

1 **Effects of greening-induced warming and cooling on tree phenology in temperate**
2 **and boreal forests**

3

4 Jing Guo^{1†}, Jinmei Wang^{1†}, Yuxin Qiao¹, Nicholas G. Smith², Zhiyong Liu³, Rui Zhang⁴,
5 Xiuzhi Chen⁵, Chaoyang Wu⁶, Lei Chen^{1,2*}

6

7 ¹Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of
8 Life Sciences, Sichuan University, Chengdu, 610041, China.

9 ²Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA.

10 ³Center for Water Resources and Environment, School of Civil Engineering, Sun Yat-sen
11 University, Guangzhou, China.

12 ⁴State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street,
13 Hangzhou 311300, China.

14 ⁵Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle,
15 Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School
16 of Atmospheric Sciences, School of Ecology, School of Geography and Planning, Sun Yat-sen
17 University, Guangzhou, China.

18 ⁶Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences
19 and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

20

21 [†]These authors contributed equally to this work.

22 Correspondence: lei.chen1029@gmail.com

23 **Abstract**

24 Tree phenology, periodic biological events in trees, is highly sensitive to climate change. It has
25 been reported that forest greening can influence the local climate by altering the seasonal
26 surface energy budget. However, tree phenological responses to forest greening remains poorly
27 understood at large spatial scales. Combining remote-sensing derived phenological and leaf
28 area indices since 2001, herein we show that forest greening led to earlier spring (-1.05 ± 0.17
29 d) and autumn phenology (-1.95 ± 0.14 d) in temperate and boreal forests. Our results show
30 that forest greening in winter and spring decreased surface albedo and thus resulted in
31 biophysical warming that caused earlier spring leaf phenology. In contrast, forest greening in
32 summer and autumn triggered biophysical cooling by enhancing evapotranspiration, which led
33 to earlier autumn leaf phenology. These findings suggest that forest greening could significantly
34 alter tree phenology through seasonal biophysical impacts. Therefore, it is essential to
35 incorporate these complicated biophysical impacts of greening into tree phenology models to
36 accurately predict future shifts in tree phenology under future climate change.

37

38 **Keywords:** Climate warming, tree phenology, seasonal forest greening, biophysical impacts,
39 cooling and warming

40 **Introduction**

41 Changes in tree phenology, periodical biological events in trees, affect not only growth and
42 distribution of trees, but also biogeochemical processes of forest ecosystems, such as water,
43 energy, and carbon cycling (1–3). Under global warming, shifts in tree phenology, such as
44 earlier spring leaf-out or delayed leaf senescence, have been widely observed in temperate and
45 boreal forests (4, 5). It is therefore critical to understand the climate-phenology relationship to
46 accurately assess and predict the impacts of future climate change on forest ecosystems.

47

48 Under climate warming, numerous studies have reported vegetation greening and enhanced
49 vegetation activities during the growing season, with a global and persistent increase of 8% in
50 leaf area index (LAI) over the past 30 years (6–8). Warming-induced widespread greening may
51 affect local climate through various biophysical feedbacks including radiative processes (i.e.,
52 albedo) and non-radiative processes (i.e., latent and sensible heat fluxes) (9–11). Vegetation
53 greening could amplify, counteract, or even reverse the climate benefits of carbon sequestration
54 through biophysical impacts (6, 7, 11). As the largest carbon reservoir of terrestrial ecosystems,
55 the biophysical impacts due to changes in forest cover have received increasing attention over
56 recent years (9–14). Forest greening generally reduces the surface albedo, leading to enhanced
57 absorption of shortwave radiation (13, 15). Dissipation of this extra energy through processes
58 such as evapotranspiration (ET) or heat convection can result in surface cooling (10, 11).
59 Conversely, if the dissipation processes are limited, the excess energy contributes to surface
60 warming (14). These intricate biophysical impacts also vary geographically, and seasonally (9–
61 11). For example, forest greening-induced changes in biophysical properties in tropical regions
62 has the potential to cause local cooling (12), while in temperate and boreal regions, it tends to
63 lead to local warming (16). However, the temperate and boreal impacts vary seasonally, with
64 greening often resulting in moderate biophysical warming in winter but cooling in summer (9).
65 The dominant role of temperature in tree phenology has been widely documented (4, 17–19).
66 Therefore, forest greening-induced local warming or cooling may also affect tree phenological
67 events in spring and autumn. However, previous studies have mainly focused on the responses
68 of tree phenology to anthropogenic warming, and little is known about the potential effect of
69 forest greening on tree phenology. This knowledge gap reduces the reliability of predictions of
70 tree phenology and carbon cycling under future climate change.

71

72 Combining remote sensing-derived phenological and leaf area indices between 2001 and 2021,
73 here we examined the effect of forest greening on tree phenology in temperate and boreal forests.
74 To this end, we first examined differences in tree phenology across different greening gradients
75 in temperate and boreal forests between 2001 and 2021 using remote sensing datasets. To clarify
76 the mechanisms of the greening-induced changes in tree phenology, we further examined the

77 differences in local temperature, surface albedo, and evapotranspiration between high and low
78 greening gradients. We hypothesized that seasonal greening-induced biophysical warming or
79 cooling would alter tree phenology in temperate and boreal forests.

80

81 **Results**

82 We calculated the mean annual differences in phenological indicators across different greening
83 gradients in temperate and boreal forests from MODIS in 2001-2021, which represents
84 potential shifts in tree phenology in response to greening induced by leaf area index (LAI) (Fig.
85 1). We found that compared with low greening areas, approximately 66.7% of high greening
86 areas showed earlier start of the growing season (SOS), and about 33.3% of high greening areas
87 showed delayed SOS (Fig. 1A). As with autumn phenology, we observed that approximately
88 81.6% of high greening areas showed advanced end of the growing season (EOS), and 18.4%
89 of high greening areas had delayed EOS in comparison to low greening areas (Fig. 1B). On
90 average, the EVI-based SOS began 1.05 d earlier, and EOS ended 1.95 d earlier within high
91 greening areas compared to within low greening areas (Fig. 1, C and F). Moreover, we also
92 analyzed the phenological differences between forests with high and low greening gradients
93 across various latitudes, and climate zones in temperate and boreal forests. We observed a
94 decrease in both Δ SOS and Δ EOS with increasing latitude (Fig. 1, D and G). Also, boreal
95 regions exhibited significantly lower Δ SOS and Δ EOS compared to the temperate regions (Fig.
96 1, E and H). These results suggest a general phenomenon that the greening of temperate and
97 boreal forests led to earlier spring and autumn phenology, and that the effects in boreal areas
98 are greater than in other areas.

99

100 To clarify the underlying mechanisms of the greening-induced changes in tree phenology, we
101 first examined the differences in seasonal LAI and daily land surface temperature (LST)
102 between high and low greening gradients from MODIS in 2001-2021 (Fig. 2). The mean
103 greening gradient during winter and spring (WS) in temperate and boreal forests is $0.23 \text{ m}^2/\text{m}^2$,
104 which is lower than the value during summer and autumn (SA) ($0.36 \text{ m}^2/\text{m}^2$; Fig. 2E).
105 Meanwhile, we found that WS greening generated biophysical warming ($0.76 \pm 0.03^\circ\text{C}$),
106 whereas greening in SA had weak biophysical cooling ($-0.05 \pm 0.01^\circ\text{C}$) (Fig. 2H). Spatially,
107 we found that approximately 96.3% of high greening areas showed biophysical warming in WS,
108 and about 62.8% of high greening areas had biophysical cooling in SA in comparison to low
109 greening areas (Fig. 2, C and D). Using linear regression model, we also observed that the
110 biophysical warming in WS significantly increased, while biophysical cooling in SA
111 significantly decreased with the increase in greening gradient (Fig. 2, F and I). Furthermore,
112 we used the near-surface air temperature (T_{air}) to test the seasonal biophysical impacts of forest
113 greening, and found similar results (Fig. S1). To shed light on the drivers of the seasonal

114 biophysical impacts, we further examined the effects of seasonal greening on albedo and
115 evapotranspiration. We found a significant decrease in albedo during the WS seasons in high
116 greening areas compared to low greening areas (Fig. 2*J*). However, no significant difference in
117 evapotranspiration was observed between high and low greening gradients (Fig. 2*G*).
118 Furthermore, we found that evapotranspiration in the SA seasons showed a statistically
119 significant increase with the increased greening, while no significant difference in albedo was
120 observed between high and low greening gradients (Fig. 2, *G* and *J*). Therefore, the greening-
121 induced biophysical warming in winter and spring is driven by decreased albedo ($-0.07 \pm$
122 0.002), whereas the observed biophysical cooling is a result of increased evapotranspiration
123 (0.44 \pm 0.01 mm) in summer and autumn.

124

125 Using linear regression models, we then test the effect of seasonal greening and local
126 temperature on tree phenology between forests with high and low greening gradients. We
127 observed that as both Δ LAI and Δ LST increased in WS, the Δ SOS significantly decreased
128 ($P < 0.01$; Fig. 3, *A* and *B*). As with autumn phenology, we found a significant decrease in Δ EOS
129 with the increase in Δ LAI and decrease in Δ LST ($P < 0.01$; Fig. 3, *C* and *D*). Compared to
130 traditional vegetation indices such as enhanced vegetation index (EVI), the Near-infrared
131 Reflectance of Vegetation (NIRv) index is more effective in isolating vegetation signals from
132 background noise. In order to minimize the uncertainties caused by single phenological data
133 source, we also applied the same analysis using the NIRv-derived phenology dataset, and found
134 consistent results (Fig. S2). As phenological variations might also affect biophysical feedbacks,
135 and thus local temperature in temperate and boreal regions, we further confirmed the causal
136 relationship between phenological changes and biophysical impacts across different greening
137 gradient (Fig. S3). We found that the magnitude of seasonal Δ LST was not determined by
138 changes in spring and autumn phenology, but rather by the greening gradient in the
139 corresponding preseason (Fig. S3). These suggested that the observed phenological differences
140 across different greening gradients were due to seasonal biophysical impacts induced by forest
141 greening.

142

143 Commonly, the time of spring leaf-out is primarily controlled by winter or spring temperature,
144 while leaf senescence date is significantly influenced by summer or autumn temperature. We
145 further examined the effect of greening on tree phenology between forests with high and low
146 greening gradients for single seasons (Figs. S4, S5, S6). Similarly, we found a significant
147 increase in Δ LST in response to greening in both winter and spring, with the highest increase
148 observed in the spring season (Fig. S4, *A* and *B*). We also observed a significant decrease in
149 Δ SOS when Δ LAI or Δ LST increased during both winter and spring season (Fig. S5). In
150 particular, there was a more pronounced increase in Δ SOS in spring (Fig. S5, *C* and *D*).

151 Additionally, we further observed that with an increase in the greening gradient, there was a
152 greater decrease in ΔLST during summer compared to autumn (Figs. S4, C and D). The ΔEOS
153 showed a significant decrease with an increase in ΔLAI and a decrease in ΔLST , particularly
154 characterized by a notable decrease in ΔEOS during summer (Fig. S6). Our analyses again
155 confirmed that WS greening, especially spring greening, could lead to an earlier SOS through
156 biophysical warming. In contrast, the advanced EOS was attributed to greening-induced
157 biophysical cooling in SA, with a more pronounced impact in summer.

158

159 Phenological differences across different greening gradients are probably driven from other
160 climate factors. To ensure the robustness of our results, we constructed a piecewise structural
161 equation model (SEM) to investigate the direct and indirect effects of forest greening and
162 climate factors gradients on ΔSOS and ΔEOS (Fig. 4, A and C). We observed that SOS was
163 advanced directly by ΔLAI , ΔLST and ΔRad , but delayed by ΔPre in the WS seasons. The direct
164 effect of $\Delta PDSI$ on SOS was not significant (Fig. 4A). We again found that increased LAI
165 significantly increased LST. SOS was significantly advanced by increased LST, which provides
166 robust evidence for indirect effect of ΔLAI on SOS through biophysical warming. Furthermore,
167 we found that EOS was advanced directly by ΔLAI , and ΔLST , but delayed by ΔPre in the
168 preseason (SA). The direct effects of $\Delta PDSI$ and ΔRad on EOS were not significant (Fig. 4C).
169 We similarly found the indirect effect of LAI through biophysical cooling. The increased LAI
170 significantly decreased LST, and thus advanced EOS. Using boosted regression tree (BRT)
171 models, we further analyzed and compared the relative importance of ΔLAI , ΔLST , and other
172 climatic gradients to ΔSOS and ΔEOS , respectively. Results showed that both ΔSOS and ΔEOS
173 were mainly attributed to seasonal ΔLAI and ΔLST (Fig. 4, B and D).

174

175 **Discussion**

176 Over recent decades, warming-induced shifts in tree phenology have been widely observed in
177 temperate and boreal forests (4, 5, 17). However, previous studies focused mainly on responses
178 of tree phenology to anthropogenic warming, but have failed to explore the effect of greening-
179 induced warming or cooling on tree phenology. Using long-term and large-scale phenological
180 and leaf area datasets, herein we demonstrated that forest greening significantly advanced start
181 of the growing season (SOS) and end of the growing season (EOS) through seasonal
182 biophysical warming and cooling, respectively, in temperate and boreal forests (Fig. 5).

183

184 In temperate and boreal forests, earlier spring phenological events, such as leafing or flowering,
185 due to anthropogenic warming has been observed across multiple taxa and regions (5, 17, 18).
186 This is because warming can accelerate the accumulation of thermal units required to break
187 ecodormancy, and thus cause an earlier spring phenology (5, 20, 21). Here we observed that

188 SOS occurred earlier with the increased greening in winter and spring. A related idea that might
189 explain the greening-induced earlier spring phenology is the biophysical warming due to forest
190 greening. To test this hypothesis, we calculated and compared the difference in land surface
191 temperature in winter and spring seasons between forests with high and low greening gradients.
192 We found local temperature showed a significant increase with the increased greening. This
193 suggested that greening-induced biophysical warming led to the observed earlier spring
194 phenology. This effect was supported by the observed negative correlation between greening-
195 induced land surface temperature and dates of SOS. Generally, forest greening can affect local
196 temperature by altering surface biophysical properties (i.e., albedo and evapotranspiration) (7,
197 9). To shed light on the drivers of the biophysical warming, we further examined the effects of
198 greening in winter and spring on albedo and evapotranspiration. We found a statistically
199 significant reduction in albedo within high greening areas in comparison to low greening areas.
200 However, no significant discrepancy in evapotranspiration was observed between high and low
201 greening areas. This finding suggests that forest greening in winter and spring reduced surface
202 albedo, and thus resulted in earlier spring phenology. We further analyzed the biophysical
203 impacts of winter and spring greening, separately, and observed stronger effects of spring
204 greening on local temperature and spring phenology than winter greening. This could be related
205 to the widespread leaf-out in spring (5, 17, 20).

206
207 In addition, we observed that EOS occurred earlier with the increased greening in summer and
208 autumn seasons. To elucidate the greening effect on EOS, we further examined the effect of
209 greening in summer and autumn seasons on land surface temperature. We found forest greening
210 in summer and autumn seasons, especially in summer, significant reduced local temperature.
211 This greening-induced local cooling may accelerate the rate of chlorophyll degradation, reduce
212 the activities of photosynthetic enzymes, and increase the risk of late autumn frost, ultimately
213 advancing autumn phenology (4, 22–24). This was also supported by the observed positive
214 correlation between greening-induced land surface temperature and dates of EOS. Furthermore,
215 we found evapotranspiration showed a significant increase with the increased greening, while
216 no significant greening effect on albedo was observed. These findings suggested that greening-
217 induced increases in evapotranspiration in summer and autumn triggered the biophysical
218 cooling, and thus led to the observed earlier autumn phenology within high greening areas
219 compared to within low greening areas. Nevertheless, we observed that summer greening had
220 stronger biophysical impacts than autumn greening. Correspondingly, effect of biophysical
221 cooling in summer on EOS was also stronger than that in autumn season. This could be related
222 to the higher greening and enhanced evapotranspiration in summer than that in autumn (Fig.
223 S7).

224

225 Moreover, we also observed a greater advance in both spring and autumn phenology in boreal
226 zones compared to temperate zones. We calculated greening and land surface temperature
227 differences between forests with high and low greening gradients in boreal and temperate areas,
228 respectively (Fig. S8). We found that forest greening in winter and spring and greening-induced
229 biophysical warming in boreal areas were significantly higher than in temperate areas (Fig. S8,
230 *A* and *B*). This results in greater effects on spring phenology in boreal areas compared to
231 temperate areas. Additionally, we found that both summer and autumn greening and
232 corresponding cooling were significantly lower in boreal zones than in temperate zones (Fig.
233 S8, *C* and *D*). However, the phenology of species in colder regions is likely to be more sensitive
234 to temperature variation than in warmer regions (25–27). Therefore, the lower extent of
235 greening-induced biophysical cooling in boreal forests may cause an earlier autumn phenology
236 compared to temperate forests.

237

238 Temperature has long been recognized as the primary environmental cue for tree phenology
239 (17–19). However, in addition to temperature, shifts in tree phenology across different greening
240 gradients are probably influenced by other climate factors. To further test the greening-driven
241 hypothesis, we constructed an LAI-based SEM model to examine the relationships between
242 greening gradient, gradients in climate factors, and phenological differences. As previously
243 mentioned, we similarly found that the seasonal greening has a direct effect on both spring and
244 autumn phenology, but also an indirect effect through the land surface temperature. We
245 compared the relative importance of greening and climate factors to phenological differences.
246 These results further emphasized the importance of greening in tree phenology. These findings
247 suggested that forest greening could significantly alter tree phenology through seasonal
248 biophysical warming and cooling. In recent decades, the process-based phenological models
249 has greatly improved our ability to predict phenological shifts in response to climate warming
250 (4, 19, 25, 28). However, these models often based on temperature changes due to
251 anthropogenic warming (25), but neglected the seasonal biophysical warming and cooling
252 induced by greening. Hence, the interactions between tree phenology and biophysical impacts
253 needed to be well represented in tree phenology models to better predict the future shifts in tree
254 phenology in a warmer world.

255

256 Combining remotely sensed phenological and leaf area indices between 2001 and 2021, we
257 found that forest greening led to earlier spring and autumn phenology in temperate and boreal
258 forests. The earlier spring phenology was driven by forest greening-induced reductions in
259 winter and spring surface albedo that caused biophysical warming. In contrast, summer and
260 spring forest greening induced biophysical cooling by increasing evapotranspiration, which led
261 to earlier autumn phenology. Our results demonstrate that forest greening could significantly

262 alter tree phenology through seasonal biophysical impacts. Moreover, our findings emphasize
263 the crucial role of leaf area index as a key predictor in understanding the changes in tree
264 phenology in a warmer world. It is therefore essential to incorporate these complicated
265 biophysical impacts of greening into tree phenology models to accurately predict future shifts
266 in tree phenology under future climate warming scenarios.

267

268 **Materials and Methods**

269 **Land cover type product**

270 The MODIS land cover product (MCD12Q1) with IGBP classification at 500m spatial
271 resolution was used to distinguish the forested regions (29). According to the land cover map
272 in 2001, we excluded the pixels representing urban lands, grasslands, crops, and water bodies.
273 This left five forest types: evergreen needleleaf forests (ENF), evergreen broadleaf forests
274 (EBF), deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), and mixed
275 forests (MF) (Fig. S9).

276

277 **Leaf area index dataset**

278 Leaf area index (LAI) has been widely used to characterize the vegetation greenness (8). LAI
279 data in this study between 2001 and 2021 were obtained from Terra and Aqua MODIS LAI
280 products (MOD15A2H and MYD15A2H) at 500 m spatial resolution and 8-day temporal
281 resolution (30). We used quality assurance (QA) flag of LAI products to remove low quality
282 data contaminated by clouds, aerosols, shadows, and snow.

283

284 **Phenology dataset**

285 Our phenology dataset was the land surface phenology from MODIS Land Cover Dynamics
286 products (MCD12Q2), with a spatial resolution of 500 m between 2001 and 2021 on a global
287 scale (31). The phenological metrics were derived from the 8-day Enhanced Vegetation Index
288 (EVI), which is calculated using MODIS Nadir Bidirectional Reflectance Distribution Function
289 (BRDF) adjusted surface reflectance (NBAR-EVI2). The penalized cubic smoothing splines
290 were used to fit the 8-day MODIS-EVI time series and extract the start of growing season (SOS)
291 and end of growing season (EOS). The SOS was defined as the date when the fitted EVI2 time
292 series first crossed 15% of the segment EVI2 amplitude, and EOS was defined as the date when
293 the fitted EVI2 time series last crossed 15% of the segment EVI2 amplitude.

294

295 To reduce the uncertainties resulting from a single data source, we also extracted phenological
296 metrics using Near-infrared Reflectance of Vegetation (NIRv) dataset. The NIRv was a newly
297 developed vegetation index, which is more sensitive to distinguish vegetation signals from

298 background noise (32). Compared to traditional NDVI and EVI datasets, the NIRv dataset
299 showed a higher accuracy in phenology estimation (33). NIRv data in this study between 2001
300 and 2021 were derived from MODIS Nadir BRDF-Adjusted Reflectance (NBAR) products
301 (MCD43A4) with 500 m spatial resolution and daily temporal resolution (34). We used quality
302 assurance (QA) flag to exclude the effect of atmosphere on the data. The NIRv was calculated
303 as below:

304

$$NIRv = \left(\frac{\rho_2 - \rho_1}{\rho_2 + \rho_1} - 0.08 \right) \times \rho_2 \quad (1)$$

305 where ρ_1 and ρ_2 represent surface reflectance of MODIS band 1 (620-670 nm) and 2 (841–876
306 nm), respectively (35).

307

308 We used Savizky-Golay smooth method (36) to minimize the noise of atmospheric interference
309 and satellite sensor before the estimation of spring and autumn phenology. We applied a double
310 logistic function (Eq. 2) to fit time series NIRv, and then extracted SOS and EOS (37). The SOS
311 is defined as the timing of first local maximum point in the first half year, and the date of second
312 local maximum point in the second half year is defined as the EOS.

313

$$y(t) = a + b \left(\frac{1}{1 + e^{c(t-d)}} + \frac{1}{1 + e^{e(t-f)}} \right) \quad (2)$$

314 where b , c , d , and f are parameters of logistic function, a represents the initial background NIRv
315 value, $a + b$ denotes the maximum NIRv value, t is time in days, and $y(t)$ is the NIRv value at
316 time t .

317

318 **Climate zones**

319 The Global ecological zone (GEZ) map at a 1 km spatial resolution was used to define the
320 climate zones (38). We only kept extra-tropical regions (i.e., latitudes $>30^{\circ}\text{N}$), which is
321 characterized by distinct seasonal phenological cycles. We reclassified forest biomes into
322 subtropical forests, temperate forests, and boreal forests. Given the limited number of screened
323 windows available in subtropical regions, we focused on temperate and boreal forests in the
324 Northern Hemisphere (Fig. S10).

325

326 **Climate data**

327 Daytime and nighttime land surface temperature (LST) data were derived from Terra and Aqua
328 MODIS products (MOD11A1 and MYD11A1) with 1 km spatial resolution and 8-day interval
329 from 2001 to 2021 (39). Daily LST was obtained as an average of daytime and nighttime LST
330 with an error <1 K.

331

332 Evapotranspiration (ET) data were from MODIS ET products (MOD16A2) at 500 m spatial

333 resolution and 8-day temporal resolution between 2001 and 2021, which was generated using
334 air temperature, air pressure, air humidity, LAI, albedo, and land cover (40).

335

336 The MODIS albedo products (MCD43A3) provided black sky albedo and white sky albedo
337 over shortwave broadband, with 500 m spatial resolution and 16-day interval from 2001 to 2021
338 (41). Because of the similarity between black- and white-sky albedo, we used the average of
339 black- and white-sky albedo to represent actual albedo (9, 10).

340

341 Monthly near-surface air minimum and maximum temperatures (T_{\min} and T_{\max}), shortwave
342 radiation (Rad), precipitation (Pre), and Palmer Drought Severity Index (PDSI) between 2001
343 and 2021 were derived from TerraClimate datasets, with a high-spatial resolution of 4 km (42).
344 The T_{air} was calculated as an average of T_{\min} and T_{\max} .

345

346 Digital elevation models (DEM) data were obtained from the GTOPO30 dataset with a 1 km
347 spatial resolution (43). To reduce differences in the spatial resolutions between various remote
348 sensing datasets, all satellite data were resampled to a spatial resolution of 4 km.

349

350 **Window searching approach**

351 Window searching approach was applied to examine all available samples, and to compare high
352 greening areas with low greening areas in temperate and boreal forests. The purpose of this
353 search strategy was to exclude the differences in the climatic background between forests with
354 high and low greening gradients (9). Following from previous studies (9, 10), the search
355 window size is defined as $0.5^{\circ} \times 0.5^{\circ}$ (longitude and latitude, respectively). We then screened
356 all windows according to the following criteria: (1) we used land cover map (MCD12Q1) in
357 2001 to filter the windows that only contain forest pixels (i.e., ENF, EBF, DNF, DBF, and MF);
358 (2) these selected windows had at least 70% fractional forest cover; (3) in order to minimize
359 potential systematic bias in land surface temperature assessments, we constrained the elevation
360 difference within 500 m in each window. To ensure the robustness of results, we also applied
361 the same analysis using search windows with at least 30% and 50% fractional forest cover,
362 respectively, and obtained similar results. Thus, we selected search windows with at least 70%
363 fractional forest cover as representatives for subsequent analyses.

364

365 **Statistical analysis**

366 We aggregated the 8-day composite LST, and LAI data to monthly mean values. To delineate
367 the forest boundary of high and low greening areas within each screened window, we first
368 calculated the mean annual LAI of forest within each screened window between 2001 and 2021
369 ($\text{Window}_{\text{mean-LAI}}$). We defined the high greening areas as the region where LAI pixel values

370 exceeded Window_{mean-LAI} within each screened window. Conversely, the areas with LAI pixel
371 values lower than Window_{mean-LAI} were identified as low greening areas. We then established
372 the monthly dynamic boundaries for the high and low greening areas in each screened window.
373 The average phenological metrics (SOS, and EOS), and climate factors (LST, T_{air}, Pre, PDSI,
374 Rad, ET, Albedo, and DEM) within high and low greening areas were extracted according to
375 the monthly forest boundary, respectively.

376

377 In temperate and boreal forests, previous November 1st is often used as the starting date of the
378 preseason, a period during which temperature is related to spring leaf-out (17, 18). Across the
379 forest pixels in all selected windows, the mean date of SOS was DOY 117. Therefore, the period
380 between the previous November 1 and April 30 (winter and spring, WS) was considered as the
381 preseason of spring phenology. Furthermore, it has been reported that the temperatures during
382 summer and autumn have an impact on leaf senescence (44–46). The mean EOS across all
383 selected windows was DOY 285 for the forest pixels. We used the period from May 1 to October
384 31 (summer and autumn, SA) as the preseason of autumn phenology. We screened the windows
385 for spring and autumn phenology separately, according to the corresponding fixed preseason.
386 Moreover, we also removed the records of SOS and EOS exceeding 2.5 times of median
387 absolute deviation (MAD) to exclude potential biases caused by outliers, respectively (32). In
388 total, 1344 windows were retained for spring phenology analysis, while 1274 windows were
389 used for EOS analysis.

390

391 The space-for-time approach has been widely applied to examine the effect of land use/cover
392 change and earth surface greening on local temperature (9, 10, 14). We used the “space-for-
393 time” method to calculate mean phenological differences (Δ SOS and Δ EOS) between high and
394 low greening areas within each window during 2001–2021 according to:

$$395 \Delta F = F_{\text{high-greening}} - F_{\text{low-greening}} \quad (3)$$

396 where ΔF represents the gradients between high and low greening areas for tree phenology
397 (SOS and EOS), forest greenness (LAI), and climate factor (LST, Pre, PDSI, Pre, Rad, ET, and
398 Albedo). $F_{\text{high-greening}}$ represents these values in high greening areas, and $F_{\text{low-greening}}$ represents
399 these values in low greening areas. The changes in Δ SOS and Δ EOS were then analyzed across
400 latitudes, and climate zones. One-way analysis of variance (ANOVA) was used to test the
401 difference in Δ SOS and Δ EOS between temperate and boreal forests.

402

403 To clarify the underlying mechanisms of the greening-induced shifts in tree phenology, we
404 examined the differences in seasonal LAI, and LST between high and low greening gradients.
405 Specifically, we first calculated Δ LAI and Δ LST in the WS seasons (corresponding to SOS) and

406 in the SA seasons (corresponding to EOS) within each window during 2001-2021 according to
407 Equation (3). The changes in ΔLAI and ΔLST in different preseason were also analyzed across
408 climate zones. One-way ANOVA was used to examine the difference in ΔLAI , and ΔLST
409 between temperate and boreal forests. Using linear regression models, we further examined the
410 relationships between seasonal greening (ΔLAI) and corresponding biophysical impacts
411 (ΔLST). We also used the near-surface air temperature (T_{air}) indicator to examine the seasonal
412 biophysical impacts of forest greening, and obtained similar results. Due to the availability of
413 fine-scale land surface temperature data, we used satellite-derived LST for subsequent analyses.
414 To shed light on the drivers of the seasonal biophysical impacts, we calculated seasonal Δalbedo
415 and ΔET between high and low greening gradients according to Equation (3). One-way ANOVA
416 was used to test the difference in Δalbedo , and ΔET between the WS and SA seasons.
417

418 We further investigated the effects of seasonal greening and biophysical impacts on tree
419 phenology. Linear regression model was used to test the relationship between shifts in
420 phenology and seasonal greening (ΔLAI) and local temperature (ΔLST). Moreover, we
421 analyzed the effect of greening on tree phenology shifts for single seasons (i.e., winter, spring,
422 summer, and autumn) using linear regression models. To minimize the uncertainties rising from
423 a single phenological data source, we used the same analysis to investigate the effect of greening
424 on tree phenology using the NIRv phenological dataset. Given the potential impact of
425 phenological variations on local temperature in temperate and boreal regions, we also examine
426 the causal relationship between phenological changes and biophysical impacts across different
427 greening gradients.
428

429 Phenological differences between forests with high and low greening gradients are probably
430 driven from other climate factors. To test our greening-driven hypothesis, we used piecewise
431 structural equation models (SEM) to further examine the direct and indirect effects of greening
432 gradient, and other climate factors gradients in fixed preseason on tree phenology. We selected
433 Rad, Pre, and PDSI as other controlling drivers of tree phenology. In the SEM model, we
434 hypothesized that seasonal greening and climate variables are likely to directly influence SOS
435 and EOS, indicated by the arrows from ΔLAI , ΔLST , ΔRad , ΔPre , and ΔPDSI directly point to
436 the ΔSOS or ΔEOS . Also, forest greening can indirectly influence SOS and EOS by altering the
437 seasonal biophysical impacts, indicated by the arrows from ΔLAI firstly directly point to ΔLST ,
438 then to the ΔSOS and ΔEOS . The piecewise SEM was conducted using the “piecewiseSEM”
439 package (47) in R (48). Further, we quantified and ranked the effects of seasonal greening and
440 these climate factors on tree phenology using boosted regression trees (BRT), an ensemble
441 learning method that incorporate both statistical and machine learning techniques (49). We
442 conducted BRT analysis using “gbm” package (50) in R (48).

443

444 All the data analyses were conducted using Google Earth Engine (51) and R version 4.1.2 (48).

445

446 **Competing Interest Statement:** The authors declare no competing interests.

447

448 **Author contributions:** L.C. designed the research. J.G., J.W. and Y.Q. performed the data
449 analysis. J.G. wrote the paper with the inputs of J.W., Y.Q., N.G.S., Z.L., R.Z., X.C., C.W. and
450 L.C. All authors contributed to the interpretation of the results and approved the final
451 manuscript.

452

453 **Acknowledgments**

454 This work was funded by National Natural Science Foundation of China (32271833).

455 **Reference**

456 1. I. Chuine, E. G. Beaubien, Phenology is a major determinant of tree species range. *Ecol. Lett.* **4**, 500–510 (2001).

458 2. R. A. Montgomery, K. E. Rice, A. Stefanski, R. L. Rich, P. B. Reich, Phenological responses of temperate and boreal trees to warming depend on ambient spring 459 temperatures, leaf habit, and geographic range. *Proc. Natl. Acad. Sci.* **117**, 10397–10405 460 (2020).

462 3. S. J. Thackeray, *et al.*, Phenological sensitivity to climate across taxa and trophic levels. 463 *Nature* **535**, 241–245 (2016).

464 4. L. Chen, *et al.*, Leaf senescence exhibits stronger climatic responses during warm than 465 during cold autumns. *Nat. Clim. Change* **10**, 777–780 (2020).

466 5. S. Piao, *et al.*, Leaf onset in the northern hemisphere triggered by daytime temperature. 467 *Nat. Commun.* **6**, 6911 (2015).

468 6. G. Forzieri, R. Alkama, D. G. Miralles, A. Cescatti, Satellites reveal contrasting responses 469 of regional climate to the widespread greening of Earth. *Science* **356**, 1180–1184 (2017).

470 7. Z. Zeng, *et al.*, Climate mitigation from vegetation biophysical feedbacks during the past 471 three decades. *Nat. Clim. Change* **7**, 432–436 (2017).

472 8. Z. Zhu, *et al.*, Greening of the Earth and its drivers. *Nat. Clim. Change* **6**, 791–795 (2016).

473 9. Y. Li, *et al.*, Local cooling and warming effects of forests based on satellite observations. 474 *Nat. Commun.* **6**, 6603 (2015).

475 10. Y. Li, *et al.*, Biophysical impacts of earth greening can substantially mitigate regional land 476 surface temperature warming. *Nat. Commun.* **14**, 121 (2023).

477 11. X. Lian, *et al.*, Biophysical impacts of northern vegetation changes on seasonal warming 478 patterns. *Nat. Commun.* **13**, 3925 (2022).

479 12. R. Alkama, A. Cescatti, Biophysical climate impacts of recent changes in global forest 480 cover. *Science* **351**, 600–604 (2016).

481 13. X. Lee, *et al.*, Observed increase in local cooling effect of deforestation at higher latitudes. 482 *Nature* **479**, 384–387 (2011).

483 14. S.-S. Peng, *et al.*, Afforestation in China cools local land surface temperature. *Proc. Natl. 484 Acad. Sci.* **111**, 2915–2919 (2014).

485 15. G. B. Bonan, Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits 486 of Forests. *Science* **320**, 1444–1449 (2008).

487 16. X. Lee, *et al.*, Observed increase in local cooling effect of deforestation at higher latitudes.
488 *Nature* **479**, 384–387 (2011).

489 17. Y. H. Fu, *et al.*, Declining global warming effects on the phenology of spring leaf
490 unfolding. *Nature* **526**, 104–107 (2015).

491 18. J. Wang, *et al.*, Contrasting temporal variations in responses of leaf unfolding to daytime
492 and nighttime warming. *Glob. Change Biol.* **27**, 5084–5093 (2021).

493 19. C. Wu, *et al.*, Contrasting responses of autumn-leaf senescence to daytime and night-time
494 warming. *Nat. Clim. Change* **8**, 1092–1096 (2018).

495 20. L. Chen, *et al.*, Long-term changes in the impacts of global warming on leaf phenology
496 of four temperate tree species. *Glob. Change Biol.* **25**, 997–1004 (2019).

497 21. M. Shen, *et al.*, Strong impacts of daily minimum temperature on the green-up date and
498 summer greenness of the Tibetan Plateau. *Glob. Change Biol.* **22**, 3057–3066 (2016).

499 22. L. Chen, *et al.*, Immediate and carry-over effects of late-spring frost and growing season
500 drought on forest gross primary productivity capacity in the Northern Hemisphere. *Glob.*
501 *Change Biol.* **00**, 1–17 (2023).

502 23. D. Gaumont-Guay, H. A. Margolis, F. J. Bigras, F. Raulier, Characterizing the frost
503 sensitivity of black spruce photosynthesis during cold acclimation. *Tree Physiol.* **23**, 301–
504 311 (2003).

505 24. O. Sperling, J. M. Earles, F. Secchi, J. Godfrey, M. A. Zwieniecki, Frost Induces
506 Respiration and Accelerates Carbon Depletion in Trees. *PLOS ONE* **10**, e0144124 (2015).

507 25. S. Piao, *et al.*, Plant phenology and global climate change: Current progresses and
508 challenges. *Glob. Change Biol.* **25**, 1922–1940 (2019).

509 26. Y. Vitasse, C. Signarbieux, Y. H. Fu, Global warming leads to more uniform spring
510 phenology across elevations. *Proc. Natl. Acad. Sci.* **115**, 1004–1008 (2018).

511 27. C. M. Zohner, *et al.*, Late-spring frost risk between 1959 and 2017 decreased in North
512 America but increased in Europe and Asia. *Proc. Natl. Acad. Sci.* **117**, 12192–12200
513 (2020).

514 28. H. Zhang, I. Chuine, P. Regnier, P. Ciais, W. Yuan, Deciphering the multiple effects of
515 climate warming on the temporal shift of leaf unfolding. *Nat. Clim. Change* **12**, 193–199
516 (2022).

517 29. M. Friedl, D. Sulla-Menashe, MODIS/Terra+Aqua Land Cover Type Yearly L3 Global
518 500m SIN Grid V061 [Data set]. *NASA EOSDIS Land Process. DAAC* (2022).

519 30. R. Myneni, Y. Knyazikhin, T. Park, MODIS/Aqua Leaf Area Index/FPAR 8-Day L4
520 Global 500m SIN Grid V061 [Data set]. *NASA EOSDIS Land Process. DAAC* (2021).

521 31. M. Friedl, J. Gray, D. Sulla-Menashe, MODIS/Terra+Aqua Land Cover Dynamics Yearly
522 L3 Global 500m SIN Grid V061 [Data set]. *NASA EOSDIS Land Process. DAAC* (2022).

523 32. C. Leys, C. Ley, O. Klein, P. Bernard, L. Licata, Detecting outliers: Do not use standard
524 deviation around the mean, use absolute deviation around the median. *J. Exp. Soc.*
525 *Psychol.* **49**, 764–766 (2013).

526 33. J. Zhang, *et al.*, NIRv and SIF better estimate phenology than NDVI and EVI: Effects of
527 spring and autumn phenology on ecosystem production of planted forests. *Agric. For.*
528 *Meteorol.* **315**, 108819 (2022).

529 34. C. Schaaf, Z. Wang, MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily
530 L3 Global - 500m V061 [Data set]. *NASA EOSDIS Land Process. DAAC* (2021).

531 35. G. Badgley, C. B. Field, J. A. Berry, Canopy near-infrared reflectance and terrestrial
532 photosynthesis. *Sci. Adv.* **3**, e1602244 (2017).

533 36. X. Wang, *et al.*, Validation of MODIS-GPP product at 10 flux sites in northern China. *Int.*
534 *J. Remote Sens.* **34**, 587–599 (2013).

535 37. X. Wang, *et al.*, No trends in spring and autumn phenology during the global warming
536 hiatus. *Nat. Commun.* **10**, 2389 (2019).

537 38. FAO, Global Forest Resources Assessment 2010. *FAO For. Pap.* **163** (2010).

538 39. Z. Wan, S. Hook, G. Hulley, MODIS/Terra Land Surface Temperature/Emissivity 8-Day
539 L3 Global 1km SIN Grid V061 [Data set]. *NASA EOSDIS Land Process. DAAC* (2021).

540 40. S. Running, Z. Mu, M. Zhao, MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day
541 L4 Global 500m SIN Grid V006. *NASA EOSDIS Land Process. DAAC* (2017).

542 41. C. Schaaf, Z. Wang, MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global - 500m V061
543 [Data set]. *NASA EOSDIS Land Process. DAAC* (2021).

544 42. J. T. Abatzoglou, S. Z. Dobrowski, S. A. Parks, K. C. Hegewisch, TerraClimate, a high-
545 resolution global dataset of monthly climate and climatic water balance from 1958–2015.
546 *Sci. Data* **5**, 170191 (2018).

547 43. D. B. Gesch, K. L. Verdin, S. K. Greenlee, New land surface digital elevation model
548 covers the Earth. *Eos Trans. Am. Geophys. Union* **80**, 69–70 (1999).

549 44. C. A. Gunderson, *et al.*, Forest phenology and a warmer climate – growing season
550 extension in relation to climatic provenance. *Glob. Change Biol.* **18**, 2008–2025 (2012).

551 45. Q. Liu, *et al.*, Delayed autumn phenology in the Northern Hemisphere is related to change
552 in both climate and spring phenology. *Glob. Change Biol.* **22**, 3702–3711 (2016).

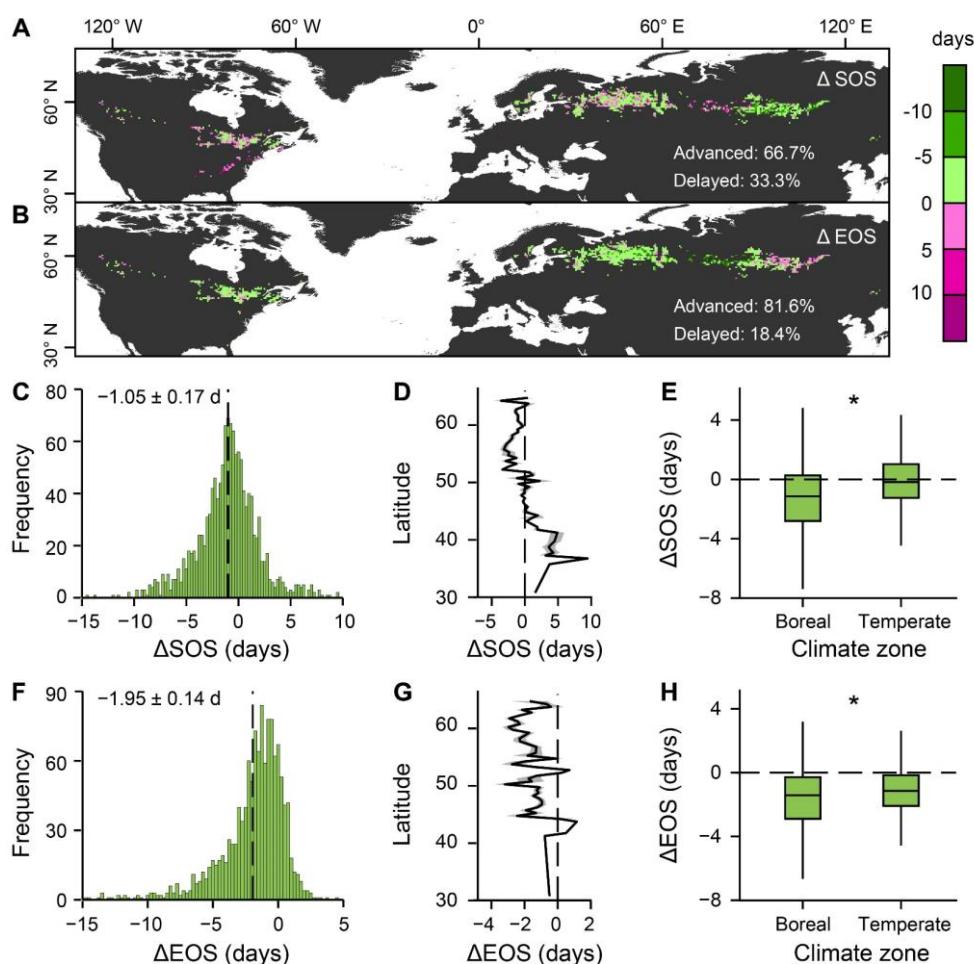
553 46. R. M. Marchin, C. F. Salk, W. A. Hoffmann, R. R. Dunn, Temperature alone does not

554 explain phenological variation of diverse temperate plants under experimental warming.
555 *Glob. Change Biol.* **21**, 3138–3151 (2015).

556 47. J. S. Lefcheck, piecewiseSEM: Piecewise structural equation modelling in r for ecology,
557 evolution, and systematics. *Methods Ecol. Evol.* **7**, 573–579 (2016).

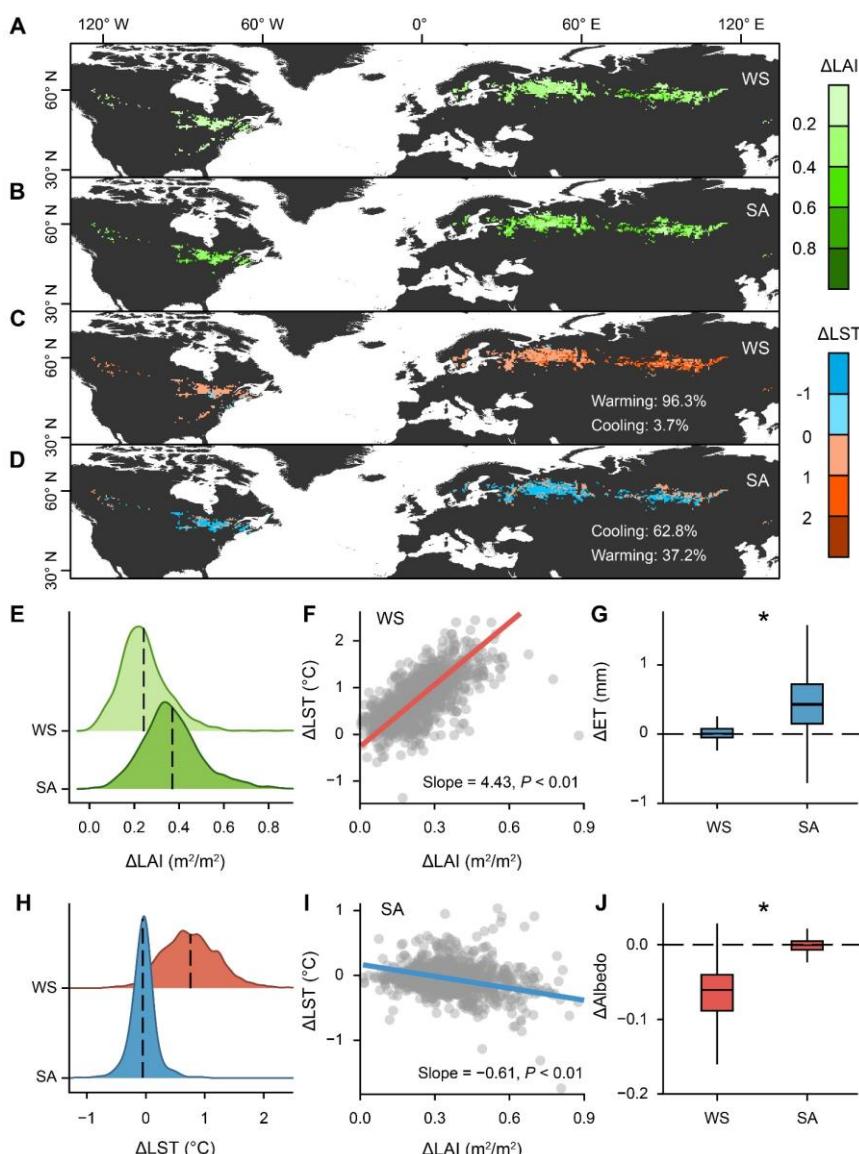
558 48. R Core Team, R: A language and environment for statistical computing. *R Found. Stat.*
559 *Comput.* (2021).

560 49. J. Elith, J. R. Leathwick, T. Hastie, A working guide to boosted regression trees. *J. Anim.*
561 *Ecol.* **77**, 802–813 (2008).

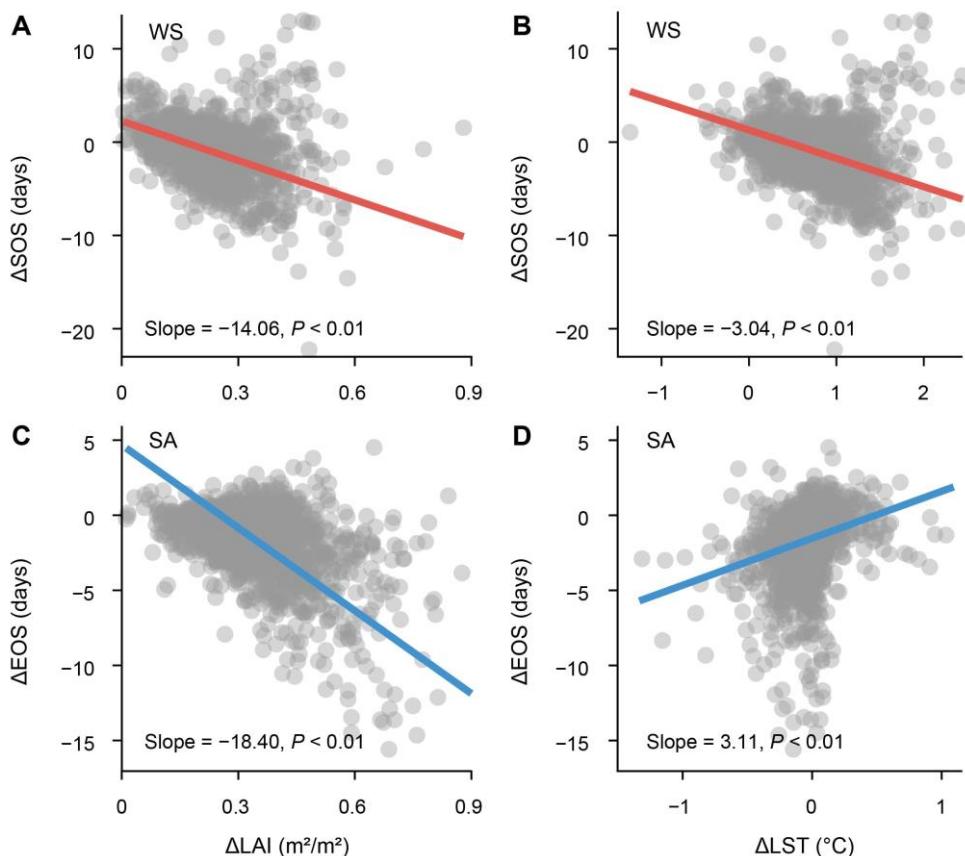

562 50. Ridgeway G, Ridgeway M.G, The gbm package. *R Found. Stat. Comput.*, 5(3) (2004).

563 51. N. Gorelick, *et al.*, Google Earth Engine: Planetary-scale geospatial analysis for everyone.
564 *Remote Sens. Environ.* **202**, 18–27 (2017).

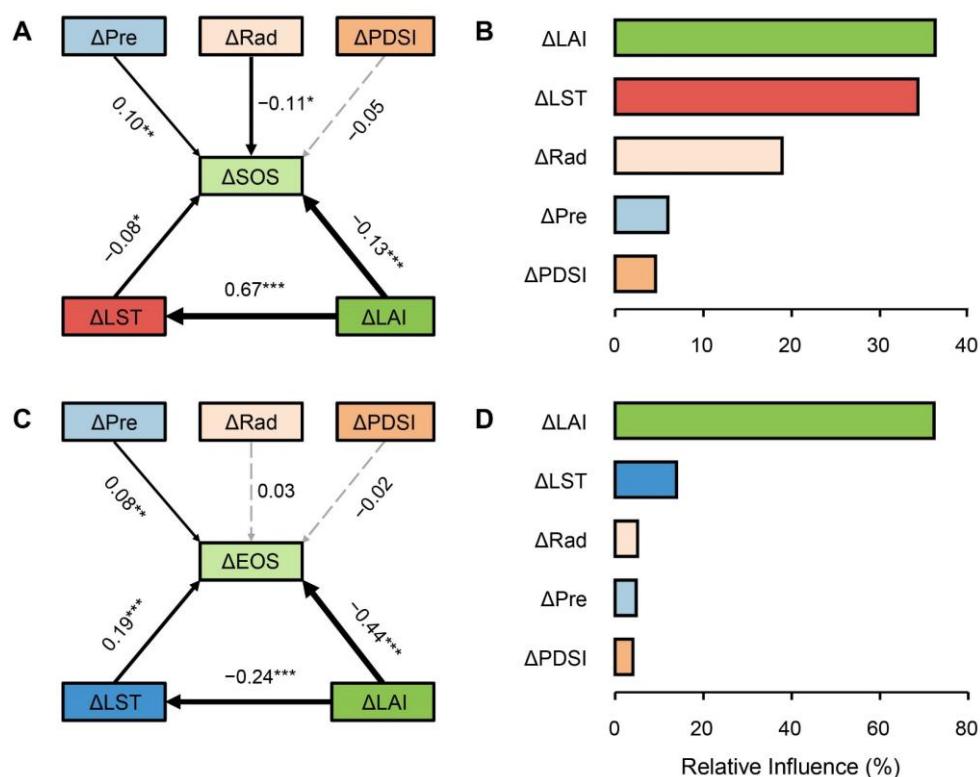
565


566 **Figures**

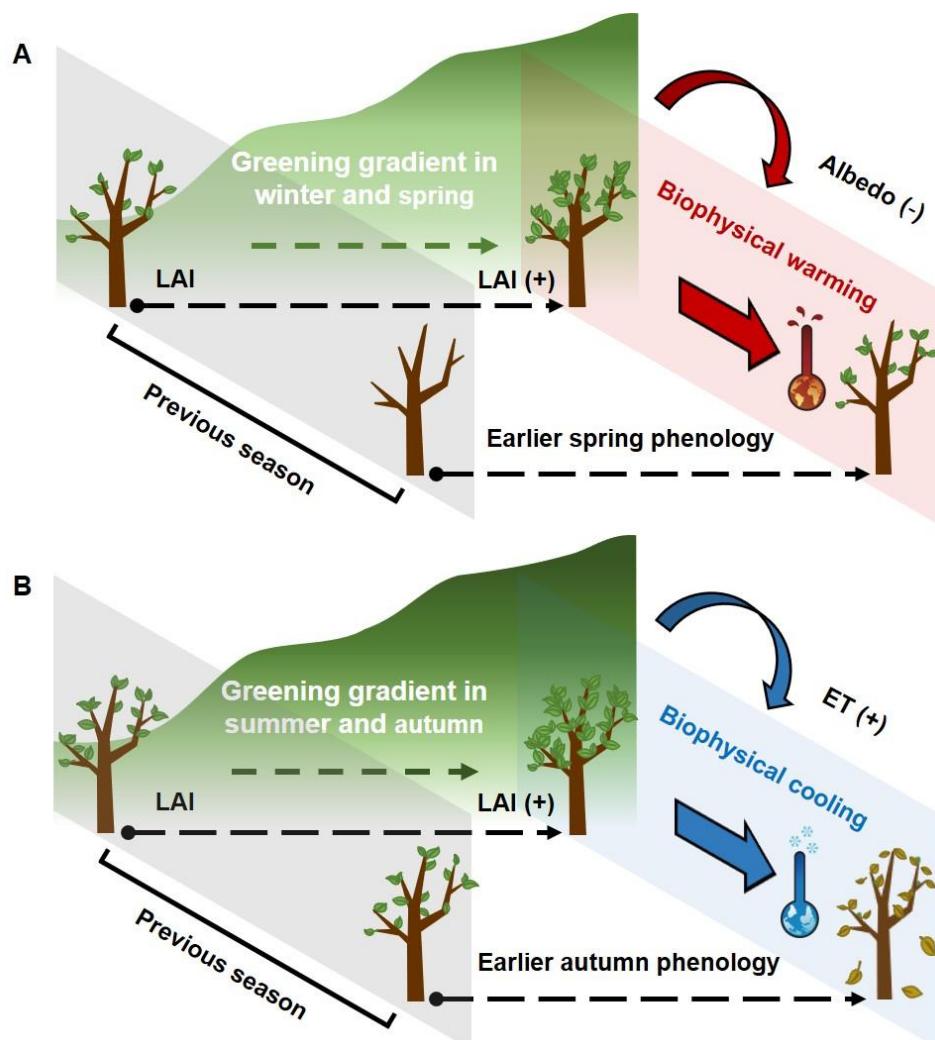
567


568

569 **Fig. 1 Spatial patterns and mean phenological differences across different greenening**
570 **gradients in temperate and boreal forests during the study period 2001-2021 across**
571 **various latitudes, and climate zones. A-H, Spatial map of ΔSOS (A), and ΔEOS (B),**
572 **distribution of ΔSOS (C), and ΔEOS (F), changes with latitude in ΔSOS (D), and ΔEOS (G),**
573 **and changes in ΔSOS (E), and ΔEOS (H) for various climate zones. Positive ΔSOS , and ΔEOS**
574 **represent delayed phenology, whereas negative ΔSOS , and ΔEOS indicate advanced phenology**
575 **in A-H. The black dash lines represent mean annual phenological difference (ΔSOS , and ΔEOS)**
576 **in C and F. Solid lines and shaded areas represent the mean and SD in D and G. The length of**
577 **each box indicates the interquartile range, the horizontal line inside each box the median, and**
578 **the bottom and top of the box the first and third quartiles respectively in E and H. The asterisk**
579 **indicates a significant difference in the ΔSOS , and ΔEOS between temperate and boreal forests**
580 **in E and H ($P < 0.01$).**


581

582 **Fig. 2 Effects of seasonal greening on biophysical impacts, evapotranspiration (ET), and**
 583 **albedo in temperate and boreal forests during the study period 2001-2021. A–J, Spatial**
 584 **map of average ΔLAI in winter and spring (WS, November to April) (A), and in summer and**
 585 **autumn (SA, May to October) (B), spatial map of average ΔLST in WS (C), and in SA (D),**
 586 **density plots of ΔLAI (E) and ΔLST (H) between WS and SA, changes in ΔLST with increase**
 587 **of ΔLAI in WS (F), and in SA (I), and changes in ΔET (G) and ΔAlbedo (J) between WS and**
 588 **SA. Positive ΔLST both in WS and SA represents biophysical warming, whereas negative ΔLST**
 589 **in WS and SA indicate biophysical cooling. The black dash lines in E, and H represent mean**
 590 **greening and temperature gradients for two growing seasons. In F and I, the circles represent**
 591 **the values of mean ΔLST in WS and in SA at each window. In G and J, the length of each box**
 592 **indicates the interquartile range, the horizontal line inside each box the median, and the bottom**
 593 **and top of the box the first and third quartiles respectively. The asterisk indicates a significant**
 594 **difference ΔET and ΔAlbedo between WS and SA ($P < 0.01$). The black dash lines indicate when**
 595 **ΔET and ΔAlbedo are equal to zero.**


596

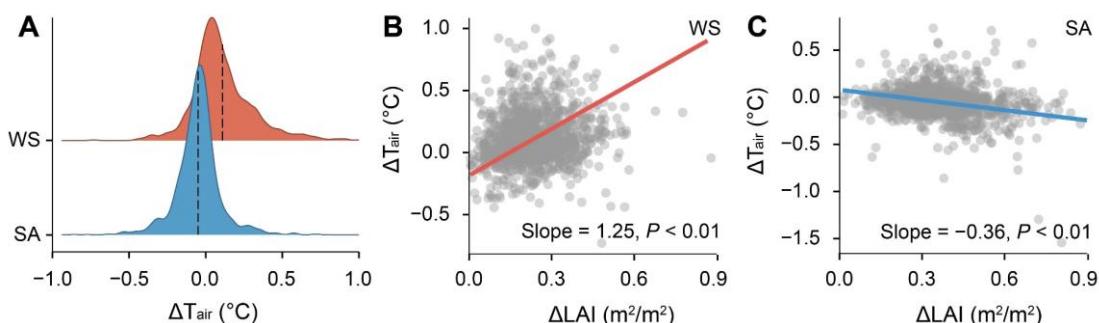
597 **Fig. 3 Effects of greening (leaf area index differences, Δ LAI) and greening-induced**
598 **temperatura gradient (land surface temperature differences, Δ LST) for two growing**
599 **seasons on phenological differences across different greening gradients in temperate and**
600 **boreal forests over the study period 2001-2021. A-D, Changes in Δ SOS with the increase in**
601 **Δ LAI (A) and Δ LST (B) in winter and spring (WS, November to April), changes in Δ EOS with**
602 **the increase in Δ LAI (C) and Δ LST (D) in winter and spring (SA, May to October). In A to D,**
603 **the circles represent the values of mean Δ SOS in WS and Δ EOS in SA at each window.**

604

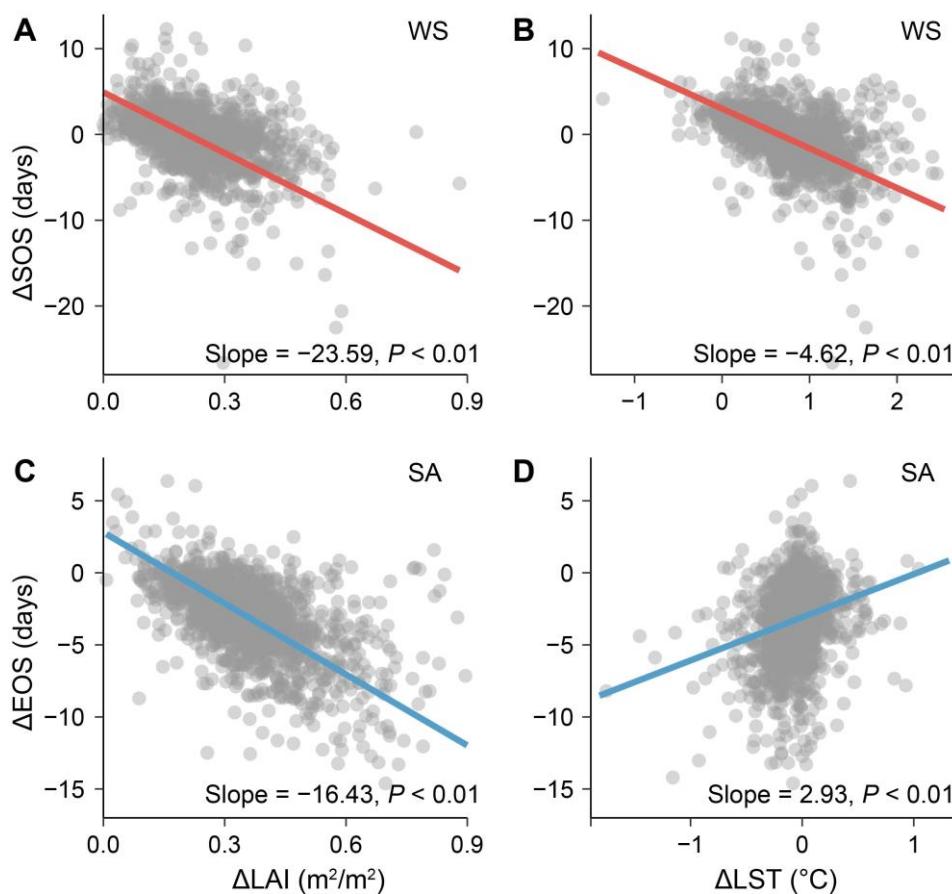
605 **Fig. 4 Effects of forest greening and climate variables gradients on phenological**
 606 **differences across different greening gradients in temperate and boreal forests during the**
 607 **study period 2001-2021. A–D, Piecewise structural equation model (SEM) for ΔSOS (A)**
 608 **and ΔEOS (C) considering both forest greening (ΔLAI) and climate variables gradients, relative**
 609 **influence of forest greening (ΔLAI) and climatic factors during previous growing on ΔSOS (B)**
 610 **and ΔEOS (D). In A and C, both ΔLAI and climate variables gradients (ΔLST, ΔPre, ΔPDSI,**
 611 **ΔRad) were incorporated into the SEM to test the direct (arrows from each climate factor**
 612 **gradient directly point to the ΔSOS or ΔEOS) or indirect (arrows from ΔLAI firstly directly**
 613 **point to ΔLST then to the ΔSOS or ΔEOS) effects of forest greening, and other climate factors**
 614 **gradients in fixed season on ΔSOS (A), and ΔEOS (C), with green lines indicating a negative**
 615 **effect and orange lines indicating a positive effect. The solid lines represent significant**
 616 **relationships ($P < 0.05$) between variables, while dashed lines represent no significant**
 617 **relationships between variables ($P > 0.05$). The calculated P values based on two-sided test and**
 618 **other statistics were listed in Table S1 and S2. In B and D, boosted regression trees (BRT) was**
 619 **used to quantify and compare the effects of climate variables gradients and forest greening on**
 620 **ΔSOS (B) or ΔEOS (D).**

621

622 **Fig. 5 A schematic diagram of tree phenology in response to greening-induced biophysical**
623 **impacts of previous season. A–B, Greening and biophysical warming in winter and spring**
624 **drivers earlier spring phenology (A), greening and biophysical cooling in summer and autumn**
625 **lead to advanced autumn phenology (B).**

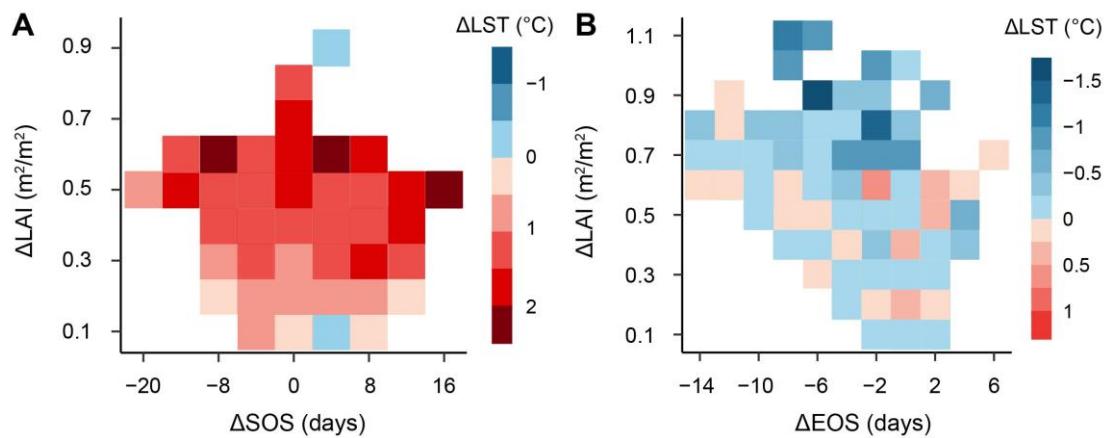

626

Supplementary Information

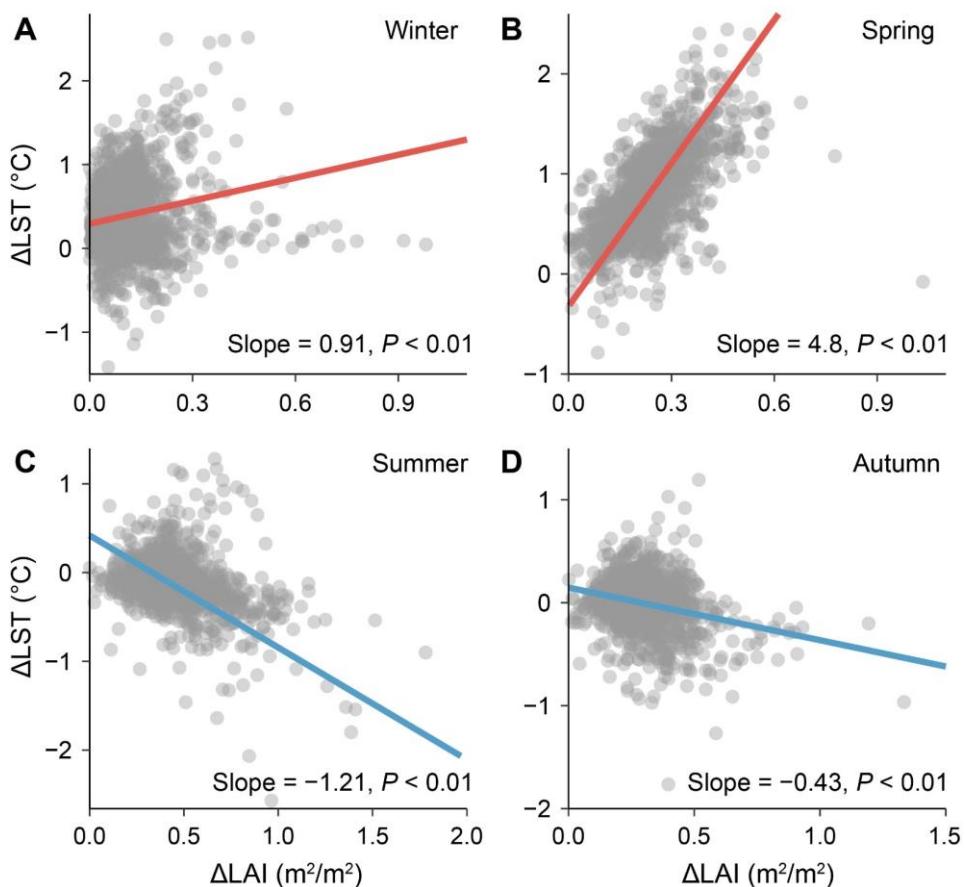

627

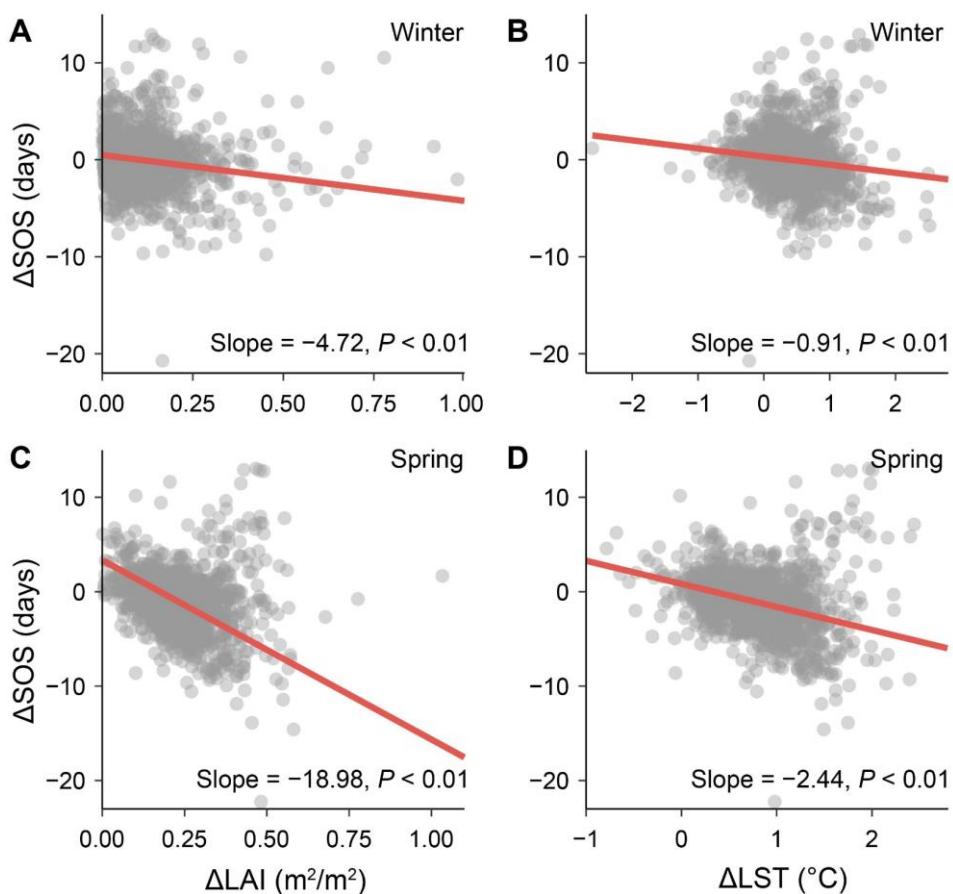
628

629



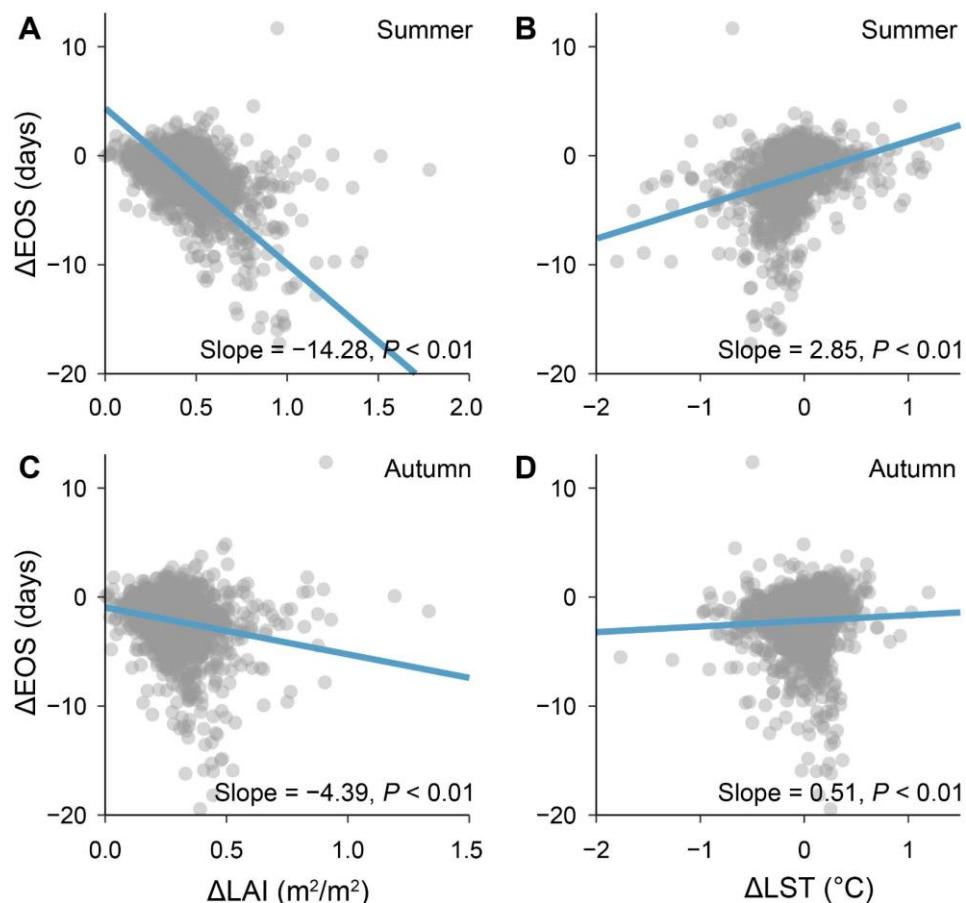
630 **Fig. S1 Effect of greening (leaf area index differences, ΔLAI) on temperature gradient (air
631 temperature differences, ΔT_{air}) in temperate and boreal forests over the study period
632 2001-2021. A–C, Density plot of ΔT_{air} between WS (winter and spring) and SA (summer and
633 autumn) (A), and changes in ΔT_{air} with the increase in ΔLAI in WS (B) and in SA (C). In A,
634 the black dash lines represent mean air temperature gradients for two growing seasons. In B
635 and C, the circles represent the values of mean ΔLST in WS and SA at each window.**


636

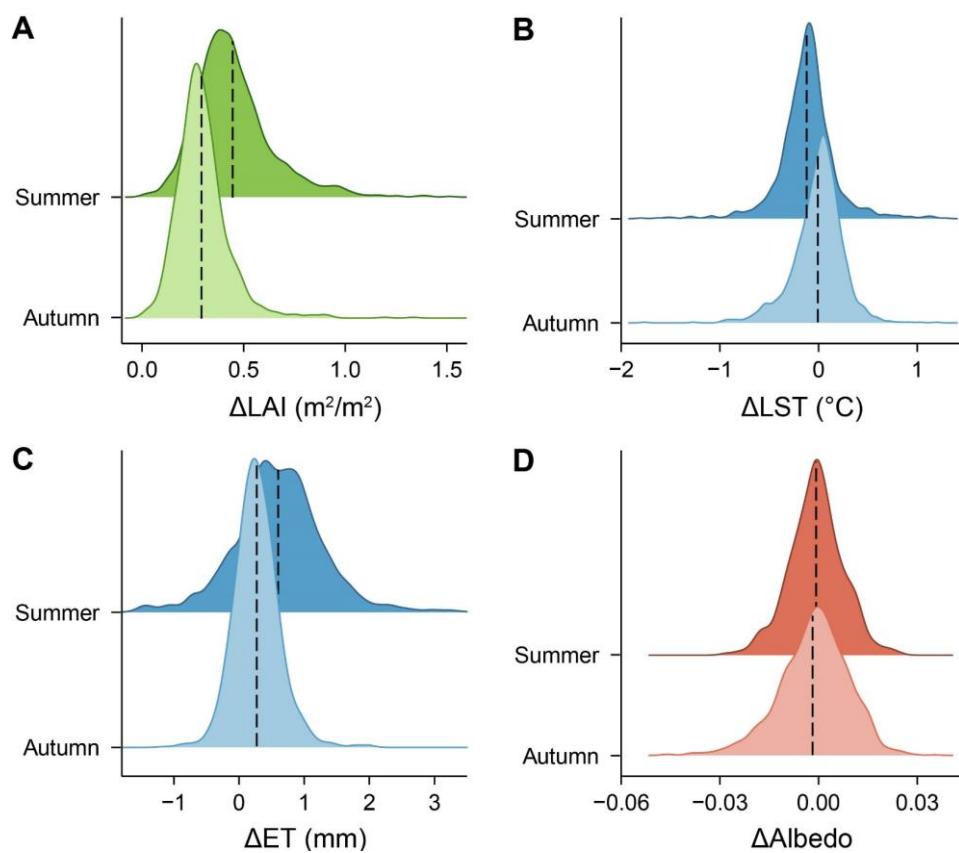

637 **Fig. S2 Effects of greening (leaf area index differences, ΔLAI) and greening-induced**
638 **temperature gradient (land surface temperature differences, ΔLST) for two growing**
639 **seasons on NIRv-derived phenological differences across different greening gradients in**
640 **temperate and boreal forests over the study period 2001-2021. A–D, Changes in ΔSOS with**
641 **the increase in ΔLAI (A) and ΔLST (B) in winter and spring (WS, November to April), changes**
642 **in ΔEOS with the increase in ΔLAI (C) and ΔLST (D) in winter and spring (SA, May to**
643 **October). In A to D, the circles represent the values of mean ΔSOS in WS and ΔEOS in SA at**
644 **each window.**

645

646 **Fig. S3 Average metrics for two varying variable gradients. A–B,** averaged value of ΔLST
647 (A) for varying mean ΔLAI and ΔSOS in winter and spring, and averaged value of ΔLST (B)
648 for varying mean ΔLAI and ΔEOS in summer and autumn.

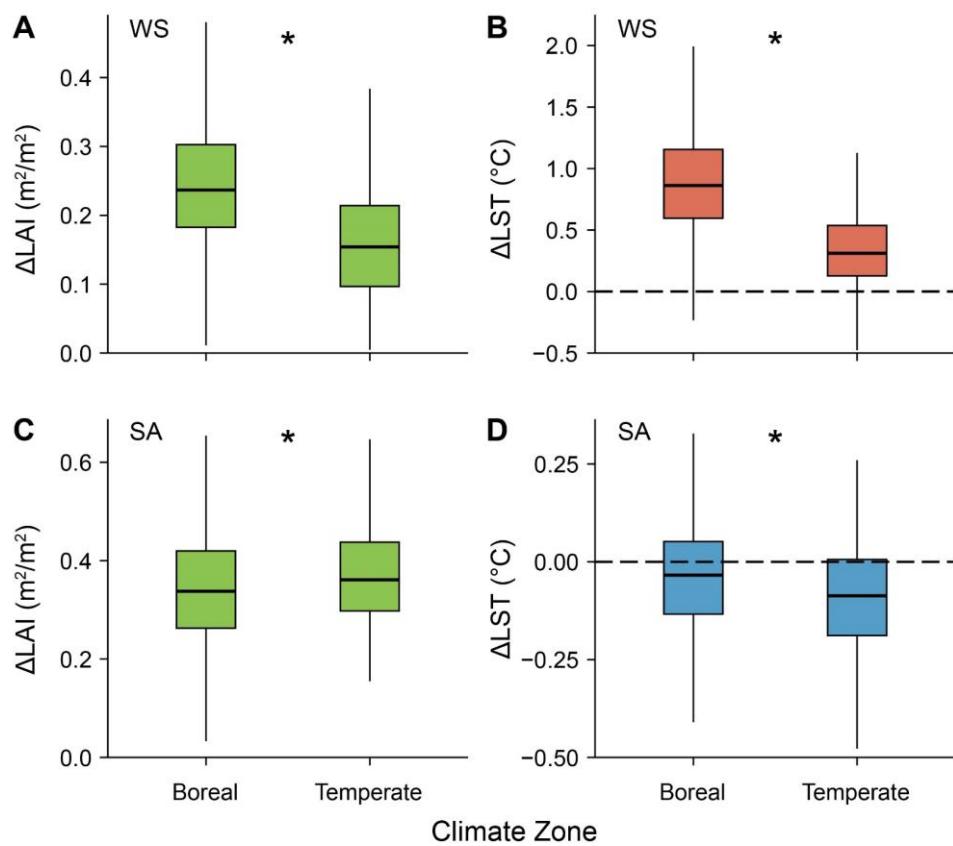


655

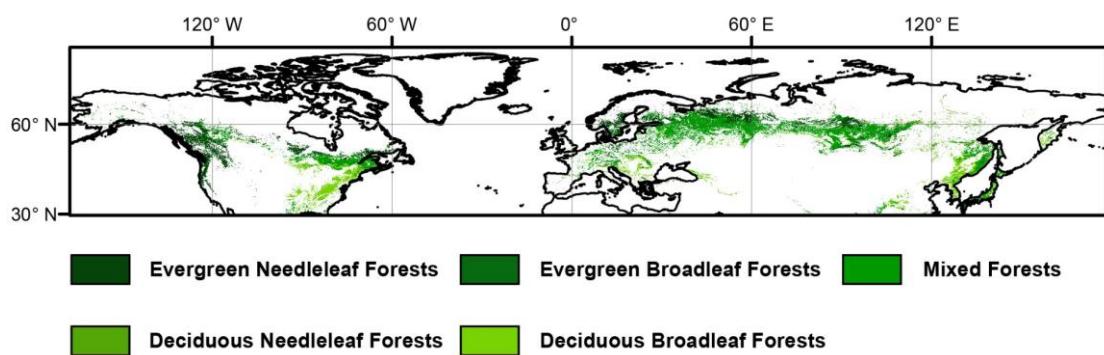

656 **Fig. S5 Effects of greening (leaf area index differences, ΔLAI) and greening-induced**
657 **temperature gradient (land surface temperature differences, ΔLST) for single seasons on**
658 **the autumn phenology differences (ΔSOS) across different greening gradients in**
659 **temperate and boreal forests over the study period 2001-2021. A–C, Changes in ΔSOS with**
660 **increased ΔLAI in winter (November to January) (A) and spring (February to April) (C), and**
661 **changes in ΔSOS with increased greening-induced ΔLST in winter (B) and spring (D). In A to**
662 **D, the circles represent the values of mean ΔSOS in a single season at each window.**

663

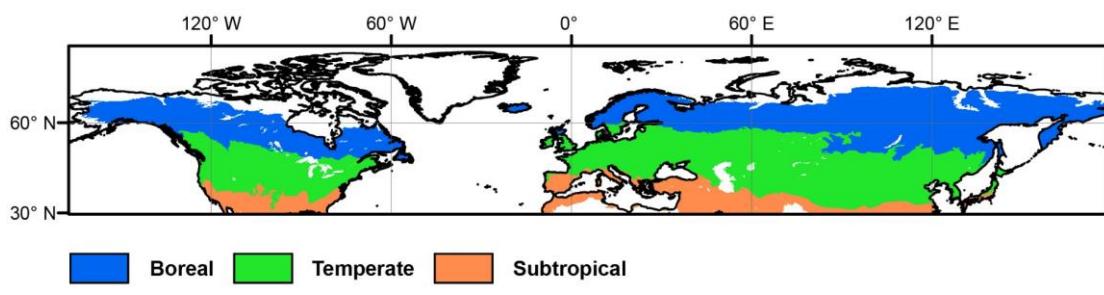
664


665 **Fig. S6 Effect of greening (leaf area index differences, ΔLAI) and greening-induced**
666 **temperature gradient (land surface temperature differences, ΔLST) for single seasons on**
667 **spring phenology differences (ΔSOS) across different greening gradients in temperate and**
668 **boreal forests over the study period 2001-2021. A–C, Changes in ΔEOS with increased ΔLAI**
669 **in summer (May to July) (A) and autumn (August to October) (C), and changes in ΔEOS with**
670 **increased greening-induced ΔLST in summer (B) and autumn (D). In A to D, the circles**
671 **represent the values of mean ΔEOS in a single season at each window.**

672


673 **Fig. S7 Density plots of mean greening (leaf area index differences, ΔLAI), land surface**
674 **temperature gradient (ΔLST), evapotranspiration gradient (ΔET), and albedo gradient**
675 **(ΔAlbedo) for single seasons in temperate and boreal forests during the study period 2001-**
676 **2021. A-D, Changes in ΔLAI (A) ΔLST (B), ΔET (C), and ΔAlbedo (D)** between summer and
677 autumn. In A to D, the black dash lines represent mean ΔLAI , ΔLST , ΔET , and ΔAlbedo in
678 summer and in autumn.

679


680

681 **Fig. S8 Changes in mean greening (leaf area index differences, ΔLAI) and greening-**
682 **induced temperature gradient (land surface temperature differences, ΔLST) for two**
683 **growing seasons between forests with high and low greening gradients in temperate and**
684 **boreal forests over the study period 2001-2021 across different climate zones. A-D, ΔLAI**
685 **in winter and spring (WS, November to April) (A) and in summer and autumn (SA, May to**
686 **October) (C), changes in ΔLST in WS (B) and Δ in SA (D). In B and D, the black dash lines**
687 **represent mean ΔLST in WS and in SA, respectively. In A to D, the length of each box indicates**
688 **the interquartile range, the horizontal line inside each box the median, and the bottom and top**
689 **of the box the first and third quartiles respectively. The asterisk indicates a significant difference**
690 **in ΔLAI and ΔLST in WS and in SA between boreal and temperate areas ($P < 0.01$).**

691

692 **Fig. S9 Map of forest types in the Northern Hemisphere derived from MCD12C1 products**

693

694 **Fig. S10 Three major climate zones in the Northern Hemisphere aggregated from global**
695 **ecological zone (GEZ) map.**

696 **Table S1** Statistics of the piecewise structural equation model (SEM). SEM was used to explore
697 the direct or indirect effects of greening (Δ LAI), and climate variables gradients on Δ SOS. In
698 the direct-effect model, the Δ LAI, Δ LST, Δ Pre, Δ PDSI, and Δ Rad in winter and spring (WS,
699 November to April) were assumed to have a direct influence on Δ SOS. In the indirect-effect
700 model, the Δ LAI was assumed to influence Δ SOS by altering Δ LST in WS. We calculated the
701 adjusted coefficients of predictors (R^2) in each model. The value of standardized direct effect
702 represents the effect of the predictors on the responses. The two-sided test was used to calculate
703 P values.

Overall Fit	Response	Predictor	Estimate	P value
$R^2 = 0.06$	Δ LST	Δ LAI	0.67	<0.001
	Δ SOS	Δ LAI	-0.13	<0.001
	Δ SOS	Δ LST	-0.08	<0.05
$R^2 = 0.25$	Δ SOS	Δ Pre	0.09	<0.01
	Δ SOS	Δ PDSI	-0.05	>0.05
	Δ SOS	Δ Rad	-0.10	<0.01
AIC			146.685	
BIC			209.126	

704

705 **Table S2** Statistics of the piecewise structural equation model (SEM). SEM was used to explore
706 the direct or indirect effects of greening (Δ LAI), and climate variables gradients on Δ SOS. In
707 the direct-effect model, the Δ LAI, Δ LST, Δ Pre, Δ PDSI, and Δ Rad in summer and autumn (SA,
708 May to October) were assumed to have a direct influence on Δ EOS. In the indirect-effect model,
709 the Δ LAI was assumed to influence Δ EOS by altering Δ LST in SA. We calculated the adjusted
710 coefficients of predictors (R^2) in each model. The value of standardized direct effect represents
711 the effect of the predictors on the responses. The two-sided test was used to calculate P values.

Overall Fit	Response	Predictor	Estimate	P value
$R^2 = 0.06$	Δ LST	Δ LAI	-0.24	<0.001
	Δ EOS	Δ LAI	-0.44	<0.001
	Δ EOS	Δ LST	0.19	<0.001
$R^2 = 0.25$	Δ EOS	Δ Pre	0.08	<0.01
	Δ EOS	Δ PDSI	-0.02	>0.05
	Δ EOS	Δ Rad	0.03	>0.05
AIC			261.128	
BIC			322.927	

712