := {Si : i ∈ J0 , tK}. There exists a positive

constant c such that for all t ≥ m2,

P(|Rt| ≤ m) ≤ exp(−ct/m2).

(ii) For any a > 0, there exists a constant c = c(a) ∈ (0, 1) such that for all n ∈ N,

sup
|x|≤a

√
n

P(t(0, x) ≥ n) ≤ c.

(iii) There exist positive constants c and C such that for all x ∈ Z and n ∈ N,

P(t(0, x) ≤ n) ≤ C exp(−cx2/n).

Proof. By the usual central limit theorem,

lim
k→∞

P(Sk2 ≤ k) = P(Z ≤ 1) < 1,

where Z is a standard normal random variable. Therefore,

sup
k≥1

P(|Rk2 | ≤ k) ≤ sup
k≥1

P(Sk2 ≤ k) =: α < 1.

This combined with the Markov property implies that for t ≥ m2,

P(|Rt| ≤ m) ≤ P
(∣∣{Si : i ∈ Jjm2 + 1 , (j + 1)m2K}

∣∣ ≤ m ∀j ∈ J0 , t/m2K
)
≤ αt/2m2

,

and part (i) follows. For part (ii), we use Donsker’s invariance principle: as n→ ∞,

sup
|x|≤a

√
n

P(t(0, x) ≥ n) = P
(
t(0, ⌊a

√
n⌋) ≥ n

)
−→ PBM

0 (τa ≥ 1) ∈ (0, 1),

where PBM
0 is the law of Brownian motion starting at 0 and τa is the hitting time of Brownian motion to a (see also

above (1.3)). This implies part (ii) immediately. Let us finally prove part (iii). From [21, Proposition 2.1.2-(b)], there
exist constants c and C such that for all x ∈ Z \ {0} and n ∈ N,

P(t(0, x) ≤ n) ≤ P
(

max
1≤i≤n

|Si| ≥ |x|
)

≤ C exp(−cx2/n),

and part (iii) follows. □

Let us next state some properties for the hitting time of the Brownian motion.

Lemma 2.2. Given ξ > 0 and f ∈ C(ξ), we define the rescaled function fξ(x) := ξ−1f(
√
ξx). Then, fξ ∈ C(1) and

E(f) =
√
ξE(fξ) for any ξ > 0 and f ∈ C(ξ). As a corollary, the function r defined in (1.4) satisfies

r(ξ) =
√
ξ r(1) ∀ξ > 0.
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Proof. Let ξ > 0 and f ∈ C(ξ). Since limx→∞ f(x) = ξ, we have limx→∞ fξ(x) = 1, and fξ ∈ C(1) holds. Moreover,
by the scaling invariance of Brownian motion, i.e., the laws of (Bt)t≥0 and (Bξt/

√
ξ)t≥0 coincide (see for instance [17,

Lemma 9.4]), we have

−E(f) =

∫
R
logPBM

x (τy ≥ f(y)− f(x) ∀y ∈ R) dx

=

∫
R
logPBM

x/
√
ξ

(
τy/

√
ξ ≥ ξ−1(f(y)− f(x)) ∀y ∈ R

)
dx.

By the change of variables t = x/
√
ξ and s = y/

√
ξ, the rightmost side above is equal to√

ξ

∫
R
logPBM

t

(
τs ≥ ξ−1f(

√
ξs)− ξ−1f(

√
ξt) ∀s ∈ R

)
dt

=
√
ξ

∫
R
logPBM

t (τs ≥ fξ(s)− fξ(t) ∀s ∈ R) dt = −
√
ξE(fξ).

Therefore, we obtain the equality E(f) =
√
ξE(fξ), which also implies that r(ξ) =

√
ξr(1). □

Lemma 2.3. We have for any u > 0,

d

du
PBM
0

(
max
0≤s≤1

Bs ≤ u

)
=

√
2

π
e−u2/2.

As a consequence, for all t, u > 0,

PBM
0 (τu ≥ t) =

√
2

π

∫ u/
√
t

0

e−s2/2 ds ≍ 1 ∧ u√
t
.

Proof. The first statement is proved in [17, page 96]. Hence, the scaling invariance of Brownian motion shows that for
all t, u > 0,

PBM
0 (τu ≥ t) = PBM

0

(
max
0≤s≤t

Bs ≤ u

)
= PBM

0

(
max
0≤s≤1

Bs ≤
u√
t

)
=

√
2

π

∫ u/
√
t

0

e−s2/2 ds.

The last asymptotic formula follows from that for all x > 0,

x ∧ 1

3
≤
∫ x∧1

0

e−s2/2 ds ≤
∫ x

0

e−s2/2 ds ≤ x ∧
√
π,

and the proof is complete. □

In Step 2 of Section 1.3, we use Donsker’s invariance principle and approximate the trajectory of the simple random
walk by that of the Brownian motion. To do this procedure rigorously, for any function f on R and ϵ > 0, we define
two perturbed versions f±,ϵ of f by

f+,ϵ(u) = sup
v∈[u−ϵ,u+ϵ]

f(v), f−,ϵ(u) = inf
v∈[u−ϵ,u+ϵ]

f(v) ∀u ∈ R.(2.1)

In particular, the following lemmas play a key role in approximating the energy by using step functions in Step 2a of
Section 1.3.

Lemma 2.4. Let f and g be bounded functions on R with f(x) ≤ g(x) for all x ∈ R. For all positive constants
ϵ1, ϵ2,M , there exists n0 ∈ N such that for all n ≥ n0 and x ∈ J−M

√
n, M

√
nK,

PBM
x/

√
n

(
τv ≥ f+,ϵ1(v)− g(x/

√
n) ∀v ∈ [−M,M ]

)
− ϵ2

≤ P
(
t(x, y) ≥ n(f(y/

√
n)− g(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)

≤ PBM
x/

√
n

(
τv ≥ f−,ϵ1(v)− g(x/

√
n) ∀v ∈ [−M,M ]

)
+ ϵ2.

(2.2)

Proof. Let ϵ1, ϵ2,M > 0. Without loss of generality, we assume that g(x/
√
n) = 0 by subtracting g(x/

√
n) from f

and g if needed. Let (Bt)t≥0 be the Brownian motion starting at x/
√
n, and (Si)

∞
i=0 the simple random walk starting

at x. The Komlós–Major–Tusnády approximation (see [11, Lemma 17] for instance) allows us to couple ( 1√
n
S⌊nt⌋)t≥0

and (Bt)t≥0 on a common probability space with probability measure P in such a way that for all n large enough
depending on ϵ1, ϵ2, f ,

P(Ec
n) < ϵ2, where En :=

{
sup

0≤t≤∥f∥∞

∣∣∣∣Bt −
1√
n
S⌊nt⌋

∣∣∣∣ < ϵ1
2

}
.(2.3)
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We first consider the second inequality in (2.2). Suppose that En occurs, and assume further that for all y ∈
J−M

√
n, M

√
nK,

t(x, y) ≥ nf(y/
√
n).(2.4)

If y ≥ x, then (2.4) implies sup{St : t ≤ nf(y/
√
n)} ≤ y. Thus, by En, choosing y := ⌊(v− (ϵ1/2))

√
n⌋, one has for all

v ∈ [x/
√
n+ ϵ1,M ],

sup
{
Bt : t ≤ f−,ϵ1(v)

}
≤ sup

{
Bt : t ≤ f(y/

√
n)
}
<

y√
n
+
ϵ1
2

≤ v,

which implies τv ≥ f−,ϵ1(v). By symmetry, we have τv ≥ f−,ϵ1(v) for all v ∈ [−M,x/
√
n − ϵ1]. Observe that for all

v ∈ R with |v − x/
√
n| ≤ ϵ1, by the assumption that f ≤ g, we have f−,ϵ1(v) ≤ f(x/

√
n) ≤ g(x/

√
n) = 0. Hence, we

have τv ≥ f−,ϵ1(v) for all v ∈ [−M,M ]. In conclusion,

En ∩
{
t(x, y) ≥ nf(y/

√
n) ∀y ∈ J−M

√
n, M

√
nK
}
⊂
{
τv ≥ f−,ϵ1(v) ∀v ∈ [−M,M ]

}
.

This combined with (2.3) yields the second inequality of (2.2).
Next, we consider the first inequality in (2.2). Suppose that En occurs and that τv ≥ f+,ϵ1(v) holds for all v ∈

[−M,M ]. If v ≥ x/
√
n, then sup{Bt : t ≤ nf+,ϵ1(v)} ≤ v. Thus, by En, for all y ∈ Jx, M

√
nK, with v := y/

√
n− ϵ1/2,

sup
{
Sn : n ≤ f(y/

√
n)
}
< sup

{
Bt : t ≤ f+,ϵ1(v)

}
+
ϵ1
2

≤ v +
ϵ1
2

=
y√
n
,

which implies t(x, y) ≥ f(y/
√
n). By symmetry, we have t(x, y) ≥ f(y/

√
n) for all y ∈ J−M

√
n, xK. Putting things

together, we reach

En ∩
{
τv ≥ f+,ϵ1(v) ∀v ∈ [−M,M ]

}
⊂
{
t(x, y) ≥ nf(y/

√
n) ∀y ∈ J−M

√
n, M

√
nK
}
.

This combined with (2.3) yields the first inequality of (2.2). □

Lemma 2.5. Fix ξ > 0. Let f ∈ CStep(ξ) (which is the set of all step functions in C(ξ)) and let Γ be the set of all the
points of discontinuity of f . Then, for any u ∈ Γc,

lim
δ↘0

PBM
u

(
τv ≥ f+,δ(v)− f(u) ∀v ∈ R

)
= PBM

u (τv ≥ f(v)− f(u) ∀v ∈ R).

Proof. Since f is bounded, we can take a constant M such that the support of f is in [−M,M ]. Hence, it suffices to
show that for any u ∈ Γc,

lim
δ↘0

PBM
u

(
τv ≥ f+,δ(v)− f(u) ∀v ∈ [−M,M ]

)
= PBM

u (τv ≥ f(v)− f(u) ∀v ∈ [−M,M ]).(2.5)

To this end, we fix u ∈ Γc. Due to the monotonicity of f+,δ in δ, the limit of the above expression exists and

lim
δ↘0

PBM
u

(
τv ≥ f+,δ(v)− f(u) ∀v ∈ [−M,M ]

)
≤ PBM

u (τv ≥ f(v)− f(u) ∀v ∈ [−M,M ]).

For the opposite inequality, let Γ be the set of all the points of discontinuity of the function f . Note that Γ is finite
since f is a step function. Moreover, set f+(x) := limδ↘0 f

+,δ(x) and consider the event

E :=
{
∀w ∈ Γ, τw ̸= f+(w)− f(u), lim

n→∞
τw±1/n = τw

}
.

Clearly, PBM
u (E) = 1 holds due to the finiteness of Γ. Hence, the desired opposite inequality follows once we prove that{

∀δ > 0, ∃v ∈ [−M,M ], τv < f+,δ(v)− f(u)
}
∩ E ⊂ {∃v ∈ [−M,M ], τv < f(v)− f(u)}.(2.6)

Indeed, (2.6) combined with the monotonicity of f+,δ in δ implies that

lim
δ↘0

PBM
u

(
τv ≥ f+,δ(v)− f(u) ∀v ∈ [−M,M ]

)
= PBM

u

({
∃δ > 0, τv ≥ f+,δ(v)− f(u) ∀v ∈ [−M,M ]

}
∪ Ec

)
≥ P(τv ≥ f(v)− f(u) ∀v ∈ [−M,M ]),

and the desired opposite inequality follows.
To prove (2.6), suppose that the event in the left-hand side of (2.6) occurs. Then, for each δ ∈ (0, 1], we can take

vδ ∈ [−M,M ] such that τvδ < f+,δ(vδ) − f(u). By the compactness of [0, 1] and [−M,M ], there exist a sequence
(δk)

∞
k=1 on (0, 1] and v∗ ∈ [−M,M ] such that δk ↘ 0 and vδk → v∗ as k → ∞. If v∗ /∈ Γ, then f+,δk(vδk) = f(vδk)

holds for a sufficiently large k. This means that we have τvδk < f(vδk) − f(u), and thus the event in the right-hand
side of (2.6) occurs. Let us next treat the case where v∗ ∈ Γ. Since f is a step function, f+,δk(vδk) ≤ f+(v∗) holds for
all large k. Hence,

lim sup
k→∞

τvδk ≤ lim sup
k→∞

f+,δk(vδk)− f(u) ≤ f+(v∗)− f(u).
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This, together with the fact that τv∗ ̸= f+(v∗) − f(u) and τvδk → τv∗ as k → ∞ on the event E , implies τv∗ <

f+(v∗) − f(u). Hence, there almost surely exists a (random) constant ε > 0 such that τv < f+(v∗) − f(u) for all
v ∈ [v∗ − ε, v∗ + ε]. Moreover, since f is a step function and v∗ ∈ Γ, there exists an open interval I ⊂ [−M,M ] such
that v∗ is an endpoint of I and f(v) = f+(v∗) for all v ∈ I. Since [v∗ − ε, v∗ + ε] ∩ I is not empty, we can take
v ∈ [v∗ − ε, v∗ + ε] ∩ I ⊂ [−M,M ] such that

τv < f+(v∗)− f(u) = f(v)− f(u),

and the event in the right-hand side of (2.6) also occurs in the case where v∗ ∈ Γ. Therefore, (2.6) is proved. □

2.2. Some prior estimates of the one-dimensional frog model. In this part, we present some lemmas on large
deviation behaviors of the first passage time of the frog model around the starting point.

Lemma 2.6. There exists c ∈ (0, 1/64) such that for any δ > 0, A ≥ 4c
√
δ, and n large enough, we have

(2.7) P(|Bδn| ≤ cδ
√
n/A) ≤ exp(−A

√
n),

where for t ≥ 0,
Bt := {x ∈ Z : T(0, x) ≤ t}.

Consequently, for any η,A > 0 satisfying A ≥ 32cη,

(2.8) P
(
T(0, ⌊η

√
n⌋) ∧ T(0,−⌊η

√
n⌋) ≥ 2Aηn/c

)
≤ exp(−A

√
n).

Proof. For any k ≥ 1, let us define
Tk := min{t ∈ N : |Bt| ≥ 2k}.

By Lemma 2.1-(i), there exists a positive constant c0 such that for t ≥ m2

(2.9) P(|Rt| ≤ m) ≤ exp(−2c0t/m
2),

where Rt is the range of the simple random walk starting at 0 up to time t (see also the statement of part (i) in
Lemma 2.1). Let

ϵ := (c0δ/4A)
2, kn := ⌊log2(

√
ϵn)⌋.

Next, we consider the filtration (Fj)j≥1 defined by

Fj := σ(T1, · · · ,Tj).

By the Markov inequality, for any α > 0

P(|Bδn| ≤
√
ϵn) ≤ P(Tkn ≥ δn) ≤ e−αδnEeαTkn = e−αδnE

 kn∏
j=1

E[eα(Tj−Tj−1) | Fj−1]

 .(2.10)

Since |BTj−1
| ≥ 2j−1, using (2.9), we have for t ≥ 22j

P(Tj − Tj−1 > t | Fj−1) ≤
(
P(|Rt| < 2j)

)2j−1

≤ e−c0t/2
j

.(2.11)

Taking α := c0/(2
√
ϵn) = 2A/(δ

√
n), we have c0/2j ≥ c0/2

kn ≥ c0/
√
εn = 2α for all j ∈ J1 , knK. Hence, for all

j ∈ J1, knK,

E[eα(Tj−Tj−1) | Fj−1] ≤ α

∫ ∞

0

eαtP(Tj − Tj−1 > t | Fj−1)dt

≤ α22jeα2
2j

+ α

∫ ∞

22j
eαte−c0t/2

j

dt ≤ eα2
2j+1

+ α

∫ ∞

22j
e−αtdt ≤ 2eα2

2j+1

.

Thus, since 22kn+2 ≤ 4ϵn ≤ δn/4 and αδ/2 = A/
√
n by the choice of ϵ, α and the condition A ≥ 4c

√
δ, we have for n

large enough depending on c0, ε, A,

e−αδnE

 kn∏
j=1

E[eα(Tj−Tj−1) | Fj−1]

 ≤ e−αδn
kn∏
j=1

(
eα2

2j+1

+ 1
)
≤ e−αδn

kn∏
j=1

2eα2
2j+1

≤ exp
(
−αδn+ kn log 2 + α22kn+2

)
≤ exp(−αδn/2) = exp (−A

√
n).

This combined with (2.10) yields (2.7).
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Next we treat (2.8). Given η,A > 0, we set δ := 2Aη/c. Since A2 ≥ 32Acη = 16c2δ by the assumption A ≥ 32cη,
Part (i) gives

P
(
|Bδn| > 2η

√
n
)
≥ 1− exp(−A

√
n).

Moreover, if |Bδn| > 2η
√
n, then either T(0, ⌊η

√
n⌋) < δn or T(0,−⌊η

√
n⌋) < δn. Hence,

P
(
T(0, ⌊η

√
n)⌋) ∧ T(0,−⌊η

√
n⌋) < δn

)
≥ 1− exp(−A

√
n),

and the proof is complete. □

Lemma 2.7. The following results hold:

(i) For any α > 0, there exists c = c(α) > 0 such that if n ∈ N is large enough, then for all x ∈ J−
√
n,

√
nK,

P
(
T[−

√
αn,

√
αn](0, x) ≥ n

)
≤ exp(−c

√
n).

(ii) There exists a universal constant c > 0 such that for any α, β > 0, if n is sufficiently large depending on α
and β, then

P
(
T(0, ⌊α

√
n⌋) ≥ βn

)
≤ exp

(
−cα−1β

√
n
)
.

Proof. First of all, let c ∈ (0, 1/64) be the constant as in Lemma 2.6 and recall Tk = inf{t : |Bt| ≥ 2k}. Fix α > 0 and
x ∈ Z with |x| ≤

√
n, and define

ε := min{α, c2/4}, kn := ⌊log2
√
εn⌋.

Then, for all n sufficiently large (independently of c, α and ϵ),

(2.12) P(Tkn > n/2) ≤ P(|Bn/2| ≤
√
εn) ≤ P(|Bn/2| ≤ c

√
n/2) ≤ exp(−

√
n),

where we have used Lemma 2.6 with δ = 1/2, A = 1 ≥ 4c
√
δ in the last inequality. Note that, at the time Tkn

, the
number of active frogs is larger than

√
εn/2 and the set of sites visited by active frogs is a subset of J−

√
εn,

√
εnK.

Therefore, by the strong Markov property, we have for any x ∈ Z with |x| ≤
√
n,

P
(
T[−

√
εn,

√
εn](0, x) ≥ n,Tkn

≤ n/2
)
≤
{

max
|z|≤

√
εn

P(t(z, x) ≥ n/2)

}√
εn/2

≤ exp(−c′
√
n),

for some constant c′ = c′(ε) > 0. Here the last inequality follows from Lemma 2.1-(ii) and that max{|z − x| : |z| ≤√
εn, |x| ≤

√
n} ≤ (1 +

√
ε)
√
n. Combining this with (2.12) yields that

P
(
T[−

√
εn,

√
εn](0, x) ≥ n

)
≤ exp(−

√
n) + exp(−c′

√
n).

Hence, part (i) of the lemma follows since T[−
√
εn,

√
εn](0, x) ≥ T[−

√
αn,

√
αn](0, x) by ε ≤ α.

Next, we consider part (ii). Fix α, β > 0. Then, letting n large enough and taking m := ⌈α2n⌉ and γ := β/(2α2),
one has

P
(
T(0, ⌊α

√
n⌋) ≥ βn

)
≤ P

(
T(0, ⌊

√
m⌋) ≥ γm

)
.

Hence, for part (ii), it suffices to check that there exists a positive constant c (which is independent of α and β) such
that if n is large enough depending on α and β, then

P
(
T(0, ⌊

√
m⌋) ≥ γm

)
≤ exp(−cα−1β

√
n).(2.13)

Since TI(0, ·) ≥ T(0, ·) for all I ⊂ Z, part (i) implies that there exists a positive constant c1 (which is independent of
α and β) such that for all ℓ sufficiently large,

P
(
T(0, ⌊

√
ℓ⌋) ≥ ℓ

)
≤ exp(−c1

√
ℓ).(2.14)

In the case γ ≥ 1, (2.13) is a direct consequence of (2.14). However, (2.13) is not trivial in the case γ < 1 since
{T(0, ⌊

√
m⌋) ≥ γm} ⊃ {T(0, ⌊

√
m⌋) ≥ m}. To overcome this problem, we use the subadditivity to obtain

T(0, ⌊
√
m⌋) ≤

K−1∑
i=0

T
(
i⌊(γ/2)

√
m⌋, (i+ 1)i⌊(γ/2)

√
m⌋
)
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with K := ⌈2/γ⌉. Therefore, the union bound, the translation invariance and (2.14) show that there exists a positive
constant c (which is independent of α and β) such that if n is large enough depending on α and β, then

P
(
T(0, ⌊

√
m⌋) ≥ γm

)
≤ K × P

(
T(0, ⌊(γ/2)

√
m⌋) ≥ γm

K

)
≤ K × P

(
T(0, ⌊

√
(γ2/4)m⌋) ≥ (γ2/4)m

)
≤
( 2
γ
+ 1
)
exp
(
−c1

4
α−1β

√
n
)
≤ exp(−cα−1β

√
n).

This is the desired conclusion (2.13), and part (ii) is proved. □

Lemma 2.8. There exists a universal constant α > 0 such that for all L ∈ N and a, h > 0 satisfying a2 ≥ h, we have

P
(
T[−a,L](0, L) ≥ h

)
≤ exp(αh/a)P(T(0, L) ≥ h).

Proof. We notice that

{T[−a,L](0, L) ≥ h} ∩ {∀x < −a, t(x, 0) ≥ h} ⊂ {T(0, L) ≥ h},

and that the two events appearing the left-hand side are independent. Thus,

P(∀x < −a, t(x, 0) ≥ h)P
(
T[−a,L](0, L) ≥ h

)
≤ P(T(0, L) ≥ h).

Hence, once it is proved that there exists a universal constant α > 0 such that for all a, h > 0 with a2 ≥ h,

P(∀x < −a, t(x, 0) ≥ h) ≥ exp(−αh/a),(2.15)

the desired conclusion follows immediately. To prove (2.15), we use Lemma 2.1-(iii): there exist positive constants c
and C independent of x, h such that

P(t(x, 0) ≥ h) ≥ 1− C exp(−cx2/h).

Moreover, if x2 ≥ h, then
1− C exp(−cx2/h) ≥ exp

(
−c′ exp(−cx2/h)

)
,

with some c′ = c′(c, C) > 0. Hence, since
−∞∑

x=−a−1

exp(−cx2/h) ≤
∫ ∞

a

exp(−ct2/h)dt ≤ exp(−ca2/h)
∫ ∞

0

exp(−cs2/h)ds ≤
√
h/c exp(−ca2/h),

we have

P(∀x < −a, t(x, 0) ≥ h) ≥ exp

(
−

−∞∑
x=−a−1

c′ exp(−cx2/h)

)
≥ exp

(
−c′′

√
h exp(−ca2/h)

)
,

where c′′ = c′/
√
c. In addition, using e−t ≤ 1/(1 + t) for t > 0 and the Cauchy–Schwarz inequality, one has

√
h exp(−ca2/h) ≤

√
h

1 + (ca2/h)
≤

√
h

2
√
ca2/h

=
h

2a
√
c
,

With these observations, for all a, h > 0 with a2 ≥ h,

P(∀x < −a, t(x, 0) ≥ h) ≤ exp

(
− c′′h

2a
√
c

)
,

and (2.15) follows by taking α := c′′/(2
√
c). □

The following lemma gives a rough upper tail large deviation estimate, which is a counterpart of the result for the
continuous-time frog model [5, Theorem 2-(b)].

Lemma 2.9. There exist positive constants c and C such that for all n sufficiently large,

P(T(0, n) ≥ Cn) ≤ exp(−cn1/4).

Proof. By the subadditivity and the fact that TA ≥ T holds for all subsets A of Z, we have for all C > 0,

P (T(0, n) ≥ Cn) ≤ nP
(
T∆n(0)(0, 1) ≥

√
n
)
+ P

(
n−1∑
i=0

T∆n(i)(i, i+ 1)1{T∆n(i)(i, i+ 1) ≤
√
n} ≥ Cn

)
,(2.16)
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where ∆t(i) := Ji −
√
t/4, i +

√
t/4K for t > 0 and i ∈ N. Let us first estimate the first probability in the right-hand

side of (2.16). Note that by Lemma 2.7-(i), there exists a constant c0 > 0 such that for all t ≥ 1,

P
(
T∆t(0)(0, 1) ≥ t

)
≤ c−1

0 exp(−c0
√
t).(2.17)

This implies that for all n ∈ N,

P
(
T∆n(0)(0, 1) ≥

√
n
)
≤ P

(
T∆√

n(0)
(0, 1) ≥

√
n
)
≤ c−1

0 exp(−c0n1/4).(2.18)

We next estimate the second probability in the right-hand side of (2.16). Define for i = 0, . . . n− 1,

Xi := T∆n(i)(i, i+ 1)1{T∆n(i)(i, i+ 1) ≤
√
n}.

By definition, Xi’s are bounded from above by
√
n almost surely. Moreover, the translation invariance and (2.17)

imply that for all i = 0, . . . , n− 1 and t ∈ [1,
√
n],

P(Xi ≥ t) = P(T∆n(0) ≥ t) ≤ P(T∆t(0) ≥ t) ≤ c−1
0 exp(−c0

√
t).

This means that for all i = 0, . . . , n− 1,

E
[
exp

(
2c0
3

√
Xi

)]
≤ 1 + c−1

0

∫ ∞

1

t−3/2 dt <∞.

With these observations, the mean-value theorem proves that there exists a constant α = α(c0) > 0 such that for all
i = 0, . . . , n− 1,

E
[
exp

(
c

3n1/4
Xi

)]
≤ 1 +

c0
3n1/4

E
[
Xi exp

(
c0

3n1/4
Xi

)]
≤ 1 +

c0
3n1/4

E
[
Xi exp

(
c0
3

√
Xi

)]
≤ 1 +

6

c0n1/4
E
[
exp

(
2c0
3

√
Xi

)]
≤ 1 +

α

n1/4
.

(2.19)

Here we used the fact that Xi ≤
√
n almost surely in the second inequality. Furthermore, the third inequality follows

from the fact that exp(c0
√
t/3) ≥ c20t/18 for all t ≥ 0. To estimate the sum of (Xi)

n−1
i=0 by using (2.19), we divide

J0, n− 1K into ⌊
√
n⌋ groups as follows:

J0, n− 1K =
⌊
√
n⌋−1⋃
j=0

Ij , Ij :=
{
i ∈ J0 , n− 1K : i ≡ j (mod ⌊

√
n⌋)
}
.

Remark that Xi depends only on the frogs (Sx
· )|x−i|≤

√
n/4. Thus, for each j ≤ ⌊

√
n⌋, the random variables (Xi)i∈Ij

are independent. Therefore, Markov’s inequality and (2.19) show that if h ≥ 6α|Ij |/c0, then for each j = 0, . . . , ⌊
√
n⌋,

P

(∑
i∈Ij

Xi ≥ h

)
= P

(∑
i∈Ij

c0
3n1/4

Xi ≥
c0

3n1/4
h

)

≤ exp

(
− c0h

3n1/4

) ∏
i∈Ij

E
[
exp

(
c

3n1/4
Xi

)]

≤ exp

(
− c0h

3n1/4

)(
1 +

α

n1/4

)|Ij |

≤ exp

(
− c0h

6n1/4

)
.

For each j = 0, . . . , ⌊
√
n⌋ − 1, we have 12α

√
n/c0 ≥ 6α|Ij |/c0 due to |Ij | ≤ 2

√
n. This enables us to use the above

estimate with h = 12α
√
n/c0 to obtain

P

(
n−1∑
i=0

Xi ≥
12α

c0
n

)
≤

⌊
√
n⌋−1∑
j=0

P

(∑
i∈Ij

Xi ≥
12α

c0

√
n

)
≤

√
n exp(−αn1/4).

Therefore, combining this estimate with (2.16) and (2.18), we get the desired conclusion. □
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3. Large deviation of the first passage time: Proof of the main theorem

The aim of this section is to show Theorem 1.2. To this end, we fix ξ > 0 and prove

r∗ ∈ (0,∞),(3.1)

lim sup
n→∞

−1√
n
logP(T(0, n) ≥ (µ+ ξ)n) ≤ r(ξ) = r∗

√
ξ,(3.2)

lim inf
n→∞

−1√
n
logP(T(0, n) ≥ (µ+ ξ)n) ≥ r(ξ) = r∗

√
ξ.(3.3)

The proofs of these claims are based on the following three key propositions. The first proposition treats Step 1
of Section 1.3, which asserts a localization phenomenon of upper tail large deviation. We also observe a slowdown
phenomenon for the upper tail large deviation probability of the first passage time.

Proposition 3.1. The following results hold:
(i) For any ξ, δ > 0, there exists c = c(ξ, δ) > 0 such that for any M ∈ N, if n ∈ N is large enough depending on

M , then

P(T(0, n) ≥ (µ+ ξ)n) ≥ P
(
T(0, ⌊M

√
n⌋) ≥ (ξ + δ)n

)
− exp(−cn2/3).

(ii) For any ξ, c, δ, A > 0, there exists M0 = M0(ξ, c, δ, A) > 2 + ξ such that for any M ≥ M0, if n ∈ N large
enough depending on M ,

P(T(0, n) ≥ (µ+ ξ)n) ≤ exp(−A
√
n) + exp(c

√
n)

M∑
m=1

∑
(hi)mi=1∈Hδ

m,n

m∏
i=1

P
(
T(0, ⌊M

√
n⌋) ≥ hi

)
,

where

Hδ
m,n :=

{
(hi)

m
i=1 ∈ Nm : (ξ − δ)n ≤

m∑
i=1

hi ≤Mn

}
.(3.4)

(iii) (Slowdown phenomenon) For any ξ > 0, there exists a positive constant c = c(ξ) such that

P(T(0, n) ≥ (µ+ ξ)n) ≤ exp(−c
√
n).

The following two propositions justify Steps 2a and 2b of Section 1.3, which surfaces energy functionals and claims
that the ground state energies in C(ξ) and CStep(ξ) coincide, respectively (see above (1.3) for the definition of C(ξ) and
recall that CStep(ξ) is the set of all step functions in C(ξ)).

Proposition 3.2. For any ξ > 0, the following results hold:
(i) We have

lim sup
M→∞

lim sup
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≤ inf

f∈CStep(ξ)
E(f).

(ii) For any M sufficiently large,

lim inf
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≥ inf

f∈C(ξ)
E(f)−M−2.

Proposition 3.3. We have

inf
{
E(f) : f ∈ CStep(ξ)

}
= inf {E(f) : f ∈ C(ξ)} .

The proofs of Propositions 3.1, 3.2 and 3.3 will be presented in the subsequent sections, and let us here complete
the proofs of (3.1), (3.2) and (3.3).

Proof of (3.1) and (3.2). We first prove r∗ <∞. Use the fact that log(1− t) ≥ −t/2 for t ∈ (0, 1) and Lemma 2.3
to obtain

logPBM
0 (τx ≥ 1) ≥ −1

2
PBM
0 (τx < 1) ≥ − 1√

2π
e−x2/2.

Since the function g(x) = 1{x ≥ 1} belongs to C(1), we have

r∗ ≤ E(g) = −
∫ 1

−∞
logPBM

x (τ1 ≥ 1) dx = −
∫ ∞

0

logPBM
0 (τx ≥ 1) dx

≤ 1√
2π

∫ ∞

0

e−x2/2 dx =
1

2
<∞.

(3.5)
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Let us next prove (3.2). Lemma 2.2 and Propositions 3.3, 3.2-(i) and 3.1-(i) show that for any δ > 0,

r∗
√
ξ + δ = inf

f∈CStep(ξ+δ)
E(f) ≥ lim sup

M→∞
lim sup
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ (ξ + δ)n

)
≥ lim sup

n→∞
min

{
−1√
n
logP(T(0, n) ≥ (µ+ ξ)n), cn1/6

}
= lim sup

n→∞

−1√
n
logP(T(0, n) ≥ (µ+ ξ)n),

(3.6)

and (3.2) follows by letting δ ↘ 0.
It remains to show r∗ > 0. Due to (3.6) and Proposition 3.1-(iii) with ξ = δ = 1,

−r∗
√
2 ≤ lim inf

n→∞

1√
n
logP(T(0, n) ≥ (µ+ 1)n) ≤ −c(1) < 0,

where c(1) is a positive constant as in Proposition 3.1-(iii). Therefore, r∗ > 0 holds and we obtain r∗ ∈ (0,∞). □

Proof of (3.3). By Proposition 3.1-(ii), for any c, δ, A > 0, there exists M0 > 2 + ξ such that for all M ≥M0,

lim inf
n→∞ −1√

n

logP(T(0, n) ≥ (µ+ ξ)n)

≥ min

{
A,−c+ min

1≤m≤M
lim inf
n→∞

min
(hi)mi=1∈Hδ

m,n

−1√
n

m∑
i=1

logP
(
T(0, ⌊M

√
n⌋) ≥ hi

)}
.

Thus, it suffices to prove that for any δ ∈ (0, ξ/2), M ≥M0 and m ∈ J1, MK,

lim inf
n→∞

min
(hi)mi=1∈Hδ

m,n

−1√
n

m∑
i=1

logP
(
T(0, ⌈M

√
n⌉) ≥ hi

)
≥ r∗

√
ξ − 2δ − 2M−1.(3.7)

Indeed, by (3.7),

lim inf
n→∞

−1√
n
logP(T(0, n) ≥ (µ+ ξ)n) ≥ min

{
A,−c+ r∗

√
ξ − 2δ − 2M−1

}
.

Hence, letting M → ∞, and then c, δ ↘ 0 and A→ ∞ proves (3.3).
To prove (3.7), we fix M ≥ M0 and m ∈ J1, MK. By Proposition 3.2-(ii), if n is large enough depending on M, δ,

for any i ∈ J1, M2/δK,

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ iδn/M

)
≥ r∗

√
iδ/M − 2M−2.

Therefore, for n large enough, we have

min
(hi)mi=1∈Hδ

m,n

−1√
n

m∑
i=1

logP
(
T(0, ⌊M

√
n⌋) ≥ hi

)
≥ min

(hi)mi=1∈Hδ
m,n

−1√
n

m∑
i=1

logP
(
T(0, ⌊M

√
n⌋) ≥

⌊
Mhi
δn

⌋
δn

M

)

≥ min
(hi)mi=1∈Hδ

m,n

m∑
i=1

(
r∗

√⌊
Mhi
δn

⌋
δ

M
− 2M−2

)

≥ r∗ × min
(hi)mi=1∈Hδ

m,n

m∑
i=1

√(
hi
n

− δ

M

)
+

− 2M−1.

Since r∗ ≥ 0 and
√
a1 + · · ·+√

aℓ ≥
√
a1 + · · ·+ aℓ for any a1, . . . , aℓ ≥ 0, this is further bounded from below by

r∗ × min
(hi)mi=1∈Hδ

m,n

√√√√ m∑
i=1

(
hi
n

− δ

M

)
+

− 2M−1 ≥ r∗
√
ξ − 2δ − 2M−1,

which is the desired bound (3.7). □
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4. Arising of energy functional: Proof of Proposition 3.2

In this section, we focus on proving that

(4.1) lim
M→∞

lim
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
= inf

f∈C(ξ)
E(f).

The section is divided into four parts. First, we explain the heuristic of the proof in Section 4.1. Second, we prove the
lower bound (Proposition 3.2-(i)) in Section 4.2. Third, we prove the upper bound (Proposition 3.2-(ii)) in Section 4.3.
Finally, we prove an auxiliary result, Lemma 4.2, that is used in the proof of Proposition 3.2-(ii).

4.1. Heuristic behind the proof. We explain here general ideas to prove Proposition 3.2. Observe that

T(0, ⌊M
√
n⌋) ≥ ξn ⇒ ∃ f ∈ C(ξ); ∀x, y ∈ J−M

√
n, M

√
nK, t(x, y) ≥ n(f(x/

√
n)− f(y/

√
n)),(4.2)

T(0, ⌊M
√
n⌋) ≥ ξn ⇐ ∃ f ∈ CStep(ξ); ∀x, y ∈ J−M

√
n, M

√
nK, t(x, y) ≥ n(f(x/

√
n)− f(y/

√
n)),(4.3)

Indeed, if T(0, ⌊M
√
n⌋) ≥ ξn, letting f(u) := T(0,

√
nu)/n for u ∈ [−M,M ] so that f ∈ C(ξ), then

t(x, y) ≥ T(0, y)− T(0, x) = n(f(y/
√
n)− f(x/

√
n)),

where we have used the triangular inequality. This implies (4.2). On the other hand, Lemma 4.1 below shows that
if the right-hand side of (4.3) holds for some step function f ∈ CStep(ξ), then T(0, ⌊M

√
n⌋) ≥ ξn. Additionally, as it

will be shown in Section 6, we can interchange the spaces C(ξ) and CStep(ξ) in the computation of the rate function,
and hence we essentially have the equivalence relation in (4.2).

As a consequence,

P
(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≈ P

(
∃f ∈ C(ξ); ∀x, y ∈ J−M

√
n, M

√
nK, t(x, y) ≥ n(f(y/

√
n)− f(x/

√
n))
)
.(4.4)

By the Laplace principle, one expects that the right-hand side of (4.4) is approximated by

sup
f∈C(ξ)

P
(
∀x, y ∈ J−M

√
n, M

√
nK, t(x, y) ≥ n(f(y/

√
n)− f(x/

√
n))
)

= sup
f∈C(ξ)

∏
x∈J−M

√
n,M

√
nK

P
(
∀y ∈ J−M

√
n, M

√
nK, t(x, y) ≥ n(f(y/

√
n)− f(x/

√
n))
)
.

By Donsker’s invariant principle, one further expects that

P
(
∀y ∈ J−M

√
n, M

√
nK, t(x, y) ≥ n(f(x/

√
n)− f(y/

√
n))
)

≈ PBM
x/

√
n

(
∀v ∈ [−M,M ], τv ≥ f(v)− f(x/

√
n)
)
.

Hence, one would get ∏
x∈J−M

√
n,M

√
nK

P
(
∀y ∈ J−M

√
n, M

√
nK, t(x, y) ≥ n(f(y/

√
n)− f(x/

√
n))
)

≈
∏

x∈J−M
√
n,M

√
nK

PBM
x/

√
n

(
∀v ∈ [−M,M ], τv ≥ f(v)− f(x/

√
n)
)

= exp

√
n · 1√

n

∑
x∈J−M

√
n,M

√
nK

logPBM
x/

√
n(∀v ∈ [−M,M ], τv ≥ f(v)− f(x/

√
n))


≈ exp

(
√
n

∫ M

−M

logPBM
u

(
∀v ∈ [−M,M ], τv ≥ f(v)− f(u)

)
du

)
= exp

(
−
√
n(E(f) + oM (1))

)
.

Combining these approximations we arrive at the desired equation (4.1).
In fact, some of them are not straightforward and we will only prove that

inf
f∈C(ξ)

E(f)− oM (1) ≤ lim
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≤ inf

f∈CStep(ξ)
E(f) + oM (1).
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4.2. Proof of Proposition 3.2-(i). Let us start with a simple observation.

Lemma 4.1. Let ξ > 0 and f ∈ CStep(ξ). If M is large enough, then for all n ∈ N,

logP
(
T[−M

√
n,M

√
n](0, ⌊M

√
n⌋) ≥ ξn

)
≥

∑
x∈J−M

√
n,M

√
nK

logP
(
t(x, y) ≥ n(f(y/

√
n)− f(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
.

Proof. Fix ξ > 0 and f ∈ CStep(ξ). By definition, f(0) = 0 holds and we can take a sufficiently large M0 ∈ N such that
f is constant outside [−M0,M0]. Note that f(M0) = ∥f∥∞ = ξ, where ∥f∥∞ = supu∈R f(u) (see also above (1.3)).
Let M ≥M0 + 1 and n ∈ N. Suppose that

t(x, y) ≥ n(f(y/
√
n)− f(x/

√
n)) ∀x, y ∈ J−M

√
n, M

√
nK.

Then, since ξ = f(M − 1) ≤ f(⌊M
√
n⌋/

√
n) ≤ f(M) = ξ holds, one has for all sequence (xi)

ℓ
i=0 on Z with x0 = 0 and

xℓ = ⌊M
√
n⌋,

ℓ∑
i=1

t(xi−1, xi) ≥
ℓ∑

i=1

n(f(xi/
√
n)− f(xi−1/

√
n)) = n(f(xℓ/

√
n)− f(0)) = ξn,

which implies T(0, ⌊M
√
n⌋) ≥ ξn. Therefore,

logP
(
T[−M

√
n,M

√
n](0, ⌊M

√
n⌋) ≥ ξn

)
≥ logP

(
t(x, y) ≥ n(f(y/

√
n)− f(x/

√
n)) ∀x, y ∈ J−M

√
n, M

√
nK
)

=
∑

x∈J−M
√
n,M

√
nK

logP
(
t(x, y) ≥ n(f(y/

√
n)− f(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
,

where the last equation follows from the independence of the simple random walks. Hence, the lemma follows. □

We are now in a position to prove Proposition 3.2-(i).

Proof of Proposition 3.2-(i). Using Lemma 2.8 with a =M
√
n, L = ⌊M

√
n⌋, and h = ξn, one has

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≤ αξ

M
− 1√

n
logP

(
T[−M

√
n,M

√
n](0, ⌊M

√
n⌋) ≥ ξn

)
,

where α is a universal, positive constant as in Lemma 2.8. Therefore, it suffices to prove

lim sup
M→∞

lim sup
n→∞

−1√
n
logP

(
T[−M

√
n,M

√
n](0, ⌊M

√
n⌋) ≥ ξn

)
≤ inf

f∈CStep(ξ)
E(f).(4.5)

Let η > 0 and M ∈ N be sufficiently small and large, respectively. We take f∗ ∈ CStep(ξ) such that

E(f∗) ≤ inf
f∈CStep(ξ)

E(f) + η.(4.6)

Lemma 4.1 yields that for all n ∈ N,

(4.7) logP
(
T[−M

√
n,M

√
n](0, ⌊M

√
n⌋) ≥ ξn

)
≥ In,

where

In :=
∑

x∈J−M
√
n,M

√
nK

logP
(
t(x, y) ≥ n(f∗(y/

√
n)− f∗(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
.

We enumerate the points of discontinuity of f∗ as u−ℓ′ < u−1 < 0 < u1 < · · · < uℓ and set u0 := 0. Given ϵ ∈ (0, 1)
and n ∈ N, let

K(1)
ϵ,n := (

√
nK(1)

ϵ ) ∩ Z, K(2)
ϵ,n := (

√
nK(2)

ϵ ) ∩ Z,
where

K(1)
ϵ := [−M,M ] \

ℓ⋃
i=−ℓ′

[ui − 2ϵ, ui + 2ϵ] , K(2)
ϵ :=

ℓ⋃
i=−ℓ′

[ui − 2ϵ, ui + 2ϵ] .

Now, decompose

In = I(1)ϵ,n + I(2)ϵ,n ,
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where

I(1)ϵ,n :=
∑

x∈K
(1)
ϵ,n

logP
(
t(x, y) ≥ n(f∗(y/

√
n)− f∗(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
,

I(2)ϵ,n :=
∑

x∈K
(2)
ϵ,n

logP
(
t(x, y) ≥ n(f∗(y/

√
n)− f∗(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
.

Once we prove

lim sup
ϵ↘0

lim sup
n→∞

−1√
n
I(1)ϵ,n ≤ −

∫ M

−M

logPBM
u (τv ≥ f∗(v)− f∗(u) ∀v ∈ R) du,(4.8)

lim sup
ϵ↘0

lim sup
n→∞

−1√
n
I(2)ϵ,n = 0,(4.9)

these combined with (4.6) and (4.7) imply

lim sup
M→∞

lim sup
n→∞

−1√
n
logP

(
T[−M

√
n,M

√
n](0, ⌊M

√
n⌋) ≥ ξn

)
≤ lim sup

M→∞
lim sup

ϵ→0
lim sup
n→∞

−1√
n
(I(1)ϵ,n + I(2)ϵ,n)

≤ −
∫
R
logPBM

u (τv ≥ f∗(v)− f∗(u) ∀v ∈ R) du = E(f∗) ≤ inf
f∈C(ξ)

E(f) + η,

and hence (4.5) follows by letting η ↘ 0.
It remains to prove (4.6) and (4.7). We first check (4.8). Let δ, δ′ ∈ (0, ε) be sufficiently small. Given u ∈ R, we

define
hδ∗(u) := PBM

u

(
τv ≥ f+,δ

∗ (v)− f∗(u) ∀v ∈ R
)
.

Remark that since f∗ is a step function, we can take M sufficiently large such that f∗|(−∞,−M+1] and f∗|[M−1,∞) are
both constant functions, and thus for any u ∈ R,

(4.10) hδ∗(u) = PBM
u

(
τv ≥ f+,δ

∗ (v)− f∗(u) ∀v ∈ [−M + 1,M − 1]
)
.

Lemma 2.4 with f = g = f∗ and ϵ1 = δ, ϵ2 = δ′ yields that if n is large enough and x ∈ K
(1)
ϵ,n, then

P
(
t(x, y) ≥ n(f∗(y/

√
n)− f∗(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
≥ hδ∗(x/

√
n)− δ′.(4.11)

Moreover, due to the definition of K(1)
ϵ and the fact that ∥f∗∥∞ = ξ, we have for all u ∈ K

(1)
ϵ ,

hδ∗(u) ≥ PBM
u (τu−ϵ ∧ τu+ϵ ≥ ξ) = PBM

0

(
max
0≤t≤ξ

|Bt| ≤ ϵ

)
=: c(ξ, ϵ) ∈ (0, 1).(4.12)

By (4.11) and (4.12), for all x ∈ K
(1)
ϵ,n,

P
(
t(x, y) ≥ n(f∗(y/

√
n)− f∗(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
≥
(
1− δ′

c(ξ, ϵ)

)
hδ∗(x/

√
n).

It follows that

I(1)ϵ,n ≥
∑

x∈K
(1)
ϵ,n

log hδ∗(x/
√
n) + (2M

√
n+ 1) log

(
1− δ′

c(ξ, ϵ)

)
.(4.13)

Notice that if 0 ≤ h ≤ δ, then for all x ∈ K
(1)
ϵ,n and v ∈ R,

f∗(x/
√
n+ h) = f∗(x/

√
n), f+,2δ

∗ (v + h) ≥ f+,δ
∗ (v).

This together with (4.10) yields

h2δ∗ (x/
√
n+ h) ≤ PBM

x/
√
n+h

(
τv ≥ f+,2δ

∗ (v)− f∗(x/
√
n+ h) ∀v ∈ [−M,M ]

)
= PBM

x/
√
n

(
τv−h ≥ f+,2δ

∗ (v)− f∗(x/
√
n) ∀v ∈ [−M,M ]

)
= PBM

x/
√
n

(
τv ≥ f+,2δ

∗ (v + h)− f∗(x/
√
n) ∀v ∈ [−M − h,M − h]

)
≤ PBM

x/
√
n

(
τv ≥ f+,δ

∗ (v)− f∗(x/
√
n) ∀v ∈ [−M − h,M − h]

)
≤ hδ∗(x/

√
n).
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Hence, if n is large enough so that 1/
√
n ≤ δ < ϵ, since log h2δ∗ (u) = 0 for any u ≥M − 1, then we have

√
n

∫
K

(1)

ϵ/2

log h2δ∗ (u) du ≤
∑

x∈K
(1)
ϵ,n

sup
0≤h≤1/

√
n

log h2δ∗ (x/
√
n+ h) ≤

∑
x∈K

(1)
ϵ,n

log hδ∗(x/
√
n).

This together with (4.13) proves that

lim sup
n→∞

−1√
n
I(1)ϵ,n ≤ lim sup

n→∞

−1√
n

∑
x∈K

(1)
ϵ,n

log hδ∗(x/
√
n)− 2M log

(
1− δ′

c(ξ, ϵ)

)

≤ −
∫
K

(1)

ϵ/2

log h2δ∗ (u) du− 2M log

(
1− δ′

c(ξ, ϵ)

)
.

(4.14)

Since f∗ ∈ Cstep(ξ), Lemma 2.5 and the monotone convergence theorem imply

lim
δ↘0

∫
K

(1)

ϵ/2

log h2δ∗ (u) du ≥
∫ M

−M

logPBM
u

(
τv ≥ f∗(v)− f∗(u) ∀v ∈ R

)
du.

Combining this with (4.14), we have for any ϵ > δ′ > 0,

lim sup
n→∞

−1√
n
I(1)ϵ,n ≤ −

∫ M

−M

logPBM
u

(
τv ≥ f∗(v)− f∗(u) ∀v ∈ R

)
du− 2M log

(
1− δ′

c(ξ, ϵ)

)
.

Therefore, (4.8) follows by letting δ′ ↘ 0 and then ϵ↘ ∞.
Let us finally check (4.9). Define for i ∈ J−ℓ′ , ℓK and δ > 0,

Lδ,n(i) := [
√
n(ui − 2δ),

√
n(ui + 2δ)] ∩ Z.

Let δ ∈ (0, 1) be small enough (depending on f∗) so that for any n ∈ N, (Lδ,n(i))i∈J−ℓ′ ,ℓK are disjoint. Take an
arbitrary ϵ ∈ (0, δ/2) and note that K(2)

ϵ,n =
⊔ℓ

i=−ℓ′ Lϵ,n(i).
We first consider i ∈ J1 , ℓK and x ∈ Lϵ,n(i). Since f∗ is increasing in [0,∞) and decreasing in (−∞, 0] and satisfies

0 ≤ f∗(u) ≤ ξ for all u ∈ R, we have

P(t(x, 0) ≥ ξn, t(x, yx) ≥ ξn) ≤ P
(
t(x, y) ≥ n(f∗(y/

√
n)− f∗(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
,

where ∆n := ⌈δ
√
n⌉ and

yx :=

{
⌈ui

√
n⌉ if (ui − 2ϵ)

√
n ≤ x < ui

√
n,

⌈ui
√
n⌉+∆n if ui

√
n ≤ x ≤ (ui + 2ϵ)

√
n.

The strong Markov property shows

P(t(x, 0) ≥ ξn, t(x, yx) ≥ ξn) = Px(τ0 ≥ ξn, τyx
≥ nξ)

≥ Px

(
τ∆n

< τyx
, max
k∈J0,ξnK

|Sτ∆n+k − Sτ∆n
| < ∆n

)
= Px

(
τ∆n < τyx

)
P
(

max
0≤k≤nξ

|S0
k| < ∆n

)
.

A standard result for the simple random walk (see for instance [20, (1.20)]) and the fact yx ≥ 2∆n give

Px

(
τ∆n

< τyx

)
=

yx − x

yx −∆n
≥ yx − x

δ
√
n
.

Moreover, by Donsker’s invariance principle, for n large enough,

P
(

max
0≤k≤nξ

|S0
k| < ∆n

)
≥ 1

2
P

(
sup

0≤t≤ξ
|Bt| <

δ

2

)
=: c(ξ, δ) > 0.

Therefore,

P
(
t(x, y) ≥ n(f∗(y/

√
n)− f∗(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)
≥ c∗

yx − x√
n

,
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with c∗ := c∗(ξ, δ) := c(ξ, δ)/δ. Hence,

lim sup
n→∞

−1√
n

∑
x∈K

(2)
ε,n(i)

logP
(
t(x, y) ≥ n(f∗(y/

√
n)− f∗(x/

√
n)) ∀y ∈ J−M

√
n, M

√
nK
)

≤ −4ϵ log(c∗)− 2 lim inf
n→∞

1√
n

⌈2ϵn⌉∑
k=1

log

(
k√
n

)

= −4ϵ log(c∗)− 2

∫ 2ϵ

0

log tdt = −4ϵ(log(2c∗ϵ)− 1).

(4.15)

In the case i ∈ J−ℓ′ , 1K, the above argument also works by symmetry, and (4.15) is valid for i ∈ J−ℓ′ , 1K. In the case
i = 0, setting for x ∈ Lε,n(0),

yx :=

{
0 if x < 0,

∆n if x ≥ 0,

one can apply the above argument again and obtain (4.15) for i = 0. In conclusion, we reach

0 ≤ lim sup
n→∞

−1√
n
I(2)ϵ,n ≤ −4ϵ(ℓ+ ℓ′ + 1) (log(2c∗ϵ)− 1) ,

and letting ϵ↘ 0 proves (4.9). □

4.3. Proof of Proposition 3.2-(ii). For any ξ,M, η > 0, we define

CM (ξ) := {f ∈ C(ξ) : f |(−∞,−M ] ≡ const and f |[M,∞) ≡ const},
CM,η(ξ) := {f ∈ C(ξ) : f |(−∞,−M ] ≡ const, f |[M,∞) ≡ const and f |[−η,η] ≡ 0}.

Recall the notations f±,δ from (2.1). For any ξ > 0 and f ∈ C(ξ), set

EM (f) := −
∫ M

−M

logPBM
u (τv ≥ f(v)− f(u) ∀v ∈ R) du,

E+
δ,M (f) := −

∫ M

−M

logPBM
u

(
τv ≥ f−,δ(v)− f+,δ(u) ∀v ∈ R

)
du.

Lemma 4.2. For any ξ0 > 0, there exists M0 ∈ N such that for any M ≥M0 and ξ ∈ (0, ξ0),

inf
f∈CM (ξ)

EM (f) ≥ inf
f∈C(ξ)

E(f)−M−2.

Furthermore, for all M ≥ 1 and η ∈ (0, 1),

lim
δ→0

inf
f∈CM,η(ξ)

E+
δ,M (f) = inf

f∈CM,η(ξ)
EM (f).

The proof of Lemma 4.2 is postponed until Section 4.4, and we complete the proof of Proposition 3.2-(ii) for now.

Proof of Proposition 3.2-(ii). Fix ξ > 0 throughout the proof. By Lemma 2.6 with 2η in place of η and A = r(ξ),
there exists C = C(ξ) > 0 such that for any η ∈ (0, r(ξ)), if n ∈ N is large enough, then

P
(
T(0, ⌈2η

√
n⌉) ∧ T(0,−⌈2η

√
n⌉) ≥ Cηn

)
≤ e−r(ξ)

√
n.(4.16)

By Lemma 2.7-(ii) with α = 2M and β = 4M2, there exists a universal constant c > 0 such that for any M > 0, if
n ∈ N is large enough, then

P
(
T(0, ⌊2M

√
n⌋) ∨ T(0,−⌊2M

√
n⌋) ≥ 4M2n

)
≤ e−cM

√
n,(4.17)

Set M1 := |r(ξ)|/c and η0 := min{ξ/(2C), 1/4}. We fix M ≥M1 and η ∈ (0, η0). For simplicity, we are not explicitly
mentioning the dependence on M and η in the absence of any ambiguity. We define for n ∈ N,

En :=

 • T(0, ⌊M
√
n⌋) ≥ ξn,

• T(0, ⌊2η
√
n⌋) ∧ T(0,−⌊2η

√
n⌋) ≤ Cηn,

• T(0, ⌊2M
√
n⌋)∨T(0,−⌊2M

√
n⌋) ≤ 4M2n

 .

First, assume

lim inf
n→∞

−1√
n
logP(En) ≥ inf

f∈CM+2,η(ξ−Cη)
EM+2(f),(4.18)
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and complete the proof of Proposition 3.2-(ii). By (4.16) and (4.17) and the choice of M , we have

lim inf
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≥ lim inf

n→∞

−1√
n
log
{
2e−r(ξ)

√
n + P(En)

}
≥ min

{
r(ξ), inf

f∈CM+2,η(ξ−Cη)
EM+2(f)

}
.

By Lemma 4.2, since CM+2,η(ξ − Cη) ⊂ C(ξ − Cη), if M ≥M0(ξ) the constant as in this lemma, then

inf
f∈CM+2,η(ξ−Cη)

EM+2(f) ≥ inf
f∈C(ξ−Cη)

EM+2(f) ≥ inf
f∈C(ξ−Cη)

E(f) +M−2 = r(ξ − Cη)−M−2.

Letting η ↘ 0 with continuity of r (Lemma 2.2), as desired in Proposition 3.2-(ii), we have for M ≥ max{M1,M0}

lim inf
n→∞

−1√
n
logP

(
T(0, ⌊M

√
n⌋) ≥ ξn

)
≥ r(ξ)−M−2.

Our task is now to prove (4.18). To this end, let δ ∈ (0, η) be sufficiently small, and set J := 2⌈2M/δ⌉. For
n ∈ N sufficiently large, we consider the sequence xi,n := ⌊i(δ/2)

√
n⌋ for i ∈ J−J , JK. Furthermore, the subset An of

(N0)
2J+1 is defined by

An :=

(ti)
J
i=−J ∈ (N0)

2J+1 :

• tJ/2 ≥ ξn,
• tσ ∧ t−σ ≤ Cηn,
• 0 ≤ ti ≤ 4M2n for all i ∈ J−J , JK,
• ti ≤ ti+1 for all i ∈ J0, J − 1K,
• ti ≥ ti+1 for all i ∈ J−J , −1K

 ,

where σ := ⌊4η/δ⌋ and C is the constant appearing in (4.16). This describes the space induced by the configuration
of (T(0, xi,n))Ji=−J conditioned on the event En, and note that |An| is at most (4M2n)2J+1. Hence,

P(En) ≤
∑

(ti)Ji=−J∈An

P(T(0, xi,n) = ti ∀i ∈ J−J , JK)

≤ (4M2n)2J+1 max
(ti)Ji=−J∈An

P(T(0, xi,n) = ti ∀i ∈ J−J , JK).(4.19)

For each n ∈ N, let (ti,n)Ji=−J be an element of An attaining the above maximum. To derive the desired bound (4.18),
we take the following steps (1) and (2):

(1) For all sufficiently small δ > 0, if n ∈ N is large enough, then we can construct a step function ϕ = ϕn on R
satisfying that ϕ(u) ≥ ξ for all u ≥M + 1, ϕ(η) ∧ ϕ(−η) ≤ Cη, and

1√
n
logP(T(0, xi,n) = ti,n ∀i ∈ J−J , JK)

≤
∫ M+3

−(M+3)

log−
[
PBM
u

(
τv ≥ ϕ−,δ(v)− ϕ+,δ(u) ∀v ∈ [−(M + 3),M + 3]

)
+ δ
]
du,

(4.20)

where log− u := log (u ∧ 1) ≤ 0 for u > 0.
(2) We build a function ψ = ψn ∈ CM+2,η(ξ − Cη) such that∫ M+3

−(M+3)

log
[
PBM
u

(
τv ≥ ϕ−,δ(v)− ϕ+,δ(u) ∀v ∈ [−(M + 3),M + 3]

)
+ δ
]
du

≤
∫ M+2

−(M+2)

log
[
PBM
u

(
τv ≥ ψ−,δ(v)− ψ+,δ(u) ∀v ∈ R

)
+ δ
]
du.

(4.21)

These guarantee that for all sufficiently small δ > 0,

lim inf
n→∞

−1√
n
logP(T(0, xi,n) = ti,n ∀i ∈ J−J , JK) ≥ lim inf

n→∞
E+

δ,M+2(ψn) ≥ inf
f∈CM+2,η(ξ−Cη)

E+
δ,M+2(f).

This together with (4.19) leads to

lim inf
n→∞

−1√
n
logP(En) ≥ lim

δ↘0
inf

f∈CM+2,η(ξ−Cη)
E+

δ,M+2(f),

and (4.18) follows. We shall complete the proof by carrying out steps (1) and (2).
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Step (1) For simplicity of notation, we write ti = ti,n and xi = xi,n. We define for u ∈ R,

ϕ(u) = ϕn(u) :=
t−J

n
1{u ≤ u−J}+

0∑
i=−J+1

ti
n
1{ui−1 < u ≤ ui}

+

J−1∑
i=0

ti
n
1{ui ≤ u < ui+1}(u) +

tJ
n
1{uJ ≤ u},

where ui = ui,n := xi,n/
√
n for i ∈ J−J , JK. From the definition of An, ϕ is a step function on R satisfying that

ϕ(u) ≥ ξ for all u ≥M + 1 and ϕ(η) ∧ ϕ(−η) ≤ Cη.
We suppose T(0, xi) = ti for any i ∈ J−J , JK . Note that for all x, y ∈ J−2M

√
n, 2M

√
nK,

t(x, y) ≥ T(0, y)− T(0, x) ≥ n
(
ϕ−,δ(y/

√
n)− ϕ+,δ(x/

√
n)
)
.

Hence, by the independence of the simple random walks,

P (T(0, xi) = ti ∀i ∈ J−J , JK)

≤ P
(
t(x, y) ≥ n

(
ϕ−,δ(y/

√
n)− ϕ+,δ(x/

√
n)
)

∀x, y ∈ J−2M
√
n, 2M

√
nK
)

=
∏

x∈J−2M
√
n,2M

√
nK

P
(
t(x, y) ≥ n

(
ϕ−,δ(y/

√
n)− ϕ+,δ(x/

√
n)
)

∀y ∈ J−2M
√
n, 2M

√
nK
)
.

By Lemma 2.4 with f = ϕ−,δ, g = ϕ+,δ, ϵ1 = ϵ2 = δ, for all large n, this is bounded from above by∏
x∈J−2M

√
n,2M

√
nK

(1 ∧ hδ(x/
√
n)),

where for u ∈ R,

hδ(u) := PBM
u

(
τv ≥ ϕ−,2δ(v)− ϕ+,2δ(u) ∀v ∈ [−2M + δ, 2M − δ]

)
+ 2δ.

Note that if x ∈ J−2M
√
n, 2M

√
nK, v ∈ R and 0 ≤ |h| ≤ 1/

√
n < δ, then

ϕ+,4δ(x/
√
n+ h) ≥ ϕ+,2δ(x/

√
n), ϕ−,4δ(v + h) ≤ ϕ−,2δ(v), ∀v ∈ R.

Hence, for all large n,

1√
n

∑
x∈J−2M

√
n,2M

√
nK

log− hδ(x/
√
n) ≤

∑
x∈J−2M

√
n,2M

√
nK

∫ (x+1)/
√
n

x/
√
n

log− h2δ(u) du

≤
∫ M+3

−(M+3)

log−
[
PBM
u

(
τv ≥ ϕ−,4δ(v)− ϕ+,4δ(u) ∀v ∈ [−(M + 3),M + 3]

)
+ 4δ

]
du.

Therefore, (4.20) follows by replacing 4δ with δ.

Step (2) We write

ϕ⋄(u) := ((ϕ(u) ∧ ξ)− Cη)+, u ∈ R.

Since

(ϕ−,δ
⋄ (v)− ϕ+,δ

⋄ (u))+ ≤ (ϕ−,δ(v)− ϕ+,δ(u))+, u, v ∈ R,

we have ∫ M+3

−(M+3)

log−
[
PBM
u

(
τv ≥ ϕ−,δ(v)− ϕ+,δ(u) ∀v ∈ [−(M + 3),M + 3]

)
+ δ
]
du

≤
∫ M+3

−(M+3)

log−
[
PBM
u

(
τv ≥ ϕ−,δ

⋄ (v)− ϕ+,δ
⋄ (u) ∀v ∈ [−(M + 3),M + 3]

)
+ δ
]
du.

Note that min{ϕ(η), ϕ(−η)} ≤ Cη from step (1). We define a function ψ = ψn as follows:

ψ(·) = ϕ⋄(·+ η) if ϕ(η) ≤ Cη; ψ(·) = ϕ⋄(· − η) otherwise.
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Then, ψ ∈ CM+2,η(ξ − Cη). In the case ϕ(η) ≤ Cη, applying the change of variables w = u − η, we have for any
δ ∈ (0, η/5), ∫ M+3

−(M+3)

log−
[
PBM
u

(
τv ≥ ϕ−,δ

⋄ (v)− ϕ+,δ
⋄ (u) ∀v ∈ [−(M + 3),M + 3]

)
+ δ
]
du

≤
∫ M+3−3η

−(M+3)+2η

log−
[
PBM
w

(
τv ≥ ψ−,δ(v)− ψ+,δ(w) ∀v ∈ [−M + 3− η,M + 3− η]

)
+ δ
]
dw

≤
∫ M+2

−(M+2)

log
[
PBM
w

(
τv ≥ ψ−,δ(v)− ψ+,δ(w) ∀v ∈ R

)
+ δ
]
dw = −E+

δ,M+2(ψ).

When ϕ(−η) ≤ Cη, by the change of variables w = u+ η, we have the same. Therefore, (4.21) follows. □

4.4. Proof of Lemma 4.2. This subsection is devoted to the proof of Lemma 4.2. We first introduce a variant of
the Lévy distance in CM,η(ξ): given f, g ∈ CM,η(ξ), we define

D(f, g) := inf
{
ϵ > 0 : f(x) > g−,ϵ(x)− ϵ and g(x) > f−,ϵ(x)− ϵ ∀x ∈ R

}
.

The next lemma provides the compactness of the distance.

Lemma 4.3. Let (fk)∞k=1 be a sequence on CM,η(ξ). Then, there exist a subsequence (fk(n))
∞
n=1 and f∗ ∈ CM,η(ξ) such

that D(fk(n), f∗) → 0 as n→ ∞.

Proof. Since the same argument works when dividing these functions by ξ, without loss of generality, we suppose
ξ = 1. Given f ∈ C(1), we define the new functions

f+(x) =

{
f(x) if x ≥ 0

0 if x < 0
, f−(x) =


1 if x > M + 1

f(−x) if 0 < x ≤M + 1

0 if x < 0

.

Given increasing functions F,G with limx→∞ F (x) = limx→∞G(x) = 1, the Lévy distance is defined as

L(F,G) := inf{ε > 0 : ∀x ∈ R, F (x) > G(x− ε)− ε, G(x) > F (x− ε)− ε}.

By the definition of D, we have
D(f, g) ≤ L(f+, g+) + L(f−, g−).

By Prokhorov’s theorem and the fact that weak convergence implies convergence of Lévy distance (c.f., [1, Theorem
5.1 and Remark (iv) on page 72]), there exist a subsequence (fnk

)k≥1 and f+∗ such that L(f+nk
, f+∗ ) → 0 as k → ∞.

Applying the same results again, there exist a subsequence (n′k)k≥1 of (nk)k≥1 and f−∗ such that L(f−n′
k
, f−∗ ) → 0 as

k → ∞. Letting

f∗(x) :=


1 if x ≥M,

f+∗ (x) if η < x < M,

0 if |x| ≤ η,

f−∗ (−x) if x < −η,
we have D(fn′

k
, f∗) → 0 as k → ∞. By definition, f∗ is non-decreasing in [0,∞) and non-increasing in (−∞, 0].

Moreover, by the convergences in Lévy distance, f∗|[M,∞) ≡ 1, f∗|[−η,η] ≡ 0, and hence f∗ ∈ CM,η(1). □

We next consider a modification of the energy E+
δ,M (f): for any f ∈ C(ξ),

Ẽ+
δ,M (f) := −

∫ M

−M

log
[
PBM
x

(
τy ≥ f−,δ(y)− f+,δ(x)− δ ∀y ∈ R

)
+ δ
]
dx.

By definition, Ẽ+
δ,M (f) ≤ E+

δ,M (f) ≤ EM (f) holds for all δ > 0 and f ∈ C(ξ).

Lemma 4.4. Let M ≥ 1 and η > 0. If

lim
δ→0

inf
f∈CM,η(ξ)

Ẽ+
δ,M (f) < inf

f∈CM,η(ξ)
EM (f),

then we can find a sequence (δk)
∞
k=1 ↓ 0 and f∗ ∈ CM,η(ξ) such that

lim
k→∞

Ẽ+
δk,M

(f∗) < inf
f∈CM,η(ξ)

EM (f).
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Proof. We fix ε > 0 such that

lim
δ→0

inf
f∈CM,η(ξ)

Ẽ+
δ,M (f) + ε < inf

f∈CM,η(ξ)
EM (f)− ε.(4.22)

Since δ 7→ inff∈CM,η(ξ) Ẽ
+
δ,M (f) is non-decreasing, there exists δ0 > 0 such that for any δ ∈ (0, δ0), we can find

fδ ∈ CM,η(ξ) satisfying

Ẽ+
δ,M (fδ) ≤ lim

δ→0
inf

f∈CM,η(ξ)
Ẽ+

δ,M (f) + ε.(4.23)

By Lemma 4.3, there exist a sequence (δl)
∞
l=1 ⊂ (0, δ0) and f∗ ∈ CM,η(ξ) such that δl ↓ 0 and D(fδl , f∗) → 0 as l → ∞.

Fixing k ∈ N, we take l ≥ k large enough satisfying that δl < δk/4 and D(fδl , f∗) < δk/4. We show that for all x ∈ R,

f−,δk
∗ (x) < f−,δl

δl
(x) +

δk
4
, f+,δk

∗ (x) > f+,δl
δl

(x)− δk
4
.(4.24)

The first inequality directly follows from D(fδl , f∗) < δk/4. Since fδl , f∗ ∈ CM,η(ξ) and max{D(fδl , f∗), δl} < δk/4,

f+,δk
∗ (x) = sup

y∈[x−δk,x+δk]

f∗(y) > sup
y∈[x−δk,x+δk]

inf
δ∈[−δk/4,δk/4]

f
−,δk/4
δl

(y + δ)− δk
4

≥ f
+,δk/4
δl

(x)− δk
4

≥ f+,δl
δl

(x)− δk
4
.

Hence, the second inequality of (4.24) holds. Therefore,

PBM
x

(
τy ≥ f−,δk

∗ (y)− f+,δk
∗ (x)− δk ∀y ∈ R

)
≥ PBM

x

(
τy ≥ f−,δl

δl
(y)− f+,δl

δl
(x)− δl ∀y ∈ R

)
.

Combining this with (4.22) and (4.23), we obtain for all k,

Ẽ+
δk,M

(f∗) ≤ Ẽ+
δl,M

(fδl) ≤ lim
δ→0

inf
f∈CM,η(ξ)

Ẽ+
δ,M (f) + ε < inf

f∈CM,η(ξ)
EM (f)− ε.

This completes the proof by letting k → ∞. □

We are now in a position to prove Lemma 4.2.

Proof of Lemma 4.2. Fix ξ0, η > 0. We first prove the first claim, i.e., there exists M0 ∈ N such that for any
M ≥M0 and ξ ≤ ξ0,

inf
f∈CM (ξ)

EM (f) ≥ inf
f∈C(ξ)

E(f)−M−2.

We take M0 =M0(ξ0) ∈ N sufficiently large such that for any M ≥M0,

PBM
0 (τM0 ≤ ξ0) ≤

1

2
,

4√
2π

∫ ∞

M

∫ ∞

x/
√
ξ0

e−t2/2 dtdx ≤M−2.

Suppose that M ≥ M0 and ξ ≤ ξ0. For any f ∈ CM (ξ), since ξ0 ≥ f ≥ 0, and f is a constant function on (−∞,−M ]
and [M,∞), we have

EM (f)− E(f) =

∫ −M

−∞
logPBM

x (τy ≥ fM (y)− fM (x) ∀y ≥ 0) dx

≥
∫ −M

−∞
logPBM

x (τ0 ≥ ξ0) dx ≥
∫ ∞

M

logPBM
0 (τx ≥ ξ0) dx.

By Lemma 2.3 and the fact that log(1− t) ≥ −2t for 0 ≤ t ≤ 1/2, we have for all x ≥M ,

logPBM
0 (τx ≥ ξ0) = log

{
1− PBM

0 (τx < ξ0)
}
≥ −2PBM

0 (τx < ξ0) = − 4√
2π

∫ ∞

x/
√
ξ0

e−t2/2 dt.

Combining the last three displayed equations, we reach

EM (f)− E(f) ≥ − 4√
2π

∫ ∞

M

∫ ∞

x/
√
ξ0

e−t2/2 dtdx ≥ −M−2.

This estimate holds for all f ∈ CM (ξ) and thus the first claim follows.
Let us next prove the second claim, i.e., for all M ≥ 1,

lim
δ→0

inf
f∈CM,η(ξ)

E+
δ,M (f) = inf

f∈CM,η(ξ)
EM (f).
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Since Ẽ+
δ,M (f) ≤ E+

δ,M (f) ≤ EM (f) for all f ∈ CM,η(ξ), it suffices to show that for all M ≥ 1,

lim
δ→0

inf
f∈CM,η(ξ)

Ẽ+
δ,M (f) ≥ inf

f∈CM,η(ξ)
EM (f).(4.25)

Suppose, towards a contradiction, that

lim
δ→0

inf
f∈CM,η(ξ)

Ẽ+
δ,M (f) < inf

f∈CM,η(ξ)
EM (f).

By Lemma 4.4, we can find a sequence (δk)
∞
k=1 ↓ 0 and f∗ ∈ CM,η(ξ) such that

lim
k→∞

Ẽ+
δk,M

(f∗) < inf
f∈CM,η(ξ)

EM (f).

Once we prove

EM (f∗) ≤ lim
k→∞

Ẽ+
δk,M

(f∗),(4.26)

the following inequalities hold:

inf
f∈CM,η(ξ)

EM (f) ≤ EM (f∗) ≤ lim
k→∞

Ẽ+
δk,M

(f∗) < inf
f∈CM,η(ξ)

EM (f),

which derives a contradiction. Therefore, one has (4.25). It remains to check (4.26). Let Γ∗ be the set of all the points
of discontinuity of f∗. Since f∗ ∈ CM,η(ξ), Γ∗ is a finite subset of [−M,M ]. Hence, by the monotone convergence
theorem and limk→∞ f±,δk

∗ (z) = f∗(z) holds for any z ∈ [−M,M ] ∩ Γc
∗,

−Ẽ+
δk,M

(f∗) =

∫
[−M,M ]

log
[
PBM
x

(
τy ≥ f−,δk

∗ (y)− f+,δk
∗ (x)− δk ∀y ∈ R

)
+ δk

]
dx

≤
∫
[−M,M ]

log
[
PBM
x

(
τy ≥ f−,δk

∗ (y)− f+,δk
∗ (x)− δk ∀y ∈ Γc

∗
)
+ δk

]
dx

k→∞−−−−→
∫
[−M,M ]

PBM
x

(
τy ≥ f∗(y)− f∗(x) ∀y ∈ Γc

∗

)
dx.(4.27)

Let Ex be the event appearing in the last probability. Fixing z ∈ Γ∗, we can find a sequence (yi)
∞
i=1 on Γc

∗ such that
limi→∞ yi = z and limi→∞ f∗(yi) ≥ f∗(z). Moreover, if Ex occurs, then τyi

≥ f∗(yi) − f∗(x) for all i ≥ 1. This
combined with [17, (8.8)] shows that PBM

x -a.s. on Ex,
τz = lim

i→∞
τyi

≥ lim
i→∞

f∗(yi)− f∗(x) ≥ f∗(z)− f∗(x).

Since Γ∗ is finite, this implies

PBM
x (Ex) = PBM

x (τy ≥ f∗(y)− f∗(x) ∀y ∈ R).

Combining the above with (4.27), we obtain (4.26). □

5. Localization phenomenon: Proof of Proposition 3.1

In this section, we consider the localization of the rare event and show that

(5.1) lim
n→∞

1√
n
logP(T(0, n) ≥ (µ+ ξ)n) = lim

n→∞

1√
n
logP(T(0,M

√
n) ≥ ξn) + oM (1).

This roughly implies that the best strategy to delay the transmission from 0 to n is to slow down the infection in a
bad interval (in the sense that T(a, b) ≥ |a − b|2 for the interval [a, b]) of size O(

√
n). This section is organized as

follows: The first two subsections are devoted to the proof of the upper bound in (5.1), i.e. Proposition 3.1-(ii), which
is the most difficult part. The last two subsections are devoted to the proofs of Proposition 3.1-(i) and (iii).

5.1. Proof of Proposition 3.1-(ii). In this subsection, we aim to show that the large deviation event can be localized
around several bad intervals whose total passage time is larger than ξn. Let us summarize here the main ideas of the
proof. We shall use a multi-step covering process to localize the bad intervals.

Step 1 (Control of small bad intervals): We show in this step that the bad intervals of size less than (log n)2

are harmless to the upper tail large deviation event. More precisely, we divide [0, n] into subintervals:

[0, n] ⊂
⋃

i ̸∈Red

[i, i+Kn] ∪
⋃

i∈Red

[i, i+Kn],

where Red denotes the set of red intervals, i.e. bad intervals of size Kn = ⌊(log n)2⌋:
Red := {i ∈ KnN ∩ [0, n] : T(i, i+Kn) ≥ K2

n},
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and then prove that

P
( ∑

i ̸∈Red

T(i, i+Kn) ≥ (µ+ o(1))n

)
≤ exp(−n2/3).

Step 2 (First covering of red intervals): We aim to aggregate these intervals into larger ones that are far from
each other. Precisely, we seek for a covering such that

•
⋃

i∈Red

[i, i+Kn] ⊂
ℓ⋃

j=1

[Sj , Tj + Lj ],

• T(Sj , Tj + Lj) ≤ 16L2
j for j = 1, . . . , ℓ,

• (xj − Lj

3 , xj +
Lj

3 ) ∩ (xk − Lk

3 , xk + Lk

3 ) = ∅ for 1 ≤ j < k ≤ ℓ,
where xj is a focal point of [Sj , Tj + Lj ]. Roughly speaking, L1 is the largest bad radius in dyadic scale: L1 :=
max{2k : ∃x ∈ [0, n],T(x, x+ 2k) ≥ 22k} and take [S1, T1] := [x1 −L1, x1 + L1] with x1 a maximizer in the definition
of L1. The second interval is obtained by the same process applied to the remaining [0, n] \ [S1, T1]. We continue this
procedure until all red intervals are covered.

Furthermore, by construction of such a covering, applying Perles’s type arguments, we are able to control the
number of bad intervals at a given size. In particular, we can show that the moderate bad intervals of size o(

√
n) are

controllable, i.e. there exists a constant c > 0 such that for any ε, δ > 0

P

 ℓ∑
j=1

T(Sj , Tj + Lj)1{Lj ≤
√
εn} ≥ δn

 ≤ exp(−cδ
√
n/ε).

Step 3 (Refined covering of bad intervals): We apply an additional aggregation process to cover the large bad
interval ⋃

j:Lj≥
√
εn

[Sj , Tj + Lj ] ⊂
m⋃
i=1

[si, ti],

where ([si, ti])
m
i=1 are intervals satisfying

d([si, ti], [sj , tj ]) > M3
√
n, and

m∑
i=1

|ti − si| ≤M6
√
n,

with some m ≤M . Combining the constructed coverings, we arrive at

[0, n] ⊂
⋃

i ̸∈Red

T(i, i+Kn) ∪
⋃

j:Lj≤
√
εn

[Sj , Tj + Lj ] ∪
m⋃
i=1

[si, ti].

Remark that since the intervals ([si, ti])
m
i=1 are sufficiently far from each other, by nearly independence of the passage

times on these intervals, we can show that with ε = ε(δ,M) chosen suitably,

P

(
m∑
i=1

T(si, ti) ≥ (ξ − δ)n

)
≲

∑
(ni)mi=1∈Nm

m∏
i=1

P (T(si, ti) ≥ ni)1∑
i ni≥(ξ−δ)n,

which implies Proposition 3.1-(ii).
To this end, let us prepare a lemma and a corollary.

Lemma 5.1. For any δ, A > 0, there exists M1 =M1(δ, A) ∈ N such that for any M ≥M1, ξ ≥ 0, and for any n ∈ N
large enough,

P(T(0, n) ≥ (µ+ ξ)n) ≤ exp(−A
√
n) + n2M max

(si,ti)mi=1∈SM (n)
P

(
m∑
i=1

T(si, ti) ≥ (ξ − δ)n

)
,

where

SM (n) :=

(si, ti)
m
i=1 :

• m ∈ J1 , MK,
• si, ti ∈ J0 , nK and si < ti for all i ∈ J1 , mK,
• d([si, ti], [sj , tj ]) > M3

√
n for all i < j,

•
∑m

i=1 |ti − si| ≤M6
√
n.


Recall that d([si, ti], [sj , tj ]) stands for the Euclidean distance between two intervals [si, ti] and [sj , tj ], see Section 1.4.
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We postpone the proof of Lemma 5.1 to the next subsection. Although the next corollary is a direct consequence
of Lemma 5.1, it is useful to control the probability that the first passage time extremely deviates upward from the
time constant. We use the corollary in not only the proof of (ii) but also that of (i) in Proposition 3.1.

Corollary 5.2. For any A > 0, there exists M2 = M2(A) ∈ N such that for any M ≥ M2, and for any n ∈ N large
enough,

P(T(0, n) ≥Mn) ≤ exp(−A
√
n).

Proof. Fix A > 0 and let c > 0 be a universal constant as in Lemma 2.7-(ii). We use Lemma 5.1 with δ := 1 and 2A
in place of A: there exists M1 =M1(1, 2A) ∈ N such that for all M ≥M1, ξ ≥ 0 and for all n large enough,

P(T(0, n) ≥ (µ+ ξ)n) ≤ exp(−2A
√
n) + n2M max

(si,ti)mi=1∈SM (n)
P

(
m∑
i=1

T(si, ti) ≥ (ξ − 1)n

)
.

Take L := L(A) > (M1+µ+1)6 large enough to have L exp(−cL
√
n) ≤ exp(−2A

√
n) for all n ∈ N, and let ξ = L4−µ

and M =M1. Then, since ξ − 1 ≥ L3,

P(T(0, n) ≥ L4n) ≤ exp(−2A
√
n) + n2M1 max

(si,ti)mi=1∈SM1
(n)

P

(
m∑
i=1

T(si, ti) ≥ L3n

)
.(5.2)

Note that if (si, ti)
m
i=1 ∈ SM1(n), then m ≤ M1 ≤ L and |ti − si| ≤ M6

1

√
n ≤ L

√
n for all i ∈ J1 , nK. Hence,

Lemma 2.7-(ii) with α = L and β = L2 shows that there exists a universal constant c > 0 such that for all large n ∈ N,

max
(si,ti)mi=1∈SM1

(n)
P

(
m∑
i=1

T(si, ti) ≥ L3n

)
≤ max

(si,ti)mi=1∈SM1
(n)

m∑
i=1

P(T(si, ti) ≥ L2n)

≤ L× P
(
T(0, ⌊L

√
n⌋) ≥ L2n

)
≤ L exp(−cL

√
n) ≤ exp(−2A

√
n).

This combined with (5.2) yields that for all large n ∈ N,

P(T(0, n) ≥ L4n) ≤ (n2M1 + 1) exp(−2A
√
n) ≤ exp(−A

√
n),

and the corollary follows by taking M2 := L4. □

We are now in a position to prove Proposition 3.1-(ii).

Proof of Proposition 3.1-(ii). Fix δ, A > 0. Lemma 5.1 with A replaced by 2A implies that there exists M1 =
M1(δ, 2A) ∈ N such that for all L ≥M1, ξ ≥ 0 and for all large n ∈ N,

P(T(0, n) ≥ (µ+ ξ)n) ≤ exp(−2A
√
n) + n2L max

(si,ti)mi=1∈SL(n)
P

(
m∑
i=1

T(si, ti) ≥ (ξ − δ)n

)
.(5.3)

For each (si, ti)
m
i=1 ∈ SL(n),

P

(
m∑
i=1

T(si, ti) ≥ (ξ − δ)n

)
≤ P

(
m∑
i=1

T(si, ti) ≥ L2n

)
+

∑
(hi)mi=1∈Nm

P
(
T(si, ti) ≥ hi ∀i ∈ J1, mK

)
× 1

{
(ξ − δ)n ≤

∑m
i=1 hi ≤ L2n

}
.

(5.4)

We first treat the first term in the right-hand side of (5.4). Note that if (si, ti)
m
i=1 ∈ SL(n), then m ≤ L and

max1≤i≤m |ti − si| ≤ L6
√
n ≤ n for all large n. Hence, Corollary 5.2 with A replaced by 2A implies that for any

L ≥M2(2A), if n ∈ N is large enough, then

max
(si,ti)mi=1∈SL(n)

P

(
m∑
i=1

T(si, ti) ≥ L2n

)
≤ LP(T(0, n) ≥ Ln) ≤ L exp(−2A

√
n).(5.5)

Let us next estimate the second term in the right-hand side of (5.4). Fix (si, ti)
m
i=1 ∈ SL(n). Then, the intervals

([si − (L3/2)
√
n, ti])

m
i=1 are disjoint. Thus,

P
(
T(si, ti) ≥ hi ∀i ∈ J1 , mK

)
≤ P

(
T[si−(L3/2)

√
n,ti](si, ti) ≥ hi ∀i ∈ J1 , mK

)
=

m∏
i=1

P
(
T[si−(L3/2)

√
n,ti](si, ti) ≥ hi

)
.
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Furthermore, Lemma 2.8 and the fact that max1≤i≤m |ti − si| ≤ L6
√
n yields that there exists a universal constant

α > 0 such that

P
(
T[si−(L3/2)

√
n,ti](si, ti) ≥ hi

)
= P

(
T[−(L3/2)

√
n,ti−si](0, ti − si) ≥ hi

)
≤ exp

(
2αhi
L3

√
n

)
P(T(0, ti − si) ≥ hi)

≤ exp

(
2αhi
L3

√
n

)
P
(
T(0, ⌊L6

√
n⌋) ≥ hi

)
.

With these observations, for all n ∈ N and for all (si, ti)mi=1 ∈ SL(n),∑
(hi)mi=1∈Nm

P
(
T(si, ti) ≥ hi ∀i ∈ J1 , nK

)
1
{
(ξ − δ)n ≤

∑m
i=1 hi ≤ L2n

}
≤ exp

(
2α

√
n

L

) ∑
(hi)mi=1∈Nm

1
{
(ξ − δ)n ≤

∑m
i=1 hi ≤ L2n

} m∏
i=1

P(T(0, ⌊L6
√
n⌋) ≥ hi).

(5.6)

Due to (5.4), (5.5) and (5.6), for any L ≥M2(2M), if n ∈ N is large enough, then

max
(si,ti)mi=1∈SL(n)

P

(
m∑
i=1

T(si, ti) ≥ (ξ − δ)n

)

≤ L exp(−2A
√
n) + exp

(
2α

√
n

L

) M∑
m=1

∑
(hi)mi=1∈Nm

1
{
(ξ − δ)n ≤

∑m
i=1 hi ≤ L2n

} m∏
i=1

P(T(0, ⌊L6
√
n⌋) ≥ hi).

Replace L with M1/6 in (5.3) and the above expression and take M0 =M0(c, δ, A, ξ) ∈ N large enough to have

M0 ≥ (M1(δ, 2A) +M2(2A) + (4α/c))6 + ξ + 2.

It follows that for any c, δ, A, ξ > 0 and for any M ≥M0, if n ∈ N is large enough, then

P(T(0, n) ≥ (µ+ ξ)n)

≤ (Mn2M + 1) exp(−2A
√
n) + n2M exp(c

√
n/2)

M∑
m=1

∑
(hi)mi=1∈Hδ

m,n

m∏
i=1

P
(
T(0, ⌊M

√
n⌋) ≥ hi

)
.

Therefore, we obtain the desired conclusion since (Mn2M + 1) exp(−2A
√
n) ≤ exp(−A

√
n) and n2M exp(c

√
n/2) ≤

exp(c
√
n) hold for all large n ∈ N. □

5.2. Proof of Lemma 5.1. We define for n ∈ N,

N := ⌈2 log2(log n)⌉, N = 2NZ ∩ [0, n− 2N ].

Divide the interval [0, n] into subintervals {[i, i+2N ]}i∈N and classify them to two colors: blue and red. Given i ∈ N ,
if T(i, i + 2N ) > 22N , then we write i ∈ Red; otherwise (i.e., T(i, i + 2N ) ≤ 22N ), we write i ∈ Blue. Let us now
cover the interval [0, n] with red and blue intervals as follows:

[0, n] ⊂
⋃
i∈N

[i, i+ 2N ] =
⋃

i∈Blue

[i, i+ 2N ] ∪
⋃

i∈Red

[i, i+ 2N ].(5.7)

First, Section 5.2.1 takes care of the total passage time of blue intervals. Next, in Section 5.2.1, we estimate the
contribution from red intervals to the first passage time, and prove Lemma 5.1 by combining estimates for blue and
red intervals.

5.2.1. The total passage time of blue intervals.

Lemma 5.3. For any fixed δ > 0 and n ∈ N sufficiently large,

P

( ∑
i∈Blue

T(i, i+ 2N ) ≥ (µ+ 2δ)n

)
≤ exp(−n2/3).(5.8)
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Proof. Given δ > 0, we define

K = ⌈C + 8/δ⌉,
where C is the constant as in Lemma 2.9. We divide blue intervals into three classes Lblue (light blue), Mblue
(moderate blue) and Dblue (dark blue) as follows:

Lblue =
{
i ∈ N : T(i, i+ 2N ) ≤ (µ+ δ)2N

}
,

Mblue =
{
i ∈ N : (µ+ δ)2N ≤ T(i, i+ 2N ) ≤ K2N

}
,

Dblue =
{
i ∈ N : K2N ≤ T(i, i+ 2N ) ≤ 22N

}
.

Then, using the fact that |Lblue| ≤ |N | ≤ n/2N , we have for all n sufficiently large,∑
i∈Blue

T(i, i+ 2N ) ≤ (µ+ δ)2N |Lblue|+K2N |Mblue|+ 22N |Dblue|

≤ (µ+ δ)n+K2N |Mblue|+ 22N |Dblue|.
(5.9)

Hence, our task is now to prove that for all n sufficiently large,

P
(
K2N |Mblue| ≥ δ

2
n

)
+ P

(
22N |Dblue| ≥ δ

2
n

)
≤ exp(−n2/3).(5.10)

We first treat the probability for |Mblue|. The translation invariance and (1.1) yield that for all n sufficiently large
and for any i ∈ N ,

P(i ∈ Mblue) ≤ P
(
T(0, 2N ) ≥ (µ+ δ)2N

)
≤ 1/K2.

Divide N into 4K disjoint groups as follows:

N =

4K−1⋃
j=0

Mj , Mj :=
{
i ∈ N : i

2N
≡ j (mod 4K)

}
.

Notice that the event {i ∈ Mblue} depends only on frogs {(Sx
· )}|x−i|≤K2N . Moreover, by the definition, for each

j = 0, . . . , 4K − 1, we have |i − i′| ≥ 4K2N for all distinct i, i′ ∈ Mj . Thus, these events ({i ∈ Mblue})i∈Mj
are

independent. Therefore, |Mj ∩ Mblue| is stochastically dominated by the Binomial distribution Bin(|Mj |,K−2).
Hence, using Chernoff’s bound, we have for all j = 0, . . . , 4K − 1,

P
(
|Mj ∩Mblue| ≥ n/(2NK3)

)
≤ exp

(
−n/(2N+1K3)

)
.

Hence, by K ≥ 8/δ and the union bound, for all n large enough,

P
(
K2N |Mblue| ≥ δ

2
n

)
≤ P

(
|Mblue| ≥ n/(2N−2K2)

)
≤ exp

(
−n/(2N+2K3)

)
≤ 1

2
exp(−n2/3).

(5.11)

Finally, we estimate the probability for |Dblue|. By Lemma 2.9, since K ≥ C (the constant as in this lemma), for
n sufficiently large

P(i ∈ Dblue) ≤ P(T(0, 2N ) ≥ C2N ) ≤ exp(−c2N/4) ≤ 2−4N ,

with c a positive constant. Divide N into 2N+2 disjoint groups as follows:

N =

2N+2−1⋃
j=0

Dj , Dj :=
{
i ∈ N : i

2N
≡ j (mod 2N+2)

}
.

Observe also that the event {i ∈ Dblue} depends only on frogs (Sx
· )|x−i|≤22N . Thus for each j ∈ Dj , the events ({i ∈

Dblue})i∈Dj
are independent, and hence |Dj ∩ Dblue| is stochastically dominated by Bin(|Dj |, 2−4N ). Therefore,

Chernoff’s bound proves that for each j = 0, . . . , 2N+2 − 1,

P(|Dj ∩Dblue| ≥ n/25N ) ≤ exp(−n/25N+1).

This together with the union bound implies that for all n sufficiently large,

P
(
22N |Dblue| ≥ δ

2
n

)
≤ P(|Dblue| ≥ n/24N−2)

≤ exp(−n/25N+2) ≤ 1

2
exp(−n2/3).

(5.12)

With these observations, (5.10) follows from (5.11) and (5.12), and the proof is complete. □
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5.2.2. A covering of red intervals. We will use a covering process of disjoint boxes to aggregate the red intervals whose
first passage time larger than the square of its distance. Initially, we define

L1 := max
{
2k : ∃x ∈ J0, nK; T(x, x+ 2k) ≥ 22k

}
.

By Lemma 2.7-(ii), P(T(0, 2k) ≥ 22k) ≤ exp(−c2k). Then we have L1 < ∞ a.s. We take x1 ∈ J0, nK such that
T(x1, x1 + L1) ≥ L2

1 with a deterministic rule breaking ties. Let I1 = (x1 − L1, x1 + L1) and we define S1,T1 such
that [S1,T1] = [x1 − L1, x1 + L1] ∩ [0,∞). Inductively, we define for j ≥ 1

Lj+1 := max{2k : ∃x ∈ J0 , nK \ Ij ; T(x, x+ 2k) ≥ 22k}.
We take xj+1 ∈ J0 , nK \ Ij such that T(xj+1, xj+1 + Lj+1) ≥ L2

j+1 with a deterministic rule breaking ties. Let

Ĩj+1 := [xj+1 − Lj+1, xj+1 + Lj+1] \ Ij ,
Ij+1 := Ij ∪ (xj+1 − Lj+1, xj+1 + Lj+1).

Note that Ij is the union of some intervals whose lengths are all larger than that of [xj+1−Lj+1, xj+1+Lj+1], since Li ≥
Lj+1 for any i ≤ j. Therefore Ĩj+1 is an interval (if not, then there is an interval included in [xj+1−Lj+1, xj+1+Lj+1]

and so Lj+1 > Li for some i < j). Hence, we can define Sj+1 ≤ Tj+1 such that [Sj+1, Tj+1] = Ĩj+1 ∩ [0,∞). Recall
N = ⌈2 log2 (log n)⌉ and let us define

ℓ := max{j : Lj ≥ 2N}.

Lemma 5.4. The following hold:
(i) We have ⋃

i∈Red

[i, i+ 2N ] ⊂
ℓ⋃

j=1

[Sj , Tj + Lj ].

(ii) For any 1 ≤ j ≤ ℓ,
T(Sj , Tj + Lj) ≤ 16L2

j .

(iii) For any 1 ≤ i ̸= j ≤ ℓ,

(xi − Li/3, xi + Li/3) ∩ (xj − Lj/3, xj + Lj/3) = ∅.

Proof. Suppose that i ∈ Red, i.e., T(i, i + 2N ) ≥ 22N . If i /∈ Iℓ, then Lℓ+1 ≥ 2N , which contradicts the definition of
ℓ. Thus we get i ∈ Iℓ, and hence there exists j ≤ ℓ such that i ∈ [Sj ,Tj ]. Therefore, 2N ≤ Lj and so

[i, i+ 2N ] ⊂ [Sj , Tj + Lj ],

and (i) follows. For (ii), notice that Sj ̸∈ Ij−1 since Ĩj ∩ Ij−1 = ∅, and Tj − Sj ≤ 2Lj . Hence, thanks to the maximal
property of Lj , we have

T(Sj , Tj + Lj) ≤ T(Sj , Sj + 4Lj) ≤ 16L2
j .

Finally we consider (iii). Assume that i < j. Then xj /∈ (xi − Li, xi + Li) since xj /∈ Ij−1. Hence, |xi − xj | ≥ Li =
max{Li,Lj} since Li ≥ Lj , and (iii) follows. □

We introduce some notations: for any k ≥ 1 and for α > 0,

ak := #{j ≤ ℓ : Lj = 2k};
Nα := ⌈log2(αn)/2⌉.

Fix ε > 0, which is chosen later (see (5.24) below). Then,

(5.13)
⋃

i∈Red

[i, i+ 2N ] ⊂
ℓ⋃

j=1

[Sj , Tj + Lj ] =
⋃

j:Lj≤2Nε

[Sj , Tj + Lj ] ∪
⋃

j:Lj>2Nε

[Sj , Tj + Lj ],

The lemma below helps control the passage time of intervals [Sj , Tj + Lj ] with Lj ≤ 2Nε .

Lemma 5.5. There exists a universal constant c0 > 0 such that the following statements hold:
(i) For any δ > 0 and ε > 0, and for all n ∈ N large enough,

P

 ℓ∑
j=1

T(Sj , Tj + Lj)1{Lj ≤ 2Nε} ≥ δn

 ≤ P

(
ℓ∑

i=1

L2
i 1{Li ≤ 2Nε} ≥ δn/16

)
≤ exp(−c0δ

√
n/ε).
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(ii) For any K ≥ 1 and ε > 0, and for all n ∈ N large enough,

P

(
ak = 0∀ k ≥ NK ;

NK∑
k=Nε

ak ≤ K

)
≥ 1− exp(−c0K

√
εn).

Proof. We first recall that for each j we can find xj ∈ J0 , nK such that T(xj , xj + Lj) ≥ L2
j . Hence, by the definition

of (ak)k≥1, for each k there is a sequence of points (xkj )
ak
j=1 such that

(5.14) T(xkj , x
k
j + 2k) ≥ 22k.

For x ∈ Z and t ∈ R, we write B(x, t) := [x− t, x+ t]. Moreover, by Lemma 5.4-(iii),

(5.15) B(xkj , 2
k/3) ∩B(xk

′

j′ , 2
k′
/3) = ∅, ∀ (k, j) ̸= (k′, j′).

In addition, by Lemma 2.7-(i), there exists an universal constant c such that for all k ∈ N,

(5.16) P
(
TB(0,2k/3)(0, 2

k) ≥ 22k
)
≤ exp

(
−c2k

)
.

We fix δ, ε > 0. The first inequality in (i) directly follows from Lemma 5.4-(ii).
For simplicity of notation, we set δ′ := δ/32. We observe that if ak ≤ δ′n2−(k+Nε) for any k ∈ JN , NεK, then

ℓ∑
i=1

L2
i 1{Li ≤ 2Nε} =

Nε∑
k=N

ak2
2k ≤ δn/16.

Therefore, using the union bound,

(5.17) P

(
ℓ∑

i=1

L2
i 1{Li ≤ 2Nε} ≥ δn/16

)
≤ Nε max

N≤k≤Nε

P
(
ak ≥ δ′n2−(k+Nε)

)
.

To estimate the last probability in (5.17), we fix N ≤ k ≤ Nε and define

Bk,ε,δ := Jδ′n2−(k+Nε) , nK.

Given bk ∈ Bk,ε,δ, we define

B(bk) :=
{
y = (yj)

bk
j=1 ⊂ J0 , nK : B(yj , 2

k/3) ∩B(yj′ , 2
k/3) = ∅ ∀ 1 ≤ j ̸= j′ ≤ bk

}
.

Then we have for all bk ∈ Bk,ε,δ,

(5.18) #B(bk) ≤ (n+ 1)bk ≤ exp(2bk log n).

Remark that ak ≤ n, and thus using (5.14) and (5.15)

P(ak ≥ δ′n2−(k+Nε)) ≤
∑

bk∈Bk,ε,δ

∑
y∈B(bk)

P
(
∀ 1 ≤ j ≤ bk, T(yj , yj + 2k) ≥ 22k

)
.

Observe that TA is independent of TB if A ∩B = ∅. Therefore, for each y ∈ B(bk),

P
(
∀j ≤ bk, T(yi, yj + 2k) ≥ 22k

)
≤ P

(
∀j ≤ bk, TB(yj ,2k/3)(yi, yj + 2k) ≥ 22k

)
=

bk∏
j=1

P
(
TB(yj ,2k/3)(yj , yj + 2k) ≥ 22k

)
≤ exp

(
−cbk2k

)
,

by using (5.16). Combining the last two inequalities, we arrive at

P(ak ≥ δ′n2−(k+Nε)) ≤
∑

bk∈Bk,ε,δ

#B(bk) exp
(
− cbk2

k
)

≤
∑

bk∈Bk,ε,δ

exp
(
− cbk2

k−1
)
≤ exp

(
−2−7cδ

√
n/ε
)
,

where we have used (5.18) with 2k ≥ (log n)2 for k ≥ N in the second inequality, and that #Bk,ε,δ ≤ n + 1 and
bk2

k ≥ δn2−Nε−5 ≥ 2−6δ
√
n/ε for all bk ∈ Bk,ε,δ in the last line. Combining this estimate with (5.17), we obtain (i).
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We next consider (ii). Observe that

P(∃ k ≥ NK : ak ≥ 1) ≤
∑

k≥NK

P(ak ≥ 1)

≤
∑

k≥NK

P(∃i ∈ J0 , nK; T(i, i+ 2k) ≥ 22k)

≤
∑

k≥NK

(n+ 1)P(T(0, 2k) ≥ 22k)

≤ (n+ 1)
∑

k≥NK

exp(−c2k) ≤ 2(n+ 1) exp(−c
√
Kn),

(5.19)

by using (5.16) and 2NK ≥
√
Kn. Now we consider the event that

∑NK

k=Nε
ak ≥ K. Define

Bε,K :=
{
b = (bk)

NK

k=Nε
⊂ J0 , nK :

NK∑
k=Nε

bk ≥ K
}
,

and for any b ∈ Bε,K , we set

B(b) :=
{
y = (ykj ) 1≤j≤bk

Nε≤k≤NK

⊂ J0 , nK : B(ykj , 2
k/3) ∩B(yk

′

j′ , 2
k′
/3) = ∅ ∀(k, j) ̸= (k′, j′)

}
.

It is straightforward that

(5.20) #Bε,K ≤ (n+ 1)NK ≤ exp((log n)3),

and

(5.21) #B(b) ≤
NK∏

k=Nε

(n+ 1)bk ≤ exp
(
2

NK∑
k=Nε

bk log n
)
.

Using the same argument for Part (i), for each b ∈ Bε,K and y ∈ B(b), we have

P
(
∀Nε ≤ k ≤ NK , ∀ j ≤ bk, T(ykj , y

k
j + 2k) ≥ 22k

)
≤ P

(
∀Nε ≤ k ≤ NK , ∀ j ≤ bk, TB(yk

j ,2
k/3)(y

k
j , y

k
j + 2k) ≥ 22k

)
=

NK∏
k=Nε

bk∏
j=1

P
(
TB(yk

j ,2
k/3)(y

k
j , y

k
j + 2k) ≥ 22k

)

≤ exp

(
−c

NK∑
k=Nε

bk2
k

)
.

Therefore, by using the union bound and (5.21),

P

(
NK∑

k=Nε

ak ≥ K

)
≤

∑
b∈Bε,K

∑
y∈B(b)

P
(
∀Nε ≤ k ≤ NK , ∀ j ≤ bk, T(ykj , y

k
j + 2k) ≥ 22k

)
≤

∑
b∈Bε,K

#B(b) exp

(
−c

NK∑
k=Nε

bk2
k

)

≤
∑

b∈Bε,K

exp

(
−c

NK∑
k=Nε

bk2
k−1

)
.

Moreover, usingNε = ⌈log2(
√
εn)⌉, we have

∑NK

k=Nε
bk2

k−1 ≥ 2Nε−1
∑NK

k=Nε
bk ≥ K2Nε−1 ≥ K

√
εn/2 for any b ∈ Bε,K .

Hence, the last display equation together with (5.20) implies that

P

(
NK∑

k=Nε

ak ≥ K

)
≤ #Bε,K exp

(
−cK

√
εn/2

)
≤ exp

(
−cK

√
εn/4

)
.

Combining this estimate with (5.19), we obtain (ii). □

We prepare a lemma that tells us how to group intervals.
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Lemma 5.6. For any R > 0 and a sequence of intervals ([xi, yi])
m
i=1, there exists a sequence of intervals ([si, ti])

m′

i=1

with m′ ≤ m such that
• (si)

m′

i=1 ⊂ (xj)
m
j=1 and (ti)

m′

i=1 ⊂ (yj)
m
j=1,

•
∑m′

i=1 |ti − si| ≤ 2mR+
∑m

i=1 |yi − xi|,
• d([si, ti], [sj , tj ]) ≥ R for all 1 ≤ i ̸= j ≤ m′,
• ∪m

i=1[xi, yi] ⊂ ∪m′

i=1[si, ti].

Proof. We write Ai := [xi, yi]. We define an equivalent relation on {1, . . . ,m} as follows. Given 1 ≤ i, j ≤ m, we write
i ∼ j if there exist (ik)

r
k=1 ⊂ [m] with i1 := i, ir := j such that maxk∈[r−1] d(Aik , Aik+1

) ≤ R. It is not hard to check
that ∼ is an equivalent relation. Given p ∈ C := {1, . . . ,m}/ ∼, we define

sp := min{xi : i ∈ p}, tp := max{yi : i ∈ p}.

Note that by construction,

Bp := [sp, tq] ⊂
⋃
i∈p

[xi −R, yi +R].(5.22)

We will prove that ([sp, tp])p∈C satisfies the desired properties. Note that m′ := |C| ≤ m. By construction, since
m⋃
i=1

Ai ⊂
⋃
p∈C

Bp ⊂
m⋃
i=1

[xi −R, yi +R],

the first, second and fourth conditions follow. We prove the third one. Let p ̸= q. Without loss of generality, we
suppose tp ≤ tq. Let i ∈ p be such that tp ∈ Ai. If sq < tp+R, by (5.22), then there exists x′ ∈ Aj with j ∈ q such that
x′ ∈ [tp, tp+R], which implies Ai ∼ Aj and derives a contradiction. Thus, we have sq ≥ tp+R and d(Bp, Bq) ≥ R. □

In the next lemma, we show that with overwhelmed probability, we can find a covering composing of elements in
SM (defined in Lemma 5.1 with some M large) for the intervals [Sj , Tj + Lj ] with Lj ≥ 2Nε .

Lemma 5.7. For any A > 1 and ε > 0, there exists M4 = M4(ε,A) such that for M ≥ M4 and n ∈ N sufficiently
large,

P(Ecov) ≥ 1− exp(−A
√
n);

where

Ecov :=

{
∃(si, ti)mi=1 ∈ SM (n);

⋃
j:Lj≥2Nε

[Sj , Tj + Lj ] ⊂
m⋃
i=1

[si, ti]

}
,

and SM (n) is given in Lemma 5.1, that is,

SM (n) :=

(si, ti)
m
i=1 :

• m ∈ J1 , MK,
• si, ti ∈ J0 , nK and si < ti for all i ∈ J1 , mK,
• d([si, ti], [sj , tj ]) > M3

√
n for all i < j,

•
∑m

i=1 |ti − si| ≤M6
√
n

 .

Proof. Fix A > 1 and ε > 0. Let c0 be a positive constant as in Lemma 5.5. We set

M4 :=M4(ε,A) := c0A/ε
2.

By Part (ii) of this lemma, for M ≥M4, if n ∈ N is large enough, then

(5.23) P(E) ≥ 1− exp(−c0M
√
εn) ≥ 1− exp(−A

√
n),

where

E := {ak = 0∀ k ≥ NM} ∩
{ NM∑
k=Nε

ak ≤M
}
.

Hence, it suffices to show that E ⊂ Ecov. Let M ≥ M4(ε,A). Suppose that E occurs. Then #{i : Li ≥ 2Nε} ≤ M .
Thus applying Lemma 5.6 with R =M3

√
n to the sequence of intervals ([Sj , Tj+Lj ])j: Lj≥2Nε , we can find ([si, ti])

m
i=1

with m ≤M satisfying

d(Bi, Bj) ≥M3
√
n ∀i ̸= j;

⋃
j:Lj≥2Nε

[Sj , Tj + Lj ] ⊂
m⋃
i=1

[si, ti].
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Moreover, since NM = ⌈log2(
√
Mn)⌉, on the event E ,

m∑
i=1

|ti − si| ≤ 2mM3
√
n+

∑
j:Lj≥2Nε

|Tj + Lj − Sj |

≤ M5
√
n+ 2

∑
j:Lj≥2Nε

Lj ≤M5
√
n+ 2M2NM ≤M6

√
n.

Hence, Ecov occurs and we have E ⊂ Ecov. □

Proof of Lemma 5.1. Let c0 be a positive constant as in Lemma 5.5. We set

(5.24) ε := ε(δ, A) := (c0δ/64A)
2.

Using Lemma 5.5-(i), we have

(5.25) P

 ∑
i:Li<2Nε

T(Si,Ti + Li) > δn

 ≤ exp(−2A
√
n).

Let us define

Ered := Ecov ∩

 ∑
i:Li<2Nε

T(Si,Ti + Li) ≤ δn

 ,

where Ecov is the event in Lemma 5.7, and

(5.26) Eblue :=
{ ∑

i∈Blue

T(i, i+ 2N ) ≤ (µ+ 2δ)n
}
.

Using (5.25), Lemma 5.7 and Lemma 5.3, there exists M4 =M4(ε, 2A) such that for M ≥M4, if n is large enough,

P(Ec
red) + P(Ec

blue) ≤ 2 exp(−2A
√
n) + exp(−n2/3) ≤ exp(−A

√
n).(5.27)

We remark that by (5.13), on the event Ered with (si, ti)
m
i=1,

[0, n] ⊂
⋃
i∈N

[i, i+ 2N ] =
⋃

i∈Blue

[i, i+ 2N ] ∪
⋃

i∈Red

[i, i+ 2N ]

⊂
⋃

i∈Blue

[i, i+ 2N ] ∪
⋃

i:Li<2Nε

[Si,Ti + Li] ∪
m⋃
i=1

[si, ti].

Hence on the event Ered ∩ Eblue, T(0, n) ≤ n(µ+ 3δ) +
∑m

i=1 T(si, ti). Therefore, we have

P(T(0, n) ≥ (µ+ ξ)n) ≤ P

(
∃(si, ti)mi=1 ∈ SM (n);

m∑
i=1

T(si, ti) ≥ (ξ − 3δ)n

)
+ P (Ec

red) + P(Ec
blue)

≤
∑

(si,ti)mi=1∈SM (n)

P

(
m∑
i=1

T(si, ti) ≥ (ξ − 3δ)n

)
+ exp(−A

√
n).

(5.28)

Thus, since |SM (n)| ≤ n2M , Lemma 5.1 follows by taking M1 =M4(ε, 2A). □

5.3. Proof of Proposition 3.1-(iii). Applying Lemma 5.1 with A = 1 and δ = ξ/2, letting M = M1(1, ξ/2) as in
this lemma, we have

P(T(0, n) > (µ+ ξ)n) ≤ e−n + n2M
∑

x∈J0,nK

P
(
T(x, x+ ⌊M6

√
n⌋) > ξn/(2M)

)
≤ e−n + n3MP

(
T(0, ⌊M6

√
n⌋) > ξn/(2M)

)
.

By Lemma 2.7-(ii), the last probability is bounded from above by e−c
√
n with some positive constant c = c(ξ,M),

which yields the claim. □
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5.4. Proof of Proposition 3.1-(i). We first prove that there exists a universal constant c > 0 such that for any
m ∈ N,

(5.29) P(t(0,m) = T(0,m)) ≤ exp(−cm2/3),

Let M2 = M2(1) as in Corollary 5.2. Since P(t(0, x) ≤ h) ≤ exp(−c0x2/h) with some universal constant c0 > 0 by
Lemma 2.1-(iii) and T(0,m) ≤ T(0, ⌊m4/3⌋),

P(t(0,m) = T(0,m)) ≤ P(t(0,m) ≤M2m
4/3) + P(T(0,m) ≥M2m

4/3)

≤ exp(−c0m2/3/M2) + P(T(0, ⌊m4/3⌋) ≥M2m
4/3),

By Corollary 5.2,
P(T(0, ⌊m4/3⌋) ≥M2m

4/3) ≤ exp(−m2/3).

Hence, combining the last two display equations, we get (5.29).
We take ε := δ

3µ so that

(5.30) µ(1− ε) = µ− δ/3.

Define

E∆ := {All the optimal paths from 0 to n must visit ∆}, with ∆ := {k ∈ Z : M
√
n ≤ k ≤ εn}.

On the event Ec
∆, there is x ≤M

√
n and y ≥ εn such that t(x, y) = T(x, y). Thus,

P(Ec
∆) ≤ P(T(0, n) ≥ n2) + P(Ec

∆; T(0, n) ≤ n2)

≤ P(T(0, n) ≥ n2) + P(∃x ∈ J−n2 , M
√
nK, ∃y ∈ Jεn, nK; t(x, y) = T(x, y))

≤ P(T(0, n) ≥ n2) +
∑

−n2≤x≤M
√
n

∑
εn≤y≤n

P(t(x, y) = T(x, y))

≤ exp(−c1n) + exp(−c1n2/3),(5.31)

with some c1 = c1(ε) > 0, by using Lemma 2.7-(ii) and (5.29).
By the lower tail large deviation [2, Theorem 1], for any ε > 0, there exists c2 > 0 such that for any m ∈ N,

P(T(0,m) < (1− ε)E[T(0,m)]) ≤ exp(−c2m),

Moreover, by (5.30), for all k ∈ ∆, we have

(1− ε)E[T(k, n)] ≥ (1− ε)E[T(⌊εn⌋, n)] = µ(1− ε)2n− o(n) ≥ (µ− δ)n.

Therefore, we reach for some c3 = c3(δ) > 0,

(5.32) P(T(k, n) < (µ− δ)n) ≤ exp(−c3n).
Finally, we observe that

P(T(0, n) ≥ (µ+ ξ)n) ≥ P(T(0, n) ≥ (µ+ ξ)n, E∆)
≥ P(T(0, ⌊M

√
n⌋) ≥ (ξ + δ)n,T(k, n) ≥ (µ− δ)n∀ k ∈ ∆, E∆)

≥ P(T(0, ⌊M
√
n⌋) ≥ (ξ + δ)n)−

∑
k∈∆

P(T(k, n) < (µ− δ)n)− P(Ec
∆)

≥ P(T(0, ⌊M
√
n⌋) ≥ (ξ + δ)n)− exp(−c4n2/3),

for some c4 = c4(δ, ε, µ) > 0, where we have used (5.31) and (5.32). □

6. Energy approximation by step functions: Proof of Proposition 3.3

For the convenience, we recall the definition of the energy functional

E(f) := −
∫
R
log θf (x) dx, θf (x) := PBM

x (τy ≥ f(y)− f(x)∀ y ∈ R),

and our goal is to prove that

(6.1) inf
f∈C(ξ)

E(f) = inf
f∈CStep(ξ)

E(f).

We also recall a result from Lemma 2.2 that will be used frequently in this section:

(6.2) E(f) =
√
ξE(fξ), fξ(x) := ξ−1f(

√
ξx) for any f ∈ C(1) and ξ > 0.

Hence, we only need to prove the claim (6.1) with ξ = 1. Given parameters ε, δ > 0, our aim is to deform a function
f ∈ C(1) to a step function g ∈ CStep(1 − ε) such that E(g) ≥ E(f) − δ. Then letting ε, δ → 0, we can validate the



UPPER TAIL LARGE DEVIATION FOR 1D-FROG MODEL 35

Figure 1. Soft deformation over I = [a, b]; Hard deformation over I = [a, b]

claim of Proposition 3.3. The primary strategy involves the integration of two types of transformations: soft and hard
deformations. To illustrate, suppose that we have to deform a function f over a finite interval I ⊂ R. Then the hard
deformation simply forces the function f to the minimum value over I, that is

g(x) =

{
f(x) if x ̸∈ I

miny∈I f(y) if x ∈ I.

This deformation does not change the maximum value of f and a lower bound of the change of energy is given by

(6.3) E(f)− E(g) ≥
∫
I

log
θg(x)

θf (x)
dx,

since g(x) ≤ f(x) for all x ∈ R and f(x) = g(x) for all x ̸∈ I. In particular, if the length of I is 1/n, then

(6.4) E(f)− E(g) ≥ (O(1) + log n)/n.

The soft deformation defined in Lemma 6.2 below is more complicated, which gradually flatten the function f to get
a function g with lower energy: E(g) ≤ E(f), and controllable height (and so the maximum): for all x ∈ R

(6.5) g(x) ≥ f(x)−∆I(f),

where we define for each interval I ⊂ R,

(6.6) ∆I(f) :=MI(f)−mI(f), MI(f) := sup
y∈I

f(y), mI(f) := inf
y∈I

f(y).

We will partition the primary interval [−M,M ], where M is appropriately large based on δ and ε, into subintervals of
length 1/n. These subintervals will be categorized into three types based on their height:

1. Large height, if ∆I(f) ≥ C∗ log n/n,
2. Moderate height, if ∆I(f) ∈ [c∗ log n/n,C∗ log n/n),
3. Small height, if ∆I(f) ≤ c∗ log n/n.

Here, C∗ and c∗ are appropriately selected constants to be chosen later.
For intervals with large height, we apply the hard deformation and manage the total energy gaps using (6.4). Note

that the number of intervals with large height is at most n/C∗ log n. The details of this part will be presented in
Proposition 6.6. On the other hand, we apply a soft deformation to the function over intervals with small heights. By
its definition, the newly formed function possesses a lower energy. Using Eq. (6.5), we can manage the difference in
height post-deformation. This will be addressed in Proposition 6.8.

The intervals of moderate height present the most significant challenge. It is not immediately clear whether to
apply a soft or hard deformation to each. Rather than making this decision for each individual interval, we will group
these moderate height intervals into larger clusters. The choice of transformation for each group will then depend on
certain criteria related to the size of its group (i.e., the number of intervals it contains) and height (i.e., the difference
in the values of the function over the group). This approach will be detailed in Proposition 6.7.

The structure of this section is outlined as follows. The subsequent subsection will present a summary of some
preliminary results. The proof of Proposition 3.3 is provided in subsection 6.2, and it relies on several other results,
specifically Propositions 6.5 through 6.8. The proofs for these propositions can be found in subsections 6.3 and 6.4.

6.1. The two deformations and preliminaries. We present two key deformations allowing us flatten the function
with controllable energy and height. Let J = {Ii}ℓi=1 be finite disjoint intervals, where Ii is of form (ai, bi), [ai, bi),
(ai, bi], or [ai, bi] with ai < bi (ai and bi may take values ±∞.)
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The hard deformation of f ∈ C(1) over J , denoted by fhd,J , is a function given as

(6.7) fhd,J (x) :=

{
infy∈I f(y) if x ∈ ∪I∈J I,

f(x) otherwise.

Lemma 6.1. The following hold:
(i) If (g(x)− g(y))+ ≤ (f(x)− f(y))+ for all x, y ∈ R then E(f) ≥ E(g).
(ii) There exists a positive constant C such that for all f ∈ C(1) and x, y ∈ R with f(y) > f(x)

θf (x) ≤
C|x− y|√
f(y)− f(x)

.

(iii) If g(x) ≤ f(x) for all x ∈ R then

E(g)− E(f) ≥
∫
{g<f}

log
θg(x)

θf (x)
dx.

As a consequence,

E(fhd,J )− E(f) ≥
∑
I∈J

∫
I

log
θfhd,J (x)

θf (x)
dx.

Proof. Parts (i) and (iii) directly follows from the definition of E(f) and fhd,J ≤ f . Using Lemma 2.3

θf (x) ≤ PBM
x (τy ≥ f(y)− f(x)) = PBM

0 (τ|x−y| ≥ f(y)− f(x)) ≍ |x− y|√
f(y)− f(x)

,

and thus (ii) follows. □

The soft deformation f sd,J of f ∈ C(1) over J will be defined inductively as follows. Set f [0] := f . By induction
in k ≥ 1, f [k] is defined as:

f [k](x) :=


mIk(f

[k−1]), if f [k−1](x) ∈ [mIk(f
[k−1]),MIk(f

[k−1])],

f [k−1](x), if f [k−1](x) < mIk(f
[k−1]),

f [k−1](x)−∆Ik(f
[k−1]) if f [k−1](x) > MIk(f

[k−1]).

We set f sd,J := f [ℓ] with ℓ := |J |.

Lemma 6.2. Suppose that f ∈ C(1). The following hold:
(i) f sd,J |I ≡ const for all I ∈ J .
(ii) For any x, y ∈ R,

f sd,J (x) ≥ f(x)−
∑
I∈J

∆I(f), and

(f sd,J (x)− f sd,J (y))+ ≤ (f(x)− f(y))+.

As a consequence, E(f sd,J ) ≤ E(f).

Proof. Part (i) directly follows from the definition of f sd,J . For Part (ii), by Lemma 6.1-(i), it suffices to show that
for any k ≤ ℓ and x, y ∈ R,

f [k](x) ≥ f [k−1](x)−∆Ik(f), and(6.8)

(f [k](x)− f [k](y))+ ≤ (f [k−1](x)− f [k−1](y))+.(6.9)

Since ∆Ik(f
[k−1]) ≤ ∆Ik(f) by (6.9), we have (6.8). Hence, our task is to prove (6.9). For simplicity of notation, we

write mk := mIk(f
[k−1]) and Mk :=MIk(f

[k−1]).
When f [k−1](y) < mk, by f [k](x) ≤ f [k−1](x) and f [k](y) = f [k−1](y),

(f [k](x)− f [k](y))+ ≤ (f [k−1](x)− f [k−1](y))+.

When f [k−1](y) ∈ [mk,Mk],

(f [k](x)− f [k](y))+ =

{
0, if f [k−1](x) ≤Mk,

(f [k−1](x)−Mk)+, otherwise,

≤ (f [k−1](x)− f [k−1](y))+.
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We finally suppose f [k−1](y) > Mk. If f [k−1](x) ≤Mk, then (6.9) follows since (f [k](x)− f [k](y))+ = 0. Otherwise,
if f [k−1](x) > Mk, then

f [k](x) = f [k−1](x)− (Mk −mk), f [k](x) = f [k−1](y)− (Mk −mk).

Therefore, we have

(f [k](x)− f [k](y))+ = (f [k−1](x)− f [k−1](y))+.

Consequently, in all cases, (6.9) holds, and the lemma follows. □

The following technical lemmas will be proved in Appendix.

Lemma 6.3. For any δ > 0, there exist c, c̃ ∈ (0, 1) such that for any interval I ⊂ [δ,∞) with |I| ≤ 1 and f ∈ C(1)
satisfying f |[−δ,δ] ≡ 0 and f |I ≡ const, we have for any x ∈ I,

θf (x) ≥ cPBM
x (τy ≥ f(y)− f(x) ∀y ≥ sup I) ≥ c̃ (sup I − x).

Lemma 6.4. Let b > a > 0 and f, f̃ two increasing functions on [0,∞) satisfying f̃(x) ≤ f(x) for any x ≥ a. Let
ℓb,a := f(b)− f(a) and ℓ̃b,a := f(b)− f̃(a). It holds:

(ℓ̃b,a)
3/2PBM

a (τx ≥ f̃(x)− f̃(a) ∀x ≥ b) ≥ (ℓb,a)
3/2PBM

a (τx ≥ f(x)− f(a) ∀x ≥ b).

6.2. Proof of Proposition 3.3. Since the inequality r∗ ≤ inf{E(f) : f ∈ CStep(1)} is always true, we now focus on
proving the converse inequality, that is

r∗ ≥ inf{E(f) : f ∈ CStep(1)}.(6.10)

Given M,η > 0, we denote by C(M,η) the set of all functions g : R → [0,∞) satisfying
• g is increasing in [0,∞) and is decreasing in (−∞, 0],
• g|(−∞,−M ] ≡ const, g|[M,∞) ≡ const, g|[−η,η] ≡ 0, ∥g∥∞ := supx∈R g(x) ≤ 1.

From now on, fix an arbitrary ϵ > 0 and take f ∈ C(1) such that

E(f) ≤ r(1) + ϵ.(6.11)

Let δ ∈ (0, 1/4) be small enough so that
E(f) + 4δ√

1− 4δ
≤ r(1) + 2ϵ,(6.12)

We prepare several claims that will be proved in the subsequent sections. The following proposition says that f can
be approximated by a function in

⋃
M,η>0 C(M,η) with lower energy.

Proposition 6.5. There exist M,η > 0 and g0 ∈ C(M,η) depending on δ and f such that

E(g0) ≤ E(f), and f(x)− δ ≤ g0(x) ≤ f(x) ∀x ̸∈ [−M,M ].

Let n ∈ N. Dividing the interval [−M,M ] into subintervals of length 1/n, we define

I := I+ ∪ I− :=

{[
i− 1

n
,
i

n

)
: i ∈ J1 , MnK

}
∪
{(

−i
n
,
−i+ 1

n

]
: i ∈ J1 , MnK

}
,

Let C∗ := 4/δ. We also define

L± :=

{
I ∈ I± : ∆I(g0) ≥ C∗

log n

n

}
, L := L+ ∪ L−.(6.13)

Proposition 6.6. For n ∈ N large enough, there exists g1 ∈ C(M,η) so that the following hold:
(a) g1|I ≡ const for I ∈ L, g1|I = g0|I for I ∈ I \ L, and ∆I(g1) < (C∗ log n)/n for I ∈ I.
(b) g1(x) ≤ g0(x) for all x ∈ R and g1(x) = g0(x) for x ̸∈ [−M,M ].
(c) E(g1) ≤ E(g0) + δ.

We define

(6.14) M :=

{
I ∈ I :

c∗ log n

n
≤ ∆I(g1) <

C∗ log n

n

}
, with c∗ :=

δ

16(E(f) + 1)
< C∗.

Proposition 6.7. For n ∈ N large enough, there exists g2 ∈ C(M,η) so that the following hold:
(a) g2|I ≡ const for I ∈ M∪L and ∆I(g2) < (c∗ log n)/n for I ∈ I.
(b) g2(x) ≤ g1(x) for all x ∈ R and g2(x) ≥ g1(x)− δ for x ̸∈ [−M,M ].
(c) E(g2) ≤ E(g1) + δ.
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Finally, we flatten g2 over the remaining intervals I ∈ I with small height ∆I(g1) < c∗(log n)/n.

Proposition 6.8. If n ∈ N is large enough, then there exists a step function g3 ∈ C(M,η) such that E(g3) ≤ E(g2)
and g2(x)− δ ≤ g3(x) ≤ g2(x) for all x ∈ R.

Assuming these propositions, we first prove (6.10).

Proof of (6.10). Let n ∈ N be sufficiently large and fixed. By (6.11) and Propositions 6.5–6.8, g3 is a step function
on R, increases in [0,∞), decreases in (−∞, 0], and satisfies that limx→0 g3(x) = 0 by g3 ∈ C̄(M,η) and

E(g3) ≤ E(f) + 4δ and f(x)− 4δ ≤ g3(x) ≤ f(x) for all x ̸∈ [−M,M ].(6.15)

Let α := supy≥0 g3(y) ≥ 1− 4δ. We consider the function

ϕ(x) := α−1g3(
√
αx), x ∈ R.

Lemma 2.2, (6.12) and (6.15) imply that ϕ ∈ CStep(1) and

E(ϕ) =
1√
α
E(g3) ≤

E(f) + 4δ√
1− 4δ

≤ r(1) + 2ϵ.

Consequently, one has

inf{E(f) : f ∈ CStep(1)} ≤ r(1) + 2ϵ.

Since ϵ is arbitrary, (6.10) follows by letting ϵ↘ 0. □

6.3. Proofs of Propositions 6.5 and 6.6.

6.3.1. Proof of Proposition 6.5. Let δ > 0 and f ∈ C(1). Since limx→∞ f(x) = 1 and limx→−∞ f(x) exists, we can
take L > 0 such that

f(L) ≥ 1− δ

3
, f(−L) ≥ lim

x→−∞
f(x)− δ

3
.

We next take η ∈ (0, δ/3) small enough so that max|x|≤η f(x) <
δ
3 , which is possible thanks to limx→0 f(x) = 0. Apply

Lemma 6.2 with J := {(−∞,−L], [−η, η], [L,∞)} to obtain the deformation

g0(x) := f sd,J (x), M := L+ η.

By the constructions of f sd,J , one has

f(x)− δ ≤ g0(x) ≤ f(x) ∀x ∈ R, E(g0) ≤ E(f).

Moreover, by construction, g0 belongs to C(M,η). □

6.3.2. Proof of Proposition 6.6. Recall the notations L± from (6.13). We consider the hard deformation

g1(x) := ghd,L
0 (x) :=

{
infy∈I g0(y), if x ∈ I for some I ∈ L
g0(x), otherwise.

Clearly, g1 ∈ C(M,η) holds since g0 ∈ C(M,η). Moreover, Properties (a) and (b) of Proposition 6.6 are trivial from
the construction. Finally, we check Property (c). Since g0 is equal to zero on [−η, η], we have I ⊂ R+ \ [0, η/2] for all
I ∈ L+ when n ∈ N is large enough depending on η. Hence, by Lemma 6.3-(ii), there exists c3 = c3(η) ∈ (0,∞) such
that for all I ∈ L+ and x ∈ I,

θg1(x) ≥ c3(sup I − x).

Thus for all n ∈ N large enough depending on c3,∫
I

log θg1(x) dx ≥
∫ 1/n

0

log (c3 x)dx ≥ −2(log n)/n.

By considering h(x) = g1(−x), we obtain the same estimate for all I ∈ L−. Hence, by Lemma 6.1,

(6.16) E(g0)− E(g1) ≥
∑
I∈L

∫
I

log θg1(x) dx ≥ −2(#L+ +#L−)
log n

n
.

Note that since 0 ≤ g0 ≤ 1 and g0 is monotone in R− and R+, we have∑
I∈L+

∆I(g0) ≤ 1,
∑
I∈L−

∆I(g0) ≤ 1.
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Moreover, ∆I(g0) ≥ C∗(log n)/n for all I ∈ L. Therefore,

#L± ≤ n

C∗ log n
.

This, combined with (6.16) and the choice of C∗ as in (6.13), gives

E(g0)− E(g1) ≥ − 4

C∗
≥ −δ,

and Property (c) follows. □

6.4. Proof of Proposition 6.7. Our goal is to flatten g1 over all the intervals belonging to

M := M+ ∪M−, where M± :=
{
I ∈ I± : c∗(log n)/n ≤ ∆I(g1) < C∗(log n)/n

}
.

6.4.1. Clustering of moderate intervals. We define

(6.17) K := 2 +
⌊
8δ−1

(
E(g0) + δ + 4/c∗

)⌋
.

Given a non-empty set A ⊂ M+, we enumerate A = {I1, . . . , Iλ} with inf I1 > · · · > inf Iλ, and define

λ(A) := max{j ∈ {1, . . . , λ} : inf Ii > sup I1 − (i/n)K ∀i ∈ J1 , jK}.

Similarly, for A ⊂ M−, we enumerate A = {I−1, . . . , I−λ} with sup I−1 < · · · < sup I−λ, and define

λ(A) := max
{
j ∈ {1, . . . , λ} : sup I−i > inf I−1 − (i/n)K ∀i ∈ J1, jK

}
.

Let

Γ(A) :=

{
{I1, . . . , Iλ(A)} if A ⊂ M+

{I−1, . . . , I−λ(A)} if A ⊂ M−.

We set M1 := Γ(M+) and M−1 := Γ(M−), and define inductively,

Mi+1 := Γ
(
M+ \

i⋃
j=1

Mj

)
for i ≥ 1, Mi−1 := Γ

(
M− \

−1⋃
j=i

Mj

)
for i ≤ −1.(6.18)

Define also

ℓ+ := min
{
i ≥ 1 : M+ \

i⋃
j=1

Mj = ∅
}
, ℓ− := max

{
i ≤ −1 : M− \

−1⋃
j=i

Mj = ∅
}
.

Finally, for −ℓ− ≤ i ≤ ℓ+ , we set

ni := #Mi, ti :=

{
supI∈Mi

sup I if i ≥ 1,

infI∈Mi
inf I if i ≤ −1,

Fi :=

{
[ti − Kni

n , ti) if i ≥ 1,

(ti, ti +
Kni

n ] if i ≤ −1,

with the convention that n0 := 0 and F0 := ∅.

Lemma 6.9. For n ∈ N large enough, the following hold:
(i) It holds

ℓ+∑
i=1

ni = #M+ ≤ n

c∗ log n
,

−1∑
i=ℓ−

ni = #M− ≤ n

c∗ log n
.

(ii) The intervals (Fi)
ℓ+

i=ℓ− are disjoint and do not intersect [−η/4, η/4].
(iii) For all 1 ≤ i ≤ ℓ+ and x ∈ [ti −Kni/n, ti − 1/n],

g1(ti)− g1(x) ≥
c∗|ti − x|

2K
log n;

for all ℓ− ≤ i ≤ −1 and x ∈ [ti + 1/n, ti +Kni/n],

g1(ti)− g1(x) ≥
c∗|ti − x|

2K
log n.
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Proof. By symmetry, we give a proof only for positive parts, i.e., 1 ≤ i ≤ ℓ+.
(i): The equation is trivial since (Mi)1≤i≤ℓ+ is a partition of M+. On the other hand, since g1 is increasing in

[0,∞) and bounded by 1, the inequality follows from

1 ≥
∑

I∈M+

∆I(g1) ≥
(
c∗

log n

n

)
#M+.

(ii): Suppose the contrary that there exists i ∈ J1, ℓ+K such that inf Fi ≤ η/4, or equivalently ti −Kni/n ≤ η/4.
Due to (i), if n is large enough, then

ti ≤
Kni
n

+
η

4
≤ K

c∗ log n
+
η

4
≤ η

2
,

On the other hand, since g1|[−η,η] ≡ 0, we have

η ≤ inf
I∈M+

sup I ≤ sup
I∈Mi

sup I ≤ ti,

which is a contradiction. Therefore, inf Fi > η/4 holds for all 1 ≤ i ≤ ℓ+. We now show that (Fi)
ℓ+

i=1 are disjoint
intervals by proving that inf Fi > supFi+1 = ti+1 for 1 ≤ i ≤ ℓ+ − 1. Fixing an index 1 ≤ i ≤ ℓ+ − 1, we denote
A := M+ \

⋃i−1
j=1 Mj . We enumerate A as A = {I1, . . . , Iλ} with inf I1 > · · · > inf Iλ. Since i < ℓ+, λ(A) < λ. The

definition of λ(A) gives that

inf Iλ(A)+1 ≤ sup I1 −
λ(A) + 1

n
K = inf Fi −

K

n
.

Moreover, since Iλ(A)+1 is the first interval in Mi+1,

ti+1 = sup Iλ(A)+1 = inf Iλ(A)+1 +
1

n
.

Therefore, we get that inf Fi > ti+1 = supFi+1.
(iii): We claim that for all 1 ≤ i ≤ ℓ+ and x ∈ [ti −Kni/n, ti − 1/n],

# {I ∈ Mi : I ⊂ [x, ti]} ≥ n

K
|ti − x| − 1.(6.19)

Assuming the above, we first conclude (iii). We fix 1 ≤ i ≤ ℓ+. If ti −Kni/n ≤ x ≤ ti − 2K/n, by the definition of
moderate intervals, then

g1(ti)− g1(x) ≥ c∗
log n

n
# {I ∈ Mi : I ⊂ [x, ti]}

≥ c∗
log n

n

( n
K

|ti − x| − 1
)

=
c∗|ti − x|

K
log n− c∗

log n

n
≥ c∗|ti − x|

2K
log n.

If ti − 2K/n < x ≤ ti − 1/n, by g1(ti − 1/n) ≥ g1(x) and [ti − 1/n, ti] ∈ M+, then

g1(ti)− g1(x) ≥ g1(ti)− g1(ti − 1/n) ≥ c∗
log n

n
≥ c∗|ti − x|

2K
log n.

Now it remains to prove (6.19). We fix 1 ≤ i ≤ ℓ+ and enumerate A := M+ \
⋃i−1

j=1 Mj as A = {I1, . . . , Iλ} with
inf I1 > · · · > inf Iλ. For all 1 ≤ j ≤ λ(A), since inf Ij > sup I1 − j

nK = ti − j
nK,

j >
n

K
(ti − inf Ij).(6.20)

If inf Iλ(A) < x ≤ ti − 1/n, then there exists a unique 2 ≤ j(x) ≤ λ(A) with inf Ij(x) < x ≤ inf Ij(x)−1. Then, by
(6.20),

# {I ∈ Mi : I ⊂ [x, ti]} ≥ j(x)− 1 >
n

K
(ti − inf Ij(x))− 1 >

n

K
|ti − x| − 1.

If ti − niK/n ≤ x ≤ inf Iλ(A), then one has

# {I ∈ Mi : I ⊂ [x, ti]} = λ(A), |ti − x| ≤ ni
n
K =

λ(A)

n
K.

Therefore,

# {I ∈ Mi : I ⊂ [x, ti]} ≥ n

K
|ti − x|.

□
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Lemma 6.10. For all n large enough,

ℓ+∑
i=ℓ−

ni
n

log
ni
n

≥ −δ
4
,

with the convention that n0 = 0 and 0 log 0 = 0.

Proof. By Lemma 6.9-(iii), if n ∈ N is large enough, then for any 1 ≤ i ≤ ℓ+ and x ∈ [ti −Kni/n, ti − 1/n],

log θg1(x) ≤ logPBM
x (τti ≥ g1(ti)− g1(x)) ≤ logPBM

x

(
τti ≥

c∗|ti − x|
2K

log n

)
=

1

2
log |ti − x| − 1

2
log log n+O(logK)

≤ 1

2
log |ti − x|,

where we have used PBM
x (τa ≥ b) ≍ |a− x|/

√
b for a, x ∈ R and b > 0, by Lemma 2.3. Similarly, for any ℓ− ≤ i ≤ −1

and x ∈ [ti + 1/n, ti +Kni/n],

log θg1(x) ≤ logPBM
x (τti ≥ g1(ti)− g1(x)) ≤

1

2
log |ti − x|.

Therefore, since Fi’s are disjoint by Lemma 6.9-(ii), we have

−E(g1) ≤
ℓ+∑
i=1

∫ ti−1/n

ti−Kni/n

log θg1(x) dx +

−1∑
i=ℓ−

∫ ti+Kni/n

ti+1/n

log θg1(x) dx

≤ 1

2

∑
i∈{ℓ−,··· ,ℓ+}\{0}

∫ Kni/n

1/n

log tdt.

A straightforward calculation shows that∫ Kni/n

1/n

log tdt =
Kni

n
log

Kni

n
− Kni

n
− 1

n
log

1

n
+

1

n

≤ Kni

n
log

ni
n

+
Kni
n

logK +
log n

n
,

Moreover, by Part (i) of Lemma 6.9,

ℓ+ + ℓ− ≤
ℓ+∑

i=ℓ−

ni = #M ≤ 2n

c∗ log n
,

for n ∈ N large enough. Therefore,

−E(g1) ≤
K

2

ℓ+∑
i=ℓ−

ni
n

log
ni
n

+
K logK + log n

n
· 2n

c∗ log n

≤ K

2

ℓ+∑
i=ℓ−

ni
n

log
ni
n

+
4

c∗
,

and hence by the choice of K as in (6.17),

ℓ+∑
i=ℓ−

ni
n

log
ni
n

≥ − 2

K
(E(g1) + 4c−1

∗ )

≥ − 2

K
(E(f) + 2δ + 4c−1

∗ ) ≥ −δ
4
,

and the lemma follows. □

Recall that the function g1 obtained in Proposition 6.6 satisfies
(a1) g1 ∈ C(M,η)
(b1) g1 is constant in each interval I ∈ L, and ∆I(g1) ≤ C∗(log n)/n for the other intervals.
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Let us define

Fh :=
{
Fi : ℓ

− ≤ i ≤ ℓ+, ∆Fi
(g1) ≤ C∗K

2ni
n

log n
}

Fs :=
{
Fi : ℓ

− ≤ i ≤ ℓ+, ∆Fi
(g1) > C∗K

2ni
n

log n
}
,

and

Mh := {I ∈ M : I ⊂ Fi for some Fi ∈ Fh}
Ms := {I ∈ M : I ⊂ Fi for some Fi ∈ Fs}.

Note that
Fh ∪ Fs = F := {Fi : ℓ

− ≤ i ≤ ℓ+}, M = Mh ∪Ms.

Our strategy is to first apply the hard deformation with g1 over the intervals in Fh, and then apply the soft deformation
over the intervals in Ms. We finally confirm that the final function will satisfy all of the desired conditions.

We consider the hard deformation of g1 over Fh as

g̃1(x) := ghd,Fh

1 (x) =


g1(ti − Kni

n ) if x ∈ Fi for some Fi ∈ Fh with i ≥ 1,

g1(ti +
Kni

n ) if x ∈ Fi for some Fi ∈ Fh with i ≤ −1,

g1(x), otherwise.

Lemma 6.11. For n large enough, the following hold:
(ã1) g̃1 ∈ C(M,η),
(̃b1) g̃1 is constant on each interval I ∈ Fh ∪ L, and ∆I(g̃1) ≤ C∗ log n/n for the other intervals.
(c̃1) g̃1(x) ≤ g1(x) for all x and g̃1(x) = g1(x) for x ̸∈ [−M,M ].
(d̃1) E(g̃1)− E(g1) ≥ −δ.

Proof. The first three properties of g̃1 are trivial from the its definition and Properties (a1), (b1) of g1. We now prove
the last property. By Lemma 6.1,

E(g1)− E(g̃1) ≥
∑
i≥1

Fi∈Fh

∫
Fi

log
θg̃1(x)

θg1(x)
dx+

∑
i≤−1
Fi∈Fh

∫
Fi

log
θg̃1(x)

θg1(x)
dx.(6.21)

We decompose the first term as ∑
i≥1

Fi∈Fh

∫
Fi

log
θg̃1(x)

θg1(x)
dx ≥ (I) + (II),

where

(I) :=
∑
i≥1

Fi∈Fh

∫ ti

ti−ni/n

log θg̃1(x) dx, (II) :=
∑
i≥1

Fi∈Fh

∫ ti−ni/n

ti−Kni/n

log
θg̃1(x)

θg1(x)
dx.

For any i ≥ 1, since g̃1|Fi
≡ const and |Fi| ≤ 1 by Lemma 6.9-(i), Lemma 6.3 implies that there exist positive constants

C1, C2 ∈ (0, 1) depending on η such that for all x ∈ Fi,

(6.22) 1 ≥ θg̃1(x) ≥ C1PBM
x (τy ≥ g̃1(y)− g̃1(x) for all y ≥ ti) ≥ C2(ti − x).

Therefore,

(I) ≥
ℓ+∑
i=1

∫ ti

ti−ni/n

log(C2(ti − x)) dx =

ℓ+∑
i=1

ni
n

log
ni
n

+ (logC2 − 1)

ℓ+∑
i=1

ni
n
.

For (II), by using (6.22) and Lemma 6.4, we obtain

θg̃1(x)

θg1(x)
≥ C1

PBM
x (τy ≥ g̃1(y)− g̃1(x) for all y ≥ ti)

PBM
x (τy ≥ g1(y)− g1(x) for all y ≥ ti)

≥ C1

(
g1(ti)− g1(x)

g1(ti)− g̃1(x)

)3/2

.

Moreover, if x ∈ [ti −Kni/n, ti − ni/n], Lemma 6.9-(iii) gives that

g1(ti)− g1(x) ≥
c∗|ti − x|

2K
log n ≥ c∗

2K
× ni
n

log n.

Using the definition of g̃1, and Fi ∈ Fh,

g1(ti)− g̃1(x) = g1(ti)− g1 (ti −Kni/n) ≤ C∗K
2ni
n

log n.
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Therefore, we arrive at

θg̃1(x)

θg1(x)
≥ C3 := C1

(
c∗

2C∗K3

)3/2

,

which together with Lemma 6.9-(i) implies that for all n ∈ N large enough,

(II) ≥
ℓ+∑
i=1

(K − 1)ni logC3

n
≥ (K − 1) logC3

c∗ log n
≥ −δ

4
.

Using the above estimate and (6.23), we get

∑
i≥1

Fi∈Fh

∫
Fi

log
θg̃1(x)

θg1(x)
dx ≥ −δ

4
+

ℓ+∑
i=1

ni
n

log
ni
n

+ (logC2 − 1)

ℓ+∑
i=1

ni
n
.

We have the same for the negative part. Thus, by (6.21), Lemma 6.9-(i), Lemma 6.10, for n large enough, then

E(g1)− E(g̃1) ≥ −δ
2
+

ℓ+∑
i=ℓ−

ni
n

log
ni
n

+ (logC2 − 1)
ℓ+∑

i=−ℓ−

ni
n

≥ −δ.

□

Proof of Proposition 6.7. We consider the soft deformation:

g2 := (g̃1)
sd,Ms .

Clearly, g2 ∈ C(M,η) and g2 satisfies the following conditions:

• g2(x) ≤ g1(x) for all x.
• g2|I ≡ const for all I ∈ M∪L and ∆I(g2) ≤ c∗(log n)/n for all I ∈ I \M∪ L.
• E(g2) ≤ E(g̃1) ≤ E(g1) + δ.

Since g̃1(x) = g1(x) for all x ̸∈ [−M,M ], to show Property (b) of Proposition 6.7, it remains to prove

g2(x) ≥ g̃1(x)− δ.(6.23)

By the definition of Ms and Fs, we have

(6.24) #Ms ≤
∑

Fi∈Fs

n|Fi| =
∑

Fi∈Fs

Kni.

Combined with the fact that ∆I(g̃1) ≤ C∗(log n)/n for all I ∈ Ms, this yields∑
I∈Ms

∆I(g̃1) ≤
C∗K log n

n

∑
Fi∈Fs

ni.

Since (Fi)
ℓ+

i=ℓ− are disjoint intervals that do not contain 0, and g1 is a monotone function both on (−∞, 0) and (0,∞)
with 0 ≤ g1 ≤ 1, by using ∆Fi(g1) ≥ C∗K

2ni(log n)/n if Fi ∈ Fs,

2 ≥ ∆(−∞,0)(g1) + ∆(0,∞)(g1) ≥
ℓ+∑

i=−ℓ−

∆Fi
(g1) ≥

∑
Fi∈Fs

∆Fi
(g1) ≥

C∗K
2 log n

n

∑
Fi∈Fs

ni,

It follows from the last two estimates that ∑
I∈Ms

∆I(g̃1) ≤ 2/K.

Combining this with Lemma 6.2 yields that for all x ∈ R,

g2(x) ≥ g̃1(x)−
∑

I∈Ms

∆I(g̃1) ≥ g̃1(x)− 2K−1 ≥ g̃1(x)− δ,

and (6.23) follows. □
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6.5. Proof of Proposition 6.8. Let g2 be the function constructed in Proposition 6.7. We have g2|I ≡ const for all
I ∈ M∪L, so it remains to flatten g2 to a step function using the soft deformation. Define

S(1) :=
{
I ∈ I : ∆I(g1) < n−3/2

}
,

S(2) :=
{
I ∈ I : n−3/2 ≤ ∆I(g1) < c∗(log n)/n

}
,

S := S(1) ∪ S(2),

and consider g3 := gsd,S
2 . Thanks to Lemma 6.2, the condition E(g2) ≥ E(g3) immediately follows. Hence, it suffices

to check that g3(x) ≥ g2(x)− δ for all x ∈ R. Use Lemma 6.2 again to obtain that for all x ∈ R,

g3(x)− g2(x) ≥ −n−3/2 #S(1)− c∗ log n

n
#S(2)

≥ −(2M + 1)n−1/2 − c∗ log n

n
#S(2),

(6.25)

since #S(1) ≤ (2M + 1)n. To estimate #S(2), note that if n ∈ N is large enough, then for any I = [a, a + 1/n) ∈
S(2) ∩ I+, since g2(x) = 0 on [−η, η], one has I − 1/n := [a − 1/n, a) ∈ I+. Moreover, by Lemma 6.1-(ii) with a
universal positive constant C, for all x ∈ I − 1/n, we have

θg2(x) ≤
C(sup I − x)√
g2(sup I)− g2(x)

≤ 2C/n√
n−3/2

= 2Cn−1/4.

The same inequality holds for all x ∈ I + 1/n := (a, a+ 1/n] with I = (a− 1/n, a] ∈ S(2) ∩ I−. Therefore, if n ∈ N is
large enough, then

−E(g2) ≤
∑

I∈S(2)∩I+

∫
I−1/n

log θg2(x) dx+
∑

I∈S(2)∩I−

∫
I+1/n

log θg2(x) dx

≤ #S(2)
∫ 1/n

0

log (2Cn−1/4) dx

≤ − log n

8n
#S(2).

The above estimate, combined with Propositions 6.5–6.7, implies that

#S(2) ≤ 8E(g2)
n

log n
≤ 8(E(f) + 2δ)

n

log n
.

Combining this with (6.25) and the choice of c∗ (see (6.14)) yields that for all x ∈ R,

g3(x)− g2(x) ≥ −(2M + 1)n−1/2 − 8(E(f) + 2δ)c∗ ≥ −δ.
□

Appendix

In this appendix, for simplicity, we write Px for PBM
x , and write P for PBM

0 .

Proof of Lemma 6.3. We claim that for any δ > 0 there exists c = c(δ) > 0 such that for any x ≥ δ, a ≥ 0 and
f ∈ C(1) satisfying f |[−δ,δ] ≡ 0,

(6.26) Px(τy ≥ f(y)− f(x)∀y ∈ (−∞, 0] ∪ [x+ a,∞)) ≥ cPx(τy ≥ f(y)− f(x)∀y ≥ x+ a).

Assuming this claim for a moment, we finish the proof of Lemma 6.3. Let I ⊂ R+ \ [0, δ] with |I| ≤ 1 and assume that
f |I ≡ const. Then, since f |I ≡ const and 0 ≤ f ≤ 1 there exists c̃ = c̃(δ) > 0 such that for any x ∈ I we have

θf (x) = Px(τy ≥ f(y)− f(x) ∀y ∈ R)
= Px(τy ≥ f(y)− f(x) ∀y ∈ (−∞, 0] ∪ [sup I,∞))

≥ cPx(τy ≥ f(y)− f(x) ∀y ≥ sup I)

≥ cPx(τsup I ≥ 1) ≥ c̃ (sup I − x),

where we have used (6.26) in the third line and Lemma 2.3 in the last line. Now we focus on proving (6.26). Let

A := {τ−δ ≥ 1}; B := {τy ≥ f(y)− f(x) ∀ y ≥ x+ a}; C := {τx+a ≥ 1}.
We claim and prove later an FKG type inequality that

(6.27) Px(Cc ∩ A | B) ≥ Px(A | B)Px(Cc | B).
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This inequality implies that

(6.28) Px(Cc ∩ A ∩ B) = Px(Cc ∩ A | B)P(B) ≥ Px(A | B)Px(Cc ∩ B).

Since C ⊂ B,

Px(A ∩ B)Px(C)− Px(A ∩ C)Px(B)
= Px(A ∩ C)Px(C) + Px(A ∩ B ∩ Cc)Px(C)− Px(A ∩ C)Px(C)− Px(A ∩ C)Px(B ∩ Cc)

= Px(Cc ∩ A ∩ B)Px(C)− Px(Cc ∩ B)Px(A ∩ C).

Therefore, by (6.28), we have

Px(A | B)− Px(A | C) =
Px(A ∩ B)Px(C)− Px(A ∩ C)Px(B)

Px(B)Px(C)

=
Px(Cc ∩ A ∩ B)Px(C)− Px(Cc ∩ B)Px(A ∩ C)

Px(B)Px(C)

≥ Px(A | B)Px(Cc ∩ B)Px(C)− Px(Cc ∩ B)Px(A ∩ C)
Px(B)Px(C)

= Px(Cc | B)
(
Px(A | B)− Px(A | C)

)
.

Hence, since 1 > Px(Cc | B),

(6.29) Px(A | B) ≥ Px(A | C).

Since f is bounded by 1 and equals 0 in [−δ, δ], we have

Px(τy ≥ f(y)− f(x)∀y ≥ x+ a, and y ≤ 0) ≥ Px(τ−δ ≥ 1, τy ≥ f(y)− f(x)∀y ≥ x+ a)

= Px(A ∩ B) = Px(A | B)Px(B) ≥ Px(A | C)Px(B),(6.30)

where for the last inequality we have used (6.29). Moreover, for all x > 0,

(6.31) Px(A | C) = P(τ−δ−x ≥ 1 | τa ≥ 1) ≥ inf
b>0

P(τ−δ ≥ 1 | τb ≥ 1) = inf
b>0

P(τ−δ ∧ τb ≥ 1)

P(τb ≥ 1)
.

By the strong Markov property,

P(τ−δ ∧ τb > 1) ≥ P(τ−δ ∧ τb ≥ 1, τ−δ/2 < τb/2)

= P(τ−δ ∧ τb ≥ 1 | τ−δ/2 < τb/2)P(τ−δ/2 < τb/2)

≥ P−δ/2(τ0 ∧ τ−δ ≥ 1)P(τ−δ/2 < τb/2)

= P−δ/2(τ0 ∧ τ−δ > 1)
b

b+ δ
,

where we have used that P(τu < τv) =
v

v+|u| if u < 0 < v. Observe that by Lemma 2.3,

P(τb ≥ 1) ≍ (b ∧ 1).

Thus, inf
b>0

P(τ−δ ∧ τb ≥ 1)

P(τb ≥ 1)
is a positive constant depending on δ. Together with (6.30) and (6.31), we have (6.26). □

Proof of (6.27) (Conditional FKG inequality). For simplicity of notation, we set x = 0 and f(0) = 0 and focus
on proving that

(6.32) P(A ∩D | B) ≥ P(A | B)P(D | B),

where
A := {τ−δ ≥ 1}; B := {τy ≥ f(y) ∀ y ≥ a}; D := Cc := {τa < 1};

with (Bs)s≥0 being the standard Brownian motion. Observe that it is sufficient to consider the case where f is a step
function. Indeed, for a non-decreasing function f on [0,∞) and ℓ ∈ N, we define

fℓ(x) := ⌊f(x)2ℓ⌋2−ℓ.

Since f is non-decreasing, fℓ is a step function and fℓ(x) increases to f(x) as ℓ → ∞ for any x ≥ 0. Define Bℓ the
corresponding event of fℓ, i.e. Bℓ = {τy ≥ fℓ(y) ∀ y ≥ a}. Then (Bℓ)ℓ≥1 is a sequence of decreasing events that
converges to B. If P(· | Bℓ) satisfies the inequality (6.32) for any ℓ ∈ N, by the dominated convergence theorem, then
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so does the measure P(· | B). Therefore, we assume that f is a non-decreasing step function on [0,∞) bounded by 1.
With some 0 < b1 < . . . < bk ≤ 1 and a ≤ a1 < . . . < ak and k ∈ N determined by the step function f , we write

B =

{
max

0≤s≤b1
Bs ≤ a1, . . . , max

0≤s≤bk
Bs ≤ ak

}
a.s.

Let us consider the Gaussian random walk (Sm)m≥0 with S0 = 0 and Sm = X1+ . . .+Xm for m ≥ 1 where (Xi)i≥1

is a sequence of i.i.d. standard normals. We take n ∈ N that finally goes to infinity, and we define for i = J1, kK,

ni = ⌊nbi⌋.
Given β > 0, let Pn,β be a probability measure on Rn with the probability density p(s) which is proportional to

q(s) := exp

(
β

k∏
i=1

ni∏
m=1

1

{
sm√
n
≤ ai

}
− 1

2

n∑
i=1

(si − si−1)
2

)
, s = (si)

n
i=1 ∈ Rn,

with the convention s0 := 0. Since q is integrable, the measure Pn,β is well defined. On Rn we consider the following
partial order s = (si)

n
i=1 ≤ s′ = (s′i)

n
i=1 if si ≤ s′i for all i = 1, . . . , n. Moreover, for s = (si)

n
i=1, s

′ = (s′i)
n
i=1 ∈ Rn, we

define
s ∨ s′ = (si ∨ s′i)ni=1, s ∧ s′ = (si ∧ s′i)ni=1,

and

l(s) := log q(s) = β

k∏
i=1

ni∏
m=1

1

{
sm√
n
≤ ai

}
− 1

2

n∑
i=1

(si − si−1)
2 =: βl1(s) + l2(s).

We check that q (or equivalently p) satisfies the log-suppermodular inequality, that is for all s, s′ ∈ Rn,

(6.33) l(s ∨ s′) + l(s ∧ s′) ≥ l(s) + l(s′).

Indeed, if l1(s) = l1(s
′) = 1, then l1(s ∨ s′) = l1(s ∧ s′) = 1, and if l1(s) + l1(s

′) = 1 then l1(s ∧ s′) = 1. Hence, in all
cases, l1(s ∨ s′) + l1(s ∧ s′) ≥ l1(s) + l1(s

′). Next, for each i, we consider

ri := (si+1 ∨ s′i+1 − si ∨ s′i)2 + (si+1 ∧ s′i+1 − si ∧ s′i)2 − (si+1 − si)
2 − (s′i+1 − s′i)

2.

If either si+1 ≥ s′i+1 and si ≥ s′i or si+1 ≤ s′i+1 and si ≤ s′i, then we have ri = 0. If si+1 ≥ s′i+1 and si ≤ s′i then

ri = (si+1 − s′i)
2 + (s′i+1 − si)

2 − (si+1 − si)
2 − (s′i+1 − s′i)

2 = 2(si+1 − s′i+1)(si − s′i) ≤ 0.

Similarly, ri ≤ 0 when si+1 ≤ s′i+1 and si ≥ s′i. In all cases, we have ri ≤ 0, and thus

l2(s ∨ s′) + l2(s ∧ s′)− l2(s)− l2(s
′) = −1

2

n∑
i=1

ri ≥ 0.

Therefore, we have (6.33). Then, by [3, Proposition 1], Pn,β satisfies the FKG inequality. Note that Pn,β converges
weakly toward Pn(· | Bn) as β → ∞, where Pn is the probability measure of (Si)

n
i=1 and

Bn :=

{
max

0≤m≤ni

Sm√
n
≤ ai ∀ i = 1, . . . , k

}
.

As a consequence, since Pn,β satisfies FKG, by the dominated convergence theorem, so does Pn(· | Bn). Define

An =

{
min

0≤m≤n

Sm√
n
≥ −δ

}
; Dn =

{
max

0≤m≤n

Sm√
n
≥ a

}
.

Observe that the two events An and Dn are increasing, and thus

Pn(An ∩ Dn | Bn) ≥ Pn(An | Bn)Pn(Dn | Bn).

Recalling the events A,B,D and ni = ⌊nbi⌋, since A = {min0≤s≤1Bs ≥ −δ} and D = {max0≤s≤1Bs ≥ a} a.s., by the
Donsker’s invariance principle, Pn(An∩Dn | Bn) → P(A∩D | B), Pn(An | Bn) → P(A | B) and Pn(Dn | Bn) → P(D | B)
as n→ ∞. Therefore, (6.32) holds. □

Proof of Lemma 6.4. Recall that ℓb,a := f(b) − f(a) and ℓ̃b,a := f(b) − f̃(a). We assume that ℓ̃b,a and Pa(τy ≥
f(y) − f(a) ∀y ≥ b) are both positive since otherwise the lemma is trivial. As f̃(y) ≤ f(y) for y ≥ b, it suffices to
check that

Pa(τy ≥ f(y)− f̃(a) ∀y ≥ b
)

Pa(τy ≥ f(y)− f(a) ∀y ≥ b
) ≥

(
ℓb,a

ℓ̃b,a

)3/2

.(6.34)
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We remark that for all y ∈ R and ℓ > 0,

{τy ≥ ℓ} = {Mℓ ≤ y} a.s., where Mt := max
0≤s≤t

Bs for t > 0.

Therefore, by the Markov property and the fact that ℓy,a − ℓb,a = f(y)− f(b), we have

Pa(τy ≥ f(y)− f(a) ∀y ≥ b)

= Ea

[
1{Mℓb,a ≤ b}Pa

(
max

ℓb,a≤s≤ℓy,a

Bs ≤ y ∀y ≥ b

∣∣∣∣Bℓb,a

)]
= E

[
1{Mℓb,a ≤ b− a}PBℓb,a

(Mf(y)−f(b) ≤ y ∀y ≥ b)
]
.

By [17, Proposition 8.1], for t > 0, β ≥ 0 and α ≤ β,

P(Bt ∈ dα, Mt ∈ dβ) =
2(2β − α)√

2πt3
exp

{
− (2β − α)2

2t

}
dαdβ.

It then follows that

P(τy ≥ f(y)− f(a) ∀y ≥ b)

=

∫ b−a

0

∫ b−a

−∞
1{s ≤ t} 2(2t− s)√

2πℓ3b,a

exp

{
− (2t− s)2

2ℓb,a

}
Ps(Mf(y)−f(b) ≤ y ∀y ≥ b) dsdt.

Using the same argument with f̃(a) in pleace of f(a), by ℓ̃y,a − ℓ̃b,a = f(y)− f(b), we also have

P(τy ≥ f(y)− f̃(a) ∀y ≥ b)

=

∫ b−a

0

∫ b−a

−∞
1{s ≤ t} 2(2t− s)√

2πℓ̃3b,a

exp

{
− (2t− s)2

2ℓ̃b,a

}
Ps(Mf(y)−f(b) ≤ y ∀y ≥ b) dsdt.

Since ℓb,a ≤ ℓ̃b,a,

exp

{
− (2t− s)2

2ℓb,a

}
≤ exp

{
− (2t− s)2

2ℓ̃b,a

}
.

Combining the last three displays, we get the desired estimate (6.34). □
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