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When Age Tips the Balance: a Dual 
Mechanism A�ecting Hemispheric 
Specialization for Language

P
aul Pierre Broca challenged the prevai-
ling 19th-century belief that the brain was 
organized holistically and symmetrically, 

providing evidence to support the idea that a 
prominently lateralized brain is a crucial cha-
racteristic for e�ectively carrying out certain 
cognitive functions, particularly language pro-
cessing (“We speak with the left hemisphere,” 
Broca, 1865, p. 384).

Patterns of hemispheric specialization and 
interaction of brain networks are complex, de-
velopmental, learning-dependent, and dynam-
ic (Tzourio-Mazoyer & Seghier, 2016). From the 
earliest stages of development, human beings 
demonstrate behavioral and brain asymmetries 
– as early as ten weeks prenatal (Abu-Rustum 
et al., 2013) and 26 gestational weeks for per-
isylvian regions (Kasprian et al., 2011) – which 
become increasingly perceptible both func-
tionally and anatomically during infancy. Asym-
metries in neural networks take e�ect at dif-
ferent times during ontogeny, and almost all 
cortical brain regions show significant left-right 
asymmetries in adulthood (Kong et al., 2018). 
Language-related regions show covariate de-
velopmental trajectories (Leroy et al., 2011) and 
develop more slowly in the left hemisphere 
(LH) than in the right (Sowell et al., 2003). A 

notable right hemisphere (RH) language acti-
vation pattern in young children typically di-
minishes with age to become strongly left lat-
eralized for most adults (Olulade et al., 2020). 
Examining the language connectome in adult 
populations and its organization across several 
language tasks reveals a pronounced left-hemi-
spheric dominance in the central perisylvian 
network, which specializes in processing audi-
tory-verbal stimuli (Roger, Rodrigues De Almei-
da, et al., 2022). This dominance of functional 
connectivity in the left hemisphere (LH) for the 
“core” language network has been consistently 
observed (Braga et al., 2020; Friederici, 2011; 
Labache et al., 2019; Vigneau et al., 2006).

However, language processing requires the 
involvement of a wider brain network, encom-
passing the core perisylvian LH system but also 
several peripheral or marginal memory, exec-
utive, and sensorimotor systems ((Hertrich et 
al., 2020), also discussed as multiple language 
networks by (Hagoort, 2017, 2019)). The ex-
tended language connectome comprises many 
fine-tuned associative hubs (Roger, Rodrigues 
De Almeida, et al., 2022). It is sharpened to un-
derpin e�ective communication by integrat-
ing the high-level, multimodal perceptual and 
cognitive information required for language
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processing (Roger, Banjac, et al., 2022). This 
sophisticated processing system is thus ex-
tremely powerful, yet it is also susceptible to 
vulnerabilities. Associative hubs are indeed 
highly prone to damage (Fornito et al., 2015), 
and ensuring the optimal function of language 
hubs in later life comes at a considerable cost 
(Baciu et al., 2016, 2021; Hoyau et al., 2018; Rog-
er, Rodrigues De Almeida, et al., 2022). It is now 
well-documented that functional connectivity 
and network dynamics remodel with age (e.g., 
(G. E. Doucet et al., 2021; Goh, 2011; Sala-Llonch 
et al., 2015; Zonneveld et al., 2019). Important-
ly, older adults exhibit a default-executive cou-
pling when engaged in demanding tasks, char-
acterized by increased prefrontal involvement 
and reduced suppression of the Default Mode 
Network. In contrast, younger individuals ad-
just their functional responses by deactivating 
Default Mode Network regions when perform-
ing the same tasks (Buckner & DiNicola, 2019; 
Mazoyer et al., 2001; Shulman et al., 1997; Turn-
er & Spreng, 2015). Overall, age-related chang-
es are characterized by reduced specificity, se-
lectivity, and lateralization of functional brain 
networks (Festini et al., 2018). Nevertheless, 
the trajectory of hemispheric specialization for 
language during aging, the underlying mecha-
nisms involved, and their impact on cognition 
are still largely unclear and require further in-
vestigation.

Functional asymmetries can be investi-
gated using intrinsic functional connectivi-
ty, which o�ers the advantage of abstracting 
from task-related variability associated with 
the nature and di�culty of specific tasks. Rest-
ing-state networks do exhibit spatial patterns 
that correspond with the networks observed 
during specific cognitive tasks (Cole et al., 
2014, 2016; Ji et al., 2019)., and specific regions 
have been identified as already predisposed in 
language processing at rest (G. Doucet et al., 
2011). Moreover, lateralization measures in key 
language hubs, derived from resting-state data, 
can predict functional lateralization during task 
performance (G. E. Doucet et al., 2015; Labache 
et al., 2020). Furthermore, recent studies on 
functional brain architecture have reported 
that resting-state networks exhibit a hierarchi-
cal organization characterized by smooth spa-
tial transitions or gradients (Huntenburg et al., 
2018; Margulies et al., 2016). The principal gradi-
ent (G1), explaining the most variance in whole-
brain functional connectivity, aligns with estab-
lished cortical hierarchies that progressively 
process complex or heteromodal information 
from sensory inputs ((Gonzalez Alam et al., 
2022); see also (Chang et al., 2022) for natural 
language processing). Interestingly, the brain 
hemispheres do not show an identical pattern 
of organization on G1 (Liang et al., 2021), re-
vealing a notable asymmetry for heteromodal 
networks linked to higher-order cognitive func-
tions (Mancuso et al., 2019; Raemaekers et al., 

2018). Furthermore, a recent study showed that 
individuals exhibiting atypical language lateral-
ization display corresponding hemispheric dif-
ferences in macroscale functional gradient or-
ganization, making G1 a marker of hemispheric 
specialization for language (Labache et al., 
2023). Therefore, examining functional asym-
metries within intricate networks, such as those 
supporting language processing, and how they 
change with age can bring a new perspective 
considering the fundamental underlying func-
tional architecture.

Our study aimed to track how hemispher-
ic asymmetry changes with age in the Lan-
guage-and-Memory Network (Roger et al., 
2020) using the functional principal gradient 
G1 based on resting-state data. To model the 
functional trajectories over an age range from 
18 to 88 years, we applied the Generalized Ad-
ditive Mixed Models (GAMMs) technique, which 
has been previously used in structural MRI 
studies (Roe et al., 2021a, 2023). This allowed 
us to classify Language-and-Memory Network 
regions based on their asymmetry patterns at 
rest throughout healthy aging. Furthermore, 
we also explored how these asymmetry chang-
es were related to cognitive performance mea-
sured during various language tasks. To this 
end, we used Canonical Correlation Analyses 
(CCA) to assess how age impacted asymme-
tries in the language network across multimod-
al data, including anatomy, function, and cogni-
tive performances.

Methods
Database demographics. The study sample 
comprised three datasets, accumulating 728 
healthy adults (371 women) from 18 to 88 years 
old (μ=52.84 years, SD=19.19 years, Figure 1). 
Participants were included if they had a rest-
ing-state (rs) fMRI and structural MRI collected 
on a 3T MRI scanner.

The larger sample, the Cambridge Centre 
for Ageing and Neuroscience Project (Cam-
CAN Project: www.mrc-cbu.cam.ac.uk, (Shaf-
to et al., 2014)), included 627 participants 
(316 women). Further recruitment informa-
tion and the acquisition parameters have been 
described elsewhere (Taylor et al., 2017). The 
sample mean age was 54.28 years (SD=18.61 
years). Participants’ handedness was defined 
based on the manual preference strength as-
sessed with the Edinburgh inventory (Oldfield, 
1971): participants with a score below 30 were 
considered left-handers (Hervé et al., 2006; 
Papadatou-Pastou et al., 2020), right-handers 
otherwise. The sample contained 56 left-hand-
ed participants (32 women). CamCAN funding 
was provided by the UK Biotechnology and 
Biological Sciences Research Council (grant 
number BB/H008217/1), with support from the 
UK Medical Research Council and the Universi-
ty of Cambridge, UK.
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The second sample was collected in Oma-
ha, NE, USA, and included 54 participants (31 
women). The acquisition parameters are fully 
described in (G. E. Doucet et al., 2022). Brief-
ly, participants were scanned on a 3T Sie-
mens Prisma scanner using a 64-channel head 
coil. Structural images were acquired using a 
T1-weighted, 3D magnetization-prepared rap-
id gradient-echo (MPRAGE) sequence with 
the following parameters: Repetition Time 
(TR)=2400 ms, Echo Time (TE)=2.22 ms, Field 
of View (FOV): 256×256 mm, matrix size: 
320×320, 0.8 mm isotropic resolution, Inver-
sion Time (TI)=1000 ms, 8 degree-flip angle, 
bandwidth=220 Hz/Pixel, echo spacing=7.5 ms, 
in-plane acceleration GRAPPA (GeneRalized 
Autocalibrating Partial Parallel Acquisition) fac-
tor 2, total acquisition time ~7 min. Participants 
also completed a resting-state fMRI scan using 
a multi-band T2* sequence with the following 
acquisition parameters: TR=800 ms, TE=37 
ms, voxel size=2×2×2 mm3, echo spacing 0.58 
ms, bandwidth=2290 Hz/Pixel, number of axi-
al slices = 72, multi-band acceleration factor=8, 
460 volumes The sample mean age was 44.13 
years (SD=19.07 years). Participants’ handed-

ness was self-reported: the sample contained 
seven left-handed participants (3 women). The 
study was approved by the Institutional Re-
view Board for Research with Human Subjects 
at Boys Town National Research Hospital. Each 
participant provided written informed consent 
and completed the same protocol.

The third sample was collected in Grenoble, 
France, and included 47 participants (24 wom-
en). The acquisition parameters are described 
in (Roger et al., 2020). The sample mean age 
was 43.57 years (SD=21.92 years). Participants’ 
handedness was self-reported: the sample con-
tained two left-handed participants (1 woman). 
The ethics committee of the Grenoble Alpes 
University Hospital approved data collection 
(CPP 09-CHUG-14; MS-14-102).

We used the whole age range of the sam-
ple (n=728, 18-88 years) to model the asymme-
try trajectories further throughout the lifespan.

Cognitive assessment of participants. For all 
728 participants, we checked the Mini Mental 
State Examination (MMSE) scores to ensure 
that the general cognitive functioning of our 
sample remained within the expected range

Figure 1 | Age and behavioral performance distributions (n=728). The behavioral tests assess various cog-
nitive functions associated with language: word production, lexical access/retrieval abilities (picture Nam-
ing accuracy and Tip of the tongue ratio), and semantic and syntactic comprehension abilities (Accuracy 
and Reaction Time). A description of the behavioral variables is available as supplementary material in the 
article by West and colleagues (West et al., 2022). Reaction Time and Tip of the tongue performance were 
inverted, so all scores close to 0 represent worse performances.
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Among the three cohorts in our study, only 
the CamCAN cohort underwent an extensive 
set of behavioral assessments, resulting in cog-
nitive data available for a specific sub-sample 
of 554 participants. These assessments, con-
ducted outside the MRI scanner, are detailed 
in previous literature (Shafto et al., 2014, 2019; 
Samu et al., 2017; Taylor et al., 2017). We limit-
ed our analyses to language skill assessments 
only (Figure 1). We chose language-related 
measures because of their e�ectiveness in as-
sessing diverse language-related aspects, en-
compassing word production, lexical access, 
and word retrieval (evaluated via picture nam-
ing accuracy and the tip-of-the-tongue ratio), 
as well as the understanding of semantics and 
syntax (measured through accuracy and reac-
tion time). Further comprehensive descriptions 
of these behavioral variables are available in 
the supplementary materials provided by West 
and colleagues (West et al., 2022).

MRI Data Preprocessing. The neuroimaging 
data were formatted following the BIDS stan-
dard (Brain Imaging Data Structure - http://
bids.neuroimaging.io/; (Gorgolewski et al., 2016; 
Roger et al., 2020)) and then preprocessed us-
ing the fMRIPrep software (https://fmriprep.
org/en/stable/; (Esteban et al., 2019, 2020). 
The T1w preprocessing included skull stripping, 
tissue segmentation, and spatial normalization. 
Preprocessing of the rs-fMRI data followed the 
consensus steps for functional images, includ-
ing motion correction, slice timing correction, 
susceptibility distortion correction, coregistra-
tion, and spatial normalization. The data were 
represented in the Montreal Neurological Insti-

tute (MNI) volumetric space. Finally, time series 
were extracted for each homotopic region of 
interest (hROIs; described in the following sub-
section) using Nilearn (https://nilearn.github.
io/), with nuisance parameter regression. Con-
founding regression included cerebrospinal flu-
id and white matter signals and translation and 
rotation parameters for x, y, and z directions.

Language-and-Memory Network Statistics. 
Our statistical analyses were based on the 
Language-and-Memory Network atlas, an ex-
tended language network encompassing lan-
guage-specific areas and related memory 
regions (Roger et al., 2020). Briefly, the Lan-
guage-and-Memory Network comprises 37 ho-
motopic regions of interest. Among these ten 
regions uniquely dedicated to the core supra-
modal language network (Labache et al., 2019), 
19 supporting episodic memory (Spaniol et al., 
2009), and eight regions underpinning both 
language and episodic memory processes. The 
core language network corresponded to a set 
of heteromodal brain regions significantly in-
volved, leftward asymmetrical across three lan-
guage contrasts (listening to, reading, and pro-
ducing sentences), and functionally connected. 
The memory network was underpinned by areas 
that demonstrated strong activation patterns 
connected to episodic memory processes, such 
as encoding, e�ective recovery, and reminis-
cence. Figure 2 shows the Language-and-Mem-
ory Network in a brain rendering, and Table 1 
lists all the Language-and-Memory Network 
regions. It should be noted that the language 
atlas was based on the AICHA atlas, a function-
al brain homotopic atlas optimized for study-
ing functional brain asymmetries (Joliot et al.,

Figure 2 | Locations of the 37 regions of the Language-and-Memory Network atlas (Roger et al., 2020). 
On the left: Lateral view of the left hemisphere. On the right: Medial view of the left hemisphere. The at-
las is composed of 74 homotopic ROIs (37 in each hemisphere) reported by two task-fMRI studies, one 
cross-sectional study for language (Labache et al., 2019), and one meta-analysis for memory (Spaniol et 
al., 2009) and adapted to the Atlas of Intrinsic Connectivity of Homotopic Areas coordinates (Joliot et 
al., 2015). Regions are rendered onto the 3D anatomical templates of the white matter surface of the left 
hemisphere in the MNI space with Surf Ice software (https://www.nitrc.org/projects/surfice/). Color code: 
purple, regions involved in language; blue, regions involved in episodic memory (encoding and retrieval); 
brown, regions involved in both language and memory. The Anterior Insula (3) (INSa3) is not visible on 
this render. See Table 1 for the correspondences between the abbreviations and the full names of the Lan-
guage-and-Memory Network regions.
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Table 1 | List of the Language-and-Memory network atlas regions. Note: L=language; LM=language and 
memory; M=memory; MNI coordinates, in the left and right hemisphere, of regions (X, Y, Z) in mm; Total 
regions=74 (37 in each hemisphere).

 2015).
We computed two features characterizing 

the high-order Language-and-Memory Net-

work hROIs (Roger et al., 2020) from the pre-
processed neuroimaging data: the normalized 
volume and the first functional gradient (G1)
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reflecting the macroscale functional organiza-
tion of the cortex (Margulies et al., 2016). The 
first gradient captures the most variance of 
the correlations matrices (20%, 22%, and 19% 
for CamCAN, Omaha’s, and Grenoble’s cohorts, 
respectively). It has been previously shown to 
accurately reflect the lateralization of the lan-
guage network (Labache et al., 2023).

Normalized Volume. Tissue segmentation was 
performed on the preprocessed T1w using the 
FreeSurfer pipeline (Version 6.0.0; CentOS Li-
nux 6.10.i386). Briefly, the FreeSurfer segmen-
tation process included the segmentation of 
the subcortical white matter and deep gray 
matter volumetric structures, intensity normal-
ization, tessellation of the gray matter white 
matter boundary, automated topology correc-
tion, and surface deformation following intensi-
ty gradients to optimally place the gray/white 
and gray/cerebrospinal fluid borders at the 
location where the greatest shift in intensity 
defines the transition to the other tissue class. 
Structural volumes were normalized to total 
intracranial volume. Normalized volumes were 
extracted for each of the Language-and-Mem-
ory Network hROIs.

Connectivity Embedding. Each participant’s 
values were obtained for the first function-
al gradient (G1). The gradients reflect partici-
pant connectivity matrices, reduced in their 
dimensionality through the approach of Mar-
gulies and colleagues (Margulies et al., 2016). 
Functional gradients reflect the topographical 
organization of the cortex in terms of sensory 
integration flow, as described by Mesulam (Me-
sulam, 1998). Gradients were computed using 
Python (Python version 3.8.10) and the BrainS-
pace library (Python package version 0.1.3 (Vos 
de Wael et al., 2020)). Gradients computed at 
the regional and vertex levels performed simi-
larly (Vos de Wael et al., 2020).

Average region-level functional connectiv-
ity matrices were generated for each individual 
across the entire cortex (i.e., 384 AICHA brain 
regions). Consistent with prior work, each re-
gion’s top 10% connections were retained, and 
other elements in the matrix were set to 0 to 
enforce sparsity (Dong et al., 2021; Margulies 
et al., 2016). The normalized angle distance be-
tween any two rows of a matrix was calculated 
to obtain a symmetrical similarity matrix. Dif-
fusion map embedding (Coifman et al., 2005; 
Coifman & Lafon, 2006; Lafon & Lee, 2006) 
was implemented on the similarity matrix to 
derive the first gradient. Note that the individu-
al-level gradients were aligned using Procrust-
es rotation (N

iterations
=10) to the corresponding 

group-level gradient. This alignment proce-
dure was used to improve the similarity of the 
individual-level gradients to those from prior 
literature. Min-max normalization (0-100) was 
performed at the individual level for the whole 

brain (Gonzalez Alam et al., 2022).
Gradient asymmetry was then computed 

for each participant and region. For a given re-
gion, gradient asymmetry corresponded to the 
di�erence between the normalized gradient 
value in the left hemisphere minus the gradi-
ent values in the right hemisphere. A positive 
gradient asymmetry value meant a leftward 
asymmetry; a negative value meant a rightward 
asymmetry.

Statistical Analyses. Statistical analysis was 
performed using R (R version 4.2.2 (R Core 
Team, 2021)). Data wrangling was performed 
using the R library dplyr (R package version 
1.0.10, (Wickham et al., 2023)). Graphs were re-
alized using the R library ggplot2 (R package 
version 3.4.2 (Wickham, 2016)). Brain visualiza-
tions were realized using Surf Ice (NITRC: Surf 
Ice: Tool/resource Info, n.d.).

Modeling Gradient Asymmetry Trajecto-
ries Throughout Life. For each region of the 
Language-and-Memory Network, we used fac-
tor-smooth Generalized Additive Mixed Mod-
els (GAMMs, as implemented in the R library 
gamm4; R package version 0.2-6 (Wood & 
Scheipl, 2020)) to fit a smooth gradient trajec-
tory for Age per Hemisphere (Roe et al., 2021b, 
2023) and to assess the smooth interaction 
between Hemisphere×Age within the clusters 
(see clusters definition below). Hemisphere 
was included as a fixed e�ect, while Sex and 
Site were treated as covariates of no interest. 
A random intercept for each subject was also 
included. GAMMs leverage smooth functions to 
model the non-linear trajectories of mean levels 
across individuals, providing robust estimates 
that can be applied to cross-sectional and lon-
gitudinal cognitive data (Sørensen et al., 2021). 
GAMMs were implemented using splines, a se-
ries of polynomial functions joined together 
at specific points, known as knots. The splines 
allow the smooth function to adapt its shape 
flexibly to the underlying pattern in the data 
across the range of the predictor variable. This 
connection allows for the modeling of complex, 
non-linear relationships piecewise while main-
taining continuity and smoothness across the 
function. To minimize overfitting, the number 
of knots was constrained to be low (k=6). The 
significance of the smooth Hemisphere×Age 
interaction was assessed by testing for a di�er-
ence in the smooth term of Age between hemi-
spheres. We applied a False Discovery Rate 
correction (FDR, (Benjamini & Yekutieli, 2001)) 
to control for the number of tests conducted. 
Lastly, we used the linear predictor matrix of 
the GAMMs to obtain asymmetry trajectories 
underlying the interaction Hemisphere×Age 
and their confidence intervals. These were com-
puted as the di�erence between zero-centered 
(i.e., demeaned) hemispheric age trajectories.

Classification of Age-Asymmetry Trajec-
tories. To classify the regions of the Language-
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and-Memory Network found significant (af-
ter applying the FDR correction) according to 
their functional asymmetry skewness profile 
(i.e., increasing leftward asymmetry from base-
line, decreasing leftward asymmetry, or stabi-
lizing asymmetry with age), we computed a 
dissimilarity matrix (sum of square di�erences) 
between all trajectories. We applied the Parti-
tion Around Medoids algorithm (PAM, R library 
cluster; R package version 2.1.4 (Maechler et al., 
2022)) to identify clusters of regions sharing 
identical lifespan trajectories. Clustering solu-
tions from two to seven were considered, and 
the mean silhouette width determined the op-
timal solution.

Canonical Correlation Analysis to Assess 
Brain–Behavior Associations. For each cluster, 
we assessed the linear relationship between 
the gradient asymmetry trajectories of the Lan-
guage-and-Memory Network, their normalized 
volume, and cognitive language performance 
using permutation-based Canonical Correla-
tion Analyses (CCA, (Wang et al., 2020)) infer-
ence. CCA is a multivariate statistical method 
identifying linear combinations of two sets of 
variables that correlate maximally. CCA reveals 
modes of joint variation, shedding light on the 
relationship between cognitive language per-
formance (behavioral set), the lifespan trajec-
tories of sensory integration flow asymmetry, 
and its underlying anatomy (brain set). The 
CCA results on a set of m mutually uncorrelat-
ed (i.e., orthogonal) modes. Each mode cap-
tures a unique fraction of the multivariate brain 
and behavior covariation that isn’t explained by 
any of the other m−1 modes. To assess statisti-
cal significance, we determined the robustness 
of each estimated CCA mode using permuta-
tion testing with 1,000 permutations. This test 
computes p-values to assess the null hypothe-
sis of no correlation between components, ad-
hering to the resampling method developed by 
Winker and colleagues (Winkler et al., 2020). 
p-values were controlled over Family-Wise Er-
ror Rate (FWER; FWER corrected p-values are 
denoted p

FWER
), which is more appropriate than 

the FDR correction when measuring the signif-
icant canonical modes (Winkler et al., 2020).

Before conducting the CCA, we summa-
rized the high-dimensional set of brain vari-
ables (gradient and normalized volume asym-
metries) using principal component analysis 
(PCA, (Wang et al., 2020)). We retained com-
ponents corresponding to the elbow point in 
the curve, representing the variance explained 
by each successive principal component. This 
was achieved using the R library PCAtools (R 
package version 2.5.15 (Blighe & Lun, 2021))). 
These retained principal components were then 
designated as the brain set for the CCA. Finally, 
we residualized the two variable sets (brain and 
behavior sets) to remove the influence of sex, 
age, and MMSE before executing the CCA. 

The CCA had only been realized on the 554 

participants of the CamCAN database due to a 
lack of behavioral data for other participants.

Results
Evolution of Hemispheric Gradient Asym-
metries. To identify regions in the Lan-
guage-and-Memory Network with changing 
gradient asymmetry across the lifespan, we 
applied GAMMs with Hemisphere×Age (i.e., 
age-related change in asymmetry) as the e�ect 
of interest. This was done using combined data 
from 728 participants, aged 18 to 88, across co-
horts.

Gradient significant age-related changes 
in asymmetry were found in 25 of the 37 re-
gions of the Language-and-Memory Network 
(68% of the Language-and-Memory Network 
regions, all p

FDR
<0.024, Figure 3). On the lat-

eral surface of the temporal lobe, significant 
regions were localized alongside the superior 
temporal sulcus (STS1, STS2, STS3), extending 
to the Superior Temporal Gyrus dorsally (T1_4) 
and joining the posterior part of the Inferior 
Temporal Gyrus (T3_4) and ventrally, the Fusi-
form Gyrus (FUS4). Advancing toward the pari-
etal lobe, the Supramarginal Gyrus (SMG7), the 
Inferior Parietal Gyrus (P2), and the intrapari-
etal sulcus (ips3) also showed significant Hemi-
sphere×Age interactions. On the lateral surface 
of the left frontal lobe, the regions showing a 
significant Hemisphere×Age interaction cov-
ered the pars triangularis part of the Inferior 
Frontal Gyrus (F3t), as well as the pars orbit-
alis (F2O2), the junction of the Middle Frontal 
Gyrus (F2_1) with the precentral sulcus (prec1, 
and prec4). The superior frontal sulcus (f1_2), 
the medial part of the Superior Frontal Gyrus 
(F1_2), and the pre-superior motor areas (SMA2 
and SMA3) were also part of these areas in the 
frontal lobe. Three regions were located within 
the anterior Insula (INSa2, INSa3, and INSa4), 
while three others were located along the Hip-
pocampal (HIPP1 and HIPP2) and paraHippo-
campal Gyri (pHIPP2). In the posterior medial 
wall, the Posterior Cingulum (CINGp2) was se-
lected using this approach. The 12 non-signif-
icant regions (all p

FDR
>0.174) were localized in 

the posterior part of the temporal (STS4, T2_3, 
T2_4, and T3_3) and the parietal lobes (AG1, 
AG2, and ips2), the anterior cingulate (CINGa2), 
the amygdala (AMYG), and the inferior frontal 
gyrus (F3_O1, F3_O2) and sulcus (f2_2).

Clustering of Asymmetry Trajectories. To in-
vestigate the asymmetry trajectories associat-
ed with the Hemisphere×Age interaction in the 
GAMMs, we conducted clustering on the 25 sig-
nificant regions within the Language-and-Mem-
ory Network to pinpoint areas displaying sim-
ilar patterns of gradient asymmetry changes 
throughout adulthood (Figure 3). The PAM al-
gorithm identified two optimal partitions based 
on the mean silhouette width of 0.73. Including
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Figure 3 | Gradient lifespan trajectories of Language-and-Memory regions. Each region’s graph shows 
the lifespan trajectory of the left (in red) and the right (in green) hemispheres and their asymmetry (in 
blue). Regions are plotted in alphabetical order. Trajectories were fitted using the generalized additive 
mixed models. Significant regions (pFDR<0.05) are marked with a star (*) in the top right corner. Data are 
residualized for sex, site, and random subject intercepts. Ribbons depict the standard error of the mean. 
The location of regions can be found in Figure 1. Correspondences between the abbreviations and the full 
names of a region can be found in Table 1.

the regions that did not exhibit significant 
changes in gradient asymmetries over the lifes-
pan, the Language-and-Memory Network re-
gions are grouped into three distinct clusters 

(Figure 4-A).
The first cluster, highlighted in light blue in 

Figure 4 and referenced similarly throughout 
the paper, comprised regions that showed an
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average increase in their gradient values in the 
right hemisphere (Figure 4-D). These regions 
transitioned to a slightly rightward asymmetri-
cal state with aging (smooth

88 yo
=-1.72), where-

as they exhibited leftward asymmetry in earli-
er life stages (smooth

18 yo
=9.40, negative slope 

from positive intercept, Figure 4-B). The right 
hemisphere heteromodality increased signifi-
cantly with aging, while the left hemisphere ca-
pacity remained stable. Within this cluster, 43% 
of the regions were dedicated to processing 
language, while 57% were multimodal, handling

Figure 4 | Patterns of language-related neurocognitive trajectories. (A) The 25 Language-and-Memory 
Network regions associated with the two main clusters of change, categorized according to the k-medoids 
classification applied to the Euclidean distance matrix derived from the age-related curves of asymmetry 
as modeled by the Generalized Additive Mixed Model. Cluster 1, in blue, changes from left-sided dominant 
to bilateral. Cluster 2, in orange, changes from a bilateral organization to a left-side dominance. See Figure 
2 and Table 1 for a description of the regions. (B) Average trajectory curves of the 1st gradient asymmetries 
from 18 to 88 years old. The two main patterns of inverse changes (Cluster 1 and Cluster 2) with age. The 
vertical line represents the intersection point between Cluster 1 and Cluster 2: 52.55 years old, i.e., the age 
at which the 1st gradient asymmetry trends reverse. Ribbons depict the standard deviation. (C) The propor-
tion of each cluster depends on the underlying cognitive processes: language or language and memory. 
(D-E) Modeling of the average estimated 1st gradient parameter for each hemisphere (left and right) across 
ages for Language-and-Memory Network regions belonging to Cluster 1 (D) and Cluster 2 (E). Ribbons 
depict the standard deviation. The bilateralization of Cluster 1 with age is due to an increase of the 1st gra-
dient values in the right hemisphere, while the left hemisphere remains stable. The left-sided specialization 
of Cluster 2 with age is due to an increase of the 1st gradient values in the left hemisphere, while the right 
hemisphere remains stable. This dual mechanism is mediated by an overspecialization of the contralateral 
hemisphere with age, characterized by an increased capacity to integrate high-level Language-and-Mem-
ory Network information.
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language and memory functions (Figure 4-C). 
Cluster 1 regions are mapped onto the frontal, 
parietal, temporal, limbic cortices, and insula.

The second cluster, highlighted in light 
orange in Figure 4 and referenced similarly 
throughout the paper, comprised regions that 
showed an average increase in their gradi-
ent values in the left hemisphere (Figure 4-E). 
These regions transitioned to a leftward asym-
metry state with aging (smooth

88 yo
=12.23), 

whereas they exhibited rightward asymmetry 
organization in earlier life stages (smooth

18 yo
=-

3.77, positive slope from negative intercept, 
Figure 4-B). The left hemisphere heteromodal 
specialization increased significantly with ag-
ing, while the right hemisphere capacity re-
mained stable. Within this cluster, 9% of the re-
gions were dedicated to processing language, 
while 91% were multimodal, handling language 
and memory functions (Figure 4-C). Cluster 2 
regions are mapped onto the frontal, temporal, 
and limbic cortices. 

The last cluster (in grey in Figure 4), named 
“No change,” regrouped the 12 non-significant 
regions that showed no significant changes 
in their hemispheric asymmetries throughout 
the lifespan. This cluster encompasses 25% of 
regions exclusively associated with language 
function and 75% of the regions involved in lan-
guage and memory processes.

The trajectories of clusters 1 and 2 indicat-
ed that the asymmetry switch occurred at 52.6 
years old (Figure 4-B). From this age onward, 
Cluster 2, which mainly encompasses multi-
modal regions, became the dominant leftward 
asymmetrical cluster. Its heteromodality in lat-
er life surpassed the early life heteromodality 
of Cluster 1. Meanwhile, Cluster 1 continued its 
decline towards a symmetrical organization of 
information integration.

Multimodal Brain-Cognition Association 
Change Analysis. We conducted a PCA on 
the brain set variables (gradient and normal-
ized volume asymmetries) from the first clus-
ter (Figure 4-A). This analysis indicated that 
the 28 variables could be condensed into four 
principal components, accounting for 49.79% 
of the total variance in the brain set. The first 
component alone explained 26.75% of the to-
tal variance and opposed the volume asymme-
tries of the dorsal language pathway regions to 
those of the ventral pathway regions (Figure 
5-A, left column). Positive loadings then indi-
cated a leftward asymmetry of the dorsal path-
way, while negative ones indicated a rightward 
asymmetry of the ventral pathway. The second 
component alone explained 12.15% of the to-
tal variance. It opposed the volume asymme-
tries of the dorsal language pathway regions to 
those of the ventral pathway regions and the 
asymmetries of the first gradient (Figure 5-A, 
left column). Positive loadings then indicated a 
rightward asymmetry of the volume of the dor-

sal pathway regions and a leftward asymmetry 
of the ventral pathway as well as the gradient 
values. At the same time, negative loadings in-
dicated the opposite pattern.

The multimodal canonical correlation anal-
ysis on the first cluster, which incorporated 
four brain metrics (principal components) and 
four behavioral metrics, revealed a single sig-
nificant canonical correlation linking anatomy, 
function, and behavior (p

FWER
<1×10-3). This brain 

mode accounted for 37.58% of the variance 
and primarily reflected the first and second 
components of the brain data set (Figure 5-B, 
left column). Positive values of the brain mode 
were associated with positive loading values 
for both the first and second principal compo-
nents. Specifically, these positive values in the 
brain mode indicated a leftward asymmetry for 
all regions regarding gradient and normalized 
volume in the dorsal language pathway re-
gions. Conversely, they represented a rightward 
asymmetry in the ventral pathway regions. The 
behavioral mode accounted for 39.47% of the 
variance and primarily reflected the naming 
and tip of the tongue tests (Figure 5-C, left col-
umn). Positive values of the behavioral mode 
were associated with better performances in 
language production. The correlation between 
the brain and behavioral modes was 0.28, as 
depicted in Figure 6 (left panel). Improved lan-
guage production abilities were linked to a left-
ward asymmetry of the gradient value within 
the Language-and-Memory Network regions 
of the first cluster, a leftward asymmetry of 
the normalized volume for the dorsal language 
pathway regions, and a rightward asymmetry 
for the ventral language pathway regions.

The principal components analysis on the 
brain set variables (22 variables, gradient, and 
normalized volume asymmetries) for the sec-
ond cluster (Figure 4-A) resulted in six prin-
cipal components. Together, these principal 
components explained 59.35% of the total vari-
ance in the brain set. The first component alone 
explained 20.48% of the total variance and op-
posed the volume asymmetries of the mesial 
regions to those of the lateral side (Figure 5-A, 
right column). Positive loadings then indicated 
a rightward asymmetry of the normalized vol-
ume of the mesial regions and a leftward asym-
metry of the lateral regions. Negative loadings 
indicated the opposite pattern. The second 
component alone explained 12.86% of the to-
tal variance and captured the asymmetry of 
the gradient, specifically, the asymmetry of the 
temporo-mesial memory-related regions (Fig-
ure 5-A, right column). Positive loadings indi-
cated a rightward asymmetry of the gradient, 
while negative loadings indicated a leftward 
asymmetry.

The multimodal canonical correlation anal-
ysis on the second cluster, which incorporat-
ed six brain metrics (principal components) 
and four behavioral metrics, revealed a single
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Figure 5 | Brain-behavior association using canonical correlation analysis. (A) Biplot of the principal 
component analysis of the regions belonging to Cluster 1 (n=14, on the left) and Cluster 2 (n=11, on the 
right). Each region was characterized by its asymmetry values of the 1st gradient and normalized volume. 
The two principal components of Cluster 1 explained 38.89% of the total variance (Principal Component 
1=26.74%, Principal Component 2=12.15%). The two principal components of Cluster 2 explained 33.34% 
of the total variance (Principal Component 1=20.47%, Principal Component 2=12.87%). For Cluster 1, the 
1st principal component opposed the volume asymmetries of the dorsal language pathway regions to the 
ventral semantic pathway regions. The 2sd component opposed the symmetries of the 1st gradient to the 
symmetries of the normalized volume. For Cluster 2, the 1st principal component opposed the asymmetry 
of mesial regions versus the volume asymmetry of lateral regions. The 2sd component coded for the sym-
metry of the 1st gradient, specifically, the symmetry of the temporo-mesial memory-related regions: a larger 
value meant a larger symmetry. (B-C) Overview of the canonical correlation analysis first modes. Only data 
from participants with all scores on the selected language indicators were included in the analysis (n=554;
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significant canonical correlation linking anato-
my, function, and behavior (p

FWER
<1×10-3). This 

brain mode accounted for 23.61% of the vari-
ance and opposed the second component of 
the brain data set to the first one (Figure 5-B, 
right column). Positive values of the brain 
mode were associated with positive loading 
values for the second component and nega-
tive values for the first component. A positive 
brain mode value meant a leftward asymmetry 
of the normalized volume of the mesial regions, 
a rightward asymmetry of the lateral regions, 
and a rightward asymmetry of the gradient. 
The behavioral mode accounted for 39.04% of 
the variance and, similarly to Cluster 1, primar-
ily reflected the naming and tip of the tongue 
tests (Figure 5-C, right column). The correla-
tion between the brain and behavioral modes 
was 0.28, as depicted in Figure 6 (right panel). 
Improved language production abilities were 
linked to a rightward asymmetry of the gra-
dient value within the temporo-mesial memo-
ry-related regions, a leftward asymmetry of the 
normalized volume of the mesial regions, and 
a rightward asymmetry of the normalized vol-
ume of the lateral regions.

Discussion
The study’s primary objective was to investi-
gate the dynamics of functional asymmetry 
across the adult lifespan within an extended 
language network (Language-and-Memory 

Network). In young adults, our observations re-
vealed a greater degree of heteromodality (G1) 
in the left hemisphere (LH) compared to the 
right hemisphere (RH) in the fronto-parietal re-
gions forming the core language network. The 
limbic “memory” regions of the extended lan-
guage network showed greater heteromodality 
in the RH (Figures 3 and 4B). These observa-
tions align with a recent investigation explor-
ing brain-wide hemispheric preferences in the 
G1 principal gradient in young adults. General-
ly, associative networks exhibited higher levels 
of heteromodality in LH areas than their RH 
counterparts, except for the limbic temporal 
network, where the degree of heteromodality 
was higher in RH regions (Gonzalez Alam et 
al., 2022). These observations shed light on the 
di�erences in hemispheric asymmetry within 
specific networks.

To explore the dynamics of functional later-
alization across the adult lifespan, we modeled 
the longitudinal trajectories of G1 hemispheric 
asymmetry changes from cross-sectional data 
with a method previously used to structural data 
in a comparable context (Roe et al., 2021b). It re-
vealed that a substantial portion of the expand-
ed language network experiences changes in 
how the brain hemispheres handle multimodal 
information as individuals age. Multiple distinct 
trajectories from the initial state have been ob-
served (Figure 3), corresponding to two main 
patterns of change (Figure 4). Cluster 1 de-
picts regions that shift from an LH preference

← CamCAN cohort only). Sex, age, and general cognitive status (MMSE) were entered as covariates. (B) 
First mode for brain variables. For Cluster 1, the brain mode explained 38% of the variance. It is saturated by 
the first two components of the principal component analysis, mixing the multimodal biomarkers included 
in the analysis (1st gradient and normalized volume). For Cluster 2, the brain mode explained 24% of the 
variance. It is saturated by the first two components of the principal component analysis. (C) First mode of 
behavioral variables. For Cluster 1 and 2, the behavioral mode explained 39% of the variance and was satu-
rated by the language production tasks involving lexical access and retrieval: naming and tip of the tongue. 
Results for Cluster 1 are framed in light blue. Results for Cluster 2 are framed in orange.

Figure 6 | Relationship between changes in inter-hemispheric balances and their behavioral implications 
in a multimodal perspective. The first brain and behavioral modes were significantly correlated for both 
clusters: r=0.28, p<1.10-3. The significance of correlations between modes was assessed using permutation 
testing (n=1000). Color code for age.
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in youth to a slight RH preference in old age. 
With healthy aging, homotopic regions of Clus-
ter 1 become more heteromodal in the RH. The 
core language regions predominantly followed 
this trajectory (Figure 4C). On the other hand, 
Cluster 2 comprises regions that shift from an 
RH preference in youth to an LH preference 
with aging. As individuals age, there is an in-
crease in the heteromodality of these regions 
within the LH. This trend was mainly observed 
in the Language-and-Memory Network regions 
that complement the core language network 
(Figure 4C).

We found that this dual mechanism of 
the Language-and-Memory Network neuro-
functional imbalance in integrating complex, 
high-level information begins after age 50 and 
intensifies over time (Figure 4B). These findings 
are consistent with previous functional studies 
showing significant transitions in middle age 
(Hennessee et al., 2022). They also align with 
the onset of structural changes observed in 
healthy older adults regarding cortical thick-
ness asymmetry, showing an accelerated loss 
of asymmetry after midlife (Fjell et al., 2010; 
Roe et al., 2021b; Vidal-Piñeiro et al., 2019). 
The reduction in structural asymmetry is nota-
bly significant in higher-order cortex and het-
eromodal regions, which may account for the 
extensive reorganization observed in the func-
tional organization of the Language-and-Mem-
ory Network regions. None of these changes 
in asymmetry contributed to maintaining lan-
guage performance with age and were, instead, 
linked to poorer performance. For Cluster 1 
and Cluster 2, the pattern observed in young 
adults was related to more e�cient language 
production (Figure 6), underlining the impor-
tance of specialization at all ages for e�ective 
interhemispheric cooperation. Consequently, 
the changes do not support the hypothesis of 
a compensatory phenomenon (see (Cabeza et 
al., 2018)), preserving language performance 
with age. On the contrary, it aligns with the de-
di�erentiation theory of aging (Li et al., 2009; 
Morcom & Friston, 2012; Morcom & Henson, 
2018; Reuter-Lorenz & Lustig, 2005) and the 
brain maintenance theory (Nyberg, 2017; Ny-
berg et al., 2012), suggesting that maintaining a 
(functional) youthful brain state is an essential 
factor in cognitive preservation as individuals 
age. These findings further underscore Roe and 
colleagues’ insights in their recent investigation 
of age-related shifts in functional asymmetry 
during memory retrieval (Roe et al., 2020).

The lateralization of individual functions, 
such as language, may be closely associated 
with the lateralization of many seemingly in-
dependent processes (Labache et al., 2023). 
Several studies suggest that the LH specializa-
tion for language may be linked to the concept 
of “complementary lateralization.” This stands 
in contrast to the preferential specialization 
of the contralateral hemisphere (the RH) for 

other high-level cognitive functions like visu-
ospatial processing (Badzakova-Trajkov et al., 
2010; Cai et al., 2013; Cochet, 2016; Serrien & 
O’Regan, 2022; Zago et al., 2016). It has also 
been reported that the absence of functional 
lateralization for language production reduc-
es performance in language tasks and other 
non-verbal, high-level functions (Mellet et al., 
2014). The attentional and executive control 
networks (Yeo et al., 2011) play a role in main-
taining these specializations, with LH control 
regions (Control-B) closer to the Default Mode 
Network (DMN-B) and RH attentional regions 
(DAN-B) nearer to the sensory-motor end of 
the gradient (Gonzalez Alam et al., 2022). Im-
portantly, control networks undergo extensive 
reconfigurations during the aging process (e.g., 
see (Baciu et al., 2021; Betzel et al., 2014; G. E. 
Doucet et al., 2021; He et al., 2013; Mowinckel et 
al., 2012; Roger, Rodrigues De Almeida, et al., 
2022)). These changes a�ect the substantial 
alterations observed in language’s function-
al asymmetries and other cognitive functions. 
Although beyond the scope of this research, 
studying how changes in neurofunctional equi-
libriums for di�erent cognitive functions occur 
with age would o�er invaluable insights into 
mutual network interactions.

The human brain typically exhibits marked 
structural left-right disparities, particularly pro-
nounced in perisylvian regions associated with 
language. Although genetics contribute to 
these asymmetries, their impact appears to be 
less substantial than previously assumed, with 
heritability estimated at less than 30% in adults 
(Kong et al., 2018; Sha et al., 2021), suggesting 
that environmental factors likely play a substan-
tial role. Current research points to two primary 
developmental trajectories: the first is primari-
ly influenced by genetics and lays the ground-
work for brain lateralization, while the second, 
built upon this genetic foundation, entails pro-
longed development in brain regions respon-
sible for complex functions, rendering them 
more susceptible to the influence of environ-
mental factors (Labache et al., 2023). The ag-
ing process, particularly a�ecting heteromodal 
associative brain regions in middle age, may in-
troduce a phase of heightened vulnerability to 
environmental and life experience factors from 
this period onward. Pinpointing the specific 
environmental factors and midlife experiences 
that contribute to resilience or susceptibility in 
the face of changes in brain asymmetry holds 
the potential to enhance our understanding of 
the variability in neurocognitive aging. This may 
facilitate the development of personalized pre-
ventive measures and interventions for individ-
uals at risk of experiencing accelerated aging. 
Importantly, functional asymmetry is not sole-
ly dependent on cognitive aspects but is also 
strongly influenced by sensory inputs (Hugdahl 
& Westerhausen, 2016; Van der Haegen et al., 
2016). The decline of the peripheral nervous

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569978doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569978
http://creativecommons.org/licenses/by-nc-nd/4.0/


14

system plays a pivotal role in triggering signifi-
cant functional reconfigurations within the cen-
tral nervous system (see (Huang et al., 2023); 
(Schulte et al., 2020) for the consequences of 
age-related hearing loss on the brain function). 
Furthermore, hearing impairment in midlife is a 
substantial risk factor for dementia, as empha-
sized in the 2020 report by the Lancet Com-
mission on dementia prevention, intervention, 
and care (Livingston et al., 2020). By elucidat-
ing the intricate relationships between sensory 
inputs, neural adaptations, and cognitive aging, 
the investigation of bottom-up influences pres-
ents an intriguing yet relatively unexplored re-
search avenue.

Several methodological considerations and 
potential biases require discussion. Our study 
isolated the e�ects of age from gender through 
statistical control. However, gender-based dis-
parities in language-related functional connec-
tivity have been reported (Roger, Rodrigues 
De Almeida, et al., 2022), alongside variations 
in the asymmetry of hemispheric function-
al gradients (Liang et al., 2021). Hence, future 
studies must delve into gender-specific char-
acteristics of the extended language network. 
Furthermore, given that certain aspects of 
brain aging manifest disparities between males 
and females (e.g., (Goyal et al., 2019)), special 
consideration should be given to older adults 
since gender di�erences could be amplified. 
Moreover, our study predominantly included 
participants from WEIRD (Western, Educated, 
Industrialized, Rich, and Democratic) societies. 
Considering that most of the global population 
does not fit within this category (Henrich et al., 
2010), it would be beneficial to replicate these 
findings in more diverse populations, consider-
ing the importance of cultural diversity in re-
search. Resting-state functional MRI has gained 
popularity due to its strong association with 
task-based fMRI activations (Cole et al., 2014, 
2016) and ease of acquisition, rendering it a 
valuable proxy for capturing functional neuronal 
processes. Nevertheless, the strength of hemi-
spheric specialization for language depends 
on multiple factors, particularly the nature of 
the task (Bradshaw et al., 2017; Labache et al., 
2019). Hence, conducting an additional study 
encompassing a diverse array of language-re-
lated functional tasks is essential to validate the 
consistency of the trends observed in our rest-
ing-state functional data. Open fMRI databases 
dedicated to language, such as InLang (Roger, 
Rodrigues De Almeida, et al., 2022), could fa-
cilitate such investigations. However, the data-
bases available to date only sometimes include 
a wide age range, which could limit insights 
into older adults. Finally, longitudinal data are 
imperative for providing conclusive evidence 
regarding evolutionary trajectories throughout 
the lifespan and their cognitive implications. 
The STAC-r model (revised Sca�olding Theo-
ry of Aging and Cognition model) emphasizes 

the importance of examining cognitive chang-
es within individuals (Reuter-Lorenz & Park, 
2014). This approach helps distinguish between 
mechanisms that maintain brain integrity and 
compensatory processes. Both mechanisms 
are crucial for preserving cognition in older 
adults, as noted by Reuter-Lorenz and Park in 
2014. However, the current scarcity of exten-
sive longitudinal cohorts, spanning both older 
and younger adults, hinders the identification 
of features predictive of future brain function 
and cognitive preservation (G. E. Doucet et al., 
2022). It would also be important to extend 
the study to cohorts with mild cognitive im-
pairment (MCI) and related conditions, which 
is crucial for assessing the specificity of the ob-
served e�ects and discerning trends across dif-
ferent conditions.

Conclusion
Functional asymmetry in integrating high-level 
information optimization plays a crucial role in 
the functioning of neural processes involved in 
language. Examining these patterns over time 
revealed shifts in hemispheric predominances, 
emphasizing the dynamic nature of function-
al lateralization. Changes in asymmetries are 
linked to the language production challenges 
frequently observed in typical aging, challeng-
ing the idea of a compensatory function for the 
heightened engagement of the opposite hemi-
sphere in aging. Instead, our findings align with 
the brain maintenance theory, highlighting the 
importance of sustaining a youthful functional 
brain state for optimal cognitive performance 
as individuals age. This study expands upon 
previous research on interhemispheric reorga-
nization and opens avenues for a deeper un-
derstanding of the dynamic processes through 
which the brain and cognition adapt during ag-
ing.
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