

1 **High throughput screening identifies broad-spectrum Coronavirus entry inhibitors**

2 Suman Khan¹, Efrat Ozer Partuk¹, Jeanne Chiaravalli², Noga Kozer³, Khriesto A. Shurush³, Yael Elbaz-
3 Alon¹, Nadav Scher¹, Emilie Giraud², Jaouen Tran-Rajau², Fabrice Agou², Haim Michael Barr³, Ori
4 Avinoam^{1*}

5 **Affiliations**

6 ¹ Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel

7 ² Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening
8 Core Facility, C2RT, Paris, France

9 ³ The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for
10 Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610001, Israel

11 ***Correspondence:** ori.avinoam@weizmann.ac.il

12 **Abstract**

13 The Covid-19 pandemic highlighted the pressing need for antiviral therapeutics capable of
14 mitigating infection and spread of emerging coronaviruses (CoVs). A promising therapeutic
15 strategy lies in inhibiting viral entry mediated by the Spike (S) glycoprotein. To identify small
16 molecule inhibitors that block entry downstream of receptor binding, we established a high-
17 throughput screening (HTS) platform based on pseudoviruses. We employed a three-step process
18 to screen nearly 200,000 small molecules. First, we identified potential inhibitors by assessing
19 their ability to inhibit pseudoviruses bearing the SARS-CoV-2 S glycoprotein. Subsequent
20 counter-screening against pseudoviruses with the Vesicular Stomatitis Virus glycoprotein (VSV-
21 G), yielding sixty-five SARS-CoV-2 S-specific inhibitors. These were further tested against
22 pseudoviruses bearing the MERS-CoV S glycoprotein, which uses a different receptor. Out of
23 these, five compounds including the known broad-spectrum inhibitor Nafamostat, were subjected
24 to further validation and tested them against pseudoviruses bearing the S glycoprotein of the
25 alpha, delta, and omicron variants as well as against *bona fide* SARS-CoV-2 *in vitro*. This
26 rigorous approach revealed a novel inhibitor and its derivative as a potential broad-spectrum
27 antiviral. These results validate the HTS platform and set the stage for lead optimization and
28 future pre-clinical, *in vivo* studies.

29 **Introduction**

30 Coronaviruses (CoVs) have garnered global attention due to their potential for causing severe
31 diseases in humans. The most notable among these are SARS-CoV, MERS-CoV, and SARS-
32 CoV-2, each responsible for significant disease outbreaks¹. As zoonotic pathogens, CoVs
33 continue to pose a constant threat to global health due to the potential for cross-species
34 transmission, underscoring the need for broad-spectrum antiviral inhibitors.

35 The viral Spike (S) glycoprotein of CoVs mediates fusion of the viral envelope with the host cell
36 membrane, which is essential for infection and delivery of the viral genetic material into host
37 cells²⁻⁴. This process is conserved across all coronaviruses, positioning the S glycoprotein as a
38 promising target for broad-spectrum antiviral strategies^{5,6}. The S glycoprotein is a class I viral
39 fusogens, comprised of two subunits: S1, involved in host cell recognition and binding, and S2,
40 which mediates membrane fusion^{3,7}.

41 Current therapies for CoV infection largely aim to disrupt the S1 domain-mediated host
42 recognition⁸. However, these strategies face significant limitations, particularly with the
43 emergence of SARS-CoV-2 variants carrying mutations in the S1 domain that enhance receptor
44 binding and facilitate immune evasion⁹⁻¹². Additionally, the variability in the cellular receptors
45 recognized by different CoVs presents a challenge for achieving broad inhibition with S1
46 domain-targeted strategies. For instance, SARS-CoV and SARS-CoV-2 recognize angiotensin-
47 converting enzyme 2 (ACE2)^{13,14}, while MERS-CoV interacts with dipeptidyl peptidase 4
48 (DPP4)¹⁵. Further, the identification of new SARS-CoV-2 receptors, such as TMEM106B¹⁶
49 highlights the adaptability of CoVs in exploring alternative receptors.

50 Strategies to inhibit host proteases like Transmembrane protease serine 2 (TMPRSS2)¹⁷⁻¹⁹ and
51 Cathepsins^{20,21}, which facilitate CoV entry by cleaving the S protein and activating the fusogenic

52 activity of the S2 domain, have also been explored. Protease inhibitors like Nafamostat²² and
53 Camostat¹⁹ have demonstrated some efficacy against multiple CoVs^{23,24}. However, their
54 inhibition spectrum remains uncertain due to the adaptability of CoVs in exploring alternative
55 proteases²⁵, and their evolution to include a polybasic furin cleavage site^{26,27}, thereby limiting the
56 strategy of targeting a single protease for broad-spectrum inhibition.

57 In contrast, the S2 domain presents as a promising target for managing CoV infection. Cross-
58 reactive neutralizing antibodies (nAbs) against the S2 domain have been identified in individuals
59 who have not contracted SARS-CoV-2, as well as patients infected with various CoVs^{28,29}. This
60 compelling evidence is reinforced by the essential role of the S2 domain in the universally
61 conserved biophysical process of membrane fusion. Additionally, in comparison to the S1
62 domain, the S2 domain has exhibited lower mutation rates in emerging SARS-CoV-2 variants,
63 which is further supported by phylogenetic analyses showing a higher degree of sequence
64 conservation in the S2 domains of diverse CoV clades^{12,30-32}. These characteristics of the S2
65 domain suggest its potential as a broad-spectrum therapeutic target. However, targeting the S2
66 domain is challenging because it cannot be expressed independently of the S1 domain. Hence,
67 current FDA-approved drugs for treating COVID-19 patients, such as Remdesivir³³,
68 Molnupiravir³⁴ and Nirmatrelvir³⁵, do not specifically target the S2 domain.

69 High throughput screening (HTS) has been used to identify antiviral leads for various viruses³⁶⁻
70 ³⁸. With the emergence of SARS-CoV-2, several HTS assays were swiftly developed,
71 predominately focusing on FDA-approved drugs, to reduce the development time by re-
72 purposing existing drugs³⁹⁻⁴¹. Despite numerous efforts, few novel and efficient antivirals were
73 identified⁴²⁻⁴⁵. Furthermore, while numerous *in silico* and *in vitro* HTS approaches targeting viral

74 entry or viral replication have been developed, efforts specifically dedicated to the identification
75 of broad-spectrum CoV antivirals through HTS have been sparse^{46,47}.

76 To address this gap, we adopted a pseudotyped Vesicular Stomatitis Virus (VSV) model⁴⁸
77 permitted robust quantification of CoV Spike glycoprotein mediated infection. We established an
78 HTS platform and screened approximately 200,000 diverse chemical compounds. We targeted
79 the S2 domain of the S glycoproteins by screening against the glycoproteins of two distinct CoVs
80 that bind different cellular receptors^{30,49–51}. Our extensive HTS efforts resulted in the
81 identification and validation of a novel broad-spectrum antiviral compound.

82 **Results**

83 **Pseudoviruses expressing fluorescent reporters enable robust infection quantification**

84 To develop an effective high-throughput screening (HTS) assay for SARS-CoV-2, we produced
85 pseudoviruses featuring the S glycoprotein of the SARS-CoV-2 Wuhan variant (VSV Δ G-S_W) on
86 a VSV backbone lacking VSV-G (VSV Δ G) (**Fig. 1 A**). We chose to work with VSV Δ G which
87 express a fluorescent reporter from the viral genome after infection (**Fig. 1 B**). We employed a
88 fluorescent reporter, instead of the more commonly used luciferase, because it allows direct
89 visualization and robust quantification of single infection events, overcoming the need for
90 averaging and the additional processing steps for the Luciferase enzymatic reaction⁵² (**Fig. 1 C**).

91 We confirmed the specific tropism of the VSV Δ G-S_W pseudoviruses by comparing infected
92 ACE2-overexpressing Human Embryonic Kidney (HEK-293T-ACE2) cells and ACE-2-deficient
93 Baby Hamster Kidney (BHK-21) cells (**Fig. 1 D**). To eliminate potential residual infections from
94 VSV Δ G-G that might have been left over during production, we performed all experiments in
95 the presence of a neutralizing antibody against VSV-G. We observed 10,000-fold more
96 infections in HEK-293T-ACE2, with an additional 3.8-fold increase in cells co-expressing
97 TMPRSS2 (HEK-293T-ACE2-TMPRSS2), consistent with the tropism of SARS-CoV-2 (**Fig. 1**
98 **D**).

99 We then explored methods to enhance virus titers, comparing modifications to the cytosolic tail
100 of the S glycoprotein and optimizing the production, and infection procedures (**Fig. 1 E and S1**
101 **A-B**). Modifications included truncating the 19-amino acid ER retention sequence^{53,54} and adding
102 an HA, flag or C9 tag to the C-terminus of the S glycoprotein^{19,55}. Optimal titers were achieved
103 with C9 and HA tagged S glycoproteins without further modifications (**Fig. 1 E**). Moreover, we
104 obtained peak titers when the cell supernatant containing VSV Δ G-S_W was harvested 30 hours

105 after infection with the VSVΔG-G helper virus. Notably, infection rates doubled when cultures
106 were centrifuged post-infection (**Fig. S1 A-B**). These optimizations significantly improved the
107 sensitivity and reproducibility of infection counts.

108 Subsequently, we produced and obtained high titer pseudoviruses featuring the S glycoproteins
109 of MERS-CoV (VSVΔG-S_M) and SARS-CoV-2 variants Alpha (VSVΔG-S_α), Delta (VSVΔG-
110 S_δ), and Omicron (VSVΔG-S_ο), and quantified infection rates in both HEK-293T-ACE2-
111 TMPRSS2-DPP4 and HEK-293T-ACE2-TMPRSS2 cell lines (**Fig. 1 F**). Importantly, we
112 assessed the infection rates of VSVΔG pseudoviruses expressing either GFP or RFP and
113 featuring the S glycoprotein (VSVΔG_{GFP}-S_W) or VSV-G (VSVΔG_{RFP}-G) respectively (**Fig. 1 G**).
114 Our results showed that comparable titers were achieved in both single and multiplexed
115 infections, demonstrating the feasibility of multiplexing the assay using pseudoviruses
116 expressing different fluorophores (**Fig. 1 G**).

117 **Optimization and validation of a high throughput screening assay for infection inhibitors**

118 Building on the robust segmentation and quantification capabilities of our automated imaging
119 system and the fluorescence-based assay using VSVΔG pseudoviruses (**Fig. 1 B-C**), we tailored
120 the assay for high throughput screening (HTS) in a 384-well format (**Fig. 2 A**). To streamline the
121 plating process and ensure robust and reproducible quantification, compounds in DMSO were
122 pre-plated in 384-well plates. Then, 10 µl of pseudovirus suspension was added to achieve 500-
123 1000 infections per well. Subsequently, 10,000 HEK-293T-ACE2-TMPRSS2 cells were added
124 to each well and the plates were centrifuged and incubated for 24 hours (**Fig. 2 A**).

125 Post infection, the nuclei were stained to estimate cell count. Automated HTS imaging was then
126 used to obtain images of the infected cells and nuclei in each well. These images were
127 automatically segmented and analyzed by a dedicated pipeline (**Fig. 1 C and 2 B**). The first

128 columns of each plate, which contained viruses and cells, was used as a neutral control,
129 providing the baselines for the infection and cell number counts (**Fig 2 B and S2 A**). The raw
130 infection and cell number counts from each well were normalized with the geometric means of
131 the infection and cell number counts in the neutral control to determine the baselines for the
132 inhibition and cytotoxicity profiles for each compound (**Fig. 2 B and S2 A**). The second columns
133 contained only cells and served as the baseline for 0% infection as the geometric mean of counts
134 in these wells, which also served as the positive controls (**Fig. 2 B and S2 A**). For consistency,
135 all wells without compounds were supplemented with DMSO to achieve a final concentration of
136 0.1%.

137 To test the reproducibility of the assay and ascertain if a one-time screen at a single
138 concentration for each compound would be likely to identify putative inhibitors, we ran a pilot
139 screen with a subset of 2,489 compounds, approximately 1.25% of the entire compound library
140 (**Fig. 2 C**). Each compound was assessed at a concentration of 10 μ M for its ability to inhibit
141 VSV Δ G-S_W in two separate experiments. Compounds demonstrating at least 35% inhibition
142 were reliably detected with similar inhibition levels, independent of day-to-day variations and
143 regardless of the number of cells or the raw infection counts, confirming the robustness of the
144 assay (**Fig. 2 C**).

145 **A three-tiered screen identifies potential broad spectrum S2-domain inhibitors**

146 To identify potential S2-domain specific inhibitors, we divided our screening process into three
147 distinct tiers (**Fig 3 A**). The primary screen evaluated an extensive library of approximately
148 200,000 compounds against VSV Δ G-S_W at a single concentration of 10 μ M. This process
149 identified 733 compounds capable of inhibiting VSV Δ G-S_W infection by at least 35% while
150 maintaining cell viability of 65% (Supplementary Table 1). For the secondary screen, the 733

151 compounds were tested against VSV Δ G-G to distinguish S_w-specific inhibitors from non-
152 specific ones. Since VSV Δ G-S_w and VSV Δ G-G share the VSV Δ G backbone and only differ in
153 the surface glycoproteins, compounds inhibiting VSV Δ G-S_w but not VSV Δ G-G were deemed
154 S_w-specific. The screening identified 65 Spike-specific inhibitors that inhibited VSV Δ G-S_w
155 infection by at least 35% without inhibiting VSV Δ G-G infection more than 35% (Supplementary
156 Table 2).

157 Subsequently, these 65 compounds were subjected to a tertiary screen against VSV Δ G-S_M, to
158 segregate S2-specific inhibitors from receptor binding inhibitors. Since MERS-CoV utilizes
159 DPP4 as its host receptor, compounds inhibiting both VSV Δ G-S_w and VSV Δ G-S_M are likely S2-
160 specific. This screen yielded 22 putative S2-domain specific inhibitors that reduced VSV Δ G-S_M
161 infection by at least 35% (Supplementary Table 3). Out of these, we chose the 11 most drug-like
162 inhibitors that were previously unreported, and Nafamostat, a known TMPRSS2 protease
163 inhibitor, which we used as a positive control in subsequent experiments^{22,56}.

164 To evaluate the screening platform, we calculated HTS parameters such as Z' factor, signal-to-
165 background (S/B), and coefficient of variation (%CV) for 570 plates from all three screening
166 levels^{69,70} (**Fig. 3 B**). These showed the robust performance of the screening platform with a high
167 Z' factor (0.83 \pm 0.5) and a very high S/B (10³), suggesting excellent sensitivity and accuracy. In
168 addition, the low %CV (2.5 \pm 6% for neutral controls and 0.1 \pm 3% for positive control) indicates
169 the high reproducibility and precision of the platform. Plates that failed to meet the accepted Z'
170 cut-off of 0.5 were manually checked and validated before data normalization.

171 To ensure the reliability of the HTS platform and rule out potential false positives due to
172 compound degradation or quality, we resourced 4 of the 11 novel compounds (PCM-0068389,
173 PCM-0166392, PCM-0179622, PCM-016855; Supplementary Table 3) and Nafamostat that

174 were available from alternative vendors and reassessed their activity against VSV Δ G-S_W
175 VSV Δ G-G, and VSV Δ G-S_M, (**Fig. 3 C-D**). These compounds demonstrated varied inhibitory
176 activity against VSV Δ G-S_W (38%-87%) and VSV Δ G-S_M (27%-94%) but did not significantly
177 inhibit VSV Δ G-G (-23% to 0%) confirming their selectivity (**Fig. 3 D**).

178 **Dose response and cytotoxicity of putative candidate compounds**

179 Next, we evaluated the cytotoxicity (CC₅₀) and IC₅₀ value for each compound using a
180 concentration range of 0.3125 - 40 μ M against VSV Δ G-S_W, VSV Δ G-G, and VSV Δ G-S_M, as well
181 as VSV Δ G-S _{α} , VSV Δ G-S _{δ} , and VSV Δ G-S _{\circ} . Since the purity of these compounds ranged from
182 70% to 95%, and as an additional validation step, we performed these experiments on the
183 compounds before and after HPLC purification. All compounds showed low to moderate
184 cytotoxicity before and after purification (**Fig. S3 and 4** respectively).

185 Nafamostat showed similar IC₅₀ values against VSV Δ G-S_W (0.90 μ M vs 1.31 μ M) and VSV Δ G-
186 S_M (0.13 μ M vs 0.21 μ M) before and after purification, with no significant activity against
187 VSV Δ G-G, and was also active against VSV Δ G-S _{α} (0.92 μ M vs 0.93 μ M), VSV Δ G-S _{δ} (0.31 μ M
188 vs 0.94 μ M), and VSV Δ G-S _{\circ} , but the latter only after purification (Not calculated vs 1.81 μ M)
189 (**Fig. S3 and 4**). PCM-0068389, while showing extremely promising activity and selectivity
190 before purification, lost all activity against VSV Δ G-S_W, its variants and VSV Δ G-S_M after
191 purification and showed some activity against VSV Δ G-G at concentrations higher than 10 μ M
192 (**Fig. S3 and 4**). PCM-0166392 and PCM-0179622 while retaining relatively high activity
193 against VSV Δ G-S_W and its variants were not selective against VSV Δ G-S_M yielding dose-
194 response curves that were not significantly different from VSV Δ G-G (**Fig. S3 and 4**).

195 PCM-0163855 retained high selectivity to VSV Δ G-S_W (0.60 μ M vs 0.70 μ M), VSV Δ G-S _{α} (0.37
196 μ M vs 0.40 μ M), and VSV Δ G-S _{δ} (0.45 μ M vs 0.49 μ M), with only moderate activity against

197 VSV Δ G-S_o (41.18 μ M vs 30.77 μ M), but was inactive against VSV Δ G-S_M, showing no
198 significant difference from VSV Δ G-G above 10 μ M concentration (**Fig. S3 and 4**). Consistently,
199 PCM-016855 inhibited the replication of *bona fide* SARS-CoV-2 Delta (B.1.617.2) in VeroE6
200 cells with and without TMPRSS2 overexpression (6.71 μ M and 6.43 μ M respectively; **Fig. S4**
201 **A**).

202 **A PCM-016855 derivative, is a broad-spectrum CoV inhibitor**

203 Following up on these promising results, we synthesized PCM-0163855 and its sulfoxide
204 derivative PCM-0282478 (**Fig. S5**). We evaluated their IC₅₀ value against VSV Δ G-S _{δ} , VSV Δ G-
205 S_o, VSV Δ G-G, and VSV Δ G-S_M, and *bona fide* SARS-CoV-2 variants, Delta (B.1.617.2),
206 XBB.1.5 and CH.1.1 (**Fig. 5 A and Fig. S6 A**). Dose-response curves demonstrated that PCM-
207 0282478 was approximately 10 times more potent than synthesized PCM-0163855 against
208 VSV Δ G-S _{δ} (1.13 μ M and 14.40 μ M respectively) and selective against VSV Δ G-S_o and VSV Δ G-
209 S_M (14.67 μ M and 17.12 μ M respectively). Neither PCM-0163855 nor PCM-0282478 inhibited
210 VSV Δ G-G up to 10 μ M. Furthermore, only PCM-0282478 inhibited *bona fide* SARS-CoV-2
211 Delta (B.1.617.2) replication in VeroE6 cells (4.49 μ M; **Fig. 5 A**), and neither inhibited XBB.1.5
212 and CH.1.1 at the concentration range tested.

213 PCM-0282478 was synthesized as a racemic mixture. To evaluate the contribution of each
214 enantiomer, we separated them to PCM-0296173 and PCM-0296174, and evaluated their IC₅₀
215 value against VSV Δ G-S _{δ} , VSV Δ G-S_o, VSV Δ G-G, and VSV Δ G-S_M (**Fig. 5 B**). Only PCM-
216 0296174 potently inhibited VSV Δ G-S _{δ} and was selective against VSV Δ G-S_o and VSV Δ G-S_M
217 (12.75 μ M and 30.19 μ M respectively). The IC₅₀ of value of PCM-0296174 against VSV Δ G-S _{δ}
218 was approximately half compared to the racemic mixture PCM-0282478 (0.56 μ M vs 1.13 μ M
219 respectively), showing potency increased two-fold. Both PCM-0296173 and PCM-0296174 did

220 not inhibit VSV Δ G-G up to 10 μ M. Further, only PCM-0296174 inhibited SARS-CoV-2 Delta
221 (B.1.617.2) replication, and its IC_{50} improved by 2-folds in presence of an inhibitor against the
222 multidrug resistance protein 1 (MDR1) efflux transporter (1.88 μ M vs 0.89 μ M respectively; **Fig.**
223 **5 B**). Conversely, PCM-0296174 inconsistently inhibited the omicron variant CH.1.1 and did not
224 inhibit XBB.1.5 (**Fig. 5 B**). These experiments taken together, suggest that PCM-0296174 is a
225 cell permeable selective S glycoprotein inhibitor.

226 **Discussion**

227 To identify potential CoVs fusion inhibitors, we developed an HTS platform that relies on a
228 phenotypic assay of infection using well-characterized, replication-deficient VSV Δ G
229 pseudoviruses that can be studied at biosafety level 2 (BSL-2) and express a fluorescent reporter
230 upon infection. This allowed us to produce and accurately titer pseudoviruses featuring the S
231 glycoproteins from SARS-CoV-2 variants and MERS-CoV, which was essential for establishing
232 pseudoviruses preparation with titers of 10^4 infections per ml (**Fig. 1 F**). If the titers had dropped
233 below 10^3 infections per ml, the feasibility of using 384-well plates would have been
234 compromised, rendering the screening process both economically and logically prohibitive.
235 We employed fluorescent reporters, instead of the more commonly used luciferase,
236 demonstrating their advantages which include direct measurement of single infection events,
237 high signal-to-noise ratio, and reduced processing. Moreover, fluorescent reporters with different
238 wavelengths enable the simultaneous examination of multiple viruses under the same
239 experimental conditions (**Fig. 1 G**).

240 We leveraged the HTS platform to screen a comprehensive library of approximately 200,000
241 compounds, targeting potential CoV fusion inhibitors (**Fig. 3 A**). Our three-tiered assay
242 incorporated two class I viral glycoproteins from phylogenetically distant CoVs (SARS-CoV-2
243 & MERS-CoV), and a class III glycoprotein from VSV^{57,58} (**Fig. 3 A**). The primary screen
244 against VSV Δ G-Sw yielded 733 compounds with inhibitory activity, including known inhibitors
245 of proteases, ubiquitin-specific peptidases, and viral gene expression regulated by the HSP90
246 protein family. The secondary screen showed that most of these compounds also inhibit
247 VSV Δ G-G, yielding only 65 putative Spike-specific inhibitors. Finally, the tertiary screen
248 against VSV Δ G-S_M separated receptor binding and putative S2-specific inhibitors, highlighting
249 four compounds, and the known TMPRSS2 inhibitor Nafamostat (**Fig. 3 C-D**).

250 Following validation only PCM-0163855 was retained as a potential selective S glycoprotein
251 inhibitor (**Fig. 4**) and its sulfoxide derivative PCM-0282478 inhibited VSV Δ G-S_W, VSV Δ G-S_O,
252 VSV Δ G-S_M and *bona fide* SARS-CoV-2 delta virus replication (**Fig. 5**). Finally, we showed that
253 only one of the PCM-0282478 derived enantiomers, PCM-0296174, inhibits VSV Δ G-S_W,
254 VSV Δ G-S_O, VSV Δ G-S_M and *bona fide* SARS-CoV-2 delta virus replication, demonstrating its
255 potential as a broad-spectrum inhibitor of CoVs. Note that we observed the Omicron CH.1.1
256 variant yielded an IC₅₀ value with higher variability and no inhibitory activity against the
257 XBB.1.5 variant (**Fig. 5**). This may suggest that the unique mutations in the XBB.1.5 variant
258 may alter the binding site for PCM-0296174 on the Spike protein. Furthermore, given the likely
259 poor solubility of PCM-0296174 (indicated by a calculated log D of 4), it is possible that we are
260 underestimating the calculated IC₅₀ values for variants that are well inhibited and cannot
261 calculate it for the CH.1.1 variant. Synthesizing more soluble and active derivatives of PCM-
262 0296174 will likely help clarify the breadth of selectivity and mode of action. Intriguingly,
263 Nafamostat failed to inhibit *bona fide* SARS-CoV-2 delta virus replication, perhaps due to the
264 capacity of CoVs to infect cells in a TMPRSS2-independent pathway (**Fig. S4**).

265 Our findings reinforce the utility of the HTS platform in identifying novel CoVs inhibitors with
266 the potential to deepen our understanding of coronavirus biology. It also highlights the
267 significance of rigorous compound triage, which is instrumental in averting the dissemination of
268 ambiguous results. The discovery of PCM-0296174, a completely new compound that we
269 synthesized and separated from the racemic mixture, as a promising compound with broad-
270 spectrum antiviral will surely catalyze future research. Hence, the present study lays the
271 groundwork for potential development of a new class of small molecules, holding promise for
272 mitigating the impacts of future pandemics.

273 **Methods:**

274 **DNA constructs**

275 pCAGGS-G, encoding the Vesicular Stomatitis Virus G glycoprotein from the Indiana serotype
276 (VSV-G), was a kind gift from Benjamin Podbilewicz (Technion - Israel Institute of
277 Technology)⁵⁹. pcDNA3.1-SARS2-Spike-C9, encoding the Spike glycoprotein of Wuhan SARS-
278 CoV-2 fused to a C-terminal C9 tag (S_w) was a kind gift from Fang Li (Addgene plasmid #
279 145032; <http://n2t.net/addgene:145032>; RRID:Addgene_145032)⁶⁰. pCG1-SARS2-Spike-HA,
280 encoding the Wuhan SARS-CoV-2 Spike protein fused to a C-terminal HA tag was a kind gift
281 from Gideon Schreiber, pCMV3-SARS2-Spike-Flag, encoding the Wuhan SARS-CoV-2 Spike
282 protein fused to a C-terminal FLAG tag, pCMV3-SARS2-Spike Δ 19, encoding the Wuhan
283 SARS-CoV-2 Spike protein with 19 amino acids removed at the cytoplasmic tail, and pCMV3-
284 SARS2-Spike Δ 19-Flag, with an added C-terminal FLAG tag were a kind gift from and Yosef
285 Shaul (Weizmann Institute of Science)⁶¹. pcDNA3.1- SARS-CoV-2-S_u, SARS-CoV-2-S_d, and
286 SARS-CoV-2-S_o, encoding the Spike glycoprotein of Wuhan SARS-CoV-2 variants fused to a C-
287 terminal C9 tag were generated by DNA synthesis (GeneScript). pcDNA3.1-MERS-Spike-C9,
288 encoding the Spike glycoprotein of the MERS-CoV (S_M) fused to a C-terminal C9 tag was
289 generated by sub-cloning the MERS Spike protein from a pLVX-EF1alpha-MERS-Spike
290 plasmid (Weizmann Plasmid Bank) into a pcDNA3.1 expression plasmid using the GeneArt
291 Gibson Assembly HiFi master mix (Thermo Fisher Scientific cat. no. A46627). The following
292 primers were used to generate the vector fragment (Primers V1:
293 CGCACAAAGGTCCACGTCCACGGCTCCACCGAGACATCCC and V2:
294 AGAAAAACTGAATGAATCATGCTAGCCAGCTTGGGTC; template DNA: pcDNA3.1-
295 SARS-Spike alpha) and the insert fragment (Primers I1: GGAGACCCAAGCTGGC

296 TAGCATGATTCAATTCAAGTTTCTGCTCATGTTTC and I2: TGGGATGTCTCGGTG
297 GAGCCGTGGACGTGGACCTTGTGC; template DNA: pLVX-EF1alpha-MERS-Spike).

298 **Cell culture**

299 Baby Hamster Kidney cells (BHK-21; ATCC) were maintained in Dulbecco's modified Eagle
300 medium (DMEM, Gibco, USA) supplemented with 10% fetal bovine serum (FBS, Biological
301 Industries, Israel), 1% penicillin-streptomycin (PS, Biological Industries) and 25mM HEPES
302 (Biological Industries).

303 Human Embryonic Kidney-293T cells (HEK-293T; ATCC), HEK-293T overexpressing either
304 ACE2 (HEK-293T-ACE2) or both ACE2 and TMPRSS2 (HEK-293T-ACE2-TMPRSS2), or
305 ACE2, DPP4 and TMPRSS2 (HEK-293T-ACE2-TMPRSS2-DPP4) were cultured in DMEM
306 supplemented with 8.1% FBS, 1% PS, 25mM HEPES (Biological Industries). HEK-293T-ACE2,
307 HEK-293T-ACE2-TMPRSS2, and HEK-293T-ACE2-DPP4-TMPRSS2 were maintained by
308 supplementing the culture medium with 1 µg/ml Puromycin (Sigma-Aldrich, USA), and 1.5
309 µg/ml Blasticidin (InvivoGen, USA) respectively. All cell lines were cultured in a 5% CO₂
310 incubator at 37°C. HEK-293T-ACE2 and HEK-293T-ACE2-TMPRSS2 were a kind gifts from
311 Yosef Shaul (Weizmann Institute of Science)⁶¹. HEK-293T-ACE2-TMPRSS2-DPP4 cells were
312 established by lentiviral transduction. 0.3 x 10⁶ HEK-293T-ACE2-TMPRSS2 cells were seeded
313 in each well of a 6 well plate and cultured to 70-80% confluency. The growth medium was
314 replaced with 1 ml of medium containing human CD26/DPP4 pre-packaged lentiviral particles
315 (LTV-CD26, G&P Biosciences) at a multiplicity of infection (MOI) of 5. To enhance
316 transduction efficiency, 1:1000 of polybrene Infection Reagent (Sigma-Aldrich) was added to the
317 medium. The cells were incubated with the lentivirus for 24h at 37 °C with 5% CO₂. After the

318 transduction period, the viral supernatant was removed, and a fresh growth medium containing 1
319 µg/ml Puromycin was added to the cells to initiate the selection process.

320 **Preparation of VSV Δ G pseudoviruses**

321 To generate 5 ml of glycoprotein X complemented pseudoviruses (VSV Δ G-X), 1.2×10^6 BHK-21
322 cells were plated in a 100 mm dish one day prior to transfection. The cells were transfected at
323 75-80% confluence with 5 μ g of a plasmid expressing the viral glycoprotein. 24 h after
324 transfection, cells were infected with VSV Δ G-G pseudovirus at a MOI of 5, with 1:1000 of
325 polybrene Infection Reagent (Sigma-Aldrich). Cells were incubated for 1 h at 37 °C in a 5% CO₂
326 incubator shaking every 15 min. Post infection, cells were washed with DPBS six times, and the
327 medium was replaced with a 5 ml growth medium. 30 h post-infection, cells and the supernatant
328 containing the pseudoviruses were collected and centrifuged at 500 g for 10 mins at 4°C. Clean
329 supernatant was collected, aliquoted, and frozen at -80 °C for further experiments.

330 **Viral titer**

331 To determine viral titers of VSV Δ G complemented pseudoviruses, 10 μ l of pseudovirus
332 suspension was subsequently dispensed in a 384 well plate (Greiner, Austria) in sextuplicate.
333 10K/20 μ l HEK-293T-ACE2-TMPRSS2 cells were added to each well and incubated for 15
334 mins at RT to allow the cells to settle. To maximize infection, assay plates were then subjected to
335 1000g centrifugation for 1 h at RT and incubated for 24 h in a 5% CO₂ incubator at 37 °C.
336 After 24 hours, the plates were imaged using cell discoverer 7 (Carl Zeiss, Germany) in
337 widefield mode with sCMOS 702 camera (Carl Zeiss, Germany). Images were acquired using a
338 ZEISS Plan-APOCHROMAT 5x / 0.35 Autocorr Objective. ZEN blue software 3.1 (Carl Zeiss,
339 Germany) was used for image acquisition using 470 nm excitation for the acquisition of the
340 infected channel. The infected cells were segmented and counted using cellpose⁶². Infection/ml
341 were extrapolated by calculating the geometric mean of the number of infected cells per well
342 (each containing 10 μ l) multiplied by 100. Where applicable the pseudovirus containing

343 supernatant was first incubated with anti-G neutralizing antibody (1:1000 dilution, clone 1E9F9)
344 for 1 h at room temperature (RT) to remove residual VSV Δ G-G background infections.

345 **Compound libraries**

346 The compound collection of the Nancy and Stephen Grand Israel National Center for
347 Personalized Medicine (G-INCPM) was used for screening ([https://g-
348 incpm.weizmann.ac.il/units/WohlDrugDiscovery/chemical-libraries](https://g-incpm.weizmann.ac.il/units/WohlDrugDiscovery/chemical-libraries)). 173,227 unique
349 compounds from commercial sub-collections were used. The composition of the screening set
350 was 0.7% Bioactive collections (Selleck Chemicals, USA), 7.6% HitFinder (Maybridge, USA),
351 10.8% Drug Like Set (Enamine, Ukraine), 26.8% DiversetCL (Cambridge, USA), 54.1%
352 Diversity (ChemDiv, USA). Compounds were stored in 100% DMSO in acoustic dispenser
353 certified plates. Hit compounds were purchased from Sigma-Aldrich, Aldrich Market Select
354 (Sigma-Aldrich), Enamine (Ukraine) or MolPort (Latvia) chemical suppliers.

355 **Phenotypic assay: pseudotype-based HTS imaging inhibition assay**

356 Compounds were spotted using Echo 555 Liquid Handler (Beckman Coulter, USA) on 384-well
357 assay plates in 10 μ M final concentration. To avoid background from any residual VSV Δ G-G
358 activity, pseudoviruses were incubated with anti-G neutralizing antibody (1:5000, clone 1E9F9)
359 for 1 h at RT. Subsequently, 10 μ l of the pseudovirus suspension were dispensed using
360 MultidropTM Combi (Thermo Fisher Scientific, USA) and incubated with compounds for 15
361 mins at RT. HEK-293T-ACE2-TMPRSS2 were trypsinized, counted and diluted to 0.5×10^6
362 cells/ml. 20 μ l of this cell suspension was dispensed (MultidropCombi) in each well containing
363 the compound and the neutralized pseudoviruses and incubated for an additional 15 mins at RT.
364 To maximize infection, assay plates were then subjected to 1000g centrifugation for 1 h at RT
365 and incubated overnight in a 5% CO₂ incubator at 37°C.

366 To account for the toxicity at 10 μ M for a compound, wells were stained for nuclei with 5 μ g/ml
367 Hoechst 33342 (Thermo Fisher Scientific, USA) and incubated for 10 mins at 37 °C, 5% CO₂
368 before live cell imaging was done by (ImageXpressMicro-confocal, Molecular Devices, USA)
369 equipped with 4x S Fluor lens in two channels: filter set DAPI (ex 377 nm/em 447 nm) and FITC
370 (ex 475 nm/em 536 nm) for total cells and infected cells, respectively.

371 Images were analyzed using MetaXpress CME (Molecular Devices, USA) to quantify the
372 number of total and infected cells. Settings for segmentation: cell/nuclei size 5-30 μ m and
373 intensity >2000AU.

374 **Dose response assay**

375 For dose-response assay the compounds were serially diluted to cover a range of 40-0.31 μ M.
376 The assay is identical to phenotypic assay as described above. Six different VSV Δ G viruses
377 representing G, WT, Alpha, Delta, Omicron, and MERS were tested. Data were deposited in
378 CDD vault (Collaborative Drug Discovery platform), and dose response curves were analyzed
379 from image analysis. Dose response curves were generated and fitted to the Levenberg–
380 Marquardt algorithm that is used to fit a Hill equation to dose-response data.

381 **Cell viability assay**

382 To assess compounds toxicity to cells, a copy of the compound as in dose-response experiment
383 were assayed for live-dead assay. Cells were stained with Hoechst (as above) in addition to 1.5
384 μ M Propidium Iodide (Life Technologies. Cat. P3566) and 2 μ M Calcein AM (Life
385 Technologies. Cat. C3099). Image analysis was performed by MetaXpress adjusted to quantify
386 total, live or dead cells.

387 **Liquid Chromatography-Mass Spectrometry (LC/MS)**

388 Flash chromatography was performed by automated CombiFlash® Systems (Teledyne ISCO,
389 USA) with RediSep Rf Normal-phase silica gel columns (Teledyne ISCO) or Silica gel Kieselgel
390 60 (0.04-0.06 mm) columns (Merck, USA). Purification of the compounds was performed using
391 preparative HPLC; Waters Prep 2545 Preparative Chromatography System, with UV/Vis
392 detector 2489, using XBridge® Prep C18 10 μ m 10x250 mm Column (PN: 186003891,
393 SN:161I3608512502). Reaction progress and compounds purity was monitored by Waters
394 UPLC-MS system: Acquity UPLC® H class with PDA detector, ELSD detector, and using
395 Acquity UPLC® BEH C18 1.7 μ m 2.1x50 mm Column (PN:186002350, SN 02703533825836).
396 MS-system: Waters, SQ detector 2. UPLC Method: 5 min gradient 95:5 Water: Acetonitrile
397 0.05% formic acid to Acetonitrile 0.05% formic acid, flowrate 0.5 mL/min, column temp 40°C.

398 **Synthesis of PCM-0163855 and PCM-0282478**

399 All reagents, solvents and building blocks used for the synthesis were purchased from Sigma-
400 Aldrich, Merck, Acros Organics (USA), Tzamal D-Chem Laboratories (Israel), Enamine,
401 Combi-Blocks (USA) and MolPort chemical Suppliers and used for synthesis without further
402 purification. All solvents used for reactions were of HPLC grade. Solvent and reagent
403 abbreviations: Ethyl acetate (EtOAc), Dichlormethane (DCM), Dimethylformamide (DMF), 1,8-
404 Diazabicyclo[5.4.0]undec-7-ene (DBU), Diisopropylethyl amine (DIPEA), Trifluoroacetic acid
405 (TFA). Reactions on microwave were done on Biotage Initiator+ (Biotage, Sweden). 1 H NMR
406 spectra were recorded on a Bruker Avance III -300 MHz, 400 MHz and 500 MHz spectrometer,
407 equipped with QNP probe. Chemical shifts are reported in ppm on the δ scale and are calibrated
408 according to the deuterated solvents. All J values are given in Hertz.

409 *Ethyl 2-((1-(4-chlorophenyl)-4-phenyl-1*H*-imidazol-2-yl)thio)acetate (2):* To a 5 mL crimp vial,
410 ethyl bromo acetate (87.3 mg, 0.52 mmol) was added followed by 1-(4-chlorophenyl)-4-phenyl-
411 1*H*-imidazole-2-thiol (**1**)⁶³ (100.0 mg, 0.35 mmol) and DIPEA (182.0 μ l, 1.05 mmol). The vial
412 was crimped and heated at 90 °C for 5min in microwave reactor, and the reaction was cooled and
413 diluted with EtOAc (10 ml), the organic layer was washed 1X water, 1X brine and dried on
414 Na_2SO_4 . The organic layer was concentrated onto silica (0.5 g) and purified on a Combi-Flash
415 Systems (Teledyne ISCO), using a 24 g silica gel column gradient (15 min) from DCM to
416 EtOAc. The fraction that eluted in 50% EtOAc gave compound **2** (123.0 mg, 94 % yield).

417 *2-((1-(4-chlorophenyl)-4-phenyl-1*H*-imidazol-2-yl)thio)acetic acid (3):* Compound **2** (123.0 mg,
418 0.33 mmol) was dissolved in THF (2 ml), then LiOH (197.0 mg, 8.24 mmol) was dissolved in
419 water (2 ml), and the freshly prepared solution was added to the reaction and stirred overnight.
420 The reaction mixture was cooled to 0 °C and acidified to pH = 4 with HCl 1M (~ 9 ml), the
421 aqueous layer was extracted 3x EtOAc, the combined organic layers were washed with brine
422 dried on Na_2SO_4 . The organic layer was concentrated to give compound **3** (106.2 mg, 93%
423 yield).

424 *2-((1-(4-chlorophenyl)-4-phenyl-1*H*-imidazol-2-yl)thio)-N-(2,3-dimethylphenyl)acetamide (4):* In
425 a 25 mL round bottom flask, compound **3** (106.0 mg, 0.31 mmol) and 2,3-dimethylaniline (72.7
426 mg, 0.46 mmol) was dissolved in DMF (2 ml). Then DIPEA (214.0 μ l, 1.23 mmol) was added
427 followed by HATU (128.6 mg, 0.34 mmol) and the reaction was stirred for 12h. The reaction
428 was then poured into brine (10 ml) and the aqueous layer was extracted 3 X EtOAc, the
429 combined organic layer was washed with 1x water, 1x brine and dried on Na_2SO_4 . The organic
430 layer was concentrated onto 0.5 g silica and purified on Combi-Flash Systems, using a 24 g silica

431 gel column gradient (17 min) from DCM to EtOAc, the fraction that eluted in 50% EtOAc gave
432 compound **4** (108.2 mg, 79% yield).

433 *2-((1-(4-chlorophenyl)-4-phenyl-1H-imidazol-2-yl)sulfonyl)-N-(2,3-dimethylphenyl)acetamide*
434 (**PCM-0163855**): To a 25 mL round bottom flask, compound **4** (19.5 mg, 0.044 mmol) was
435 dissolved in DCM (2 ml), then mCPBA (24.4 mg, 0.11 mmol) was added in one portion. After
436 2h an additional amount of mCPBA (10 mg) was added and the reaction was stirred overnight.
437 The reaction mixture was quenched with sodium sulfite (30 μ l) and concentrated on rotary
438 evaporator. Purification of the crude reaction mixture by HPLC water to MeCN gradient 45 min,
439 the desired compound eluted in 80% MeCN to give **PCM-0163855** (13.5 mg, 62% yield). 1H-
440 NMR (300 MHz, DMSO-d6) δ 9.82 (s, 1H), 8.22 (s, 1H), 7.88 (d, 2H, J = 8 Hz), 7.60-7.50 (m,
441 4H), 7.48-7.40 (m, 2H), 7.37-7.29 (m, 1H), 7.08-7.00 (m, 3H), 4.67 (s, 2H), 2.24 (s, 3H), 1.97 (s,
442 3H); ES-LRMS: (m/z) calculated for $C_{25}H_{23}ClN_3O_3S$ ([M+H]+) 480.1, found 480.3.

443 *2-((1-(4-chlorophenyl)-4-phenyl-1H-imidazol-2-yl)sulfinyl)-N-(2,3-dimethylphenyl)acetamide*
444 (**PCM-0282478**): To a 25 ml round bottom flask, compound **4** (52.0 mg, 0.012 mmol) was
445 dissolved in DCM (2 ml), then mCPBA (28.6 mg, 0.013 mmol) was added in one portion and the
446 reaction was stirred overnight. The reaction mixture was quenched with sodium sulfite (30 μ l)
447 and the reaction was concentrated on rotary evaporator. Purification of the crude reaction
448 mixture by HPLC water to MeCN gradient 45 min, the desired compound eluted in 80% MeCN
449 to give **PCM-0282478** (35.1 mg, 65% yield). Chiral Separation was performed at Lotus
450 Separations (USA, <http://lotussep.com/>). 1H-NMR (300 MHz, DMSO-d6) δ 10.02 (s, 1H), 8.31
451 (s, 1H), 7.95 (d, 2H, J =7.5 Hz), 7.78-7.68 (m, 4H), 7.51-7.41 (m, 2H), 7.38-7.30 (m, 1H), 7.06-
452 6.98 (m, 3H), 4.98 (d, 1H, J =14 Hz), 4.64 (d, 1H, J =14 Hz), 2.21 (s, 3H), 1.96 (s, 3H); (ES-
453 LRMS: (m/z) calculated for $C_{25}H_{23}ClN_3O_2S$ ([M+H]+) 464.1, found 464.3.

454 **SARS-CoV-2 replication assay**

455 Clear-bottomed 384-well black plates were seeded with 3,000 Vero E6 cells or Vero TMPRSS2
456 cells per well. The following day, individual compounds were added at ten specified
457 concentrations, 2 h prior to infection. Each plate included DMSO (0.5 %) and remdesivir (25
458 μ M; SelleckChem) controls. After the pre-incubation period, the cells were exposed to the Delta
459 B.1.617.2 inoculum (at a multiplicity of infection of 0.05 PFU/Vero E6 cell and 0.2 PFU/Vero
460 TMPRSS2 cell). After a one-hour adsorption at 37°C, the supernatant was aspirated and replaced
461 with 2% FBS/DMEM media containing the respective compounds at the indicated
462 concentrations. The cells were then incubated at 37 °C for 2 days. Supernatants were collected
463 and heat inactivated at 80 °C for 20 minutes. The Luna Universal One-Step RT-qPCR Kit (New
464 England Biolabs) was used for the detection of viral genomes in the heat-inactivated samples
465 performed through reverse transcription quantitative polymerase chain reaction (RT-qPCR).
466 Specific primers targeting the N gene region of SARS-CoV-2 (5'-
467 TAATCAGACAAGGAAGTGATTA-3' and 5'-CGAAGGTGTGACTTCCATG-3') were
468 utilized. The cycling conditions involved an initial step at 55 °C for 10 minutes, followed by 95
469 °C for 1 minute. Subsequently, 40 cycles were carried out with denaturation at 95 °C for 10
470 seconds and annealing/extension at 60 °C for 1 minute using an Applied Biosystems
471 QuantStudio 6 thermocycler. The quantity of viral genomes is expressed as Ct and was
472 normalized against the Ct values of the negative and positive controls.

473 In parallel, cytotoxicity was assessed using the CellTiter-Glo luminescent cell viability kit
474 (Promega). 3,000 cells/well of Vero E6 were seeded in white with clear bottom 384-well plates.
475 The following day, compounds were added at concentrations indicated. DMSO only (0,5%) and
476 10 μ M camptotecin (Sigma-Aldrich) controls were added in each plate. After 48 h incubation, 10

477 μ l of CellTiter Glo reagent was added in each well and the luminescence was recorded using a
478 luminometer (Berthold Technologies) with 0.5 sec integration time.

479 Raw data were normalized against appropriate negative (0 %) and positive controls (100 %) and
480 are expressed in % of viral replication inhibition or % of cytotoxicity. Curve fits and IC₅₀/CC₅₀
481 values were obtained in Prism using the variable Hill slope model.

482 Delta B.1.617.2: The variant was supplied by Virus and Immunity Unit in Institut Pasteur headed
483 by Olivier Schwartz. It was isolated from a nasopharyngeal swab of a hospitalized patient who
484 had returned from India. The swab was provided and sequenced by the Laboratoire de Virologie
485 of the Hopital Européen Georges Pompidou (Assistance Publique des Hôpitaux de Paris).

486 XBB.1.5: The strain hCoV-19/France/PDL-IPP58867/2022 was supplied by the National
487 Reference Centre for Respiratory Viruses hosted by Institut Pasteur (Paris, France) and headed
488 by Dr. Etienne Simon-Lorière. The human sample from which strain hCoV-19/France/PDL-
489 IPP58867/2022 was isolated has been provided from the Centre Hospitalier de Laval. CH.1.1:
490 The strain hCoV-19/France/NAQ-IPP58166/2022 was supplied by the National Reference
491 Centre for Respiratory Viruses hosted by Institut Pasteur (Paris, France) and headed by Dr.
492 Etienne Simon-Lorière. The human sample from which strain hCoV-19/France/NAQ-
493 IPP58166/2022 was isolated has been provided from the Selas Cerballiance Charentes.

494 **Statistical analysis and tools**

495 Data from analyzed images was processed using Genedata Screener (Genedata, Switzerland).
496 Normalization was the percent of infection where neutral control is 0% inhibition of infection
497 and “No-Virus” control is 100% inhibition of infection. Further chemoinformatic data
498 visualizations were made with Certara D360 software, which is integrated with the CDD
499 database. Excel (Microsoft, USA) was used to analyze the data and Prism (GraphPad, USA) was

500 used to plot the data. Whenever comparing between two conditions, data was analyzed with two
501 tailed student's t-test. Measurements are reported as mean of at least three biological repeats, and
502 the error bars denote standard error of mean (SEM). Throughout the study, threshold for
503 statistical significance was considered for p-values \leq 0.05, denoted by one asterisk (*), two (**) if
504 P \leq 0.01, three (***) if P <0.001 and four (****) if P \leq 0.001.

505 **References**

506 1. Hartenian, E. *et al.* The molecular virology of coronaviruses. *J Biol Chem* **295**, 12910–12934
507 (2020).

508 2. Belouzard, S., Millet, J. K., Licitra, B. N. & Whittaker, G. R. Mechanisms of Coronavirus Cell
509 Entry Mediated by the Viral Spike Protein. *Viruses* **4**, 1011–1033 (2012).

510 3. Walls, A. C. *et al.* Tectonic conformational changes of a coronavirus spike glycoprotein
511 promote membrane fusion. *Proc National Acad Sci* **114**, 11157–11162 (2017).

512 4. Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into
513 cells. *Nat Rev Mol Cell Bio* **23**, 3–20 (2022).

514 5. Melo-Filho, C. C. *et al.* Conserved coronavirus proteins as targets of broad-spectrum
515 antivirals. *Antivir Res* **204**, 105360 (2022).

516 6. Liu, D. X., Fung, T. S., Chong, K. K.-L., Shukla, A. & Hilgenfeld, R. Accessory proteins of
517 SARS-CoV and other coronaviruses. *Antivir Res* **109**, 97–109 (2014).

518 7. Walls, A. C. *et al.* Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
519 Glycoprotein. *Cell* **181**, 281-292.e6 (2020).

520 8. Patel, R., Kaki, M., Potluri, V. S., Kahar, P. & Khanna, D. A comprehensive review of SARS-
521 CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. *Hum Vacc Immunother* **18**, 2002083
522 (2022).

523 9. Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev
524 Microbiol* **19**, 409–424 (2021).

525 10. Dejnirattisai, W. *et al.* SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from
526 neutralizing antibody responses. *Cell* **185**, 467-484.e15 (2022).

527 11. Willett, B. J. *et al.* SARS-CoV-2 Omicron is an immune escape variant with an altered cell
528 entry pathway. *Nat Microbiol* **7**, 1161–1179 (2022).

529 12. Carabelli, A. M. *et al.* SARS-CoV-2 variant biology: immune escape, transmission and
530 fitness. *Nat Rev Microbiol* **21**, 162–177 (2023).

531 13. Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS Coronavirus Spike Receptor-
532 Binding Domain Complexed with Receptor. *Science* **309**, 1864–1868 (2005).

533 14. Lan, J. *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to the
534 ACE2 receptor. *Nature* **581**, 215–220 (2020).

535 15. Lu, G. *et al.* Molecular basis of binding between novel human coronavirus MERS-CoV and
536 its receptor CD26. *Nature* **500**, 227–231 (2013).

537 16. Baggen, J. *et al.* TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell
538 entry. *Cell* **186**, 3427-3442.e22 (2023).

539 17. Glowacka, I. *et al.* Evidence that TMPRSS2 Activates the Severe Acute Respiratory
540 Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the
541 Humoral Immune Response. *J Virol* **85**, 4122–4134 (2011).

542 18. Shirato, K., Kawase, M. & Matsuyama, S. Middle East Respiratory Syndrome Coronavirus
543 Infection Mediated by the Transmembrane Serine Protease TMPRSS2. *J Virol* **87**, 12552–12561
544 (2013).

545 19. Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
546 Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280.e8 (2020).

547 20. Bosch, B. J., Bartelink, W. & Rottier, P. J. M. Cathepsin L Functionally Cleaves the Severe
548 Acute Respiratory Syndrome Coronavirus Class I Fusion Protein Upstream of Rather than
549 Adjacent to the Fusion Peptide. *J Virol* **82**, 8887–8890 (2008).

550 21. Zhao, M.-M. *et al.* Cathepsin L plays a key role in SARS-CoV-2 infection in humans and
551 humanized mice and is a promising target for new drug development. *Signal Transduct Target*
552 *Ther* **6**, 134 (2021).

553 22. Hoffmann, M. *et al.* Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New
554 Treatment Option for COVID-19. *Antimicrob Agents Ch* **64**, e00754-20 (2020).

555 23. Tang, M. *et al.* Peptide-based inhibitors hold great promise as the broad-spectrum agents
556 against coronavirus. *Front Microbiol* **13**, 1093646 (2023).

557 24. Shapira, T. *et al.* A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and
558 therapeutic. *Nature* **605**, 340–348 (2022).

559 25. Zang, R. *et al.* TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small
560 intestinal enterocytes. *Sci Immunol* **5**, eabc3582 (2020).

561 26. Wu, Y. & Zhao, S. Furin cleavage sites naturally occur in coronaviruses. *Stem Cell Res* **50**,
562 102115 (2021).

563 27. Garry, R. F. SARS-CoV-2 furin cleavage site was not engineered. *Proc National Acad Sci*
564 **119**, e2211107119 (2022).

565 28. Ng, K. W. *et al.* Preexisting and de novo humoral immunity to SARS-CoV-2 in humans.
566 *Science* **370**, 1339–1343 (2020).

567 29. Jaago, M. *et al.* Differential patterns of cross-reactive antibody response against SARS-CoV-
568 2 spike protein detected for chronically ill and healthy COVID-19 naïve individuals. *Sci Rep-uk*
569 **12**, 16817 (2022).

570 30. Podbilewicz, B. Virus and Cell Fusion Mechanisms. *Annu Rev Cell Dev Bi* **30**, 1–29 (2014).

571 31. Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. *Nat Rev Microbiol* **17**, 181–192 (2019).

573 32. Jaimes, J. A., André, N. M., Chappie, J. S., Millet, J. K. & Whittaker, G. R. Phylogenetic
574 Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary
575 Distinct and Proteolytically Sensitive Activation Loop. *J Mol Biol* **432**, 3309–3325 (2020).

576 33. Beigel, J. H. *et al.* Remdesivir for the Treatment of Covid-19 — Final Report. *New Engl J
577 Med* **383**, 1813–1826 (2020).

578 34. Bernal, A. J. *et al.* Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients.
579 *New Engl J Med* **386**, 509–520 (2021).

580 35. Tian, F., Chen, Z. & Feng, Q. Nirmatrelvir–ritonavir compared with other antiviral drugs for
581 the treatment of COVID-19 patients: A systematic review and meta-analysis. *J. Med. Virol.* **95**,
582 e28732 (2023).

583 36. Madrid, P. B. *et al.* A Systematic Screen of FDA-Approved Drugs for Inhibitors of
584 Biological Threat Agents. *Plos One* **8**, e60579 (2013).

585 37. Ellinger, B. *et al.* A High-Throughput HIV-1 Drug Screening Platform, Based on Lentiviral
586 Vectors and Compatible with Biosafety Level-1. *Viruses* **12**, 580 (2020).

587 38. Xu, M. *et al.* Identification of small-molecule inhibitors of Zika virus infection and induced
588 neural cell death via a drug repurposing screen. *Nat Med* **22**, 1101–1107 (2016).

589 39. Zhou, Y. *et al.* Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-
590 CoV-2. *Cell Discov* **6**, 14 (2020).

591 40. Gordon, D. E. *et al.* A SARS-CoV-2 protein interaction map reveals targets for drug
592 repurposing. *Nature* **583**, 459–468 (2020).

593 41. Riva, L. *et al.* Discovery of SARS-CoV-2 antiviral drugs through large-scale compound
594 repurposing. *Nature* **586**, 113–119 (2020).

595 42. Zhang, Z.-R. *et al.* A cell-based large-scale screening of natural compounds for inhibitors of
596 SARS-CoV-2. *Signal Transduct Target Ther* **5**, 218 (2020).

597 43. Consortium, T. C. M. *et al.* Open Science Discovery of Potent Non-Covalent SARS-CoV-2
598 Main Protease Inhibitors. *Biorxiv* 2020.10.29.339317 (2023) doi:10.1101/2020.10.29.339317.

599 44. Ton, A.-T. *et al.* Targeting SARS-CoV-2 papain-like protease in the postvaccine era. *Trends
600 Pharmacol Sci* **43**, 906–919 (2022).

601 45. Luttens, A. *et al.* Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease
602 Inhibitors with Broad-Spectrum Activity against Coronaviruses. *J Am Chem Soc* **144**, 2905–2920
603 (2022).

604 46. Shen, L. *et al.* High-Throughput Screening and Identification of Potent Broad-Spectrum
605 Inhibitors of Coronaviruses. *J Virol* **93**, e00023-19 (2019).

606 47. Haid, S. *et al.* Repurposing screen highlights broad-spectrum coronavirus antivirals and their
607 host targets. *Biorxiv* 2021.07.14.452343 (2021) doi:10.1101/2021.07.14.452343.

608 48. Whitt, M. A. Generation of VSV pseudotypes using recombinant ΔG -VSV for studies on
609 virus entry, identification of entry inhibitors, and immune responses to vaccines. *J Virol Methods*
610 **169**, 365–374 (2010).

611 49. Sapir, A., Avinoam, O., Podbilewicz, B. & Chernomordik, L. V. Viral and Developmental
612 Cell Fusion Mechanisms: Conservation and Divergence. *Dev Cell* **14**, 11–21 (2008).

613 50. Vance, T. D. R. & Lee, J. E. Virus and eukaryote fusogen superfamilies. *Curr Biol* **30**,
614 R750–R754 (2020).

615 51. White, J. M., Delos, S. E., Brecher, M. & Schornberg, K. Structures and Mechanisms of
616 Viral Membrane Fusion Proteins: Multiple Variations on a Common Theme. *Crit Rev Biochem
617 Mol* **43**, 189–219 (2008).

618 52. Smale, S. T. Luciferase Assay. *Cold Spring Harb Protoc* **2010**, pdb.prot5421 (2010).

619 53. Howard, M. W. *et al.* Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute
620 Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent
621 Virus Entry and Cell-Cell Fusion. *J Virol* **82**, 2883–2894 (2008).

622 54. Tien, C.-F. *et al.* Glycosylation and S-palmitoylation regulate SARS-CoV-2 spike protein
623 intracellular trafficking. *Iscience* **25**, 104709 (2022).

624 55. Capcha, J. M. C. *et al.* Generation of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry
625 and Neutralization Assays: A 1-Week Protocol. *Frontiers Cardiovasc Medicine* **7**, 618651
626 (2021).

627 56. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and
628 computational approaches to estimate solubility and permeability in drug discovery and
629 development settings. *Adv. Drug Deliv. Rev.* **23**, 3–25 (1997).

630 57. Kielian, M. & Rey, F. A. Virus membrane-fusion proteins: more than one way to make a
631 hairpin. *Nat. Rev. Microbiol.* **4**, 67–76 (2006).

632 58. Weissenhorn, W., Hinz, A. & Gaudin, Y. Virus membrane fusion. *FEBS Lett.* **581**, 2150–
633 2155 (2007).

634 59. Avinoam, O. *et al.* Conserved Eukaryotic Fusogens Can Fuse Viral Envelopes to Cells.
635 *Science* **332**, 589–592 (2011).

636 60. Shang, J. *et al.* Structural basis of receptor recognition by SARS-CoV-2. *Nature* **581**, 221–
637 224 (2020).

638 61. Strobelt, R. *et al.* Imatinib inhibits SARS-CoV-2 infection by an off-target-mechanism. *Sci.*
639 *Reports* **12**, 5758 (2022).

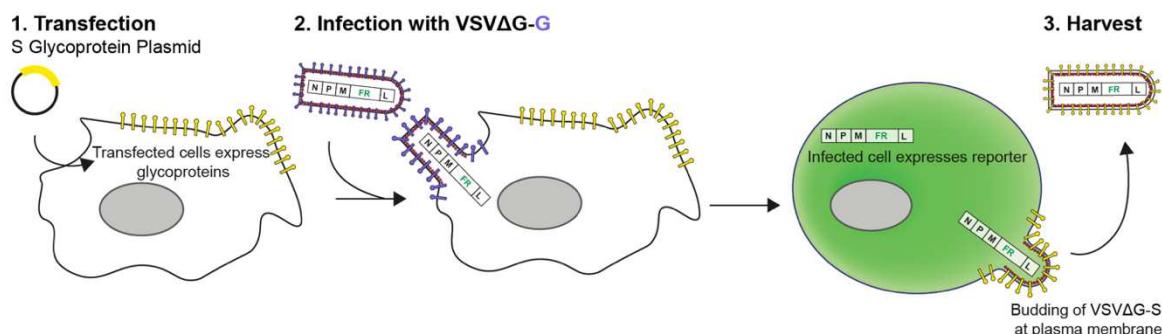
640 62. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for
641 cellular segmentation. *Nat Methods* **18**, 100–106 (2021).

642 63. Sujatha, K. & Khanapurmath, N. Solvatochromic Studies On 4-(1,4 diphenyl-1H imidazole-
643 2-ylthio)-2H-chromen-2-one. *Rasayan J. Chem.* **14**, 2263–2272 (2021).

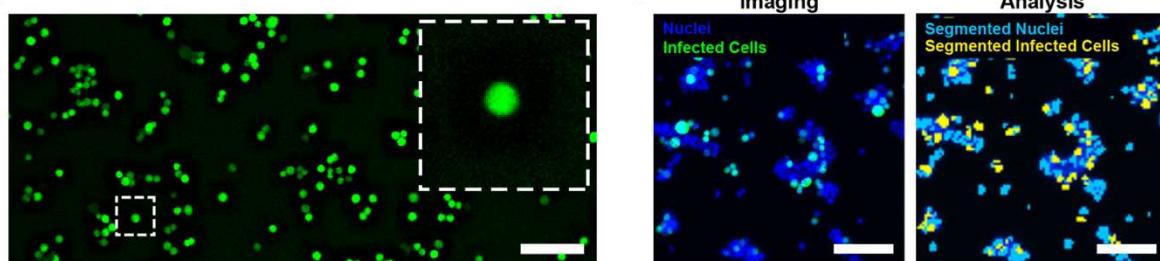
644 **Acknowledgements**

645 We thank members of the Avinoam laboratory, and The Wohl Drug Discovery Institute of the
646 Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM) for
647 discussions. We also thank Yosef Shaul, Romano Strobelt and Julia Adler for cell lines and
648 plasmids, and Benjamin Podbilewicz, Clari Valansi and Gideon Schreiber for plasmids, Galit
649 Cohen and Shirly Valter for assisting with compound plating. This research was supported by
650 Israel Science Foundation (grant no. 3729/20), Bina Nurture Program, and the European
651 Research Council (ERC) Proof of Concept Grant (101100758 – Inhibicov). OA also
652 acknowledges funding from the Henry Chanoch Krementz Institute for Biomedical Imaging and
653 Genomics, the Schwartz Reisman Collaborative Science Program, and the European Research
654 Council (ERC) under the European Union’s Horizon 2020 research and innovation program
655 (grant agreement no 851080). OA is an incumbent of the Miriam Berman presidential
656 development chair. This research was also supported in part by funding from the INSTITUT
657 PASTEUR, Research Applications and Industrial Relations Department (DARRI) and the
658 ANRS-MIE (BIOVAR and PRI projects of the EMERGEN research program) to FA.

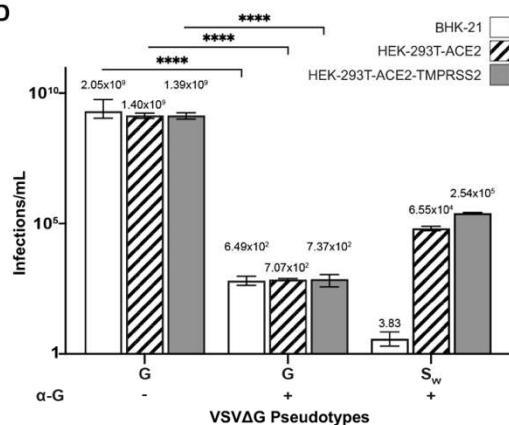
659 **Author contributions**

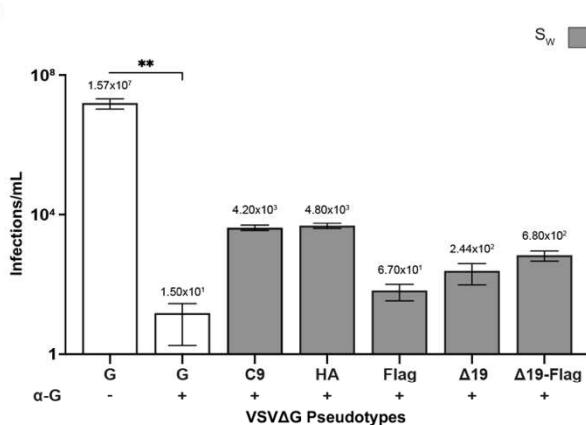

660 OA, SK, and EOP conceived the study, designed, and executed the experiments with
661 contributions from YEA and NS. SK, NK, HMB, and OA performed and analyzed the screen.
662 KS performed the mass spectroscopy experiments, compound purification and synthesis. JC and
663 FA supervised all experiments performed under BSL-3 conditions, and JC, EG, J.T-R performed
664 experiments with SARS-CoV-2 viruses. SK and OA wrote the manuscript with inputs from all
665 authors.

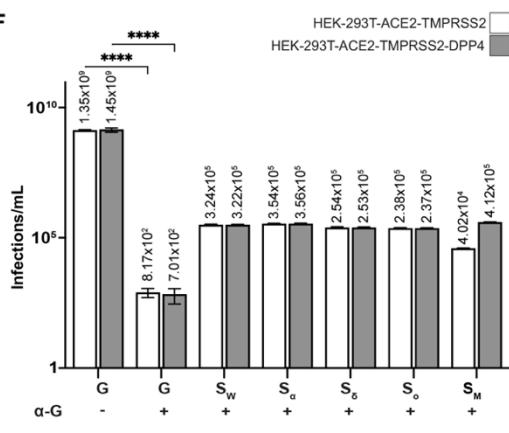
666 **Competing interests**

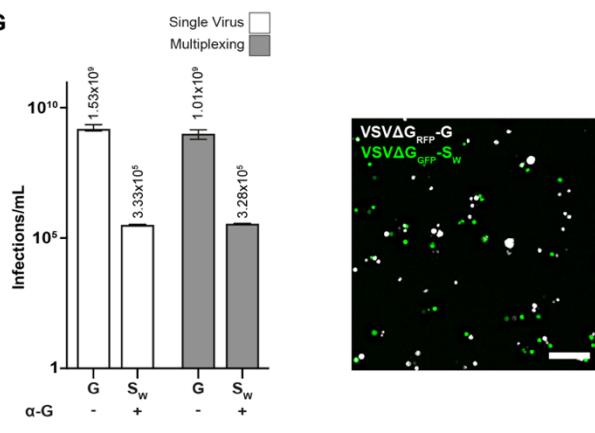

667 A patent application based on the findings of this paper has been filed.

668 **Figure 1**

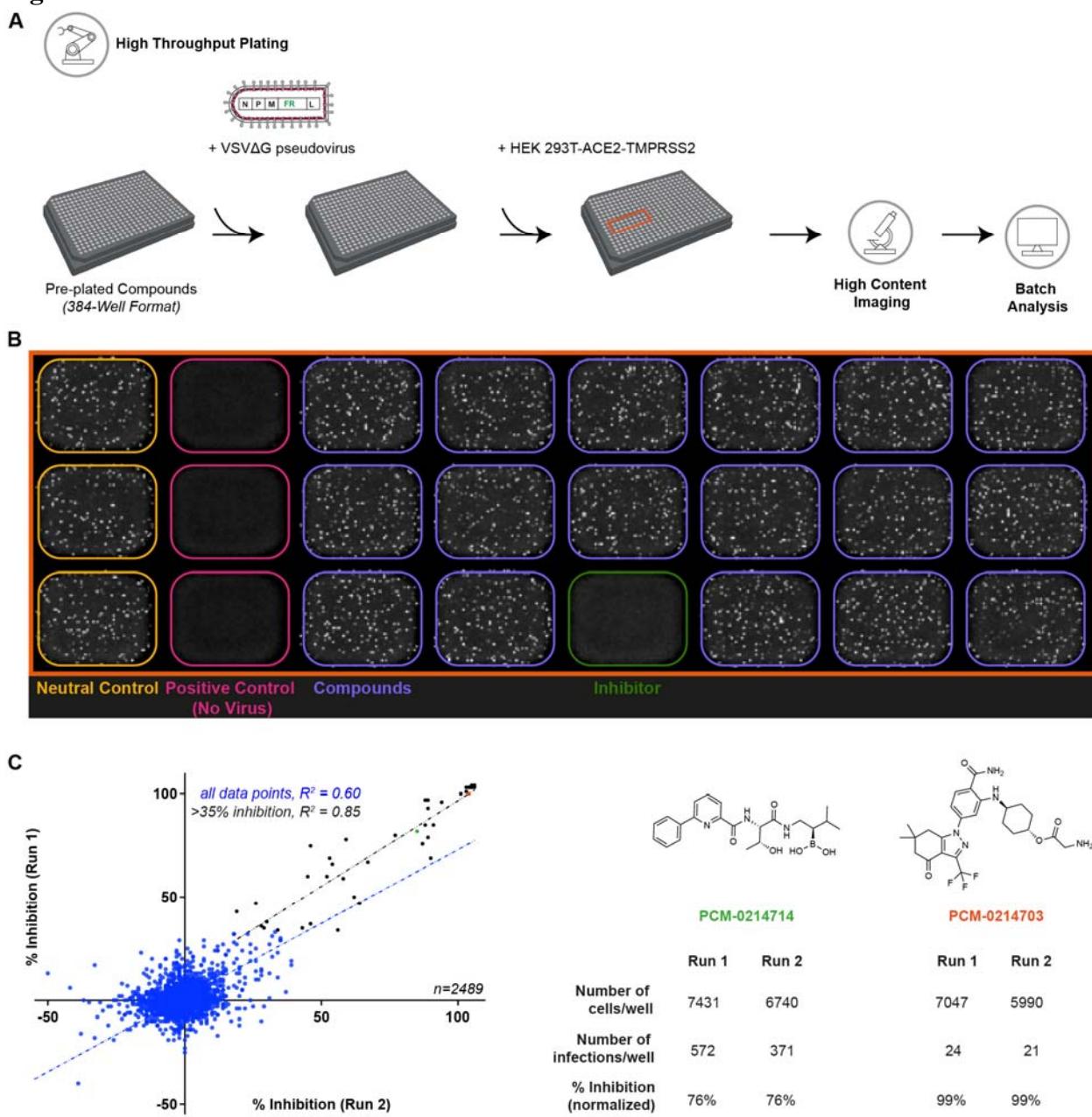

A


B


D

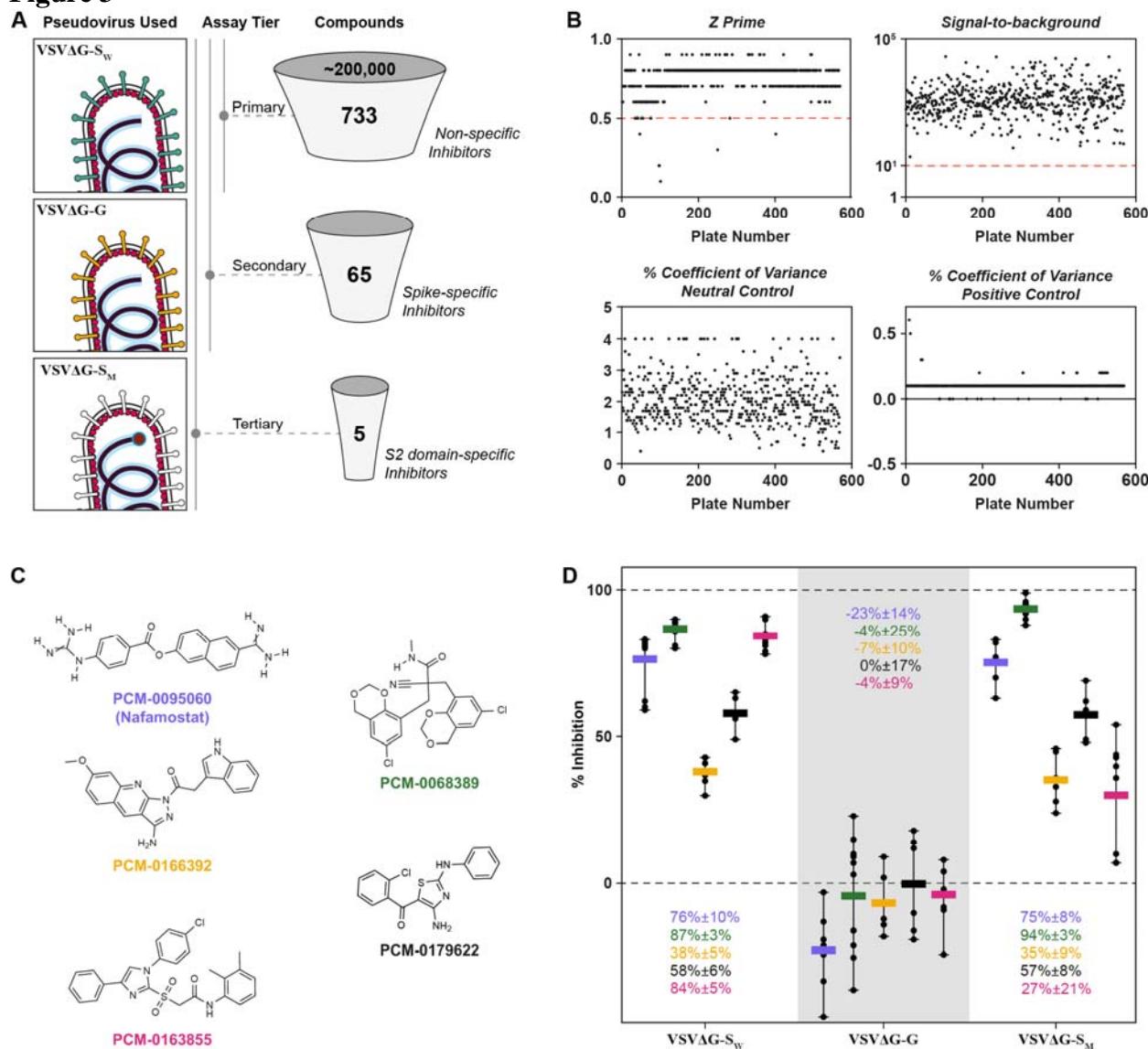

E

F



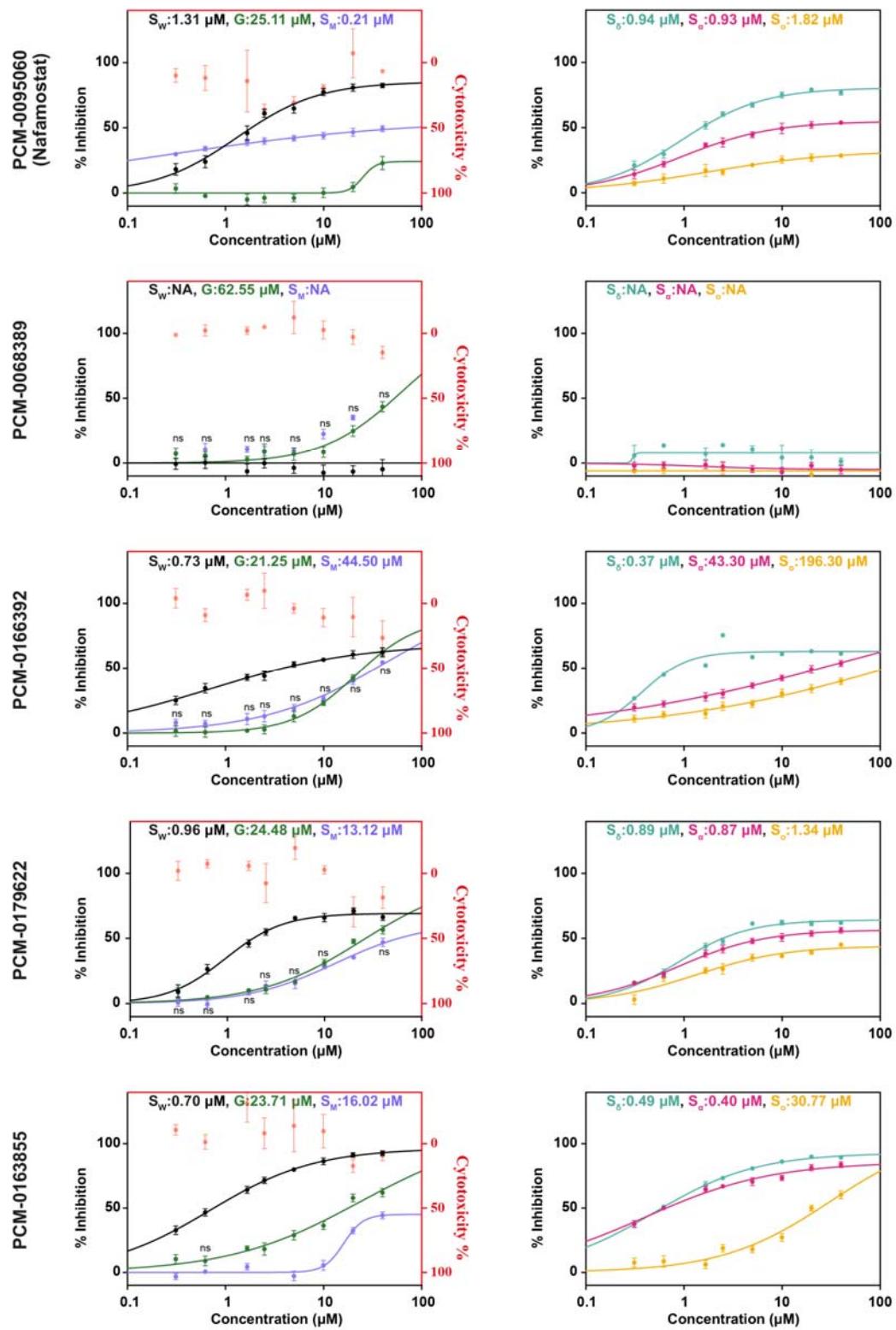
G

670 **Fig. 1 | Production of high titer VSV Δ G pseudovirus and quantification of single infection**
671 **events.** **(A)** A schematic representation of the glycoprotein complemented VSV Δ G
672 pseudoviruses producing process. Viral glycoproteins (yellow) are overexpressed on cell
673 membranes using a plasmid encoding the chosen glycoproteins. These transfected cells are then
674 infected with VSV Δ G-G, resulting in viral-induced expression of a fluorescent reporter (FR) and
675 VSV structural proteins that assemble on the cell surface, incorporating the desired glycoproteins
676 into the VSV Δ G pseudovirus. **(B)** A widefield image of cells infected with VSV Δ G
677 pseudoviruses expressing a fluorescent reporter (GFP; green). Infected cells become round after
678 infection due to the virus-induced Cytopathic Effect. **(C)** A high magnification overlay image
679 showing the infected GFP-positive cells (green) and total nuclei (blue), and the respective
680 segmentation showing infected cells (yellow) and total nuclei (cyan). **(D-G)** Pseudoviral titers in
681 infections/ml. An antibody against VSV-G (α -G) was utilized to neutralize residual VSV Δ G-G
682 infection from production, ensuring accurate titration of the heterologous pseudoviruses. **(D)**
683 Titer of VSV Δ G-Sw showing enhanced infection of cells expressing the innate receptor, ACE2
684 and host protease, TMPRSS2. **(E)** Titer of VSV Δ G-Sw showing the effect of modifications to the
685 cytosolic tail of Sw. **(F)** Titer of VSV Δ G-G, Wuhan (Sw), Alpha (S_a), Delta (S_d), Omicron (S_o),
686 and MERS-CoV S (S_M) showing similar infection levels in HEK-293T cells expressing ACE2-
687 TMPRSS2, with and without DPP4. **(D-F)** VSV Δ G-G Pseudoviruses infected all cell lines at
688 similar levels. **(G)** Pseudoviral infections/ml of VSV Δ G_{RFP}-G and VSV Δ G_{GFP}-Sw separately or
689 simultaneously results in equivalent infection rates. (Right) A high magnification overlay image
690 of a well showing VSV Δ G_{RFP}-G and VSV Δ G_{GFP}-Sw infected cells (White and green,
691 respectively). The statistical significance of antibody activity was also determined. P: ** \leq 0.01,
692 *** \leq 0.0001 (two-tailed unpaired t-tests). N(experiments)=3, n(readings)=9. Error bars
693 represent the SEM. Scale bar is 100 μ M (B, C and G).

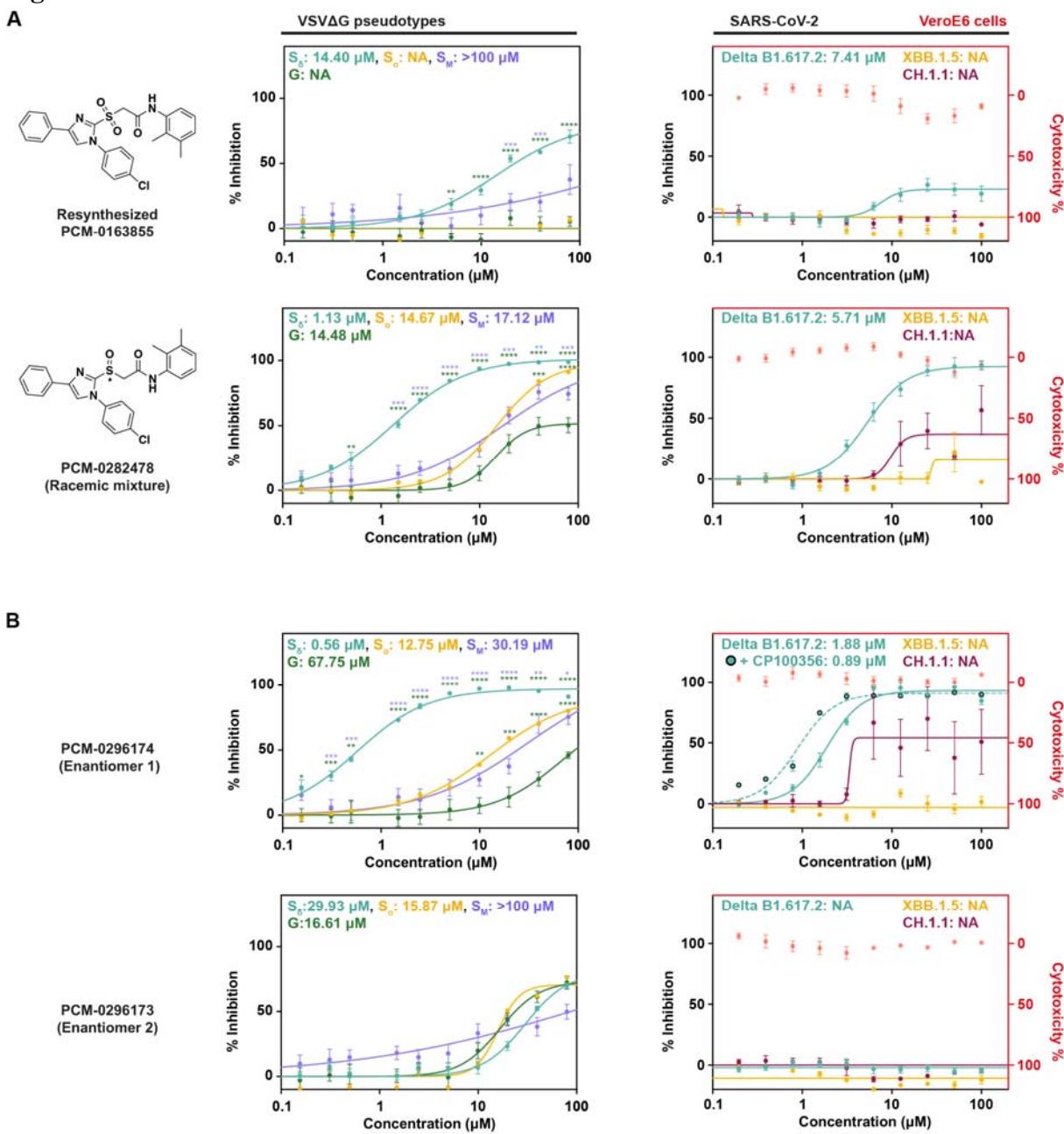

694 **Figure 2**

695

696 **Fig. 2 | The pseudovirus-based HTS platform demonstrates high reproducibility.** **(A)**
697 Schematic of the high content screening pipeline: plating, imaging, and analysis. Compounds
698 were pre-plated, and pseudoviruses, pre-incubated with α -G to neutralize any residual VSV Δ G-G
699 infection, were added in individual wells before introducing HEK-293T cells stably
700 overexpressing SARS-CoV-2 receptor ACE2 and protease TMPRSS2. After 24 hours, the nuclei
701 were stained, and the plates were imaged. Images were subsequently segmented and quantified
702 **(B)** Overview image of a portion of a 384-well screening plate (orange box in A). The neutral
703 control (yellow wells) indicates 100% infection, and the positive control (magenta wells)
704 signifies 0% infection or 100% inhibition. The green well depict an example of a compound with
705 ~90% inhibition. **(C)** Scatter plot of 2489 compounds tested as single point, on two different
706 days. Blue line is the fit for the compounds that inhibited >35%. The inhibitions were
707 reproducible with a high correlation fit ($R^2=0.85$). Black line represents the fit for the rest of the
708 compounds ($R^2=0.60$). (Right) Examples of two inhibitors showing similar inhibition values
709 after normalization and despite having different total cell and infection counts.


710 **Figure 3**

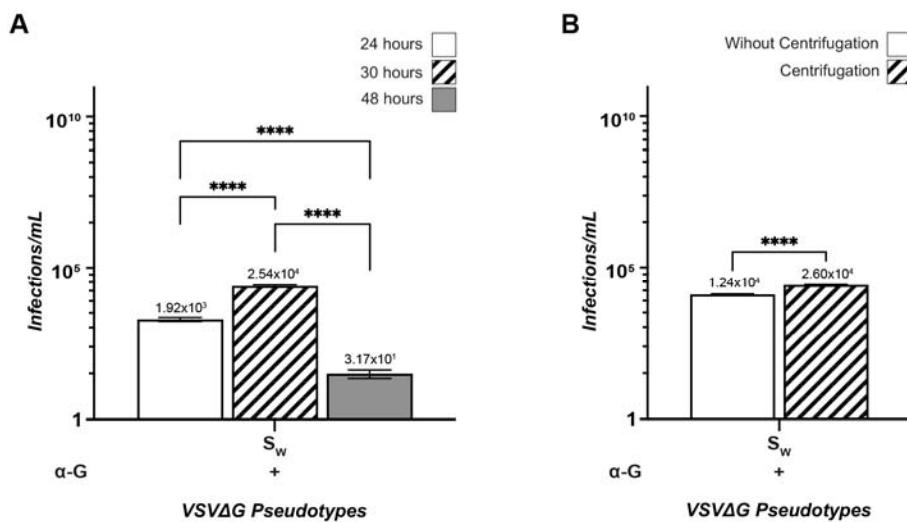
711


712 **Fig. 3 | A three-tiered screen identifies putative entry inhibitors of CoVs. (A)** Schematic
713 showing primary screening of ~200,000 compounds against Wuhan SARS-CoV-2 Spike
714 (VSV Δ G-S_w) yielded 733 putative Spike-specific and non-specific inhibitors. S_w specific
715 inhibitors were identified by a secondary screen against VSV-G (VSV Δ G-G) yielding 65
716 putative inhibitors. The tertiary screen with MERS-CoV Spike (VSV Δ G-S_M) and initial
717 validation resulted in 5 compounds that were putatively broad-spectrum inhibitors. **(B)** Plots
718 showing HTS parameters to determine the robustness of our screen: Z' factor, signal-to-
719 background, percentage of coefficient of variance for positive and negative for the primary
720 screen. Red line denotes the cut off for a robust plate. Five plates that failed to meet the cut-off
721 for Z prime were manually checked for data quality. **(C)** The chemical structures of the four
722 novel compounds and Nafamostat that were commercially resourced. **(D)** Plot of the inhibition of
723 the resourced compounds against the three viruses. All the compounds selectively inhibit SARS-
724 CoV-2 and MERS-CoV Spikes without inhibiting VSV-G. Error bars represent the range. Values
725 represent mean inhibitions \pm standard deviations.

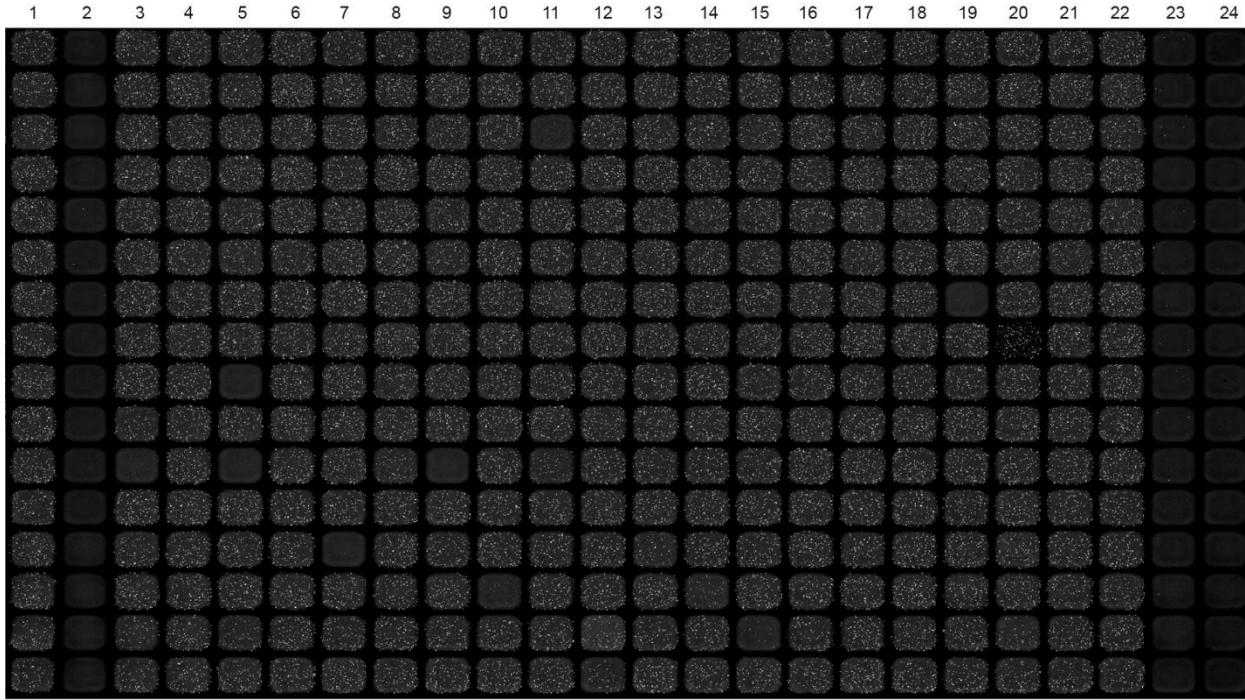
726 **Figure 4**

728 **Fig. 4 | Dose-response activity and cytotoxicity of HPLC-purified compounds. (Left)** Dose-
729 response plot of the purified candidates against VSV Δ G-S_w, VSV Δ G-S_M or VSV Δ G-G and their
730 cytotoxicity profile. **(Right)** Dose-response plots of hits against pseudoviruses with glycoproteins
731 of SARS-CoV-2 variants (VSV Δ G-S _{α} : Alpha, VSV Δ G-S _{δ} : Delta, VSV Δ G-S _{\circ} : Omicron). Dose-
732 response curve were fitted with a variable slope (four-parameter logistic model). Error bars
733 represent the SEM. ns are the readings where there is no statistically significant difference
734 between VSV Δ G-S_M and VSV Δ G-G at a given concentration. For all other readings, the P<0.05
735 (two-tailed unpaired t-tests).

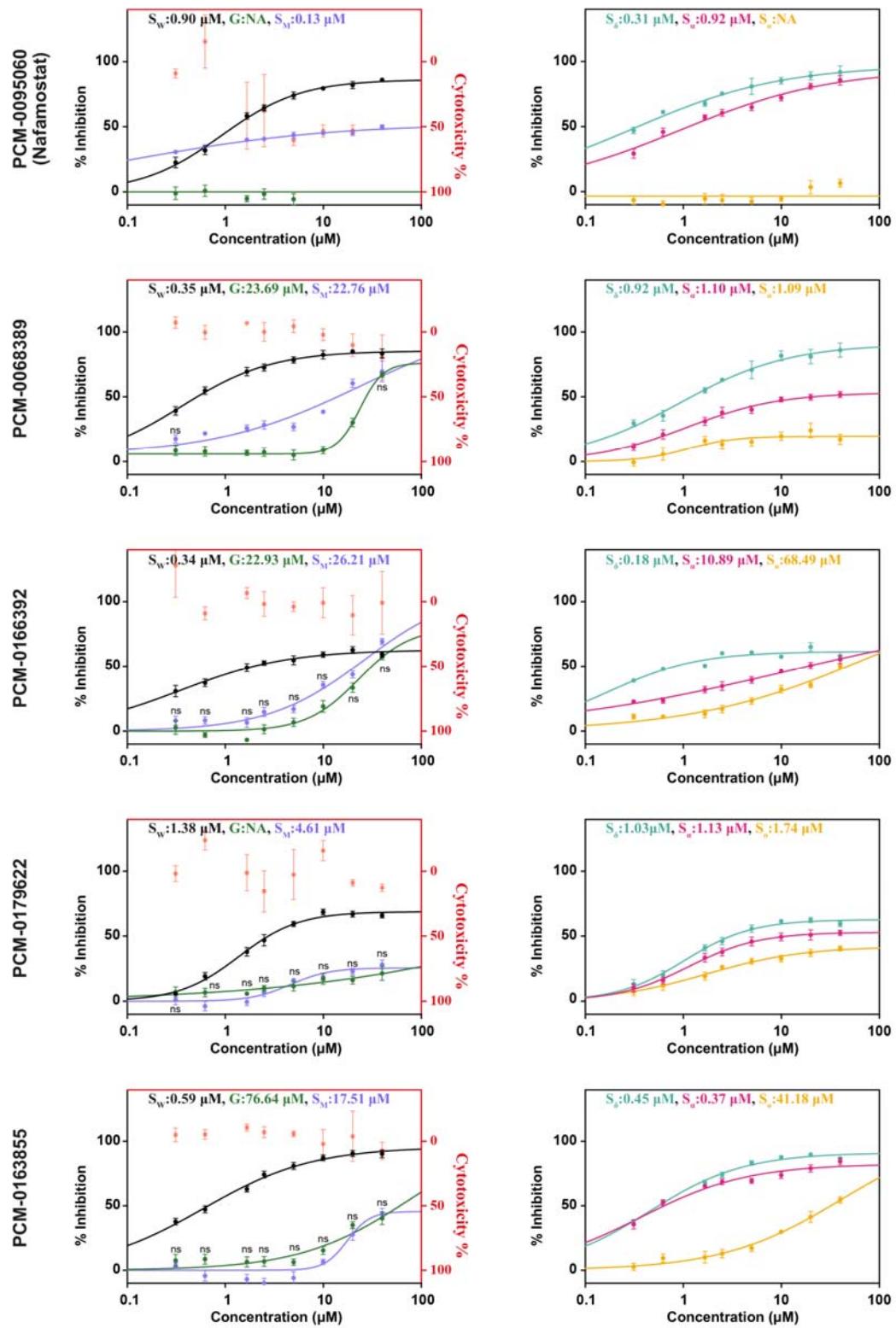
736 **Figure 5**



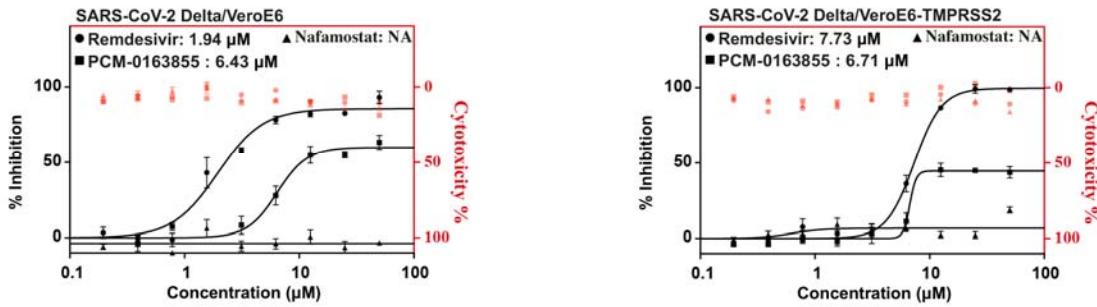
737
738


739 **Fig. 5 | Validation of resynthesized PCM-0163855 and its sulfoxide derivatives. (A; Left)**
740 Structures of PCM-0163855 and its sulfoxide derivative PCM-0282478, and **(Middle)**
741 corresponding dose-response plots comparing the inhibitory activity against VSV Δ G-S $_{\delta}$,
742 VSV Δ G-S $_{\text{o}}$, VSV Δ G-S $_{\text{M}}$ or VSV Δ G-G, showing that PCM-0282478 exhibits a broader
743 selectivity for inhibition compared to PCM-0163855, which was inactive against VSV Δ G-G and,
744 after resourcing, against VSV Δ G-S $_{\text{M}}$ at all concentrations in pseudovirus based assay. **(Right)**
745 The corresponding cytotoxicity profiles and dose-response plots comparing the inhibitory
746 activity of *bona fide* SARS-CoV-2 variants, Delta B1.617.2, XBB.1.5 or CH.1.1, viral
747 replication in Vero E6 cells. **(B; Left)** Dose-response plots of two enantiomers of PCM-0282478
748 comparing the inhibitory activity against VSV Δ G-S $_{\delta}$, VSV Δ G-S $_{\text{o}}$, VSV Δ G-S $_{\text{M}}$ or VSV Δ G-G,
749 showing that only one enantiomer exhibits a broader selectivity for inhibition in pseudovirus
750 based assay. **(Right)** The corresponding cytotoxicity profiles and dose-response plots comparing
751 the inhibitory activity of *bona fide* SARS-CoV-2 variants. The active enantiomer, PCM-0296174
752 was also tested against Delta.B1.617.2 in presence of the multidrug resistance protein 1 (MDR1)
753 inhibitor, CP100356. (A and B) Error bars represent the SEM. The statistical significance of the
754 inhibitions was also determined. P: * \leq 0.05, ** \leq 0.01, *** \leq 0.001 **** \leq 0.0001 (multiple unpaired
755 t-tests comparing group means, accounting for individual variance in each concentration and
756 pseudovirus). N(experiments) \geq 2, n(readings) \geq 6.

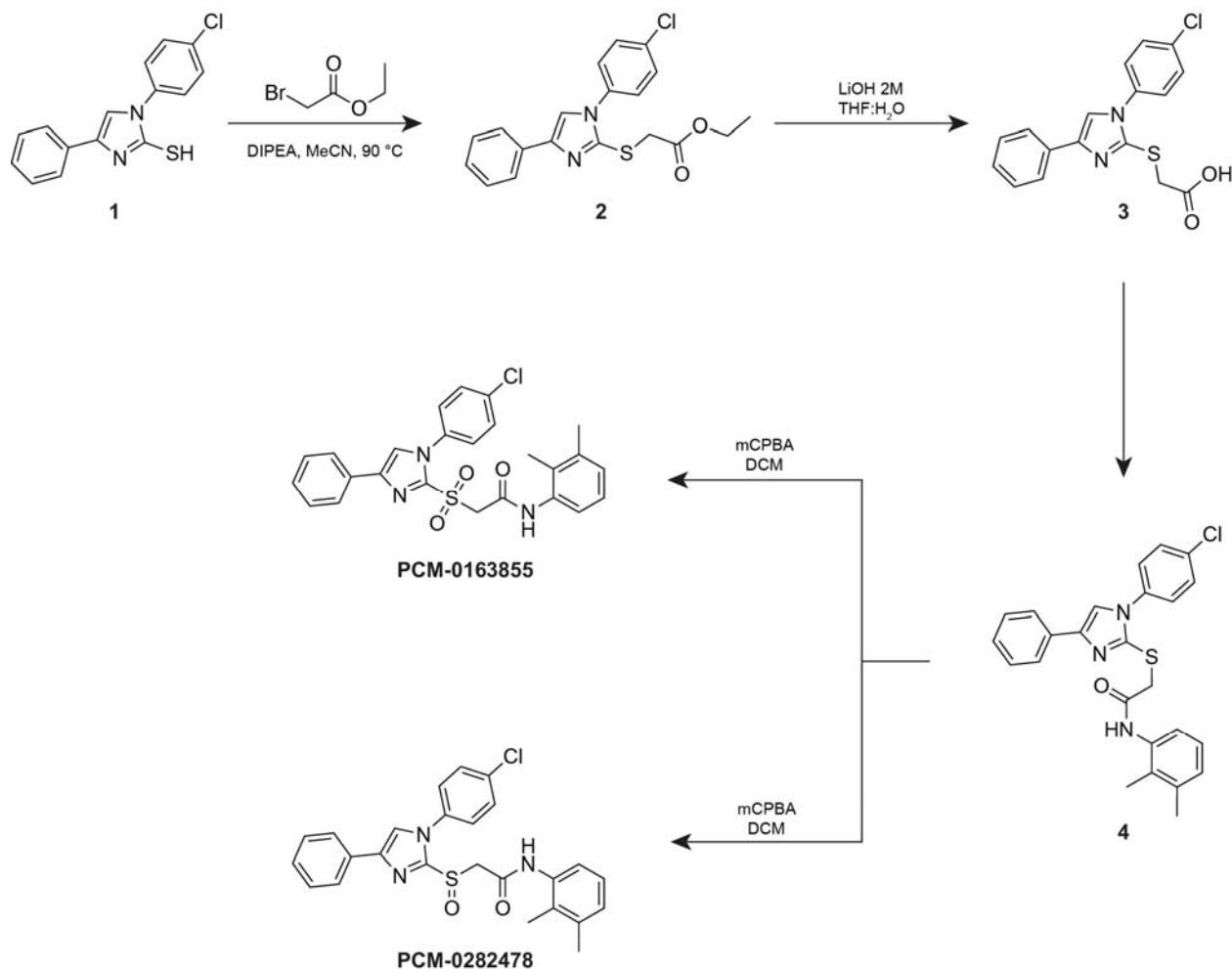
757 **Supplementary Material**


758 **Fig. S1 | Optimization of pseudovirus titer. (A) Infections/ml of VSV Δ G-S_W pseudoviruses**

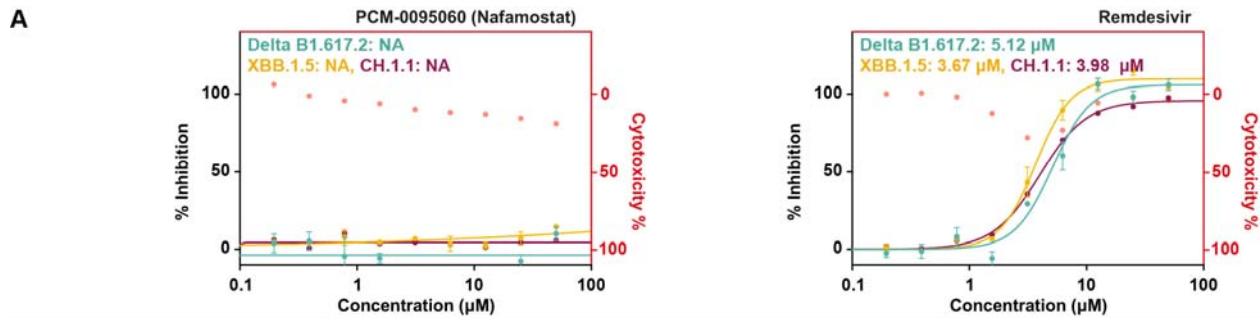
759 present in the harvested supernatant at different times, indicating optimal titers at 30 hours post-
760 harvest. **(B)** Infections/ml of samples subjected to centrifugation, indicating a two-fold increase
761 in viral titer with centrifugation. Experiments were performed in the presence of a VSV-G
762 neutralizing antibody to exclude any residual infection from VSV Δ G-G that was left over from
763 the production. The statistical significance of conditions was also determined. P: **** \leq 0.0001
764 (two-tailed unpaired t-tests). N(experiments)=3, n(readings)=9.



765 **Fig. S2 | Overview of a 384-well plate from the screen.** Column 1, the neutral controls,
766 indicates 100% infection, and Column 2, the positive controls, signifies 0% infection or 100%
767 inhibition. Columns 3-22 are spotted with compounds. Columns 23 and 24 are plated with
768 VSV Δ G-G pseudoviruses. An antibody against VSV-G (α -G) is added in column 23. All
769 columns are supplemented with DMSO to achieve a final concentration of 0.01%.



771 **Fig. S3 | Dose-response activity and cytotoxicity of compounds before HPLC.** (Left) Dose-
772 response plot of the hits against VSV Δ G-S_w, VSV Δ G-S_M or VSV Δ G-G and their cytotoxicity
773 profile. (Right) Dose-response plots of hits against pseudoviruses with glycoproteins of SARS-
774 CoV-2 variants (VSV Δ G-S_a, VSV Δ G-S_δ, VSV Δ G-S_o). Error bars represent the SEM. ns are the
775 readings where there is no statistically significant difference between VSV Δ G-S_M and VSV Δ G-
776 G at a given concentration. For all other readings, the P<0.05 (two-tailed unpaired t-tests).


A

777 **Fig. S4 | Validation of PCM-0163855 against *bona fide* SARS-CoV-2.** (A) Cytotoxicity profile
778 of PCM-0163855 and dose-response plots comparing the inhibitory activity of PCM-0163855,
779 and known inhibitors Nafamostat and Remdesivir on SARS-CoV-2 delta variant on viral
780 replication in Vero E6 cells with (left) and without (right) TMPRSS2 over expression.

781 **Fig. S5 | General reaction scheme for synthesis of PCM-0163855 and PCM-0282478.**

782 **Fig. S6 | Activity of controls against *bona fide* SARS-CoV-2 variants. (A)** Cytotoxicity profile
783 of Nafamostat (left) and Remdesivir (right) against SARS-CoV-2 variants, Delta B1.617.2,
784 XBB.1.5 and CH.1.1, on viral replication in Vero E6 cells.

785

Table 1 | Sequences of Coronavirus Spike proteins used in this study.

SARS-CoV-2 Wuhan	MFVFLVLLPLVSSQCVNLTRTQLPPAYTNSFTRGVYYPDKVF RSSVLHSTQDLFLPFFSNVTWFHAIHSGTNGTKRFDNPVLPF NDGVYFASTEKSNIIRGWIFGTTLDSTQSLLIVNNATNVVIKV CEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVS QPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD LPQGFSALEPLVDLPIGINITRFQTLALHRSYLTGDSGGWT AGAAAYYVGYLQPRTFLLKYNENGTTDAVDCALDPLSETKC TLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNAT RFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKL NDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNKLPDDF TGCVIAWNSNNLDSKVGGNNYLYRLFRKSNLKPFERDISTEI YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVL FELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLT KKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITP GTNTSNQAVLYQDVNCTEVPAIHADQLTPTWRVYSTGSN VFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQNSPRRA RSVASQSIIAYTMSLGAENSVAYNSNSIAPTNFTISVTTEILPVS MTKTSVDCTMYICGDSTECNSNLLQYGSFCTQLNRALTGIAV EQDKNTQEVAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRS FIEDLLFNKVTLADAGFIKQYGDCLGRIAARDLICAQKFNGLT VLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQ MAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSSLSTASA LGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDK VEAEVQIDRLITGRLQSLQTYVTQLIRAAEIRASANLAATKM SECVLGQSKRVDLFCGKGYHLMSPQSAPHGVVFLHVTYVPA QEKNFTTAPAICHDGKAHFREGVFSNGTHWFVTQRNFYEP QIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYF KNHTSPDVLDGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL QELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCS CLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT
SARS-CoV-2 alpha	MFVFLVLLPLVSSQCVNLTRTQLPPAYTNSFTRGVYYPDKVF RSSVLHSTQDLFLPFFSNVTWFHAIHSGTNGTKRFDNPVLPFND GVYFASTEKSNIIRGWIFGTTLDSTQSLLIVNNATNVVIKVCE FQFCNDPFLGVYHKNNKSWMESEFRVYSSANNCTFEYVSQPF LMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQ GFSALEPLVDLPIGINITRFQTLALHRSYLTGDSGGWTAGA AAYYVGYLQPRTFLLKYNENGTTDAVDCALDPLSETKCTLK SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFAS VYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLC FTNVYADSFVIRGDEVRQIAPGQTGKIADYNKLPDDFTGCVI AWNSNNLDSKVGGNNYLYRLFRKSNLKPFERDISTEIYQAG STPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSEELL HAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKFL PFQQFGRDIDDTDAVRDPQTLEILDITPCSFGGVSVITPGTNTS NQAVLYQGVNCTEVPAIHADQLTPTWRVYSTGSNVFQTR

	AGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSHRRARSVAS QSIIAYTMSLGAENSVAYSNNSIAIPINFTISVTTEILPVSMKTS VDCTMYICGDSTECNSNLLQYGSFCTQLNRAUTGIAVEQDKN TQEVAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLL FNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLL TDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFN GIGVTQNVLYENQKLIANQFNSAIGKIQDSSLSTASALGKLQD VVNQNAQALNTLVKQLSSNFGAIISSVLNDILARLDKVEAEVQI DRLITGRLQLQTYVTQQLIRAAEIRASANLAATKMSCEVLGQ SKRVDGCGKGYHLMSPQSAHGVVFLHVTYVPAQEKNFTT APAICHDGKAHFREGVFSNGTHWFVTQRNFYEPQIITTHNT FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPD VDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKY EQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCSCLKGCCS CGSCCKFDEDDSEPVVLKGVKLYT
SARS-CoV-2 delta	MFVFLVLLPLVSSQCVNLTRTQLPPAYTNSFTRGVYYPDKVF RSSVLHSTQDLFLPFFSNVTWFHAIISGTNGTKRFDPVLPFND GVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCE FQFCNDPFLGVYHKNNKSWMESEFRVYSSANNCTFEYVSQPF LMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQ GFSALEPLVDLPIGINITRFQTLALHRSYLTGPDSSSGWTAGA AAYYVGYLQPRTFLLKYNENGTTDAVDCALDPLSETKCTLK SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFAS VYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLC FTNVYADSFVIRGDEVRIQIAPGQTGKIADYNYKLPPDDFTGCVI AWNSNNLDSKVGGNNYLYRLFRKSNLKPFERDISTEYQAG STPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELL HAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFL PFQQFGRDIDDTDAVRDPQTLEILDITPCSFGGVSITPGNTS NQAVLYQGVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTR AGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSHRRARSVAS QSIIAYTMSLGAENSVAYSNNSIAIPINFTISVTTEILPVSMKTS VDCTMYICGDSTECNSNLLQYGSFCTQLNRAUTGIAVEQDKN TQEVAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLL FNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLL TDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFN GIGVTQNVLYENQKLIANQFNSAIGKIQDSSLSTASALGKLQD VVNQNAQALNTLVKQLSSNFGAIISSVLNDILARLDKVEAEVQI DRLITGRLQLQTYVTQQLIRAAEIRASANLAATKMSCEVLGQ SKRVDGCGKGYHLMSPQSAHGVVFLHVTYVPAQEKNFTT APAICHDGKAHFREGVFSNGTHWFVTQRNFYEPQIITTHNT FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPD VDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKY EQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCSCLKGCCS CGSCCKFDEDDSEPVVLKGVKLYT
SARS-CoV-2	MFVFLVLLPLVSSQCVNLTRTQLPPAYTNSFTRGVYYPDKVF

omicron	RSSVLHSTQDLFLPFFSNVTWFHVISGTNGTKRFDNPVLPFND GVYFASIEKSNIIRGWIFGTTLDSKUQSLLIVNNATNVVIKVCE FQFCNDPFLDHKNKNSWMESEFRVYSSANNCTFEYVSQPFLM DLEGKQGNFKNLREFVKNIDGYFKIYSKHTPIIVREPEDLPQG FSALEPLVLDLPIGINITRFQTLALHRSYLTGDSSSGWTAGAA AYYVGYLQPRTFLLKYNENGTTDAVDCALDPLSETKCTLKS FTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFDEVFNATRFAS VYAWNRKRISNCVADYSVLYNLAPFFTFCYGVSPKLNLDLC FTNVYADSFVIRGDEVRIAPIGQGTGNIADYNYKLPDDFTGCVI AWNSNKLDISKVSGNYNYLYRLFRKSNLKPFERDISTEIQYQAG NKPCNGVAGFNCYFPLRSYSFRPTYGVGHQPYRVVVLSFELL HAPATVCGPKKSTNLVKNKCVNFNFNGLKGTGVLTESNKKF LPFQQFGRDIADTTDAVRDPQTLEIILDITPCSFGGVSVITPGTN TSNQVAVLYQGVNCTEVPVAIHADQLPTWRVYSTGSNVFQ TRAGCLIGAEYVNNSYECDIPIGAGICASYQTQTKSHRRARSV ASQSIIAYTMSLGAENSVAYSNNIAIPTNFTISVTTEILPVSMT KTSVDCTMYICGDESTCSNLLQYGSFCTQLKRALTGIAVEQD KNTQEVAQVKQIYKTPPIKYFGGFNFSQILPDPSKPSKRSFIED LLFNKVTLADAGFIKQYGDCLGDIARDLICAQKFKGLTVLPP LLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYR FNGIGVTQNVLYENQKLIANQFNSAIGKIQDSSLSTASALGKL QDVVNHNQAQALNTLVKQLSSKFGAISSVLDIFSRLDKVEAE VQIDRLITGRLQSLQTYVTQLIRAAEIRASANLAATKMSECV LGQSKRVDFCGKGYHLMSPQSAPHGVFLHVTYVPAQEKN FTTAPAICHDGKAHFREGFVFSNGTHWFVTQRNFYEPQIITT DNTFVSGNCVDVIVIGIVNNTVYDPLQPELDSFKEELDKYFKNH TSPDVLDGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL GKYEQYIKWPWYIWLGFIAGLIAJVMVTIMLCCMTSCCSCLK GCCSCGSCCKFDEDDSEPVLKGVKLHYT
MERS-CoV	IHSVFLLMFLLPTESYVDVGPDSVKSACIEVDIQQTFFDKTWP RPIDVSKADGIIYPQGRRTYSNITITYQGLFPYQGDHGDMYVYS AGHATGTPQKLFVANYSQDVKQFANGFVVRIGAAANSTGT VIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRRFNHTLVLLP DGCGLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPATDCSD GNYNRNASLNSFKEYFNLRNCTFMYTINYTEDEILEWFGITQT AQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSIIPHSIRSI QSDRKAWAAFYVYKLQPLTFLDFSVDGYIRRAIDCGFNDLS QLHCSYESFDVESGVYSSFEAKPSGSVVEQAEGVECDFSPL LSGTPPVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPA AIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFNSP TCLILATVPHNLTITKPLKYSYINKCSRLLSDDRTEVPQLVNA NQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGWLVASGSTVA MTEQLQMGFGITVQYGTDTNSVCPKLEFANDTKIASQLGNCV EYSLYGVSGRGVFQNCTAVGVRQQRFVYDAYQNLVGYYSD DGNYYCLRACVSVPVSVIYDKETKTHATLFGSVACEHISSTMS QYSRSTRSMLKRRDSTYGPLQTPVGCVLGLVNSSLFVEDCKL PLGQSLCALPDTPLTPRSVRSPGEMRLASIAFNHPIQVDQL

	NSSYFKLSIPTNFSFGVTQEYIQTIIQKVTVDCKQYVCNGFQK CEQLLREYGQFCSKINQALHGANLRQDDSVRNLFASVKSSQS SPIIPGFGGDFNLTLEPVSISTGSRSARSAIEDLLFDKVTIADPG YMQGYDDCMQQGPASARDLICAQYVAGYKVLPPMDVNME AAYTSSLLGSIAGVGWTAGLSSFAAIPFAQSIFYRLNGVGITQQ VLSENQKLIANKFNQALGAMQTGFTTNEAFQKVQDAVN AQALSKLASELNTFGAISASIGDIIQRLDVLEQDAQIDRLINGR LTTLNAFVAQQLVRSESAALSAQLAKDKVNECVKAQSKRSGF CGQGTHIVSFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDA ANPTNCIAPVNGYFIKTNNTTRIVDEWSYTGSSFYAPEPITSN KYVAPQVTYQNISTNLPPPLGNSTGIDFQDELDEFFKNV PNFGSLTQINTTLLDTYEMLSLQQVVKALNESYIDLKELGNY TYYNKWPWYIWLGFIAGLVALALCVFFILCCTGCGTNCMGK LKCNRCCDRYEEYDLEPHKVVH
--	--

786

787