

1 Opportunities to improve goat production and food security in Botswana 2 through forage nutrition and the use of supplemental feeds

3 Andrew S. Cooke^{1,2*}, Honest Machekano^{3,4}, Javier Ventura-Cordero^{5,6}, Aranzazu Louro-Lopez²,
4 Virgil Joseph³, Lovemore C. Gwiriri^{2,7}, Taro Takahashi^{2,8}, Eric R. Morgan⁶, Michael R. F. Lee^{2,8,9}, and
5 Casper Nyamukondiwa³

6 1. School of Life Sciences, University of Lincoln, Lincoln, UK
7 2. Net-Zero and Resilient Farming, Rothamsted Research, North Wyke, UK
8 3. Botswana International University of Science and Technology, Palapye, Botswana
9 4. Department of Zoology and Entomology, University of Pretoria, South Africa
10 5. Escuela Superior de Ciencias Agropecuarias, Universidad Autónoma de Campeche, Campeche,
11 México
12 6. School of Biological Sciences, Queen's University Belfast, Belfast, UK
13 7. Centre for Agroecology, Water and Resilience, Coventry University, UK
14 8. Bristol Veterinary School, University of Bristol, Langford, UK
15 9. School of Sustainable Food and Farming, Harper Adams University, Edgmond, UK

16 *corresponding author

17 AnCooke@Lincoln.ac.uk

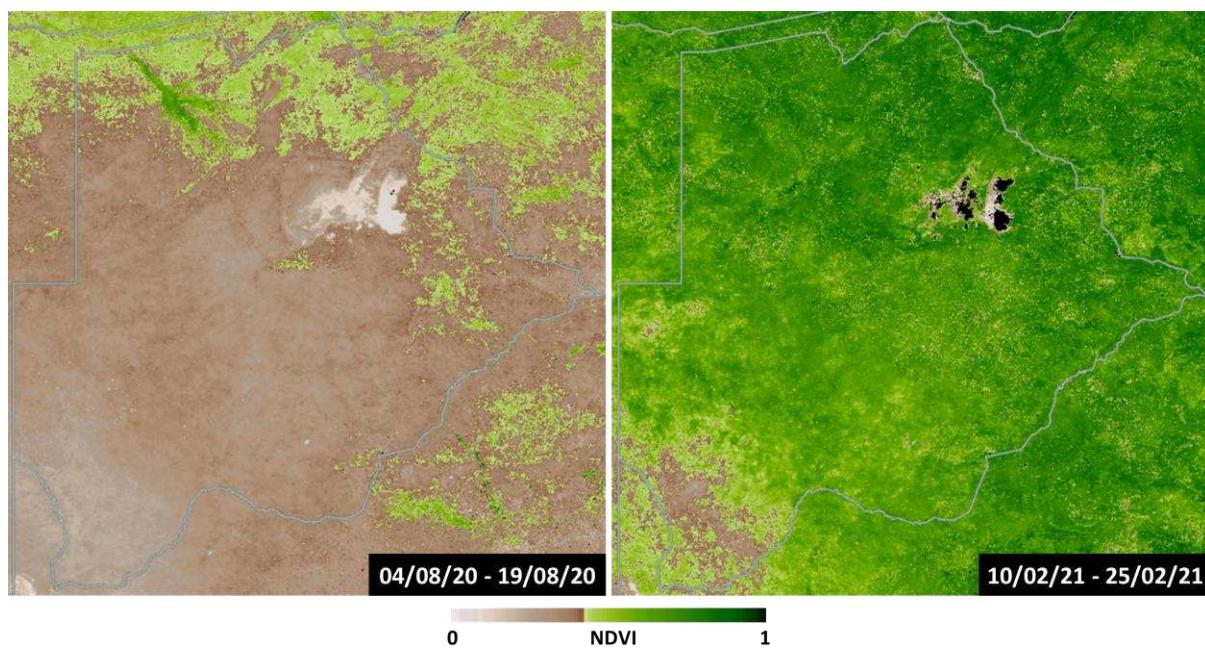
18 Keywords: livestock; goats; nutrition; agriculture; ruminants

19 21 Running head: *Nutritional opportunities to improve goat production in Botswana*

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38 **Abstract**

39 Goats fulfil a central role in food security across Africa with over half of households owning or rearing
40 goats in rural areas. However, goat performance is poor and mortality high. This study assessed the
41 nutritional quality of commonly used feeds and proposes feed-baskets to enhance goat nutrition and
42 health. Feeds were collected from 11 areas within the Central District of Botswana, and macronutrient
43 analyses were conducted, including crude protein, fibre fractions, ash, and metabolizable energy (ME).
44 Forage nutrition was compared across seasons and soil types. Additionally, seasonal supplementation
45 trials were conducted to evaluate consumption rates of various supplements, including crop residues,
46 pellets, *Lablab purpureus*, and *Dichrostachys cinerea*. Each supplement was provided ad libitum for a
47 24-hour period, and consumption rates determined. Findings revealed significant differences in
48 nutrition among various feed sources, across seasons, and in relation to soil types ($p < 0.001$).
49 Consumption rates of supplements were higher during the dry season, possibly due to reduced forage
50 availability. Supplement consumption rates varied across supplements, with crop residues accounting
51 for approximately 1% of dry matter intake, compared to up to 45% for pellets, 13% for *L. purpureus*,
52 and 15% for *D. cinerea*. While wet season feed baskets exhibited higher ME values compared to dry-
53 season feed-baskets, the relative impact of supplementation was more pronounced during the dry
54 season. These results highlight the potential for optimizing goat diets through improved grazing and
55 browsing management, especially during the reduced nutritional availability in the dry season.


56 **1 Introduction**

57 Across Sub-Saharan Africa (SSA), goats play vital nutritional, socio-economic, and cultural roles. This
58 is especially true in rural communities where more than half of households own or rear goats in some
59 capacity (Manirakiza et al., 2020). The goat population in Botswana is distributed across the country
60 and is estimated to include approximately 1.4 million head (Mataveia et al., 2021), nearly exclusively
61 reared by smallholders (Burgess, 2005), making it the most popular form of livestock (Bolowe et al.,
62 2022). Goats contribute to income, food, and nutritional security through their ability to convert and
63 store nutrients from low-value forage (graze and browse), fodder, industrial by-products, and biomass
64 waste streams, which would otherwise be inaccessible to humans, and convert them into meat and milk.
65 In Botswana, 29% of the population is reportedly undernourished and this appears to be increasing
66 amidst climate and biotic shocks (World Bank, 2019a). Conversely, food insecurity (lack of available
67 food) is slightly better than the SSA average with a rate 50.8% in Botswana compared to the SSA mean
68 of 59.5% (World Bank, 2019b, 2019c). This disparity suggests that nutritional quality is an issue, which
69 could be improved by greater access to meat and milk from livestock for the most vulnerable.

70 Goat production is predominantly extensively managed through communal rangeland forage grazing
71 during the day and overnight kraaling, i.e. protective enclosure using thorn brush or other fencing

72 (Walker et al., 2015). Agropastoral communal forage grazing in the central region is supported by hard-
73 veldt open bush savanna dominant on low fertility ferric luvisol sandy soils and moderately low fertile
74 sandy loams (Pule-Meulenberg and Dakota, 2009). Typical rangeland goat production systems consist
75 of relatively small household goat herd sizes (mean 21 goats per household), with a low off-take rate of
76 7.3% and a high mortality rate of 23.3% (Statistics Botswana, 2017). The most commonly cited reasons
77 for owning goats are for cash (84%), followed by meat (58%), and milk (42%) (Bolowe et al., 2022;
78 Monau et al., 2017). Therefore the financial benefits of rearing goats fall into two main categories, cash
79 and insurance (Gwiriri et al., 2023; Kaumbata et al., 2020). The selling of meat, milk and live goats can
80 be an important form of household income. Goat ownership can also provide resilience through the
81 ability to sell or slaughter an animal in times of hardships. Nsoso et al. (2004) reported that farmers in
82 Botswana generally opted not to sell stock regularly, but to use goats as a safety net or insurance, selling
83 only when financial needs necessitated.

84 Broadly, Botswana has two distinct seasons, the wet season (summer and autumn - November to April)
85 and dry season (winter and spring - May to October) and the quantity and quality of fodder varies with
86 the seasons (Figure 1) (Naumann et al., 2017; Setshogo et al., 2011). Rainfall in the wet season aids
87 plant growth, especially in herbaceous species, leading to a relative abundance and diversity of forage,
88 with preferential nutritional profiles. During the wet season, goats are typically shepherded to grazing
89 land in the day where they can consume a mix of browse, herbaceous plants, and pasture. At night, they
90 are enclosed in a kraal (to prevent them from consuming crops and to prevent theft and predation)
91 typically with little or no access to food or water. In the dry season goats roam more freely,
92 predominantly on browse species, and are often not kraaled at night (highlighting that kraaling may
93 predominantly be to protect crops). During the dry season, herbaceous plants significantly die back and
94 forage availability skews towards browse species (Omphile et al., 2005), creating a shortage of feed and
95 drop in nutrition availability and quality. The high costs of commercial supplementary feeds limit
96 farmers' ability to mitigate this. Nutritional assessment of alternative low cost, locally available
97 supplementary feeds in arid environments thus aids in appropriate choices and utilization of the
98 available feed resources for dry season strategic supplementation to alleviate nutritional deficiency
99 related problems in goats (Aganga and Autlwetse, 2000).

100

0 NDVI 1

101 Figure 1 – Normalised Difference Vegetation Index (NDVI) maps of Botswana during the dry season (left) and
102 wet Season (right). Maps are 16-day NDVI averages. Data taken from NASA Worldview (NASA, 2022).

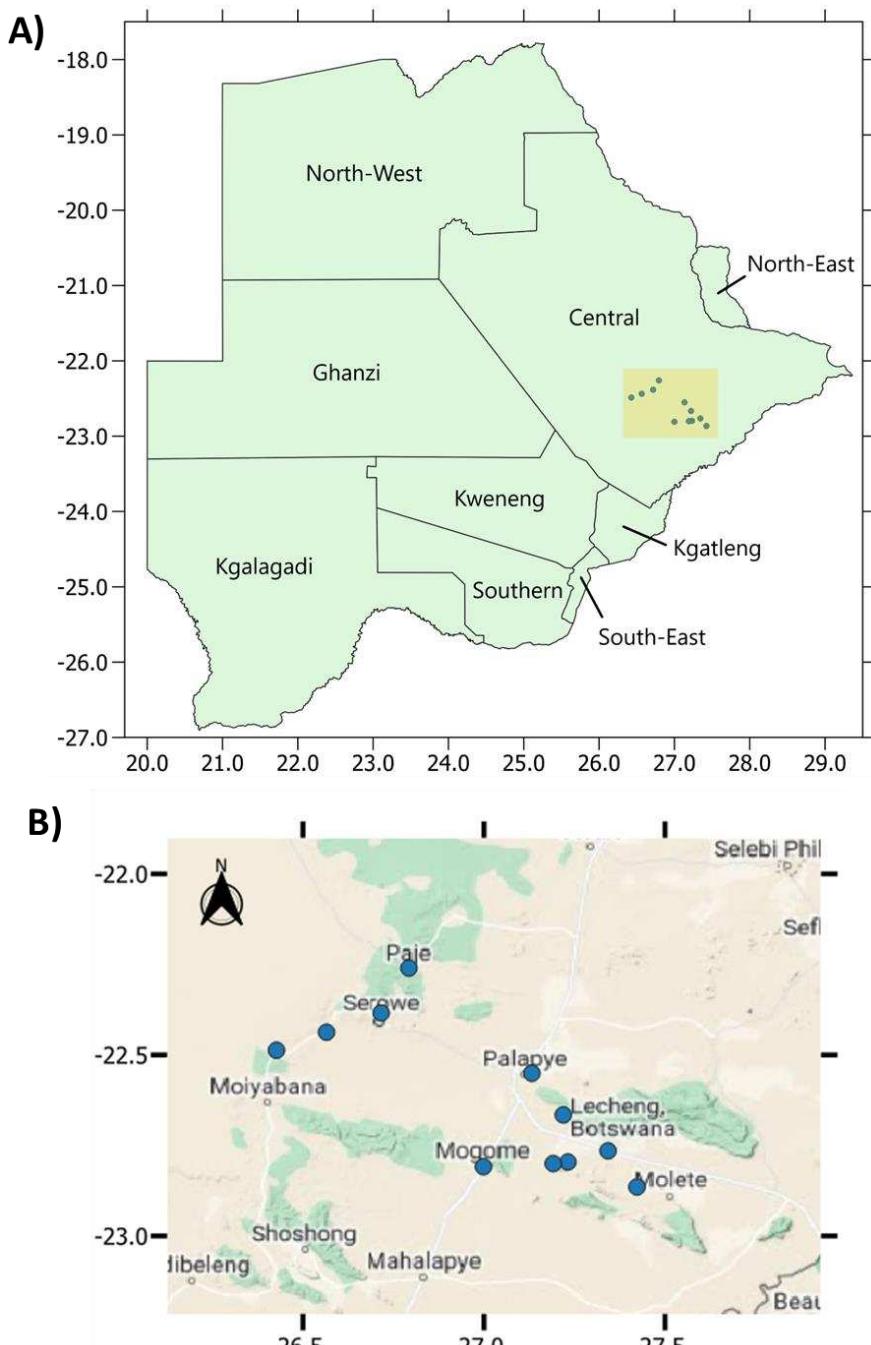
103 The potential of goat enterprises has triggered several SSA governments to initiate policies that
104 encourage investment in improving small stock-production to reduce poverty while simultaneously
105 improving food and nutritional resilience. The government of Botswana has committed significant
106 financial resources in small ruminants, particularly goats, through programmes such as the Livestock
107 Management and Infrastructure Development (LIMID) program (Ministry of Agriculture, 2019) and
108 the Remote Area Dweller Program (RADP) (Ministry of Local Government and Rural Development,
109 2009). Despite such investments, the productivity of goats in Botswana and SSA at large remain low
110 due to poor nutrition, disease (e.g., gastrointestinal nematodes), and abiotic stress (e.g., frequent
111 droughts), as well as the combined effects of such factors (Monau et al., 2017). Thus, whilst productivity
112 is dependent on several factors, it is underpinned by optimal nutrition and disease control. By extension,
113 improving the health and productivity of individual goats and herds could improve the resilience of
114 these households and communities through associated household economic return or nourishment.

115 The objectives of this study were to:

- 116 1. Quantify the nutritional profile of cultivated and naturally available forages and feeds in the
117 Central District of Botswana.
- 118 2. Assess the potential consumption and nutritional contribution of dietary supplements, currently
119 used by farmers, for goat nutrition during periods where animals are kraaled.
- 120 3. Use the information obtained from objectives 1 and 2 to develop and assess theoretical feed-
121 baskets for both the dry and wet seasons to optimise nutrition availability and quality based on
122 available resources.

123 **2 Methods**

124 **2.1 Forage collection and analysis**


125 A variety of forage samples ($n = 244$) were collected across the Central District of Botswana between
126 January 2020 and October 2021. Samples came from 21 farms/smallholdings, spanning 11 villages
127 (Lecheng, Maape, Mhalapitsa, Mogorosi, Paje, Palapye, Pilikewe, Radisele, Ramokgiami, Serowe,
128 Thabala) (Figure 2). Forages were selected based on farmer recollection of goats consuming them
129 and/or physical evidence of goat grazing. The one exception to this was *Viscum* spp. which whilst not
130 reportedly used by farmers in this study, has been reported to be used elsewhere (Madibela et al., 2000)
131 and shows some promise as a supplement (Madibela et al., 2010; Moncho et al., 2012). Farms were
132 classified by their underlying soil type of either ‘hardveld’ (rocky) or ‘sandveld’ (sandy) (Panagos et
133 al., 2011). Collection dates were recorded allowing for samples to be designated as from either the dry
134 season or wet season. Where possible species or genus information was recorded. Additionally, forages
135 were given one of three classifications:

136 **browse** – plants with hard stems such as woody trees and shrubs.

137 **herbaceous** – non-woody species with soft stems, such as grasses and forbs.

138 **pasture** – This refers to flat and low-lying plains, dominated by grasses. Such areas are often under
139 communal livestock grazing. Samples designated ‘pasture’ were not speciated and were general cuttings
140 of a quadrat within this area and were thus typically mixes of herbaceous species.

141 For herbaceous plants, the aerial parts (stems, leaves, stolons, flowers, fruits and/or seeds) were
142 collected by cutting the plant stem from its base. For browse, only the browsed aerial plant parts were
143 collected; depending on the plant species and associated browsing preference of the goats, other specific
144 plant parts such as tender shoots, pods or flowering parts were specifically collected particularly for
145 *Dichrostachys cinerea* and different *Acacia* species. Over repeat visits, samples were collected from
146 the same grazing area unless farmers indicated otherwise, then the new site would be sampled. During
147 the dry season, plant supplements used by farmers were collected directly from the feeding troughs or
148 from the storage areas. In each case, sub samples from different sampling points were mixed to make a
149 compound sample for each type of feed.

150

151 Figure 2 – A) Map of Botswana including districts. Approximate study area highlighted in yellow with individual
152 locales in blue dots. Axes refer to latitude and longitude. Map created using QGIS 3.26.1 (QGIS, 2022). B)
153 Approximate location of sites. Axes refer to latitude and longitude. Map created using QGIS 3.26.1 with base-
154 map obtained through Google Maps (Google, 2021; QGIS, 2022).

155 2.2 Chemical analyses

156 Samples were weighed before being oven-dried (60°C for 48h) weighed again, vacuum packed and
157 shipped to the UK where they were freeze dried to meet import and quarantine requirements and then
158 ground to < 2 mm particle size for nutritional analysis. Loss on ignition was conducted (0.5 g, 540°C,
159 6 h) to determine ash content. Crude protein (CP) was determined as 6.25 times nitrogen content, as
160 determined by the Dumas technique (Ebeling, 1968). Three fibre fractions were determined, neutral

161 detergent fibre (NDF), acid detergent fibre (ADF), and acid detergent lignin (ADL) (Goering and Soest,
162 1970). Metabolizable energy (ME) concentrations (ME MJ kg⁻¹ DM) were estimated as per Minson
163 (1984): $ME = 10.738 + 0.161CP(\%) - 0.131ADF(\%)$. This predictive equation was chosen as it was
164 derived from results of five tropical (*Digitaria* spp.) grasses and had recently been determined by Lwin
165 et al. (2022) to have the best predictive value (of 23 tested) for ME of *Sorghum bicolor*, showing that
166 the equation's accuracy stood up across species.

167 Variations in forage ME concentration were compared across three plants found to be abundant across
168 time and space: the trees *Boscia* spp. and *Terminalia* spp., and the hemi-parasitic mistletoe shrub *Viscum*
169 spp. Two ANOVAs were conducted, the first comparing ME concentrations of the three species across
170 time (wet season and dry season) and the second across soil type (Hardveld and Sandveld). Post-hoc
171 Tukey testing determined differences between groups. Significance was set at $\alpha = 0.05$. Analyses were
172 performed in R and R Studio (R Core Team, 2021; R Studio Team, 2020).

173 **2.3 Supplementation trials**

174 Supplementation trials were conducted at two timepoints, the first during the wet season at the end of
175 March (30/03/21 to 31/03/21) and the second in the dry season at the end of July (27/07/21 to 30/07/21).
176 During the wet season, trials were conducted across eight farms: four used a crop residue (mainly maize
177 stover (*Zea mays*) with some salt and miscellaneous plant material) and four used commercial goat
178 pellets (Lubern Voere®, Hartswater, South Africa). The pellets' composition on the label was stated as
179 12.9% protein, 0.7% urea, 1.5% fat, 12.9% fibre, 0.3% phosphorus and moisture content of 12.9%.
180 During the dry season, four different supplements were tested: crop residues (as previously), *Lablab*
181 *purpureus* beans, crushed pods of the leguminous tree *Dicrostachys cinerea* and commercial pellets,
182 each replicated four times (four farmers). These supplements were chosen based on our presurvey
183 results in the areas and anecdotal evidence observed during other research activities as representing the
184 most commonly available and accessible type of supplements used by farmers in these areas.
185 Supplement samples underwent nutritional analysis as per forage samples. Moisture content was
186 calculated pre- and post- trial so that moisture loss could be accounted for in consumption rates and
187 moisture/dry matter analysis then performed in the laboratory (60°C for 48 hrs) to enable DMI
188 determination.

189 Each trial was conducted in a similar manner: A weighed ration of the supplement (Table 1) was
190 provided to the flock in the afternoon (when the goats were coming back to the kraal for the night) for
191 the goats to consume until noon the next day (approx. 19hrs). The supplement was therefore available
192 after access to the basal diet, prior to kraaling, which constituted predominately herbaceous plants and
193 browse during the dry season and pasture and browse during the wet season. No other feeds were
194 available to the goats once kraaled. After this period, any remaining supplement was re-weighed (when
195 the goats were released the next day) to assess how much had been consumed at herd level, which was

196 then adjusted for moisture loss and consumption on a per animal basis calculated. However, as
197 individual animal weights were not known, and each flock had a different composition, an adjustment
198 factor was imposed. Goats were categorised into one of four categories: (1) Adult female (2) Adult male
199 (3) Female kid (4) Male kid, with kids being < 1 year old. Mean weights for each of these categories
200 were taken from (Katongole et al., 1996) and the mean of those four weights (25.35 kg) considered to
201 be the weight of a typical goat (hereon referred to as a 'goat unit'). The mean weights of each category
202 (as per Katongole et al. (1996)) was then calculated relative to that value, providing an adjustment factor
203 (Table 2). These adjustment factors were then applied to the known group composition to allow for
204 consumption to be calculated based relative to 'goat units'. Target DMI for goats was considered as 4%
205 of liveweight (Freking and McDaniel, 2016), equating to 1.01 kg per goat unit per day.

206 Table 1 – Provision of supplements (kg, mean, on a per goat unit basis) of each supplement for the dry and wet
207 season trials. Subscripted number in brackets is standard deviation.

	Dry season	Wet season
Crop residue	0.19 _(0.05)	0.20 _(0.07)
Pellets	0.66 _(0.15)	0.75 _(0.21)
<i>L. purpureus</i>	0.35 _(0.14)	-
<i>D. cinerea</i> pods	0.27 _(0.11)	-

208 Table 2 - Adjustment factors to standardise consumption across different goat types. Typical weights taken from
209 Katongole et al. (1996).

Category	Mean weight (kg)	Goat units
Female adult	28.99	1.14
Male adult	33.39	1.32
Female kid	19.64	0.78
Male kid	19.23	0.76

210 2.4 Feed-basket formulation

211 Forage nutrition data and supplement trial results were used to assess numerous theoretical feed-baskets
212 available to the goats. For the basal diet (browse species, herbaceous species, pasture, that had $n > 1$
213 samples) and supplements, mean ME and CP concentrations were taken for each season (where
214 available). Each feed-basket comprised a basal diet (Herbaceous and Browse, during the dry season;
215 and Pasture and Browse, during the wet season) and supplementation (including a control with no
216 supplementation). Basal diets were a varying ratio of the naturally available forage types at that time.
217 During the wet season goats graze predominantly on the abundant pasture forages and on browse,
218 consequently the basal diet was a ratio of the two from 100:0 to 0:100 in steps of ± 20 . For the dry
219 season, the pasture plants die off, though some herbaceous species persist and can make up around 10-

220 25% of total diet, thus the basal diet for this period was comprised of herbaceous and browse plants at
221 ratios from 25:75 to 0:100 in steps of ± 5 . The contribution of the basal diet to the overall diet was
222 adjusted to make way for supplementation. Supplement inclusion rates were set at the level of intake
223 (as a proportion of DMI targets) observed in the supplement trials. *Viscum* spp. was also added as a
224 theoretical supplement at a rate of 20.0% as per Madibela and Jansen (2003), despite not being tested
225 directly in the feed trials. For each theoretical feed-basket (wet season: $n = 24$, dry season: $n = 36$) the
226 ME and CP concentrations of the formulated feed baskets were then calculated, as well as the ratio of
227 CP to ME (CP:ME).

228 **3 Results**

229 **3.1 Forage nutrition**

230 There was a statistically significant difference in ME concentrations across the three forages *Boscia*
231 spp., *Terminalia* spp. and *Viscum* spp. ($F = 214.1, p < 0.001$) (Table 3). Seasonal differences in
232 nutritional composition were observed across the entire sample pool ($F = 31.0, p < 0.001$), with samples
233 collected in the wet season yielding the highest ME concentrations (Figure 3). However, this was less
234 apparent intra-species with Tukey testing only showing a significance between season for *Terminalia*
235 spp., though dry season ME concentrations were lower than in the wet season for both *Boscia* spp. and
236 *Viscum* spp. Across these three species there was also a significant difference in ME based on the
237 underlying soil type ($F = 27.4, p < 0.001$), with Sandveld soils yielding higher median ME
238 concentrations than Highveld (Figure 4) for all species. However, within each species, Tukey testing
239 did not reveal a significant difference between soil types.

240

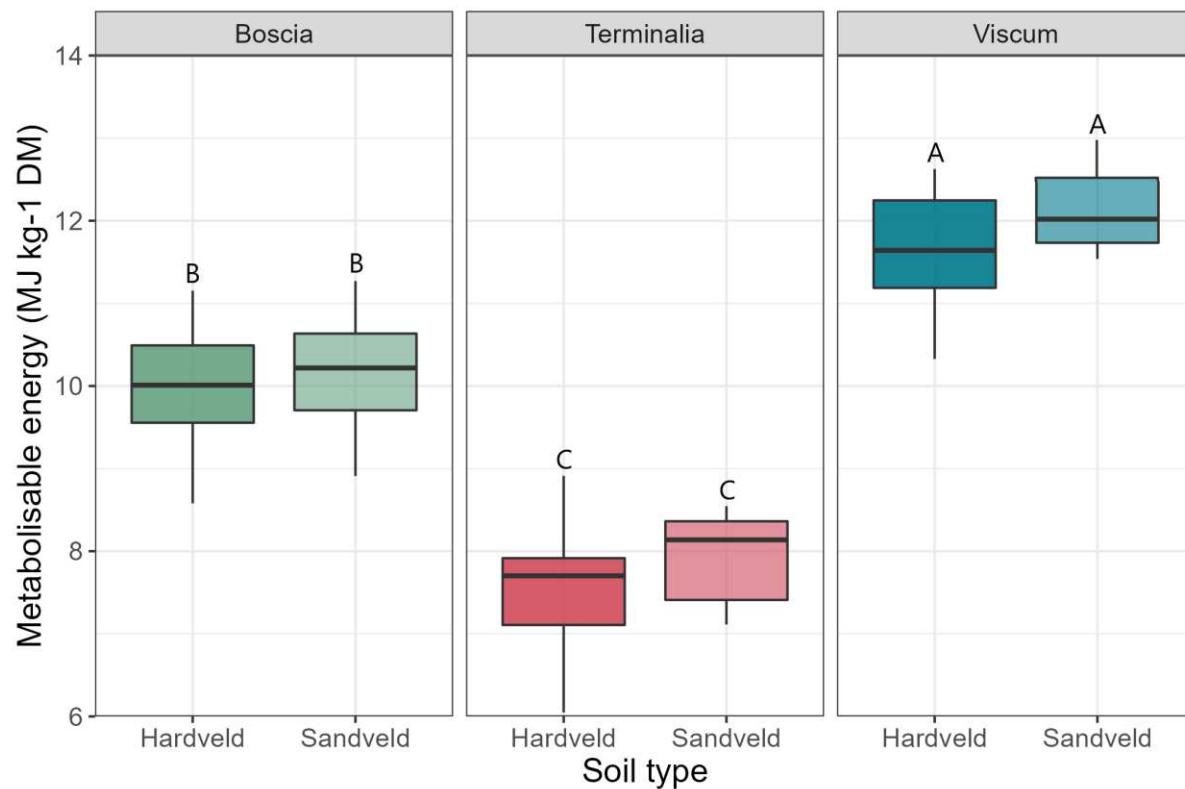
241

242
243
244


Table 3 – Nutritional profiles of browse plants, herbaceous plants, and pasture samples during the dry season and wet season. Concentrations are expressed as % DM, except for ME which is expressed as MJ kg⁻¹ DM. Superscript numbers after species names signify sample size (*n*) for the two seasons respectively. Subscript after values represent standard deviation (where available). See text, methods section, for abbreviations.

Nutrient concentration (% DM) (MJ Kg ⁻¹ DM for ME)														
	Dry season							Wet season						
	Ash	CP	NDF	ADF	ADL	ME	Ash	CP	NDF	ADF	ADL	ME		
Browse	<i>Acacia</i> spp. ^{1,5}	9.4 _(na)	12.3 _(na)	48.6 _(na)	31.1 _(na)	10.4 _(na)	8.6 _(na)	7.0 _(2.5)	23.4 _(6.8)	32.3 _(3.9)	26.7 _(3.4)	12.7 _(2.9)	11.0 _(1.4)	
	<i>A. giraffe</i> pod husk ^{1,0}	3.8 _(na)	9.8 _(na)	51.0 _(na)	34.0 _(na)	9.1 _(na)	7.9 _(na)	-	-	-	-	-	-	
	<i>A. giraffe</i> seeds ^{1,0}	4.3 _(na)	26.9 _(na)	22.3 _(na)	12.4 _(na)	1.7 _(na)	13.5 _(na)	-	-	-	-	-	-	
	<i>Albizia anthelmintica</i> ^{0,1}	-	-	-	-	-	-	5.6 _(na)	15.1 _(na)	66.1 _(na)	46.3 _(na)	4.1 _(na)	7.1 _(na)	
	<i>Boscia</i> spp. ^{14,22}	10.5 _(1.8)	15.7 _(1.6)	40.5 _(4.8)	23.7 _(2.5)	9.4 _(1.4)	10.0 _(0.5)	8.8 _(1.6)	17.8 _(2.4)	44.0 _(5.9)	26.9 _(3.7)	10.0 _(2.0)	10.1 _(0.8)	
	<i>D. cinerea</i> ^{1,1}	6.0 _(na)	18.6 _(na)	44.5 _(na)	30.2 _(na)	9.7 _(na)	9.8 _(na)	4.6 _(na)	15.9 _(na)	39.3 _(na)	29.7 _(na)	11.7 _(na)	9.4 _(na)	
	<i>Grewia</i> spp. ^{0,8}	-	-	-	-	-	-	6.0 _(0.6)	14.9 _(2.2)	42.5 _(3.4)	31.9 _(3.5)	12.0 _(2.3)	9.0 _(0.8)	
	<i>Lippia javanica</i> ^{0,1}	-	-	-	-	-	-	8.7 _(na)	14.0 _(na)	21.8 _(na)	21.1 _(na)	7.8 _(na)	10.2 _(na)	
	<i>Moringa oleifera</i> ^{0,1}	-	-	-	-	-	-	9.7 _(na)	26.4 _(na)	17.8 _(na)	15.5 _(na)	4.1 _(na)	13.0 _(na)	
Herbaceous	<i>Senna italica</i> ^{0,1}	-	-	-	-	-	-	8.5 _(na)	14.9 _(na)	42.5 _(na)	31.5 _(na)	9.9 _(na)	9.0 _(na)	
	<i>Terminalia</i> spp. ^{15,11}	6.0 _(2.0)	7.8 _(1.7)	44.4 _(3.8)	35.2 _(3.7)	14.2 _(2.5)	7.4 _(0.7)	4.2 _(0.6)	9.8 _(2.2)	39.5 _(8.5)	30.7 _(7.8)	11.7 _(6.6)	8.3 _(0.9)	
	<i>Z. mucronata</i> ^{0,3}	-	-	-	-	-	-	7.9 _(1.4)	15.9 _(3.9)	35.6 _(6.8)	25.5 _(2.1)	9.1 _(0.3)	10.0 _(0.8)	
	<i>A. hispidium</i> ^{0,2}	-	-	-	-	-	-	11.9 _(1.7)	25.9 _(1.9)	30.4 _(5.3)	20.3 _(3.5)	6.8 _(1.5)	12.2 _(0.8)	
	<i>L. purpureus</i> ^{4,0}	9.0 _(1.2)	18.2 _(3.1)	36.9 _(6.6)	24.1 _(4.9)	5.6 _(1.3)	10.5 _(1.0)	-	-	-	-	-	-	
	<i>L. purpureus</i> commercial mix ^{1,0}	11.1 _(na)	18.8 _(na)	42.1 _(na)	31.4 _(na)	6.0 _(na)	9.7 _(na)	-	-	-	-	-	-	
Herbaceous	<i>T. terrestris</i> ^{0,3}	-	-	-	-	-	-	12.9 _(0.6)	31.3 _(1.0)	24.2 _(2.6)	17.9 _(1.0)	4.9 _(0.5)	13.4 _(0.2)	
	<i>Viscum</i> spp. ^{16,22}	7.5 _(2.0)	21.3 _(3.6)	27.3 _(4.8)	20.2 _(2.6)	10.2 _(1.4)	11.5 _(0.8)	7.0 _(1.1)	23.9 _(3.3)	26.0 _(4.4)	19.9 _(2.2)	10.2 _(1.4)	12.0 _(0.7)	

Other	Bean shell residue (unknown) ^{1,0}	4.7 _(na)	12.1 _(na)	47.3 _(na)	34.5 _(na)	6.2 _(na)	8.2 _(na)	-	-	-	-	-	
	Commercial supplement (unknown) ^{1,0}	9.3 _(na)	14.4 _(na)	44.1 _(na)	34.1 _(na)	7.9 _(na)	8.6 _(na)	-	-	-	-	-	
	Groundnuts (<i>Arachis hypogaea</i>) ^{1,0}	8.0 _(na)	14.6 _(na)	33.8 _(na)	27.1 _(na)	7.7 _(na)	9.5 _(na)	-	-	-	-	-	
	Maize stova (<i>Z. mays</i>) ^{1,0}	8.0 _(na)	8.2 _(na)	63.7 _(na)	33.5 _(na)	4.8 _(na)	7.7 _(na)	-	-	-	-	-	
	Melon (<i>Cucumis</i> sp.) ^{2,0}	8.2 _(1.3)	9.2 _(4.3)	28.3 _(8.1)	23.5 _(5.6)	10.0 _(1.9)	9.1 _(0.0)	-	-	-	-	-	
	Monogana* ^{1,0}	4.7 _(na)	2.4 _(na)	28.7 _(na)	25.9 _(na)	12.1 _(na)	7.7 _(na)	-	-	-	-	-	
	Sunflower head (<i>Helianthus</i> sp.) ^{1,0}	16.0 _(na)	7.5 _(na)	27.4 _(na)	20.1 _(na)	4.0 _(na)	9.3 _(na)	-	-	-	-	-	
	Unknown pods ^{1,0}	4.8 _(na)	16.9 _(na)	35.1 _(na)	22.4 _(na)	6.5 _(na)	10.5 _(na)	-	-	-	-	-	
	Watermelon (<i>Citrullus lanatus</i>) ^{1,0}	11.4 _(na)	6.6 _(na)	42.7 _(na)	29.2 _(na)	10.4 _(na)	8.0 _(na)	-	-	-	-	-	
	Pasture ^{0.84}	-	-	-	-	-	-	13.6 _(5.0)	21.6 _(8.4)	40.8 _(16.6)	24.0 _(7.5)	5.7 _(2.9)	11.0 _(2.0)


245

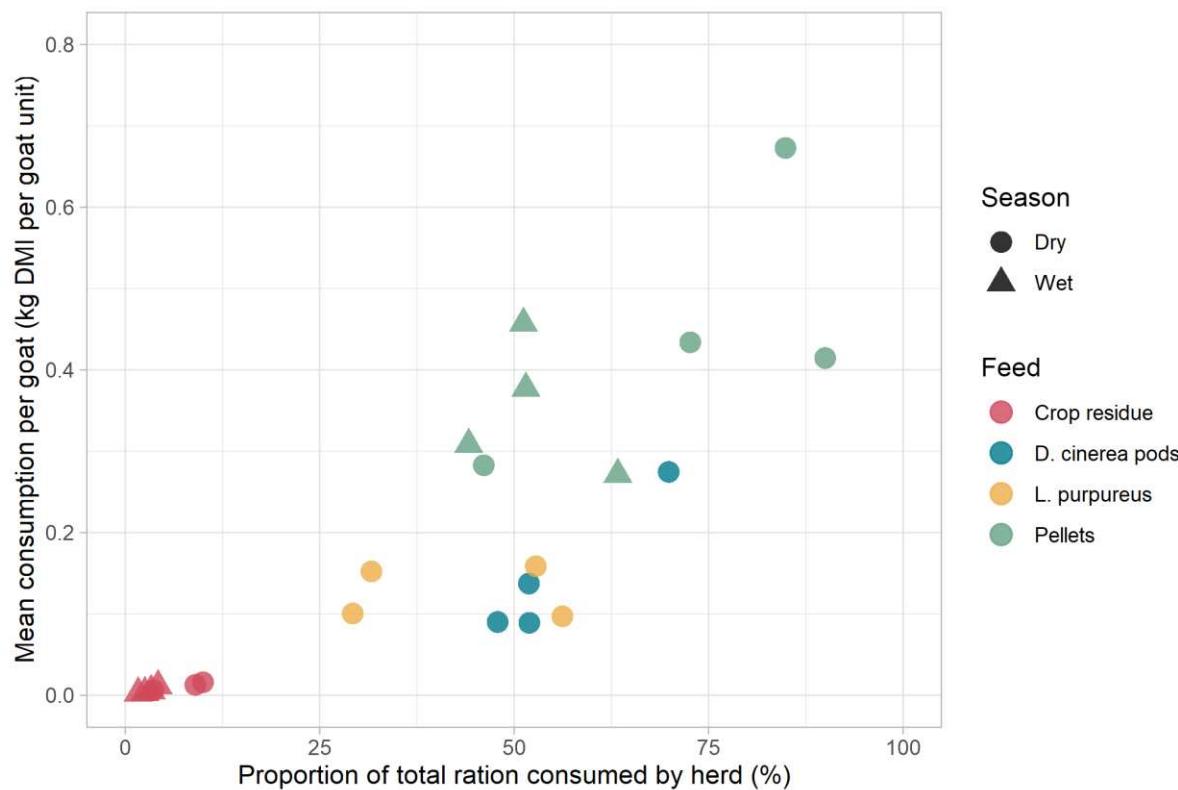
246

247

248 Figure 3 – Metabolizable energy concentrations (MJ kg⁻¹ DM) of *Boscia* spp., *Terminalia* spp., and *Viscum* spp.
249 between the dry and wet seasons. Boxplots sharing letters are not significantly different to one another.

250

251 Figure 4 – Metabolizable energy concentrations (MJ kg⁻¹ DM) of *Boscia* spp., *Terminalia* spp., and *Viscum* spp.
252 between samples obtained from Hardveld soils and Sandveld soils. boxplots sharing letters are not significantly
253 different to one another.


254 **3.2 Supplement trials**

255 The nutritional profile of supplements varied greatly (Table 4). Crop residues had the lowest CP, ADF
256 and ADL concentrations. Pellets and *L. purpureus* had middling profiles in all regards, CP was above
257 minimum requirements (5-7%) (Lazzarini et al., 2009; Pugh, 2020), but lower than optimal (15-17%)
258 (Salah, 2015). NDF:ADF ratios were around 4:3. *Dichrostachys cinerea* stood out in terms of high CP
259 concentrations, low ash content, and low ADF.

260 Table 4 - Nutritional profile of supplementary feeds used in feeding trials. Concentrations are expressed as % DM,
261 with the exception of ME which is expressed as MJ kg⁻¹ DM.

	Ash	CP	NDF	ADF	ADL	ME
Mixed crop residue	10.9	5.3	44.0	25.8	4.5	8.2
Pellets	10.3	12.4	42.3	26.4	6.3	9.3
<i>L. purpureus</i>	7.8	10.8	47.6	31.5	7.3	8.4
<i>D. cinerea</i> pods	4.3	16.5	40.4	27.3	8.9	9.8

262
263 Crop residue consumption rates were low across both seasons, at around 0.01 kg (10 grams) per goat
264 unit and ≤10% of total provision (Figure 5). In the wet season trials, this equated to around 0.6% of
265 daily DMI targets, doubling to 1.2% in the dry season (Table 5). Conversely, consumption rates of
266 pellets were high, with herds consuming half or more of their allocation, equating to an average of
267 34.9% of their daily DMI target in the wet season and 44.5% in the dry season (+27.5%). Consumption
268 rates of *L. purpureus* and *D. cinerea* pods were moderate, with goats consuming approximately half of
269 the ration. In no cases did the total provision or availability of supplement appear to be a limiting factor
270 to consumption.

271

272 Figure 5 - Consumption rates of supplements during supplementation trials. Each point refers to an individual
 273 trial on one farm. Note: one result for crop residue consumption in the dry season was voided as goats spilled
 274 the feed bucket and thus quantification of consumption was not possible.

275 Table 5 - Mean percentage of target dry matter intake (4% liveweight of one goat unit = 1.01 kg) met by
 276 supplementation.

	Dry season		Wet season	
	Mean % target DMI	S.D.	Mean % target DMI	S.D.
Crop residue	1.2	0.5	0.6	0.4
Pellets	44.5	16.0	34.9	8.1
<i>L. purpureus</i>	12.5	3.2	-	-
<i>D. cinerea</i>	14.6	8.6	-	-

277 3.3 Feed-baskets

278 Wet season feed-baskets typically had higher ME and CP concentrations than dry season feed-baskets
 279 (Table 6 and Table 7). Both the highest and lowest CP:ME ratios were observed in the wet season feed-
 280 baskets (Table 8) and these were predominantly driven by the basal diet (pasture: browse ratio), as
 281 opposed to supplementation. Supplementation with crop residue had little impact on ME and CP
 282 concentrations, due to its low inclusion level. Pellets had no strong effect on ME in the dry season but
 283 had a small effect in the wet season. Notably, pellets had a large negative impact on CP across both
 284 seasons, due to their low CP concentration and high intake rate. *L. purpureus* (dry season only) had a
 285 small negative effect on CP and to a lesser extent ME. *D. cinerea* pods had a small positive effect on

286 ME and a small negative effect on CP. *Viscum* spp. provided moderate gains to ME across both seasons,
 287 yielding the most energy dense feed baskets. During the dry season, it marginally lowered CP, due to
 288 the high CP content of the basal diet, though for the wet season it provided a moderate increase in CP.

289 Table 6 - Metabolizable energy (ME) concentrations (MJ kg⁻¹ DM) of theoretical feed-baskets. Supplementation
 290 rates are derived from trial results (Table 5). Shading is relative to cell value. The table provides sufficient
 291 information to enable the reader to estimate ME concentrations of other rations of these feeds.

		Herbaceous : Browse					
Dry season		25:75	20:80	15:85	10:90	5:95	0:100
None (0.0%)		9.15	9.06	8.97	8.88	8.78	8.69
Crop residue (1.2%)		9.14	9.05	8.96	8.87	8.78	8.69
Pellets (44.5%)		9.20	9.15	9.10	9.05	9.00	8.95
<i>L. purpureus</i> (12.5%)		9.05	8.97	8.89	8.81	8.73	8.65
<i>D. cinerea</i> (14.6%)		9.24	9.17	9.09	9.01	8.94	8.86
<i>Viscum</i> spp. (20.0%)		9.62	9.55	9.48	9.40	9.33	9.26
		Pasture : Browse					
Wet season		100:0	80:20	60:40	40:60	20:80	0:100
None (0.0%)		10.58	10.38	10.18	9.98	9.78	9.58
Crop residue (0.6%)		10.56	10.36	10.17	9.97	9.77	9.57
Pellets (34.9%)		10.12	9.99	9.86	9.73	9.60	9.47
<i>Viscum</i> spp. (20.0%)		10.86	10.70	10.54	10.38	10.22	10.06

293
 294
 295 Table 7 – Crude protein (CP) concentrations (% DM) of theoretical feed-baskets. Supplementation rates are
 296 derived from trial results (Table 5). Shading is relative to cell value. The table provides sufficient information to
 297 enable the reader to estimate CP concentrations of other rations of these feeds.

		Herbaceous : Browse					
Dry season		25:75	20:80	15:85	10:90	5:95	0:100
None (0.0%)		17.92	17.92	17.93	17.94	17.94	17.95
Crop residue (1.2%)		17.77	17.77	17.78	17.79	17.79	17.80
Pellets (44.5%)		15.46	15.47	15.47	15.47	15.48	15.48
<i>L. purpureus</i> (12.5%)		17.03	17.03	17.04	17.05	17.05	17.06
<i>D. cinerea</i> (14.6%)		17.71	17.72	17.72	17.73	17.73	17.74
<i>Viscum</i> spp. (20.0%)		17.79	17.79	17.80	17.81	17.81	17.82
		Pasture : Browse					
Wet season		100:0	80:20	60:40	40:60	20:80	0:100
None (0.0%)		17.64	18.33	19.03	19.72	20.42	21.11
Crop residue (0.6%)		17.56	18.25	18.94	19.63	20.32	21.02
Pellets (34.9%)		15.81	16.26	16.71	17.17	17.62	18.07
<i>Viscum</i> spp. (20.0%)		18.50	19.06	19.62	20.17	20.73	21.28

298

299

300 Table 8 - Crude protein to metabolisable energy ratio of theoretical feed baskets (grams CP per MJ ME, dry matter
301 basis). Supplementation rates are derived from trial results (Table 5). Shading is relative to cell value.

		Herbaceous : Browse					
Dry season		25:75	20:80	15:85	10:90	5:95	0:100
	None (0.0%)	19.6	19.8	20.0	20.2	20.4	20.7
	Crop residue (1.2%)	19.4	19.6	19.8	20.1	20.3	20.5
	Pellets (44.5%)	16.8	16.9	17.0	17.1	17.2	17.3
	<i>L. purpureus</i> (12.5%)	18.8	19.0	19.2	19.4	19.5	19.7
	<i>D. cinerea</i> (14.6%)	19.2	19.3	19.5	19.7	19.8	20.0
	<i>Viscum</i> spp. (20.0%)	18.5	18.6	18.8	18.9	19.1	19.2
		Pasture : Browse					
Wet season		100:0	80:20	60:40	40:60	20:80	0:100
	None (0.0%)	16.7	17.7	18.7	19.8	20.9	22.0
	Crop residue (0.6%)	16.6	17.6	18.6	19.7	20.8	22.0
	Pellets (34.9%)	15.6	16.3	16.9	17.6	18.4	19.1
	<i>Viscum</i> spp. (20.0%)	17.0	17.8	18.6	19.4	20.3	21.2

302

303 **4 Discussion**

304 The protein and energy requirements of goats will depend on a whole array of factors, both biotic and
305 abiotic, including breed, level of performance, health status, and thermoregulation; but assuming a level
306 of lactation (0.5 - 1 litre) or moderate body weight gain of ca. 20 g/day goats will require approximately
307 9.4 MJ/day and 54 g metabolizable protein (modified from AFRC, 1993; assuming $q_m = 0.59$).
308 Assuming also a ratio of metabolizable protein : crude protein of 0.64 – 0.80 (Cannes et al., 2008) would
309 equate to roughly 84.4 – 67.5 g CP/day plus 55 g CP/litre of milk. Of course, such values are predicted
310 from equations using European breeds and conditions but provide a range of target intakes to assess
311 African diets, until more detailed understanding of the protein and energy requirements of African goats
312 under local conditions and diets is available. As such the availability of the key nutrient's protein and
313 energy, notwithstanding water, and micro-nutrients (which this paper does not consider), evaluated in
314 this study from the basal diets (herbaceous plants and browse consumed prior to kraaling) were critically
315 constraining for ME in the dry season emphasising the critical role of supplementation. Available
316 nutrition was more favourable in the wet season, consistent with other reports from SSA (Omphile et
317 al., 2005; Setshogo et al., 2011).

318 The vegetation of arid range land is dominated by browse, in the form of shrubs, bushes and sub-shrubs
319 (van Duivenbooden, 1989), and they form an integral part of the farming system in the humid zone,
320 particularly of west Africa (Atta-Krah et al., 1986). In terms of utilisation, browse currently play an
321 important, albeit non-strategic role in goat nutrition, as animals under confinement in the humid zone

322 often receive one type or the other of browse, from fallow lands or around the homestead, forming up
323 to 25% of their diet. In the arid and semi-arid zones, browse constitute the main feed resource during
324 the extended dry periods of the year (Le Houerou, 1980) and play a similar role in the sub-humid
325 savannah zone. The nutritional value of browse has also been exploited in feeding systems using them
326 as supplements to low quality tropical forages and crop residues. In general, many of the common
327 browse species contain high levels of protein and energy in the range of 14 to 26% CP and 11 to 14 MJ
328 of ME/kg of dry matter. In addition, they have good levels organic matter digestibility (50-60%), and
329 contain reasonable levels of both macro and trace minerals required for efficient rumen function (Smith,
330 1992).

331 For a typical browse species identified in the current study, *Terminalia*, which made up a key
332 component of many of the basal diets concentrations of CP and ME were low, especially in the dry
333 season. For example, CP was only just above maintenance requirements providing ca. 78 g CP/kg DM,
334 which is also when *Terminalia* is likely to make up a greater proportion of the diet due to lack of
335 available grazing. Therefore, goats consuming a high proportion of *Terminalia* may be limiting their
336 protein and energy intake. Conversely, CP and ME levels in *Viscum*, a potential supplement, were high
337 all year round. Typically, goats do not consume *Viscum* in Botswana, predominantly due to it being a
338 parasitic plant high up in its host trees which is difficult to reach, thus requiring harvesting by farmers.
339 However, as *Viscum* lives on trees, including *Terminalia* and *Acacia*, this may provide an opportunity
340 for, farmers to compensate for the lower protein and energy contents of these trees by supplementing
341 with *Viscum* from the very same trees. Furthermore, parasitism of fruit trees by *Viscum* is a limiting
342 factor to fruit yields and there is therefore a potentially synergy if *Viscum* could be harvested from
343 orchards. Madibela et al. (2000) reported favourable dry matter and protein degradability of *Viscum* in
344 Botswana. *Viscum* is also reported to have nutraceutical/anthelmintic properties (Madibela et al., 2010;
345 Madibela and Jansen, 2003; Moncho et al., 2012), which may mitigate negative health impacts from
346 infections such as gastrointestinal nematodes, which themselves act to reduce protein assimilation. For
347 the supplements provided during both seasons (crop residue and pellets), intake was considerably higher
348 in the dry season, hence goats were likely to consume supplements to mitigate nutrient/DMI
349 deficiencies. This is consistent with feeding practices in SSA, where livestock generally depend on
350 natural forage during the wet season and are only supplemented during the dry season. Pellets showed
351 the potential to provide between a third (wet season) to a half (dry season) of target DMI, the main
352 drawback being their cost and availability. Alternatively, *D. cinerea* pods, and to a lesser extent *L.*
353 *purpureus*, may be a compromise, as they had favourable nutritional profiles and could make up 10-
354 15% of DMI requirements. They are readily available and may be accessible at low cost in communal
355 areas. Crop residues, predominately stovers, were not particularly desirable to goats as a supplement,
356 though their precise composition was unknown and different residue mixes may vary. Despite the low
357 CP of crop residue, the ADF concentration was favourable and high enough to meet requirements for

358 rumen health, if little other feed was available. Crop residues may be a more available resource than
359 other supplements and thus a more practical option for farmers practising mixed farming, who may use
360 *D. cinerea* pods and *L. purpureus* alongside crop residues, assuming complementary and/or synergistic
361 roles of these supplementary feeds. Low quality crop residues, such as stover, therefore should be
362 considered as a resource to ensure rumen function, i.e. functional fibre to supplement higher quality
363 feeds (Giger-Reverdin, 2017), or as a last resort basal feed during extreme dry periods where little other
364 feed resources are available. Furthermore, in the event of crop-failure, which is becoming increasingly
365 likely under the pressures of climate change, the consumption of failed crops by ruminants may be one
366 way to ensure that resource is most efficiently utilised for food production. A constraint of the current
367 study was that supplementation at any one farm was from a single supplement source, which may limit
368 the potential of mixing different supplements to balance protein and energy requirements in a true feed-
369 basket or total mixed ration approach. Of course, those rations would also consider other nutrients not
370 evaluated here such as micro-nutrients.

371 Nutritional differences were apparent, albeit relatively minor, between farms on Hardveld and Sandveld
372 soils. Results suggest that farms in Hardveld soil areas may benefit most from supplementation or other
373 interventions. This study was conducted in a limited geographic range and thus when considering wider
374 spatial variation across Botswana and SSA, further differences in plant nutritional composition (e.g.,
375 micro-nutrient composition, as already reflected) are expected to result from soil type and climatic
376 differences, in line with wide ranges reported in the literature. However, the biggest factor facing
377 productivity for crop-livestock farmers, specifically, will be dry matter yield of pasture in relation to
378 soil fertility and rain fall. Mutali and Dzowela (1985) and Onifade and Agishi (1990) predicted native
379 grassland dry matter yield to be between 1.1 – 3.2 t DM per ha per year. Therefore, with resources
380 limited especially within crop-livestock systems the lower dry matter demands of goats would be
381 significantly advantageous over cattle systems.

382 The ME and CP concentrations of feed baskets were lower in the dry season than the wet season, which
383 meant that supplementation had a greater relative impact in the dry season compared to the wet season,
384 highlighting temporal opportunities in nutritional intervention. Although not analysed in this work, it is
385 likely that dry season forages had lower digestibility (Aganga et al., 2005) which would make it less
386 likely for goats to meet their daily DMI requirement, thus increasing the relative value of
387 supplementation further. Importantly, whilst the addition of a supplement of lower quality than the basal
388 diet will lower the nutritional composition of the overall diet, that may be acceptable if it increases
389 overall energy intake by making up for a shortfall in DMI, or availability of feed during periods of
390 kraaling. During the dry season there is a stronger case for supplementation due to the lower availability
391 and nutritional quality of forages and lower animal performance (Kraai et al., 2022). This could be most
392 effectively targeted towards vulnerable individuals such as weanlings, pregnant does, or animals with
393 suspected illness. The CP:ME ratio is an important determinant of a diets ability to support animal

394 growth / performance and efficiency of nitrogen use. Low ratios would impair growth and performance
395 limited by protein availability, whereas high values would reduce the efficiency of protein capture in
396 the rumen leading to poor nitrogen use efficiency. All the reported diets had high CP:ME ratios which
397 further highlights the limiting nature of available energy in these diets. Zhang et al. (2020) reported a
398 reduction in nitrogen excretion and an increased nutrient utilization through improving rumen
399 fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing
400 goats when reducing CP:ME from 11.3 to 8.69, whereas in the current study ratios ranged from 15.6 –
401 22.0. Although, dry season CP:ME ratios were less variable (16.8-20.7) than in the wet season (15.6-
402 22.0), with lower wet season ratios associated with a higher ratio of pasture:browse. The high values
403 highlight significant challenges in both wet and dry season in terms of ME availability(Gabler and
404 Heinrichs, 2003; Yeom et al., 2002) and the need to identify supplements with higher ME values.

405 The seemingly favourable nutritional profile of *Viscum* spp. (ME 11.5 MJ/kg) suggests it could be an
406 effective supplement to improve nutrition, particularly during the dry season. This is further supported
407 by anthelmintic properties reported elsewhere (Madibela et al., 2010; Moncho et al., 2012). Madibela
408 and Jansen (2003) reported no adverse effects of *Viscum* spp. supplementation, however research is
409 limited and, especially at higher concentrations, caution should be taken, and long-term research
410 conducted. Forage preservation may be necessary to facilitate supplementation, however this is not a
411 common practice in the region, leaving animal nutrition at the mercy of the environment, particularly
412 weather. Creating stocks of persevered forages could allow farmers to withstand periods of poor forage
413 availability/nutrition and other adverse events (e.g., drought and disease). However, forage preservation
414 is complex, and farmers will have varying capacity to do this. Perhaps community driven and
415 cooperative schemes could be better placed to achieve this, with technical support.

416 The nutritional composition of supplements and other feeds collected within the study were reported
417 and adds to existing literature and resources such as Feedipedia. However, further work is needed as
418 the external validity of our data, and indeed many of the Feedipedia current resources, is limited in that
419 we were unable to quantify variation in nutrition of those feeds across time and space and their
420 availability may vary greatly between locations. However, this does highlight potential intervention
421 opportunities that may warrant further investigation, especially as many of these identified feeds are
422 underutilised or waste by-products. For example, sunflower heads had an ME content of 9.3 MJ kg⁻¹
423 which is relatively high compared to the dry season feed-baskets formulated, highlighting how they
424 may be able to act as an effective supplement. Strikingly, *Acacia giraffe* seeds had high levels of CP
425 (26.9%) and ME (13.5 MJ kg⁻¹) which could not only supplement shortfalls in nutrition but bolster
426 nutrition even at the best of times to increase performance. However, toxicological screening is
427 recommended to ensure safety for broad consumption. In addition, caution must be adopted as
428 estimating ME by equations has limitations and the accuracy of estimates may reduce when applied to
429 uncommon feeds which were not used in the development of the original equation.

430 This study focussed on macronutrients (fibre, protein, and energy); however, micronutrient (minerals
431 and vitamins) balances are also important. Notably, phosphorus availability is an issue in Botswana and
432 much of SSA (Setshogo et al., 2011; Verde and Matusso, 2014). Further investigation of these diets
433 would help to ensure micronutrient requirements are best met and enable targeted intervention of
434 deficiencies. For the time being, allowing goats some freedom to forage and ensuring they have a diet
435 comprising a variety of forages, may be the best way to mitigate potential micronutrient deficiency risk.
436 Future studies thus need to investigate the interaction effects and practicality of different feeds under
437 farmer led systems.

438 **5 Conclusion**

439 Natural pastures and browse play, and will continue to play, an important role in the nutrition and
440 feeding systems of goats in Africa. These feed resources are subjected to seasonal fluctuations, that
441 limit their capacity to cover livestock requirements. Indeed, feed budgets from basal diet resources
442 (pasture and browse) in SSA show a deficit, especially in terms of ME. Therefore, supplementation
443 must be utilised to ensure acceptable production levels and health. Here we discussed several potential
444 feeds and suggestions were made as to how they could be used to develop feed baskets in the dry and
445 wet seasons for goats. Forages in Botswana were found to be nutritionally diverse, not just between
446 species, but also across time (season) and space (soil type). Whilst optimising nutrition is important all
447 year around, the greatest gains appear possible during the dry season, when supplementation can both
448 improve the nutritional quality of feed-baskets, in addition to making up for potential shortfalls in
449 overall forage availability. However, all supplementation is not equal and there are distinct differences
450 in nutrition, availability, and intake rates. Supplementation with *Viscum* spp. appears to hold significant
451 potential and requires further and detailed study.

452 **6 Acknowledgements**

453 We are sincerely grateful to the small holder farmers who were involved in this study for their time,
454 patience, knowledge, and willingness to participate. We acknowledge the Ministry of Agriculture,
455 Department of Veterinary Services, Botswana for support. We also acknowledge the outstanding
456 individual contribution of the small livestock Technical Assistant for Serowe, Mr. Ntebolang Ditsela.
457 Thanks are also extended to colleagues at BIUST (Botswana), LUANAR (Malawi), the University of
458 Pretoria (South-Africa), Rothamsted Research (UK), Harper Adams University (UK), and Queen's
459 University Belfast (UK), for advice assistance and support during the course of this study.

460 **7 Funding statement**

461 This work was supported by United Kingdom Research and Innovation (UKRI) through the Global
462 Challenges Research Fund, grant number BB/S014748/1, 2018. For the purpose of open access, the
463 author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted
464 Manuscript version arising.

465 **8 Ethical statement**

466 This work was given ethical approval by the Animal Research Ethics Committee of the Directorate of
467 Research and Development, Botswana International University of Science and Technology.

468 **9 Conflicts of interest statement**

469 The authors declared that they have no conflict of interest.

470 **10 References**

471 Aganga, A., Autlwetse, M., 2000. Utilization of Sorghum Forage, Millet Forage, Veldt Grass and Buffel Grass
472 by Tswana Sheep and Goats when Fed Lablab purpureus L. as Protein Supplement. Asian-Australas. J.
473 Anim. Sci. 13, 1127–1132. <https://doi.org/10.5713/ajas.2000.1127>

474 Aganga, A.A., Omphile, U.J., Mojaditlhogo, N., 2005. Composition and digestibility of indigenous grasses in
475 the hardveld of Botswana during the dry season. Arch. Zootec. 54, 587–598.

476 Atta-Krah, A.N., Sumberg, J.E., Reynolds, L., 1986. Leguminous fodder trees in the farming system. An
477 overview of research at the Humid Zone Programme of ILCA in southwestern Nigeria. International
478 Livestock Centre for Africa.

479 Bolowe, M.A., Thutwa, K., Monau, P.I., Malejane, C., Kgwatalala, P.M., 2022. Production Characteristics and
480 Management Practices of Indigenous Tswana Sheep in Southern Districts of Botswana. Anim. Open
481 Access J. MDPI 12, 830. <https://doi.org/10.3390/ani12070830>

482 Burgess, J., 2005. Country Pasture/forage Resource Profile.

483 Ebeling, M.E., 1968. The Dumas Method for Nitrogen in Feeds. J. Assoc. Off. Anal. Chem. 51, 766–770.
484 <https://doi.org/10.1093/jaoac/51.4.766>

485 Freking, B., McDaniel, J., 2016. Goat Nutrition, in: Basic Meat Goat Manual. Oklahoma State University.

486 Gabler, M.T., Heinrichs, A.J., 2003. Dietary protein to metabolizable energy ratios on feed efficiency and
487 structural growth of prepubertal Holstein heifers. J. Dairy Sci. 86, 268–274.
488 [https://doi.org/10.3168/jds.S0022-0302\(03\)73605-4](https://doi.org/10.3168/jds.S0022-0302(03)73605-4)

489 Giger-Reverdin, S., 2017. Recent advances in the understanding of subacute ruminal acidosis (SARA) in goats,
490 with focus on the link to feeding behaviour. Small Rumin. Res. 163, 24–28.
491 <https://doi.org/10.1016/j.smallrumres.2017.08.008>

492 Goering, H.K., Soest, P.J.V., 1970. Forage Fiber Analyses (apparatus, Reagents, Procedures, and Some
493 Applications). U.S. Agricultural Research Service.

494 Google, 2021. Google Maps.

495 Gwiriri, L.C., Machekano, H., Cooke, A.S., Nyamukondiwa, C., Safalo, A., Ventura-Cordero, J., Airs, P., van
496 Wyk, J., Nalivate, P., Mvula, W., Tinsley, J., Lee, M.R.F., Morgan, E.R., Takahashi, T., 2023.
497 Ecological interventions to enhance goat health and livelihood outcomes in rural sub-Saharan African
498 communities. Manuscr. Prep.

499 Katongole, J.B.D., Sebolai, B., Madimabe, M.J., 1996. Morphological characterisation of the Tswana goat.
500 International Livestock Research Institute.

501 Kaumbata, W., Banda, L., Mészáros, G., Gondwe, T., Woodward-Greene, M.J., Rosen, B.D., Van Tassell, C.P.,
502 Sölkner, J., Wurzinger, M., 2020. Tangible and intangible benefits of local goats rearing in smallholder
503 farms in Malawi. Small Rumin. Res. 187, 106095. <https://doi.org/10.1016/j.smallrumres.2020.106095>

504 Kraai, M., Tsvuura, Z., Khowa, A.A., 2022. The reproductive performance of goats in a South African semi-arid
505 savanna. *J. Arid Environ.* 200, 104723. <https://doi.org/10.1016/j.jaridenv.2022.104723>

506 Lazzarini, I., Detmann, E., Sampaio, C.B., Paulino, M.F., Valadares Filho, S. de C., Souza, M.A. de, Oliveira,
507 F.A., 2009. Intake and digestibility in cattle fed low-quality tropical forage and supplemented with
508 nitrogenous compounds. *Rev. Bras. Zootec.* 38, 2021–2030. <https://doi.org/10.1590/S1516-35982009001000024>

509 Le Houerou, H., N., 1980. Browse in Africa; The Current state of Knowledge. International Livestock Centre
510 for Africa.

511 Lwin, D.S., Williams, A., Barber, D.G., Benvenutti, M.A., Williams, B., Poppi, D.P., Harper, K.J., 2022.
512 Comparison of equations to predict the metabolisable energy content as applied to the vertical strata
513 and plant parts of forage sorghum (*Sorghum bicolor*). *Anim. Prod. Sci.* 62, 1006–1013.

514 Madibela, O.R., Boitumelo, W.S., Letso, M., 2000. Chemical composition and in vitro dry matter digestibility
515 of four parasitic plants (*Tapinanthus lugardii*, *Erianthenum ngamicum*, *Viscum rotundifolium* and
516 *Viscum verrucosum*) in Botswana. *Anim. Feed Sci. Technol.* 84, 97–106.
517 [https://doi.org/10.1016/s0377-8401\(00\)00106-1](https://doi.org/10.1016/s0377-8401(00)00106-1)

518 Madibela, O.R., Jansen, K., 2003. The use of indigenous parasitic plant (*Viscum verrucosum*) in reducing faecal
519 egg counts in female Tswana goats. *Livest. Res. Rural Dev.* 15, 1–6.

520 Madibela, O.R., Ramabu, S.S., Machete, J.B., 2010. The effects of parasitic plant (*Viscum verrucosum*) on live
521 weight and faecal egg count in female Tswana goats. Presented at the 5th All Africa Conference on
522 Animal Agriculture, Addis Ababa, Ethiopia.

523 Manirakiza, J., Hatungumukama, G., Besbes, B., Detilleux, J., 2020. Characteristics of smallholders' goat
524 production systems and effect of Boer crossbreeding on body measurements of goats in Burundi.
525 *Pastor. Res. Policy Pract.* 10, 1–11. <https://doi.org/10.1186/s13570-019-0157-5>

526 Mataveia, G.A., Visser, C., Sitoe, A., 2021. Smallholder Goat Production in Southern Africa: A Review.
527 IntechOpen. <https://doi.org/10.5772/intechopen.97792>

528 Ministry of Agriculture, 2019. Guidelines for Livestock Management and Infrastructure Development
529 Programme Phase II. Gov. Botsw. 13.

530 Ministry of Local Government and Rural Development, 2009. Remote Area Development Programme. Gov.
531 Botsw.

532 Minson, D.J., 1984. Digestibility and voluntary intake by sheep of five *Digitaria* species. *Aust. J. Exp. Agric.*
533 24, 494–500. <https://doi.org/10.1071/ea9840494>

534 Monau, P.I., Visser, C., Nsoso, S.J., Van Marle-Köster, E., 2017. A survey analysis of indigenous goat
535 production in communal farming systems of Botswana. *Trop. Anim. Health Prod.* 49, 1265–1271.
536 <https://doi.org/10.1007/s11250-017-1324-6>

537 Moncho, T., Madibela, O.R., Machete, J.B., Bonang, V., Motlhanka, D.M.T., 2012. Effect of crude extracts of
538 *Viscum verrucosum* treatment on nematode parasite faecal egg count in female Tswana goats.
539 Presented at the Third RUFORUM Biennial Meeting, Entebbe, Uganda.

540 Mutali, J.T., Dzowela, B.H., 1985. Inventory of livestock feeds in Malawi, in: Proceedings of the Second
541 PANESA Workshop. Presented at the Animal feed resources for small-scale livestock producers,
542 Nairobi, Kenya, pp. 61–69.

543 NASA, 2022. NASA Worldview [WWW Document]. URL <https://worldview.earthdata.nasa.gov/>

544 Naumann, H.D., Cooper, C.E., Muir, J.P., 2017. Seasonality affects leaf nutrient and condensed tannin
545 concentration in southern African savannah browse. *Afr. J. Ecol.* 55, 168–175.
546 <https://doi.org/10.1111/aje.12336>

547 Nsoso, S.J., Monkhei, M., Tlhwaafalo, B.E., 2004. A survey of traditional small stock farmers in Molelopole
548 North, Kweneng district, Botswana: Demographic parameters, market practices and marketing
549 channels. *Livest. Res. Rural Dev.* 16.

550 Omphile, U.J., Aganga, A.A., Malamba, B., 2005. Diets and Forage Preference of Communally Grazed Range
551 Goats in an Acacia Bush Savanna in Southeast Botswana. *J. Biol. Sci.* 5, 690–693.
552 <https://doi.org/10.3923/jbs.2005.690.693>

553 Onifade, O.S., Agishi, E.C., 1990. A review of forage production and utilisation in Nigeria savanna, in: Proc.
554 Utilisation of Research Results on Forage and Agriculture by-Product Materials as Animal Feed
555 Resources in Africa. Presented at the PANESA & ARNAB, Lilongwe, Malawi, pp. 114–125.

556 Panagos, P., Jones, A., Bosco, C., Senthil Kumar, P.S., 2011. European digital archive on soil maps (EuDASM):
557 Preserving important soil data for public free access. *Int. J. Digit. Earth* 4, 434–443.

558 Pugh, D.G., 2020. Nutritional Requirements of Goats - Management and Nutrition. Auburn University.

559 Pule-Meulenberg, F., Dakota, F.D., 2009. Assessing the symbiotic dependency of grain and tree legumes on N2
560 fixation for their N nutrition in five agro-ecological zones of Botswana. *Symbiosis* 48, 68–77.
561 <https://doi.org/10.1007/BF03179986>

562 QGIS, 2022. QGIS Geographic Information System.

564 R Core Team, 2021. R: A language and environment for statistical computing.
565 R Studio Team, 2020. RStudio: Integrated Development for R. RStudio.
566 Salah, N., 2015. Nutrition of goats, sheep and cattle in tropical and warm conditions “ Evaluation of energy and
567 protein requirements and animal responses to diet. Evaluation of INRA system to predict nutritive
568 value of forage resources .” Paris Institute of Technology, Paris, France.
569 Setshogo, M.P., Mosweu, S., Letsholo, G., 2011. Seasonal changes in the quality of four major range grasses in
570 communal rangelands of Matsheng, South Western Botswana. *J. Agric. Biotechnol. Ecol.* 4, 110–118.
571 Smith, O.B., 1992. Feed resources for goats: Recent advances in availability and utilisation in Africa. Presented
572 at the V International Conference on Goats, New Delhi, India.
573 Statistics Botswana, 2017. Annual Agricultural Survey Report 2017. Ministry of Agricultural Development and
574 Food Security, Gaborone.
575 van Duivenbooden, N., 1989. Contributions of various feed components to feed availability in integrated
576 barley/livestock systems in the north-western coastal zone of Egypt: a simulation study. *J. Arid
577 Environ.* 16, 217–228. [https://doi.org/10.1016/S0140-1963\(18\)31029-2](https://doi.org/10.1016/S0140-1963(18)31029-2)
578 Verde, B., Matusso, J., 2014. Phosphorus in Sub-Saharan African Soils -Strategies and Options for improving
579 available Soil Phosphorus in Smallholder Farming Systems: A Review. *Acad Res J Agric Sci Res* 2.
580 Walker, J.G., Ofithile, M., Tavolaro, F.M., van Wyk, J.A., Evans, K., Morgan, E.R., 2015. Mixed methods
581 evaluation of targeted selective anthelmintic treatment by resource-poor smallholder goat farmers in
582 Botswana. *Vet. Parasitol.* 214, 80–88. <https://doi.org/10.1016/j.vetpar.2015.10.006>
583 World Bank, 2019a. Prevalence of undernourishment (% of population) [WWW Document]. URL
584 <https://data.worldbank.org/indicator/SN.ITK.DEFC.ZS?locations=BW-ZA-ZW-ZG> (accessed 8.19.22).
585 World Bank, 2019b. Prevalence of severe food insecurity in the population (%) - Botswana, South Africa,
586 Zimbabwe, Sub-Saharan Africa | Data [WWW Document]. URL
587 <https://data.worldbank.org/indicator/SN.ITK.SVFI.ZS?locations=BW-ZA-ZW-ZG> (accessed 8.19.22).
588 World Bank, 2019c. Prevalence of moderate or severe food insecurity in the population (%) [WWW
589 Document]. URL <https://data.worldbank.org/indicator/SN.ITK.MSFI.ZS?locations=BW-ZA-ZW-ZG>
590 (accessed 8.19.22).
591 Yeom, K.-H., Trierum, G.V., Hache, A., Lee, K.-W., Beynen, A.C., 2002. Effect of protein : energy ratio in
592 milk replacers on growth performance of goat kids. *J. Anim. Physiol. Anim. Nutr.* 86, 137–143.
593 <https://doi.org/10.1046/j.1439-0396.2002.00357.x>
594 Zhang, X.X., Li, Y.X., Tang, Z.R., Sun, W.Z., Wu, L.T., An, R., Chen, H.Y., Wan, K., Sun, Z.H., 2020.
595 Reducing protein content in the diet of growing goats: implications for nitrogen balance, intestinal
596 nutrient digestion and absorption, and rumen microbiota. *Animal* 14, 2063–2073.
597 <https://doi.org/10.1017/S1751731120000890>
598