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Abstract

Tracing cellular dynamic changes across conditions, time, and space is crucia for understanding
the molecular mechanisms underlying complex biologica systems. However, integrating multi-
sample data in a unified and flexible way to explore cellular heterogeneity remains a major
challenge. Here, we present Stereopy, a flexible and versatile framework for modeling and
dissecting comparative and spatiotemporal patterns in multi-sample spatial transcriptomics with
interactive data visualization. To optimize this flexible framework, we have developed three key
components. a multi-sample tailored data container, a scope controller, and an analysis transformer.
Furthermore, Stereopy showcases three transformative applications supported by pivotal
algorithms. Firgtly, the multi-sample cell community detection (CCD) algorithm introduces an
innovative capability to detect specific cell communities and identify genes responsible for
pathological changes in comparable datasets. Secondly, the spatially resolved temporal gene
pattern inference (TGPI) agorithm represents a notable advancement in detecting important
spatiotemporal gene patterns while concurrently considering spatial and temporal features, which
enhances the identification of important genes, domains and regulatory factors closely associated
with temporal datasets. Finally, the 3D niche-based regulation inference tool, named NicheReg3D,
reconstructs the 3D cell niches to enable the inference of cell-gene interaction network within the
spatial texture, thus bridging intercellular communications and intracellular regulations to unravel
the intricate regulatory mechanisms that govern cellular behavior. Overall, Stereopy serves as both
a bioinformatics toolbox and an extensible framework that provides researchers with enhanced
data interpretation abilities and new perspectives for mining multi-sample spatial transcriptomics
data.

Introduction

Cdlls are not static. Dynamical and orderly cellular proliferation, differentiation, and maturation
accomplish their functions by spatidly interacting with the microenvironment consisting of
external stimuli and other cells, which forms the complex architecture of multicellularity. However,
understanding the underlying mechanisms that govern disease, development, and homeostasis is
gtill an open question in scientific investigations. Such investigations often require the
simultaneous analysis of datasets comprising multiple samples, enabling researchers to effectively
track the specificity and variation of cells and genes across different conditions, time points, and
spatial dimensions [1, 2]. The advent of high-resolution spatial resolved transcriptomics (SRT)
technologies, such as Stereo-seq [3], Slide-seq [4], MERFISH [5], SeqFish [6], STARmap [7], and
Xenium [8], holds immense potential for generating large-scale multi-sample datasets. These
advancements also underscore the demand for more advanced analytical approaches, enabling the
exploration of molecular alterations and characterigtics in various contexts—be it conditional,
temporal, or spatia [9]. These contexts span a wide spectrum of applications, ranging from
tracking disease progression [10, 11] and monitoring temporal cellular development [12] to
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dissecting the intricacies of spatial organogenesis [3, 13].

Pioneering analysis frameworks for spatial or single-cell transcriptomics data such as Squidpy
[14], Giotto [15], Scanpy [16], Seurat [17], and scvi-tools [18] have been widely employed,
enabling temporally and/or spatially resolved studies with spatial omics data. However, they were
primarily designed for single-sample analysis [19]. Multi-sample analyses also necessitate tailored
data containers to enable efficient data organization, flexibility, and scalability. However , existing
data containers including AnnData (used in Scanpy [16]), SeuratObject (used in Seurat [17]),
GiottoObject (used in Giotto [15]), and MuData (used in Muon [20]) are inherently limited in their
capacity to manage multiple samples. Furthermore, existing methods [21-23] lack the capacity for
advanced multi-sample analysis, including individua sample analysis, managing analysis step
dependencies, and transitioning between single-sample and multi-sample results. With decreasing
data costs and growing tissue complexity, efficient methods for soring, integrating, and

visualizing multi-sample omics data across various dimensions are urgently needed.

However, developing a multi-sample analysis framework requires solving complex challenges.
Key among these is the need to establish a standardized framework for contextualizing analysis
modules and visualization functions, design scalable data representation for multi-sample data
management, and provide integrated solutions for multi-purpose tasks. In response to these
challenges, we propose Stereopy, a comprehensive multi-sample analysis toolkit that includes a
complete set of extensible tools for managing, analyzing, and visualizing multi-sample spatial
omics data. To efficiently manage multiple samples in a unified and convenient manner, we
address the flexible cross-sample storage of input data and analysis results while ensuring the
accessibility and traceability of outcomes. A flexible analysis framework is also designed to enable
analysis on specific samples, manage dependencies between different analysis steps, and facilitate

the transformation of single-sample resultsinto integrated results.

The resulting comprehensive analysis solutions improve the utilization of information when
applied to different datasets (Supplementary Note 1). For comparative analysis, Stereopy
compares disturbed or disease samples to control samples, analyzes the diversity at both global
and local levels in the gpatial context, and identifies the changes in functional mechanisms that
arise as a result of stress responses or disease perturbations. The multi-sample cell community
detection (CCD) agorithm developed in Stereopy introduces an innovative capability to detect
variations at the cell community level in comparative samples (Supplementary Note 2.1). For
temporal analysis, it explores temporal variations in cell types and gene expresson over time,
reflecting the temporal and molecular intricacies of organisma development with spatial
resolution. The proposed spatia resolved temporal gene pattern inference (TGPI) algorithm in

Stereopy presents a significant enhancement in detecting spatiotemporal gene patterns marking the
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first instance which simultaneously considering spatial and temporal features (Supplementary
Note 2.2). For 3D integrated analysis, it provides a powerful tool, named NicheReg3D, for
reconstructing the cell niche and investigating the effect of intercellular signaling on the
intracellular regulation within spatial congtraints, enabling new insights into organ development
(Supplementary Note 2.3). Additionally, Stereopy offers flexible data visualization techniques for
both 2D and 3D datasets to researchers to conveniently explore the intricate spatiotemporal
changes of genes and cells and accurately model underlying biological processes across different

dimensions. Stereopy is available at https.//github.com/STOmics/ Stereopy. Its documentation and

extensive tutorials can be explored at https.//stereopy.readthedocs.io/en/l atest.

Results
Overview of Stereopy

Stereopy provides a comprehensive and robust solution for multi-sample analysis, comprising
three main components: a multi-sample data container, multi-sample data analysis modules, and a
multi-sample interactive visualization (Fig. 1a). This platform is designed to support the closed
loop of data management through a multi-sample data (MsData) container, multi-sample scope
(MSS) controller, multi-sample analyss transformer and multi-sample data file format. Stereopy
aso offers well-organized analysis modules and key algorithms for spatial omics data, covering
three main multi-sample data analysis scenarios: comparative, spatiotemporal, and 3D integrated
analysis (Supplementary Note 1). These analytical capabilities include the identification of
specific cell communities and functional modules in comparative multi-sample datasets (Fig. 1b (i)
and Supplementary Note 1.1), detection of temporal variable genes and gene patterns in time-
series datasets (Fig. 1b (ii) and Supplementary Note 1.2), and inference of complete signaling
paths from cell-cell communication to gene regulation networks in 3D datasets (Fig. 1b (iii) and
Supplementary Note 1.3). Stereopy's representative key agorithms for each data type are
highlighted: 1) the cell community detection agorithm, which finds common or specific
communities between comparative samples, enriching the comparative analysis capability (Fig. 1c
(i) and Supplementary Note 2.1); 2) the spatially resolved temporal gene pattern identification
method, which explores specific genes and modules related to tempora development under spatial
restriction (Fig. 1c (ii) and Supplementary Note 2.2); and 3) 3D regulation mechanism inference,
which probes complete gene regulation mechanisms by mining extracellular ligand-receptor
interactions, intracellular regulation networks, and signaling pathways between them in the entire
3D tissue level (Fig. 1c (iii) and Supplementary Note 2.3). Furthermore, Stereopy provides 2D and
3D spatial omicsinteractive visuaization [24], which generates high-quality data explorations and
supports user-defined browsing. These unique capabilities of Stereopy make it a valuable tool for
researchers to analyze and interpret multi-sample SRT data, with powerful functionalities that

enables a deeper understanding of biological processes and mechanisms.
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Stereopy develops an efficient multi-sample data analysis framewor k

Stereopy offers comprehensive analysis framework to support multi-sample analysis through its
MsData container, MSS controller, and multi-sample analysis transformer. The MsData container
builds upon the AnnData format, incorporating new features applicable to multiple samples while
preserving single-sample dependencies (Fig. 2a). Users can conveniently access the entire dataset
and individual samples through a single handler, enabling flexible analysis across multiple
samples (Supplementary Fig. 1). The MSS controller plays a critical role in managing result
storage, tracking analyss dependencies, and visualizing corresponding outcomes (Fig. 2b). It
empowers users to associate meta-information and results generated with corresponding samples
for subsequent association analysis. Stereopy’'s multi-sample analysis trransformer further
supports customized analysis of multi-sample datasets with diverse demands (Fig. 2c), providing
functions to integrate single-sample results into the multi-sample context or reversibly split multi-
sample data for sngle-sample analysis. These transformations are particularly useful for analysis
modules like clustering and annotation, which may involve manual curations or calculation
comparisons by different algorithms. This whole framework facilitates parallel or integrated
analysis across multiple samples (Fig. 2d and Extended Data fig. 1a). Meanwhile, it empowers
researchers to conduct comprehensive multi-sample joint analyses and interactive visualization on
multi-sample data with different demands (Fig. 2e and Extended Data fig. 1b-c). In addition,
Stereopy is a powerful tool for dealing with single-sample spatial omics data, providing
researchers with an extensive range of analysis functions and sharing several common features
and same functions with its multi-sample analysis module (Fig. 2f and Extended Datafig. 1).

Stereopy accelerates multi-sample analysis in both agorithmic and paralel computing levels.
With the ability to apply parallel analysis to multiple samples for dependent functions, including
preprocessing, cell clustering, and annotation, Stereopy significantly reduces the overall
processing time. The common SRT analysis modules embedded in Stereopy consume less time for
both integrated and paralel processing on different numbers of samples, compared to existing
tools such as Giotto, Scanpy, and Seurat (Fig. 2g). Meanwhile, Stereopy supports GPU
acceleration for time-consuming but necessary functions such as PCA (Principal component
analysis), neighborhood searching, Leiden [25] / Louvain [26] clustering, and SingleR annotation
[27] (re-implemented in Python as a part of Stereopy). The GPU-accelerated functions
demonstrate a substantial improvement in execution time compared to their CPU counterparts (Fig.
2h).

Stereopy unveils cell and gene diversity in compar ative SRT analysis
In scientific research, comparing disturbed or disease samples with control samples alows for the

exploration of changes in functional mechanisms at both local and global levels. Stereopy is
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designed to analyze and identify global and local diversities in comparative samples by employing
cell-level and gene-level analysis modules, supported by novel algorithms (Supplementary Note
1.1). The cdl-level analysis focuses on cell diversity in terms of cell type, cell co-occurrence, and
cell community via multi-sample comparisons. Stereopy provides enhanced detection of cell
communities with our innovative multi-sample Cell Community Detection (CCD) algorithm
(Supplementary Fig. 2, Supplementary Note 2.1 and Methods). At the gene level, Stereopy
investigates gene diversity within cell types and cell communities (Fig. 3a), proposing the concept
of constant and conditional markers. Constant markers exhibit stable expresson and remain
unaffected by disturbance, while conditional markers respond to disturbances and contribute to

functional changes.

Stereopy-CCD outperforms SpaGCN, GraphST and Giotto in both single-sample scenarios (e.g.,
whole mouse embryo brain) and multi-sample scenarios (e.g., continuous adult mouse brain and
mouse kidney) (Extended Data Fig. 2-4, Supplementary Table 1-2, and Methods). In the whole
mouse embryo brain dataset, Stereopy-CCD is capable of effectively identifying cell communities
or domains that align with existing knowledge (Extended Data Fig. 2). In continuous adult mouse
brain, Stereopy-CCD detected common cell communities among three slides (Extended Data Fig.
3). In our analysis of mouse kidney samples, which included a diabetic sample (UMOD KI-
homozygous gene UMOD-C125R knock-in mice with monogenic disorder) and a WT sample [28],
the Stereopy-CCD agorithm successfully identified a central community present in both samples
(Extended Data Fig. 4). The central community closely corresponds to the region annotated as
‘medulla’ in the study conducted by Marshall et al [28] (Fig 3d and Extended Data Fig. 4).

We applied Stereopy to comparative mouse kidney datasets to assess the its efficacy in detecting
global diversity [28]. Co-occurrence calculations developed in Stereopy were performed on a pair
of Slide-seq v2 samples. wild-type (WT) and diabetic (ob/ob genetic model of early diabetic
kidney disease) (Supplementary Fig. 3). The results corroborated Marshall’s previous findings [28]
regarding Podocytes co-occurrence with GC cells (Fig. 3b) and inferred a higher co-occurrencein
the ob/ob sample compared to the WT sample. Notably, Stereopy demonstrated a greater
significance in detecting the co-occurrence of Podocytes with GCs when compared to Squidpy’s
co-occurrence algorithm [14] (Supplementary Fig. 4a-c). Subsequently, gene modules were
identified in both samples, revealing the co-expression of Nphs2 (a Podocyte marker) and Cgtf (a
Podocyte injury marker) in both the WT and ob/ob samples (Fig. 3c). Local autocorrelation
analysis revealed a stronger correlation between Nphs2 and Cgtf in ob/ob sample (Fig. 3c), and the
analysis of differentially expressed genes (DEGSs) provided evidence of Cgtf's higher rank among
Podocytes markers (Supplementary Fig. 5).
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To evaluate the capability of Stereopy of detecting local diversity, we conducted further analysis
on the cell communities of mouse kidney samples identified by CCD. We annotated the cell
communities according to anatomical structure, including kidney cortex, medulla, the boundary of
cortex and medulla, pelvis, and immune region (Fig. 3d). As previous mentioned, the medullary
region identified by Stereopy-CCD closely corresponds to the region annotated in the study
conducted by Marshall et al. and the marker genes of each region are clearly discernible (Fig 3d,
Extended Data Fig.4 and Supplementary Fig. 6). The community ‘medulla’ exhibited similar
proportions of thick ascending limb (TAL), endothelial cells (EC), and other immune cell types,
despite the diversity in cell type distribution (Supplementary Fig. 7). The UMOD Kl sample
showed increased percentages of fibroblast and macrophages in the medulla compared to WT (Fig.
3f and Supplementary Fig. 7), consistent with Marshall’s findings [28]. To analyze markers of
both tissues and cell types, we calculated DEGs and enriched gene ontology (GO) terms
specifically for the medulla and its constituent cell types, such as TAL, EC, and other immune cell
types (Fig. 3e). The marker genes exhibited greater significance, and the enriched GO termsin the
renal medulla were highly relevant to rena function, including sodium ion transport, potassium
ion transmembrane transport, and chloride ion homeostass, highlighting the functiona relevance
of thetissue compared to separate cell types. With that finding we confirmed that examining the
gene divergence of cell communities provides deep insights into tissue function. To
comprehensively assess the response of various regions to the UMOD KI disturbance, we
analyzed the number of conditional markers. Our calculations indicated a substantial increase in
the number of top DEGs in the medulla region compared to other regions, along with a greater
diversity of cell types (Supplementary Fig. 8). These findings suggest that examining the overall
differences of cell communities and condition markers may yield more meaningful biological
discoveries than focusing solely on individual cell types. Specifically, we observed a consistent
marker related to renal function, including sodium, potassium, and chloride ion homeostasis, in
the renal medulla across both healthy and disease samples. However, the UMOD KI sample
exhibited conditional markers involved in renal function damage, such as response to nutrient
level, wound healing, and response to extracellular stimulus (Fig. 3g and Supplementary Table 3).
Notably, Sppl emerged as a significant conditional marker (Fig. 3h), which has been proved as the
top hub gene associated with Kidney stone disease [29]. Further analysis revealed that renal stone
risk persisted when both Sopl and Umod had variants, indicating the importance of these two
genes in the development of kidney disease [30]. Another conditional marker, Apoe, was reported
to be associated with glomerular disorders due to its central role in lipoprotein metabolism. The
increased abundance of macrophages in the UMOD K| sample is consistent with the hyperactivity

of macrophages involved in Apoe-related glomerular disorders[31].

In conclusion, Stereopy provides a systematic analysis of cell-level and gene-level similarity and

diversity between case and control samples, with high biological significance. The use of the
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Stereopy-CCD algorithm and identification of conditional markers significantly contribute to the

understanding of tissue structure and function in comparative analyses.

Stereopy identifies spatiotemporal variation in time-series SRT analysis

Growth and development of organisms involve complex biological processes characterized by

variations in cell types and gene expression over time. These intricate molecular changes

described as tempora variation, captures the intricate molecular changes occurring during
development. To investigate temporal variations in time-series datasets, Stereopy emphasizes
dynamic changes in both the spatial and temporal dimensions (Supplementary Note 1.2). In terms
of cell type changes, Stereopy adopted a manifold partitions-based method [32] to preserve the
global topology and to infer the trajectory of cell types across different sasmples, providing a visual
representation of cell trajectory and changes in cell numbers across time points (Supplementary
Note 3). Meanwhile, Stereopy proposes a spatially resolved Temporal Gene Pattern Identification
(TGPI) method for finding genes with similar temporal expression changes, including continuous
up- or downregulated genes, as well as other complex patterns observed in real time and
pseudotime (Fig. 4aand Supplementary Note 2.2).

Our proposed statistic metric, the plain false discovery rate (pFDR), has been utilized in Stereopy-
TGP for detecting continuous up- and down-regulated genes by merging p-values. To evaluate its
effectiveness, we compared pFDR with Fisher’s method using mouse embryo forebrain datasets
consigting of three cell types with 7, 5, and 3 time points, respectively. The results demonstrated
that pFDR is a more stable and reliable approach for identifying genuine up- and down-regul ated
genes with continuous changes in gene expression across multiple time points (Extended Data Fig.
5, Supplementary Fig. 9-10 and Methods). Stereopy-TGPI serves as a valuable tool for not only
identifying temporal gene up- and downregulation but also for elucidating intricate temporal or
pseudotime expression patterns. Stereopy-TGPI simultaneously considers the consistency of gene
expression in both temporal and spatial aspects (Methods). We conducted an evaluation of the
significance of spatial features in Stereopy-TGPI and found that they play a crucia role in
enhancing the consistency of tempora gene pattern detection (Extended Data Fig. 6 and
Supplementary Fig.11). Compared with Mfuzz, Stereopy-TPGI's identification was more
correlated to real and pseudotime tendencies and capable of enriching significant GOs relevant to
neuron development in the time-series whole mouse brain (Extended Data Fig. 7 and Methods)
[33].

To illustrate the capability of Stereopy, we investigated the tragjectory and temporal gene pattern
across eight time-point samples of Stereo-seq mouse embryos from E9.5 to E16.5 [3]. We inferred
the trgjectory of the integrated mouse embryo dataset from eight time points and displayed the cell
type development with a tree plot (Fig. 4b-c). Next, the flexibility of Stereopy’s data container
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enabled manual clustering and annotation for the brains of each sample, independently (Fig. 4d,
Supplementary Fig. 12a). Pseudotime analysis [32] verified a gradual increase in pseudotime, and
higher pseudotime values in the forebrain region indicated later development (Fig. 4d,
Supplementary Fig. 12b). Additionally, we provided statistics on the cell number of each cell type
across time points and inferred the cell trgjectory for the time-series mouse brain development
(Fig. 4e-f and Supplementary Fig. 12c). We then focused on the temporal gene pattern in the
forebrain trajectory series, encompassing the forebrain progenitor, cortical hem, dorsal forebrain,

forebrain intermediate progenitor, and forebrain cortical glutamatergic stages.

Applying Stereopy-TGPI to calculate gene up- and downregulation, we identified Foxgl as the
top-ranked temporal upregulated gene, a key transcription factor (TF) that showed gradual
upregulation along the forebrain trajectory, consistent with its dynamic regulation of forebrain
development [34] (Fig. 4f-h and Supplementary Fig. 13). Conversely, Hesb, a gradualy
downregulated gene, exhibited high expression in embryonic neural precursor cells and played a
crucial role in negatively regulating neural and oligodendrocyte differentiation [35]. Furthermore,
we applied Stereopy-TGPI to identifying cell-type-specific expression patterns along the forebrain
trajectory. Among them, a digtinctive cell-type-trajectory gene pattern was observed, with
characterized genes exhibiting an upregulation trend prior to the cortical hem stage, followed by
continuous downregulation thereafter. GO terms enriched in this pattern included neural precursor
and forebrain cell proliferation, implying an important role for cortical hem during forebrain
development (Fig. 4g). We observed cortical hem existed exclusively before E14.5 in this dataset,
which aligned with a previous study that reported the emergence of Cgja-Retzius neurons, the
constituent cell type of the cortical hem, during the early developmental stages [32]. To invegtigate
the functions of cortical hem and key factors leading to its disappearance, we examined temporal
gene patterns related to time points with consistent occurrence of cortical hem at the forebrain. A
digtinct temporal gene pattern was observed, with peak expression levels during the
developmental stages from E11.5 to E14.5, coinciding with the presence of the cortical hem and a
noticeable decrease thereafter (Fig. 4i). We intersected genes from the cell-type-trgjectory gene
pattern and temporal gene pattern. Within this intersection, we identified Teadl as a key TF that
exhibited high expresson in cortical hem and low expression after its disappearance (Fig. 4).
Tead TFs have previoudy been implicated in regulating cortical development [33]. Leveraging the
interactive visualization capabilities of Stereopy, we performed gene regulatory network (GRN)
analysis on the forebrain of each sample by easily selecting regions of interest (Supplementary Fig.
14). Strikingly, we observed a decrease in the number of genes regulated by Teadl, from 338 at
E12.5t0 7 at E13.5 (Fig. 4k). The enriched GO terms at E11.5 and E12.5 were similar and highly
associated with forebrain development, while those at E13.5 were related to neuroblast
proliferation and forebrain neuron generation. For example, Tcf4, a target gene (TG) regulated by

Teadl1 from E11.5 to E13.5, controls the positioning of cortical projection neurons [38]. However,
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by E14.5, GO terms were no longer related to neurons or the brain (Fig. 4l). Notably, E14.5
marked the appearance of forebrain cortical glutamatergic appeared, suggesting that Teadl and
cortical hem had finished their neurogenesis function. Our findings underscore the significance of
Teadl and cortical hem in forebrain cortical development, providing valuable insghts into brain

development.

Stereopy offers comprehensive solutions for temporal multi-sample analysis, with a particular
emphasis on the temporal gene patterns. TGP, a key feature of Stereopy, enables the detection of
temporal gene patterns within time-series datasets, facilitating the exploration of dynamic changes
across various time points. By leveraging Stereopy's TGPl functionality, researchers can
systematically investigate and uncover developmental-related temporal gene patterns, thereby

revolutionizing our understanding of temporal dynamicsin biological systems.

Stereopy reveals principles of niche-mediated regulationsin 3D SRT analysis
Multicellular organisms are inherently comprised of cells and tissues organized within a 3D
structure, thereby giving rise to intricate cellular interactions that cannot be adequately replicated
in 2D culture [39]. Unfortunately, conventional analytical approaches remain confined to 2D
methodologies, inevitably resulting in the loss of crucial interaction information along the z-axis.
However, Stereopy’s NicheReg3D pipeline addresses this limitation by precisely characterizing
the cellular constitution of 3D niches and facilitating the comprehensive exploration of
intercellular and intracellular interactions (Supplementary Note 1.3). It seamlessly combines data
preprocessing, 3D alignment and reconstruction, cell-niche communication, ligand-receptor (L-
R)-TF-TG pathway inference, and intracellular TF-centered regulatory network prediction (see
Methods). The core agorithms underpinning 3D joint analysis and the underlying 3D regulation
model are elucidated in Fig. 5a. When applied to the well-studied system of the mouse cortical
region sequenced by BARseq, a high-throughput in situ sequencing technique [40], our results
demonstrated that 3D niches, composed of complete and accurately defined cells from diverse cell
types after 3D reconstruction of these consecutive 2D dlices. It outperformed 2D niche
composition analysis of each individual dice, benefiting downstream analyses such as the
predictive identification of cortical areas (Supplementary Fig. 15).

In the 3D context, cellular heterogeneity is not only governed by the intracellular regulatory
network but also influenced by the extracellular microenvironment to collaboratively accomplish
diverse biological tasks [41, 42], yet computational methods for modeling both interactions
simultaneoudly are insufficient [43]. Our approach enables the joint analysis of spatial multiple
samplesin 3D, providing unique insights into the intracellular regulation mediated by biochemical
signals of intercellular crosstalk in multiple dimensions. To showcase its effectiveness in exploring
niche-mediated regulations, we applied Stereopy-NicheReg3D to analyze the cardiac development
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of a mouse embryo sequenced by Stereo-seq [3]. We extracted 59 10-um-thick 2D serial
cryosections at a distance of 10 um, covering the entire mouse embryonic heart. For the SRT data
of 90,411 high-quality segmented cells with 30,254 genes inferred from subcellular spots, we
performed unsupervised clustering analysis for each individual sample and identified six cardiac
cell clusters (Supplementary Fig. 16 and Supplementary Table 4). The 3D reconstructed model
provided a multi-hierarchical transcriptomic architecture, ranging from organ meshes, cdl types
and clusters, spatially variable genes, spatially specific regulons, and niche-specific L-R pairs (Fig.
5h).

Based on the reconstructed 3D murine heart data, our investigation focused on the development of
ventricular cardiomyocytes (VCMs), in which the cardiac niche played significant roles in
cardiogenesis through intricate intercellular signal transduction [44]. The VCM niche
encompassed five other cell types: approximately 28% atrial cardiomyocytes (ACMs), 27% blood
cells, 23% endocardial cells (ECs), 13% epicardia cells (EPs), and 9% fibro-mesenchymal cells
(FMs) (Fig. 5¢). Within a 25-um physical distancein 3D, expressed L-R pairsrevealed that VCMs
were the prominent receiver of signals from surrounding cells (Fig. 5d). This finding contradicted
the conventional understanding of communication activities specific to whole cell clusters [45]
(Fig. 5€), underscoring the essentiality of 3D spatia neighborhood pruning. Notably, our
computational analysis predicted a significant molecular interaction between the ligand Vcan and
its receptor Itgbl in FM-VCM cells, with moderate presence in other niches (Fig. 5f). This
observation aligns with previous studies that have emphasized the critical role of Vcan in the
extracellular matrix for supporting and remodeling VCMs [46, 47]. More interestingly, apart from
ACMs, the four distinct niche compositions collectively influenced VCM gene expression through
the same L-R pair sets (Mim-Cd44, Calml-Ryr2, Igf2-Igf2r...), most of which have been
implicated in the regulation of CM proliferation, migration, and differentiation [48, 49] (Extended
Data Fig. 8 and Supplementary Fig. 17). Compared to state-of-the-art CCC tools, including single-
cell CellPhoneDB [45] and spatialy resolved NICHES [50] (Supplementary Table 5), Stereopy
achieved the most complete identification of specific L-R pairs that covered nearly all those
derived by other tools, thanks to the precise niche extraction (Extended Data Fig. 9). The mgjority
of these L-R pairs are involved in mammalian cardiac growth and development (Supplementary
Table 6). On the other hand, VCM reversely influenced the cell state or function of the cell

microenvironment through specific L-R pairs (Fig. 59).

Furthermore, we inferred the specifically expressed GRNs on VCM cells adjacent to the niches
(Fig. 5h and Supplementary Fig. 18 and Supplementary Table 7). This enrichment analysis yielded
a set of candidate core TFs and their corresponding regulons, suggesting their potential
susceptibility to cell-niche communications and warranting further inspection of their regulatory
effects. We then established deductive signaling paths to connect intercellular signaling activities
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from niche cells with intracellularly influenced TFs. To smplify the complex network, we retained
connections between receptors and TFs involving a maximum of two intermediate genes (Fig. 5i).
Among them, Cd44 emerged as the recipient of the most extracellular signaling, stimulated by
specific ligands (Collal, Col4al/2, Vcan) or collectively expressed from different niches (Fni,
Vim). This signaling could up- or downregulate various TFs such as Tcf4. Previous studies have
elucidated the ability of Cd44 to activate the canonical Wnt/B-catenin signaling pathway,
impacting the expression of Tcf4 and downstream genes [51], thereby exerting tempora and
spatial control over heart maturation [52]. 1gf2-1gf2r also collectively regulated VCM proliferation
and differentiation by activating PISK/Akt pathways, as previously reported [53, 54]. Moreover,
the shared Calm1/3-Cacnalc family displayed potential regulation of Mef2c/d expression, which
has been linked to excitation-contraction coupling in VCM function through calmodulin-
dependent signaling pathways [55, 56]. Our framework additionally facilitated the investigation of
detailed GRNs for each user-defined receptor in the same cell. For instance, Fig. 5) depicted the
GRN of the Itgbl receptor as a directed graph, encompassing various modes, including directed
acyclic (such as Srebf2 and Tcf3) and bidirected acyclic (such as Pdlim5 and MIIt10). Importantly,
the inferred GRN, extended to downstream TGs, highlights the potential for intercellular
communication to regulate the same set of genes, culminating in collective regulation (Fig. 5k and
Supplementary Fig. 19). For example, Itgbl-related CCC might modulate both Pdlim5 and MIIt10
through llk-related pathways. GO enrichment analysis indicated that their shared TGs jointly
managed cardiac muscle development and contraction (Fig. 5l), corroborating prior findings [57,
58]. In contrast to other tools connecting the outside and inside of the cells, such as NicheNet [59],
Stereopy-NicheReg3D provided a more definitive and complete network for inferring how cell-
niche-specific L-R pairs regulate intracellular regulon activities related to specific celular

functions.

In this scenario, we have witnessed that our 3D joint analysis pipeline explores how spatialy
informed extracellular signaling at the niche influences intracellular gene regulation in the cell of
interest, beyond the limitations of 2D data analysis (Extended Data Fig. 10 and Supplementary Fig.
20). The integration of CCC and GRN could presumably improve the accuracy of context-specific
L-R-TF-TG predictions concerning morphologica phenotypical changes. As such, we derived an
improved model of 3D regulation implicating VCM development in cardiac maturation and
physiology (Fig. 5m). During heart development, VCMs consgtitute a fundamental element of heart
function, while EC, ER, FM, and blood cells are key components of the microenvironment
promoting CM maturation. Niche components collectively or specifically transmit signals through
shared or distinct L-R pairs, which further promote or inhibit specific TFs indde VCM cells
through specific signaling pathways. These TFs ultimately influence the expression of
downstream TFs and TGs, jointly demongtrating the cellular functional state and subtype.
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Therefore, we anticipate that Stereopy-NicheReg3D will serve as a valuable tool with an
interactive visualization browser in the 3D space (Supplementary Fig. 21) for better dissecting the
functional consequences of spatialy informed inter-intracellular regulation networks, thereby
facilitating the prediction of cellular function, state, and corresponding phenotype.

Discussion

The interpretation of smilarities, differences, and developmental changes across multiple samples
is non-trivia to unravel complex biological regulatory mechanisms using multi-sample spatial
omics datasets. In this study, we introduce Stereopy, a comprehensive toolkit for managing,
analyzing, and visualizing multi-sample spatial omics data. It offers the MsData container, MSS
controller, and a multi-sample analysis transformer, effectively addressing the challenges
encountered in jointly analyzing multi-sample data. Stereopy also provides a wide array of
analysis solutions and algorithms tailored specifically for comparative, temporal, and 3D

integrated analysisin multi-sample endeavors.

Firstly, we employed Stereopy on comparative kidney datasets to validate the co-occurrence of
Podocytes with GCs and identified Sppl as a potential significant UMOD KI conditional marker.
The Stereopy-CCD algorithm proved its efficacy in detecting important cell communities across
multiple samples, thereby expanding the scope of diversity analysis in comparative studies.
Subsequently, we harnessed the capabilities of Stereopy to delve into temporal datasets,
highlighting the function of Teadl and the cortical hem in forebrain cortical development. This
investigation provides vauable insights into the intricate dynamics of mouse forebrain
development using mouse embryonic brain datasets. The Stereopy-TGPI algorithm demonstrated
its ability to accurately infer temporal gene patterns by integrating spatial information, thereby
revealing potential gene patterns and key TF genes related to forebrain development. Finally, we
leveraged Stereopy to explore the 3D multi-sample datasets, specifically investigating the
developing ventricular cardiomyocytes in the mouse embryonic cardiac dataset. Through this
analysis, we identified an Itgbl-stimulated co-regulation network, illuminating the intricate inter-
and intracellular regulatory mechanisms in the 3D niche-based microenvironment. The Stereopy-
NicheReg3D pipeline proved its superiority in identifying more complete specific LR pairs and
comprehensive signaling paths compared to existing tools when applied to 3D datasets.

Stereopy represents a comprehensive and robust solution that surpasses the mere provision of
functionalities and a gorithms for analyzing complex spatial omics datasets. Its advanced features,
including batch effect evaluation and removal processing of multiple samples, as well as multi-
sample joint analysis functions such as 3D registration, 3D data trajectory inference and
visualization, amplify the utility of Stereopy in the field. Moreover, Stereopy incorporates

numerous data analysis functions, including several well-known functions adapted from R code,
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such as scTransform and SingleR. Additionally, Stereopy can handle diverse data types, including
GEF and GEM files generated by Stereo-seq, as well as the commonly used h5ad file format,
enabling the analysis of data from different platforms. It is worth noting that Stereopy can analyze
SRT datasets as long as they provide both spatial information and gene expression at the same
resolution. However, some algorithms bundled within Stereopy expect high-resolution datasets as
input for optimal performance, rendering it more suitable for high-resolution than low-resolution
spatial omics datasets.

Stereopy has effectively tackled key challenges in multi-sample spatial omics analysis, including
data management, analysis module planning, algorithm development, and interactive visualization
of 2D/3D data. Nonetheless, there are opportunities for further improvement to enhance and enrich
multi-sample data analysis by accommodating new modalities, addressing new analysis demands,
and incorporating new omics to support scientific research. It isimperative to leverage spatial and
feature information, particularly in spatiotemporal datasets (referred to as 4D datasets), to unlock
insightful biological discoveries. Stereopy is committed to expanding its analysis functions and
extending its applications to diverse areas, including clinical and immune research. The support
for multimodal analysis and multi-omics datasets should be prioritized as they provide richer

biological information and represent the future of spatial omics technologies.

Although research involving multi-sample datasets is commonplace, the research community
dedicated to multi-sample analysis remains relatively underdeveloped. This deficiency can be
atributed to the absence of a standardized multi-sample analysis framework that seamlesdy
integrates various analysis tools and elucidates the canonical forms of multi-sample multi-omics
analysis. Additionally, the integration of certain algorithms and tools into a unified framework
poses significant challenges. Consequently, the joint analysis for multiple samples becomes a
formidable hurdle, compelling researchers to either forego the valuable insights embedded within
multi-sample datasets or invest substantial time in searching for appropriate analysis tools and
determining the optimal analysis framework. Stereopy emerges as a foundation for building a
vibrant multi-sample omics community and promotes the establishment of canonical forms for
data analysis. Meanwhile, the introduction of the developer mode invites contributions from the
expansive bioinformatics community, fostering collaborative efforts. With unwavering dedication,
Stereopy strives to furnish researchers with a user-friendly analysis toolkit and robust analysis
modules. Simultaneoudly, it offers novel perspectives and profound insights into the interpretation
of multi-sample spatia omics data, empowering researchers to unlock the full potential of these
datasets.
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Methods

Comparison of general single-cell analysis between Stereopy, Scanpy, Seurat, and
Giotto toolkits

Many toolkits have provided functions for single-cell or spatial transcriptomic analysis. Scanpy is
awidely used package for single-cell analysis in Python while Seurat [4] isin R. Giotto [2] isalso
an R package with specific designs for ST. In order to figure out the time consumption
performance among toolkits including Stereopy, Scanpy, Seurat, and Giotto, we tested the most

general analysisin asingle cell and SRT including pre-processing, principal components analysis
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(PCA), Uniform Manifold Approximation, and Projection (UMAP), cell neighbors finding,
Louvain clustering, Leiden clustering and find gene markers. To test performance on multiple
samples, we use Stereo-seq mouse embryo datasets from E9.5 to E14.5. Since only Stereopy
provides analysis on multi-sample data, we test other toolkits by merging multi-sample data as one
data. To have a fair competition, we kept all hyper-parameters the same. For pre-processing, we
test 3 steps: normalize, loglp, and scale. For PCA, we retained the top 30 principal components
(PCs) without using highly variable genes. For cell neighborhood, we calculate based on PCA
results with 20 top PCs and 10 nearest neighbors. For Louvain and Leiden, the resolution is set to
be 1 as default. To find gene markers, we test on pre-annotation clustering results and use a t-test
based on all versus rest way. All of the toolkits are tested on a Linux machine with 64 cores CPU
and 512 GiB of RAM.

Cell co-occurrence detection algorithm

To explore the changes in cell neighborhood, we developed a global co-occurrence method
(Supplementary Fig. 3) to reflect the spatial distribution relationship between cell types or clusters.
The presented co-occurrence method is composed of 3 steps: 1. Calculation of cell-to-cell spatial
distance, 2. Spatial graph congtruction, and 3. Counting of cell-type contacts. For the first step, we
calculate a cell-cell pairwise spatial distance matrix based on Euclidean distance. Secondly, with
the distance matrix used as the adjacent matrix of cell neighborhood graph, we only retain edges
with a distance range from minimal distance threshold to maxima distance threshold. The
minimal and maximal distance thresholds could be selected manually. After constructing the cell
neighborhood graph, we calculate the probability that cell type A has the edge with cell type B.
This probability represents the co-occurrence probability of cell type A with cell type B. The
following equations explain this process in more detail. We mark cells belonging to the cell type
A[O, N] and B[O, M] as.

CA; € {CA,,CA,, ...,CBy}
CB; € {CB,,CB,, ...,CBy}

Cdl counts of cell type A are given by the number of A cells that are located around cell type B
from the minimum distance to the maximum distance:

count (A, B, min_distance, max_distance) = C

The co-occurrence of A with B:
Co — occurence(4,B) = P(B|A) =C/N

Notably, the co-occurrence of A with B is not equal to the co-occurrence of B with A, which

equals e/n and e/m respectively in our method. The asymmetry of our co-occurrence stands
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because the spatial distribution of a cell type includes another cell type and is more universally
distributed. For example, ECs are universally distributed in mouse kidney which means most other
cells are connected to ECs while not every EC is connected to other cell types. Owing to the
asymmetry of our co-occurrence method, we can also detect the wideness of spatial distribution
for cell types. Additionally, we created the co-occurrence result integration method for multiple
samples based on the weighted mean of the group, where weights equal to the 17 cell counts ratio
in multi-sample data
S N; )
Co — occurrence(A, B) group = Z < S * Co — occurrence(4, B)l-> i€(.2,..5

i=1'Vi

i=1
The grouped co-occurrence is equal to the result of merged multiple samples calculated per
sample since all samples originate from the same tissue. On the other hand, we use the difference
to indicate the co-occurrence between two samples or two groups. The differential co-occurrence
value ranges from -1 to 1, where the positive value represents improvement of co-occurrence, and

viceversa

Benchmark of co-occurrence algorithm

To compare the performance of cell type co-occurrence of Stereopy with Squidpy, we tested on
mouse kidney WT and BTBR samples [28]. Since there is no ground truth for cell co-occurrence.
we compared the results with previoudy reported findings. The co-occurrence is calculated based
on the cell spatial neighborhood and the distance traverse from 0O to 180 in steps size of 30, unit
same as the resolution of dide-seq V2 technology which is 10um (Supplementary Fig. 4a). For
Stereopy, we use co-occurrence function with default parameters while for Squidpy we use
Co_occurrence with parameters spatial_key = ‘spatial’, interval =
np.array([0,30,60,90,120,150,180]) and n_splits= 1. Asa result, Stereopy shows a more obvious
co-occurrence of podocytes and GC cells than Squidpy, which is consistent with Marshall’s
findings [28]. In addition, with the help of grouped and differential co-occurrence among multi-
sample analysis, Stereopy is capable of finding the similarities and diversities of cell type co-
occurrence among multiple samples. Compared to the significant decrease in co-occurrence of GC,
MC with itsef in Squidpy, Stereopy can exhibit more significant changes between multiple
articles, such as the reduction of co-occurrence between PCT_ 1 and PCT_2. (Supplementary Fig.
4c)

Cell community detection (CCD) algorithm

The function of the tissue is tightly coupled with the cell populations inhabiting it. The cell
neighborhood largely affects the essential gene expression patterns of each cell [15]. For that
reason, detecting areas of the tissue with similar cell type distribution and cell type co-occurrence
represents an important finding about the structure and function of the tissue. The main idea

behind defining functional tissue domains (communities) can be narrowed to detecting tissue areas
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with the same cell mixture (percentages of cell types). For this purpose, we developed a Cell
Community Detection (CCD) algorithm that uses annotated cell types together with spatial
coordinates of each cell-spot to assign community labels. CCD divides the tissue using dliding
windows by accommodating multiple window sizes and enables the simultaneous analysis of

multiple samples from the same tissue. It consists of the three main steps (Supplementary Fig. 2):

1. Single or multiple-size sliding windows (w ) are moved through the surface of the tissue with
defined horizontal and vertical steps while calculating the percentages ([p1,p2, ---, Pn]) Of
each cell type inside of it. A feature vector (fv) with a size equal to the number of cell types
(n) iscreated for each processed window across all available tissue samples:

Ywi = (fvi = [P1, D2 s Pnl)

2. Feature vectors from al windows are fed to the clustering algorithm (C) such as Leiden [25],
Spectral [60], or Hierarchical [61] to obtain community labels (I). The number of the desired
communities (cn ) can be predefined explicitly as a parameter (Spectral or Hierarchical
clustering) or by setting the resolution of clustering (Leiden):

COVfv) = Il €Ly, oy ley

3. A community label is assigned to each cell-spot (cs) by majority voting (MV ) using
community labels from all windows covering it:

MV (V1) where spatial(cs]-) Ew, = L, ElL iy

The window sze and dliding step are optional CCD parameters and when not provided the optimal

window size is calculated throughout the iterative process. In the first iteration, the initial window

Size is obtained by dividing the minimum of x and y gpatial coordinates ranges by 100 and

rounding to the closest even number. Then, we calculate for each window of the obtained size the

average number of cellsbeing covered by it. If the average number is below 30 the window size is
increased by 10% and, if larger it is decreased by 10%. The step is repeated until the average
number of cell spotsin all windows is in the range [30, 50]. The dliding step is set to half of the

window size.

CCD also includes several filtering steps controlled with parameters, such as the removal of cell
types present in all parts of the tissue and removal of windows with too small number of cell spots.
The spatial distribution of each cell type can be evaluated using 2D entropy [62, 63] and
scatteredness [62] metrics. CCD supports setting the threshold values for these metrics in order to
exclude cell types that are randomly or evenly spread throughout the tissue from processing.
Removing cell types with high entropy and scatteredness improves clustering and provides more
robust cell communities. The robustness and quality of CCD strongly depend on clustering. For
clustering to be stable, feature vectors need to contain a significant amount of information, that is,
enough cell spots in each evaluated window. CCD gathers data on total cell numbers per window

and supports setting a threshold value for the minimum cell-spot number for the window to be
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included in the clugtering process. Cell-spots are marked with the ‘unknown’ label if there are no

cell community labeled windows that overlap them.

Benchmark of cell community detection algorithm

To assess the stability and reliability of Stereopy’s CCD, we conducted a comparison with existing
agorithms for domain detection on three samples: single sample Stereo-seq mouse embryo whole
brain [3], Slide-seq V2 UMOD KI kidney comparative samples [28], and Stereo-seq multi-sample
adult mouse brain [64] (Supplementary Note 2.1). For single sample, we included Giotto’s Spatial
Domain Identification (GSDI) [15], SpaGCN [65] and GraphST [23]for comparison. In addition,
for the multi-sample analysis, we included PRECAST [21] and BASS [22] (Supplementary Note
2.2). Giotto and SpaGCN only support single-sample processing, creating results that require
cluster matching to support further analysis. Both GraphST, BASS and PRECAST are able to
process multiple slices smultaneoudy. CCD is able to process single sample as well as multiple
samples smultaneoudy. SpaGCN was run with the default parameters (resolution = 1.5). Giotto's
SDI required adjustment of gene expression and cell location data to a defined input format. Data
was normalized with normalizeGiotto using scalefactor = 6000. Then, the functions
createSpatialNetwork, binSpect and initHMRF_V2 were processed with k =16 for the brain
sample, and k = 7 for the kidney sample. Annotation was extracted with the doHMRF_V2
function and visualized independently. GraphST is run with default parameters to obtain a 64-
dimensional representation of cells. Then, Louvain is applied to cluster each sample by adjusting
the resolution until a smilar number of clusters as CCD is achieved. Seurat objects for each dlice
were created for both BASS and PRECAST, and default values were used for all parameters,
together with the desired number of clusters. CCD for mouse embryo whole brain sample was ran
with win_sizes = 150, diding_steps = 50, cluster_algo = ‘spectral’ and n_clusters = 16, while for
multi-sample adult dataset parameters were winsizes = 200, diding_steps = 50, cluster_algo =
‘agglomerative’ (Hierarchical) and n_clusters = 16. All parameters were chosen to provide, on
average, 30-40 cells per window, while keeping the communities smooth and coherent.

Evaluation metrics

We utilized two metrics to evaluate the performance of various algorithms in generating results:
Scatter and Density BetWeen clusters (S-Dbw) [66] and SD validity index [58]. S-Dbw considers
both cluster separation and cluster cohesion. It measures how well-separated clusters are from
each other (good separation) while also considering how tightly the data points are grouped within
each cluster (good cohesion). SD vdlidity index combines the measures of average cluster
scattering and total separation between clusters. These dual considerations make S-Dbw and SD
more comprehensive metrics for this purpose than the silhouette score that measures how similar
each data point in one cluster is to the data points in the neighboring clusters. The total benchmark
result can be found in Supplementary Table 1, CCD provides lower S-Dbw and SD scores than
other algorithms, confirming better cluster cohesion and groupin. Meanwhile, we compared the
execution time and memory consumption of GSDI, SpaGCN, GraphST, PRECAST, BASS and
CCD (Supplementary Table 2). The execution time of the CCD is notably faster compared to the
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GSDI and SpaGCN, demonstrating a speedup of at least 90 and 35 times, respectively. The peak
memory consumption is affected by the dimensions of the input file, rendering CCD significantly

more efficient due to its independence from gene expression matrices.

Comparison on mouse embryo brain sample, and region analysis. The mouse embryo brain
(Extended Data Fig. 7a), a structurally well-explored sample, was used for comparison of spatial
domain detection methods, and for further analysis of the biological significance of CCD
communities. Extended Data Fig. 2b provides a comparison of spatia regions obtained by
Stereopy’s CCD, Giotto’'s SDI, SpaGCN, and GraphST, with the numbers of domains fixed.
SpaGCN fails to provide domain integrity. Both GSDI and CCD detect layersin the dorsal pallium,
as well as the thalamus. However, CCD provides smoother and more coherent regions
(Supplementary Table 1), with the detection of several more separate communities. The cell
communities detected by Stereopy’s CCD are composed of multiple neighboring cell types and
correspond to functional tissue domains. To evaluate the CCD’s ability to infer biologica function
and structure, we analyzed separate regions and their correspondence with known functional and
anatomical regions. Extended Data Fig. 2c-d displays the region and composure of two
communities which show significant spatial matching with Hotspot [9] gene modules, and
anatomical regions from Allen brain map [10]. The orange community represents a cell type-
homogenous region, with 70% of dopaminergic neurons (Die GNeu) and 23% of midbrain
glutamatergic neuroblasts (Mb Glu Neu) as main components, where other cell types appear in
abundancies less than 4%. Although these cells can be found in other areas of the tissue (Extended
Data Fig. 2c, second column), this region is defined by the specific mixture of cell types, that is, a
specific tissue domain. This community is spatially matched with the Hotspot gene module, as
well as with the anatomical region of dorsal tier of thalamus (Extended Data Fig. 2c, columns
three and four). The brown community is heterogeneous and contains, on average, 30% forebrain
GABAergic neuron cells (Fb Glu NeuB), 29% cortical intermediate progenitor cells (Corti prog),
13% of cortical or hippocampa glutamatergic neuron cells (CortiHippo Glu Neu) and 10% of
cortical glutamatergic neuron cells (Corti Glu Neu) (Extended Data Fig. 2d, first and second
column). This region is shown to coincide with the gene module obtained by Hotspot, and when
comparing with Allen brain atlas annotation, it corresponds to the mantle zone of dorsal pallium
(Extended Data Fig. 2d, third and fourth column). These results confirm the ability of CCD to

extract biological information.

Comparison on multi-sample adult mouse brain sample. Three samples were processed
separately by GSDI, GraphST and SpaGCN, while BASS, PRECAST and CCD employed their
multi-sample approach (Extended Data Fig. 3b). SpaGCN manages to obtain anatomical regions
with clear borders but provides an unstable number of domains for consecutive samples while

using the same parameters. (Extended Data Fig. 3b). When comparing per sample, domains
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obtained by GSDI, PRECAST, BASS, GraphST and CCD are similar by congtitution. However,
multi-sample processing provides more coherent (Supplementary Table 1) and anatomically
matching results with higher reliability of inter-sample domain matching. Selected samples have
similar cell type shares (Extended Data Fig. 3c). Thus, the consstency of CCD’s communities
throughout samples is confirmed with stable tissue-share communities in all samples (Extended
Data Fig. 3d) together with lowest S-Dbw and SD scores (Supplementary Table 1). Execution of 3
dlices of adult mouse brain CCD finishes in 214 seconds while consuming 25716 MB. It costs less

in terms of execution time and memory compared to other tools (Supplementary Table 2).

Comparison on UMOD K1/ WT sample. CCD, BASS and PRECAST provide joint analysis of
both UMOD KI and WT samples, while Giotto’s SDI, GraphST and SpaGCN perform on each
sample separately (Extended Data Fig. 4c). We compared the results generated by these algorithms,
especially the medulla region according to the annotation obtained from the Marshall et al. paper.
CCD provides domains of higher integrity and robustness compared to BASS, PRECAST, GSDI
and SpaGCN, especially in the medulla region on which CCD identified almost the same region
with the annotation from the origina paper. GSDI, BASS, PRECAST and SpaGCN detected more
than one region and even mixed regions in the medulla area, while CCD and GraphST detect
regions consistent with Marshall et al paper. To further demonstrate the consistency of CCD
regions, we calculated the marker genes for each of them. Marker genes show consistency of the
gene expression and the cell community region in both UMOD KI and WT samples
(Supplementary Fig. 6). CCD manages to process these two kidney samples in 31 seconds while
consuming only 684 MB. It costs less in terms of execution time and memory compared to other
tools (Supplementary Table 2).

Tempor al gene pattern identification (TGPI) algorithm

It is of interest that the expression level of a gene shows a certain pattern during certain biological
processes. Among various kinds of gene patterns, up- or down-regulation is a common pattern.
Here we developed a method to find up- or downregulated genes utilizing the serial t-test along
time series and cell type trgjectory. We use a one-tailed t-test to get the statistic score and p-value
between adjacent time points. Both p-values of greater and less test will be calculated to represent
up- and down-regulated genes, respectively. Then we provided two metrics to combine the p-
value so that we can sort out the most up- or downregulated genes. The two p-vaue combination
metricsinclude:

1. Fisher's method. It is based on the hypothesis that the sum of the -2 logarithm of the p-values

from k-independent experiments follows a chi-squared distribution with 2k degrees of
freedom. Then a combined p-value istested from the chi-squared test.

k
Z —2In (P,)~X?(2k)
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2. Plain Fase Discovery Rate (pFDR) method. We proposed it and integrated the metrics into
TGPI based on the hypothesis that the alternative probability indicate the increasement of
expression between adjacent time point and each time point is independent. Then, the false
discovery rare without any correction is utilized to indicate the significance of serialy up or
down-regulation. The pFDR is calculated according to the following formula:

k
Peombination =1 — | | 1-P
i=1

Except for serialy up or downregulated genes, some genes show more complicated patterns
during certain biological processes. To get all kinds of patterns automatically, we use fuzzy C
means to cluster genes inspired by Mfuzz [33]. Stereopy considered both spatial and temporal
expression features leading to more biological significant result. For spatial feature, Stereopy
calculate pca based on rasterized expression on a certain bin size, and use first several principal
components as spatial feature.
f_spatial = PCA({exp,, exp,, ...,expy}) N = bins number
For temporal feature, Stereopy utilizes the result from serially up/downregulated genes as input.
We use the serial greater p-value Pgi and serial less p-value Pli as features for each gene based on
the following formula:
Pl = Pg; .
f_temporal; = ———— X maximun(1 — Pl;,1 — Pg;) f_temporal; € (—1,1)
|Pl; — Pg;l
After calculation, the lower fi represents downregulated and the higher fi represents upregulated.
In this way, we regard fi as the tendency of a gene between adjacent time points. Compared to
Mfuzz which takes mean expression as input, Stereopy’s temporal feature will place more
emphasis on the tendency rather than the original gene expresson. To combine feature of both
temporal and spatial, we concatenate the scaled spatia features with first N spatial feature and to
temporal feature for each gene. A parameter alpha is also used to weight the effect of spatial
features.
f = concat(f_temporal, alpha * f_spatial[1: N_spatial_feature])
Finally. Fuzzy C meansis used to cluster genes into groups. The main principle of fuzzy C means
isto minimize J according to the following equation:

N C
J@w,v) = Zzuﬁ-

=1 j=1

2
|gi—uj|| i €[1,N],j€[1,C]

In this equation, fi represent the feature combined both temporal and spatial, vj belongs to the
center of each cluster. m is the fuzziness and equals to 2 by default. uf} is the membership of i
geneinj cluster it subject to:
c

Zu” =1 u;>0

j=1
With the help of spatial feature, Stereopy’s TGPI can further distinguish gene clusters with similar
temporal expression but spatially differential expressed, which makes the result more biologically
significant (Extended Data Fig.6 and Supplementary Fig. 11).
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Benchmark of temporal gene pattern identification algorithm

The evaluation of Stereopy’s TGPI contains two important modules: 1) the p-value combination
statistic metric ‘pFDR’ proposed in TGPI to find the up-/down- regulated genes. 2) the whole
temporal gene pattern detection algorithm ‘TGPI’ in spatial-resolved temporal datasets.

P-value combination statistic metrics evaluation. We benchmarked our proposed p-value
combination metric ‘pFDR’ with fisher’s method on temporal mouse forebrain datasets. We made
three comparisons with respect to three cell types including dorsal forebrain, forebrain neuronal
intermediate progenitor, and forebrain cortical glutamatergic in these datasets (Extended Data Fig
5 and Supplementary Fig. 9-10). According to the occurrence of three cell types, three
comparisons contain 7, 5, and 3 time points respectively. In each comparison, we used ‘pFDR’ and
fisher’s method to detect the continuous up-/regulated genes and visualized the corresponding
gene expressions. It is obvious that ‘pFDR’ can better find real continuously up-/down- regulated
genes which has a stable tendency of rise or fail gene expresson aong with the time seriesin all

these comparisons.

Temporal gene pattern detection algorithm evaluation. We first tested the effect of spatial
features. N top spatial features range from 3 to 6 are tested. Taking Foxgl, Hesb, and Mab2112 as
examples, we tested the 4 nearest neighbors (NN) of these genes according to Euclidean distance
based on N top spatial features. (Extended Data Fig. 6). From the result we observed that a similar
gpatial expression pattern is detected in each 4NN gene. The higher the N spatia feature is, the
more similar spatial expression patterns can be observed (Extended Data Fig 6). Additionally, as
the N spatial feature reaches 5, the 4NN genes tend to be constant. Since the N spatial feature can
reflect the spatia expression feature, we tested its influence on TGPI (Supplementary Fig. 11a).
The result indicated that the increment of N spatial feature resulted in higher consistency of genes
in atempora pattern to some extent (blue box). Moreover, with the help of spatial features, TGPI
can distinguish genes with similar tempora patterns. For example, Cluster 2 and Cluster 8 of
TGPI with N spatial feature equal to 3 are similar in temporal expression pattern and divergencein

spatial expression pattern (Supplementary Fig. 11b-c).

To evaluate TGPI's performance on real datasets, we compared the TGPI algorithm with another
time series gene pattern method called Mfuzz [33]. The Stereo-seq mouse embryo brain data from
E9.5 to E16.5, which is the subset of mouse embryo dataset with annotation as ‘Brain’, is used to
evaluate the performance of TGPI [3]. Genes were clustered into 8 clusters for both Stereopy and
Mfuzz. To evaluate the performance of the gene pattern results, we caculate the Pearson’'s
correlation of gene expression with the pseudotime and ANOVA test among time points. The F-
score of ANOVA test is used to reflect the divergence between time points. If a certain gene is
more related to time points, the F score will be higher. We calculated top 100 genes of each TGPI
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cluster ordered by weights of clustering results for both Stereopy and Mfuzz. The results show that
most TGPI clusters exhibit not only a higher F score in the ANOVA test among time points but
aso higher Pearson’s correlation with pseudotime, which means genes within the gene pattern
identified by TGPI are more related to both time point and pseudotime (Extended Data Fig. 7a).
Moreover, from the GO enrichment results, we concluded that TGPI is more capable of grouping
genes with the same expression pattern and functions (Extended Data Fig. 7b-c). We conducted
GO enrichment analysis on top 20 genes of each cluster for both TGPI and Mfuzz. As aresult, 7
gene pattern clusters of TGPl enriched GO terms while only 3 clusters enriched GO terms for
Mfuzz with the same p value cut off (p=0.05). Meanwhile, TGPI's genes are more related to
neuron development. For example, Cluster 5 of TGPI's result has a similar tendency to Cluster 8
of Mfuzz results, both of which enriched GO terms related to synapse organization and assemble.
However, the gene count of GO in TGPI reached 5 while the gene counts of Mfuzz's cluster 8
reached 3. Additionally, the TGPl enriched more GO terms related to neuron development
(sensory perception in Cluster 1, learning or memory in cluster 8) and mitotic (mitotic nuclear

divisonin cluster 7).

3D cell-nicheregulatory network prediction algorithm

Stereopy-NicheReg3D starts with the cell-niche communication prediction. To ensure the
accuracy and specificity of this juxtacrine signaling model, we extract cells bordering their niches
and dtatistically calculate their CCC activity scores of L-R pairs under the assumption that
intercellular L-R communications routinely exist among closely neighboring cells. The niche is
defined as all the neighboring cells from other types whose Euclidean distance to any of the cells
from the center type is less than apre-defined radius r. Let S, denote the set of all cells of type k,
¢; represent cell i, d(-,-) represent Euclidean distance between any two cells, then the niche can be
formulated as:

N = U {Ci € Sk: Cj € Scenter typel d(ci; Cj) < T'}
ke{niche cell types}

Next, we perform a label permutation-based statistical CCC analysis to generate significant cell-
niche L-R pairs by incorporating both L-R gene co-expression and 3D location of the cells. In
brief, we collect potential L-R pairs and construct a customized Liana consensus database [43]

(https://github.com/saezl ab/liana-py/tree/main/liana/resource/omni_resource.csv). We then follow

a similar approach reported by CellPhoneDB [45] to compute the average expression level of the
ligand in the sender cells and that of the receptor in the receiver cells in the cell-niche boundary.
The communication score is defined as the mean value of the average L-R expression within a 3D
niche:
1o T
Sij =§(xi +x7)

where sf]T is the communication score for ligand L in cell typei and receptor r in cell typej, x} is
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the average expression level of ligand [ in sender cell typei, x; is the average expression level of
receptor r in receiver cell typej.

The significance of the communication scores is evaluated through random shuffling of the cell
type labels of cellsin the niche multiple times, m. The p-valueis defined as the number of random

shuffles that reach a score higher than the true score:

— ka=1 I{x>sT}(5k)
p m
where s is the true communication score, s, is the calculated communication score at the kth

shuffle, I,y (x) istheindicator function which equalsto 1 if x > s, and O otherwise. Typically,
a p-value smaller than 0.05 suggests that the corresponding L-R interaction is datigtically
significant.

To comprehensively demonstrate the possible regulation mechanism, we eventually connect
significant L-R interactions detected in the cell-niche communication analysis with the TF-
centered regulonsidentified by the SpaGRN[67] analysis based on the integrated weighted ligand-
signaling network from Nichenet-v2 [59]
(https.//zenodo.org/record/7074291/filesweighted networks nsga2r final mouse.rds). This
database contains 3,865,137 rows, each of which represents a pair of directed signaling

interactions with a specific weight prioritized using 57 data sources. We convert the whole
network data into a weighted directed graph G = (V,E,W). For a given receptor and TF, we
search for the shortest path between the two nodes and consider it as the potential signaling path
between them. The distance of each graph edge is defined as the reciprocal of itsweight:

ij

where w;; isthe weight of edge e;; connecting node i and j.

Benchmark of cell-niche communication prediction algorithm

To demongtrate the algorithm efficiency, we systematically compared the general features of the
Stereopy-NicheReg3D module with CellPhoneDB [45] and NICHES [50] to the same mouse heart
dataset (Supplementary Table 6). We dightly modified two software tools to enable them to
analyze the 3D SRT data. For the CellPhoneDB implementation, the spatial relationship of VCM
and other cell clusterswas initialy provided and the default parameters were used to obtain VCM-
significant L-R pairs. NICHES was adopted to obtain single-cell-resolution interaction results. We
then integrated the expression of L-R pairs coming from each niche component and landing on the
VCM cells by summing the L-R expression, and identified the cell type-specific L-R pairs using
the Seurat FindAllMarkers function.

We benchmarked the performance of this module and the other two tools on the same Linux
system with Intel Core Processor (Broadwell, IBRS) of 30 threads and 512 GB memory. Both
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Stereopy and NIHCES enable the investigation in sender—receiver single cells, which is usually
computationally prohibitive for CCC analysis thanks to Stereopy’s niche extraction and NICHES's
subsampling strategies. These strategies also accelerate the computation compared to the whole
cluster-based CellPhoneDB (Extended Data Fig. 9). However, subsampling might preclude a
complete view of CCC structure and risk obscuring significant L-R pairs. As a result, in terms of
the number of specific CCC interactions, Stereopy obtains the most specific L-R pairsin al VCM-
niche cases except ACM-VCM, almost covering those derived by other tools (Extended Data Fig.
9).
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Data availability

The processed datasets have been deposited in published papers. Slide-seq2 datasets. mouse
kidney datasets are downloaded from [28], of which “P uck 191204 22.h5ad” and “P uck 191204
15.h5ad” are used as BTBR WT and ob/ob sample respectively and “P uck 191223 19.h5ad” and
“P uck 200104 07.h5ad” are used as WT and UMOD K1 sample respectively. Stereo-seq datasets:
a sample of 12 weeks adult mouse brain, mouse embryo SRT samples from E9.5 to E16.5, and
entire 3D mouse embryonic heart datasets are downloaded from StomicsDB MOSTA [68]. Three

adjacent samples of coronal mouse brain are downloaded from Spatial-1D [64].
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Code availability

Stereopy is a pip installable Python package and is available at the following GitHub repository:
https.//github.com/STOmics/ Stereopy, with documentation at:
https.//stereopy.readthedocs.io/en/latest/. All the code to reproduce the result of the analysis can
be found a the following GitHub repository:
https://github.com/STOmi cs/Stereopy/tree/main/docs/'source/Tutorials.
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Fig. 1 Overview of Stereopy. a, Stereopy provides solutions for multi-sample analysis, from
multi-sample data container and framework, multi-sample data analysis modules, to multi-sample
interactive visualization. b, Stereopy offers key analysis modules for three main multi-sample data
analysis scenarios. It includes (i) Comparative analysis. Stereopy provides functions from cell
level and gene level to infer the global and local similarity and diversity for comparative SRT
datasets. (ii) Tempora analyss. Stereopy provides temporal trgectory analysis and spatial
resolved temporal gene pattern analysis to phase the temporal variable datasets. (iii) 3D integrated
analysis. Stereopy enables 3D data reconstruction and 3D signaling path identification function to
explore regulation mechanisms. ¢, Simultaneously, Stereopy contributes the key agorithms for the
above three kinds of analysis scenarios. It includes (i) Cell community detection (CCD) algorithm
aims to detect cell communities on single/multi-sample datasets, which is supposed to find
common and specific community, especially for comparative samples. (ii) Tempora gene pattern
identification (TGPI) algorithm aims to identify temporal variable gene patterns with spatial
restriction, which is supposed to find gene pattern related to development or temporal variation.
(iii) 3D cell-cell signaling path inference tool aims to identify regulation mechanisms from the 3D
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Fig. 2 Stereopy designs flexible multi-sample data analysis framework, and accelerates
multi-sample analysis. a, Stereopy designs multi-sample data (MsData) container, b, Multi-

sample scope (MSS) controller, and ¢, Multi-sample flexible analysis transformer to support
multi-sample SRT scalable analysis. Based on that, Stereopy is able to support. d, Steroepy
provides multi-sample parallel or integrated processing and e, joint multi-sample processing for
comparative analyss, temporal analysis, and 3D integrative analysis. f, Stereopy restores and
enables processing of gene expression, spatia information and corresponding image features for
each sample of spatial omics. g, Comparison of execution time of Stereopy, Seurat, Giotto and
Scanpy in the basic processes, including preprocessing, PCA, finding neighbors, UMAP, Leiden
clustering, Louvain clustering, and finding marker genes. h, Comparison of execution time of
basic processes, including finding neighbors, UMARP, Leiden clustering, Louvain clustering with
GPU mode or without GPU mode.
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Fig. 3 Stereopy facilitates comparative analysis of spatial transcriptomes with multiple
samples. a, A graphical abstract for Stereopy comparative multi-sample analysis. Stereopy offers
analytic functions on the diversity of cell congtitution, co-occurrence and cell community at cell
aspect as well as differential expression gene, spatial gene module and constant/conditional
marker at gene aspect. Combining Stereopy’s complete and comprehensive analysis workflow,
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spatial pattern diversity can be easily explored at both global and local levels. b, Co-occurrence
result for BTBR kidney sample. left: spatial map of WT and BTBR diabete (ob/ob) kidney
samples; middle: line plot shows the podocyte cell co-occurrence with other cell types; right:
spatial map on the right side confirmed the co-occurrence with GCs and MC. Upper and lower
part represents WT and ob samples, respectively. ¢, Left column: spatial hotspots gene module that
corresponds to podocyte location. Right column: local auto-correlation of corresponding gene
module. Upper and lower part represents WT and ob samples, respectively. d, Spatial map of cell
type annotation, tissue domain identified by Stereopy-CCD algorithm and medulla defined by
Marshall et al. for WT and UMOD KI kidney samples. Left, middle and right part represents cell
type annotation, tissue domain annotation and medulla defined by Marshal et al., respectively.
Upper and lower represent WT and UMOD KI samples, respectively. e, Left part: differential
expressed genes for medullain WT sample as well asits composing cell types EC, TAL and other
immune. Right part: GO enrichment for medulla, EC, TAL and other immune. f, The cell type
constitution and proportion for medulla of WT and UMOD KI samples. g, Constant and
conditional marker for medulla of WT and UMOD KI samples. Left part shows the heatmap of
constant and conditional markers. High expression is only found under certain condition for
conditional marker while both conditions have a high expression for constant marker. Right part
shows GO enrichment for each group of genes. UMOD KI conditional marker (orange) enriched
GO terms including wound healing and so on. h, Spatial heatmap of Spl and Apoe for WT and
UMOD KI samples.
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Fig. 4 Stereopy enablestemporal analyss of spatial transcriptomes with multiple samples. a,
A graphical abstract for the time series analysis pipeline. For cell aspect, Stereopy integrates
PAGA and diffuson pseudotime; for gene aspect, Stereopy proposed an algorithm of spatial
resolved temporal gene analysis that can search up or downregulated genes as well as gene

clusters with similar temporal patterns. b, Spatial trajectory visualization of mouse embryo multi-


https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.04.569485; this version posted December 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sample transcriptomes from E9.5 to E16.5. c, A tree plot to indicate the develop of mouse embryo
ectoderm. X-axis represents time point. Dot size indicate the cell nhumber and red arrow indicate
the trajectory from PAGA. d, Manua annotation and pseudotime for time series mouse brain
samples. e, Development tree for cell typesin time series. X-axis represents time point. The height
of each Sankey represents the cell amount of cell type at a certain time point. f, PAGA graph for
mouse brain trajectory inference. Red arrow points at cell types for downstream anaysis. g, Up
and downregulated genes for mouse forebrain trajectory and corresponding GO enrichment
analysis. h, The F-score among time point and correlation with pseudotime of top 1000 gene of
each cluster of Stereopy-TGPI and Mfuzz. Blue and yellow represent Stereopy-TGPI and Mfuzz,
respectively. i, A temporal gene pattern identified by Stereopy-TGPI for mouse forebrain trgjectory.
j, A tempora gene pattern identified by Stereopy-TGPI for mouse forebrain time series datasets. k,
Gene expression of Teadl in each cell type at each time point. |, Spatial heatmap for AUC score of
TF Teadl regulons in each time point and corresponding GO enrichment analysis. m, Gene
network for Teadl in time series. Radial line represents a group of genes and points on it indicate

time points when these genes occurred. Point size indicates the gene number.
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Fig. 5 Stereopy integrates spatial multi-sample data and reveals novel 3D regulatory
mechanisms related to cardiac development. a, Stereopy-NicheReg3D’s overal workflow. b,
Stereopy-NicheReg3D illustrating multi-hierarchically transcriptomic architecture, ranging from
heart organ meshes, heart cell types and clusters, spatially variable genes (Myl2), spatialy specific
regulons (Mef2c(+)), and niche-specific L-R pairs (Igf2-1gf2r) from left to right. ¢, Spatial
distribution of VCM’s niche compositions composed of neighboring ACM, blood, EC, EP and FM
cells in the boundary. d, Circos plot showing bidirected cell-cell interactions in five niches. The
width of an arrow correlates with the number of significant L-R pairs. e, Heatmap showing the
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CCC intensities without niche restriction, which is different from Fig. 5d. f-g, Bubble plots
demonstrating cell-type-specific L-R pairs. f) niches to VCM. g) VCM to niches. Circle color
indicates the mean expression of each L-R pair, while circle size indicates its p-value. h, Sankey
plot connecting intercellular ligand-receptor interactions from sender niche cells to receiver VCM
cellsto VCM intracellular downstream TFs via deductive specific signaling pathways. Bandwidth
indicates the mean expression of the two genes at both ends. i, Regulatory network showing
inferred intracellular signaling paths from receptor Itgh1 to downstream TFs within the same cells.
j,» Shared and specific TGs in Pdlim5(+) and MIIt10(+) regulons showing the 3D co-regulation
function. k, GO enrichment anaysis indicating the collective function of shared targets of
regulons in Fig. 5k (shared, Pdlim5(+) and MIIt10(+) from left to right). |, 3D regulation model of

extracellular signaling to intracellular gene regulatory network.
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Extended Data Fig. 1 Overview of Stereopy functions.

a, Analysis functions for single sample, including preprocessing for spatial gene expression and
images, clustering and annotation, cell-level and gene-level analysis modules. b, Anayss
functions for multi-sample joint analysis, including batch effect evaluation and removal
processing, comparative analyss, temporal analysis and 3D integrated analysis. c, Interactive
visualization, including dtatistic plotting, 2D in-situ interactive visualization and 3D interactive

visualization.
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Extended Data Fig. 2 Cell community detection and comparisons on Stereo-seq mouse
embryo whole-brain sample.

a, Cell type annotation of the mouse embryonic brain obtained from MOSTA database. b,
Stereopy-CCD, Giotto-SDI, SpaGCN, and GraphST results. c-d, Comparative display of detected
cell communities and their corresponding functional and anatomical domains. Left to right: area of
the community, tissue distribution of cell types comprising the community with community cell
types and percentages shown in the legend, Hotspot domain, and anatomical region from the Allen

mouse brain atlas corresponding to the community region. ¢, Community matching the dorsal tier
of thalamus. d, Community matching the mantle zone or dorsal pallium.
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Extended Data Fig. 3 Cell community detection and comparisons on Stereo-seq multi-sample
adult mouse brain sample.

a, Cell type annotation of three adult mouse brains. b, Domain detected by Giotto-SDI and
SpaGCN, for each sample as well as domain / cell community detected by GraphST, BASS,
PRECST and Stereopy-CCD for multi-sample joint processing. ¢, Bar plot of per sample cell type
abundance by Stereopy-CCD. d, Bar plot of per sample cell community abundance by Stereopy-
CCD.
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Extended Data Fig. 4 Comparison of Stereopy-CCD, Giotto-SDI, SpaGCN, GraphST and
STAGATE on mouse kidney samples.

a, Author annotated cell type and author annotated medulla region of WT kidney sample. b,
Author annotated cell type and author annotated medulla region of UMOD KI kidney sample. c,
Domain detected by Giotto-SDI and SpaGCN for each sample, as well as domain / cell
community detected by GraphST, BASS and PRECAST and Stereopy-CCD for multi-sample joint

processing.
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Extended Data Fig. 5 Up and down regulated genesidentified by Stereopy-TGPI for
temporal dorsal forebrain.

a, Left: boxplot of up regulated genes based on different p value combination method; right:
spatial map of gene set of mean expression of top 20 up regulated genes. The result is calculated
based on pFDR in Stereopy-TGPI (Top), and fisher's method (Bottom), respectively. b, Left:
boxplot of down regulated genes based on different p value combination method; right: spatial
map of gene set of mean expression of top 20 down regulated genes. The result is calculated based
on pFDR in Stereopy-TGPI (Top), and fisher’s method (Bottom), respectively.
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Extended Data Fig. 6 The influence of spatial featureson the detection of temporal gene
pattern.

Each column shows the spatial maps of genes which have minimal distances with the certain gene
calculated based on different number of spatia features range from 3 to 6. The spatial map is
present on rasterized temporal mouse brain. The certain genes are Foxgl, Vim, and Nfib from left
to right respectively. The distance is calculate based on 3,4,5,6 top spatial features from up to
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down, respectively. The red box indicates that when the top spatial features are increased to 5, the
results become comparable to those obtained with alarger number of top spatial features.
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Extended Data Fig. 7 Comparison of TGPI in Stereopy and Mfuzz for the temporal gene
pattern clugtersresult.

a, The F-score among time point and correlation with pseudotime of top 1000 gene of each cluster
of Stereopy-TGPI and Mfuzz. Blue and yellow represent Stereopy and Mfuzz, respectively. b,
Stereopy temporal gene pattern for mouse brain aong time series and corresponding GO
enrichments for each temporal gene pattern cluster. ¢, Mfuzz temporal gene pattern for mouse
brain along time series and corresponding GO enrichments for each temporal gene pattern cluster.
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Extended Data Fig. 8 3D visualization of selected regulatory regulons and selected cell-cell

communicationsin four VCM niches.

a, TF and target genes in 16 representative V CM-specific regulons that are potentially regulated
by VCM-niche L-R pairs. b, Heatmap disclosing top cell-type-specific regulons detected by
NicheReg3D. ¢, 3D distribution of selected regulons in (a). d, 3D visudization of Igf2_lgf2r,
Calml_Cacnalc and Fnl_Cd44 from blood, EC, EP, FM to VCM cells in each corresponding

niche.


https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.04.569485; this version posted December 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Stereoay_niche . Stercopy
Stermany £0C
X = Ceipnoneus
WICHFS:

2 e
8 3

=
3
Number of detected LN pairs

Elapsed (wall clock) Tme (in seconds)

~
2

ACMVCM  BloodVCM  ECVCM EPVCH FM_VCM

ACM_YCM

A 4
T

Blood VCM  EC_VEM EP_VCM FM_VCM

AGH VCM Blcod_VCM

-—
|

I laf2_lafar
H 1 1 Cellphon Mk N
I Stereopy CellphondDB .
I NICHES I Calm2_Cachals
o e ' o AN sLaGhaila
v = Vim_Cdd4
Gpeh_Cdbi Yeen_Codd
Pkm Cd44
r1_Cdd4 Fm
EC_vCM E°_VCH ni_Cddd
Stereapy Fnl Cudd Stereopy Cddd

Idie_Mal
Caim1_Ryr2
Calm2_Ceoneio
Calnl_Cacneic
{mimi_Hr?
Calm3_Cacnaic
Fon1_Jlk1
Cel Cddd. CaMa2_Cddd
Cclai_Cddd ColMel_Cddéd
Lgoisd_ligol Lgaini_Rkgb1
Fid YGi
Stereopy
uk Mel
Caim1_Ryr2
Galm2_Ceaonaio
Caimi_Caonaio
Caim3_Rw2
Calm3_Cacnaic
Fon1_light
Wim_Cdd4
etpnorghs Cudez G4
Fn1_Cddd.
Lgals1_Jigbi

Extended Data Fig. 9 CCC comparison of Stereopy, CellphoneDB, and NICHES.

a, Runtime of CCC anaysis for five VCM-niche datasets using different CCC tools. b, Number of
significant L-R pairs obtained by different CCC tools. ¢, Venn diagrams showing that the Stereopy
CCC module detects more reliable L-R pairs, which almost cover those detected by the other two

tools.
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Extended Data Fig. 10 Comparison of 3D joint analysisand 2D analyses.

a, Stacked chart showing the number of 2D samples that can detect significant L-R pairs
demonstrating the completeness of CCC results from the 3D joint analysis. b, Stacked chart
showing number of 2D samplesthat can detect each of the seven L-R pairsin (). ¢, Stacked chart
showing number of regulons among the 16 regulons potentially influenced by CCC in the VCM
niche across the 2D dlices. d, Boxplot illustrating the distribution of the number of targetsin each
regulon across the 2D dlices.
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