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When Age Tips the Balance: a Dual
Mechanism Affecting Hemispheric
Specialization for Language
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Aging engenders neuroadaptations, generally reducing specificity and selectivity in
functional brain responses. Our investigation delves into the functional specialization of
brain hemispheres within language-related networks across adulthood. In a cohort of 728
healthy adults spanning ages 18 to 88, we modeled the trajectories of inter-hemispheric
asymmetry concerning the principal functional gradient across 37 homotopic regions of
interest (hROIs) of an extensive language network, known as the Language-and-Memory
Network. Our findings reveal that over two-thirds of Language-and-Memory Network hROls
undergo asymmetry changes with age, falling into two main clusters. The first cluster evolves
from left-sided specialization to right-sided tendencies, while the second cluster transitions
from right-sided asymmetry to left-hemisphere dominance. These reversed asymmetry shifts
manifest around midlife, occurring after age 50, and are associated with poorer language
production performance. Our results provide valuable insights into the influence of functional
brain asymmetries on language proficiency and present a dynamic perspective on brain

plasticity during the typical aging process.

ling 19th-century belief that the brain was

organized holistically and symmetrically,
providing evidence to support the idea that a
prominently lateralized brain is a crucial cha-
racteristic for effectively carrying out certain
cognitive functions, particularly language pro-
cessing (“We speak with the left hemisphere,”
Broca, 1865, p. 384).

Patterns of hemispheric specialization and
interaction of brain networks are complex, de-
velopmental, learning-dependent, and dynam-
ic (Tzourio-Mazoyer & Seghier, 2016). From the
earliest stages of development, human beings
demonstrate behavioral and brain asymmetries
- as early as ten weeks prenatal (Abu-Rustum
et al,, 2013) and 26 gestational weeks for per-
isylvian regions (Kasprian et al., 2011) - which
become increasingly perceptible both func-
tionally and anatomically during infancy. Asym-
metries in neural networks take effect at dif-
ferent times during ontogeny, and almost all
cortical brain regions show significant left-right
asymmetries in adulthood (Kong et al., 2018).
Language-related regions show covariate de-
velopmental trajectories (Leroy et al., 2011) and
develop more slowly in the left hemisphere
(LH) than in the right (Sowell et al., 2003). A

Paul Pierre Broca challenged the prevai-

notable right hemisphere (RH) language acti-
vation pattern in young children typically di-
minishes with age to become strongly left lat-
eralized for most adults (Olulade et al., 2020).
Examining the language connectome in adult
populations and its organization across several
language tasks reveals a pronounced left-hemi-
spheric dominance in the central perisylvian
network, which specializes in processing audi-
tory-verbal stimuli (Roger, Rodrigues De Almei-
da, et al,, 2022). This dominance of functional
connectivity in the left hemisphere (LH) for the
“core” language network has been consistently
observed (Braga et al., 2020; Friederici, 2011;
Labache et al., 2019; Vigneau et al,, 2006).
However, language processing requires the
involvement of a wider brain network, encom-
passing the core perisylvian LH system but also
several peripheral or marginal memory, exec-
utive, and sensorimotor systems ((Hertrich et
al., 2020), also discussed as multiple language
networks by (Hagoort, 2017, 2019)). The ex-
tended language connectome comprises many
fine-tuned associative hubs (Roger, Rodrigues
De Almeida, et al,, 2022). It is sharpened to un-
derpin effective communication by integrat-
ing the high-level, multimodal perceptual and
cognitive information required for language
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processing (Roger, Banjac, et al., 2022). This
sophisticated processing system is thus ex-
tremely powerful, yet it is also susceptible to
vulnerabilities. Associative hubs are indeed
highly prone to damage (Fornito et al., 2015),
and ensuring the optimal function of language
hubs in later life comes at a considerable cost
(Baciu et al., 2016, 2021; Hoyau et al., 2018; Rog-
er, Rodrigues De Almeida, et al., 2022). It is now
well-documented that functional connectivity
and network dynamics remodel with age (e.g,,
(G. E. Doucet et al., 2021; Goh, 2011; Sala-Llonch
et al, 2015; Zonneveld et al., 2019). Important-
ly, older adults exhibit a default-executive cou-
pling when engaged in demanding tasks, char-
acterized by increased prefrontal involvement
and reduced suppression of the Default Mode
Network. In contrast, younger individuals ad-
just their functional responses by deactivating
Default Mode Network regions when perform-
ing the same tasks (Buckner & DiNicola, 2019;
Mazoyer et al.,, 2001; Shulman et al., 1997; Turn-
er & Spreng, 2015). Overall, age-related chang-
es are characterized by reduced specificity, se-
lectivity, and lateralization of functional brain
networks (Festini et al.,, 2018). Nevertheless,
the trajectory of hemispheric specialization for
language during aging, the underlying mecha-
nisms involved, and their impact on cognition
are still largely unclear and require further in-
vestigation.

Functional asymmetries can be investi-
gated using intrinsic functional connectivi-
ty, which offers the advantage of abstracting
from task-related variability associated with
the nature and difficulty of specific tasks. Rest-
ing-state networks do exhibit spatial patterns
that correspond with the networks observed
during specific cognitive tasks (Cole et al,
2014, 2016; Ji et al., 2019)., and specific regions
have been identified as already predisposed in
language processing at rest (G. Doucet et al.,
2011). Moreover, lateralization measures in key
language hubs, derived from resting-state data,
can predict functional lateralization during task
performance (G. E. Doucet et al., 2015; Labache
et al., 2020). Furthermore, recent studies on
functional brain architecture have reported
that resting-state networks exhibit a hierarchi-
cal organization characterized by smooth spa-
tial transitions or gradients (Huntenburg et al,,
2018; Margulies et al., 2016). The principal gradi-
ent (G1), explaining the most variance in whole-
brain functional connectivity, aligns with estab-
lished cortical hierarchies that progressively
process complex or heteromodal information
from sensory inputs ((Gonzalez Alam et al,
2022); see also (Chang et al., 2022) for natural
language processing). Interestingly, the brain
hemispheres do not show an identical pattern
of organization on G1 (Liang et al.,, 2021), re-
vealing a notable asymmetry for heteromodal
networks linked to higher-order cognitive func-
tions (Mancuso et al,, 2019; Raemaekers et al.,

2018). Furthermore, a recent study showed that
individuals exhibiting atypical language lateral-
ization display corresponding hemispheric dif-
ferences in macroscale functional gradient or-
ganization, making G1 a marker of hemispheric
specialization for language (Labache et al.,
2023). Therefore, examining functional asym-
metries within intricate networks, such as those
supporting language processing, and how they
change with age can bring a new perspective
considering the fundamental underlying func-
tional architecture.

Our study aimed to track how hemispher-
ic asymmetry changes with age in the Lan-
guage-and-Memory Network (Roger et al,
2020) using the functional principal gradient
G1 based on resting-state data. To model the
functional trajectories over an age range from
18 to 88 years, we applied the Generalized Ad-
ditive Mixed Models (GAMMs) technique, which
has been previously used in structural MRI
studies (Roe et al., 2021a, 2023). This allowed
us to classify Language-and-Memory Network
regions based on their asymmetry patterns at
rest throughout healthy aging. Furthermore,
we also explored how these asymmetry chang-
es were related to cognitive performance mea-
sured during various language tasks. To this
end, we used Canonical Correlation Analyses
(CCA) to assess how age impacted asymme-
tries in the language network across multimod-
al data, including anatomy, function, and cogni-
tive performances.

Methods

Database demographics. The study sample
comprised three datasets, accumulating 728
healthy adults (371 women) from 18 to 88 years
old (u=52.84 years, SD=19.19 years, Figure 1).
Participants were included if they had a rest-
ing-state (rs) fMRI and structural MRI collected
on a 3T MRI scanner.

The larger sample, the Cambridge Centre
for Ageing and Neuroscience Project (Cam-
CAN Project: www.mrc-cbu.cam.ac.uk, (Shaf-
to et al, 2014)), included 627 participants
(316 women). Further recruitment informa-
tion and the acquisition parameters have been
described elsewhere (Taylor et al.,, 2017). The
sample mean age was 54.28 years (5D=18.61
years). Participants’ handedness was defined
based on the manual preference strength as-
sessed with the Edinburgh inventory (Oldfield,
1971): participants with a score below 30 were
considered left-handers (Hervé et al.,, 2006;
Papadatou-Pastou et al.,, 2020), right-handers
otherwise. The sample contained 56 left-hand-
ed participants (32 women). CamCAN funding
was provided by the UK Biotechnology and
Biological Sciences Research Council (grant
number BB/H008217/1), with support from the
UK Medical Research Council and the Universi-
ty of Cambridge, UK.



https://doi.org/10.1101/2023.12.04.569978
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.04.569978; this version posted December 5, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Age MMSE
30- 300
S 20- 200 -
@]
O 101 100 -
0 04- DO I] l] [I
25 50 75 24 26 28 30
Language Production
50 Naming Tip of the the tongue
40 %07
5 20+
O 20- 10-
0 { =T 0L . . . .
05 06 07 08 09 0.00 025 0.50 0.75 1.00
Language Comprehension
Accuracy Reaction Time
3001 150
+= 2001
S 100 -
@)
© 100 - 50
0128 — . S
0 50 100 150 2000 2500 3000 3500 4000

Figure 1| Age and behavioral performance distributions (n=728). The behavioral tests assess various cog-
nitive functions associated with language: word production, lexical access/retrieval abilities (picture Nam-
ing accuracy and Tip of the tongue ratio), and semantic and syntactic comprehension abilities (Accuracy
and Reaction Time). A description of the behavioral variables is available as supplementary material in the
article by West and colleagues (West et al., 2022). Reaction Time and Tip of the tongue performance were
inverted, so all scores close to O represent worse performances.

The second sample was collected in Oma-
ha, NE, USA, and included 54 participants (31
women). The acquisition parameters are fully
described in (G. E. Doucet et al., 2022). Brief-
ly, participants were scanned on a 3T Sie-
mens Prisma scanner using a 64-channel head
coil. Structural images were acquired using a
T1-weighted, 3D magnetization-prepared rap-
id gradient-echo (MPRAGE) sequence with
the following parameters: Repetition Time
(TR)=2400 ms, Echo Time (TE)=2.22 ms, Field
of View (FOV): 256x256 mm, matrix size:
320x320, 0.8 mm isotropic resolution, Inver-
sion Time (TIH=1000 ms, 8 degree-flip angle,
bandwidth=220 Hz/Pixel, echo spacing=7.5 ms,
in-plane acceleration GRAPPA (GeneRalized
Autocalibrating Partial Parallel Acquisition) fac-
tor 2, total acquisition time ~7 min. Participants
also completed a resting-state fMRI scan using
a multi-band T2* sequence with the following
acquisition parameters: TR=800 ms, TE=37
ms, voxel size=2x2x2 mm?3, echo spacing 0.58
ms, bandwidth=2290 Hz/Pixel, number of axi-
al slices = 72, multi-band acceleration factor=8,
460 volumes The sample mean age was 44.13
years (SD=19.07 years). Participants’ handed-

ness was self-reported: the sample contained
seven left-handed participants (3 women). The
study was approved by the Institutional Re-
view Board for Research with Human Subjects
at Boys Town National Research Hospital. Each
participant provided written informed consent
and completed the same protocol.

The third sample was collected in Grenoble,
France, and included 47 participants (24 wom-
en). The acquisition parameters are described
in (Roger et al,, 2020). The sample mean age
was 43.57 years (SD=21.92 years). Participants’
handedness was self-reported: the sample con-
tained two left-handed participants (1 woman).
The ethics committee of the Grenoble Alpes
University Hospital approved data collection
(CPP 09-CHUG-14; MS-14-102).

We used the whole age range of the sam-
ple (n=728, 18-88 years) to model the asymme-
try trajectories further throughout the lifespan.

Cognitive assessment of participants. For all
728 participants, we checked the Mini Mental
State Examination (MMSE) scores to ensure
that the general cognitive functioning of our
sample remained within the expected range
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Figure 2 | Locations of the 37 regions of the Language-and-Memory Network atlas (Roger et al., 2020).
On the left: Lateral view of the left hemisphere. On the right: Medial view of the left hemisphere. The at-
las is composed of 74 homotopic ROIs (37 in each hemisphere) reported by two task-fMRI studies, one
cross-sectional study for language (Labache et al., 2019), and one meta-analysis for memory (Spaniol et
al.,, 2009) and adapted to the Atlas of Intrinsic Connectivity of Homotopic Areas coordinates (Joliot et
al., 2015). Regions are rendered onto the 3D anatomical templates of the white matter surface of the left
hemisphere in the MNI space with Surf Ice software (https:/www.nitrc.org/projects/surfice/). Color code:
purple, regions involved in language; blue, regions involved in episodic memory (encoding and retrieval);
brown, regions involved in both language and memory. The Anterior Insula (3) (INSa3) is not visible on
this render. See Table 1 for the correspondences between the abbreviations and the full names of the Lan-

guage-and-Memory Network regions.

(Q,;=28, Q,=30).

Among the three cohorts in our study, only
the CamCAN cohort underwent an extensive
set of behavioral assessments, resulting in cog-
nitive data available for a specific sub-sample
of 554 participants. These assessments, con-
ducted outside the MRI scanner, are detailed
in previous literature (Shafto et al., 2014, 2019;
Samu et al,, 2017; Taylor et al., 2017). We limit-
ed our analyses to language skill assessments
only (Figure 1). We chose language-related
measures because of their effectiveness in as-
sessing diverse language-related aspects, en-
compassing word production, lexical access,
and word retrieval (evaluated via picture nam-
ing accuracy and the tip-of-the-tongue ratio),
as well as the understanding of semantics and
syntax (measured through accuracy and reac-
tion time). Further comprehensive descriptions
of these behavioral variables are available in
the supplementary materials provided by West
and colleagues (West et al.,, 2022).

MRI Data Preprocessing. The neuroimaging
data were formatted following the BIDS stan-
dard (Brain Imaging Data Structure - http:/
bids.neuroimadging.io/; (Gorgolewski et al., 2016;
Roger et al., 2020)) and then preprocessed us-
ing the fMRIPrep software (https:/fmriprep.
org/en/stable/; (Esteban et al., 2019, 2020).
The T1w preprocessing included skull stripping,
tissue segmentation, and spatial normalization.
Preprocessing of the rs-fMRI data followed the
consensus steps for functional images, includ-
ing motion correction, slice timing correction,
susceptibility distortion correction, coregistra-
tion, and spatial normalization. The data were
represented in the Montreal Neurological Insti-

tute (MNI) volumetric space. Finally, time series
were extracted for each homotopic region of
interest (hROIs; described in the following sub-
section) using Nilearn (https:/nilearn.github.
io/), with nuisance parameter regression. Con-
founding regression included cerebrospinal flu-
id and white matter signals and translation and
rotation parameters for x, y, and z directions.

Language-and-Memory Network Statistics.
Our statistical analyses were based on the
Language-and-Memory Network atlas, an ex-
tended language network encompassing lan-
guage-specific areas and related memory
regions (Roger et al., 2020). Briefly, the Lan-
guage-and-Memory Network comprises 37 ho-
motopic regions of interest. Among these ten
regions uniquely dedicated to the core supra-
modal language network (Labache et al., 2019),
19 supporting episodic memory (Spaniol et al.,,
2009), and eight regions underpinning both
language and episodic memory processes. The
core language network corresponded to a set
of heteromodal brain regions significantly in-
volved, leftward asymmetrical across three lan-
guage contrasts (listening to, reading, and pro-
ducing sentences), and functionally connected.
The memory network was underpinned by areas
that demonstrated strong activation patterns
connected to episodic memory processes, such
as encoding, effective recovery, and reminis-
cence. Figure 2 shows the Language-and-Mem-
ory Network in a brain rendering, and Table 1
lists all the Language-and-Memory Network
regions. It should be noted that the language
atlas was based on the AICHA atlas, a function-
al brain homotopic atlas optimized for study-
ing functional brain asymmetries (Joliot et al.,
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MNI coordinates (left) MNI coordinates (right)
Abbreviation Region Function

X(mm) Y (mm) Z(mm) X(mm) Y (mm) Z(mm)

AG1 Angular Gyrus (1) M -48 -57 44 51 -52 43
AG2 Angular Gyrus (2) LM -38 -70 39 45 -62 36
AMYG Amygdala (1) M -22 0 -12 21 2 -12
CINGa2 Anterior Cingulate Gyrus (2) M -7 34 22 7 33 23
CINGp2 Posterior Cingulate Gyrus (2) M -4 -39 27 8 -43 31

f1_2 superior frontal sulcus (2) M -27 56 1 28 56 7

f2_2 inferior frontal sulcus (2) LM -43 15 29 44 19 28
F1_2 Superior Frontal Gyrus (2) L -12 46 41 12 45 42
F2_1 Middle Frontal Gyrus (1) M -40 41 20 4 44 13
F202 Middle Frontal Gyrus: Pars Orbitalis (2) M -41 49 -5 40 50 -4

F301 Inferior Frontal Gyrus: Pars Orbitalis (1) L -42 3 -17 44 33 -14
F302 Inferior Frontal Gyrus: Pars Orbitalis (2) M -21 23 -21 21 22 -20
F3t Inferior Frontal Gyrus: Pars Triangularis (1) L -49 26 5 50 29 5

FUS1 Fusiform Gyrus (1) M -32 -9 -34 32 -8 -35
HIPP1 Hippocampal Gyrus (1) M -30 -7 -19 30 -5 -18
HIPP2 Hippocampal Gyrus (2) M -25 -32 -3 25 -31 -2

INSa2 Anterior Insula (2) LM -34 17 -13 35 18 -13
INSa3 Anterior Insula (3) LM -34 24 1 37 24 0

INSa4 Anterior Insula (4) M -41 15 3 41 15 4

ips2 intraparietal sulcus (2) M -34 -58 46 37 -52 48
ips3 intraparietal sulcus (3) M -27 -60 44 26 -62 46
P2 Inferior Parietal Gyrus (1) M -45 -53 50 43 -53 48
pHIPP2 Parahippocampal Gyrus (2) M -28 -27 -19 29 -25 -19
preci precentral sulcus (1) M -50 6 26 50 10 24
precd precentral sulcus (4) LM -42 1 50 44 1 48
SMA2 Supplementary Motor Area (2) L -1 18 63 11 18 63
SMA3 Supplementary Motor Area (3) LM -7 8 66 6 10 66
SMG7 Supramarginal Gyrus (7) L -55 -52 26 55 -46 33
STS1 superior temporal sulcus (1) L -50 14 -22 52 13 -26
STS2 superior temporal sulcus (2) L -55 -7 -13 54 -2 -15
STS3 superior temporal sulcus (3) LM -55 -33 -2 53 -32 0

STS4 superior temporal sulcus (4) L -57 -48 13 55 -46 15
T 4 Superior Temporal Gyrus (4) L -59 -23 4 60 -20 2

T2_3 Middle Temporal Gyrus (3) LM -61 -35 -5 62 -31 -5

T2 4 Middle Temporal Gyrus (4) L -53 -59 7 57 -53 3

T3 3 Inferior Temporal Gyrus (3) M -56 -53 -14 57 -46 -14
T3 4 Inferior Temporal Gyrus (4) M -50 -61 -8 54 -58 -1

Table 1| List of the Language-and-Memory network atlas regions. Note: L=language; LM=language and
memory; M=memory; MNI coordinates, in the left and right hemisphere, of regions (X, Y, 2) in mm; Total
regions=74 (37 in each hemisphere).

2015). work hROIs (Roger et al.,, 2020) from the pre-
We computed two features characterizing processed neuroimaging data: the normalized
the high-order Language-and-Memory Net- volume and the first functional gradient (G1)
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reflecting the macroscale functional organiza-
tion of the cortex (Margulies et al.,, 2016). The
first gradient captures the most variance of
the correlations matrices (20%, 22%, and 19%
for CamCAN, Omaha’s, and Grenoble’s cohorts,
respectively). It has been previously shown to
accurately reflect the lateralization of the lan-
guage network (Labache et al., 2023).

Normalized Volume. Tissue segmentation was
performed on the preprocessed Tlw using the
FreeSurfer pipeline (Version 6.0.0; CentOS Li-
nux 6.10.i386). Briefly, the FreeSurfer segmen-
tation process included the segmentation of
the subcortical white matter and deep gray
matter volumetric structures, intensity normal-
ization, tessellation of the gray matter white
matter boundary, automated topology correc-
tion, and surface deformation following intensi-
ty gradients to optimally place the gray/white
and gray/cerebrospinal fluid borders at the
location where the greatest shift in intensity
defines the transition to the other tissue class.
Structural volumes were normalized to total
intracranial volume. Normalized volumes were
extracted for each of the Language-and-Mem-
ory Network hROls.

Connectivity Embedding. Each participant’s
values were obtained for the first function-
al gradient (G1). The gradients reflect partici-
pant connectivity matrices, reduced in their
dimensionality through the approach of Mar-
gulies and colleagues (Margulies et al., 2016).
Functional gradients reflect the topographical
organization of the cortex in terms of sensory
integration flow, as described by Mesulam (Me-
sulam, 1998). Gradients were computed using
Python (Python version 3.8.10) and the BrainS-
pace library (Python package version 0.1.3 (Vos
de Wael et al, 2020)). Gradients computed at
the regional and vertex levels performed simi-
larly (Vos de Wael et al.,, 2020).

Average region-level functional connectiv-
ity matrices were generated for each individual
across the entire cortex (i.e., 384 AICHA brain
regions). Consistent with prior work, each re-
gion’s top 10% connections were retained, and
other elements in the matrix were set to O to
enforce sparsity (Dong et al., 2021; Margulies
et al,, 2016). The normalized angle distance be-
tween any two rows of a matrix was calculated
to obtain a symmetrical similarity matrix. Dif-
fusion map embedding (Coifman et al., 2005;
Coifman & Lafon, 2006; Lafon & Lee, 2006)
was implemented on the similarity matrix to
derive the first gradient. Note that the individu-
al-level gradients were aligned using Procrust-
es rotation (N,,,.....=10) to the corresponding
group-level gradient. This alignment proce-
dure was used to improve the similarity of the
individual-level gradients to those from prior
literature. Min-max normalization (0-100) was
performed at the individual level for the whole

brain (Gonzalez Alam et al., 2022).

Gradient asymmetry was then computed
for each participant and region. For a given re-
gion, gradient asymmetry corresponded to the
difference between the normalized gradient
value in the left hemisphere minus the gradi-
ent values in the right hemisphere. A positive
gradient asymmetry value meant a leftward
asymmetry; a negative value meant a rightward
asymmetry.

Statistical Analyses. Statistical analysis was
performed using R (R version 4.2.2 (R Core
Team, 2021)). Data wrangling was performed
using the R library dplyr (R package version
1.0.10, (Wickham et al., 2023)). Graphs were re-
alized using the R library ggplot2 (R package
version 3.4.2 (Wickham, 2016)). Brain visualiza-
tions were realized using Surf Ice (NITRC: Surf
Ice: Tool/resource Info, n.d.).

Modeling Gradient Asymmetry Trajecto-
ries Throughout Life. For each region of the
Language-and-Memory Network, we used fac-
tor-smooth Generalized Additive Mixed Mod-
els (GAMMs, as implemented in the R library
gamm4; R package version 0.2-6 (Wood &
Scheipl, 2020)) to fit a smooth gradient trajec-
tory for Age per Hemisphere (Roe et al,, 2021b,
2023) and to assess the smooth interaction
between HemispherexAge within the clusters
(see clusters definition below). Hemisphere
was included as a fixed effect, while Sex and
Site were treated as covariates of no interest.
A random intercept for each subject was also
included. GAMMs leverage smooth functions to
model the non-linear trajectories of mean levels
across individuals, providing robust estimates
that can be applied to cross-sectional and lon-
gitudinal cognitive data (Serensen et al., 2021).
GAMMs were implemented using splines, a se-
ries of polynomial functions joined together
at specific points, known as knots. The splines
allow the smooth function to adapt its shape
flexibly to the underlying pattern in the data
across the range of the predictor variable. This
connection allows for the modeling of complex,
non-linear relationships piecewise while main-
taining continuity and smoothness across the
function. To minimize overfitting, the number
of knots was constrained to be low (k=6). The
significance of the smooth HemispherexAge
interaction was assessed by testing for a differ-
ence in the smooth term of Age between hemi-
spheres. We applied a False Discovery Rate
correction (FDR, (Benjamini & Yekutieli, 2001))
to control for the number of tests conducted.
Lastly, we used the linear predictor matrix of
the GAMMs to obtain asymmetry trajectories
underlying the interaction HemispherexAge
and their confidence intervals. These were com-
puted as the difference between zero-centered
(i.e., demeaned) hemispheric age trajectories.

Classification of Age-Asymmetry Trajec-
tories. To classify the regions of the Language-
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and-Memory Network found significant (af-
ter applying the FDR correction) according to
their functional asymmetry skewness profile
(i.e., increasing leftward asymmetry from base-
line, decreasing leftward asymmetry, or stabi-
lizing asymmetry with age), we computed a
dissimilarity matrix (sum of square differences)
between all trajectories. We applied the Parti-
tion Around Medoids algorithm (PAM, R library
cluster; R package version 2.1.4 (Maechler et al.,
2022)) to identify clusters of regions sharing
identical lifespan trajectories. Clustering solu-
tions from two to seven were considered, and
the mean silhouette width determined the op-
timal solution.

Canonical Correlation Analysis to Assess
Brain-Behavior Associations. For each cluster,
we assessed the linear relationship between
the gradient asymmetry trajectories of the Lan-
guage-and-Memory Network, their normalized
volume, and cognitive language performance
using permutation-based Canonical Correla-
tion Analyses (CCA, (Wang et al., 2020)) infer-
ence. CCA is a multivariate statistical method
identifying linear combinations of two sets of
variables that correlate maximally. CCA reveals
modes of joint variation, shedding light on the
relationship between cognitive language per-
formance (behavioral set), the lifespan trajec-
tories of sensory integration flow asymmetry,
and its underlying anatomy (brain set). The
CCA results on a set of m mutually uncorrelat-
ed (ie., orthogonal) modes. Each mode cap-
tures a unique fraction of the multivariate brain
and behavior covariation that isn’t explained by
any of the other m-1 modes. To assess statisti-
cal significance, we determined the robustness
of each estimated CCA mode using permuta-
tion testing with 1,000 permutations. This test
computes p-values to assess the null hypothe-
sis of no correlation between components, ad-
hering to the resampling method developed by
Winker and colleagues (Winkler et al., 2020).
p-values were controlled over Family-Wise Er-
ror Rate (FWER; FWER corrected p-values are
denoted p,,,..), which is more appropriate than
the FDR correction when measuring the signif-
icant canonical modes (Winkler et al., 2020).

Before conducting the CCA, we summa-
rized the high-dimensional set of brain vari-
ables (gradient and normalized volume asym-
metries) using principal component analysis
(PCA, (Wang et al,, 2020)). We retained com-
ponents corresponding to the elbow point in
the curve, representing the variance explained
by each successive principal component. This
was achieved using the R library PCAtools (R
package version 2.5.15 (Blighe & Lun, 2021))).
These retained principal components were then
designated as the brain set for the CCA. Finally,
we residualized the two variable sets (brain and
behavior sets) to remove the influence of sex,
age, and MMSE before executing the CCA.

The CCA had only been realized on the 554

participants of the CamCAN database due to a
lack of behavioral data for other participants.

Results

Evolution of Hemispheric Gradient Asym-
metries. To identify regions in the Lan-
guage-and-Memory Network with changing
gradient asymmetry across the lifespan, we
applied GAMMs with HemispherexAge (ie.,
age-related change in asymmetry) as the effect
of interest. This was done using combined data
from 728 participants, aged 18 to 88, across co-
horts.

Gradient significant age-related changes
in asymmetry were found in 25 of the 37 re-
gions of the Language-and-Memory Network
(68% of the Language-and-Memory Network
regions, all p.,.,<0.024, Figure 3). On the lat-
eral surface of the temporal lobe, significant
regions were localized alongside the superior
temporal sulcus (STS1, STS2, STS3), extending
to the Superior Temporal Gyrus dorsally (T1_4)
and joining the posterior part of the Inferior
Temporal Gyrus (T3_4) and ventrally, the Fusi-
form Gyrus (FUS4). Advancing toward the pari-
etal lobe, the Supramarginal Gyrus (SMG7), the
Inferior Parietal Gyrus (P2), and the intrapari-
etal sulcus (ips3) also showed significant Hemi-
spherexAge interactions. On the lateral surface
of the left frontal lobe, the regions showing a
significant HemispherexAge interaction cov-
ered the pars triangularis part of the Inferior
Frontal Gyrus (F3t), as well as the pars orbit-
alis (F202), the junction of the Middle Frontal
Gyrus (F2_1) with the precentral sulcus (precl,
and prec4). The superior frontal sulcus (f1_2),
the medial part of the Superior Frontal Gyrus
(F1_2), and the pre-superior motor areas (SMA2
and SMA3) were also part of these areas in the
frontal lobe. Three regions were located within
the anterior Insula (INSa2, INSa3, and INSa4),
while three others were located along the Hip-
pocampal (HIPP1 and HIPP2) and paraHippo-
campal Gyri (pHIPP2). In the posterior medial
wall, the Posterior Cingulum (CINGp2) was se-
lected using this approach. The 12 non-signif-
icant regions (all p_,.>0.174) were localized in
the posterior part of the temporal (5TS4, T2_3,
T2 4, and T3_3) and the parietal lobes (AG],
AG2, and ips2), the anterior cingulate (CINGa?2),
the amygdala (AMYG), and the inferior frontal
gyrus (F3_0O1, F3_02) and sulcus (f2_2).

Clustering of Asymmetry Trajectories. To in-
vestigate the asymmetry trajectories associat-
ed with the HemispherexAge interaction in the
GAMMs, we conducted clustering on the 25 sig-
nificant regions within the Language-and-Mem-
ory Network to pinpoint areas displaying sim-
ilar patterns of gradient asymmetry changes
throughout adulthood (Figure 3). The PAM al-
gorithm identified two optimal partitions based
on the mean silhouette width of 0.73. Including
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Language-and-Memory Network atlas: Lifespan Trajectories (Gradient 1)
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Figure 3 | Gradient lifespan trajectories of Language-and-Memory regions. Each region’s graph shows
the lifespan trajectory of the left (in red) and the right (in green) hemispheres and their asymmetry (in
blue). Regions are plotted in alphabetical order. Trajectories were fitted using the generalized additive
mixed models. Significant regions (pFDR<0.05) are marked with a star (*) in the top right corner. Data are
residualized for sex, site, and random subject intercepts. Ribbons depict the standard error of the mean.
The location of regions can be found in Figure 1. Correspondences between the abbreviations and the full
names of a region can be found in Table 1.

the regions that did not exhibit significant (Figure 4-A).

changes in gradient asymmetries over the lifes- The first cluster, highlighted in light blue in
pan, the Language-and-Memory Network re- Figure 4 and referenced similarly throughout
gions are grouped into three distinct clusters the paper, comprised regions that showed an
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Figure 4 | Patterns of language-related neurocognitive trajectories. (A) The 25 Language-and-Memory
Network regions associated with the two main clusters of change, categorized according to the k-medoids
classification applied to the Euclidean distance matrix derived from the age-related curves of asymmetry
as modeled by the Generalized Additive Mixed Model. Cluster 1, in blue, changes from left-sided dominant
to bilateral. Cluster 2, in orange, changes from a bilateral organization to a left-side dominance. See Figure
2 and Table 1for a description of the regions. (B) Average trajectory curves of the 15t gradient asymmetries
from 18 to 88 years old. The two main patterns of inverse changes (Cluster 1 and Cluster 2) with age. The
vertical line represents the intersection point between Cluster 1 and Cluster 2: 52.55 years old, i.e., the age
at which the 1%t gradient asymmetry trends reverse. Ribbons depict the standard deviation. (C) The propor-
tion of each cluster depends on the underlying cognitive processes: language or language and memory.
(D-E) Modeling of the average estimated 1t gradient parameter for each hemisphere (left and right) across
ages for Language-and-Memory Network regions belonging to Cluster 1 (D) and Cluster 2 (E). Ribbons
depict the standard deviation. The bilateralization of Cluster 1 with age is due to an increase of the 1t gra-
dient values in the right hemisphere, while the left hemisphere remains stable. The left-sided specialization
of Cluster 2 with age is due to an increase of the 15t gradient values in the left hemisphere, while the right
hemisphere remains stable. This dual mechanism is mediated by an overspecialization of the contralateral
hemisphere with age, characterized by an increased capacity to integrate high-level Language-and-Mem-
ory Network information.

average increase in their gradient values in the
right hemisphere (Figure 4-D). These regions
transitioned to a slightly rightward asymmetri-
cal state with aging (smooth88y0=—1.72), where-
as they exhibited leftward asymmetry in earli-
er life stages (smooth,8y0=9.40, negative slope

from positive intercept, Figure 4-B). The right
hemisphere heteromodality increased signifi-
cantly with aging, while the left hemisphere ca-
pacity remained stable. Within this cluster, 43%
of the regions were dedicated to processing
language, while 57% were multimodal, handling
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language and memory functions (Figure 4-C).
Cluster 1 regions are mapped onto the frontal,
parietal, temporal, limbic cortices, and insula.

The second cluster, highlighted in light
orange in Figure 4 and referenced similarly
throughout the paper, comprised regions that
showed an average increase in their gradi-
ent values in the left hemisphere (Figure 4-E).
These regions transitioned to a leftward asym-
metry state with aging (smooth,, yo=12.23),
whereas they exhibited rightward asymmetry
organization in earlier life stages (smooth78yo—
3.77, positive slope from negative intercept,
Figure 4-B). The left hemisphere heteromodal
specialization increased significantly with ag-
ing, while the right hemisphere capacity re-
mained stable. Within this cluster, 9% of the re-
gions were dedicated to processing language,
while 91% were multimodal, handling language
and memory functions (Figure 4-C). Cluster 2
regions are mapped onto the frontal, temporal,
and limbic cortices.

The last cluster (in grey in Figure 4), named
“No change,” regrouped the 12 non-significant
regions that showed no significant changes
in their hemispheric asymmetries throughout
the lifespan. This cluster encompasses 25% of
regions exclusively associated with language
function and 75% of the regions involved in lan-
guage and memory processes.

The trajectories of clusters 1 and 2 indicat-
ed that the asymmetry switch occurred at 52.6
years old (Figure 4-B). From this age onward,
Cluster 2, which mainly encompasses multi-
modal regions, became the dominant leftward
asymmetrical cluster. Its heteromodality in lat-
er life surpassed the early life heteromodality
of Cluster 1. Meanwhile, Cluster 1 continued its
decline towards a symmetrical organization of
information integration.

Multimodal Brain-Cognition Association
Change Analysis. We conducted a PCA on
the brain set variables (gradient and normal-
ized volume asymmetries) from the first clus-
ter (Figure 4-A). This analysis indicated that
the 28 variables could be condensed into four
principal components, accounting for 49.79%
of the total variance in the brain set. The first
component alone explained 26.75% of the to-
tal variance and opposed the volume asymme-
tries of the dorsal language pathway regions to
those of the ventral pathway regions (Figure
5-A, left column). Positive loadings then indi-
cated a leftward asymmetry of the dorsal path-
way, while negative ones indicated a rightward
asymmetry of the ventral pathway. The second
component alone explained 12.15% of the to-
tal variance. It opposed the volume asymme-
tries of the dorsal language pathway regions to
those of the ventral pathway regions and the
asymmetries of the first gradient (Figure 5-A,
left column). Positive loadings then indicated a
rightward asymmetry of the volume of the dor-

sal pathway regions and a leftward asymmetry
of the ventral pathway as well as the gradient
values. At the same time, negative loadings in-
dicated the opposite pattern.

The multimodal canonical correlation anal-
ysis on the first cluster, which incorporated
four brain metrics (principal components) and
four behavioral metrics, revealed a single sig-
nificant canonical correlation linking anatomy,
function, and behavior (p,,,,<1x107%). This brain
mode accounted for 37.58% of the variance
and primarily reflected the first and second
components of the brain data set (Figure 5-B,
left column). Positive values of the brain mode
were associated with positive loading values
for both the first and second principal compo-
nents. Specifically, these positive values in the
brain mode indicated a leftward asymmetry for
all regions regarding gradient and normalized
volume in the dorsal language pathway re-
gions. Conversely, they represented a rightward
asymmetry in the ventral pathway regions. The
behavioral mode accounted for 39.47% of the
variance and primarily reflected the naming
and tip of the tongue tests (Figure 5-C, left col-
umn). Positive values of the behavioral mode
were associated with better performances in
language production. The correlation between
the brain and behavioral modes was 0.28, as
depicted in Figure 6 (left panel). Improved lan-
guage production abilities were linked to a left-
ward asymmetry of the gradient value within
the Language-and-Memory Network regions
of the first cluster, a leftward asymmetry of
the normalized volume for the dorsal language
pathway regions, and a rightward asymmetry
for the ventral language pathway regions.

The principal components analysis on the
brain set variables (22 variables, gradient, and
normalized volume asymmetries) for the sec-
ond cluster (Figure 4-A) resulted in six prin-
cipal components. Together, these principal
components explained 59.35% of the total vari-
ance in the brain set. The first component alone
explained 20.48% of the total variance and op-
posed the volume asymmetries of the mesial
regions to those of the lateral side (Figure 5-A,
right column). Positive loadings then indicated
a rightward asymmetry of the normalized vol-
ume of the mesial regions and a leftward asym-
metry of the lateral regions. Negative loadings
indicated the opposite pattern. The second
component alone explained 12.86% of the to-
tal variance and captured the asymmetry of
the gradient, specifically, the asymmetry of the
temporo-mesial memory-related regions (Fig-
ure 5-A, right column). Positive loadings indi-
cated a rightward asymmetry of the gradient,
while negative loadings indicated a leftward
asymmetry.

The multimodal canonical correlation anal-
ysis on the second cluster, which incorporat-
ed six brain metrics (principal components)
and four behavioral metrics, revealed a single
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Language-and-Memory Network atlas: Canonical Correlation Analysis
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Figure 5 | Brain-behavior association using canonical correlation analysis. (A) Biplot of the principal
component analysis of the regions belonging to Cluster 1 (n=14, on the left) and Cluster 2 (n=11, on the
right). Each region was characterized by its asymmetry values of the Ist gradient and normalized volume.
The two principal components of Cluster 1 explained 38.89% of the total variance (Principal Component
1=26.74%, Principal Component 2=12.15%). The two principal components of Cluster 2 explained 33.34%
of the total variance (Principal Component 1=20.47%, Principal Component 2=12.87%). For Cluster 1, the
1st principal component opposed the volume asymmetries of the dorsal language pathway regions to the
ventral semantic pathway regions. The 25¢ component opposed the symmetries of the 1st gradient to the
symmetries of the normalized volume. For Cluster 2, the 15t principal component opposed the asymmetry
of mesial regions versus the volume asymmetry of lateral regions. The 25¢ component coded for the sym-
metry of the 1t gradient, specifically, the symmetry of the temporo-mesial memory-related regions: a larger
value meant a larger symmetry. (B-C) Overview of the canonical correlation analysis first modes. Only data
from participants with all scores on the selected language indicators were included in the analysis (n=554;
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«— CamCAN cohort only). Sex, age, and general cognitive status (MMSE) were entered as covariates. (B)
First mode for brain variables. For Cluster 1, the brain mode explained 38% of the variance. It is saturated by
the first two components of the principal component analysis, mixing the multimodal biomarkers included
in the analysis (1t gradient and normalized volume). For Cluster 2, the brain mode explained 24% of the
variance. It is saturated by the first two components of the principal component analysis. (C) First mode of
behavioral variables. For Cluster 1 and 2, the behavioral mode explained 39% of the variance and was satu-
rated by the language production tasks involving lexical access and retrieval: naming and tip of the tongue.

Results for Cluster 1 are framed in light blue. Results

for Cluster 2 are framed in orange.
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Figure 6 | Relationship between changes in inter-hemispheric balances and their behavioral implications
in a multimodal perspective. The first brain and behavioral modes were significantly correlated for both
clusters: r=0.28, p<1.103. The significance of correlations between modes was assessed using permutation

testing (n=1000). Color code for age.

significant canonical correlation linking anato-
my, function, and behavior (p,, . .<1x107). This
brain mode accounted for 23.61% of the vari-
ance and opposed the second component of
the brain data set to the first one (Figure 5-B,
right column). Positive values of the brain
mode were associated with positive loading
values for the second component and nega-
tive values for the first component. A positive
brain mode value meant a leftward asymmetry
of the normalized volume of the mesial regions,
a rightward asymmetry of the lateral regions,
and a rightward asymmetry of the gradient.
The behavioral mode accounted for 39.04% of
the variance and, similarly to Cluster 1, primar-
ily reflected the naming and tip of the tongue
tests (Figure 5-C, right column). The correla-
tion between the brain and behavioral modes
was 0.28, as depicted in Figure 6 (right panel).
Improved language production abilities were
linked to a rightward asymmetry of the gra-
dient value within the temporo-mesial memo-
ry-related regions, a leftward asymmetry of the
normalized volume of the mesial regions, and
a rightward asymmetry of the normalized vol-
ume of the lateral regions.

Discussion

The study’s primary objective was to investi-
gate the dynamics of functional asymmetry
across the adult lifespan within an extended
language network (Language-and-Memory

Network). In young adults, our observations re-
vealed a greater degree of heteromodality (G1)
in the left hemisphere (LH) compared to the
right hemisphere (RH) in the fronto-parietal re-
gions forming the core language network. The
limbic “memory” regions of the extended lan-
guage network showed greater heteromodality
in the RH (Figures 3 and 4B). These observa-
tions align with a recent investigation explor-
ing brain-wide hemispheric preferences in the
G1 principal gradient in young adults. General-
ly, associative networks exhibited higher levels
of heteromodality in LH areas than their RH
counterparts, except for the limbic temporal
network, where the degree of heteromodality
was higher in RH regions (Gonzalez Alam et
al.,, 2022). These observations shed light on the
differences in hemispheric asymmetry within
specific networks.

To explore the dynamics of functional later-
alization across the adult lifespan, we modeled
the longitudinal trajectories of G1 hemispheric
asymmetry changes from cross-sectional data
with a method previously used to structural data
in a comparable context (Roe et al,, 2021b). It re-
vealed that a substantial portion of the expand-
ed language network experiences changes in
how the brain hemispheres handle multimodal
information as individuals age. Multiple distinct
trajectories from the initial state have been ob-
served (Figure 3), corresponding to two main
patterns of change (Figure 4). Cluster 1 de-
picts regions that shift from an LH preference
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in youth to a slight RH preference in old age.
With healthy aging, homotopic regions of Clus-
ter 1 become more heteromodal in the RH. The
core language regions predominantly followed
this trajectory (Figure 4C). On the other hand,
Cluster 2 comprises regions that shift from an
RH preference in youth to an LH preference
with aging. As individuals age, there is an in-
crease in the heteromodality of these regions
within the LH. This trend was mainly observed
in the Language-and-Memory Network regions
that complement the core language network
(Figure 4C).

We found that this dual mechanism of
the Language-and-Memory Network neuro-
functional imbalance in integrating complex,
high-level information begins after age 50 and
intensifies over time (Figure 4B). These findings
are consistent with previous functional studies
showing significant transitions in middle age
(Hennessee et al, 2022). They also align with
the onset of structural changes observed in
healthy older adults regarding cortical thick-
ness asymmetry, showing an accelerated loss
of asymmetry after midlife (Fjell et al., 2010;
Roe et al, 2021b; Vidal-Pifeiro et al.,, 2019).
The reduction in structural asymmetry is nota-
bly significant in higher-order cortex and het-
eromodal regions, which may account for the
extensive reorganization observed in the func-
tional organization of the Language-and-Mem-
ory Network regions. None of these changes
in asymmetry contributed to maintaining lan-
guage performance with age and were, instead,
linked to poorer performance. For Cluster 1
and Cluster 2, the pattern observed in young
adults was related to more efficient language
production (Figure 6), underlining the impor-
tance of specialization at all ages for effective
interhemispheric cooperation. Consequently,
the changes do not support the hypothesis of
a compensatory phenomenon (see (Cabeza et
al., 2018)), preserving language performance
with age. On the contrary, it aligns with the de-
differentiation theory of aging (Li et al., 2009;
Morcom & Friston, 2012; Morcom & Henson,
2018; Reuter-Lorenz & Lustig, 2005) and the
brain maintenance theory (Nyberg, 2017; Ny-
berg et al., 2012), suggesting that maintaining a
(functional) youthful brain state is an essential
factor in cognitive preservation as individuals
age. These findings further underscore Roe and
colleagues’ insights in their recent investigation
of age-related shifts in functional asymmetry
during memory retrieval (Roe et al., 2020).

The lateralization of individual functions,
such as language, may be closely associated
with the lateralization of many seemingly in-
dependent processes (Labache et al., 2023).
Several studies suggest that the LH specializa-
tion for language may be linked to the concept
of “complementary lateralization.” This stands
in contrast to the preferential specialization
of the contralateral hemisphere (the RH) for

other high-level cognitive functions like visu-
ospatial processing (Badzakova-Trajkov et al.,
2010; Cai et al,, 2013; Cochet, 2016; Serrien &
O’Regan, 2022; Zago et al., 2016). It has also
been reported that the absence of functional
lateralization for language production reduc-
es performance in language tasks and other
non-verbal, high-level functions (Mellet et al.,
2014). The attentional and executive control
networks (Yeo et al,, 2011) play a role in main-
taining these specializations, with LH control
regions (Control-B) closer to the Default Mode
Network (DMN-B) and RH attentional regions
(DAN-B) nearer to the sensory-motor end of
the gradient (Gonzalez Alam et al., 2022). Im-
portantly, control networks undergo extensive
reconfigurations during the aging process (e.g.,
see (Baciu et al., 2021; Betzel et al., 2014; G. E.
Doucet et al,, 2021; He et al., 2013; Mowinckel et
al., 2012; Roger, Rodrigues De Almeida, et al.,
2022)). These changes affect the substantial
alterations observed in language’s function-
al asymmetries and other cognitive functions.
Although beyond the scope of this research,
studying how changes in neurofunctional equi-
libriums for different cognitive functions occur
with age would offer invaluable insights into
mutual network interactions.

The human brain typically exhibits marked
structural left-right disparities, particularly pro-
nounced in perisylvian regions associated with
language. Although genetics contribute to
these asymmetries, their impact appears to be
less substantial than previously assumed, with
heritability estimated at less than 30% in adults
(Kong et al., 2018; Sha et al., 2021), suggesting
that environmental factors likely play a substan-
tial role. Current research points to two primary
developmental trajectories: the first is primari-
ly influenced by genetics and lays the ground-
work for brain lateralization, while the second,
built upon this genetic foundation, entails pro-
longed development in brain regions respon-
sible for complex functions, rendering them
more susceptible to the influence of environ-
mental factors (Labache et al.,, 2023). The ag-
ing process, particularly affecting heteromodal
associative brain regions in middle age, may in-
troduce a phase of heightened vulnerability to
environmental and life experience factors from
this period onward. Pinpointing the specific
environmental factors and midlife experiences
that contribute to resilience or susceptibility in
the face of changes in brain asymmetry holds
the potential to enhance our understanding of
the variability in neurocognitive aging. This may
facilitate the development of personalized pre-
ventive measures and interventions for individ-
uals at risk of experiencing accelerated aging.
Importantly, functional asymmetry is not sole-
ly dependent on cognitive aspects but is also
strongly influenced by sensory inputs (Hugdahl
& Westerhausen, 2016; Van der Haegen et al,,
2016). The decline of the peripheral nervous
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system plays a pivotal role in triggering signifi-
cant functional reconfigurations within the cen-
tral nervous system (see (Huang et al., 2023);
(Schulte et al,, 2020) for the consequences of
age-related hearing loss on the brain function).
Furthermore, hearing impairment in midlife is a
substantial risk factor for dementia, as empha-
sized in the 2020 report by the Lancet Com-
mission on dementia prevention, intervention,
and care (Livingston et al., 2020). By elucidat-
ing the intricate relationships between sensory
inputs, neural adaptations, and cognitive aging,
the investigation of bottom-up influences pres-
ents an intriguing yet relatively unexplored re-
search avenue.

Several methodological considerations and
potential biases require discussion. Our study
isolated the effects of age from gender through
statistical control. However, gender-based dis-
parities in language-related functional connec-
tivity have been reported (Roger, Rodrigues
De Almeida, et al., 2022), alongside variations
in the asymmetry of hemispheric function-
al gradients (Liang et al., 2021). Hence, future
studies must delve into gender-specific char-
acteristics of the extended language network.
Furthermore, given that certain aspects of
brain aging manifest disparities between males
and females (e.g., (Goyal et al., 2019)), special
consideration should be given to older adults
since gender differences could be amplified.
Moreover, our study predominantly included
participants from WEIRD (Western, Educated,
Industrialized, Rich, and Democratic) societies.
Considering that most of the global population
does not fit within this category (Henrich et al.,
2010), it would be beneficial to replicate these
findings in more diverse populations, consider-
ing the importance of cultural diversity in re-
search. Resting-state functional MRI has gained
popularity due to its strong association with
task-based fMRI activations (Cole et al.,, 2014,
2016) and ease of acquisition, rendering it a
valuable proxy for capturing functional neuronal
processes. Nevertheless, the strength of hemi-
spheric specialization for language depends
on multiple factors, particularly the nature of
the task (Bradshaw et al., 2017; Labache et al,,
2019). Hence, conducting an additional study
encompassing a diverse array of language-re-
lated functional tasks is essential to validate the
consistency of the trends observed in our rest-
ing-state functional data. Open fMRI databases
dedicated to language, such as InLang (Roget,
Rodrigues De Almeida, et al., 2022), could fa-
cilitate such investigations. However, the data-
bases available to date only sometimes include
a wide age range, which could limit insights
into older adults. Finally, longitudinal data are
imperative for providing conclusive evidence
regarding evolutionary trajectories throughout
the lifespan and their cognitive implications.
The STAC-r model (revised Scaffolding Theo-
ry of Aging and Cognition model) emphasizes

the importance of examining cognitive chang-
es within individuals (Reuter-Lorenz & Park,
2014). This approach helps distinguish between
mechanisms that maintain brain integrity and
compensatory processes. Both mechanisms
are crucial for preserving cognition in older
adults, as noted by Reuter-Lorenz and Park in
2014. However, the current scarcity of exten-
sive longitudinal cohorts, spanning both older
and younger adults, hinders the identification
of features predictive of future brain function
and cognitive preservation (G. E. Doucet et al.,
2022). It would also be important to extend
the study to cohorts with mild cognitive im-
pairment (MCIl) and related conditions, which
is crucial for assessing the specificity of the ob-
served effects and discerning trends across dif-
ferent conditions.

Conclusion

Functional asymmetry in integrating high-level
information optimization plays a crucial role in
the functioning of neural processes involved in
language. Examining these patterns over time
revealed shifts in hemispheric predominances,
emphasizing the dynamic nature of function-
al lateralization. Changes in asymmetries are
linked to the language production challenges
frequently observed in typical aging, challeng-
ing the idea of a compensatory function for the
heightened engagement of the opposite hemi-
sphere in aging. Instead, our findings align with
the brain maintenance theory, highlighting the
importance of sustaining a youthful functional
brain state for optimal cognitive performance
as individuals age. This study expands upon
previous research on interhemispheric reorga-
nization and opens avenues for a deeper un-
derstanding of the dynamic processes through
which the brain and cognition adapt during ag-
ing.

Code Availability

The atlas and the code used to produce the
results and visualizations can be found here
(Labache, Roger, et al., 2023): https://qgithub.
com/loiclabache/RogerLabache 2023
LanguAdging.
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