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Abstract: The microbial reduction of Fe(III) is a major component of Fe cycling in terrestrial and 

aquatic environments and is affected by the Fe(III) mineralogy of the system. The majority of the 

research examining the bioreduction of Fe(III) oxides by Fe(III)-reducing bacteria (IRB) has 

focused on the reduction of poorly crystalline Fe(III) phases, primarily ferrihydrite; however, 

crystalline Fe(III) oxides like goethite (α-FeOOH) and hematite (α-Fe2O3) comprise the majority of 

Fe(III) oxides in soils. This study examined the bioreduction of goethite and hematite of geogenic 

and synthetic origin by Shewanella putrefaciens CN2, a well-studied model IRB, in laboratory 

incubations. Overall, the rate and extent of Fe(II) production were greater for goethite than for 

hematite, and for geogenic Fe(III) oxides relative to their synthetic analogs. Although there was 

substantial production of Fe(II) (i.e., > 5 mM Fe(II)) in many of the systems, X-ray diffraction 

analysis of the solids at the end of the incubation did not indicate the formation of any Fe(II)-

bearing secondary minerals (e.g., magnetite, siderite, green rust, etc.). The results of this study 

demonstrate the variability in the extent of bioreduction of geogenic goethite and hematite, and 

furthermore, that synthetic goethite and hematite may not be good analogs for the biogeochemical 

behavior of Fe(III) oxides in aquatic and terrestrial environments. 
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1. Introduction 

Microbial Fe(III) reduction is a key component of the biogeochemical cycling of Fe in aquatic 

and terrestrial environments [1-4]. Many forms of Fe(III) can be used as terminal electron acceptors 

for anaerobic respiration by dissimilatory iron-reducing bacteria (DIRB, which are a 

phylogenetically diverse group of microorganisms [5-18]) including soluble Fe(III) complexes; 

structural Fe(III) in aluminosilicate minerals; and Fe(III) oxides, hydroxides, and oxyhydroxides 

(hereafter collectively referred to as Fe(III) oxides) including akaganeite (β-FeOOH), feroxyhyte (δ′-
FeOOH), ferrihydrite, goethite (α-FeOOH), hematite (α-Fe2O3), lepidocrocite (γ-FeOOH), 

maghemite (γ-Fe2O3), and ferric green rust [19-34]. The bioreduction of Fe(III) by DIRB can result in 

the production of a broad range of Fe(II) species including soluble and adsorbed Fe(II), and mineral 

phases containing structural Fe(II) (e.g., siderite (FeCO3), chukanovite [Fe2(OH)2CO3], magnetite 

(Fe3O4), green rust, and vivianite [Fe3(PO4)2•8H20], and Fe(II)-bearing clays [10,19,25,26,34-40].  

 

The majority of the research examining the reduction of Fe(III) oxides by DIRB has focused on 

the reduction of poorly crystalline Fe(III) phases, primarily ferrihydrite. Although crystalline Fe(III) 

oxides like goethite and hematite comprise the majority of Fe(III) oxides in soils [41], the 

bioreduction of these phases by DIRB has been less studied. This paper focuses on the microbial 

reduction of goethite and hematite of geogenic and synthetic origin by Shewanella putrefaciens CN2, 

a well-studied model DIRB originally isolated from subsurface sediment [22].   
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2. Materials and Methods  

2.1. Geogenic and Synthetic Goethite and Hematite 

Synthetic goethite (Bayferrox 910, Lot 3011225) and hematite (Bayferrox 130, Lot 3011225) were 

obtained from LANXESS Corp., Cologne, Germany. An additional synthetic hematite was obtained 

from Rockwood Pigments, Inc., Beltsville, MD, USA. Natural Sienna (NS: country of origin, France), 

Natural Umber (NU: country of origin, France), Natural Red (NR: country of origin, India), Red 

Ochre (RO: country of origin, France), and Natural Yellow (NY: country of origin, India) were 

purchased from The Earth Pigments Company, Cortaro, AZ, USA. Dark Ochre (DO: country of 

origin, Germany) and French Ochre JALS (FOJ: country of origin, France) were purchased from 

Kremer Pigments, Inc., New York, NY, USA. The mineralogy of the synthetic and geogenic Fe(III) 

oxides was determined by powder X-ray diffraction (pXRD) with a Rigaku MiniFlex X-ray 

diffractometer using Ni-filtered Cu Kα radiation, scanned between 5° and 80° 2θ at a speed of 0.1° 
2θ min-1. The XRD patterns were analyzed with the JADE 9 software package (MDI, Livermore, CA, 

USA). 

2.2. Bioreduction Experiments 

The bioreduction experiments were conducted as described by O’Loughlin et al. [34]. Briefly, 

100 mL of sterile defined mineral medium (DMM) containing 80 mM Fe(III) in the form of one of 

the geogenic or synthetic Fe(III) oxides, 75 mM formate, 100 µM phosphate, and 100 µM 9,10-

anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle in the AQDS-amended systems, was 

placed in 160-mL serum bottles. The bottles were sealed with rubber septa and aluminum crimp 

caps and made anoxic by sparging with sterile argon. All experimental systems were prepared in 

duplicate. The bottles were inoculated with S. putrefaciens CN32 (American Type Culture Collection 

BAA-543) (prepared as described in O’Loughlin et al. [42]) at a density of ~5 × 109 cells mL-1 and 

placed on a roller drum and incubated at 30 ˚C in the dark. Samples of the suspensions for 

monitoring Fe(II) production and identification of secondary minerals by pXRD were collected with 

sterile syringes and analyzed as described by O’Loughlin et al. [34]. Briefly, samples for Fe(II) 

analysis were prepared by adding 0.75 mL of anoxic 1 M HCl to 0.25 mL of suspension and the 

Fe(II) concentration was determined by the ferrozine assay [43]. Samples for pXRD analysis were 

collected by filtration on 25-mm, 0.22-µm nylon filters and covered with 8.4-µm-thick Kapton® film 

under anoxic conditions. 

 

3. Results and Discussion 

3.1. Characterization of Geogenic and Synthetic Goethite and Hematite 

All three of the synthetic Fe(III) oxides are highly crystalline and show no indication of 

crystalline constituents other than the phase indicated by the manufacturer; i.e., goethite in the case 

of Bayferrox 910 and hematite for Bayferrox 310 and Rockwood hematite (Figure 1) . 

 

Geogenic iron oxides have been used as pigments since prehistoric times and are commonly 

classified as ochres, siennas, umbers, and blacks [41,44,45]. In contrast to the synthetic phases, the 

geogenic iron oxides used in this study consist of mixtures of several minerals. XRD analysis of the 

geogenic pigments (Figures 2 and 3) indicated that the Fe(III) oxide component was goethite (NS, 

NY, NU, DO, and FOJ), hematite (NR), or a mixture of both (RO). It is important to note however, 

that pXRD is most sensitive to crystalline materials, therefore, the presence of poorly crystalline and 

nano-scale Fe(III) oxide phases cannot be excluded. Other crystalline components included quartz 

(NS, NY, NU, DO, FOJ, and RO) and kaolinite (NS, NR, DO, FOJ, and RO) (Table 1), consistent with 

previous characterization of similar ochres, siennas, and umbers [46-49].  
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Figure 1. pXRD analysis of the synthetic goethite and hematites used in this study. 
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Figure 2. pXRD analysis of the geogenic iron oxides used in this study. 
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Figure 3. pXRD analysis of the ochres used in this study. 
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3.2. Bioreduction of Geogenic and Synthetic Goethite and Hematite 

The extent of Fe(III) reduction varied greatly among the systems containing goethite (Figure 4 

and Table 1). The bioavailability of Fe(III) in the synthetic goethite B910 was extremely low, with 

only 3.3% of the Fe(III) reduced to Fe(II) over a period of 78 days. This is substantially lower than 

the extent of Fe(III) reduction reported by O’Loughlin et al. [34] for a different synthetic goethite 

under the same experimental conditions (13% within 78 days). Although they are both synthetic 

phases, the commercial goethite B910 is highly crystalline (Figure 1) while the lab-synthesized 

goethite prepared by O’Loughlin et al. [34] is poorly crystalline in comparison (Figure 7 in [34]). It is 

likely that the differences in the reducibility of Fe(III) in the two synthetic goethites is due to 

differences in their crystallinity, as the bioavailability of Fe(III) in Fe(III) oxides tends to decrease as 

the crystallinity of the phase increases. This general trend is also apparent among the geogenic 

goethite systems. Slower rates and lower overall extents of Fe(II) production were observed during 

the bioreduction NY and FOJ, which have comparatively higher goethite crystallinity, and the 

systems with goethites of lower crystallinity (DO, FS, and NU) had faster rates and greater extents 

of Fe(II) production (Figures 2, 3, and 4 and Table 1). 

 

Figure 4. Fe(II) production during the bioreduction in the systems containing synthetic or geogenic 

goethite (left) or hematite (right). 

In the systems containing only hematite, there was little difference between the rates and 

extents of reduction among the geogenic and synthetic materials (Figure 4 and Table 1), with 2.4% 

reduction of B130 (synthetic), 3.0% reduction of NR (geogenic), and 5.4% reduction of Rhem 

(synthetic). Overall, the bioavailability of Fe(III) in the hematite samples was lower than in the 

goethite samples, consistent with previous studies showing hematite to be generally less susceptible 

to microbial reduction than goethite [22,28,31,34,50,51]. Compared to the other hematite-containing 

systems, a faster rate and greater extent of Fe(II) production was observed with RO (Figure 4 and 

Table 1); however this is likely due to the fact that this material contained both hematite and 

goethite, with the Fe(III) in the goethite component likely being more reducible.  
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The presence of electron shuttles (soluble compounds or materials that can be reversibly 

oxidized and reduced) has been shown to enhance the rate, and often the extent, of the bioreduction 

of a wide range of Fe(III) oxides [10,22,31,52-60] and AQDS is often used as a model electron shuttle 

as it is seen as an analog for the quinone groups in natural organic matter [61]. A comparison of the 

bioreduction of the synthetic goethite and hematites in the presence and absence of AQDS indicates 

a substantial increase in both the rate and extent of Fe(II) production with the addition of AQDS 

(Table 1), consistent with previous studies. 
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3.3. Secondary Minerals 

During the microbial reduction of Fe(III) oxides, the production of Fe(II) is often accompanied 

by the formation of Fe(II)-bearing secondary minerals, which can include magnetite, siderite, 

vivianite, green rust, and chukanovite. Previous studies of the bioreduction of goethite have 

reported the formation of siderite, vivianite, and chukanovite [22,34,37,62-64], and siderite, 

magnetite, and vivianite have been reported as products of the bioreduction of hematite 

[34,35,37,65,66]. However, pXRD analysis of the solids in the bioreduction systems at the end of the 

incubations did not indicate the formation of any Fe(II) secondary mineral in any system (Figures 6 

and 7). Since XRD is sensitive to the crystallinity of solid phases, the formation of poorly crystalline 

or nanoscale secondary minerals cannot be ruled out.  

 

Figure 5. pXRD analysis of the solids in the geogenic and synthetic goethite bioreduction systems at 

the end of the incubations. 
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Figure 6. pXRD analysis of the solids in the geogenic and synthetic hematite bioreduction systems 

at the end of the incubations. 

 

3.4. Conclusions 

The results of this study show clear differences in the rates and extent of Fe(II) production 

during the bioreduction by S. putrefaciens CN32 of goethite and hematite of synthetic and geogenic 

origin. These results are consistent with a previous study by Zachara et al., showing that goethite 

and hematite from geogenic sources were more readily bioreduced than synthetic analogs, which 

they attributed to crystalline disorder and microheterogeneities [22]. Geogenic Fe(III) oxides often 
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exhibit significant cation substitution by a wide range of divalent and trivalent metal cations; e.g., 

geogenic goethites may have up to 36% isomorphic substitution of Al3+ for Fe3+ on a mole basis [41]. 

However, cation substitution is not a likely factor in the greater bioreducibility of natural goethites, 

as substitution of Al3+ for Fe3+ has been shown to have either no effect or to inhibit microbial 

reduction of goethite [67-69]. On the other hand, synthetic Fe(III) oxides may contain constituents 

that can affect their biogeochemical behavior due to the procedures used to control their synthesis 

and properties. For example, trace levels of phosphate (i.e., 0.2 mass%) in a commercial synthetic 

lepidocrocite decreased the rate of Fe(II) production during bioreduction, but ultimately lead to a 

greater extent of Fe(III) reduction and differences in the formation of Fe(II)-bearing secondary 

minerals [70]. Overall, the comparatively lower bioreducibility of synthetic Fe(III) oxide phases 

relative to their geogenic analogs, suggests that they may not be representative of the 

biogeochemical reactivity of Fe(III) oxides in aquatic and terrestrial environments.  
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