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Abstract 

Tracing cellular dynamic changes across conditions, time, and space is crucial for understanding 

the molecular mechanisms underlying complex biological systems. However, integrating multi-

sample data in a unified and flexible way to explore cellular heterogeneity remains a major 

challenge.  Here, we present Stereopy, a flexible and versatile framework for modeling and 

dissecting comparative and spatiotemporal patterns in multi-sample spatial transcriptomics with 

interactive data visualization. To optimize this flexible framework, we have developed three key 

components: a multi-sample tailored data container, a scope controller, and an analysis transformer. 

Furthermore, Stereopy showcases three transformative applications supported by pivotal 

algorithms. Firstly, the multi-sample cell community detection (CCD) algorithm introduces an 

innovative capability to detect specific cell communities and identify genes responsible for 

pathological changes in comparable datasets. Secondly, the spatially resolved temporal gene 

pattern inference (TGPI) algorithm represents a notable advancement in detecting important 

spatiotemporal gene patterns while concurrently considering spatial and temporal features, which 

enhances the identification of important genes, domains and regulatory factors closely associated 

with temporal datasets. Finally, the 3D niche-based regulation inference tool, named NicheReg3D, 

reconstructs the 3D cell niches to enable the inference of cell-gene interaction network within the 

spatial texture, thus bridging intercellular communications and intracellular regulations to unravel 

the intricate regulatory mechanisms that govern cellular behavior. Overall, Stereopy serves as both 

a bioinformatics toolbox and an extensible framework that provides researchers with enhanced 

data interpretation abilities and new perspectives for mining multi-sample spatial transcriptomics 

data. 

 

Introduction 

Cells are not static. Dynamical and orderly cellular proliferation, differentiation, and maturation 

accomplish their functions by spatially interacting with the microenvironment consisting of 

external stimuli and other cells, which forms the complex architecture of multicellularity. However, 

understanding the underlying mechanisms that govern disease, development, and homeostasis is 

still an open question in scientific investigations. Such investigations often require the 

simultaneous analysis of datasets comprising multiple samples, enabling researchers to effectively 

track the specificity and variation of cells and genes across different conditions, time points, and 

spatial dimensions [1, 2]. The advent of high-resolution spatial resolved transcriptomics (SRT) 

technologies, such as Stereo-seq [3], Slide-seq [4], MERFISH [5], SeqFish [6], STARmap [7], and 

Xenium [8], holds immense potential for generating large-scale multi-sample datasets. These 

advancements also underscore the demand for more advanced analytical approaches, enabling the 

exploration of molecular alterations and characteristics in various contexts—be it conditional, 

temporal, or spatial [9]. These contexts span a wide spectrum of applications, ranging from 

tracking disease progression [10, 11] and monitoring temporal cellular development [12] to 
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dissecting the intricacies of spatial organogenesis  [3, 13].  

 

Pioneering analysis frameworks for spatial or single-cell transcriptomics data such as Squidpy 

[14], Giotto [15], Scanpy [16], Seurat [17], and scvi-tools [18] have been widely employed, 

enabling temporally and/or spatially resolved studies with spatial omics data. However, they were 

primarily designed for single-sample analysis [19]. Multi-sample analyses also necessitate tailored 

data containers to enable efficient data organization, flexibility, and scalability. However , existing 

data containers including AnnData (used in Scanpy [16]), SeuratObject (used in Seurat [17]), 

GiottoObject (used in Giotto [15]), and MuData (used in Muon [20]) are inherently limited in their 

capacity to manage multiple samples. Furthermore, existing methods [21-23] lack the capacity for 

advanced multi-sample analysis, including individual sample analysis, managing analysis step 

dependencies, and transitioning between single-sample and multi-sample results. With decreasing 

data costs and growing tissue complexity, efficient methods for storing, integrating, and 

visualizing multi-sample omics data across various dimensions are urgently needed.  

 

However, developing a multi-sample analysis framework requires solving complex challenges. 

Key among these is the need to establish a standardized framework for contextualizing analysis 

modules and visualization functions, design scalable data representation for multi-sample data 

management, and provide integrated solutions for multi-purpose tasks. In response to these 

challenges, we propose Stereopy, a comprehensive multi-sample analysis toolkit that includes a 

complete set of extensible tools for managing, analyzing, and visualizing multi-sample spatial 

omics data. To efficiently manage multiple samples in a unified and convenient manner, we 

address the flexible cross-sample storage of input data and analysis results while ensuring the 

accessibility and traceability of outcomes. A flexible analysis framework is also designed to enable 

analysis on specific samples, manage dependencies between different analysis steps, and facilitate 

the transformation of single-sample results into integrated results.  

 

The resulting comprehensive analysis solutions improve the utilization of information when 

applied to different datasets (Supplementary Note 1). For comparative analysis, Stereopy 

compares disturbed or disease samples to control samples, analyzes the diversity at both global 

and local levels in the spatial context, and identifies the changes in functional mechanisms that 

arise as a result of stress responses or disease perturbations. The multi-sample cell community 

detection (CCD) algorithm developed in Stereopy introduces an innovative capability to detect 

variations at the cell community level in comparative samples (Supplementary Note 2.1). For 

temporal analysis, it explores temporal variations in cell types and gene expression over time, 

reflecting the temporal and molecular intricacies of organismal development with spatial 

resolution. The proposed spatial resolved temporal gene pattern inference (TGPI) algorithm in 

Stereopy presents a significant enhancement in detecting spatiotemporal gene patterns marking the 
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first instance which simultaneously considering spatial and temporal features (Supplementary 

Note 2.2). For 3D integrated analysis, it provides a powerful tool, named NicheReg3D, for 

reconstructing the cell niche and investigating the effect of intercellular signaling on the 

intracellular regulation within spatial constraints, enabling new insights into organ development 

(Supplementary Note 2.3). Additionally, Stereopy offers flexible data visualization techniques for 

both 2D and 3D datasets to researchers to conveniently explore the intricate spatiotemporal 

changes of genes and cells and accurately model underlying biological processes across different 

dimensions. Stereopy is available at https://github.com/STOmics/Stereopy. Its documentation and 

extensive tutorials can be explored at https://stereopy.readthedocs.io/en/latest. 

 

Results 

Overview of Stereopy 

Stereopy provides a comprehensive and robust solution for multi-sample analysis, comprising 

three main components: a multi-sample data container, multi-sample data analysis modules, and a 

multi-sample interactive visualization (Fig. 1a). This platform is designed to support the closed 

loop of data management through a multi-sample data (MsData) container, multi-sample scope 

(MSS) controller, multi-sample analysis transformer and multi-sample data file format. Stereopy 

also offers well-organized analysis modules and key algorithms for spatial omics data, covering 

three main multi-sample data analysis scenarios: comparative, spatiotemporal, and 3D integrated 

analysis (Supplementary Note 1). These analytical capabilities include the identification of 

specific cell communities and functional modules in comparative multi-sample datasets (Fig. 1b (i) 

and Supplementary Note 1.1), detection of temporal variable genes and gene patterns in time-

series datasets (Fig. 1b (ii) and Supplementary Note 1.2), and inference of complete signaling 

paths from cell-cell communication to gene regulation networks in 3D datasets (Fig. 1b (iii) and 

Supplementary Note 1.3). Stereopy's representative key algorithms for each data type are 

highlighted: 1) the cell community detection algorithm, which finds common or specific 

communities between comparative samples, enriching the comparative analysis capability (Fig. 1c 

(i) and Supplementary Note 2.1); 2) the spatially resolved temporal gene pattern identification 

method, which explores specific genes and modules related to temporal development under spatial 

restriction (Fig. 1c (ii) and Supplementary Note 2.2); and 3) 3D regulation mechanism inference, 

which probes complete gene regulation mechanisms by mining extracellular ligand-receptor 

interactions, intracellular regulation networks, and signaling pathways between them in the entire 

3D tissue level (Fig. 1c (iii) and Supplementary Note 2.3). Furthermore, Stereopy provides 2D and 

3D spatial omics interactive visualization [24], which generates high-quality data explorations and 

supports user-defined browsing. These unique capabilities of Stereopy make it a valuable tool for 

researchers to analyze and interpret multi-sample SRT data, with powerful functionalities that 

enables a deeper understanding of biological processes and mechanisms. 
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Stereopy develops an efficient multi-sample data analysis framework 

Stereopy offers comprehensive analysis framework to support multi-sample analysis through its 

MsData container, MSS controller, and multi-sample analysis transformer. The MsData container 

builds upon the AnnData format, incorporating new features applicable to multiple samples while 

preserving single-sample dependencies (Fig. 2a). Users can conveniently access the entire dataset 

and individual samples through a single handler, enabling flexible analysis across multiple 

samples (Supplementary Fig. 1). The MSS controller plays a critical role in managing result 

storage, tracking analysis dependencies, and visualizing corresponding outcomes (Fig. 2b). It 

empowers users to associate meta-information and results generated with corresponding samples 

for subsequent association analysis. Stereopy’s multi-sample analysis trransformer further 

supports customized analysis of multi-sample datasets with diverse demands (Fig. 2c), providing 

functions to integrate single-sample results into the multi-sample context or reversibly split multi-

sample data for single-sample analysis. These transformations are particularly useful for analysis 

modules like clustering and annotation, which may involve manual curations or calculation 

comparisons by different algorithms. This whole framework facilitates parallel or integrated 

analysis across multiple samples (Fig. 2d and Extended Data fig. 1a). Meanwhile, it empowers 

researchers to conduct comprehensive multi-sample joint analyses and interactive visualization on 

multi-sample data with different demands (Fig. 2e and Extended Data fig. 1b-c). In addition, 

Stereopy is a powerful tool for dealing with single-sample spatial omics data, providing 

researchers with an extensive range of analysis functions and sharing several common features 

and same functions with its multi-sample analysis module (Fig. 2f and Extended Data fig. 1). 

 

Stereopy accelerates multi-sample analysis in both algorithmic and parallel computing levels. 

With the ability to apply parallel analysis to multiple samples for dependent functions, including 

preprocessing, cell clustering, and annotation, Stereopy significantly reduces the overall 

processing time. The common SRT analysis modules embedded in Stereopy consume less time for 

both integrated and parallel processing on different numbers of samples, compared to existing 

tools such as Giotto, Scanpy, and Seurat (Fig. 2g). Meanwhile, Stereopy supports GPU 

acceleration for time-consuming but necessary functions such as PCA (Principal component 

analysis), neighborhood searching, Leiden [25] / Louvain [26] clustering, and SingleR annotation 

[27] (re-implemented in Python as a part of Stereopy). The GPU-accelerated functions 

demonstrate a substantial improvement in execution time compared to their CPU counterparts (Fig. 

2h).  

 

Stereopy unveils cell and gene diversity in comparative SRT analysis 

In scientific research, comparing disturbed or disease samples with control samples allows for the 

exploration of changes in functional mechanisms at both local and global levels. Stereopy is 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569485doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

designed to analyze and identify global and local diversities in comparative samples by employing 

cell-level and gene-level analysis modules, supported by novel algorithms (Supplementary Note 

1.1). The cell-level analysis focuses on cell diversity in terms of cell type, cell co-occurrence, and 

cell community via multi-sample comparisons. Stereopy provides enhanced detection of cell 

communities with our innovative multi-sample Cell Community Detection (CCD) algorithm 

(Supplementary Fig. 2, Supplementary Note 2.1 and Methods). At the gene level, Stereopy 

investigates gene diversity within cell types and cell communities (Fig. 3a), proposing the concept 

of constant and conditional markers. Constant markers exhibit stable expression and remain 

unaffected by disturbance, while conditional markers respond to disturbances and contribute to 

functional changes. 

 

Stereopy-CCD outperforms SpaGCN, GraphST and Giotto in both single-sample scenarios (e.g., 

whole mouse embryo brain) and multi-sample scenarios (e.g., continuous adult mouse brain and 

mouse kidney) (Extended Data Fig. 2-4, Supplementary Table 1-2, and Methods). In the whole 

mouse embryo brain dataset, Stereopy-CCD is capable of effectively identifying cell communities 

or domains that align with existing knowledge (Extended Data Fig. 2). In continuous adult mouse 

brain, Stereopy-CCD detected common cell communities among three slides (Extended Data Fig. 

3). In our analysis of mouse kidney samples, which included a diabetic sample (UMOD KI-

homozygous gene UMOD-C125R knock-in mice with monogenic disorder) and a WT sample [28], 

the Stereopy-CCD algorithm successfully identified a central community present in both samples 

(Extended Data Fig. 4). The central community closely corresponds to the region annotated as 

‘medulla’ in the study conducted by Marshall et al [28] (Fig 3d and Extended Data Fig. 4). 

 

We applied Stereopy to comparative mouse kidney datasets to assess the its efficacy in detecting 

global diversity [28]. Co-occurrence calculations developed in Stereopy were performed on a pair 

of Slide-seq v2 samples:  wild-type (WT) and diabetic (ob/ob genetic model of early diabetic 

kidney disease) (Supplementary Fig. 3). The results corroborated Marshall’s previous findings [28] 

regarding Podocytes’ co-occurrence with GC cells (Fig. 3b) and inferred a higher co-occurrence in 

the ob/ob sample compared to the WT sample. Notably, Stereopy demonstrated a greater 

significance in detecting the co-occurrence of Podocytes with GCs when compared to Squidpy’s 

co-occurrence algorithm [14] (Supplementary Fig. 4a-c). Subsequently, gene modules were 

identified in both samples, revealing the co-expression of Nphs2 (a Podocyte marker) and Cgtf (a 

Podocyte injury marker) in both the WT and ob/ob samples (Fig. 3c). Local autocorrelation 

analysis revealed a stronger correlation between Nphs2 and Cgtf in ob/ob sample (Fig. 3c), and the 

analysis of differentially expressed genes (DEGs) provided evidence of Cgtf's higher rank among 

Podocytes markers (Supplementary Fig. 5). 
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To evaluate the capability of Stereopy of detecting local diversity, we conducted further analysis 

on the cell communities of mouse kidney samples identified by CCD. We annotated the cell 

communities according to anatomical structure, including kidney cortex, medulla, the boundary of 

cortex and medulla, pelvis, and immune region (Fig. 3d). As previous mentioned, the medullary 

region identified by Stereopy-CCD closely corresponds to the region annotated in the study 

conducted by Marshall et al. and the marker genes of each region are clearly discernible (Fig 3d, 

Extended Data Fig.4 and Supplementary Fig. 6). The community ‘medulla’ exhibited similar 

proportions of thick ascending limb (TAL), endothelial cells (EC), and other immune cell types, 

despite the diversity in cell type distribution (Supplementary Fig. 7). The UMOD KI sample 

showed increased percentages of fibroblast and macrophages in the medulla compared to WT (Fig. 

3f and Supplementary Fig. 7), consistent with Marshall’s findings [28]. To analyze markers of 

both tissues and cell types, we calculated DEGs and enriched gene ontology (GO) terms 

specifically for the medulla and its constituent cell types, such as TAL, EC, and other immune cell 

types (Fig. 3e). The marker genes exhibited greater significance, and the enriched GO terms in the 

renal medulla were highly relevant to renal function, including sodium ion transport, potassium 

ion transmembrane transport, and chloride ion homeostasis, highlighting the functional relevance 

of thetissue compared to separate cell types. With that finding we confirmed that examining the 

gene divergence of cell communities provides deep insights into tissue function. To 

comprehensively assess the response of various regions to the UMOD KI disturbance, we 

analyzed the number of conditional markers. Our calculations indicated a substantial increase in 

the number of top DEGs in the medulla region compared to other regions, along with a greater 

diversity of cell types (Supplementary Fig. 8). These findings suggest that examining the overall 

differences of cell communities and condition markers may yield more meaningful biological 

discoveries than focusing solely on individual cell types. Specifically, we observed a consistent 

marker related to renal function, including sodium, potassium, and chloride ion homeostasis, in 

the renal medulla across both healthy and disease samples. However, the UMOD KI sample 

exhibited conditional markers involved in renal function damage, such as response to nutrient 

level, wound healing, and response to extracellular stimulus (Fig. 3g and Supplementary Table 3). 

Notably, Spp1 emerged as a significant conditional marker (Fig. 3h), which has been proved as the 

top hub gene associated with Kidney stone disease [29]. Further analysis revealed that renal stone 

risk persisted when both Spp1 and Umod had variants, indicating the importance of these two 

genes in the development of kidney disease [30]. Another conditional marker, Apoe, was reported 

to be associated with glomerular disorders due to its central role in lipoprotein metabolism. The 

increased abundance of macrophages in the UMOD KI sample is consistent with the hyperactivity 

of macrophages involved in Apoe-related glomerular disorders [31]. 

 

In conclusion, Stereopy provides a systematic analysis of cell-level and gene-level similarity and 

diversity between case and control samples, with high biological significance. The use of the 
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Stereopy-CCD algorithm and identification of conditional markers significantly contribute to the 

understanding of tissue structure and function in comparative analyses. 

 

Stereopy identifies spatiotemporal variation in time-series SRT analysis 

Growth and development of organisms involve complex biological processes characterized by 

variations in cell types and gene expression over time. These intricate molecular changes 

described as temporal variation, captures the intricate molecular changes occurring during 

development. To investigate temporal variations in time-series datasets, Stereopy emphasizes 

dynamic changes in both the spatial and temporal dimensions (Supplementary Note 1.2). In terms 

of cell type changes, Stereopy adopted a manifold partitions-based method [32] to preserve the 

global topology and to infer the trajectory of cell types across different samples, providing a visual 

representation of cell trajectory and changes in cell numbers across time points (Supplementary 

Note 3). Meanwhile, Stereopy proposes a spatially resolved Temporal Gene Pattern Identification 

(TGPI) method for finding genes with similar temporal expression changes, including continuous 

up- or downregulated genes, as well as other complex patterns observed in real time and 

pseudotime (Fig. 4a and Supplementary Note 2.2). 

 

Our proposed statistic metric, the plain false discovery rate (pFDR), has been utilized in Stereopy-

TGPI for detecting continuous up- and down-regulated genes by merging p-values. To evaluate its 

effectiveness, we compared pFDR with Fisher’s method using mouse embryo forebrain datasets 

consisting of three cell types with 7, 5, and 3 time points, respectively. The results demonstrated 

that pFDR is a more stable and reliable approach for identifying genuine up- and down-regulated 

genes with continuous changes in gene expression across multiple time points (Extended Data Fig. 

5, Supplementary Fig. 9-10 and Methods). Stereopy-TGPI serves as a valuable tool for not only 

identifying temporal gene up- and downregulation but also for elucidating intricate temporal or 

pseudotime expression patterns. Stereopy-TGPI simultaneously considers the consistency of gene 

expression in both temporal and spatial aspects (Methods). We conducted an evaluation of the 

significance of spatial features in Stereopy-TGPI and found that they play a crucial role in 

enhancing the consistency of temporal gene pattern detection (Extended Data Fig. 6 and 

Supplementary Fig.11). Compared with Mfuzz, Stereopy-TPGI’s identification was more 

correlated to real and pseudotime tendencies and capable of enriching significant GOs relevant to 

neuron development in the time-series whole mouse brain (Extended Data Fig. 7 and Methods) 

[33].  

 

To illustrate the capability of Stereopy, we investigated the trajectory and temporal gene pattern 

across eight time-point samples of Stereo-seq mouse embryos from E9.5 to E16.5 [3]. We inferred 

the trajectory of the integrated mouse embryo dataset from eight time points and displayed the cell 

type development with a tree plot (Fig. 4b-c). Next, the flexibility of Stereopy’s data container 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569485doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

enabled manual clustering and annotation for the brains of each sample, independently (Fig. 4d, 

Supplementary Fig. 12a). Pseudotime analysis [32] verified a gradual increase in pseudotime, and 

higher pseudotime values in the forebrain region indicated later development (Fig. 4d, 

Supplementary Fig. 12b). Additionally, we provided statistics on the cell number of each cell type 

across time points and inferred the cell trajectory for the time-series mouse brain development 

(Fig. 4e-f and Supplementary Fig. 12c). We then focused on the temporal gene pattern in the 

forebrain trajectory series, encompassing the forebrain progenitor, cortical hem, dorsal forebrain, 

forebrain intermediate progenitor, and forebrain cortical glutamatergic stages.  

 

Applying Stereopy-TGPI to calculate gene up- and downregulation, we identified Foxg1 as the 

top-ranked temporal upregulated gene, a key transcription factor (TF) that showed gradual 

upregulation along the forebrain trajectory, consistent with its dynamic regulation of forebrain 

development [34] (Fig. 4f-h and Supplementary Fig. 13). Conversely, Hes5, a gradually 

downregulated gene, exhibited high expression in embryonic neural precursor cells and played a 

crucial role in negatively regulating neural and oligodendrocyte differentiation [35]. Furthermore, 

we applied Stereopy-TGPI to identifying cell-type-specific expression patterns along the forebrain 

trajectory. Among them, a distinctive cell-type-trajectory gene pattern was observed, with 

characterized genes exhibiting an upregulation trend prior to the cortical hem stage, followed by 

continuous downregulation thereafter. GO terms enriched in this pattern included neural precursor 

and forebrain cell proliferation, implying an important role for cortical hem during forebrain 

development (Fig. 4g).  We observed cortical hem existed exclusively before E14.5 in this dataset, 

which aligned with a previous study that reported the emergence of Cajal-Retzius neurons, the 

constituent cell type of the cortical hem, during the early developmental stages [32]. To investigate 

the functions of cortical hem and key factors leading to its disappearance, we examined temporal 

gene patterns related to time points with consistent occurrence of cortical hem at the forebrain. A 

distinct temporal gene pattern was observed, with peak expression levels during the 

developmental stages from E11.5 to E14.5, coinciding with the presence of the cortical hem and a 

noticeable decrease thereafter (Fig. 4i). We intersected genes from the cell-type-trajectory gene 

pattern and temporal gene pattern. Within this intersection, we identified Tead1 as a key TF that 

exhibited high expression in cortical hem and low expression after its disappearance (Fig. 4j). 

Tead TFs have previously been implicated in regulating cortical development [33]. Leveraging the 

interactive visualization capabilities of Stereopy, we performed gene regulatory network (GRN) 

analysis on the forebrain of each sample by easily selecting regions of interest (Supplementary Fig. 

14). Strikingly, we observed a decrease in the number of genes regulated by Tead1, from 338 at 

E12.5 to 7 at E13.5 (Fig. 4k). The enriched GO terms at E11.5 and E12.5 were similar and highly 

associated with forebrain development, while those at E13.5 were related to neuroblast 

proliferation and forebrain neuron generation. For example, Tcf4, a target gene (TG) regulated by 

Tead1 from E11.5 to E13.5, controls the positioning of cortical projection neurons [38]. However, 
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by E14.5, GO terms were no longer related to neurons or the brain (Fig. 4l). Notably, E14.5 

marked the appearance of forebrain cortical glutamatergic appeared, suggesting that Tead1 and 

cortical hem had finished their neurogenesis function. Our findings underscore the significance of 

Tead1 and cortical hem in forebrain cortical development, providing valuable insights into brain 

development. 

 

Stereopy offers comprehensive solutions for temporal multi-sample analysis, with a particular 

emphasis on the temporal gene patterns. TGPI, a key feature of Stereopy, enables the detection of 

temporal gene patterns within time-series datasets, facilitating the exploration of dynamic changes 

across various time points. By leveraging Stereopy's TGPI functionality, researchers can 

systematically investigate and uncover developmental-related temporal gene patterns, thereby 

revolutionizing our understanding of temporal dynamics in biological systems. 

 

Stereopy reveals principles of niche-mediated regulations in 3D SRT analysis 

Multicellular organisms are inherently comprised of cells and tissues organized within a 3D 

structure, thereby giving rise to intricate cellular interactions that cannot be adequately replicated 

in 2D culture [39]. Unfortunately, conventional analytical approaches remain confined to 2D 

methodologies, inevitably resulting in the loss of crucial interaction information along the z-axis. 

However, Stereopy’s NicheReg3D pipeline addresses this limitation by precisely characterizing 

the cellular constitution of 3D niches and facilitating the comprehensive exploration of 

intercellular and intracellular interactions (Supplementary Note 1.3). It seamlessly combines data 

preprocessing, 3D alignment and reconstruction, cell-niche communication, ligand-receptor (L-

R)-TF-TG pathway inference, and intracellular TF-centered regulatory network prediction (see 

Methods). The core algorithms underpinning 3D joint analysis and the underlying 3D regulation 

model are elucidated in Fig. 5a. When applied to the well-studied system of the mouse cortical 

region sequenced by BARseq, a high-throughput in situ sequencing technique [40], our results 

demonstrated that 3D niches, composed of complete and accurately defined cells from diverse cell 

types after 3D reconstruction of these consecutive 2D slices. It outperformed 2D niche 

composition analysis of each individual slice, benefiting downstream analyses such as the 

predictive identification of cortical areas (Supplementary Fig. 15). 

 

In the 3D context, cellular heterogeneity is not only governed by the intracellular regulatory 

network but also influenced by the extracellular microenvironment to collaboratively accomplish 

diverse biological tasks [41, 42], yet computational methods for modeling both interactions 

simultaneously are insufficient [43]. Our approach enables the joint analysis of spatial multiple 

samples in 3D, providing unique insights into the intracellular regulation mediated by biochemical 

signals of intercellular crosstalk in multiple dimensions. To showcase its effectiveness in exploring 

niche-mediated regulations, we applied Stereopy-NicheReg3D to analyze the cardiac development 
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of a mouse embryo sequenced by Stereo-seq [3]. We extracted 59 10-µm-thick 2D serial 

cryosections at a distance of 10 µm, covering the entire mouse embryonic heart. For the SRT data 

of 90,411 high-quality segmented cells with 30,254 genes inferred from subcellular spots, we 

performed unsupervised clustering analysis for each individual sample and identified six cardiac 

cell clusters (Supplementary Fig. 16 and Supplementary Table 4). The 3D reconstructed model 

provided a multi-hierarchical transcriptomic architecture, ranging from organ meshes, cell types 

and clusters, spatially variable genes, spatially specific regulons, and niche-specific L-R pairs (Fig. 

5b). 

 

Based on the reconstructed 3D murine heart data, our investigation focused on the development of 

ventricular cardiomyocytes (VCMs), in which the cardiac niche played significant roles in 

cardiogenesis through intricate intercellular signal transduction [44]. The VCM niche 

encompassed five other cell types: approximately 28% atrial cardiomyocytes (ACMs), 27% blood 

cells, 23% endocardial cells (ECs), 13% epicardial cells (EPs), and 9% fibro-mesenchymal cells 

(FMs) (Fig. 5c). Within a 25-µm physical distance in 3D, expressed L-R pairs revealed that VCMs 

were the prominent receiver of signals from surrounding cells (Fig. 5d). This finding contradicted 

the conventional understanding of communication activities specific to whole cell clusters [45] 

(Fig. 5e), underscoring the essentiality of 3D spatial neighborhood pruning. Notably, our 

computational analysis predicted a significant molecular interaction between the ligand Vcan and 

its receptor Itgb1 in FM-VCM cells, with moderate presence in other niches (Fig. 5f). This 

observation aligns with previous studies that have emphasized the critical role of Vcan in the 

extracellular matrix for supporting and remodeling VCMs [46, 47]. More interestingly, apart from 

ACMs, the four distinct niche compositions collectively influenced VCM gene expression through 

the same L-R pair sets (Vim-Cd44, Calm1-Ryr2, Igf2-Igf2r…), most of which have been 

implicated in the regulation of CM proliferation, migration, and differentiation [48, 49] (Extended 

Data Fig. 8 and Supplementary Fig. 17). Compared to state-of-the-art CCC tools, including single-

cell CellPhoneDB [45] and spatially resolved NICHES [50] (Supplementary Table 5), Stereopy 

achieved the most complete identification of specific L-R pairs that covered nearly all those 

derived by other tools, thanks to the precise niche extraction (Extended Data Fig. 9). The majority 

of these L-R pairs are involved in mammalian cardiac growth and development (Supplementary 

Table 6). On the other hand, VCM reversely influenced the cell state or function of the cell 

microenvironment through specific L-R pairs (Fig. 5g).  

 

Furthermore, we inferred the specifically expressed GRNs on VCM cells adjacent to the niches 

(Fig. 5h and Supplementary Fig. 18 and Supplementary Table 7). This enrichment analysis yielded 

a set of candidate core TFs and their corresponding regulons, suggesting their potential 

susceptibility to cell-niche communications and warranting further inspection of their regulatory 

effects. We then established deductive signaling paths to connect intercellular signaling activities 
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from niche cells with intracellularly influenced TFs. To simplify the complex network, we retained 

connections between receptors and TFs involving a maximum of two intermediate genes (Fig. 5i). 

Among them, Cd44 emerged as the recipient of the most extracellular signaling, stimulated by 

specific ligands (Col1a1, Col4a1/2, Vcan) or collectively expressed from different niches (Fn1, 

Vim). This signaling could up- or downregulate various TFs such as Tcf4. Previous studies have 

elucidated the ability of Cd44 to activate the canonical Wnt/β-catenin signaling pathway, 

impacting the expression of Tcf4 and downstream genes [51], thereby exerting temporal and 

spatial control over heart maturation [52]. Igf2-Igf2r also collectively regulated VCM proliferation 

and differentiation by activating PI3K/Akt pathways, as previously reported [53, 54]. Moreover, 

the shared Calm1/3-Cacna1c family displayed potential regulation of Mef2c/d expression, which 

has been linked to excitation-contraction coupling in VCM function through calmodulin-

dependent signaling pathways [55, 56]. Our framework additionally facilitated the investigation of 

detailed GRNs for each user-defined receptor in the same cell. For instance, Fig. 5j depicted the 

GRN of the Itgb1 receptor as a directed graph, encompassing various modes, including directed 

acyclic (such as Srebf2 and Tcf3) and bidirected acyclic (such as Pdlim5 and Mllt10). Importantly, 

the inferred GRN, extended to downstream TGs, highlights the potential for intercellular 

communication to regulate the same set of genes, culminating in collective regulation (Fig. 5k and 

Supplementary Fig. 19). For example, Itgb1-related CCC might modulate both Pdlim5 and Mllt10 

through Ilk-related pathways. GO enrichment analysis indicated that their shared TGs jointly 

managed cardiac muscle development and contraction (Fig. 5l), corroborating prior findings [57, 

58]. In contrast to other tools connecting the outside and inside of the cells, such as NicheNet [59], 

Stereopy-NicheReg3D provided a more definitive and complete network for inferring how cell-

niche-specific L-R pairs regulate intracellular regulon activities related to specific cellular 

functions. 

 

In this scenario, we have witnessed that our 3D joint analysis pipeline explores how spatially 

informed extracellular signaling at the niche influences intracellular gene regulation in the cell of 

interest, beyond the limitations of 2D data analysis (Extended Data Fig. 10 and Supplementary Fig. 

20). The integration of CCC and GRN could presumably improve the accuracy of context-specific 

L-R-TF-TG predictions concerning morphological phenotypical changes. As such, we derived an 

improved model of 3D regulation implicating VCM development in cardiac maturation and 

physiology (Fig. 5m). During heart development, VCMs constitute a fundamental element of heart 

function, while EC, EP, FM, and blood cells are key components of the microenvironment 

promoting CM maturation. Niche components collectively or specifically transmit signals through 

shared or distinct L-R pairs, which further promote or inhibit specific TFs inside VCM cells 

through specific signaling pathways. These TFs ultimately influence the expression of 

downstream TFs and TGs, jointly demonstrating the cellular functional state and subtype.  
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Therefore, we anticipate that Stereopy-NicheReg3D will serve as a valuable tool with an 

interactive visualization browser in the 3D space (Supplementary Fig. 21) for better dissecting the 

functional consequences of spatially informed inter-intracellular regulation networks, thereby 

facilitating the prediction of cellular function, state, and corresponding phenotype. 

 

Discussion 

The interpretation of similarities, differences, and developmental changes across multiple samples 

is non-trivia to unravel complex biological regulatory mechanisms using multi-sample spatial 

omics datasets. In this study, we introduce Stereopy, a comprehensive toolkit for managing, 

analyzing, and visualizing multi-sample spatial omics data. It offers the MsData container, MSS 

controller, and a multi-sample analysis transformer, effectively addressing the challenges 

encountered in jointly analyzing multi-sample data. Stereopy also provides a wide array of 

analysis solutions and algorithms tailored specifically for comparative, temporal, and 3D 

integrated analysis in multi-sample endeavors.  

 

Firstly, we employed Stereopy on comparative kidney datasets to validate the co-occurrence of 

Podocytes with GCs and identified Spp1 as a potential significant UMOD KI conditional marker. 

The Stereopy-CCD algorithm proved its efficacy in detecting important cell communities across 

multiple samples, thereby expanding the scope of diversity analysis in comparative studies. 

Subsequently, we harnessed the capabilities of Stereopy to delve into temporal datasets, 

highlighting the function of Tead1 and the cortical hem in forebrain cortical development. This 

investigation provides valuable insights into the intricate dynamics of mouse forebrain 

development using mouse embryonic brain datasets. The Stereopy-TGPI algorithm demonstrated 

its ability to accurately infer temporal gene patterns by integrating spatial information, thereby 

revealing potential gene patterns and key TF genes related to forebrain development. Finally, we 

leveraged Stereopy to explore the 3D multi-sample datasets, specifically investigating the 

developing ventricular cardiomyocytes in the mouse embryonic cardiac dataset. Through this 

analysis, we identified an Itgb1-stimulated co-regulation network, illuminating the intricate inter- 

and intracellular regulatory mechanisms in the 3D niche-based microenvironment. The Stereopy-

NicheReg3D pipeline proved its superiority in identifying more complete specific LR pairs and 

comprehensive signaling paths compared to existing tools when applied to 3D datasets. 

 

Stereopy represents a comprehensive and robust solution that surpasses the mere provision of 

functionalities and algorithms for analyzing complex spatial omics datasets. Its advanced features, 

including batch effect evaluation and removal processing of multiple samples, as well as multi-

sample joint analysis functions such as 3D registration, 3D data trajectory inference and 

visualization, amplify the utility of Stereopy in the field. Moreover, Stereopy incorporates 

numerous data analysis functions, including several well-known functions adapted from R code, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569485doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

such as scTransform and SingleR. Additionally, Stereopy can handle diverse data types, including 

GEF and GEM files generated by Stereo-seq, as well as the commonly used h5ad file format, 

enabling the analysis of data from different platforms. It is worth noting that Stereopy can analyze 

SRT datasets as long as they provide both spatial information and gene expression at the same 

resolution. However, some algorithms bundled within Stereopy expect high-resolution datasets as 

input for optimal performance, rendering it more suitable for high-resolution than low-resolution 

spatial omics datasets. 

 

Stereopy has effectively tackled key challenges in multi-sample spatial omics analysis, including 

data management, analysis module planning, algorithm development, and interactive visualization 

of 2D/3D data. Nonetheless, there are opportunities for further improvement to enhance and enrich 

multi-sample data analysis by accommodating new modalities, addressing new analysis demands, 

and incorporating new omics to support scientific research. It is imperative to leverage spatial and 

feature information, particularly in spatiotemporal datasets (referred to as 4D datasets), to unlock 

insightful biological discoveries. Stereopy is committed to expanding its analysis functions and 

extending its applications to diverse areas, including clinical and immune research. The support 

for multimodal analysis and multi-omics datasets should be prioritized as they provide richer 

biological information and represent the future of spatial omics technologies. 

 

Although research involving multi-sample datasets is commonplace, the research community 

dedicated to multi-sample analysis remains relatively underdeveloped. This deficiency can be 

attributed to the absence of a standardized multi-sample analysis framework that seamlessly 

integrates various analysis tools and elucidates the canonical forms of multi-sample multi-omics 

analysis. Additionally, the integration of certain algorithms and tools into a unified framework 

poses significant challenges. Consequently, the joint analysis for multiple samples becomes a 

formidable hurdle, compelling researchers to either forego the valuable insights embedded within 

multi-sample datasets or invest substantial time in searching for appropriate analysis tools and 

determining the optimal analysis framework. Stereopy emerges as a foundation for building a 

vibrant multi-sample omics community and promotes the establishment of canonical forms for 

data analysis. Meanwhile, the introduction of the developer mode invites contributions from the 

expansive bioinformatics community, fostering collaborative efforts. With unwavering dedication, 

Stereopy strives to furnish researchers with a user-friendly analysis toolkit and robust analysis 

modules. Simultaneously, it offers novel perspectives and profound insights into the interpretation 

of multi-sample spatial omics data, empowering researchers to unlock the full potential of these 

datasets. 
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Methods 

Comparison of general single-cell analysis between Stereopy, Scanpy, Seurat, and 

Giotto toolkits 

Many toolkits have provided functions for single-cell or spatial transcriptomic analysis. Scanpy is 

a widely used package for single-cell analysis in Python while Seurat [4] is in R. Giotto [2] is also 

an R package with specific designs for ST. In order to figure out the time consumption 

performance among toolkits including Stereopy, Scanpy, Seurat, and Giotto, we tested the most 

general analysis in a single cell and SRT including pre-processing, principal components analysis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569485doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(PCA), Uniform Manifold Approximation, and Projection (UMAP), cell neighbors finding, 

Louvain clustering, Leiden clustering and find gene markers. To test performance on multiple 

samples, we use Stereo-seq mouse embryo datasets from E9.5 to E14.5. Since only Stereopy 

provides analysis on multi-sample data, we test other toolkits by merging multi-sample data as one 

data. To have a fair competition, we kept all hyper-parameters the same. For pre-processing, we 

test 3 steps: normalize, log1p, and scale. For PCA, we retained the top 30 principal components 

(PCs) without using highly variable genes. For cell neighborhood, we calculate based on PCA 

results with 20 top PCs and 10 nearest neighbors. For Louvain and Leiden, the resolution is set to 

be 1 as default. To find gene markers, we test on pre-annotation clustering results and use a t-test 

based on all versus rest way. All of the toolkits are tested on a Linux machine with 64 cores CPU 

and 512 GiB of RAM. 

 

Cell co-occurrence detection algorithm 

To explore the changes in cell neighborhood, we developed a global co-occurrence method 

(Supplementary Fig. 3) to reflect the spatial distribution relationship between cell types or clusters. 

The presented co-occurrence method is composed of 3 steps: 1. Calculation of cell-to-cell spatial 

distance, 2. Spatial graph construction, and 3. Counting of cell-type contacts. For the first step, we 

calculate a cell-cell pairwise spatial distance matrix based on Euclidean distance. Secondly, with 

the distance matrix used as the adjacent matrix of cell neighborhood graph, we only retain edges 

with a distance range from minimal distance threshold to maximal distance threshold. The 

minimal and maximal distance thresholds could be selected manually. After constructing the cell 

neighborhood graph, we calculate the probability that cell type A has the edge with cell type B. 

This probability represents the co-occurrence probability of cell type A with cell type B. The 

following equations explain this process in more detail. We mark cells belonging to the cell type 

A[0, N] and B[0, M] as: 

 

��� � ����, ���, … , ���� 

��� � ����, ���, … , ���� 

 

Cell counts of cell type A are given by the number of A cells that are located around cell type B 

from the minimum distance to the maximum distance: 

	
��
��, �, min_���
��	�, max_���
��	��  � � 

 

The co-occurrence of A with B:  

�
 � 
		����	���, �� � ���|�� � �/" 

 

Notably, the co-occurrence of A with B is not equal to the co-occurrence of B with A, which 

equals e/n and e/m respectively in our method. The asymmetry of our co-occurrence stands 
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because the spatial distribution of a cell type includes another cell type and is more universally 

distributed. For example, ECs are universally distributed in mouse kidney which means most other 

cells are connected to ECs while not every EC is connected to other cell types. Owing to the 

asymmetry of our co-occurrence method, we can also detect the wideness of spatial distribution 

for cell types. Additionally, we created the co-occurrence result integration method for multiple 

samples based on the weighted mean of the group, where weights equal to the 17 cell counts ratio 

in multi-sample data 

�
 � 
		�����	���, �����	
 � # $ "�∑ "�
�
���

& �
 � 
		�����	���, ���'    � � �1,2, … *�
�

���

 

The grouped co-occurrence is equal to the result of merged multiple samples calculated per 

sample since all samples originate from the same tissue. On the other hand, we use the difference 

to indicate the co-occurrence between two samples or two groups. The differential co-occurrence 

value ranges from -1 to 1, where the positive value represents improvement of co-occurrence, and 

vice versa.  

 

Benchmark of co-occurrence algorithm 

To compare the performance of cell type co-occurrence of Stereopy with Squidpy, we tested on 

mouse kidney WT and BTBR samples [28]. Since there is no ground truth for cell co-occurrence. 

we compared the results with previously reported findings. The co-occurrence is calculated based 

on the cell spatial neighborhood and the distance traverse from 0 to 180 in steps size of 30, unit 

same as the resolution of slide-seq V2 technology which is 10μm (Supplementary Fig. 4a). For 

Stereopy, we use co-occurrence function with default parameters while for Squidpy we use 

co_occurrence with parameters spatial_key = 'spatial', interval = 

np.array([0,30,60,90,120,150,180]) and  n_splits = 1. As a result, Stereopy shows a more obvious 

co-occurrence of podocytes and GC cells than Squidpy, which is consistent with Marshall’s 

findings [28]. In addition, with the help of grouped and differential co-occurrence among multi-

sample analysis, Stereopy is capable of finding the similarities and diversities of cell type co-

occurrence among multiple samples. Compared to the significant decrease in co-occurrence of GC, 

MC with itself in Squidpy, Stereopy can exhibit more significant changes between multiple 

articles, such as the reduction of co-occurrence between PCT_ 1 and PCT_2.  (Supplementary Fig. 

4c) 

 

Cell community detection (CCD) algorithm 

The function of the tissue is tightly coupled with the cell populations inhabiting it. The cell 

neighborhood largely affects the essential gene expression patterns of each cell [15]. For that 

reason, detecting areas of the tissue with similar cell type distribution and cell type co-occurrence 

represents an important finding about the structure and function of the tissue. The main idea 

behind defining functional tissue domains (communities) can be narrowed to detecting tissue areas 
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with the same cell mixture (percentages of cell types). For this purpose, we developed a Cell 

Community Detection (CCD) algorithm that uses annotated cell types together with spatial 

coordinates of each cell-spot to assign community labels. CCD divides the tissue using sliding 

windows by accommodating multiple window sizes and enables the simultaneous analysis of 

multiple samples from the same tissue. It consists of the three main steps (Supplementary Fig. 2):  

1. Single or multiple-size sliding windows (+ ) are moved through the surface of the tissue with 

defined horizontal and vertical steps while calculating the percentages (,-�, -�, … , -
.) of 

each cell type inside of it. A feature vector (/0) with a size equal to the number of cell types 

(� ) is created for each processed window across all available tissue samples:  

1+� 2 �/0� � ,-�, -�, … , -
.� 

2. Feature vectors from all windows are fed to the clustering algorithm (� ) such as Leiden [25], 

Spectral [60], or Hierarchical [61] to obtain community labels (3). The number of the desired 

communities (	� ) can be predefined explicitly as a parameter (Spectral or Hierarchical 

clustering) or by setting the resolution of clustering (Leiden):  

��1/0�� 2 3� , 3� � 3�, 3�, … , 3�
 

3. A community label is assigned to each cell-spot (	� ) by majority voting (45 ) using 

community labels from all windows covering it:  

45�13�� +6��� �-�
��37	��8 � +� 2 3�, 3� � 3�, 3�, … , 3�
 

The window size and sliding step are optional CCD parameters and when not provided the optimal 

window size is calculated throughout the iterative process. In the first iteration, the initial window 

size is obtained by dividing the minimum of 9  and :  spatial coordinates’ ranges by 100 and 

rounding to the closest even number. Then, we calculate for each window of the obtained size the 

average number of cells being covered by it. If the average number is below 30 the window size is 

increased by 10% and, if larger it is decreased by 10%. The step is repeated until the average 

number of cell spots in all windows is in the range [30, 50]. The sliding step is set to half of the 

window size.  

 

CCD also includes several filtering steps controlled with parameters, such as the removal of cell 

types present in all parts of the tissue and removal of windows with too small number of cell spots. 

The spatial distribution of each cell type can be evaluated using 2D entropy [62, 63] and 

scatteredness [62] metrics. CCD supports setting the threshold values for these metrics in order to 

exclude cell types that are randomly or evenly spread throughout the tissue from processing. 

Removing cell types with high entropy and scatteredness improves clustering and provides more 

robust cell communities. The robustness and quality of CCD strongly depend on clustering. For 

clustering to be stable, feature vectors need to contain a significant amount of information, that is, 

enough cell spots in each evaluated window. CCD gathers data on total cell numbers per window 

and supports setting a threshold value for the minimum cell-spot number for the window to be 
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included in the clustering process. Cell-spots are marked with the ‘unknown’ label if there are no 

cell community labeled windows that overlap them.  

 

Benchmark of cell community detection algorithm 

To assess the stability and reliability of Stereopy’s CCD, we conducted a comparison with existing 

algorithms for domain detection on three samples: single sample Stereo-seq mouse embryo whole 

brain [3], Slide-seq V2 UMOD KI kidney comparative samples  [28], and Stereo-seq multi-sample 

adult mouse brain [64] (Supplementary Note 2.1). For single sample, we included Giotto’s Spatial 

Domain Identification (GSDI) [15], SpaGCN [65] and GraphST [23]for comparison. In addition, 

for the multi-sample analysis, we included PRECAST [21] and BASS [22] (Supplementary Note 

2.2). Giotto and SpaGCN only support single-sample processing, creating results that require 

cluster matching to support further analysis. Both GraphST, BASS and PRECAST are able to 

process multiple slices simultaneously. CCD is able to process single sample as well as multiple 

samples simultaneously. SpaGCN was run with the default parameters (resolution = 1.5). Giotto’s 

SDI required adjustment of gene expression and cell location data to a defined input format. Data 

was normalized with normalizeGiotto using scalefactor = 6000. Then, the functions 

createSpatialNetwork, binSpect and initHMRF_V2 were processed with k =16 for the brain 

sample, and k = 7 for the kidney sample. Annotation was extracted with the doHMRF_V2 

function and visualized independently. GraphST is run with default parameters to obtain a 64-

dimensional representation of cells. Then, Louvain is applied to cluster each sample by adjusting 

the resolution until a similar number of clusters as CCD is achieved. Seurat objects for each slice 

were created for both BASS and PRECAST, and default values were used for all parameters, 

together with the desired number of clusters. CCD for mouse embryo whole brain sample was ran 

with win_sizes = 150, sliding_steps = 50, cluster_algo = ‘spectral’ and n_clusters = 16, while for 

multi-sample adult dataset parameters were winsizes = 200, sliding_steps = 50, cluster_algo = 

‘agglomerative’ (Hierarchical) and n_clusters = 16. All parameters were chosen to provide, on 

average, 30-40 cells per window, while keeping the communities smooth and coherent.  
 

Evaluation metrics 

 We utilized two metrics to evaluate the performance of various algorithms in generating results: 

Scatter and Density BetWeen clusters (S-Dbw) [66] and SD validity index [58]. S-Dbw considers 

both cluster separation and cluster cohesion. It measures how well-separated clusters are from 

each other (good separation) while also considering how tightly the data points are grouped within 

each cluster (good cohesion). SD validity index combines the measures of average cluster 

scattering and total separation between clusters. These dual considerations make S-Dbw and SD 

more comprehensive metrics for this purpose than the silhouette score that measures how similar 

each data point in one cluster is to the data points in the neighboring clusters. The total benchmark 

result can be found in Supplementary Table 1, CCD provides lower S-Dbw and SD scores than 

other algorithms, confirming better cluster cohesion and groupin. Meanwhile, we compared the 

execution time and memory consumption of GSDI, SpaGCN, GraphST, PRECAST, BASS and 

CCD (Supplementary Table 2). The execution time of the CCD is notably faster compared to the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569485doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

GSDI and SpaGCN, demonstrating a speedup of at least 90 and 35 times, respectively. The peak 

memory consumption is affected by the dimensions of the input file, rendering CCD significantly 

more efficient due to its independence from gene expression matrices. 

 

Comparison on mouse embryo brain sample, and region analysis. The mouse embryo brain 

(Extended Data Fig. 7a), a structurally well-explored sample, was used for comparison of spatial 

domain detection methods, and for further analysis of the biological significance of CCD 

communities. Extended Data Fig. 2b provides a comparison of spatial regions obtained by 

Stereopy’s CCD, Giotto’s SDI, SpaGCN, and GraphST, with the numbers of domains fixed. 

SpaGCN fails to provide domain integrity. Both GSDI and CCD detect layers in the dorsal pallium, 

as well as the thalamus. However, CCD provides smoother and more coherent regions 

(Supplementary Table 1), with the detection of several more separate communities. The cell 

communities detected by Stereopy’s CCD are composed of multiple neighboring cell types and 

correspond to functional tissue domains. To evaluate the CCD’s ability to infer biological function 

and structure, we analyzed separate regions and their correspondence with known functional and 

anatomical regions. Extended Data Fig. 2c-d displays the region and composure of two 

communities which show significant spatial matching with Hotspot [9] gene modules, and 

anatomical regions from Allen brain map [10]. The orange community represents a cell type-

homogenous region, with 70% of dopaminergic neurons (Die GNeu) and 23% of midbrain 

glutamatergic neuroblasts (Mb Glu Neu) as main components, where other cell types appear in 

abundancies less than 4%. Although these cells can be found in other areas of the tissue (Extended 

Data Fig. 2c, second column), this region is defined by the specific mixture of cell types, that is, a 

specific tissue domain. This community is spatially matched with the Hotspot gene module, as 

well as with the anatomical region of dorsal tier of thalamus (Extended Data Fig. 2c, columns 

three and four). The brown community is heterogeneous and contains, on average, 30% forebrain 

GABAergic neuron cells (Fb Glu NeuB), 29% cortical intermediate progenitor cells (Corti prog), 

13% of cortical or hippocampal glutamatergic neuron cells (CortiHippo Glu Neu) and 10% of 

cortical glutamatergic neuron cells (Corti Glu Neu) (Extended Data Fig. 2d, first and second 

column). This region is shown to coincide with the gene module obtained by Hotspot, and when 

comparing with Allen brain atlas annotation, it corresponds to the mantle zone of dorsal pallium 

(Extended Data Fig. 2d, third and fourth column). These results confirm the ability of CCD to 

extract biological information. 

 

Comparison on multi-sample adult mouse brain sample. Three samples were processed 

separately by GSDI, GraphST and SpaGCN, while BASS, PRECAST and CCD employed their 

multi-sample approach (Extended Data Fig. 3b). SpaGCN manages to obtain anatomical regions 

with clear borders but provides an unstable number of domains for consecutive samples while 

using the same parameters.  (Extended Data Fig. 3b). When comparing per sample, domains 
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obtained by GSDI, PRECAST, BASS, GraphST and CCD are similar by constitution. However, 

multi-sample processing provides more coherent (Supplementary Table 1) and anatomically 

matching results with higher reliability of inter-sample domain matching. Selected samples have 

similar cell type shares (Extended Data Fig. 3c). Thus, the consistency of CCD’s communities 

throughout samples is confirmed with stable tissue-share communities in all samples (Extended 

Data Fig. 3d) together with lowest S-Dbw and SD scores (Supplementary Table 1). Execution of 3 

slices of adult mouse brain CCD finishes in 214 seconds while consuming 25716 MB. It costs less 

in terms of execution time and memory compared to other tools (Supplementary Table 2). 

 

Comparison on UMOD KI / WT sample. CCD, BASS and PRECAST provide joint analysis of 

both UMOD KI and WT samples, while Giotto’s SDI, GraphST and SpaGCN perform on each 

sample separately (Extended Data Fig. 4c). We compared the results generated by these algorithms, 

especially the medulla region according to the annotation obtained from the Marshall et al. paper. 

CCD provides domains of higher integrity and robustness compared to BASS, PRECAST, GSDI 

and SpaGCN, especially in the medulla region on which CCD identified almost the same region 

with the annotation from the original paper. GSDI, BASS, PRECAST and SpaGCN detected more 

than one region and even mixed regions in the medulla area, while CCD and GraphST detect 

regions consistent with Marshall et al paper. To further demonstrate the consistency of CCD 

regions, we calculated the marker genes for each of them. Marker genes show consistency of the 

gene expression and the cell community region in both UMOD KI and WT samples 

(Supplementary Fig. 6). CCD manages to process these two kidney samples in 31 seconds while 

consuming only 684 MB. It costs less in terms of execution time and memory compared to other 

tools (Supplementary Table 2). 

 

Temporal gene pattern identification (TGPI) algorithm 

It is of interest that the expression level of a gene shows a certain pattern during certain biological 

processes. Among various kinds of gene patterns, up- or down-regulation is a common pattern. 

Here we developed a method to find up- or downregulated genes utilizing the serial t-test along 

time series and cell type trajectory. We use a one-tailed t-test to get the statistic score and p-value 

between adjacent time points. Both p-values of greater and less test will be calculated to represent 

up- and down-regulated genes, respectively. Then we provided two metrics to combine the p-

value so that we can sort out the most up- or downregulated genes. The two p-value combination 

metrics include:  

1. Fisher’s method. It is based on the hypothesis that the sum of the -2 logarithm of the p-values 

from k-independent experiments follows a chi-squared distribution with 2k degrees of 

freedom. Then a combined p-value is tested from the chi-squared test.  

# �2ln ����~=��2>�
�

���
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2. Plain False Discovery Rate (pFDR) method. We proposed it and integrated the metrics into 

TGPI based on the hypothesis that the alternative probability indicate the increasement of 

expression between adjacent time point and each time point is independent. Then, the false 

discovery rare without any correction is utilized to indicate the significance of serially up or 

down-regulation. The pFDR is calculated according to the following formula: 

������
����
 � 1 � ? 1 � ��

�

���
 

Except for serially up or downregulated genes, some genes show more complicated patterns 

during certain biological processes. To get all kinds of patterns automatically, we use fuzzy C 

means to cluster genes inspired by Mfuzz [33]. Stereopy considered both spatial and temporal 

expression features leading to more biological significant result. For spatial feature, Stereopy 

calculate pca based on rasterized expression on a certain bin size, and use first several principal 

components as spatial feature. 

/_�-�
��3 � ������9-�, �9-�, … , �9-���      " � @��� ��A@�� 

For temporal feature, Stereopy utilizes the result from serially up/downregulated genes as input. 

We use the serial greater p-value Pgi and serial less p-value Pli as features for each gene based on 

the following formula:  

/_
�A-
��3� � �3� � �B�|�3� � �B�| C A�9�A���1 � �3� , 1 � �B��     /_
�A-
��3� � ��1,1� 

After calculation, the lower fi represents downregulated and the higher fi represents upregulated. 

In this way, we regard fi as the tendency of a gene between adjacent time points. Compared to 

Mfuzz which takes mean expression as input, Stereopy’s temporal feature will place more 

emphasis on the tendency rather than the original gene expression. To combine feature of both 

temporal and spatial, we concatenate the scaled spatial features with first N spatial feature and to 

temporal feature for each gene. A parameter alpha is also used to weight the effect of spatial 

features. 

/ � 	
�	�
�/_
�A-
��3, �3-6� &  /_�-�
��3,1: "_�-�
��3_/��
���.� 

Finally. Fuzzy C means is used to cluster genes into groups. The main principle of fuzzy C means 

is to minimize J according to the following equation: 

E��, 0� �  # # ��,�
� FGB� � 0�GF�

�

���

�

���

  � � ,1, "., H � ,1, �. 
In this equation, fi represent the feature combined both temporal and spatial, vj belongs to the 

center of each cluster. m is the fuzziness and equals to 2 by default. ��,�
�  is the membership of i 

gene in j cluster it subject to: 

# ���

�

���

� 1,    ��� I 0  
With the help of spatial feature, Stereopy’s TGPI can further distinguish gene clusters with similar 

temporal expression but spatially differential expressed, which makes the result more biologically 

significant (Extended Data Fig.6 and Supplementary Fig. 11). 
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Benchmark of temporal gene pattern identification algorithm 

The evaluation of Stereopy’s TGPI contains two important modules: 1) the p-value combination 

statistic metric ‘pFDR’ proposed in TGPI to find the up-/down- regulated genes. 2) the whole 

temporal gene pattern detection algorithm ‘TGPI’ in spatial-resolved temporal datasets. 

 

P-value combination statistic metrics evaluation. We benchmarked our proposed p-value 

combination metric ‘pFDR’ with fisher’s method on temporal mouse forebrain datasets. We made 

three comparisons with respect to three cell types including dorsal forebrain, forebrain neuronal 

intermediate progenitor, and forebrain cortical glutamatergic in these datasets (Extended Data Fig 

5 and Supplementary Fig. 9-10). According to the occurrence of three cell types, three 

comparisons contain 7, 5, and 3 time points respectively. In each comparison, we used ‘pFDR’ and 

fisher’s method to detect the continuous up-/regulated genes and visualized the corresponding 

gene expressions. It is obvious that ‘pFDR’ can better find real continuously up-/down- regulated 

genes which has a stable tendency of rise or fail gene expression along with the time series in all 

these comparisons. 

 

Temporal gene pattern detection algorithm evaluation. We first tested the effect of spatial 

features. N top spatial features range from 3 to 6 are tested. Taking Foxg1, Hes5, and Mab21l2 as 

examples, we tested the 4 nearest neighbors (NN) of these genes according to Euclidean distance 

based on N top spatial features. (Extended Data Fig. 6). From the result we observed that a similar 

spatial expression pattern is detected in each 4NN gene. The higher the N spatial feature is, the 

more similar spatial expression patterns can be observed (Extended Data Fig 6). Additionally, as 

the N spatial feature reaches 5, the 4NN genes tend to be constant. Since the N spatial feature can 

reflect the spatial expression feature, we tested its influence on TGPI (Supplementary Fig. 11a). 

The result indicated that the increment of N spatial feature resulted in higher consistency of genes 

in a temporal pattern to some extent (blue box). Moreover, with the help of spatial features, TGPI 

can distinguish genes with similar temporal patterns. For example, Cluster 2 and Cluster 8 of 

TGPI with N spatial feature equal to 3 are similar in temporal expression pattern and divergence in 

spatial expression pattern (Supplementary Fig. 11b-c). 

 

To evaluate TGPI’s performance on real datasets, we compared the TGPI algorithm with another 

time series gene pattern method called Mfuzz [33]. The Stereo-seq mouse embryo brain data from 

E9.5 to E16.5, which is the subset of mouse embryo dataset with annotation as ‘Brain’, is used to 

evaluate the performance of TGPI [3]. Genes were clustered into 8 clusters for both Stereopy and 

Mfuzz. To evaluate the performance of the gene pattern results, we calculate the Pearson’s 

correlation of gene expression with the pseudotime and ANOVA test among time points. The F-

score of ANOVA test is used to reflect the divergence between time points. If a certain gene is 

more related to time points, the F score will be higher. We calculated top 100 genes of each TGPI 
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cluster ordered by weights of clustering results for both Stereopy and Mfuzz. The results show that 

most TGPI clusters exhibit not only a higher F score in the ANOVA test among time points but 

also higher Pearson’s correlation with pseudotime, which means genes within the gene pattern 

identified by TGPI are more related to both time point and pseudotime (Extended Data Fig. 7a). 

Moreover, from the GO enrichment results, we concluded that TGPI is more capable of grouping 

genes with the same expression pattern and functions (Extended Data Fig. 7b-c). We conducted 

GO enrichment analysis on top 20 genes of each cluster for both TGPI and Mfuzz. As a result, 7 

gene pattern clusters of TGPI enriched GO terms while only 3 clusters enriched GO terms for 

Mfuzz with the same p value cut off (p=0.05). Meanwhile, TGPI’s genes are more related to 

neuron development. For example, Cluster 5 of TGPI’s result has a similar tendency to Cluster 8 

of Mfuzz results, both of which enriched GO terms related to synapse organization and assemble. 

However, the gene count of GO in TGPI reached 5 while the gene counts of Mfuzz’s cluster 8 

reached 3. Additionally, the TGPI enriched more GO terms related to neuron development 

(sensory perception in Cluster 1, learning or memory in cluster 8) and mitotic (mitotic nuclear 

division in cluster 7). 

 

3D cell-niche regulatory network prediction algorithm 

Stereopy-NicheReg3D starts with the cell-niche communication prediction. To ensure the 

accuracy and specificity of this juxtacrine signaling model, we extract cells bordering their niches 

and statistically calculate their CCC activity scores of L-R pairs under the assumption that 

intercellular L-R communications routinely exist among closely neighboring cells. The niche is 

defined as all the neighboring cells from other types whose Euclidean distance to any of the cells 

from the center type is less than a pre-defined radius �. Let *� denote the set of all cells of type >, 

	� represent cell �, ��·,·� represent Euclidean distance between any two cells, then the niche can be 

formulated as: 

" � L M	� � *� , 	� � *��
��� ��
�| �7	�, 	�8 N � O
���
���� ���� ��
���

 

Next, we perform a label permutation-based statistical CCC analysis to generate significant cell-

niche L-R pairs by incorporating both L-R gene co-expression and 3D location of the cells. In 

brief, we collect potential L-R pairs and construct a customized Liana consensus database [43] 

(https://github.com/saezlab/liana-py/tree/main/liana/resource/omni_resource.csv). We then follow 

a similar approach reported by CellPhoneDB [45] to compute the average expression level of the 

ligand in the sender cells and that of the receptor in the receiver cells in the cell-niche boundary. 

The communication score is defined as the mean value of the average L-R expression within a 3D 

niche: 

���
�� � 1

2 �9�
� P 9�

�� 

where ���
�� is the communication score for ligand 3 in cell type � and receptor � in cell type H, 9�

� is 
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the average expression level of ligand 3 in sender cell type �, 9�
� is the average expression level of 

receptor � in receiver cell type H. 
The significance of the communication scores is evaluated through random shuffling of the cell 

type labels of cells in the niche multiple times, A. The p-value is defined as the number of random 

shuffles that reach a score higher than the true score: 

- � ∑ Q� !��������
��� A  

where �" is the true communication score, �� is the calculated communication score at the >th 

shuffle, Q� !����9� is the indicator function which equals to 1 if 9 I �", and 0 otherwise. Typically, 

a p-value smaller than 0.05 suggests that the corresponding L-R interaction is statistically 

significant. 

To comprehensively demonstrate the possible regulation mechanism, we eventually connect 

significant L-R interactions detected in the cell-niche communication analysis with the TF-

centered regulons identified by the SpaGRN[67] analysis based on the integrated weighted ligand-

signaling network from Nichenet-v2 [59] 

(https://zenodo.org/record/7074291/files/weighted_networks_nsga2r_final_mouse.rds). This 

database contains 3,865,137 rows, each of which represents a pair of directed signaling 

interactions with a specific weight prioritized using 57 data sources. We convert the whole 

network data into a weighted directed graph R � S5, T, UV. For a given receptor and TF, we 

search for the shortest path between the two nodes and consider it as the potential signaling path 

between them. The distance of each graph edge is defined as the reciprocal of its weight: 

��� � 1
+��

 

where +�� is the weight of edge ��� connecting node � and H. 

 

Benchmark of cell-niche communication prediction algorithm 

To demonstrate the algorithm efficiency, we systematically compared the general features of the 

Stereopy-NicheReg3D module with CellPhoneDB [45] and NICHES [50] to the same mouse heart 

dataset (Supplementary Table 6). We slightly modified two software tools to enable them to 

analyze the 3D SRT data. For the CellPhoneDB implementation, the spatial relationship of VCM 

and other cell clusters was initially provided and the default parameters were used to obtain VCM-

significant L-R pairs. NICHES was adopted to obtain single-cell-resolution interaction results. We 

then integrated the expression of L-R pairs coming from each niche component and landing on the 

VCM cells by summing the L-R expression, and identified the cell type-specific L-R pairs using 

the Seurat FindAllMarkers function.  

 

We benchmarked the performance of this module and the other two tools on the same Linux 

system with Intel Core Processor (Broadwell, IBRS) of 30 threads and 512 GB memory. Both 
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Stereopy and NIHCES enable the investigation in sender–receiver single cells, which is usually 

computationally prohibitive for CCC analysis thanks to Stereopy’s niche extraction and NICHES’s 

subsampling strategies. These strategies also accelerate the computation compared to the whole 

cluster-based CellPhoneDB (Extended Data Fig. 9). However, subsampling might preclude a 

complete view of CCC structure and risk obscuring significant L-R pairs. As a result, in terms of 

the number of specific CCC interactions, Stereopy obtains the most specific L-R pairs in all VCM-

niche cases except ACM-VCM, almost covering those derived by other tools (Extended Data Fig. 

9).  
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Data availability 

The processed datasets have been deposited in published papers. Slide-seq2 datasets: mouse 

kidney datasets are downloaded from [28], of which “P uck 191204 22.h5ad” and “P uck 191204 

15.h5ad” are used as BTBR WT and ob/ob sample respectively and “P uck 191223 19.h5ad” and 

“P uck 200104 07.h5ad” are used as WT and UMOD KI sample respectively. Stereo-seq datasets: 

a sample of 12 weeks adult mouse brain, mouse embryo SRT samples from E9.5 to E16.5, and 

entire 3D mouse embryonic heart datasets are downloaded from StomicsDB MOSTA [68]. Three 

adjacent samples of coronal mouse brain are downloaded from Spatial-ID [64].  
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Code availability 

Stereopy is a pip installable Python package and is available at the following GitHub repository: 

https://github.com/STOmics/Stereopy, with documentation at: 

https://stereopy.readthedocs.io/en/latest/. All the code to reproduce the result of the analysis can 

be found at the following GitHub repository: 

https://github.com/STOmics/Stereopy/tree/main/docs/source/Tutorials. 
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Figures 

 

Fig. 1 Overview of Stereopy. a, Stereopy provides solutions for multi-sample analysis, from 

multi-sample data container and framework, multi-sample data analysis modules, to multi-sample 

interactive visualization. b, Stereopy offers key analysis modules for three main multi-sample data 

analysis scenarios. It includes (i) Comparative analysis. Stereopy provides functions from cell 

level and gene level to infer the global and local similarity and diversity for comparative SRT 

datasets. (ii) Temporal analysis. Stereopy provides temporal trajectory analysis and spatial 

resolved temporal gene pattern analysis to phase the temporal variable datasets. (iii) 3D integrated 

analysis. Stereopy enables 3D data reconstruction and 3D signaling path identification function to 

explore regulation mechanisms. c, Simultaneously, Stereopy contributes the key algorithms for the 

above three kinds of analysis scenarios. It includes (i) Cell community detection (CCD) algorithm 

aims to detect cell communities on single/multi-sample datasets, which is supposed to find 

common and specific community, especially for comparative samples. (ii) Temporal gene pattern 

identification (TGPI) algorithm aims to identify temporal variable gene patterns with spatial 

restriction, which is supposed to find gene pattern related to development or temporal variation. 

(iii) 3D cell-cell signaling path inference tool aims to identify regulation mechanisms from the 3D 
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aspect. 
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Fig. 2 Stereopy designs flexible multi-sample data analysis framework, and accelerates 

multi-sample analysis. a, Stereopy designs multi-sample data (MsData) container, b, Multi-

sample scope (MSS) controller, and c, Multi-sample flexible analysis transformer to support 

multi-sample SRT scalable analysis. Based on that, Stereopy is able to support. d, Steroepy 

provides multi-sample parallel or integrated processing and e, joint multi-sample processing for 

comparative analysis, temporal analysis, and 3D integrative analysis. f, Stereopy restores and 

enables processing of gene expression, spatial information and corresponding image features for 

each sample of spatial omics.  g, Comparison of execution time of Stereopy, Seurat, Giotto and 

Scanpy in the basic processes, including preprocessing, PCA, finding neighbors, UMAP, Leiden 

clustering, Louvain clustering, and finding marker genes. h, Comparison of execution time of 

basic processes, including finding neighbors, UMAP, Leiden clustering, Louvain clustering with 

GPU mode or without GPU mode. 
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Fig. 3 Stereopy facilitates comparative analysis of spatial transcriptomes with multiple 

samples. a, A graphical abstract for Stereopy comparative multi-sample analysis. Stereopy offers 

analytic functions on the diversity of cell constitution, co-occurrence and cell community at cell 

aspect as well as differential expression gene, spatial gene module and constant/conditional 

marker at gene aspect. Combining Stereopy’s complete and comprehensive analysis workflow, 
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spatial pattern diversity can be easily explored at both global and local levels. b, Co-occurrence 

result for BTBR kidney sample. left: spatial map of WT and BTBR diabete (ob/ob) kidney 

samples; middle:  line plot shows the podocyte cell co-occurrence with other cell types; right: 

spatial map on the right side confirmed the co-occurrence with GCs and MC. Upper and lower 

part represents WT and ob samples, respectively. c, Left column: spatial hotspots gene module that 

corresponds to podocyte location. Right column: local auto-correlation of corresponding gene 

module. Upper and lower part represents WT and ob samples, respectively. d, Spatial map of cell 

type annotation, tissue domain identified by Stereopy-CCD algorithm and medulla defined by 

Marshall et al. for WT and UMOD KI kidney samples. Left, middle and right part represents cell 

type annotation, tissue domain annotation and medulla defined by Marshall et al., respectively. 

Upper and lower represent WT and UMOD KI samples, respectively. e, Left part: differential 

expressed genes for medulla in WT sample as well as its composing cell types EC, TAL and other 

immune. Right part: GO enrichment for medulla, EC, TAL and other immune. f, The cell type 

constitution and proportion for medulla of WT and UMOD KI samples. g, Constant and 

conditional marker for medulla of WT and UMOD KI samples. Left part shows the heatmap of 

constant and conditional markers. High expression is only found under certain condition for 

conditional marker while both conditions have a high expression for constant marker. Right part 

shows GO enrichment for each group of genes. UMOD KI conditional marker (orange) enriched 

GO terms including wound healing and so on. h, Spatial heatmap of Spp1 and Apoe for WT and 

UMOD KI samples.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569485doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Fig. 4 Stereopy enables temporal analysis of spatial transcriptomes with multiple samples. a, 

A graphical abstract for the time series analysis pipeline. For cell aspect, Stereopy integrates 

PAGA and diffusion pseudotime; for gene aspect, Stereopy proposed an algorithm of spatial 

resolved temporal gene analysis that can search up or downregulated genes as well as gene 

clusters with similar temporal patterns. b, Spatial trajectory visualization of mouse embryo multi-
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sample transcriptomes from E9.5 to E16.5. c, A tree plot to indicate the develop of mouse embryo 

ectoderm. X-axis represents time point. Dot size indicate the cell number and red arrow indicate 

the trajectory from PAGA. d, Manual annotation and pseudotime for time series mouse brain 

samples. e, Development tree for cell types in time series. X-axis represents time point. The height 

of each Sankey represents the cell amount of cell type at a certain time point. f, PAGA graph for 

mouse brain trajectory inference. Red arrow points at cell types for downstream analysis. g, Up 

and downregulated genes for mouse forebrain trajectory and corresponding GO enrichment 

analysis. h, The F-score among time point and correlation with pseudotime of top 1000 gene of 

each cluster of Stereopy-TGPI and Mfuzz. Blue and yellow represent Stereopy-TGPI and Mfuzz, 

respectively. i, A temporal gene pattern identified by Stereopy-TGPI for mouse forebrain trajectory. 

j, A temporal gene pattern identified by Stereopy-TGPI for mouse forebrain time series datasets. k, 

Gene expression of Tead1 in each cell type at each time point. l, Spatial heatmap for AUC score of 

TF Tead1 regulons in each time point and corresponding GO enrichment analysis. m, Gene 

network for Tead1 in time series. Radial line represents a group of genes and points on it indicate 

time points when these genes occurred. Point size indicates the gene number. 
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Fig. 5 Stereopy integrates spatial multi-sample data and reveals novel 3D regulatory 

mechanisms related to cardiac development. a, Stereopy-NicheReg3D’s overall workflow. b, 

Stereopy-NicheReg3D illustrating multi-hierarchically transcriptomic architecture, ranging from 

heart organ meshes, heart cell types and clusters, spatially variable genes (Myl2), spatially specific 

regulons (Mef2c(+)), and niche-specific L-R pairs (Igf2-Igf2r) from left to right. c, Spatial 

distribution of VCM’s niche compositions composed of neighboring ACM, blood, EC, EP and FM 

cells in the boundary. d, Circos plot showing bidirected cell-cell interactions in five niches. The 

width of an arrow correlates with the number of significant L-R pairs. e, Heatmap showing the 
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CCC intensities without niche restriction, which is different from Fig. 5d. f-g, Bubble plots 

demonstrating cell-type-specific L-R pairs. f) niches to VCM. g) VCM to niches. Circle color 

indicates the mean expression of each L-R pair, while circle size indicates its p-value. h, Sankey 

plot connecting intercellular ligand-receptor interactions from sender niche cells to receiver VCM 

cells to VCM intracellular downstream TFs via deductive specific signaling pathways. Bandwidth 

indicates the mean expression of the two genes at both ends. i, Regulatory network showing 

inferred intracellular signaling paths from receptor Itgb1 to downstream TFs within the same cells. 

j, Shared and specific TGs in Pdlim5(+) and Mllt10(+) regulons showing the 3D co-regulation 

function. k, GO enrichment analysis indicating the collective function of shared targets of 

regulons in Fig. 5k (shared, Pdlim5(+) and Mllt10(+) from left to right). l, 3D regulation model of 

extracellular signaling to intracellular gene regulatory network. 
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Extended Data Figures 

 

 

Extended Data Fig. 1 Overview of Stereopy functions. 

a, Analysis functions for single sample, including preprocessing for spatial gene expression and 

images, clustering and annotation, cell-level and gene-level analysis modules. b, Analysis 

functions for multi-sample joint analysis, including batch effect evaluation and removal 

processing, comparative analysis, temporal analysis and 3D integrated analysis. c, Interactive 

visualization, including statistic plotting, 2D in-situ interactive visualization and 3D interactive 

visualization. 
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Extended Data Fig. 2 Cell community detection and comparisons on Stereo-seq mouse 

embryo whole-brain sample.  

a, Cell type annotation of the mouse embryonic brain obtained from MOSTA database. b, 

Stereopy-CCD, Giotto-SDI, SpaGCN, and GraphST results. c-d, Comparative display of detected 

cell communities and their corresponding functional and anatomical domains. Left to right: area of 

the community, tissue distribution of cell types comprising the community with community cell 

types and percentages shown in the legend, Hotspot domain, and anatomical region from the Allen 

mouse brain atlas corresponding to the community region. c, Community matching the dorsal tier 

of thalamus. d, Community matching the mantle zone or dorsal pallium. 
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Extended Data Fig. 3 Cell community detection and comparisons on Stereo-seq multi-sample 

adult mouse brain sample.  

a, Cell type annotation of three adult mouse brains. b, Domain detected by Giotto-SDI and 

SpaGCN, for each sample as well as domain / cell community detected by GraphST, BASS, 

PRECST and Stereopy-CCD for multi-sample joint processing. c, Bar plot of per sample cell type 

abundance by Stereopy-CCD. d, Bar plot of per sample cell community abundance by Stereopy-

CCD. 
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Extended Data Fig. 4 Comparison of Stereopy-CCD, Giotto-SDI, SpaGCN, GraphST and 

STAGATE on mouse kidney samples.  

a, Author annotated cell type and author annotated medulla region of WT kidney sample. b, 

Author annotated cell type and author annotated medulla region of UMOD KI kidney sample. c, 

Domain detected by Giotto-SDI and SpaGCN for each sample, as well as domain / cell 

community detected by GraphST, BASS and PRECAST and Stereopy-CCD for multi-sample joint 

processing.  
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Extended Data Fig. 5 Up and down regulated genes identified by Stereopy-TGPI for 

temporal dorsal forebrain. 

a, Left: boxplot of up regulated genes based on different p value combination method; right: 

spatial map of gene set of mean expression of top 20 up regulated genes. The result is calculated 

based on pFDR in Stereopy-TGPI (Top), and fisher’s method (Bottom), respectively. b, Left: 

boxplot of down regulated genes based on different p value combination method; right: spatial 

map of gene set of mean expression of top 20 down regulated genes. The result is calculated based 

on pFDR in Stereopy-TGPI (Top), and fisher’s method (Bottom), respectively. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569485doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569485
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

Extended Data Fig. 6 The influence of spatial features on the detection of temporal gene 

pattern.  

Each column shows the spatial maps of genes which have minimal distances with the certain gene 

calculated based on different number of spatial features range from 3 to 6. The spatial map is 

present on rasterized temporal mouse brain. The certain genes are Foxg1, Vim, and Nfib from left 

to right respectively. The distance is calculate based on 3,4,5,6 top spatial features from up to 
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down, respectively. The red box indicates that when the top spatial features are increased to 5, the 

results become comparable to those obtained with a larger number of top spatial features. 
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Extended Data Fig. 7 Comparison of TGPI in Stereopy and Mfuzz for the temporal gene 

pattern clusters result.  

a, The F-score among time point and correlation with pseudotime of top 1000 gene of each cluster 

of Stereopy-TGPI and Mfuzz. Blue and yellow represent Stereopy and Mfuzz, respectively. b, 

Stereopy temporal gene pattern for mouse brain along time series and corresponding GO 

enrichments for each temporal gene pattern cluster. c, Mfuzz temporal gene pattern for mouse 

brain along time series and corresponding GO enrichments for each temporal gene pattern cluster.  
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Extended Data Fig. 8 3D visualization of selected regulatory regulons and selected cell-cell 

communications in four VCM niches. 

a, TF and target genes in 16 representative VCM-specific regulons that are potentially regulated 

by VCM-niche L-R pairs. b, Heatmap disclosing top cell-type-specific regulons detected by 

NicheReg3D. c, 3D distribution of selected regulons in (a). d, 3D visualization of Igf2_Igf2r, 

Calm1_Cacna1c and Fn1_Cd44 from blood, EC, EP, FM to VCM cells in each corresponding 

niche. 
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Extended Data Fig. 9 CCC comparison of Stereopy, CellphoneDB, and NICHES. 

a, Runtime of CCC analysis for five VCM-niche datasets using different CCC tools. b, Number of 

significant L-R pairs obtained by different CCC tools. c, Venn diagrams showing that the Stereopy 

CCC module detects more reliable L-R pairs, which almost cover those detected by the other two 

tools.  
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Extended Data Fig. 10 Comparison of 3D joint analysis and 2D analyses.  

a, Stacked chart showing the number of 2D samples that can detect significant L-R pairs 

demonstrating the completeness of CCC results from the 3D joint analysis. b, Stacked chart 

showing number of 2D samples that can detect each of the seven L-R pairs in (a). c, Stacked chart 

showing number of regulons among the 16 regulons potentially influenced by CCC in the VCM 

niche across the 2D slices. d, Boxplot illustrating the distribution of the number of targets in each 

regulon across the 2D slices.   
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Supplementary Figures 

See “Supplementary Figure” 

 

Supplementary Tables 

See “Supplementary Tables” 

 

Supplementary Note 

See “Supplementary Note” 
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