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Abstract: The microbial reduction of Fe(IIl) is a major component of Fe cycling in terrestrial and
aquatic environments and is affected by the Fe(Ill) mineralogy of the system. The majority of the
research examining the bioreduction of Fe(Ill) oxides by Fe(lll)-reducing bacteria (IRB) has
focused on the reduction of poorly crystalline Fe(Ill) phases, primarily ferrihydrite; however,
crystalline Fe(IIl) oxides like goethite (a-FeOOH) and hematite (a-Fe20s) comprise the majority of
Fe(IlI) oxides in soils. This study examined the bioreduction of goethite and hematite of geogenic
and synthetic origin by Shewanella putrefaciens CN2, a well-studied model IRB, in laboratory
incubations. Overall, the rate and extent of Fe(Il) production were greater for goethite than for
hematite, and for geogenic Fe(Ill) oxides relative to their synthetic analogs. Although there was
substantial production of Fe(Il) (i.e., > 5 mM Fe(Il)) in many of the systems, X-ray diffraction
analysis of the solids at the end of the incubation did not indicate the formation of any Fe(II)-
bearing secondary minerals (e.g., magnetite, siderite, green rust, etc.). The results of this study
demonstrate the variability in the extent of bioreduction of geogenic goethite and hematite, and
furthermore, that synthetic goethite and hematite may not be good analogs for the biogeochemical
behavior of Fe(Ill) oxides in aquatic and terrestrial environments.
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1. Introduction

Microbial Fe(Ill) reduction is a key component of the biogeochemical cycling of Fe in aquatic
and terrestrial environments [1-4]. Many forms of Fe(IIl) can be used as terminal electron acceptors
for anaerobic respiration by dissimilatory iron-reducing bacteria (DIRB, which are a
phylogenetically diverse group of microorganisms [5-18]) including soluble Fe(Ill) complexes;
structural Fe(IIl) in aluminosilicate minerals; and Fe(Ill) oxides, hydroxides, and oxyhydroxides
(hereafter collectively referred to as Fe(Ill) oxides) including akaganeite (3-FeOOH), feroxyhyte (d'-
FeOOH), ferrihydrite, goethite (a-FeOOH), hematite (a-Fe:0s), lepidocrocite (y-FeOOH),
maghemite (y-Fe20s), and ferric green rust [19-34]. The bioreduction of Fe(Ill) by DIRB can result in
the production of a broad range of Fe(Il) species including soluble and adsorbed Fe(Il), and mineral
phases containing structural Fe(Il) (e.g., siderite (FeCOs), chukanovite [Fez(OH)2COs], magnetite
(FesOa), green rust, and vivianite [Fe3(POs)208H20], and Fe(Il)-bearing clays [10,19,25,26,34-40].

The majority of the research examining the reduction of Fe(Il) oxides by DIRB has focused on
the reduction of poorly crystalline Fe(IIl) phases, primarily ferrihydrite. Although crystalline Fe(III)
oxides like goethite and hematite comprise the majority of Fe(Ill) oxides in soils [41], the
bioreduction of these phases by DIRB has been less studied. This paper focuses on the microbial
reduction of goethite and hematite of geogenic and synthetic origin by Shewanella putrefaciens CN2,
a well-studied model DIRB originally isolated from subsurface sediment [22].
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2. Materials and Methods

2.1. Geogenic and Synthetic Goethite and Hematite

Synthetic goethite (Bayferrox 910, Lot 3011225) and hematite (Bayferrox 130, Lot 3011225) were
obtained from LANXESS Corp., Cologne, Germany. An additional synthetic hematite was obtained
from Rockwood Pigments, Inc., Beltsville, MD, USA. Natural Sienna (NS: country of origin, France),
Natural Umber (NU: country of origin, France), Natural Red (NR: country of origin, India), Red
Ochre (RO: country of origin, France), and Natural Yellow (NY: country of origin, India) were
purchased from The Earth Pigments Company, Cortaro, AZ, USA. Dark Ochre (DO: country of
origin, Germany) and French Ochre JALS (FOJ: country of origin, France) were purchased from
Kremer Pigments, Inc., New York, NY, USA. The mineralogy of the synthetic and geogenic Fe(IlI)
oxides was determined by powder X-ray diffraction (pXRD) with a Rigaku MiniFlex X-ray
diffractometer using Ni-filtered Cu Ka radiation, scanned between 5° and 80° 20 at a speed of 0.1°
20 min’. The XRD patterns were analyzed with the JADE 9 software package (MDI, Livermore, CA,
USA).

2.2. Bioreduction Experiments

The bioreduction experiments were conducted as described by O’Loughlin et al. [34]. Briefly,
100 mL of sterile defined mineral medium (DMM) containing 80 mM Fe(IIl) in the form of one of
the geogenic or synthetic Fe(Ill) oxides, 75 mM formate, 100 uM phosphate, and 100 puM 9,10-
anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle in the AQDS-amended systems, was
placed in 160-mL serum bottles. The bottles were sealed with rubber septa and aluminum crimp
caps and made anoxic by sparging with sterile argon. All experimental systems were prepared in
duplicate. The bottles were inoculated with S. putrefaciens CN32 (American Type Culture Collection
BAA-543) (prepared as described in O’Loughlin et al. [42]) at a density of ~5 x 10° cells mL-! and
placed on a roller drum and incubated at 30 °C in the dark. Samples of the suspensions for
monitoring Fe(II) production and identification of secondary minerals by pXRD were collected with
sterile syringes and analyzed as described by O’Loughlin et al. [34]. Briefly, samples for Fe(II)
analysis were prepared by adding 0.75 mL of anoxic 1 M HCI to 0.25 mL of suspension and the
Fe(Il) concentration was determined by the ferrozine assay [43]. Samples for pXRD analysis were
collected by filtration on 25-mm, 0.22-um nylon filters and covered with 8.4-um-thick Kapton® film
under anoxic conditions.

3. Results and Discussion

3.1. Characterization of Geogenic and Synthetic Goethite and Hematite

All three of the synthetic Fe(Ill) oxides are highly crystalline and show no indication of
crystalline constituents other than the phase indicated by the manufacturer; i.e., goethite in the case
of Bayferrox 910 and hematite for Bayferrox 310 and Rockwood hematite (Figure 1) .

Geogenic iron oxides have been used as pigments since prehistoric times and are commonly
classified as ochres, siennas, umbers, and blacks [41,44,45]. In contrast to the synthetic phases, the
geogenic iron oxides used in this study consist of mixtures of several minerals. XRD analysis of the
geogenic pigments (Figures 2 and 3) indicated that the Fe(Ill) oxide component was goethite (NS,
NY, NU, DO, and FOJ), hematite (NR), or a mixture of both (RO). It is important to note however,
that pXRD is most sensitive to crystalline materials, therefore, the presence of poorly crystalline and
nano-scale Fe(IIl) oxide phases cannot be excluded. Other crystalline components included quartz
(NS, NY, NU, DO, FQJ, and RO) and kaolinite (NS, NR, DO, FO]J, and RO) (Table 1), consistent with
previous characterization of similar ochres, siennas, and umbers [46-49].
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Figure 1. pXRD analysis of the synthetic goethite and hematites used in this study.
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Figure 2. pXRD analysis of the geogenic iron oxides used in this study.
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Figure 3. pXRD analysis of the ochres used in this study.
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3.2. Bioreduction of Geogenic and Synthetic Goethite and Hematite

The extent of Fe(IIl) reduction varied greatly among the systems containing goethite (Figure 4
and Table 1). The bioavailability of Fe(Ill) in the synthetic goethite B910 was extremely low, with
only 3.3% of the Fe(III) reduced to Fe(Il) over a period of 78 days. This is substantially lower than
the extent of Fe(IIl) reduction reported by O’Loughlin et al. [34] for a different synthetic goethite
under the same experimental conditions (13% within 78 days). Although they are both synthetic
phases, the commercial goethite B910 is highly crystalline (Figure 1) while the lab-synthesized
goethite prepared by O’Loughlin et al. [34] is poorly crystalline in comparison (Figure 7 in [34]). It is
likely that the differences in the reducibility of Fe(IlI) in the two synthetic goethites is due to
differences in their crystallinity, as the bioavailability of Fe(III) in Fe(IlI) oxides tends to decrease as
the crystallinity of the phase increases. This general trend is also apparent among the geogenic
goethite systems. Slower rates and lower overall extents of Fe(Il) production were observed during
the bioreduction NY and FOJ, which have comparatively higher goethite crystallinity, and the
systems with goethites of lower crystallinity (DO, FS, and NU) had faster rates and greater extents
of Fe(Il) production (Figures 2, 3, and 4 and Table 1).
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Figure 4. Fe(Il) production during the bioreduction in the systems containing synthetic or geogenic
goethite (left) or hematite (right).

In the systems containing only hematite, there was little difference between the rates and
extents of reduction among the geogenic and synthetic materials (Figure 4 and Table 1), with 2.4%
reduction of B130 (synthetic), 3.0% reduction of NR (geogenic), and 5.4% reduction of Rhem
(synthetic). Overall, the bioavailability of Fe(IlI) in the hematite samples was lower than in the
goethite samples, consistent with previous studies showing hematite to be generally less susceptible
to microbial reduction than goethite [22,28,31,34,50,51]. Compared to the other hematite-containing
systems, a faster rate and greater extent of Fe(Il) production was observed with RO (Figure 4 and
Table 1); however this is likely due to the fact that this material contained both hematite and
goethite, with the Fe(IlI) in the goethite component likely being more reducible.
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The presence of electron shuttles (soluble compounds or materials that can be reversibly
oxidized and reduced) has been shown to enhance the rate, and often the extent, of the bioreduction
of a wide range of Fe(III) oxides [10,22,31,52-60] and AQDS is often used as a model electron shuttle
as it is seen as an analog for the quinone groups in natural organic matter [61]. A comparison of the

bioreduction of the synthetic goethite and hematites in the presence and absence of AQDS indicates
a substantial increase in both the rate and extent of Fe(II) production with the addition of AQDS

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
(Table 1), consistent with previous studies.

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570092; this version posted December 5, 2023. The copyright holder for this

Table 1. Fe(IIl) oxide source and mineralogy, Fe content, Fe(Il) production, fraction Fe(III) reduced, and maximum Fe(II) production rates.

O»Tn-. H.QQ Hu_::
Crystalline Fraction of total production )
Iron Oxide Components Fe Fe(I" Fe(lIT) reduced ~ during bioreduction”
Material Source wt % mM mM d” ()

Bayferrox 910 (B910) Lanx synthetic goethite none 62.6 140046 1.8% 012+ 0.03(0.942)
2.64+0.05 33% 0.20 4 0.04 (0.970)

Bayferrox 130 (B130) Lanx synthetic hematite none 69.9 1.08+£0.22 1.4% 043 £0.0(1)
1.88 £ 0.62 2.4% 0.54 £ 0.11 (0.958)
Rockwood Hematite (Rhem) Rockwood synthetic hematite none 69.9 2.65+0.59 33% 013+ 0.01 (0.986)
433+£042 5.4% 0.80 % 0.25 (0.908)
Dark Ochre (DO} Kremer Pigments natural goethite quartz’kaolinite 313 13.27 £ 0.05 16.6% 418 + 1.07 (0.859)
French Ochre JALS (FOI) Kremer Pigments natural goethite quartz/’kaolinite 12.7 558 +£1.98 7.0% 0.21 £ 0.01 (0.975)

Red Ochre (RO) The Earth Pigments Co.  natural  goethite/hematite  quartz/kaolinite 15.2 8794033 11.0% 343200(1)
Matural Red (NR) The Earth Pigments Co.  natural hematite kaolinite 56.3 236 £0.60 3.0% 0.18 + 0,09 (0.788)
Watural Sienna (NS) The Earth Pigments Co.  natural goethite quartz/kaolinite 22.1 2057+ 0.58 25.7% 5,65+ 1.40 (0.870)

Natural Umber (NU) The Earth Pigments Co.  natural goethite quartz 23.6 21,72+ 034 27.1% 10.5£0.0(1)
Natural Yellow (NY) The Earth Pigments Co.  natural goethite quartz 459 2,16+ 0381 2.7% 0.19+ 0.04 (0.933)

“ At the end of the incubation (7378 days after inoculation)

? Fe(Il) production rates were calculated by linear regression using least-squares regression of the data during the period of maximum sustained Fe(Il) production
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3.3. Secondary Minerals

During the microbial reduction of Fe(Ill) oxides, the production of Fe(1l) is often accompanied
by the formation of Fe(Il)-bearing secondary minerals, which can include magnetite, siderite,
vivianite, green rust, and chukanovite. Previous studies of the bioreduction of goethite have
reported the formation of siderite, vivianite, and chukanovite [22,34,37,62-64], and siderite,
magnetite, and vivianite have been reported as products of the bioreduction of hematite
[34,35,37,65,66]. However, pXRD analysis of the solids in the bioreduction systems at the end of the
incubations did not indicate the formation of any Fe(II) secondary mineral in any system (Figures 6
and 7). Since XRD is sensitive to the crystallinity of solid phases, the formation of poorly crystalline
or nanoscale secondary minerals cannot be ruled out.
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Figure 5. pXRD analysis of the solids in the geogenic and synthetic goethite bioreduction systems at
the end of the incubations.
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Figure 6. pXRD analysis of the solids in the geogenic and synthetic hematite bioreduction systems
at the end of the incubations.

3.4. Conclusions

The results of this study show clear differences in the rates and extent of Fe(Il) production
during the bioreduction by S. putrefaciens CN32 of goethite and hematite of synthetic and geogenic
origin. These results are consistent with a previous study by Zachara et al., showing that goethite
and hematite from geogenic sources were more readily bioreduced than synthetic analogs, which
they attributed to crystalline disorder and microheterogeneities [22]. Geogenic Fe(Ill) oxides often
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exhibit significant cation substitution by a wide range of divalent and trivalent metal cations; e.g.,
geogenic goethites may have up to 36% isomorphic substitution of Al** for Fe* on a mole basis [41].
However, cation substitution is not a likely factor in the greater bioreducibility of natural goethites,
as substitution of Al* for Fe* has been shown to have either no effect or to inhibit microbial
reduction of goethite [67-69]. On the other hand, synthetic Fe(Ill) oxides may contain constituents
that can affect their biogeochemical behavior due to the procedures used to control their synthesis
and properties. For example, trace levels of phosphate (i.e., 0.2 mass%) in a commercial synthetic
lepidocrocite decreased the rate of Fe(Il) production during bioreduction, but ultimately lead to a
greater extent of Fe(Ill) reduction and differences in the formation of Fe(ll)-bearing secondary
minerals [70]. Overall, the comparatively lower bioreducibility of synthetic Fe(Ill) oxide phases
relative to their geogenic analogs, suggests that they may not be representative of the
biogeochemical reactivity of Fe(IIl) oxides in aquatic and terrestrial environments.
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