

1 **ISWI catalyzes nucleosome sliding in condensed nucleosome arrays**

2 **Authors**

3 Petra Vizjak^{1,3}, Dieter Kamp², Nicola Hepp^{3,9,*}, Alessandro Scacchetti^{3,8,*}, Mariano Gonzalez Pisfil⁴,
4 Joseph Bartho², Mario Halic⁵, Peter B. Becker³, Michaela Smolle^{6,7}, Johannes Stigler^{2,#}, Felix Mueller-
5 Planitz^{1,#}

6 **Affiliations**

7 1 Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische
8 Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany

9 2 Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München,
10 Feodor-Lynen-Str 25, 81377 München, Germany

11 3 Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-
12 Maximilians-Universität München, Großhadernerstr. 9, 82152 Planegg-Martinsried, Germany

13 4 Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical
14 Center, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-
15 Martinsried, Germany

16 5 Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas
17 Place, Memphis, TN, 38105, USA

18 6 Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-
19 Maximilians-Universität München, Großhadernerstr. 9, 82152 Planegg-Martinsried, Germany

20 7 BioPhysics Core Facility, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-
21 Universität München, Großhadernerstr. 9, 82152 Planegg-Martinsried, Germany

22 8 Current address: Epigenetics Institute & Department of Cell and Developmental Biology,
23 University of Pennsylvania, Perelman School of Medicine, Philadelphia (PA), USA

24 9 Current address: Department of Clinical Genetics, Rigshospitalet, Copenhagen University

25 Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark

26 *,# equal contributions

27

28 Correspondence: felix.mueller-planitz@tu-dresden.de, stigler@genzentrum.lmu.de

29 **Summary:**

30 How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility
31 inside remains unexplored. We investigated these challenges using the *Drosophila* ISWI remodeling
32 ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding *in vitro*.
33 Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and
34 thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required
35 for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through
36 chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a
37 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one
38 before rebinding another in an ATP hydrolysis-dependent manner qualitatively agree with our data.
39 We speculate that 'monkey-bar' mechanisms could be shared with other chromatin factors and that
40 changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.

41

42

43 **Introduction**

44 Eukaryotes prevent non-specific, cation-induced aggregation of genomic DNA by wrapping their DNA
45 around histones, thereby forming nucleosomes (Burak et al., 2003; Post & Zimm, 1982). Nucleosomes
46 allow for regulated and reversible condensation of genomic DNA and have evolved as an important
47 medium for epigenetic gene regulation.

48 Nucleosomal DNA can fold into various higher order structures. In low ionic strength environments,
49 chromatin forms an extended structure referred to as the 10-nm fiber (Olins & Olins, 1974; Woodcock,
50 1973). Moderate ionic strength promotes folding into different but defined higher order structures,
51 collectively referred to as '30-nm fibers' (Finch & Klug, 1976). Cellular chromatin, however, appears to
52 assume variable, irregular structures (Ou et al., 2017). It may contain interdigitated 10-nm fibers
53 (Adhireksan et al., 2020; Maeshima et al., 2016) and small folded nodules of chromatin, including tri-
54 and tetranucleosomes (Hsieh et al., 2015; Ricci et al., 2015).

55 Recently, it was discovered that reconstituted chromatin can undergo phase separation (Gibson et al.,
56 2019; Strickfaden et al., 2020). Phase separation is a property of multivalent polymers incl. many
57 proteins and nucleic acids. They can demix from the solution into polymer-rich condensates and a
58 polymer-depleted solution. Biomolecular condensates harbor distinct chemical environments
59 compared to their surrounding solution. They could, for instance, be enriched or depleted for cellular
60 enzymes or metabolites, providing an additional regulatory layer of cellular processes (Y. Zhang et al.,
61 2021).

62 Concentrations can massively increase upon condensate formation. For example, sub-micromolar
63 concentrations of soluble nucleosomes form salt-induced condensates that contain ~0.34 mM
64 nucleosomes (Gibson et al., 2019). Such a high concentration rivals nucleosome concentrations
65 observed in highly condensed metaphase chromosomes *in vivo* (0.52 mM) (Hihara et al., 2012).

66 Most nuclear processes, including transcription and replication, are thought to be inhibited by the
67 presence of nucleosomes (Kornberg & Lorch, 2020). Intuitively, one would expect that folding of
68 chromatin into various higher-order structures and formation of chromatin condensates could pose
69 additional barriers for nuclear factors. For instance, access to specific DNA sequences may be
70 restricted if they are buried deep inside a folded structure, nucleosomal epitopes may become
71 unavailable, enzymes may be excluded from condensates, and even if they are not, diffusion through
72 dense nucleosome fibers may become slow and inefficient. Remarkably, many chromatin enzymes are
73 mobile in the nucleus (Kim et al., 2021). Since the high concentration of nucleosomes in the nucleus
74 well exceeds the dissociation constants (K_D) of most chromatin-associated enzymes, mechanisms must
75 exist that prevent quantitative binding of the enzymes to chromatin and allow sufficient diffusional
76 mobility.

77 We address these and other fundamental questions using *Drosophila melanogaster* ISWI as a
78 prototypical nucleosome remodeling enzyme. ISWI slides nucleosomes along DNA in an ATP
79 hydrolysis-dependent fashion (Längst et al., 1999; Hamiche et al., 1999). It can slide internal
80 nucleosomes in reconstituted nucleosome arrays (Klinker, Mueller-Planitz, et al., 2014; Ludwigsen et
81 al., 2018; Mueller-Planitz et al., 2013; Schram et al., 2015). However, if and how fiber folding and
82 condensation have an impact on nucleosome remodeling has not been systematically investigated,
83 despite the physiological importance (Boyer et al., 2000; Logie et al., 1999). A dense and folded
84 environment could conceivably obstruct remodeling activity, or possibly enhance it as observed for
85 other enzymes (Peeples & Rosen, 2021).

86 **Results**

87 **Intramolecular chromatin folding does not impede remodeling**

88 We reconstituted nucleosomes on DNA with 25 repeats of the Widom '601' nucleosome positioning
89 sequence (Fig. 1a). 13 of these repeats contain a unique restriction site, such as a BamHI site, which
90 becomes exposed during nucleosome remodeling (Ludwigsen et al., 2018; Mueller-Planitz et al.,
91 2013). By measuring accessibility with BamHI, we compared remodeling of folded and unfolded
92 chromatin arrays.

93 After *in vitro* nucleosome reconstitution, three independent quality controls confirmed saturation of
94 array DNA with nucleosomes (Fig. S1a). Analytical ultracentrifugation and negative stain electron
95 microscopy showed intramolecular folding of chromatin arrays but no substantial multimerization at
96 Mg²⁺ concentrations of 1.7 mM. (Fig. 1b, c). A lower Mg²⁺ concentration (0.2 mM) served as a loosely
97 folded control. Whereas single particles exhibited structural heterogeneity in both conditions, their
98 Feret's diameter decreased, and their circularity increased with increasing Mg²⁺ concentration,
99 consistent with Mg²⁺-induced intramolecular folding (Fig. 1d, e).

100 Induction of fiber folding by supplementation of Mg²⁺ to 1.7 mM reduced rate constants for
101 remodeling by 2.5±0.2 fold (Fig. 1f, g). Folding however is not the major cause of this drop in activity,
102 as the higher Mg²⁺ concentration also reduced the ATPase activity in presence of non-folding
103 mononucleosomes (Fig. S1b).

104 Internal nucleosomes in nucleosome fibers are more stable and less accessible than external, end-
105 positioned nucleosomes (Hagerman et al., 2009; Poirier et al., 2008, 2009; Schram et al., 2015). To
106 confirm that the effect we observe is not dependent on the linear nucleosome position in an array,
107 we cloned a second version of the 25-mer array, in which the positions of the restriction sites are
108 reversed (Fig. S1c). Supporting our earlier modeling results (Schram et al., 2015), ISWI remodeled
109 nucleosomes with identical rate constants regardless of their location in the array (compare Fig. S1d,

110 e with Fig. 1f, g). We conclude that Mg²⁺-induced intramolecular folding of the chromatin fiber does
111 not impede nucleosome remodeling by ISWI.

112 **ISWI slides nucleosomes inside chromatin condensates**

113 Mg²⁺ also promotes intermolecular interactions between array molecules at elevated array
114 concentrations (Maeshima et al., 2016). Spherical condensates formed upon addition of
115 physiologically relevant concentrations of Mg²⁺ (1 mM and 5 mM Mg²⁺; Fig. 2a) (Gibson et al., 2019;
116 Strickfaden et al., 2020). The physical nature of these condensates can range from liquid- to solid-like
117 depending on conditions and nucleosome array length (Gibson et al., 2019, 2023; Strickfaden et al.,
118 2020).

119 Given their high nucleosome concentrations, these condensates could potentially exclude large
120 protein complexes. To determine the size exclusion limit of the condensates, we used a series of
121 fluorophore-labeled dextrans of different molecular weights and determined their partition
122 coefficients (Fig. 2b). Dextrans were progressively excluded from chromatin with increasing molecular
123 mass. Nevertheless, even 500 kDa dextrans, which possess a Stokes radius (15.1 nm) (Goins et al.,
124 2008) equivalent to a 6 MDa protein complex, were able to enter the condensates. The data suggest
125 that the chromatin condensates are porous or pliable enough to accommodate large particles.

126 Our dextran results encouraged us to evaluate whether ISWI can also penetrate condensates. We
127 premixed GFP-labeled ISWI with Cy3-labeled chromatin arrays in the absence of nucleotides and
128 induced phase separation by addition of Mg²⁺. ISWI-GFP was strongly enriched in condensates (Fig.
129 2c). Control experiments proved that GFP or ISWI-GFP did not form condensates by themselves and
130 that GFP on its own does not enrich in chromatin condensates (Fig. 2c and Fig. S2a). Importantly, order
131 of addition experiments showed that ISWI-GFP could penetrate condensates even after their

132 formation with similar efficiency (Fig. 2c). ISWI reached a concentration of ~4 μ M in condensates (Fig.
133 S2b).

134 The intermolecular interactions between nucleosomes in condensates could conceivably prevent
135 ISWI-mediated sliding of nucleosomes. Using the restriction enzyme accessibility assay, we clearly
136 detected remodeling under condensate conditions (5 mM Mg²⁺; Fig. 2d and Fig. S2c). The observed
137 rate constant for sliding was reduced about eight-fold at the higher Mg²⁺ concentration. Condensation,
138 however, is not the major cause of this drop in the activity, as the higher Mg²⁺ concentration also
139 reduced the ATPase activity in presence of mononucleosomes to a similar extent (Fig. S1b).

140 To test if remodeling takes place inside of condensates, we developed an imaging-based nucleosome
141 sliding assay (Fig. 2e). We employed double-fluorophore labeled mononucleosomes that can report
142 on nucleosome sliding via changes in FRET (Yang & Narlikar, 2007). These FRET nucleosomes readily
143 partitioned into condensates (Fig. S2d). FRAP of individual condensates showed little exchange of the
144 FRET nucleosomes between the condensate and the surrounding dilute phase (Fig. S2e). Fluorescence
145 lifetime imaging (FLIM) then allowed us to image FRET levels in- and outside of condensates. The
146 donor lifetime of FRET nucleosomes was quenched compared to nucleosomes that were only labeled
147 with the donor fluorophore or whose acceptor fluorophore was bleached, confirming FRET (Fig. 2f and
148 Fig. S2f, g). Importantly, addition of ISWI and Mg-ATP to FRET nucleosomes, but not to donor-only
149 nucleosomes, increased the donor lifetime, indicative of nucleosome sliding (Fig. 2f and Fig. S2f). Time
150 course measurements after flowing in Mg-ATP to ISWI-containing condensates reveal a steady
151 increase in the fluorescence lifetime (Fig. 2g, Movie S1). No lifetime changes were recordable after
152 addition of the non-hydrolyzable ATP analog Mg-AMPPNP as a negative control (Movie S2). We
153 conclude that FLIM-FRET is a sensitive technology to visualize nucleosome sliding with spatial
154 resolution.

155 To quantify if and to what extent condensates pose a barrier for remodeling, we determined the initial
156 velocities for nucleosome sliding inside condensates ($0.77 \pm 0.06 \text{ s}^{-1}$) and compared it to remodeling in
157 solution ($2.15 \pm 0.15 \text{ s}^{-1}$). We obtained the latter by using mononucleosomes that do not phase separate
158 under these conditions at equivalent bulk concentrations ($1.2 \mu\text{M}$) under otherwise identical
159 conditions (Fig. 2h). Use of five times higher Mg-ATP concentrations gave similar results (Fig. S2h),
160 arguing that Mg-ATP was saturating both in solution and condensates. ISWI concentrations inside
161 condensates were substoichiometric, reaching $4.7 \pm 0.6 \mu\text{M}$ (Fig. S2b), which is well below the
162 nucleosome concentration in condensates ($225 \pm 59 \mu\text{M}$; see below). In summary, condensates slowed
163 down remodeling by 2.6-fold, suggesting that condensation poses no substantial barrier for
164 remodeling; instead it may fine tune the remodeling activity.

165 **ISWI requires active hydrolysis to diffuse through condensates**

166 Nucleosome concentrations inside of condensates reach remarkably high levels, $225 \pm 59 \mu\text{M}$,
167 equivalent to $\sim 45 \text{ g/l}$, as determined by holotomography (Fig. 3a), a label-free methodology that can
168 determine concentrations from the refractive index. Our measurement using 25-mer arrays agreed
169 well with previous estimates that employed 4- and 12-mer nucleosome arrays (195 to $550 \mu\text{M}$) using
170 electron tomography and fluorescence microscopy (Gibson et al., 2019; M. Zhang et al., 2022). A broad
171 range of conditions (array length and buffer conditions) thus leads to relatively static nucleosome
172 densities in condensates. Of note, *in vivo* nucleosome concentrations fall into the same regime (100
173 μM to $500 \mu\text{M}$) (Hihara et al., 2012; Weidemann et al., 2003), making *in vitro* condensates a model for
174 studying challenges encountered by chromatin enzymes in the crowded nucleus.

175 At such a high concentration, well above the dissociation constant of ISWI ($< 1 \mu\text{M}$; (Leonard & Narlikar,
176 2015)), the enzyme would be expected to be constantly bound to nucleosomes, presumably limiting

177 its mobility. Yet, we found above that condensates do not abrogate remodeling, suggesting a certain
178 mobility of the enzyme.

179 To probe ISWI's dynamics inside condensates, we performed FRAP of GFP-labeled ISWI. After
180 bleaching the central area of condensates, there was a poor recovery in the absence of nucleotides
181 and with saturating concentrations of Mg-ADP or Mg-AMPPNP (Fig. 3b and Fig. S3a), consistent with
182 the expectation that ISWI is highly immobile in condensates. Strikingly, however, Mg-ATP addition
183 rendered ISWI strongly dynamic, suggesting that active ATP hydrolysis is required not only for
184 productive remodeling, but also to ensure rapid diffusion of ISWI within condensates.

185 **ATP hydrolysis prevents ISWI-mediated hardening of condensates**

186 An intriguing model to explain the mobility of ISWI through condensates in the presence of ATP would
187 be that chromatin remodeling by ISWI makes the condensate more fluid. ISWI would essentially act
188 as a 'molecular stir bar' (Larson & Narlikar, 2018). However, fluorophore-labeled nucleosome arrays
189 were not mobile, as assessed by FRAP, even after prolonged incubation with ISWI and Mg-ATP (Fig.
190 S3b). We conclude that enhanced fluidity of chromatin upon remodeling is unlikely to explain efficient
191 diffusion of ISWI in presence of ATP.

192 ISWI has two known DNA binding domains, its ATPase domain and its HSS domain (Grüne et al., 2003),
193 allowing it to bind two nucleosomes (Bhardwaj et al., 2020; L. Li et al., 2023; Yamada et al., 2011)
194 potentially on neighboring DNA fibers. ISWI-mediated bridges between neighboring fibers would alter
195 mechanical properties of condensates. To test this prediction, we employed optical tweezers to fuse
196 condensates in a controlled manner (Fig. 3c) and recorded the fusion velocity (Fig. S3c), which depends
197 on the viscoelastic properties of condensates (Wang et al., 2018). The number of fusion events
198 decreased with the length of the nucleosome array, consistent with a recent report (Muzzopappa et
199 al., 2021), and with increased Mg²⁺ concentration (Fig. S3d). Higher ISWI concentrations also slowed

200 down the fusion velocity (Fig. S3e), which, at least partially, can be explained by an increase in viscosity
201 (Fig. S3f). For these reasons, the following experiments were performed with 13mer arrays in 1 mM
202 MgCl₂ and substoichiometric ISWI amounts, typically 1:5 ISWI to nucleosomes.

203 Compared to nucleotide-free ISWI, the fusion velocities drastically slowed down when we added Mg-
204 AMPPNP, Mg-ADP-BeF_x or Mg-ADP to ISWI-containing condensates (Fig. 3d, Movie S3). The presence
205 of ISWI's HSS domain was required for this effect (Fig. 3e). Fusion velocities also shrank when we
206 added Mg-ATP to an ATP hydrolysis-defective ISWI mutant (ISWI_{E257Q}; Fig. 3f). Strikingly, however, Mg-
207 ATP did not slow down fusion when we used wild-type ISWI instead (Fig. 3g, Movie S4). In control
208 experiments, we ruled out that nucleotides or excess Mg²⁺ that is added together with nucleotides
209 caused strong effects on fusion independent of ISWI (Fig. S3g).

210 We conclude that ISWI, when stuck in individual nucleotide states, stiffens condensates. The HSS
211 domain participates in this process, likely by forming bridges to a neighboring nucleosome. It is active
212 hydrolysis, in other words the active cycling through all nucleotide states, that prevents ISWI from
213 stably bridging nucleosomes.

214 **A theoretical framework to describe ISWI diffusion in condensed chromatin**

215 We next derived a model for ISWI-chromatin interactions in condensates. The two DNA binding
216 domains of ISWI, the ATPase and the HSS domain, are flexibly linked (Ludwigsen et al., 2013) and
217 undergo large conformational changes during the ATPase cycle (Harrer et al., 2018; Leonard &
218 Narlikar, 2015). These conformational changes might allow ISWI to make and break interactions with
219 neighboring nucleosomes during the ATPase cycle.

220 When ISWI binds two nucleosomes on different DNA fibers at once, nucleosome condensates should
221 stiffen, leading to slower condensate fusion. The drastically slower fusion velocities that we observed
222 when ISWI was bound to ADP, AMPPNP or ADP-BeF_x therefore indicate that ISWI can bridge

223 nucleosomes in these nucleotide states (Fig. 3d, e). Of note, bridge formation is nucleotide-state
224 dependent. Addition of nucleotide-free ISWI to condensates had only a modest impact on fusion
225 velocity, suggesting that nucleotide-free ISWI only forms unstable bridges. Yet, it is still stably bound
226 to chromatin as suggested by FRAP (Fig. S3a). Taken together, the results indicate that only one of
227 ISWI's domains interacts with chromatin in the nucleotide-free state.

228 ISWI FRAPs slowly in its AMPPNP, ADP-BeF_x and ADP-bound states, suggesting that ISWI interacts with
229 nucleosomes with at least one of its binding domains in all these states. Intriguingly, ISWI FRAPs
230 rapidly in the presence of ATP. It is thus the progression through ISWI's ATPase cycle that repeatedly
231 modulates the binding affinities of both binding domains. Hydrolysis-powered conformational
232 changes would also repeatedly break up nucleosome-nucleosome bridges, explaining why addition of
233 ATP prevents stiffening of condensates in condensate fusion experiments. We refer to this model as
234 a "monkey bar" mechanism (Rudolph et al., 2018) as it results in an alternating release of one or the
235 other binding site during the ATPase cycle (Fig. 4a).

236 ADP-bound and nucleotide-free ISWI display different behavior in fusion and FRAP experiments. ISWI
237 in both states FRAPs slowly, whereas ISWI in the ADP but not the nucleotide-free state stiffens
238 condensates. This difference suggests that the two interaction sites have individual nucleotide state-
239 dependent binding affinities for nucleosomes. In both ADP-bound and nucleotide-free ISWI, one
240 domain has a higher binding affinity than the other. The FRAP rate will be dominated by the higher
241 affinity interaction. The fusion speed, on the other hand, also relies on the strength of the weaker
242 affinity of the other domain. In the ADP-bound state, the weaker interaction domain therefore likely
243 possesses an affinity that is higher than in the nucleotide-free state.

244 We formalized these findings in terms of a simple kinetic model (Fig. S4a). In the ATP state, ISWI stably
245 binds with both domains to two nucleosomes. Upon hydrolysis, a conformational change weakens

246 one of the interactions and leads to the release of one nucleosome. Subsequent ADP release switches
247 the strengths of the two interactions, leading to rebinding of the first domain to a nucleosome, while
248 releasing the second nucleosome. This alternating binding and unbinding of the two domains would
249 enable ISWI to actively move through a dense mesh of nucleosomes and prevent ISWI from stably
250 crosslinking neighboring fibers.

251 To test if such a simple, idealized model could recapitulate our observation that ATP hydrolysis allows
252 fast FRAP and prevents condensate hardening in fusion experiments, we performed molecular
253 dynamics simulations using Rouse chains to model chromatin arrays and describing all other
254 interactions using Lennard-Jones potentials (Fig. S4b-d). Different nucleotide states of the remodeler
255 were modeled by changing the depth of the respective interaction potentials.

256 In ISWI FRAP simulations (Fig. 4b, Movie S5), we observed enhanced recovery of the remodeler in the
257 case of active ATP hydrolysis compared to remodeler that was stalled in any other nucleotide state
258 (Fig. 4c). Like experiments, simulations of fusion (Fig. 4d, Movie S6) show no significant difference
259 between ATP and nucleotide free conditions (Fig. 4e). The ADP and AMPPNP conditions are noticeably
260 slower and do not reach full circularity within the simulated time. This again hints at the formation of
261 ISWI-mediated stably bridged chromatin networks in the condensates that leads to a decrease in
262 condensate fluidity.

263 **Discussion**

264 One major result of our study is that the nucleosome remodeling enzyme ISWI can work largely
265 unimpeded in folded and condensed nucleosome environments. This conclusion likely extends to
266 other remodeling complexes given that their remodeling activities were minimally affected by histone
267 hyperacetylation or trypsinization (Boyer et al., 2000; Logie et al., 1999). Our finding implies that all
268 nucleosomes are similarly accessible for the enzyme in condensed arrays. As nucleosome sliding takes

269 place in 1 bp increments (Deindl et al., 2013), each bp movement induces a rotation of the nucleosome
270 by ~36° relative to other nucleosomes. Sliding inside condensed arrays, therefore, necessitates that
271 the chromatin structure is highly fluid and readily accommodates large, local structural changes
272 imposed by nucleosome sliding.

273 ISWI critically depends on interactions to the H4 N-terminal tail and the nucleosome acidic patch for
274 catalysis (Clapier et al., 2001; Dann et al., 2017; Gamarra et al., 2018). Incidentally, both these epitopes
275 are also suggested to be important for array folding (Schalch et al., 2005). The fact that catalysis is not
276 strongly impaired in condensed nucleosomes suggests that these epitopes are still dynamically
277 available for ISWI.

278 Nucleosome concentrations in condensates reach ~0.2 mM, a regime that nuclear enzymes also
279 encounter *in vivo* (Hihara et al., 2012; Weidemann et al., 2003). We show that despite this high
280 concentration, condensates remain viscoelastic materials and can accommodate dextrans with a
281 Stokes radius equivalent to a 6 MDa protein complexes. Thus, even large remodeling complexes and
282 other nuclear machines retain a chance to enter condensed chromatin, consistent with prior literature
283 (Beaudouin et al., 2006; Erdel et al., 2015; Verschure et al., 2003; M. Zhang et al., 2022).

284 ISWI strongly enriches in chromatin condensates, further illustrating condensate plasticity. We
285 anticipate that the same will be true for other chromatin factors simply because they possess high
286 affinities for nucleosomes. It is as if chromatin is the scaffold in condensates to which client proteins
287 like ISWI bind. This simple scaffold-client concept, often entertained in condensate biology (Ditlev et
288 al., 2018), does not capture the complexity of the reaction, however. Inevitably, the client will affect
289 chemical and physical properties of the scaffold. We found, for instance, that binding of ISWI hardens
290 chromatin condensates, probably by crosslinking fibers. Remodelers, therefore, could serve structural
291 purposes in addition to their well-known enzymatic activities (Korber & Becker, 2010).

292 The biophysical properties of nucleosome condensates varied with ambient conditions. Increasing
293 Mg^{2+} concentrations, for instance, drastically stiffened condensates. As free Mg^{2+} increases during
294 mitosis (Maeshima *et al.*, 2018), stiffening of chromatin could facilitate sister chromatid condensation
295 (Shimamoto *et al.*, 2017). Moreover, changes in the extracellular milieu could rapidly elicit cellular
296 responses through changes in viscoelastic properties of cellular components, including chromatin
297 (Kroschwald *et al.*, 2018; Munder *et al.*, 2016).

298 Biomolecular condensates are suggested to affect enzyme activities through their unique chemical
299 environments (Zhang *et al.*, 2021). Performing enzyme kinetics in non-homogeneous solution is a
300 challenge. Here, we have developed a FLIM-FRET nucleosome sliding assay to overcome such
301 limitations. Its spatial resolution allows us to compare nucleosome sliding in- and outside of
302 condensates. We predict that this kind of technology could become beneficial in the future for tracking
303 enzymatic processes in cellular condensates in real time.

304 Enzymatic reactions inside biological condensates were suggested to benefit from high concentration
305 of components (Zhang *et al.*, 2021). However, rate enhancements would be expected for enzymes
306 that have to work at subsaturating substrate concentrations. This is not the case for remodelers, which
307 face nucleosome concentrations in the nucleus far above their K_D , explaining why ISWI did not
308 experience rate enhancements upon condensate formation.

309 Regardless of the mode and extent of chromatin phase separation occurring *in vivo* (Erdel *et al.*, 2020;
310 Erdel & Rippe, 2018; Keizer *et al.*, 2022; Schneider *et al.*, 2022), we view nucleosome condensates as
311 useful model systems to study challenges enzymes face at the enormously high nucleosome
312 concentrations in the nucleus. For instance, multivalent recognition of the nucleosome paired with
313 the high nucleosome concentration could promote non-productive interactions (Mueller-Planitz *et al.*,
314 2013). Given that nucleosome concentrations generally far exceed K_D -values of chromatin enzymes,

315 almost all enzyme molecules would be expected to be bound to chromatin at equilibrium. Our FRAP
316 data support that notion, showing that ISWI becomes stuck in condensates if ATP cannot be turned
317 over. This finding also helps explain why ATPase-dead variants of ISWI are easier to ChIP (Gelbart et
318 al., 2005; Whitehouse et al., 2007) even though nucleotides only weakly modulate affinities (Leonard
319 & Narlikar, 2015). How, then can these enzymes be mobile enough to rapidly diffuse through
320 chromatin? ISWI could mobilize (“stir up”) chromatin by shuffling nucleosomes around, but we found
321 no evidence in support of this possibility.

322 Instead, we propose the existence of a novel functionality of ISWI’s ATPase activity: besides
323 nucleosome sliding, ATP hydrolysis may power conformational changes that pull the nucleosome
324 binding domains of ISWI away from nucleosomes, leading to dissociation and subsequent re-
325 association to other nucleosomes. Non-productive interactions could be dissolved in this fashion, and
326 we speculate that some of the frequent pauses that ISWI remodelers take during sliding could be
327 caused by unproductive binding (Blosser et al., 2009; Deindl et al., 2013). According to this mechanism,
328 ISWI effectively remains bound to nucleosomes at any time, yet active ATP hydrolysis fuels its diffusion
329 through chromatin. At the same time, hydrolysis prevents ISWI from crosslinking and thereby
330 hardening condensates. This mechanism may be shared with other fly and yeast remodelers, which
331 also became more dynamic in presence of ATP (Kim et al., 2021; Tilly et al., 2021). The mechanism
332 however may not extend to Snf2H and Snf2L transfected into human cells, which were mobile before
333 and after ATP depletion (Erdel et al., 2010). These remodelers may rely on a different mechanism,
334 perhaps due to heteromerization (Oppikofer et al., 2017).

335 Our findings add another facet to why loss of function mutations can induce dominant negative
336 phenotypes or be cancer-associated (Clapier et al., 2020). Half of SMARCA4 mutations in cancers lie in
337 the ATP cleft and these mutants show slower FRAP (Hodges et al., 2018). Expression of ATPase dead
338 BRM in *Drosophila* caused peripheral nervous system defects, homeotic transformations, and

339 decreased viability (Elfring et al., 1998). All phenotypes were dominant negative (Elfring et al., 1998;
340 Hodges et al., 2018) and might be caused in part by changes in chromatin dynamics, and not
341 exclusively by disruption of canonical remodeler functions. Changed dynamics of biomolecular
342 condensates may in turn disturb biological functions (Li et al., 2020; Shi et al., 2021). It is our hope that
343 our tools and concepts will help open new avenues for mechanistic dissections and development of
344 therapeutics.

345 **Methods**

346 **Cloning**

347 *Cloning of GST-sfGFP and 6xHis-TEV-ISWI-3C-STREP-sfGFP*

348 Full length super fold GFP (Pédelacq et al., 2006) sequence was amplified from the plasmid generously
349 provided from Ökten group at TU Munich (pFMP248). The PCR product and pET41b(+) were digested
350 with *Bgl*II and *Eco*RI, ligated and the resulting plasmid containing GST-sfGFP construct (pFMP241)
351 amplified in *E. coli* DH5 α . Correct sequence was confirmed by Sanger sequencing.

352 To make 6xHis-TEV-ISWI-3C-STREP-sfGFP construct, the PCR amplified sfGFP sequence was first
353 subcloned into vector pUC57 containing synthesized (GenScript) C-terminus for 3C-STREP-KKCKKK-
354 GFP11 (pFMP249). For that purpose, both insert and vector were digested with *Msp*II and *Hind*III. *Msp*II
355 cuts inside of GFP11 (extreme C-terminal sequence of sfGFP) and leaves six residues. The obtained
356 plasmid was then digested with *Xba*I and *Hind*III and ligated into pFMP210 digested with the same
357 enzymes, and pFMP244 was produced and amplified in *E. coli* DH5 α . Correct sequence was confirmed
358 by Sanger sequencing.

359 **Protein expression and purification**

360 *GFP expression and purification*

361 Plasmid containing GST-GFP (pFMP248) was transformed into *E.coli* BL21 (DE3) and incubated on
362 selective plate at 37 °C overnight. A single colony was inoculated into 15 mL LB media supplemented
363 with ampicillin and grown overnight at 37 °C. The next morning the culture was diluted to OD=0.05,
364 grown at 37 °C until OD=0.6 and induced with 0.2 mM IPTG. Protein was expressed overnight at 20 °C
365 with shaking. The bacterial cultures were harvested (rotor SS34, 14000 rpm, 10 min) and pellet was
366 stored at -80 °C. Pellet from 485 mL expression was resuspended in 20 mL of GST binding buffer (25
367 mM Tris-HCl pH=7.5, 150 mM NaCl, 1 mM EDTA, 0.5 mM DTT, 20 mM imidazole, 1 mM PMSF, 30 µL
368 of each leupeptin, pepstatin, aprotinin and one tablet complete EDTA-free protease inhibitor cocktail
369 (Roche)). Cells were disrupted in French press (3x 1500 PSI) and sonication (12x10 s on, 20 s off,
370 amplitude 22%). The suspension was centrifuged (SS34 rotor, 19000 rpm, 30 min, 4 °C) and to the
371 supernatant 1 mL of prewashed GST-beads was added (50% slurry). The suspension was incubated for
372 90 min at 4 °C with gentle mixing. The beads were removed with centrifugation (1000 rpm, 1 min, 4
373 °C) and washed five times with 10 mL binding buffer. Finally, beads were resuspended in 1.5 mL elution
374 buffer (50 mM Tris-HCl pH=8.0, 10 mM reduced glutathione, 5% glycerol) and incubated on rotating
375 wheel for 30 min at 4 °C. The beads were removed by centrifugation and supernatant aliquoted, frozen
376 in liquid nitrogen and stored at -80 °C.

377 *Expression and purification of ISWI, ISWI-GFP, ISWI_{ΔHSS} and ISWI E257Q*

378 Corresponding plasmids containing *D. melanogaster* ISWI (pFMP210 for 6xHis-TEV-ISWI, pFMP244 for
379 6xHis-TEV-ISWI-3C-STREP- sfGFP, pFMP114 for 6xHis-TEV-ISWI26–648 (*ISWI_{ΔHSS}*), pFMP110 for 6xHis-
380 TEV-ISWI E257Q) were freshly transformed into BL21 Star *E. coli* and plates were incubated at 37 °C
381 overnight. The bacterial lawn from one plate was harvested and used to inoculate two l of LB media.
382 Cultures were grown (37 °C, 130 rpm) until OD 0.5-0.6 when they were induced with 1 mM IPTG. The
383 expression went overnight at 18 °C with shaking. The bacterial cultures were harvested (6000xg, 10
384 min, 4 °C). Pellets were gently rinsed with cold water and stored at -80 °C. Except for *ISWI_{ΔHSS}*, whose

385 purification is described in previous publications (Harrer et al., 2018; Mueller-Planitz et al., 2013), all
386 ISWI proteins were purified as follows. Cells were thawed in a palm of a hand with occasional vortexing
387 and resuspended in HisA buffer (50 mM Tris-HCl pH=7.4, 300 mM NaCl, 0.5 mM DTT) supplemented
388 with 20 mM imidazole (pH=7.4), 1 tablet complete-EDTA free protease inhibitors (Roche), as well as
389 leupeptin (1 mg/L), pepstatin (0.7 mg/L) and aprotinin (1 mg/L). Benzonase (Merck Millipore
390 1016540001 100000; 5 µl per liter of culture) and lysozyme (tip of a spatula) were added and
391 suspension was sonicated on ice (Branson sonifier, 6x10 seconds on, 10 seconds off, amplitude 25%).
392 The homogenized bacteria were then cracked with six runs on Microfluidizer LM10 at 1200 bar.
393 Lysates were centrifuged (19000 rpm, JA25.50 rotor, 4 °C, 30 min), supernatants filtered through 0.45
394 µm syringe filter and loaded onto His Trap (5 mL, GE Healthcare) equilibrated with 5% HisB buffer
395 (100% HisB; 50 mM Tris-HCl pH=7.4, 300 mM NaCl, 400 mM imidazole). The column was washed with
396 10 column volumes (CV) 5% HisB, then with 6 CV 10% HisB and 1 CV 20% HisB. ISWI was then eluted
397 with 20-100% HisB gradient over 10 CV. ISWI containing fractions were pooled, TEV protease added
398 (0.1 mg for every 8 mg of ISWI) and the mixture was dialyzed (Spectra/Por dialysis membrane, cutoff
399 12000-14000 kDa) overnight against dialysis buffer (15 mM Tris-HCl pH = 7.4, 150 mM NaCl, 1 mM
400 DTT). To remove His-tagged TEV protease, cleaved-off 6xHis-tag and uncleaved 6xHis-TEV-ISWI, a
401 second nickel-affinity chromatography was performed (His Trap, 5 mL, GE Healthcare; equilibrated in
402 10% HisB buffer). Sample was loaded and unbound protein further washed out with 10% HisB. The
403 flowthrough was pooled and its conductivity reduced by slow dilution with two volumes of 2% MonoS
404 B buffer (100% MonoS B =15 mM Tris-HCl pH=7.4, 2 M NaCl, 1 mM DTT), which was diluted with
405 MonoS A (15 mM Tris-HCl, 1 mM DTT) and filtered through 0.2 µm syringe filter. A MonoS column
406 (5/50 GL GE Healthcare 1 mL) was equilibrated with 2% MonoS B. After loading, the protein was eluted
407 with 2-30% MonoS B (10 CV) and 30-100% MonoS B (4 CV). Fractions containing ISWI were pooled
408 together, concentrated and loaded onto the HiLoad Superdex200 (GE Healthcare, 120 mL) exclusion

409 column equilibrated with GF buffer (50 mM Hepes KOH pH=7,6, 0.2 mM EDTA pH=8, 200 mM KOAc,
410 10 mM DTT). ISWI-containing fractions were pooled and protein was concentrated to ~5 mg/mL.
411 Molar concentration was determined by using calculated extinction coefficient (Expasy Protparam
412 tool). Proteins were aliquoted, frozen in liquid nitrogen and stored at -80 °C.

413 *Expression and purification of histones*

414 Codon optimized *D. melanogaster* histones were expressed and purified as previously described
415 (Klinker, Haas, et al., 2014). Corresponding plasmids (pFMP128 for H2A, pFMP129 for H2B, pFMP186
416 for H3, pFMP187 for H4, pFMP269 for H2AK119C, pFMP270 for H3C111A, pFMP268 for H4T1C) were
417 freshly transformed into BL21 Star *E. coli* and incubated at 37 °C overnight. Bacterial lawns from one
418 plate were then used to inoculate two liters of LB media. Cultures were grown (37 °C, 130 rpm) until
419 OD reached 0.5-0.6 when they were induced with 1 mM IPTG. The expression went for three hours at
420 37 °C with shaking. The bacterial cultures were spun down (6000xg, 10 min, 4 °C). Pellets were gently
421 resuspended with cold water, transferred to a 15 ml Falcon tube. Samples were centrifuged and the
422 pellets stored at -80 °C. Cells were thawed in a palm of a hand with occasional vortexing and
423 resuspended in SA buffer (40 mM NaOAc pH=5.2, 1 mM EDTA pH=8, 10 mM lysine) supplemented
424 with 6 M urea, 200 mM NaCl, 1 mg/mL aprotinin, 1 mg/mL leupeptin, 1 mg/mL pepstatin, 1 mM PMSF
425 and 5 mM β-mercaptoethanol. Benzonase (Merck Millipore 1016540001 100000; 5 µl per liter of
426 culture) and lysozyme (tip of a spatula) were added and suspension was sonicated on ice (Branson
427 sonifier, 15 seconds on, 30 seconds off, amplitude 30%, effective sonication time 20 minutes). The
428 homogenized bacteria were then cracked with six runs on Microfluidizer LM10 with 1200 bar. Lysates
429 were centrifuged (19000 rpm, JA25.50 rotor, 4 °C, 30 min), supernatant filtered through 0.45 µm
430 syringe filter and loaded onto a HiTrap Q HP column (5 ml, GE Healthcare) that was stacked on top of
431 a SP column (5 ml, GE Healthcare) equilibrated with 20% buffer B (buffer A: 40 mM NaOAc pH=5.2, 1
432 mM EDTA pH=8, 10 mM lysine, 7.5 M urea, 5 mM DTT; buffer B: 40 mM NaOAc pH=5.2, 1 mM EDTA

433 pH=8, 10 mM lysine, 7.5 M urea, 5 mM DTT, 1000 mM NaCl). Samples were applied to the stacked
434 columns. The columns were washed with 20% buffer B (1 CV). The Q column was removed and SP
435 column further washed with 25% buffer B (3 CV) and 30% buffer B (3 CV). Histone was eluted with 30-
436 40% buffer B gradient (5 CV), 40-80% buffer B gradient (7 CV), 100% buffer B (3 CV). Pooled fractions
437 were dialyzed (SpectraPor MWCO 3,500 kDa) three times against 5 L of miliQ water. Purity was
438 analyzed on SDS-PAGE and concentration determined from A280 absorption. Histones were aliquoted
439 (1 mg per aliquot), flash frozen in liquid nitrogen and stored at -80 °C or -70 °C. Histones were
440 lyophilized before use. Lyophilized histones were stored at -20 °C.

441 *Assembly and purification of octamers*

442 Lyophilized histone aliquots were dissolved in an unfolding buffer (20 mM Tris-HCl, 7 mM
443 guanidinium-HCl, 20 mM DTT) to 4 mg/ml for 10 minutes in a thermoblock (24 °C, 600 rpm). Solutions
444 were spun down in table top centrifuge (10 minutes, full speed, 4 °C), and supernatants transferred
445 to fresh tubes and kept on ice until dialysis. Histone concentrations were remeasured in unfolding
446 buffer by measuring OD280 and corrected for purity as assessed from SDS-PAGE gel. Histones were
447 mixed in molar ratio H2A:H2B:H3:H4=1.4:1.4:1:1. The histone mixture was transferred into dialysis
448 membranes (Roth E658.1 MWCO: 4000-6000) which were soaked in water for one hour and rinsed
449 with refolding buffer (10 mM Tris-HCl pH=7.5, 2 M NaCl, 1 mM EDTA, 5 mM β-mercaptoethanol). The
450 mixture was then dialyzed three times against 1 L of refolding buffer, with the second dialysis step
451 being overnight. Lastly, octamers were purified by size exclusion chromatography (HiLoad 16/60
452 Superdex 200 prep grade), concentrated to 4 mg/mL (Amicon 15 mL 30 kDa), aliquoted, flash frozen
453 in liquid nitrogen and stored at -80 °C or -70 °C.

454 *Histone labeling (H2AK119C-atto565, H4T1C-cy3)*

455 Lyophilized histone aliquots were dissolved in a labeling buffer (7 M guanidinium-HCl, 20 mM Tris-HCl
456 pH=7.5, 5 mM EDTA, 0.7 mM TCEP) to final concentration 0.2 mM and incubated two hours to reduce
457 all cysteines. Cyanin-3-maleimide (Lumiprobe) was dissolved in DMSO to final concentration 100 mM
458 and added to solution in 5.7 fold excess. Atto-565 maleimide (Atto-tec) was dissolved in DMF to final
459 concentration 100 mM and added to solution in 13.2 fold excess. Histones were incubated with the
460 dye for 14 hours (3 hours for cy3 labeling) on rotating wheel at room temperature covered with
461 aluminum folium. To stop the labeling reaction, β -mercaptoethanol was added to final concentration
462 to 340 mM. For cy3 labeling, reaction was stopped by adding DTT to final concentration 20 mM.
463 Unreacted dye was partially removed by several rounds of ultrafiltration (15 mL 10K Amicon,
464 Millipore) and successive dilutions with labeling buffer (this step was omitted for Cy3 labeling). The
465 labeling efficiency was assessed with SDS-PAGE and fluorescence imaging.

466 **Synthesis of DNA for nucleosome arrays**

467 To distinguish remodeling of individual nucleosomes in a nucleosome array, we previously cloned a
468 DNA with unique restriction sites in 13 of 25 Widom-601 positioning sequences with a 197 bp repeat
469 length (pFMP233) (Ludwigsen et al., 2018) (Fig. S1c). Here we cloned a second variant of this DNA by
470 placing the 13 unique restriction sites on the other end of the canonical 601 sites, essentially inverting
471 the unique restriction sites with regards to their positioning inside of the array, yielding pFMP232 (Fig.
472 1a). To this end, thirteen 601 repeats were synthesized (GenScript) in which naturally occurring Aval
473 and Alul sites in the canonical 601 sequenced were replaced with unique restriction sites. A unique
474 Aval restriction site was added to the 3'-end (pFMP226). The 13-mer was extended to a 25-mer as
475 follows. pFMP226 was completely digested with XbaI, EcoRI and Asel in buffer II (NEB) and the insert
476 was subcloned into pUC18, which was fully digested with XbaI and EcoRI, yielding pFMP236. A plasmid
477 containing 25x197 bp canonical Widom-601 repeats (pFMP166) was subjected to partial Aval

478 digestion. The band corresponding to a 12mer repeat (2354 bp) was gel purified and cloned via ligation
479 into Aval digested pFMP236, yielding pFMP232 (Fig. 1a).

480 **Preparation of DNA for nucleosome arrays**

481 25mer and 13mer nucleosome arrays were prepared as published previously (Ludwigsen et al., 2018).
482 Briefly, plasmids carrying 25 (pFMP232, pFMP233) or 13 (pFMP226) consecutive copies of 197 bp with
483 modified 601 sequence were transformed into DH5 α *Escherichia coli* strain and purified from four
484 liters of culture by using plasmid DNA purification kit Nucleobond® PC 10000 (Macherey-Nagel). Three
485 mg of the plasmids were digested with EcoRI HF (0.25 U/ μ g DNA) and HincII (0.6 U/ μ g DNA) in
486 CutSmart Buffer at 37°C for 3 h to cut out the arrays from the plasmids. When the digest was complete,
487 restriction enzymes were heat-inactivated by incubation at 65°C for 20 min. Tubes were put on ice
488 before Asel was added (0.5 U/ μ g DNA) and then incubated at 37 °C for four h. After digest was
489 complete, DNA was purified via phenol/chloroform extraction and ethanol precipitated in presence of
490 NaOAc. Finally, it was resuspended in TE buffer (10 mM Tris-HCl pH=8, 1 mM EDTA pH=8) and stored
491 at -20 °C.

492 **Preparation of DNA for mononucleosomes**

493 DNA fragments containing the 601 sequences were amplified by large-scale PCR (Yang & Narlikar,
494 2007). Primers were obtained from Sigma. For primer sequences, see Table S1. The PCR was cleaned
495 up by precipitating the plasmid template by addition of $\frac{1}{2}$ of volume 30% PEG 8000 (w/w) in 30 mM
496 MgCl₂. The PCR product was then precipitated by adding the same volume of propan-2-ol. The pellet
497 was washed with 70% (v/v) cold ethanol, resuspended in TE buffer and stored at -20 °C.

498 **Chromatin assembly and purification**

499 *Assembly of 25- and 13mer arrays*

500 The optimal molar octamer:601 ratio was identified by performing small scale test assemblies, where
501 purified octamers were titrated to 7.5 μ g digested plasmid (Ludwigsen et al., 2018). Preparative
502 assembly contained 100-500 μ g digested plasmid (100 ng/ μ L of 601-array DNA, which corresponds to
503 150 or 200 ng/ μ L of total digested plasmid containing 25mer or 13mer, respectively). It also contained
504 corresponding amounts of purified octamers, 2 M NaCl, 10 mM Tris-HCl pH=7.6, 1 mM EDTA pH=8, 1
505 mM DTT. Reactions were transferred into dialysis membrane and underwent salt gradient dialysis: 3
506 L of low salt buffer (50 mM NaCl, 10 mM Tris-HCl pH=7.6, 1 mM EDTA pH=8, 1 mM DTT) was pumped
507 into 1 L of high salt buffer (2 M NaCl, 10 mM Tris-HCl pH=7.6, 1 mM EDTA pH=8, 1 mM DTT) containing
508 the dialysis bag over a period of 24 hours. To maintain the constant volume, buffer was simultaneously
509 pumped out with the same speed. Assemblies were then dialyzed against 1 L of low salt buffer before
510 they were precipitated by addition of equal volume of precipitation buffer (10 mM Tris-HCl pH 7.6, 7
511 mM or 10 mM MgCl₂ for 25mer or 13mer, respectively). Pellets were resuspended in TE buffer (10
512 mM Tris-HCl pH=7.6, 1 mM EDTA pH=8) and quality controls of chromatin array were performed as
513 described (Ludwigsen et al., 2018) (Fig. S1a). Chromatin concentrations were approximated by UV
514 assuming that 1 OD at 260 nm equals 50 ng/ μ L of DNA.

515 *Mononucleosomes*

516 The optimal molar octamer:DNA ratio was first identified by titrating octamers to DNA. Preparative
517 assemblies contained DNA (200 ng/ μ L), purified octamers, 2 M KCl, 20 mM Tris-HCl pH=7.7, 10 mM
518 DTT. Reactions were transferred into Slide-A-lyzer 7k Mini and underwent salt gradient dialysis in 200
519 mL of Mono2000 buffer (2 M KCl, 20 mM Tris-HCl pH=7.7, 0.1 mM EDTA pH=8, 1 mM DTT) to which 1
520 L of Mono0 buffer was pumped (20 mM Tris-HCl pH=7.7, 0.1 mM EDTA pH=8, 1 mM DTT) over 24
521 hours. To maintain constant volume, buffer was simultaneously pumped out with the same speed.
522 Assemblies were dialysed against Mono0 buffer and purified over 10-30% (w/w) glycerol gradient.
523 Concentrations were determined as above for arrays.

524 **Quality controls of assembled chromatin**

525 *Agarose gel of nucleosome arrays*

526 200 ng of before and after Mg-precipitation was analyzed by agarose gel electrophoresis (0.7%).

527 *NotI digestion of nucleosome array*

528 200 ng of arrays were digested in EX50 buffer (10 mM Hepes–KOH pH 7.6, 50 mM KCl, 1.5 mM MgCl₂,

529 0.5 mM EGTA) with Not1 (20 U/μL) in total volume of 15 μL for three hours at 26 °C. Digestion was

530 analyzed on 1.1% agarose.

531 *BsiWI digestion of nucleosome array*

532 250 ng of an arrays were digested in buffer (25 mM Hepes–KOH pH 7.6, 0.1 mM EDTA, 50 mM NaCl,

533 10% glycerol, 2 mM MgCl₂) with BsiWI (10 U/μL) for 1 hour at 26 °C in total volume of 20 μL. The

534 digestion was stopped with addition of SDS (final concentration 0.4%) and EDTA (final concentration

535 20 mM) followed by Proteinase K (1 mg/mL) treatment in total volume of 30 μL for three hours at 65

536 °C or overnight at 37 °C. DNA was ethanol precipitated and analyzed on 1% gel.

537 **Analytical ultracentrifugation**

538 Sedimentation velocity (SV) experiments of purified, reconstituted arrays were conducted at 20 °C in

539 a Beckman Coulter Optima XL-I analytical ultracentrifuge (Palo Alto, CA) using an An-50 Ti rotor.

540 Samples contained 21.6 ng/μL (6.9 nM) of 25mer and were dissolved in buffer (1 mM Tris-HCl pH 8.0,

541 0.01 mM EDTA pH 8.0, 0.01 mM DTT, 50 mM NaCl, 0.2 mM or 1.7 mM MgCl₂). Samples (360 μL) were

542 loaded into 12 mm charcoal-filled epon double sector centerpieces. A rotor speed of 22,000 rpm was

543 selected and absorbance optics scans at a wavelength of 258 nm were collected every second until

544 sedimentation was complete. Data were analyzed using the c(s) model in SEDFIT which directly models

545 the sedimentation boundary as a continuous distribution of discrete, non-interacting species (Schuck,

546 2000). Buffer density and viscosity as well as sample partial specific volumes were calculated using
547 UltraScan III (Demeler & Gorbet, 2016).

548 **Negative stain electron microscopy**

549 Quantifoil R2/1 Cu200 C2 grids were plasma cleaned for 20 s at 20 mA (GloCube, Quorum). 3.5 μ L of
550 sample containing 1-4 ng/ μ L (0.3-1.3 nM) of 25mer in buffer (3 mM Tris-HCl pH 8.0, 0.03 mM EDTA pH
551 8.0, 0.03 mM DTT, 50 mM NaCl, 0.2/1.7 MgCl₂) was applied, incubated 30 s, then hand blotted. Grids
552 were negative stained with 2x 3.5 μ L of 2% uranyl acetate, and hand blotted after 30 s for each stain
553 application. Images were collected using an FEI Morgagni 100 keV TEM with a SIS Megaview III 1k CCD,
554 at a nominal magnification of 56,000x.

555 *Analysis of electron micrographs*

556 Outlines of single particles were determined with a trainable Weka segmentation in ImageJ (Fiji).
557 Feret's diameter (the maximum distance between two parallel tangential lines), and circularity were
558 calculated for this outline using equation 1.

$$559 \text{circularity} = \frac{4\pi \cdot \text{area}}{\text{perimeter}^2} \quad (\text{Eq. 1})$$

560 **Restriction based nucleosome sliding assay**

561 Remodeling assays contained 4 nM 25mer arrays (100 nM total nucleosome concentration), 200 nM
562 ISWI, ATP regeneration system (6 mM phosphoenolpyruvate, 15.5 U/mL pyruvate kinase/lactate
563 dehydrogenase, 1 mM DTT), indicated magnesium concentration and 5 μ M Mg-ATP in remodeling
564 buffer RB (25 mM Hepes pH=7.6, 0.1 mM EDTA, 50 mM NaCl, 10% (v/v) glycerol, 0.2 mg/mL BSA).
565 Beforehand, chromatin arrays were dialyzed overnight into 10 mM Tris pH=7.6 at 4 °C. The reaction
566 was started with addition of ISWI and incubated at 26 °C. At different time points, 20 μ L aliquots were
567 taken and remodeling was quenched with apyrase (50 mU, 1 min, 26 °C). The Mg²⁺ concentration was

568 supplemented to a final concentration of 1.7 mM MgCl₂ for all samples. Samples were digested with
569 10 U/125 ng array of BamHI for 90 min at 26 °C. The digestion was stopped with addition of 20 mM
570 EDTA and 0.5% SDS, followed by Proteinase K (final concentration 0.5 mg/mL) treatment for three
571 hours at 37 °C. Samples were ethanol precipitated and separated on an agarose gel (0.7% to 0.9% in
572 0.5xTBE, 20 cm). Gels and running buffers contained 0.5 µg/mL EtBr. The bands were analyzed with
573 *AIDA Image Analyzer Software* and the percentage of Cut-DNA calculated. The dependence of
574 percentage of Cut-DNA versus time was fitted in R into to a single exponential function (Eq.2):

575
$$\%cut = \%cut_{max} * (1 - e^{-kobs * t})$$
 (Eq. 2)

576 **ATPase assay**

577 A NADH-oxidation coupled ATPase assay was performed as described (Mueller-Planitz et al., 2013).
578 Briefly, 30 µl reactions were assembled on a 384-well plate (Greiner, 781101), containing 100 nM ISWI
579 and 0.1/0.5/1.33 µM mononucleosomes (0N60) in remodeling buffer supplemented with ATP-
580 regeneration system and 0.6 mM NADH. Each sample was measured in technical triplicates. Reactions
581 were started by addition of 1 mM Mg-ATP and NADH absorbance was monitored at 340 nm in a plate
582 reader (Biotek PowerWave HT) at 26°C. Absorbance readings between ten and 20 minutes were fit to
583 a linear function.

584 **Phase separation of nucleosome arrays and imaging of formed chromatin condensates**

585 All phase separation experiments were performed in phase separation buffer (PSB) (25 mM Hepes-
586 KOH pH 7.6, 0.1 mM EDTA, 50 mM NaCl, 10% glycerol, 1 mM DTT, 0.2 g/L BSA) supplemented with 1
587 mM MgCl₂ (PSB1) or 5 mM MgCl₂ (PSB5). Phase separation was induced by mixing equal volumes of
588 nucleosome arrays diluted in TE buffer with 2x PSB. The formed chromatin condensates (4-10 µL of
589 sample) were incubated at room temperature for a minute and then loaded onto the imaging chamber
590 made out of double-sided tape. Double-sided tape was pierced with a hole puncher before and sample

591 was deposited into the hole. Cover slips were pretreated with 20 μ L of BSA solution (25 mM Hepes-
592 KOH pH 7.6, 0.1 mM EDTA, 50 mM NaCl, 10% glycerol, 1 mM DTT, 100 mg/mL BSA) for one minute.
593 The imaging chamber was sealed with nail polish, and unless stated otherwise, spun onto the cover
594 slip (1 min, 1000g, room temperature). Samples we then imaged on a widefield microscope (Zeiss
595 Axiovert).

596 *Analysis of phase diagram*

597 Condensates were detected by Trainable Weka segmentation in ImageJ, their surface was calculated
598 as a percentage of a total field of view surface and plotted in form of a heatmap in R.

599 **Confocal imaging**

600 Confocal and FLIM images were performed with a TCS SP8 X FALCON confocal head (Leica
601 Microsystems, Wetzlar, Germany) mounted on an inverted microscope (DMI8; Leica Microsystems).
602 For confocal imaging, a white light laser was used as excitation source (561 nm or 633 nm as
603 necessary). Single photons were collected through a 40 \times /1.3 NA oil-immersion objective and detected
604 on Hybrid Detectors (HyD) (Leica Microsystems) with a 570 – 610 nm, and 650 – 707 nm spectral
605 detection window as necessary. Sequential excitation was performed to avoid potential crosstalk
606 between the fluorophores.

607 **FITC-dextran partitioning in chromatin condensates**

608 Condensates were formed in a solution containing 100 nM 13mer (final concentration 90 nM), PSB2
609 supplemented with 2.5 mM DTT and incubated for five minutes at room temperature when the FITC-
610 dextrans (Sigma) diluted in water were added to final concentration of 0.1 mg/mL. Samples were
611 prepared as described above and imaged on Leica laser scanning confocal microscope after 1 h
612 incubation at room temperature.

613 Images were analyzed in ImageJ, where the dextran partitioning coefficient was determined for
614 individual condensates as a ratio of fluorescence inside the condensate and background fluorescence.
615 Molecular weights of dextrans were converted into Stokes radii with an online tool
616 (<https://www.fluidic.com/toolkit/hydrodynamic-radius-converter/>).

617 **ISWI colocalization experiment**

618 Chromatin and ISWI colocalization experiment was performed with 40 nM of unlabeled 25mer, 10 nM
619 of 25mer-Cy3 and 1.125 μ M ISWI-GFP/GFP-GST in PSB5. Condensates were induced by adding Mg^{2+}
620 (5 mM) either after or before addition of GFP-GST or ISWI-GFP.

621 A standard curve for mean Gray value dependence on ISWI-GFP concentration was obtained from
622 ISWI-GFP dilutions in PSB5. Different microscope settings were used to image lower and higher
623 dilutions. ISWI-GFP concentration was then determined inside condensates and in a surrounding
624 solution for 90 nM 13mer, 234 nM ISWI-GFP, 1 mM Mg-ATP, ATP-regeneration system, PSB1 and for
625 45 nM 25mer, 125 nM ON60 mononucleosomes, 625 nM ISWI-GFP, 1 mM Mg-ATP, ATP-regeneration
626 system, PSB5.

627 **Restriction enzyme accessibility nucleosome sliding assay adapted to chromatin condensates**

628 A *KpnI* site was used to compare nucleosome sliding in 25mer arrays fully dissolved or after
629 condensate separation. A remodeling assay contained 15 nM 25mer, 750 nM ISWI, ATP regeneration
630 system and 1 mM Mg-ATP in PSB0.2/5, in total reaction volume of 20 μ L. Reaction was started with 2
631 μ L of ISWI (Fig. 2d) or ATP (Fig. S2c) and incubated at 26 °C. Before the reaction was started, 6 μ L of
632 the reaction mixture were checked under the microscope for chromatin condensates. At different
633 time points, 1 μ L of reaction was quenched with 45 μ L of quenching solution (10 mU/ μ L apyrase in
634 apyrase reactions buffer, containing 1.8 μ L 2 mM MgCl₂ for low magnesium reactions), incubated at
635 26 °C for 15 min and after that kept on ice. After all time points were quenched, the reaction mixture

636 was again checked under the microscope for the presence of condensates. To each tube, 2.5 μ L of
637 *KpnI* was added and incubated at 26 °C for 30 min. Cleavage was detected as above for the restriction-
638 based nucleosome sliding assay, except that ImageJ was used for quantification.

639 **FLIM-FRET**

640 *Slide preparation*

641 For end point assays (Fig. 2f), 45 nM 25mer (1125 nM nucleosome concentration), 125 nM labeled
642 mononucleosomes, 625 nM ISWI, ATP regeneration system and 1 mM Mg-ATP were mixed in PSB5 in
643 total volume of 10 μ L. Samples were incubated at room temperature for 15 minutes, 6 μ L was
644 transferred on a slide (see above for slide preparation), spun as above, and imaged after four hours.
645 For time lapse assays (Fig. 2g), 40 μ L of the reaction mixture was loaded into the channel of imaging
646 chamber (Ibidi μ -Slide VI^{0.5} Glass Bottom 80607). The imaging chamber was spun down and mounted
647 on the microscope. Lifetimes were measured for two min before addition nucleotides. Then, 120 μ L
648 of 1 mM Mg-ATP or 1 mM Mg-AMPPNP solution, dissolved in identical buffer and supplemented with
649 ATP regeneration system, was filled into one of the reservoirs without removing the chamber from
650 the microscope or stopping the imaging. Nucleotide solution then replaced solution above the
651 condensates by gravity flow. Time lapses were recorded for two h. Finally, time lapses in Fig. 2h and
652 Fig. S2h contained 1125 nM unlabeled mononucleosomes or 45 nM 25mer, 125 nM FRET
653 mononucleosomes and ATP regeneration system in PSB5 in total volume of 18 μ L. Two μ L of 10x Mg-
654 ATP solution were added to a final concentration 1 or 5 mM, the mixture was loaded into a channel
655 of the imaging chamber and imaged two to four min after ATP addition.

656 *Image acquisition*

657 For FLIM, the same system described in “Confocal Imaging” was used. The white light laser delivered
658 80 MHz repetition rate at 561 nm. Arrival time of single photons was measured with the included

659 FALCON module. The FLIM acceptor photobleaching image kept the same parameters as the confocal
660 one with 12 frames accumulations instead. The other FLIM images and movies size was set to 256 ×
661 256 pixels. A 3-fold zoom factor was applied, giving a pixel size of 0.380 µm and an image size of 97 ×
662 97 µm. Pixels number was decreased to favor imaging speed in the time-lapses. Because the statistical
663 determination of the distribution of single photon arrival times requires a minimum number of
664 photons, 60 frames were acquired at 2.34 Hz for each TCSPC recording, for a total time of around 26
665 s. Corresponding to a scanning speed of 600 Hz. Time-lapses were recorded for at least 15 min with a
666 time point every 2 min.

667 *Analysis*

668 FLIM image analyses were performed in the LAS X software and with a home-made MatLab code
669 (available on request). Lifetime calculations were based on the Phasor approach (Digman et al., 2008).
670 Phase and modulation lifetimes were calculated using the Fourier sine and cosine transforms of the
671 lifetime images. The FRET efficiency (E_{FRET}) was calculated according to Eq. 3:

672
$$E_{FRET} = 1 - \frac{\tau_{DA}}{\tau_D} \quad (\text{Eq. 3})$$

673 where τ_{DA} is the lifetime of the donor-acceptor sample, and τ_D is the lifetime of the donor alone. Results
674 were expressed as mean \pm SD. Lifetimes images shown were done using the phasor approach to
675 maximize the number of photons while keeping a good image resolution. For the time lapse, the linear
676 part of lifetime changes was fitted to a linear function to obtain initial velocity.

677 **Holotomography**

678 Slide with 25mer condensates containing ISWI in PSB5 buffer was prepared as described above.
679 Refractive index images were collected on 3D Cell Explorer-fluo (Nanolive) equipped with dry objective
680 (60x magnification, 0.8 numerical aperture) and low power laser ($\lambda = 520$ nm, sample exposure 0.2

681 mW/mm₂). 96 slices were collected for a field depth of 30 μm. Software Steve v.1.6.3496 (Nanolive)
682 was used to collect, view and export images. Data were exported as tiff files (floating values of RI) and
683 further processed in ImageJ (Fiji). Eq. 4 was used to calculate chromatin mass concentration in
684 condensates, where n = refractive index, c = mass concentration and dn/dc is a refractive index
685 increment. We assumed c_{condensate} >> c_{solution} and dn/dc to be 0.185 mL/g.

686
$$n_{\text{condensate}} - n_{\text{solution}} = \frac{dn}{dc} * (c_{\text{condensate}} - c_{\text{solution}})$$
 (Eq. 4)

687 **ISWI-GFP and 25mer-Cy3 FRAP**

688 Four μL of 2.5x mixture of unlabeled chromatin, labeled chromatin and ISWI-GFP were mixed with six
689 μL 1.7xPSB5 containing 1.7xnucleotide. Final experimental conditions were: 76 nM 25mer, 1.75 nM
690 Cy3-25mer, 1 μM ISWI-GFP, 0.77 mM Mg-nucleotide, PSB5, ATP regeneration system (Fig. 3b); 15 nM
691 25mer-Cy3, 375 nM ISWI-GFP, PSB5, 1 mM Mg-ATP/no nucleotide (Fig. S3a); 100 nM 25mer, 4.5 nM
692 25mer-Cy3, 1.3 μM ISWI-GFP, PSB5, ATP regeneration system, 1 mM Mg-ATP (Fig. S3b). The sample
693 was incubated for 1 min and then loaded onto the slide, spun, sealed as above and imaged within 30
694 minutes of preparation.

695 Images were acquired at 26°C with a 63X glycerol immersion objective on a Leica Sp5 confocal
696 microscope equipped with Argon 488 nm and DPSS 561 nm lasers. For ISWI-GFP FRAP, 10 frames
697 (512x512 pixel) at 1.2 s intervals were taken as a pre-bleach reference, followed by a single 1.2 s
698 bleaching pulse targeted to a circular region within ≥ 3 droplets at once. After bleaching, 89 frames
699 were taken at 1.2 s intervals to measure fluorescence recovery. For H4-Cy3 FRAP, 10 frames (512x512
700 pixel) at 1.2 s intervals were taken as pre-bleach reference, followed by four 1.2 s bleaching pulses
701 targeted to a circular region within ≥ 3 droplets at once. After bleaching, 20 frames were taken at 30
702 s intervals to measure fluorescence recovery. For both cases, brightfield images were also collected in
703 parallel.

704 All images were processed using Fiji (Schindelin et al., 2012). First, drift was corrected using
705 MultiStackReg package (<https://bii.ee/multistackreg>) by calculating transformation matrices from
706 brightfield images (code available on request). Bleach, control (within droplet but outside the
707 bleached region) and background Region Of Interest (ROIs) were manually defined, and average
708 fluorescence intensity was measured. Intensities were normalized using the easyFRAP web tool
709 (Koulouras et al., 2018) to generate FRAP curves with full scale normalization. Normalized FRAP curves
710 from different droplets within the same experiment were considered as technical replicates. FRAP
711 curves from different experiments were averaged and reported together with standard error of the
712 mean (SEM). Plots were generated using R – version 4.2.1 (<https://www.R-project.org/>) (R Core Team,
713 2022).

714 **Controlled condensate fusion with optical tweezers**

715 Four μ L of chromatin ISWI mixture (225 nM 13mer, 585 nM ISWI, volume was made up with TE pH=7.6)
716 was gently mixed with 6 μ L 1.7xPSB1 containing 1.7x nucleotide. Final experimental conditions were:
717 90 nM 13mer, 234 nM ISWI, 1 mM Mg-nucleotide and ATP regeneration system in 1xPSB1. Data on
718 fusion velocity with different ISWI concentrations (Fig. S3e) were collected in 1xPSB1 supplemented
719 with 5 mM DTT. Of note, with an ATP-regeneration system present, slow fusion was detected with
720 AMPPNP and ADP-BeF_x, presumably due to ADP contamination present in nucleotide preparations.
721 Samples were incubated for 1 min and then loaded onto prepared slides. Optical tweezer experiments
722 were carried out on a dual-trap C-Trap (Lumicks, Amsterdam). For controlled fusion of condensates, a
723 single condensate was trapped in each of the optical traps at minimal laser power, resulting in trap
724 stiffnesses on the order of \sim 0.001 pN/nm. The traps were approached in 20 nm steps until the
725 condensates touched and fusion started which was determined by observation of a rapid drop in the
726 force signal (Fig. S3c). During fusion, the trap distance was then held constant. Fusion was further

727 monitored by brightfield microscopy. Events in which fusion was not complete after 30 s were counted
728 as non-fusing and assigned a fusion velocity of 0.

729 Analysis was performed using custom written code for the IGOR Pro 8 software (WaveMetrics, USA).
730 Fusion velocity was determined by fitting a generalized logistic function (Eq. 5) to the differential force
731 data along the x-axis. With $F(\text{start})$ and $F(\text{finish})$ the differential forces before fusion onset and after
732 finished fusion, respectively.

$$F(x) = F(\text{finish}) + \frac{F(\text{start}) - F(\text{finish})}{1 + e^{\left(\frac{t-t_0}{\tau}\right)^\gamma}} \quad (\text{Eq. 5})$$

734 The force was then normalized so that $F(\text{start}) = 0$ and $F(\text{finish}) = 1$. The fusion velocity was determined
735 as the slope of the tangent fitted to the normalized force data at the inflection point of the fitted
736 function. As the fusion velocity is inversely proportional to the size of the condensates, the obtained
737 velocity was normalized using the mean size of the two fused condensates which was obtained using
738 radial profiling of the brightfield videos pre-fusion. For comparison between conditions velocities were
739 transformed into the log10-fold change relative to the mean of the chromatin only condition.
740 Statistical significance of the velocity changes was determined by t-test. Data is visualized in boxplots
741 showing the median \pm quartiles, with whiskers indicating the 9th and 91st percentile.

742 **ThT fluorescence measurement**

743 Thioflavin T (ThT) fluorescence intensity was measured with increasing ISWI concentrations with 90
744 nM 13mer in modified PSB (supplemented with 2 mM MgCl₂, 2.5 mM DTT and 40 μ M ThT).

745 **Molecular dynamics simulations**

746 Molecular dynamics simulations were performed using custom written software in C++ and CUDA.
747 Chromatin arrays were described as Rouse chains with an equilibrium distance between nucleosomes
748 of 16 nm and a spring constant of 15 pN/nm. All nucleosome particles further interacted with each

749 other via truncated Lennard-Jones potentials. The remodeler was modeled as single particles that
750 repel each other and can form two independent interactions with nucleosomes (Fig. S4a). All particle
751 interactions were described as truncated Lennard-Jones potentials with an equilibrium distance of 16
752 nm and a cutoff distance of 48 nm. Between 32 and 48 nm the potential was simplified using a linear
753 approximation (Fig. S4c). The strength of the remodeler-nucleosome interactions was modulated
754 based on the remodeler's nucleotide state. The first interaction site switched from a remodeler off-
755 rate of 2.5×10^{-6} timestep $^{-1}$ in the nucleotide-free state to an off-rate of 1.25×10^{-7} timestep $^{-1}$ in the ATP
756 and ADP bound states. The second interaction site had a remodeler off-rate of 1.25×10^{-6} timestep $^{-1}$ in
757 the ADP bound state and 1.25×10^{-7} timestep $^{-1}$ in the ATP bound state and without bound nucleotide.
758 Condensates were formed from 169 Rouse chains of length 13 and 440 remodeler particles that were
759 equilibrated in their respective nucleosome condition for 4×10^7 timesteps before use in FRAP or fusion
760 simulations. Particle motion was modeled using the Langevin equation with a diffusion coefficient of
761 $0.02 \text{ nm}^2/\text{timestep}$ ($8 \times 10^5 \text{ nm}^2/\text{s}$) corresponding to remodeler diffusion *in vivo* (Kim *et al.*, 2021) in
762 timesteps of 20 ns.

763 Apart from simplifications due to coarse-graining, the prime reason why we achieve only qualitative,
764 rather than quantitative agreement between the coarse-grained simulations and experiments lies in
765 technical constraints required for computational performance. To keep the simulation tractable,
766 typical simulated droplet sizes are approximately an order of magnitude smaller than their
767 experimental counterparts. Even in the model of ISWI being a stable crosslinker, a small shape change
768 during droplet fusion may be expected from the stretching of arrays. This relative change is much
769 more pronounced for the smaller simulated droplets, compared to the experimental droplets. In
770 addition, simulated fusion trajectories have a well-defined endpoint (circularity=1), such that we were
771 able to determine a fusion velocity for all simulation trajectories. In contrast, the fusion velocity for

772 experimental trajectories could only be determined for events which completed fusion (see previous
773 section).

774 **Simulated FRAP**

775 For the simulation of FRAP experiments, remodeler particles in one half of the condensate were
776 marked as bleached. Mixing was determined using the distances between particles. First, pairwise
777 distances either between all particles of one type ($dist_{all}$) or only between bleached and non-bleached
778 particles ($dist_{cross}$) were determined.

779 The pairwise distances were binned, and mixing (M) was quantified with Eq.6

780
$$M = \sum \frac{(dist_{cross} - dist_{all})^2}{dist_{all}}$$
 (Eq.6)

781 This was done at timesteps 2.5×10^6 timesteps apart. The resulting values were normalized between 0
782 and 1 to emulate FRAP recovery. For each condition three simulations were performed. Data was
783 visualized in boxplots showing the median \pm quartiles and whiskers showing the maximum and
784 minimum values.

785 **Simulated fusion**

786 For the simulation of condensate fusion, two preequilibrated condensates were positioned in close
787 proximity. Fusion progress was then measured using the sphericity of the system over time which
788 approaches 1 as fusion progresses. The circularity was then fitted with the same generalized logistic
789 function as the force response in the experiments. Three simulations were performed for each
790 condition. Relative fusion velocities were obtained by normalizing the data to the mean of the
791 nucleotide free condition. Data was visualized as boxplots as described for simulated FRAP.

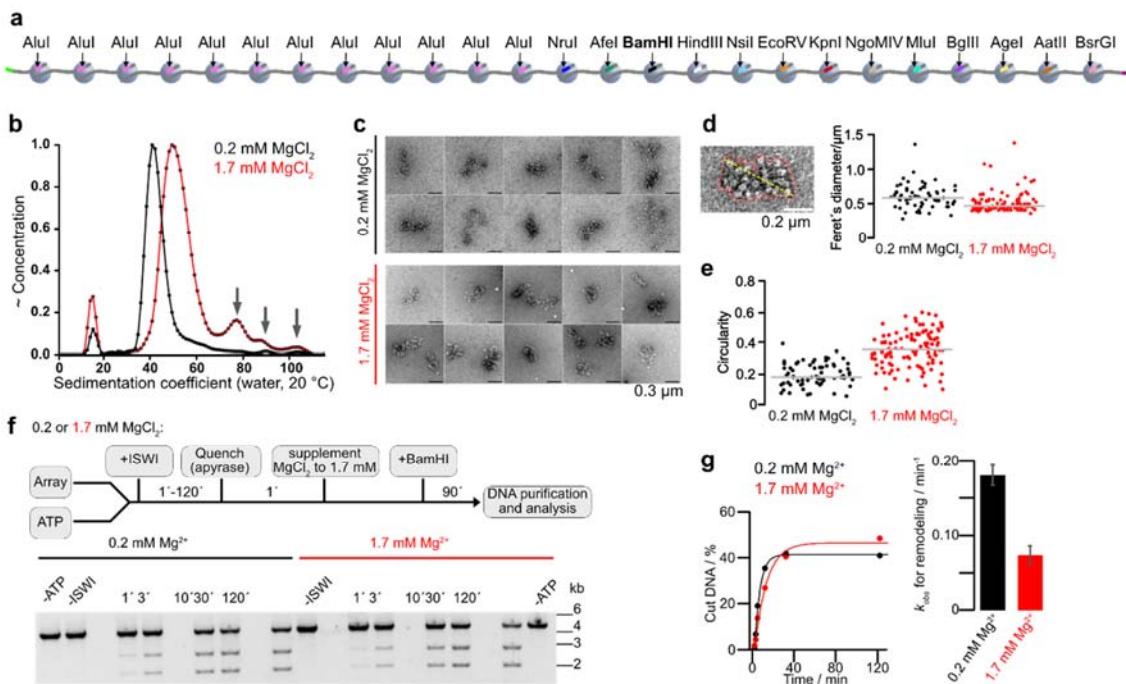
792 **Acknowledgements**

793 We thank Sabrina Albig for Cy3-labeled histones, Ameli Lentz for purifying GFP and cloning ISWI-GFP,
794 Marlies Muernseer (Nanolive) for collecting holotomography data, Madhura Khare and Silvia Härtel
795 for help with protein purification, and the Ökten group for providing sfGFP plasmid. P.V. acknowledges
796 support from the IRTG SFB 1064. F.M.-P. acknowledges financial support from the Deutsche
797 Forschungsgemeinschaft (SFB1064 A07, MU3613/3-1, MU3613/8-1); J.S. from the LMU Center for
798 Nanoscience CeNS, a DFG Emmy Noether grant (No. STI673/2) and an ERC Starting Grant (No. 758124);
799 P.B.B from SFB1064 A01 and BE1140/6-1; and M.H. by St. Jude Children's Research Hospital, the
800 American Lebanese Syrian Associated Charities and NIH awards R01GM141694 and R01GM135599.

801 **Author contributions.**

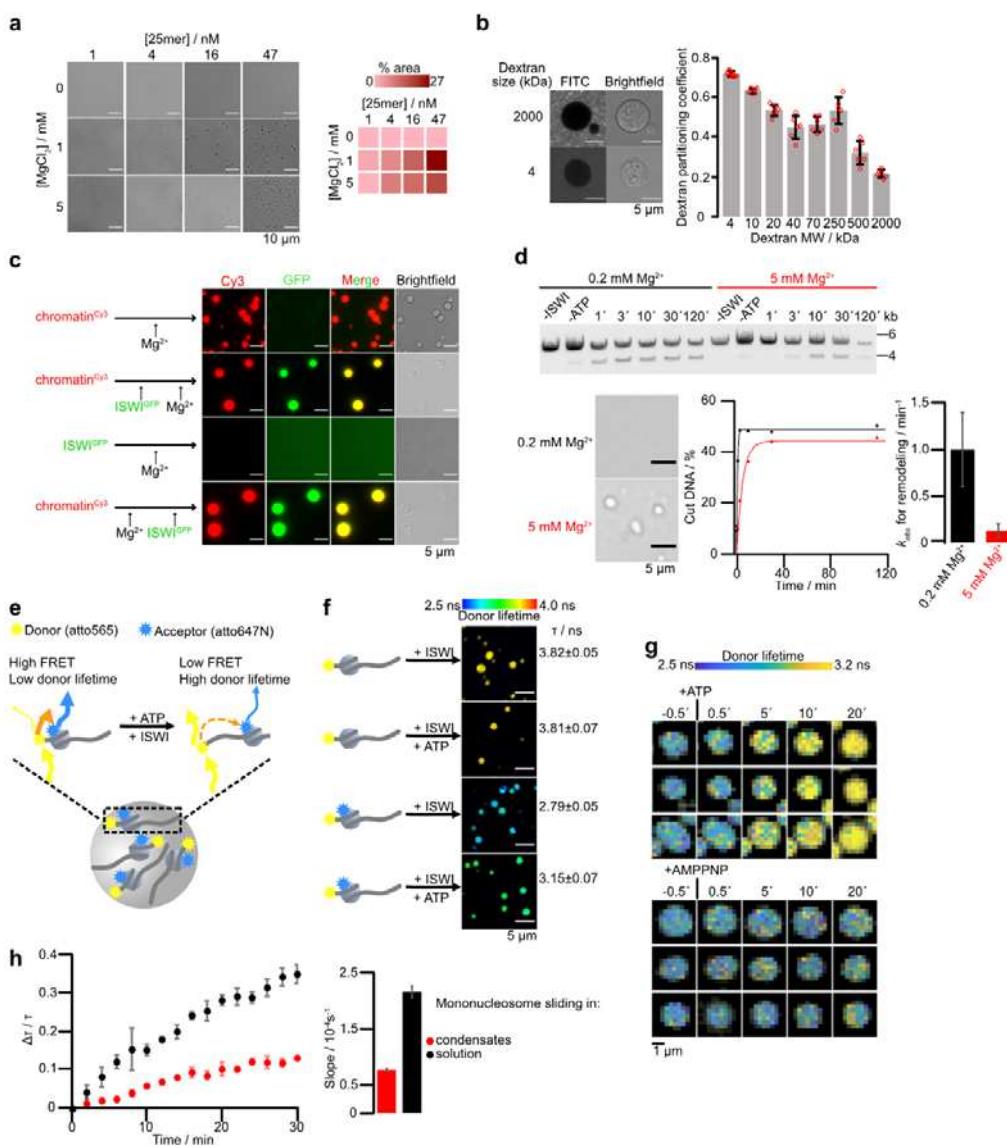
802 Conceptualization: F.M.-P., J.S., P.V.
803 Methodology and formal analysis: P.V., J.S., M.G.P, N.H., A.S., D.K., M.S.
804 Investigation: P.V., M.G.P., A.S., J.B., J.S., D.K., N.H., M.S.
805 Writing of original draft: F.M.-P., P.V., M.G.P, D.K., M.S., A.S., J.B., J.S.
806 Visualization: P.V., J.S., D.K., M.S., M.G.P.
807 Funding acquisition: F.M.-P., J.S., P.B.B, M.H.

808 Writing—Review and Editing: All authors


809 **Data availability statement.**

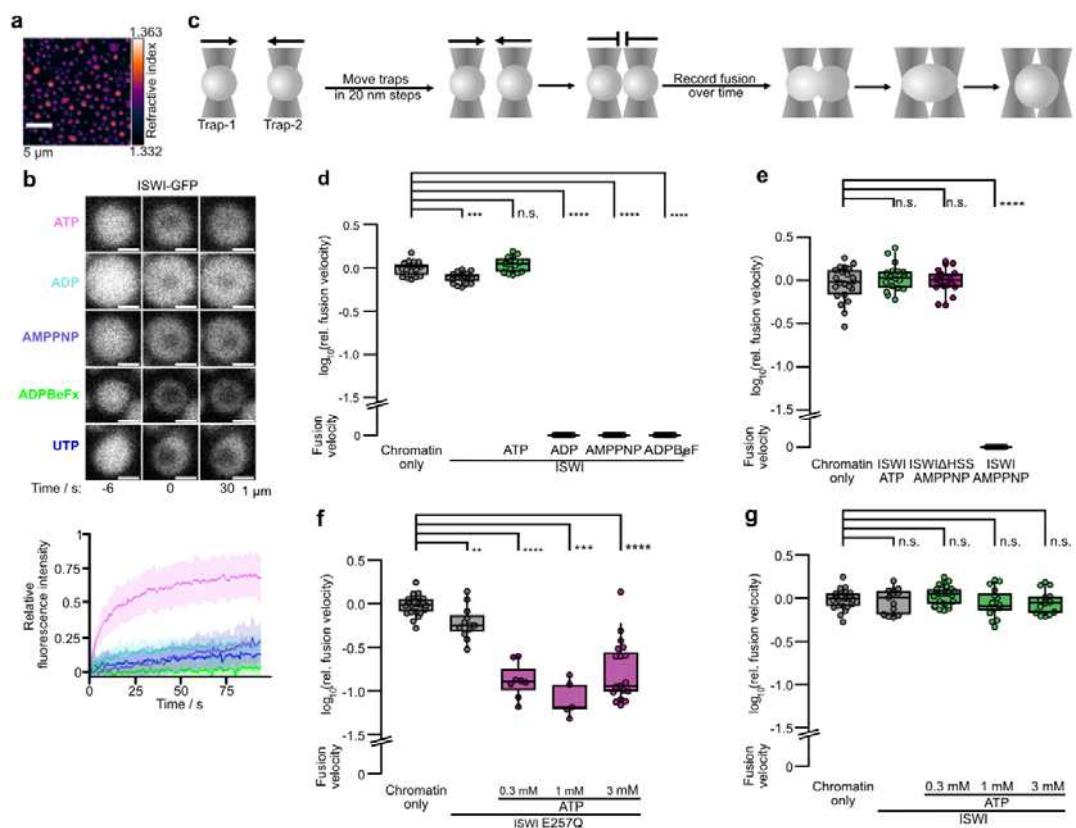
810 Authors can confirm that all relevant data are included in the article and/or its supplementary
811 information files.

812 **Code availability statement.**


813 Code available on request from the authors. The MD simulation executable as well as analysis
814 scripts for MD simulations and controlled condensate fusion experiments are available at
815 https://github.com/StiglerLab/Vizjak_2023.

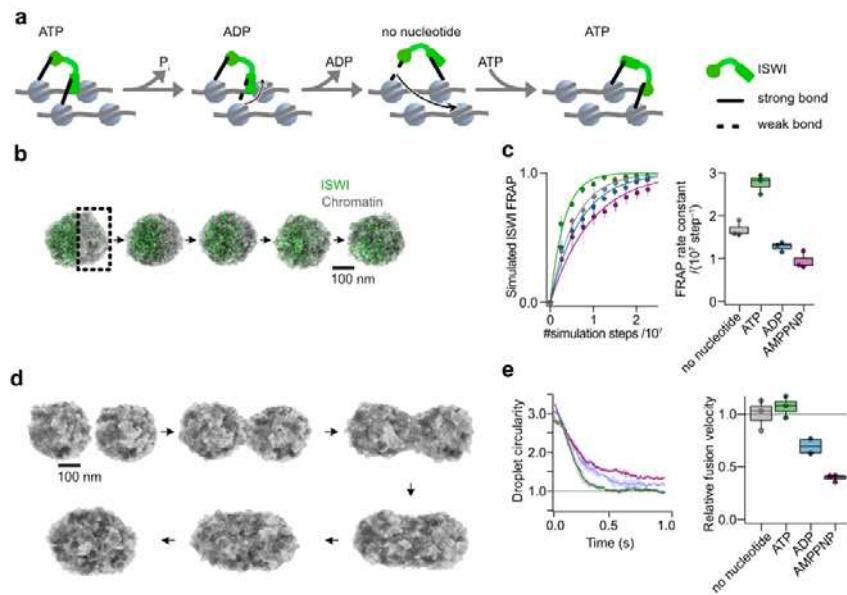
816

817

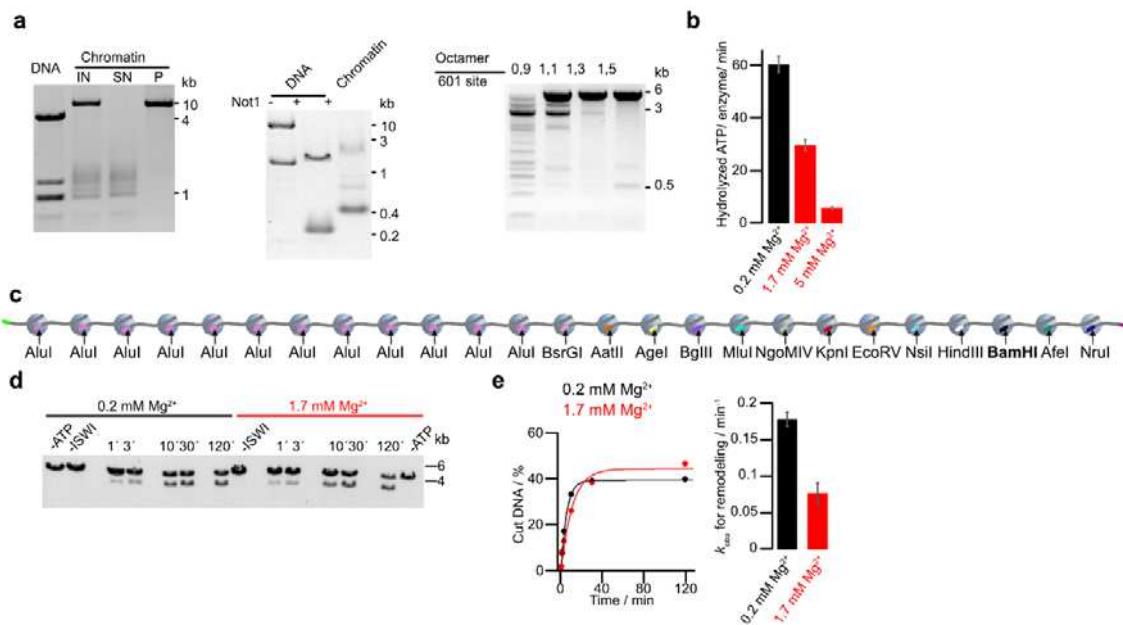

818 **Figure 1. Intramolecular chromatin fiber folding does not impede remodeling.** a, A 25mer
 819 nucleosome array assembled on 25 repeats of 197 bp long Widom-601 DNA derivatives. 13 repeats
 820 contain unique restriction enzymes sites. b, Sedimentation velocity analysis of 25mer arrays in a buffer
 821 supplemented with 0.2 mM (black; peak at 42.4 S) or 1.7 mM MgCl₂ (red; peak at 51.3 S). The larger S
 822 value at the higher Mg²⁺-concentration indicated stronger compaction of arrays without substantial
 823 oligomer formation (arrows). c, Representative micrographs of 25mer arrays from negative stain
 824 electron microscopy dissolved in a buffer supplemented with indicated MgCl₂ concentrations. d, e,
 825 Single-particle analysis of negative stain EM micrographs. N = 67 (0.2 mM MgCl₂); N = 107 (1.7 mM
 826 MgCl₂). Outlines of single particles (red line) were determined with a trainable Weka segmentation in
 827 ImageJ. Feret's diameter (the maximum distance between two parallel tangential lines, yellow line)
 828 and circularity were calculated for all outlines. f, Top: Schematic of the BamHI accessibility assay.
 829 Bottom: Gel analysis of remodeling time courses. Reactions contained 4 nM arrays and 5 μM Mg-ATP
 830 and were started by addition of 200 nM ISWI. g, Left: quantification of gel in f and exponential fits of
 831 the time courses. Right: rate coefficients from single exponential fits. Bars are mean values of two
 832 independent experiments, error bars their minimal and maximal values.

833

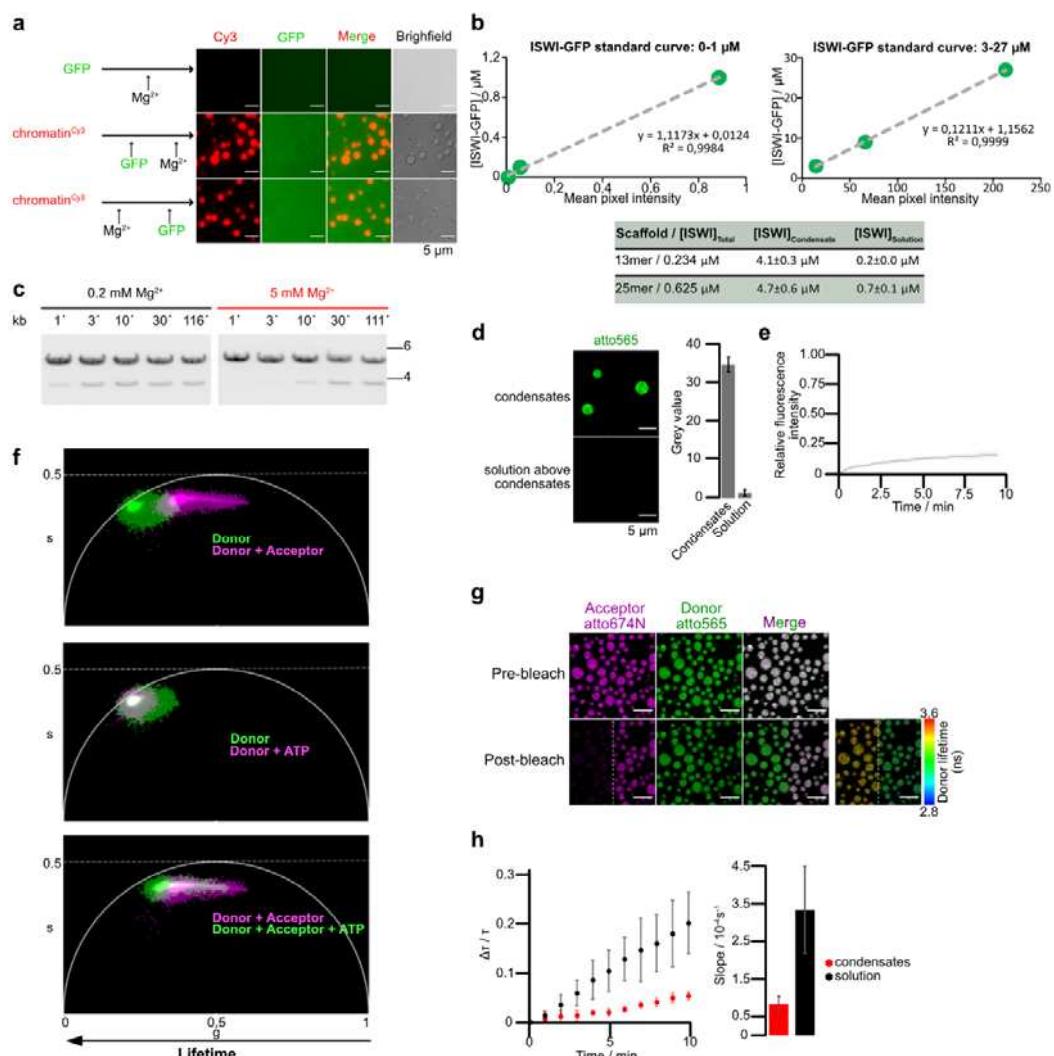
834 **Figure 2. ISWI slides nucleosomes inside chromatin condensates.** **a**, Condensate formation depends
 835 on nucleosome and MgCl₂ concentration. Left: Condensate formation for different MgCl₂ and 25mer
 836 array concentrations. Right: Percentage of the field of view occupied by condensates. **b**, Partition
 837 coefficient of FITC-labeled dextrans of indicated molecular weights. Bars are averages from six
 838 condensates for each dextran, errors are SD. **c**, Colocalization experiments with GFP-ISWI (1.1 μM)
 839 and Cy3-labeled condensates (0.05 μM 25mers). Condensates were induced by addition Mg²⁺ (5 mM)
 840 either before or after addition of GFP-ISWI. **d**, Nucleosome sliding time courses (top and bottom left)
 841 in absence and presence of condensates (bottom right). Sliding was measured by KpnI accessibility of
 842 25mer arrays (15 nM) with 1 mM Mg-ATP. Reactions were started by addition of 750 nM ISWI. Bars
 843 are mean values of two independent experiments, error bars their minimal and maximal values. **e**,
 844 Principle of the FLIM-FRET sliding assay. FRET nucleosomes with a donor dye (atto565) coupled to
 845 H2A K119C and an acceptor dye (atto647) attached to the octamer-proximal end of 207 bp Widom-
 846 601 DNA were spiked to array condensates. Upon nucleosome sliding, the FRET efficiency decreases,
 847 prolonging the donor fluorescence lifetime. **f**, The donor lifetime of FRET-nucleosomes in condensates


848 increased after addition of ISWI and Mg-ATP but not in negative controls (donor-only nucleosomes,
849 or without Mg-ATP). One out of two independent replicates with similar results is shown. Bars are
850 averages and error bars are SD of lifetimes across ten fields of view of the same sample, with each
851 field of view imaged 30 times, totaling 300 images per condition. Reactions contained 45 nM 25mers,
852 125 nM FRET nucleosomes, 625 nM ISWI and were imaged four hours after addition of Mg-ATP. **g**,
853 FLIM time lapse microscopy. Mg-ATP or Mg-AMPPNP (both 1 mM) were flown into the imaging
854 chamber at $t = 0$. Individual condensates are pictured. One of two independent replicates with similar
855 results is displayed. **h**, Left: FLIM-FRET time courses in condensates (N=3) and solution (N=2). Points
856 are mean values of independent experiments, error bars their minimal and maximal values.
857 Condensate reactions contained 45 nM 25mers, 125 nM FRET nucleosomes, and 625 nM ISWI and
858 were started with 1 mM Mg-ATP. Solution reactions contained 1125 nM unlabeled ON60 nucleosomes
859 instead of arrays. Right: Initial velocities of time courses obtained from linear fits of the time courses.
860 Bars are mean values of independent experiments, error bars their minimal and maximal values.

861


862 **Figure 3. ATP hydrolysis powers mobility of ISWI and prevents ISWI-mediated hardening of**
863 **condensates.** **a**, Holotomogram of chromatin condensates. The average nucleosome concentration
864 ($225 \pm 59 \mu\text{M}$) was determined from the refractive index. One of two independent replicates is
865 depicted. **b**, Left: Partial-condensate FRAP of ISWI-GFP in presence of indicated nucleotides (all 0.77
866 mM). Only the addition of ATP allowed a fast recovery. Bottom: Quantification of FRAP time courses.
867 Lines are averages, shaded areas SD of 20 condensates for AMPPNP and UTP, 15 for ADP, 25 for ADP-
868 BeFx and 30 for ATP. **c**, Schematic of condensate fusion experiments with optical tweezers. **d**, Fusion
869 velocities of condensates measured by optical trapping. ISWI in presence of non-hydrolysable
870 nucleotides but not of ATP, slowed down fusion. Chromatin-only and nucleotide-free ISWI conditions

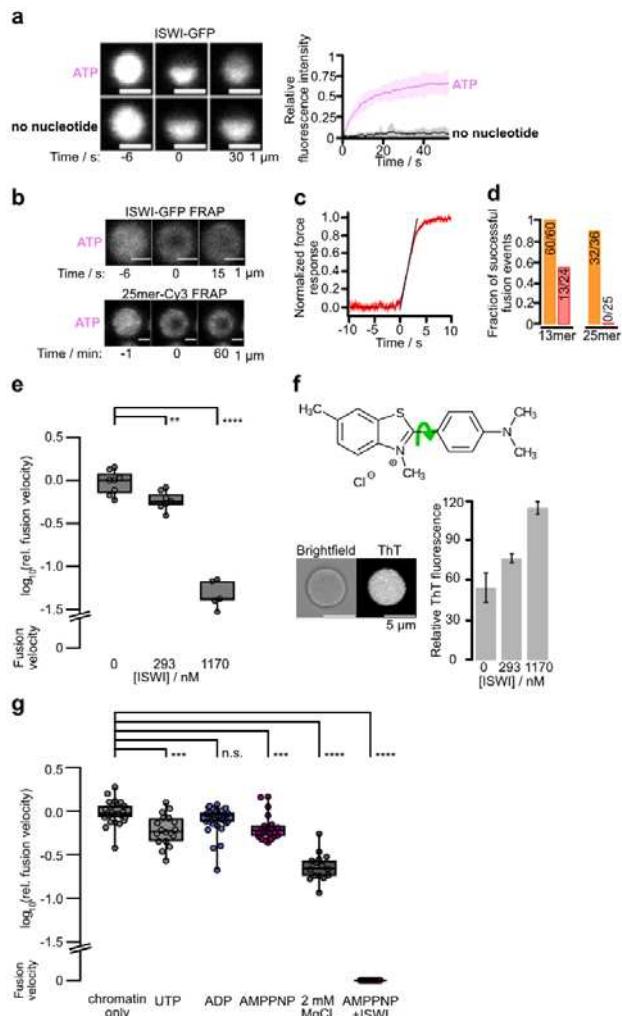
871 were replicated three times. **e**, AMPPNP did not slow down fusion when ISWI lacked its HSS domain.
872 **f**, Addition of ATP to an ATPase dead mutant of ISWI (E257Q) slowed down condensate fusion. **g**,
873 Addition of ATP to wild type ISWI did not affect condensate fusion. Data in d–g are log10-fold changes
874 in velocities relative to the mean of the chromatin only condition. Unless stated otherwise, all data
875 were independently replicated twice per condition.


876

877 **Figure 4. A simple model qualitatively explains experimental observations.** a, ISWI possesses two
878 nucleosome-interacting domains, which can bridge neighboring nucleosomes in dense chromatin. Via
879 large nucleotide-induced conformational changes (not shown), the domains cycle through high and
880 low affinity states towards nucleosomes, allowing ISWI to actively translocate through chromatin. b,
881 Representation of a molecular dynamics simulation of ISWI FRAP in a chromatin condensate. ISWI
882 particles on one side of an equilibrated condensate are switched to a bleached state at t=0 (square).
883 Particle dynamics are then simulated to observe mixing of the two ISWI populations. c, ISWI FRAP was
884 simulated as in b for 2.25×10^7 timesteps in different nucleotide conditions with three replicates per
885 condition. Left: Averaged traces of ISWI FRAP in different nucleotide conditions. Right: Rate constants
886 of the simulated FRAP traces. d, Representation of simulated fusion experiments. Two equilibrated
887 condensates were brought into proximity and allowed to fuse. For visual clarity only nucleosomes are
888 shown here. e, Simulations of three fusion events for each nucleotide condition. Left: Averaged fusion
889 traces with standard error. Right: Relative fusion velocities of the simulated traces.

890

891 **Figure S1. a**, Quality controls for 25mer nucleosome arrays. Left: agarose gel after magnesium
 892 precipitation of assembled arrays and the resolubilized pellet. IN, input; SN, supernatant; P, pellet.
 893 Competitor DNA derived from the plasmid backbone (< 1 kb) was excluded from P. Middle: Not1
 894 digestion (a Not1 site is present in each linker) liberated mostly mononucleosomes, running around
 895 400 bp, but little 197 bp fragments, confirming saturation of most 601 repeats with octamers. Right:
 896 BsiWI digestion (all nucleosomes occlude a BsiWI restriction site) for arrays assembled with different
 897 octamer amounts. As 601 sites become saturated, digestion is hindered. **b**, ATP turnover in the
 898 presence of saturating concentrations of mononucleosomes (1.33 μ M). Control experiments with
 899 three times lower mononucleosome concentrations gave the same results. Bars are mean values of
 900 two independent experiments, error bars their minimal and maximal values. Increasing Mg-
 901 concentrations reduce mononucleosome-stimulated ATP hydrolysis rates at saturating concentrations
 902 of ATP (1 mM). **c**, As in Fig. 1a, but with different orientation of the unique restriction sites such that
 903 the BamHI site is now more peripheral. **d**, BamHI accessibility assay as in Fig. 1f but for the array shown
 904 in c. **e**, Left: quantification of gel in d and exponential fits of time courses. Right: rate coefficients from
 905 single exponential fits. Bars are mean values of two independent experiments, error bars their minimal
 906 and maximal values.

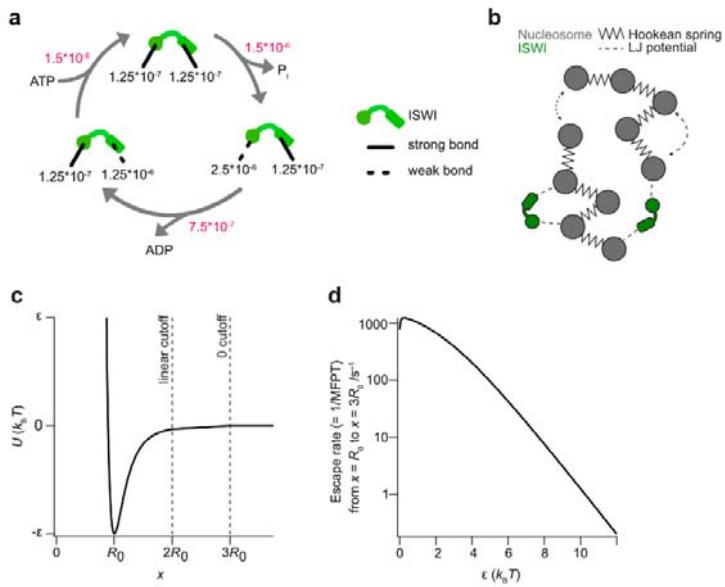


907

908 **Figure S2. a**, GFP does not partition into chromatin condensates. The colocalization experiment was
 909 performed with 40 nM of unlabeled 25mer, 10 nM of 25mer-Cy3 and 1.125 μM of GFP-GST. **b**, ISWI-
 910 GFP concentrations were determined inside condensates and, after centrifugation, in the surrounding
 911 solution (bottom) from fluorescence intensities using calibration curves with ISWI-GFP dilutions (top).
 912 Two different microscope settings were used to image lower and higher dilutions. Means and SD of
 913 two independent replicates are shown. **c**, Nucleosome sliding time courses in absence and presence
 914 of condensates (0.2 mM and 5 mM MgCl₂, respectively), replicate of experiment in Fig. 2e. Sliding was
 915 measured by KpnI accessibility of 25mer arrays (15 nM). Reactions contained 750 nM ISWI and were
 916 started by addition of 1 mM Mg-ATP. **d**, Enrichment of labeled ON60 mononucleosomes in chromatin
 917 condensates, $N = 3 \pm SD$. The mononucleosome concentration in solution was determined from z-
 918 plane above the condensates. **e**, Whole condensate FRAP of FRET-ON60 nucleosomes to assess their
 919 exchange between condensate and solution. Line is an average and shadow SD of eight bleached
 920 condensates. One of four independent replicates with similar results is shown. **f**, Phasor
 921 representation of data in Fig. 2f. The phasor representation makes no assumptions on the number of
 922 decay rates nor on specific decay model (exponential, non-exponential) (Digman et al., 2008). Upon

923 introduction of the acceptor, the donor's lifetime distribution moves away from the universal circle
924 line (single exponential lifetimes). This is consistent with an existence of at least two or even three
925 different populations of donor: high FRET, low FRET and no FRET. **g**, Acceptor bleaching enhances
926 donor fluorescence and lifetime, indicative of FRET. Imaging of FRET-ON60 nucleosomes in chromatin
927 condensates. The acceptor fluorophore was bleached in the left half of the field of view, leading to an
928 increase in donor fluorescence and donor lifetime (right most panel). **h**, FLIM-FRET measurements as
929 in Fig. 2h, but with 5 mM Mg-ATP. Means and SD of three independent experiments.

930



931

932 **Figure S3. a,** Intra-condensate mobility of ISWI-GFP measured by partial-condensate FRAP. Half of a
 933 condensate was bleached in presence and absence of Mg-ATP (1 mM). Line is an average and shadow
 934 SD of 15 bleached condensates for each condition. **b,** ISWI-GFP is more mobile than chromatin in
 935 condensates. Dual FRAP of ISWI-GFP and Cy3-labeled condensates formed by 25mer arrays in
 936 presence of Mg-ATP (1 mM) and ISWI (100 nM). Independent replicates show similar results. **c,** Force
 937 readout of optical traps during controlled condensate fusion. The fusion velocity was determined as
 938 the slope of the tangent fitted to the normalized force data at the inflection point of the fitted
 939 function. Incurred forces during fusion are on the order of 1 pN (see Methods). **d,** Fraction of
 940 successful fusion events in 1 mM MgCl₂ (orange) and 5 mM MgCl₂ (red). Total nucleosome
 941 concentration was 1170 nM. **e,** Fusion between condensates measured by optical tweezers containing
 942 indicated ISWI concentrations and 1170 nM nucleosomes. Velocities were estimated as illustrated in
 943 Fig. S3c. Box plots show means and 25th/75th percentiles, whiskers the 9th and 91st percentiles. **f,** ISWI
 944 increased viscosity of condensates as reported by enhanced fluorescence of the molecular rotor
 945 thioflavin T (ThT). In a high viscosity medium, rotation around the C-C bond (green arrow) is
 946 constrained, and the excitation energy is released as fluorescence. Bars are average ThT fluorescence
 947 intensities relative to the outside medium; error: SD. Six condensates were analyzed for no ISWI and

948 293 nM ISWI, five for 1170 nM ISWI. **g**, Fusion between condensates without ISWI measured by optical
 949 tweezers. Nucleotides and free Mg^{2+} show only modest effects on fusion velocity.

950

951 **Figure S4.** **a**, A model for the independent switching of the strengths of the two nucleosome
 952 interactions sites during ISWI's ATPase cycle. Escape rates (black) and transition rates (red) in timestep
¹
 953 are indicated. **b**, Schematic representation of the implementation of the model in Fig. 4a for
 954 molecular dynamics simulations. **c**, Modified Lennard-Jones potential used in simulations. Below
 955 distances of $2R_0$ a regular Lennard-Jones potential is used. Between $2R_0$ and $3R_0$ the potential is
 956 described using a linear approximation, while interactions with range above $3R_0$ are set to 0. **d**,
 957 Conversion of the strength of the modified Lennard-Jones potential to escape rates based on the mean
 958 first passage time of potential escape (Gray & Yong, 2021).

959 **Movie S1. FLIM-FRET timelapse with ATP**

960 **Movie S2. FLIM-FRET timelapse with AMPPNP**

961 **Movie S3. Controlled fusion with optical tweezers of chromatin condensates containing ISWI and**
 962 **ADP-BeF_x**

963 **Movie S4. Controlled fusion with optical tweezers of chromatin condensates containing ISWI and**
 964 **ATP**

965 **Movie S5. Simulation of ISWI FRAP with graph**

966 **Movie S6. Simulation of condensate fusion with graph**

967 **Table S1. Oligonucleotide list**

Name	Sequence (5'->3')	Description
oFMP839	GCTTGCATGCCTGCAGGTCG	To PCR ON60 fragment used for ATPase assay
oFMP864	CTGGAGAACCCGGTGCCG	To PCR ON60 fragment used for ATPase assay and ON60-EcoRI fragment used for FLIM-FRET
oFMP1260	TAAGCAGAACCGCTTGCATGCCTGCAGGTCG	To PCR [atto647N]ON60-EcoRI fragment used for FLIM-FRET
oFMP1261	[ATTO647N]CTGGAGAACCCGGTGCCG	To PCR [atto647N]ON60-EcoRI fragment used for FLIM-FRET and ON60-EcoRI fragment used for FLIM-FRET

968

969 **References**

970 Adhireksan, Z., Sharma, D., Lee, P. L. & Davey, C. A. (2020). Near-atomic resolution structures of
971 interdigitated nucleosome fibres. *Nature Communications*. [https://doi.org/10.1038/s41467-020-18533-2](https://doi.org/10.1038/s41467-020-
972 18533-2)

973 Beaudouin, J., Mora-Bermúdez, F., Klee, T., Daigle, N. & Ellenberg, J. (2006). Dissecting the
974 contribution of diffusion and interactions to the mobility of nuclear proteins. *Biophysical Journal*,
975 90(6), 1878–1894. <https://doi.org/10.1529/BIOPHYSJ.105.071241>

976 Bell, O., Schwaiger, M., Oakeley, E. J., Lienert, F., Beisel, C., Stadler, M. B. & Schübeler, D. (2010).
977 *Accessibility of the Drosophila genome discriminates Pcg repression, H4K16 acetylation and*
978 *replication timing*. <https://doi.org/10.1038/nsmb.1825>

979 Bhardwaj, S. K., Hailu, S. G., Olufemi, L., Brahma, S., Kundu, S., Hota, S. K., Persinger, J. & Bartholomew,
980 B. (2020). Dinucleosome specificity and allosteric switch of the ISW1a ATP-dependent chromatin

981 remodeler in transcription regulation. *Nature Communications*.

982 <https://doi.org/10.1038/s41467-020-19700-1>

983 Blosser, T. R., Yang, J. G., Stone, M. D., Narlikar, G. J. & Zhuang, X. (2009). Dynamics of nucleosome

984 remodelling by individual ACF complexes. *Nature*, 462, 1022–1027.

985 <https://doi.org/10.1038/nature08627>

986 Boyer, L. A., Logie, C., Bonte, E., Becker, P. B., Wade, P. A., Wolffe, A. P., Wu, C., Imbalzano, A. N. &

987 Peterson, C. L. (2000). Functional delineation of three groups of the ATP-dependent family of

988 chromatin remodeling enzymes. *Journal of Biological Chemistry*, 275(25), 18864–18870.

989 <https://doi.org/10.1074/jbc.M002810200>

990 Burak, Y., Ariel, G. & Andelman, D. (2003). Onset of DNA aggregation in presence of monovalent and

991 multivalent counterions. *Biophysical Journal*, 85(4), 2100–2110. [https://doi.org/10.1016/S0006-3495\(03\)74638-4](https://doi.org/10.1016/S0006-3495(03)74638-4)

993 Clapier, C. R., v Corona, D. F., Becker, P. B., Nightingale, K. P. & Programme, I. (2001). Critical Role for

994 the Histone H4 N Terminus in Nucleosome Remodeling by ISWI. *MOLECULAR AND CELLULAR*

995 *BIOLOGY*, 21(3), 875–883. <https://doi.org/10.1128/MCB.21.3.875-883.2001>

996 Clapier, C. R., Verma, N., Parnell, T. J. & Cairns, B. R. (2020). Cancer-Associated Gain-of-Function

997 Mutations Activate a SWI/SNF-Family Regulatory Hub. *Molecular Cell*, 80(4), 712-725.e5.

998 <https://doi.org/10.1016/J.MOLCEL.2020.09.024>

999 Corona, D. F. V., Längst, G., Clapier, C. R., Bonte, E. J., Ferrari, S., Tamkun, J. W. & Becker, P. B. (1999).

1000 ISWI is an ATP-dependent nucleosome remodeling factor. *Molecular Cell*, 3(2), 239–245.

1001 [https://doi.org/10.1016/S1097-2765\(00\)80314-7](https://doi.org/10.1016/S1097-2765(00)80314-7)

1002 Dann, geoffrey P., Liszczak, glen P., Bagert, J. D., Müller, M. M., Nguyen, uyen, Wojcik, F., Brown, Z. Z.,
1003 Bos, J., Panchenko, tatyana, Pihl, R., Pollock, samuel B., Diehl, K. L., David allis, C. & Muir, tom W.
1004 (2017). *ISWI chromatin remodelers sense nucleosome modifications to determine substrate*
1005 *preference*. <https://doi.org/10.1038/nature23671>

1006 Deindl, S., Hwang, W. L., Hota, S. K., Blosser, T. R., Prasad, P., Bartholomew, B. & Zhuang, X. (2013).
1007 ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-
1008 Base-Pair Exit Steps. *Cell*, 152(3), 442–452. <https://doi.org/10.1016/J.CELL.2012.12.040>

1009 Demeler, B. & Gorbet, G. E. (2016). Analytical Ultracentrifugation Data Analysis with UltraScan-III. In
1010 S. Uchiyama, F. Arisaka, W. Stafford & T. (eds.) Laue (Eds.), *Analytical Ultracentrifugation* (pp.
1011 119–143). Springer.

1012 Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. (2008). The phasor approach to fluorescence
1013 lifetime imaging analysis. *Biophysical Journal*, 94(2), 14–16.
1014 <https://doi.org/10.1529/biophysj.107.120154>

1015 Ditlev, J. A., Case, L. B. & Rosen, M. K. (2018). Who's In and Who's Out—Compositional Control of
1016 Biomolecular Condensates. *Journal of Molecular Biology*, 430(23), 4666–4684.
1017 <https://doi.org/10.1016/j.jmb.2018.08.003>

1018 Elfring, L. K., Daniel, C., Papoulias, O., Deuring, R., Sarte, M., Moseley, S., Beek, S. J., Waldrip, W. R.,
1019 Daubresse, G., DePace, A., Kennison, J. A. & Tamkun, J. W. (1998). Genetic analysis of brahma:
1020 The drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. *Genetics*, 148(1),
1021 251–265. <https://doi.org/10.1093/genetics/148.1.251>

1022 Erdel, F., Baum, M. & Rippe, K. (2015). The viscoelastic properties of chromatin and the nucleoplasm
1023 revealed by scale-dependent protein mobility. *Journal of Physics: Condensed Matter*, 27(6),
1024 064115. <https://doi.org/10.1088/0953-8984/27/6/064115>

1025 Erdel, F., Rademacher, A., Vlijm, R., Tünnermann, J., Frank, L., Weinmann, R., Schweigert, E.,
1026 Yserentant, K., Hummert, J., Bauer, C., Schumacher, S., al Alwash, A., Normand, C., Herten, D. P.,
1027 Engelhardt, J. & Rippe, K. (2020). Mouse Heterochromatin Adopts Digital Compaction States
1028 without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation. *Molecular Cell*, 78(2),
1029 236-249.e7. <https://doi.org/10.1016/j.molcel.2020.02.005>

1030 Erdel, F. & Rippe, K. (2018). Formation of Chromatin Subcompartments by Phase Separation.
1031 *Biophysical Journal*, 114(10), 2262–2270. <https://doi.org/10.1016/j.bpj.2018.03.011>

1032 Erdel, F., Schubert, T., Marth, C., Längst, G. & Rippe, K. (2010). Human ISWI chromatin-remodeling
1033 complexes sample nucleosomes via transient binding reactions and become immobilized at
1034 active sites. *Proceedings of the National Academy of Sciences of the United States of America*,
1035 107(46), 19873–19878. <https://doi.org/10.1073/pnas.1003438107>

1036 Finch, J. T. & Klug, A. (1976). Solenoidal model for superstructure in chromatin. *Proceedings of the
1037 National Academy of Sciences of the United States of America*, 73(6), 1897.
1038 <https://doi.org/10.1073/PNAS.73.6.1897>

1039 Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. (2018). The nucleosomal
1040 acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. *eLife*, 7.
1041 <https://doi.org/10.7554/eLife.35322>

1042 Gelbart, M. E., Bachman, N., Delrow, J., Boeke, J. D. & Tsukiyama, T. (2005). Genome-wide
1043 identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive
1044 mutant. *Genes & Development*, 19(8), 942. <https://doi.org/10.1101/GAD.1298905>

1045 Gibson, B. A., Blaukopf, C., Lou, T., Chen, L., Doolittle, L. K., Finkelstein, I., Narlikar, G. J., Gerlich, D. W.
1046 & Rosen, M. K. (2023). In diverse conditions, intrinsic chromatin condensates have liquid-like

1047 material properties. *Proceedings of the National Academy of Sciences of the United States of*
1048 *America*, 120(18). <https://doi.org/10.1073/PNAS.2218085120>

1049 Gibson, B. A., Doolittle, L. K., Schneider, M. W. G., Jensen, L. E., Gamarra, N., Henry, L., Gerlich, D. W.,
1050 Redding, S. & Rosen, M. K. (2019). Organization of Chromatin by Intrinsic and Regulated Phase
1051 Separation. *Cell*, 179(2), 470-484.e21. <https://doi.org/10.1016/j.cell.2019.08.037>

1052 Goins, A. B., Sanabria, H. & Waxham, M. N. (2008). Macromolecular crowding and size effects on probe
1053 microviscosity. *Biophysical Journal*, 95(11), 5362–5373.
1054 <https://doi.org/10.1529/BIOPHYSJ.108.131250>

1055 Gray, T. H. & Yong, E. H. (2021). An effective one-dimensional approach to calculating mean first
1056 passage time in multi-dimensional potentials. *The Journal of Chemical Physics*, 154(8), 084103.
1057 <https://doi.org/10.1063/5.0040071>

1058 Grüne, T., Brzeski, J., Eberharter, A., Clapier, C. R., Corona, D. F. V., Becker, P. B. & Müller, C. W. (2003).
1059 Crystal structure and functional analysis of a nucleosome recognition module of the remodeling
1060 factor ISWI. *Molecular Cell*, 12(2), 449–460. [https://doi.org/10.1016/S1097-2765\(03\)00273-9](https://doi.org/10.1016/S1097-2765(03)00273-9)

1061 Hagerman, T. A., Fu, Q., Molinié, B., Denvir, J., Lindsay, S. & Georgel, P. T. (2009). Chromatin stability
1062 at low concentration depends on histone octamer saturation levels. *Biophysical Journal*, 96(5),
1063 1944–1951. <https://doi.org/10.1016/j.bpj.2008.10.070>

1064 Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. (1999). ATP-dependent histone octamer sliding
1065 mediated by the chromatin remodeling complex NURF. *Cell*, 97(7), 833–842.
1066 [https://doi.org/10.1016/S0092-8674\(00\)80796-5](https://doi.org/10.1016/S0092-8674(00)80796-5)

1067 Harrer, N., Schindler, C. E. M., Bruetzel, L. K., Forné, I., Ludwigsen, J., Imhof, A., Zacharias, M., Lipfert,
1068 J. & Mueller-Planitz, F. (2018). Structural Architecture of the Nucleosome Remodeler ISWI

1069 Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling. *Structure*, 26(2), 282–
1070 294.e6. <https://doi.org/10.1016/J.STR.2017.12.015>

1071 Hihara, S., Pack, C. G., Kaizu, K., Tani, T., Hanafusa, T., Nozaki, T., Takemoto, S., Yoshimi, T., Yokota, H.,
1072 Imamoto, N., Sako, Y., Kinjo, M., Takahashi, K., Nagai, T. & Maeshima, K. (2012). Local
1073 Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells. *Cell Reports*,
1074 2(6), 1645–1656. <https://doi.org/10.1016/j.celrep.2012.11.008>

1075 Hodges, H. C., Stanton, B. Z., Cermakova, K., Chang, C. Y., Miller, E. L., Kirkland, J. G., Ku, W. L., Veverka,
1076 V., Zhao, K. & Crabtree, G. R. (2018). Dominant-negative SMARCA4 mutants alter the accessibility
1077 landscape of tissue-unrestricted enhancers. *Nature Structural and Molecular Biology*, 25(1), 61–
1078 72. <https://doi.org/10.1038/s41594-017-0007-3>

1079 Hsieh, T. H. S., Weiner, A., Lajoie, B., Dekker, J., Friedman, N. & Rando, O. J. (2015). Mapping
1080 nucleosome resolution chromosome folding in yeast by Micro-C. *Cell*, 162(1), 108.
1081 <https://doi.org/10.1016/J.CELL.2015.05.048>

1082 Kagalwala, M. N., Glaus, B. J., Dang, W., Zofall, M. & Bartholomew, B. (2004). Topography of the ISW2-
1083 nucleosome complex: Insights into nucleosome spacing and chromatin remodeling. *EMBO
1084 Journal*, 23(10), 2092–2104. <https://doi.org/10.1038/sj.emboj.7600220>

1085 Keizer, V. I. P., Grosse-Holz, S., Wöringer, M., Zambon, L., Aizel, K., Bongaerts, M., Delille, F., Kolar-
1086 Znika, L., Scolari, V. F., Hoffmann, S., Banigan, E. J., Mirny, L. A., Dahan, M., Fachinetti, D. &
1087 Coulon, A. (2022). Live-cell micromanipulation of a genomic locus reveals interphase chromatin
1088 mechanics. *Science*, 377(6605), 489–495.
1089 [https://doi.org/10.1126/SCIENCE.ABI9810/SUPPL_FILE/SCIENCE.ABI9810_MDAR_REPRODUCIBI
LITY_CHECKLIST.PDF](https://doi.org/10.1126/SCIENCE.ABI9810/SUPPL_FILE/SCIENCE.ABI9810_MDAR_REPRODUCIBI
1090 LITY_CHECKLIST.PDF)

1091 Kim, J. M., Visanpattanasin, P., Jou, V., Liu, S., Tang, X., Zheng, Q., Li, K. Y., Snedeker, J., Lavis, L. D.,
1092 Lionnet, T. & Wu, C. (2021). Single-molecule imaging of chromatin remodelers reveals role of
1093 atpase in promoting fast kinetics of target search and dissociation from chromatin. *ELife*, 10.
1094 <https://doi.org/10.7554/eLife.69387>

1095 Klinker, H., Haas, C., Harrer, N., Becker, P. B. & Mueller-Planitz, F. (2014). Rapid purification of
1096 recombinant histones. *PLoS ONE*, 9(8). <https://doi.org/10.1371/JOURNAL.PONE.0104029>

1097 Klinker, H., Mueller-Planitz, F., Yang, R., Forné, I., Liu, C. F., Nordenskiöld, L. & Becker, P. B. (2014).
1098 ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4. *PLoS
1099 ONE*, 9(2). <https://doi.org/10.1371/journal.pone.0088411>

1100 Korber, P. & Becker, P. B. (2010). Nucleosome dynamics and epigenetic stability. *Essays in
1101 Biochemistry*, 48, 63–74. <https://doi.org/10.1042/BSE0480063>

1102 Kornberg, R. D. & Lorch, Y. (2020). Primary Role of the Nucleosome. *Molecular Cell*, 79(3), 371–375.
1103 <https://doi.org/10.1016/J.MOLCEL.2020.07.020>

1104 Koulouras, G., Panagopoulos, A., Rapsomaniki, M. A., Giakoumakis, N. N., Taraviras, S. & Lygerou, Z.
1105 (2018). EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after
1106 photobleaching data. *Nucleic Acids Research*, 46, 467–472. <https://doi.org/10.1093/nar/gky508>

1107 Kroschwitz, S., Munder, M. C., Maharana, S., Franzmann, T. M., Richter, D., Ruer, M., Hyman, A. A. &
1108 Alberti, S. (2018). Different Material States of Pub1 Condensates Define Distinct Modes of Stress
1109 Adaptation and Recovery. *Cell Reports*, 23(11), 3327–3339.
1110 <https://doi.org/10.1016/J.CELREP.2018.05.041>

1111 Längst, G., Bonte, E. J., Corona, D. F. V. & Becker, P. B. (1999). Nucleosome movement by CHRAC and
1112 ISWI without disruption or trans-displacement of the histone octamer. *Cell*, 97(7), 843–852.
1113 [https://doi.org/10.1016/S0092-8674\(00\)80797-7](https://doi.org/10.1016/S0092-8674(00)80797-7)

1114 Larson, A. G. & Narlikar, G. J. (2018). The Role of Phase Separation in Heterochromatin Formation,
1115 Function, and Regulation. *Biochemistry*, 57(17), 2540–2548.
1116 <https://doi.org/10.1021/acs.biochem.8b00401>

1117 Leonard, J. D. & Narlikar, G. J. (2015). A Nucleotide-Driven Switch Regulates Flanking DNA Length
1118 Sensing by a Dimeric Chromatin Remodeler. *Molecular Cell*, 57(5), 850–859.
1119 <https://doi.org/10.1016/J.MOLCEL.2015.01.008>

1120 Li, L., Chen, K., Sia, Y., Hu, P., Ye, Y. & Chen, Z. (2023). Structure of the ISW1a complex bound to the
1121 dinucleosome. *BioRxiv*. <https://doi.org/10.1101/2023.01.02.522444>

1122 Li, W., Hu, J., Shi, B., Palomba, F., Digman, M. A., Gratton, E. & Jiang, H. (2020). Biophysical properties
1123 of AKAP95 protein condensates regulate splicing and tumorigenesis. *Nature Cell Biology*, 22(8),
1124 960–972. <https://doi.org/10.1038/s41556-020-0550-8>

1125 Logie, C., Tse, C., Hansen, J. C. & Peterson, C. L. (1999). The Core Histone N-Terminal Domains Are
1126 Required for Multiple Rounds of Catalytic Chromatin Remodeling by the SWI/SNF and RSC
1127 Complexes[†]. *Biochemistry*, 38(8), 2514–2522. <https://doi.org/10.1021/BI982109D>

1128 Ludwigsen, J., Hepp, N., Klinker, H., Pfennig, S. & Mueller-Planitz, F. (2018). Remodeling and
1129 repositioning of nucleosomes in nucleosomal arrays. In *Methods in Molecular Biology*.
1130 https://doi.org/10.1007/978-1-4939-8556-2_18

1131 Ludwigsen, J., Klinker, H. & Mueller-Planitz, F. (2013). No need for a power stroke in ISWI-mediated
1132 nucleosome sliding. *EMBO Reports*, 14(12), 1092–1097.
1133 <https://doi.org/10.1038/EMBOR.2013.160>

1134 Maeshima, K., Iida, S. & Tamura, S. (2021). *Physical Nature of Chromatin in the Nucleus*.
1135 <https://doi.org/10.1101/cshperspect.a040675>

1136 Maeshima, K., Matsuda, T., Shindo, Y., Imamura, H., Tamura, S., Imai, R., Kawakami, S., Nagashima, R.,
1137 Soga, T., Noji, H., Oka, K. & Nagai, T. (2018). A Transient Rise in Free Mg²⁺ Ions Released from
1138 ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation. *Current Biology*, 28(3),
1139 444-451.e6. <https://doi.org/10.1016/j.cub.2017.12.035>

1140 Maeshima, K., Rogge, R., Tamura, S., Joti, Y., Hikima, T., Szerlong, H., Krause, C., Herman, J., Seidel, E.,
1141 DeLuca, J., Ishikawa, T. & Hansen, J. C. (2016). Nucleosomal arrays self-assemble into
1142 supramolecular globular structures lacking 30-nm fibers. *The EMBO Journal*, 35(10), 1115–1132.
1143 <https://doi.org/10.15252/EMBJ.201592660>

1144 Mueller-Planitz, F., Klinker, H., Ludwigsen, J. & Becker, P. B. (2013). The ATPase domain of ISWI is an
1145 autonomous nucleosome remodeling machine. *Nature Structural and Molecular Biology*.
1146 <https://doi.org/10.1038/nsmb.2457>

1147 Munder, M. C., Midtvedt, D., Franzmann, T., Nüske, E., Otto, O., Herbig, M., Ulbricht, E., Müller, P.,
1148 Taubenberger, A., Maharana, S., Malinovska, L., Richter, D., Guck, J., Zaburdaev, V. & Alberti, S.
1149 (2016). A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry
1150 into dormancy. *ELife*, 5(MARCH2016). <https://doi.org/10.7554/ELIFE.09347>

1151 Muzzopappa, F., Hertzog, M. & Erdel, F. (2021). DNA length tunes the fluidity of DNA-based
1152 condensates. *Biophysical Journal*, 120(7), 1288–1300.
1153 <https://doi.org/10.1016/J.BPJ.2021.02.027>

1154 Olins, A. L. & Olins, D. E. (1974). Spheroid chromatin units (v bodies). *Science*, 183(4122), 330–332.

1155 <https://doi.org/10.1126/science.183.4122.330>

1156 Oppikofer, M., Bai, T., Gan, Y., Haley, B., Liu, P., Sandoval, W., Ciferri, C. & Cochran, A. G. (2017).

1157 Expansion of the ISWI chromatin remodeler family with new active complexes. *EMBO Reports*,

1158 18(10), 1697–1706. <https://doi.org/10.15252/EMBR.201744011>

1159 Ou, H. D., Phan, S., Deerinck, T. J., Thor, A., Ellisman, M. H. & O’Shea, C. C. (2017). ChromEMT:

1160 Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. *Science*,

1161 357(6349). <https://doi.org/10.1126/science.aag0025>

1162 Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. (2006). *Engineering and*

1163 *characterization of a superfolder green fluorescent protein*. <https://doi.org/10.1038/nbt1172>

1164 Peeples, W. & Rosen, M. K. (2021). Mechanistic dissection of increased enzymatic rate in a phase-

1165 separated compartment. *Nature Chemical Biology*. <https://doi.org/10.1038/s41589-021-00801->

1166 x

1167 Poirier, M. G., Bussiek, M., Langowski, J. & Widom, J. (2008). Spontaneous Access to DNA Target Sites

1168 in Folded Chromatin Fibers. *Journal of Molecular Biology*, 379(4), 772–786.

1169 <https://doi.org/10.1016/j.jmb.2008.04.025>

1170 Poirier, M. G., Oh, E., Tims, H. S. & Widom, J. (2009). Dynamics and function of compact nucleosome

1171 arrays. *Nature Structural and Molecular Biology*, 16(9), 938–944.

1172 <https://doi.org/10.1038/nsmb.1650>

1173 Post, C. B. & Zimm, B. H. (1982). Theory of DNA condensation: Collapse versus aggregation.

1174 *Biopolymers*, 21(11), 2123–2137. <https://doi.org/10.1002/BIP.360211104>

1175 R Core Team. (2022). *R: A Language and Environment for Statistical Computing* (4.2.1). R Foundation
1176 for Statistical Computing.

1177 Ricci, M. A., Manzo, C., García-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. (2015). Chromatin fibers
1178 are formed by heterogeneous groups of nucleosomes in vivo. *Cell*, 160(6), 1145–1158.
1179 <https://doi.org/10.1016/J.CELL.2015.01.054>

1180 Rudolph, J., Mahadevan, J., Dyer, P. & Luger, K. (2018). Poly(ADP-ribose) polymerase 1 searches DNA
1181 via a ‘monkey bar’ mechanism. *ELife*, 7. <https://doi.org/10.7554/ELIFE.37818>

1182 Schalch, T., Duda, S., Sargent, D. F. & Richmond, T. J. (2005). X-ray structure of a tetranucleosome and
1183 its implications for the chromatin fibre. *Nature* 2005 436:7047, 436(7047), 138–141.
1184 <https://doi.org/10.1038/nature03686>

1185 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden,
1186 C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P. &
1187 Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. *Nature Methods*,
1188 9(7), 676–682. <https://doi.org/10.1038/NMETH.2019>

1189 Schneider, M. W. G., Gibson, B. A., Otsuka, S., Spicer, M. F. D., Petrovic, M., Blaukopf, C., Langer, C. C.
1190 H., Batty, P., Nagaraju, T., Doolittle, L. K., Rosen, M. K. & Gerlich, D. W. (2022). A mitotic
1191 chromatin phase transition prevents perforation by microtubules. *Nature*, 609, 183.
1192 <https://doi.org/10.1038/s41586-022-05027-y>

1193 Schram, R. D., Klinker, H., Becker, P. B. & Schiessel, H. (2015). Computational study of remodeling in a
1194 nucleosomal array. *European Physical Journal E*, 38(8). [https://doi.org/10.1140/epje/i2015-15085-4](https://doi.org/10.1140/epje/i2015-
1195 15085-4)

1196 Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity
1197 ultracentrifugation and Lamm equation modeling. *Biophysical Journal*, 78(3), 1606–1619.
1198 [https://doi.org/10.1016/S0006-3495\(00\)76713-0](https://doi.org/10.1016/S0006-3495(00)76713-0)

1199 Shi, B., Li, W., Song, Y., Wang, Z., Ju, R., Ulman, A., Hu, J., Palomba, F., Zhao, Y., Le, J. P., Jarrard, W.,
1200 Dimoff, D., Digman, M. A., Gratton, E., Zang, C. & Jiang, H. (2021). UTX condensation underlies
1201 its tumour-suppressive activity. *Nature*, 597(7878), 726–731. <https://doi.org/10.1038/s41586-021-03903-7>

1203 Strickfaden, H., Tolsma, T. O., Sharma, A., Underhill, D. A., Hansen, J. C. & Hendzel, M. J. (2020).
1204 Condensed Chromatin Behaves like a Solid on the Mesoscale In Vitro and in Living Cells. *Cell*,
1205 183(7), 1772-1784.e13. <https://doi.org/10.1016/J.CELL.2020.11.027>

1206 Tilly, B. C., Chalkley, G. E., van der Knaap, J. A., Moshkin, Y. M., Kan, T. W., Dekkers, D. H. W., Demmers,
1207 J. A. A. & Peter Verrijzer, C. (2021). In vivo analysis reveals that ATP-hydrolysis couples
1208 remodeling to SWI/SNF release from chromatin. *eLife*, 10. <https://doi.org/10.7554/eLife.69424>

1209 Verschure, P. J., van der Kraan, I., Manders, E. M. M., Hoogstraten, D., Houtsmuller, A. B. & van Driel,
1210 R. (2003). Condensed chromatin domains in the mammalian nucleus are accessible to large
1211 macromolecules. *EMBO Reports*, 4(9), 861–866. <https://doi.org/10.1038/sj.embo.embor922>

1212 Wang, J., Choi, J. M., Holehouse, A. S., Lee, H. O., Zhang, X., Jahnel, M., Maharana, S., Lemaitre, R.,
1213 Pozniakovsky, A., Drechsel, D., Poser, I., Pappu, R. v., Alberti, S. & Hyman, A. A. (2018). A
1214 Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding
1215 Proteins. *Cell*, 174(3), 688-699.e16. <https://doi.org/10.1016/j.cell.2018.06.006>

1216 Weidemann, T., Wachsmuth, M., Knoch, T. A., Müller, G., Waldeck, W. & Langowski, J. (2003).
1217 Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy

1218 and confocal imaging. *Journal of Molecular Biology*, 334(2), 229–240.

1219 <https://doi.org/10.1016/j.jmb.2003.08.063>

1220 Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. (2007). Chromatin remodelling at promoters
1221 suppresses antisense transcription. *Nature*, 450(7172), 1031–1035.

1222 <https://doi.org/10.1038/nature06391>

1223 Woodcock, C. L. F. (1973). Ultrastructure of inactive chromatin. *Journal of Cell Biology*, 59, A368.

1224 Yamada, K., Frouws, T. D., Angst, B., Fitzgerald, D. J., Deluca, C., Schimmelle, K., Sargent, D. F. &
1225 Richmond, T. J. (2011). Structure and mechanism of the chromatin remodelling factor ISW1a.
1226 *Nature*. <https://doi.org/10.1038/nature09947>

1227 Yang, J. G., Madrid, T. S., Sevastopoulos, E. & Narlikar, G. J. (2006). The chromatin-remodeling enzyme
1228 ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. *Nature
1229 Structural and Molecular Biology*, 13(12), 1078–1083. <https://doi.org/10.1038/nsmb1170>

1230 Yang, J. G. & Narlikar, G. J. (2007). FRET-based methods to study ATP-dependent changes in chromatin
1231 structure. *Methods*, 41(3), 291–295. <https://doi.org/10.1016/j.ymeth.2006.08.015>

1232 Zhang, M., Díaz-Celis, C., Onoa, B., Cañari-Chumpitaz, C., Requejo, K. I., Liu, J., Vien, M., Nogales, E.,
1233 Ren, G. & Bustamante, C. (2022). Molecular Organization of the Early Stages of Nucleosome
1234 Phase Separation Visualized by Cryo-Electron Tomography. *Molecular Cell*, 82(16), 3000.
1235 <https://doi.org/10.1016/j.MOLCEL.2022.06.032>

1236 Zhang, Y., Narlikar, G. J. & Kutateladze, T. G. (2021). Enzymatic Reactions inside Biological
1237 Condensates. *Journal of Molecular Biology*, 433(12). <https://doi.org/10.1016/j.jmb.2020.08.009>

1238