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Abstract

Genetic management is a critical component of threatened species conservation.
Understanding spatial patterns of genetic diversity is essential for evaluating the resilience of
fragmented populations to accelerating anthropogenic threats. Nowhere is this more relevant
than on the Australian continent, which is experiencing an ongoing loss of biodiversity that
exceeds any other developed nation. Using a proprietary genome complexity reduction-based
method (DArTSeq), we generated a data set of 3,239 high quality Single Nucleotide
Polymorphisms (SNPs) to investigate spatial patterns and indices of genetic diversity in the
koala (Phascolarctos cinereus), a highly specialised folivorous marsupial that is experiencing
rapid and widespread population declines across much of its former range. Our findings
demonstrate that current management divisions across the state of New South Wales (NSW)
do not fully represent the distribution of genetic diversity among extant koala populations,
and that care must be taken to ensure that translocation paradigms based on these frameworks
do not inadvertently restrict gene flow between populations and regions that were historically
interconnected. We also recommend that koala populations should be prioritised for
conservation action based on the scale and severity of the threatening processes that they are
currently faced with, rather than placing too much emphasis on their perceived value (e.g., as
reservoirs of potentially adaptive alleles), as our data indicate that existing genetic variation
in koalas is primarily partitioned amongst individual animals. As such, the extirpation of
koalas from any part of their range represents a potentially critical reduction of genetic
diversity for this iconic Australian species.

Keywords: Phascolarctos cinereus, phylogeography, conservation genomics, wildlife
monitoring, threatened species management

Abbreviations: ACT, Australian Capital Territory; AMOVA, analysis of molecular variance;
ARKS, areas of regional koala significance; CLUMPAK, cluster Markov packager across K;
DAPC, discriminate analysis of principal components; DArT, Diversity Arrays Technology;
EPBC Act, Commonwealth Environment Protection and Biodiversity Conservation Act 1999;
GDR, Great Dividing Range; HL, homozygosity by locus; HWE, Hardy—Weinberg
equilibrium; IR, internal relatedness; KMA, koala management area; NSW, New South
Wales; QLD, Queensland; SA, South Australia; SNP, single nucleotide polymorphism; VIC,
Victoria

1. Introduction

The koala (Phascolarctos cinereus) is an iconic Australian marsupial that presents a complex
management challenge because it is not uniformly threatened across its range. In 2012, the
collective koala populations of Queensland (QLD), New South Wales (NSW) and the
Australian Capital Territory (ACT) were classified as ‘Vulnerable’ under the Commonwealth
Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) following an
inquiry launched by the Australian Senate the previous year to evaluate the appropriate
conservation status of the species (Senate, 2011; Shumway et al., 2015). Less than a decade
later, in 2021, the status of these same populations was upgraded to ‘Endangered’ following a
reassessment undertaken by the Threatened Species Scientific Committee in the wake of the
unprecedented extreme fire season or “Black Summer” of 2019-2020 (TSSC, 2021).
Conversely, koala populations in the states of Victoria (VIC) and South Australia (SA) are
widely considered to be stable, or even overabundant in some cases, and are therefore not
listed under the EPBC Act. The management of specific koala populations across Australia
has been further complicated by inconsistent state-level legislative priorities and conservation
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85  planning frameworks that have, at different times, afforded the species varying levels of
86  significance and protection (Senate, 2011; Adams-Hosking et al., 2016; McAlpine et al.,
87  2015).

88 In NSW, a large body of evidence collected over nearly four decades demonstrates
89 that koalas are experiencing widespread population declines due to a variety of threats that
90 are often synergistic in nature (Reed et al., 1990; Lunney et al., 1995; Lunney et al., 2000;
91  Lunney et al., 2009). Chief among these is the loss or fragmentation of critical native habitats
92  due to land clearing, urbanisation and, more recently, extreme environmental disturbances
93  associated with anthropogenic climate change (e.g., severe drought and altered fire regimes).
94  Other notable threats to koalas include disease, heat waves, vehicle strikes, and dog attacks
95  (Adams-Hosking et al., 2016; McAlpine et al., 2015, DAWE, 2022). Within this context,
96 devising objective and unambiguous criteria for identifying and prioritising conservation
97  targets is a crucial first step in the development of evidence-based management paradigms
98 that will make the most efficient use of limited resources to stabilise or rehabilitate declining
99  koala populations. To date, particular emphasis has been placed on using data-driven spatial
100 analyses to create management divisions which represent areas and habitats with the greatest
101  importance for the long-term persistence of the species (DECC, 2008; DPIE, 2020; DPE,
102 2022).

103 The specific criteria used to define management divisions for koalas across NSW
104  have changed considerably over time. The ‘Recovery plan for the koala (Phascolarctos

105  cinereus)’, released in 2008 by the former Department of Environment and Climate Change
106  NSW, identified seven koala management areas (KMAs) based on a combination of local
107  government boundaries and the known distributions of preferred koala food tree species

108  (DECC, 2008). By contrast, the NSW Koala Strategy 2022 (DPE, 2022) does not reference
109 these KMAs but instead identifies a total of 50 koala populations, which were derived from
110 the 48 Areas of Regional Koala Significance (ARKS) developed by the NSW Department of
111  Planning and Environment using state-wide information on koala occurrence (DPIE, 2020;
112 DPE, 2022). The primary objective of defining both the KMAs and the ARKS was to create
113  broad management areas which could be used to identify and combat threatening processes at
114  local and regional scales. The NSW Koala Strategy 2022 further delineates the state’s koala
115  populations into two main intervention categories. The first consists of 19 populations that
116  are considered to be supported by sufficient information to warrant immediate targeted

117  conservation actions. The second category covers the remaining 31 koala populations, where
118  key knowledge gaps persist that could hinder the effectiveness of interventions to mitigate
119 threats, enhance habitat quality, and improve overall population viability (DPE, 2022). One
120  of the most critical of these knowledge gaps, as addressed by both the NSW Koala Strategy
121 2022 and the NSW Chief Scientist and Engineer’s Report, is an understanding of the

122 mechanisms that have shaped the distribution of genome-wide genetic diversity in koalas
123 (DPE, 2022; NSW Chief Scientist, 2016).

124 An extensive body of theoretical and empirical research spanning decades has

125  established that the reduction of genetic diversity in small, fragmented populations can

126  increase their vulnerability to extinction from both inbreeding depression and a reduced

127  ability to adapt to rapid environmental change (Frankham, 2015; Hoffmann et al., 2020, Ralls
128 et al., 2020). However, the importance of genetic diversity to wildlife conservation has often
129  been neglected in both policy and practice. The NSW parliamentary inquiry (2020) into

130  “Koala populations and habitat in New South Wales” failed to mention genetics in its 16

131  findings or 42 recommendations “to help ensure the future of the koala”, despite the

132 testimony of several expert witnesses emphasising the importance of integrating genetic

133  monitoring into ongoing management strategies (NSW parliament, 2020). Fortunately, this
134  situation is beginning to change, with genetic and genomic approaches finding an
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135 increasingly wide range of applications in threatened species recovery efforts. These include,
136  resolving taxonomic uncertainties (Frankham, 2010; Neaves et al., 2018; Mu et al., 2022),
137  reconstructing historical demographic shifts (Jensen et al., 2018, Saremi et al., 2019),

138  assessing population size and connectivity (Lowe and Allendorf, 2010; Younger et al., 2017,
139  Hohenlohe et al. 2021), defining biologically meaningful management units (Moritz, 1994;
140  Fraser and Bernatchez, 2002) optimising captive breeding programs (Miller et al., 2010;

141 Witzenberger and Hochkirch, 2011), and investigating ecological or symbiotic interactions
142 that could inform the success of future or existing conservation paradigms, such as the

143 composition of gut microbiomes (Brice et al., 2019; Blyton et al. 2022) or host-parasite

144  assemblages (Lott et al., 2015a; Lott et al., 2015b; Vermeulen et al., 2016a; Vermeulen et al.,
145  2016b).

146 While several previous studies have investigated koala population structure and

147  phylogeography at various scales (Houlden et al., 1999; Lee et al., 2010; Lee et al., 2011;

148  Kjeldsen et al., 2016; Neaves et al., 2016; Dennison et al., 2017; Kjeldsen et al., 2019; Lott et
149  al., 2022), little is currently known about the levels or distribution of genetic diversity across
150  existing management divisions in NSW. Collecting this information is therefore not only

151  essential for determining the overall vulnerability of regional and local koala populations to
152  different threatening processes, and by extension their priority for targeted conservation

153  efforts, but will also provide baseline data against which the success of future and ongoing
154  conservation policies can be empirically assessed. The emergence of cost effective, high-

155  throughput next-generation sequencing platforms has made the implementation of large-scale
156  genetic monitoring programs increasingly feasible. Researchers are now able to identify

157  thousands or even millions of hypervariable genetic markers, such as single nucleotide

158  polymorphisms (SNPs), which can often be linked to specific regions of interest within the
159  wider genome (Morin et al., 2004; Wright et al., 2015). Coupled with the greater availability
160  of whole genome reference data from non-model organisms, massively parallel sequencing is
161  facilitating the exploration of genetic diversity, population structure, and local adaptation in a
162  wide range of threatened fauna, including koalas (Funk et al., 2012; Garner et al., 2016; Hogg
163  etal. 2023).

164 In this study, we used a data set of high-quality single nucleotide polymorphisms
165  (SNPs) generated using a reduced-representation sequencing approach to address the

166  following three research aims: (1) analyse the fine-scale spatial genetic structure of extant
167  populations of koalas across NSW; (2) estimate spatial patterns and rates of inter-population
168  gene flow; (3) generate comparative genetic diversity metrics for existing management

169  divisions (ARKS), and test for relationships between the quality of koala habitat and overall
170  levels of genetic diversity.

171
172 2. Methods
173 2.1 Sample Collection

174  Blood, tissue and buccal swab samples, representing 314 individuals from 29 of the 48 ARKS
175  (corresponding to 14 of the 19 populations for immediate investment, and 16 of the 31

176  populations with key knowledge gaps), were obtained from researchers, environmental

177  consultants, veterinarians, and wildlife rehabilitators from across the state of NSW (Table

178  S1.1; Figure 1). This constitutes the most geographically comprehensive survey of genetic
179  diversity in NSW koalas to date. Where possible, sampling gaps were also filled by sourcing
180 archived biological material from the Australian Museum Koala Tissue Biobank, the

181  designated repository for koala tissue and genetic material obtained in NSW. All samples

182  were stored in 70%—100% ethanol or frozen at —80°C prior to DNA extraction and

183  genotyping.
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184
185 2.2 DNA extraction and genotyping

186  Genomic DNA was extracted using either the Bioline Isolate II Genomic DNA Kit (Bioline,
187  Eveleigh, Australia) following the manufacturer’s protocols, or a standard high-salt

188  precipitation procedure (Sunnucks and Hales, 1996). Genotyping was performed using the
189  Diversity Arrays Technology platform (DArTseq™). DArTseq is a restriction enzyme-based
190  genome complexity reduction method that has been utilised to generate SNP data in a wide
191  range of vertebrate species for phylogeographic, phylogenetic, and population genetic

192  studies. DNA was processed as per Kilian et al. (2012), using paired adaptors which

193  corresponded to two different restriction enzyme overhangs: Pstl and Sphl. The Pstl-

194  compatible adapter included an Illumina flow cell attachment sequence, a sequencing primer
195  binding site, and a varying length barcode region. The reverse adapter contained a Sphl-

196  compatible overhang sequence and a flow cell attachment region. A digestion—ligation

197  reaction was performed at 37 °C for 2 h with ~100-200 ng of gDNA per sample. The DNA
198 fragments that were successfully cut by both Pstl and Sphl were then amplified by 30 cycles
199  of polymerase chain reaction (PCR), and the PCR products were sequenced as 77-bp or 138-
200  bp single-end reads on the HiSeq 2500 and Novaseq 6000 platforms, respectively (Illumina,
201  San Diego, USA). After demultiplexing and adapter trimming, the short-read sequence data
202  were processed using Stacks v2.64. Sequencing reads were standardised by truncating them
203  to 69bp in length and low-quality data (based on the PHRED scores provided in the FASTQ
204  files) were identified and discarded using the process_radtags program (Catchen et al. 2013).
205  Sequencing reads were discarded when the probability of them being correct dropped below
206  99.9% (i.e., a PHRED score of 30). Prior to implementing ref_map.pl in Stacks, the cleaned
207  FASTAQ files from the previous step were aligned to the koala reference genome

208  (GCA_002099425.1_phaCin_unsw_v4.1, Johnson et al. 2018) using the mem function in
209  Burrows-Wheeler Aligner (BWA) v0.7.15 (Li and Durbin, 2010; Willet et al., 2021). These
210  alignments were subsequently converted to BAM format using SAMtools v1.6 (Li et al.,

211 2009). The reference-aligned data were then used to assemble the sequences into loci and
212 identify SNPs using the ref_map.pl pipeline in Stacks (Catchen et al. 2013). Briefly, this

213 pipeline aligns matching sequences into ‘stacks’, which are in turn merged to form putative
214 loci. At each of these loci, nucleotide positions are examined, and SNPs are called using a
215  maximum likelihood framework. A catalogue is then created of all possible loci and alleles,
216  against which the individual samples are matched. The ref_map.pl pipeline was implemented
217  using the default parameters, with one exception: the alpha threshold required to call a SNP
218  was reduced from 0.05 to 0.01 (i.e., a greater number of sequence reads were required to

219  make a SNP call statistically significant at each locus) in order to minimise the risk of

220  introducing markers that represented false positives into the data set. Similarly, to reduce the
221  probability of linkage between markers, a single SNP was extracted from each locus using
222 the populations program in Stacks. The entire procedure, from library preparation to SNP
223 calling, was repeated a second time for 60 technical replicates. Only biallelic loci with 100%
224  reproducibility (i.e., no genotyping errors) were retained. Further filtering of the genotypes
225  was then performed in PLINK v 1.9 (Purcell et al., 2007). Variant sites with call rates of

226 <90% and minor allele frequencies of <0.005 were removed from the data set. This MAF
227  threshold was chosen to reduce the probability of including false alleles originating from
228  sequencing error by guaranteeing that each allele was sampled in in >2 individuals

229  independently (as shown by the formula 3/2 N: 3/(2 x 317) = 0.005) (Wright et al., 2019; Lott
230  etal., 2020). Finally, to accommodate downstream genetic analyses requiring a neutral set of
231  markers, the data set was further filtered to remove SNPs out of Hardy-Weinberg

232 equilibrium, and outlier SNPs that potentially represented loci under selection. Candidate
233 outlier SNPs were identified using the program PCAdapt for the R-software (Luu et al.,
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234 2017). PCAdapt employs a Bayesian hierarchical factor model to describe population

235  structure as latent factors, and locus-specific effects on population structure as correlated

236  factor loadings (Duforet-Frebourg et al., 2014). Unlike many alternative outlier detection

237  models, PCAdapt bypasses the assumption of an island model of gene flow and avoids the
238  need to define population structure a priori. Based on scree plots depicting the proportion of
239  explained variance (Figure S2.1), 4 K populations were chosen to account for neutral

240  structure in the data set using Cattell’s rule, which states that components corresponding to
241 eigenvalues to the left of the straight line should be kept (Cattell 1966). Outlier loci were

242 scored based on Bonferroni corrected p-values and a stringent false detection rate threshold
243 of 0.01 was selected. After controlling for the effects of neutral population structure, a total of
244 13 loci were identified as candidates for being under selection and removed from the data set.
245  Departure from Hardy—Weinberg equilibrium (HWE) was tested for each locus using the

246 package pegas v0.12. for the R software (Paradis, 2010). However, as the failure to consider
247  existing population structure by HWE filters has been shown to result in heterozygote

248  deficiencies at potentially informative loci due to Wahlund effects (De Meets, 2018), genetic
249  structure was first assessed by performing a discriminate analysis of principal components
250 (DAPC). The primary advantage of DAPC is that it does not rely on a particular population
251  genetics model and is therefore free from assumptions about HWE or linkage disequilibrium.
252 The major genetic clusters identified by DAPC were then used as the basis for partitioning
253  samples for HWE filtering. While sampling locations are more commonly used as a proxy for
254  genetic populations in the literature, such an approach might artificially inflate divergence
255  estimates between sampling locations if they do not accurately reflect the underlying

256  population structure (Pearman et al. 2022). Consequently, to maximise the retention of

257  potentially informative loci, while also accommodating downstream analyses which require
258  neutral genetic markers, we elected to only remove loci that deviated from HWE in all major
259  genetic clusters identified by DAPC. The quality control criteria described above resulted in a
260  data set of 3,239 high quality SNPs that, except where specifically indicated, were used for
261  all downstream analyses.

262
263 2.3 Fixed difference analysis

264  To examine the possibility that some existing management divisions might represent

265  demographically independent units characterised by restricted gene flow, a fixed difference
266  analysis was performed in dartR (Gruber et al., 2018) using the default parameters. A fixed
267  difference occurs when two populations share no alleles at a particular locus. Therefore, the
268 accumulation of fixed differences between populations strongly indicates a lack of gene flow.
269  We elected to partition koala samples by ARKS for this and all other analyses requiring a
270  priori assignment of individuals into specific management divisions, as the criteria that were
271  used to develop them are transparent and well documented. Conversely, the rationale for

272 modifying the 48 ARKS into the 50 populations outlined in the NSW Koala Strategy has not
273 been published. Using the gl.collapse.recursive function (Gruber et al., 2018), fixed

274  differences were summed over pairwise groupings of populations (i.e., ARKS). When no

275  fixed differences were detected between the two populations in question, they were

276  amalgamated. This process was repeated until no further consolidation was possible. As

277  noted by Georges et al. (2018), the decision to amalgamate two populations can be made with
278  relative certainty, but the separation of two populations based on the detection of one or more
279  fixed differences can be influenced by false positives that may arise as a consequence of the
280 finite sample sizes involved. As such, the groupings of ARKS identified by the fixed-

281  difference analysis described above were tested for significance. Population pairs for which
282  the number of fixed differences was not statistically significant (i.e., the observed number of
283  fixed differences was not significantly different from the expected rate of false positives)
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284  were further amalgamated. The fixed difference analysis was performed using a data set that
285  retained SNPs that were putatively under selection and/or out of HWE (i.e., unfiltered), as
286  removing these loci could potentially inflate the counts of fixed allelic differences between
287  ARKS.

288
289 2.4 Analysis of population structure

290  The fine-scale population structure and admixture history of koalas across NSW was

291  investigated using a Bayesian model-based clustering approach implemented in the program
292  STRUCTURE 2.3.4 (Pritchard et al., 2000). Ten independent runs were used to model up to
293 15 populations (i.e., K = 1-15), with each run consisting of a burn-in period of 10° iterations,
294  followed by 2 x 10° Markov chain Monte Carlo (MCMC) replicates. We did not use location
295 information to establish priors and the chosen ancestry model assumed both admixture and
296  correlated allele frequencies. Structure Harvester (Earl and Von Holdt, 2012) was then used
297  to determine the optimal value of K by calculating both the maximum delta log likelihood
298 (AK Evanno et al., 2005) and the maximum posterior probability (L(K) Pritchard et al., 2000).
299  Finally, the Cluster Markov Packager Across K (CLUMPAK) web server (Kopelman et al.,
300 2015) was used to merge and visualise replicate runs as bar plots. Following the

301 recommendations of Janes et al. (2017), each of the clusters identified by this procedure was
302  subsequently rerun to test for additional sub-structuring. For all downstream analyses,

303 individual samples were categorised into distinct populations according to their membership
304 coefficients, defined here as the proportion of each genotype that could be attributed to a

305 particular genetic cluster. Admixed koalas were assigned to the population which accounted
306  for the largest percentage of their genome.

307 To quantify interpopulation genetic similarity, pairwise Fsr indices and their 95%

308 confidence intervals were calculated with 1000 bootstraps in the R package dartR (Gruber et
309 al., 2018). The hierarchical partitioning of genetic variation was assessed using an analysis of
310 molecular variance (AMOVA) in the R package Poppr version 2.7.1 (Kamvar et al., 2014).
311  Finally, the correlation between geographical and genetic distances was examined using a
312  Mantel test performed in dartR (Gruber et al., 2018).

313
314 2.5 Estimating contemporary inter-population gene flow

315  Contemporary migration patterns were further investigated in BayesAss version 3.0 (Wilson
316  and Rannala, 2003). This software program utilises a Bayesian statistical framework to

317  estimate recent immigration rates from multilocus genotypes. Following the

318 recommendations of Meirmans, (2013), sampling locations were pooled (i.e., fewer

319  populations with many individuals) to increase the statistical power of the analyses. The

320 koala samples were partitioned into a total of six pools, with four of these pools directly

321  corresponding to a major genetic cluster identified by DAPC and STRUCTURE. The final
322 two pools were created by subdividing the fifth major genetic cluster into two groups in order
323  to separate samples sourced from collection sites to the east and west of the Great Dividing
324  Range (GDR; Table S1.1). This was done to test the hypothesis of Lott et al, (2022) that a
325  source-sink population dynamic currently exists across the GDR. To achieve the

326  recommended acceptance rates (0.2-0.4), the mixing parameters for the inbreeding coefficient
327  and allele frequency were set to 0.10 and 0.30 respectively. Analyses were then run for 2 x
328 10 iterations, with a burn-in period of 5 x 10 iterations, and a sampling frequency of 2,000.
329  The analysis was repeated five times with different starting-seed values. Convergence was
330 diagnosed using two different approaches: first, by confirming that mean parameter estimates
331  were consistent between replicate runs and, second, by ensuring that large log-probability

332 fluctuations were confined to the burn-in phase and that no major oscillations occurred which
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333  might influence parameter estimates (Figure S2.2). The median migration rates of the five
334  independent BayesAss runs were used to construct 95% credible sets by multiplying the
335 mean standard deviation for each migration rate by 1.96, as suggested in the BayesAss user
336  manual. Migration rates were considered to be significant when the credible set did not

337  overlap with zero.

338
339 2.6 Comparative genetic diversity metrics

340 Homozygosity by locus (HL), an individual-based measure of genetic variation, was

341  calculated for each sample using the GENHET function (Coulon, 2010) in R. The primary
342  advantage of this method is that it accounts for allelic variability when weighing the

343  contribution of each locus to the homozygosity index (i.e., greater weight is given to the most
344  informative loci) (Aparicio et al., 2006). Consequently, HL is expected to be more strongly
345  correlated with inbreeding coefficients and genome-wide homozygosity than other commonly
346  used individual-based measures of genetic variation such as the uncorrected proportion of
347  homozygous loci or internal relatedness (IR) (Aparicio et al., 2006), particularly in open

348  populations with varying levels of dispersal and/or admixture, as is likely to be the case in
349  koalas. Mean HL values were calculated for both the 29 sampled ARKS, and the five major
350 genetic clusters identified by DAPC and STRUCTURE.

351 To investigate the relationship between genetic diversity in koalas and several key
352  aspects of their environment we employed a multilevel mixed-effects linear model, where HL.
353  was modelled as the response variable (R Core Team, 2014). Information on the basic

354  characteristics for each ARK was sourced from the Koala Habitat Information Base (DPIE,
355  2019; Table S1.2). Three key predictors were included in the final model: the percentage of
356  high and moderate functional habitat, the percentage of low and very low functional habitat,
357 and human population density. Additionally, as the effects of these predictors are unlikely to
358  be entirely independent, we included several interaction terms in our final model,

359  specifically: the percentage of high and moderate functional habitat and the percentage of low
360 and very low functional habitat, the percentage of high and moderate functional habitat and
361  human population density, and the percentage of low and very low functional habitat and
362  human population density. These interaction terms appear as bilinear functions of the paired
363  predictors. Finally, the major genetic clusters from which individual koala samples were

364  sourced were fitted as random effects. Prior to analysis, the continuous data were scaled to a
365 range between O and 1, while the categorical variable was recoded into a set of separate

366  binary variables (i.e., dummy coding). The model outputs were compared using an analysis
367  of deviance table.

368

369 3. Results

370  With the exception of Wollemi National Park, all of the sampled ARKS collapsed into a

371  single operational taxonomic unit (OTU) based on corroborated fixed differences. While the
372 two identified OTUs differed by only two fixed differences, subsequent testing supported
373 their significance (false positive expectation = 0.4, p <0.001). It is important to note,

374  however, that the false positive rate for fixed differences is largely a product of sample size.
375  As the Wollemi National Park ARKS was represented by only two specimens, these results
376  must be interpreted extremely cautiously as it is highly probable that they represent a false
377  positive.

378

379 3.2 Population structure
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380  The initial DAPC analyses supported the existence of five major genetic clusters in koalas
381  across the state of NSW (Figure 2). This was consistent with the results of the Bayesian

382  model-based clustering procedure implemented in STRUCTURE which indicated that either
383  two (maximum AK) or five (maximum L(K)) populations best described the distribution of
384  genetic variability (Figure 3). Furthermore, re-running STRUCTURE separately for each of
385  the sample groups identified by the K=5 solution uncovered an additional putative sub-

386  cluster. Given that the demographic, environmental and historical processes that have led to
387 the current distribution of genetic diversity in koalas are likely to be multifaceted and

388  complex, it is perhaps unsurprising that different levels of organisation would be present in
389  the genetic structure. Determining the clustering solution which best describes population
390 structure in koalas is therefore a non-trivial task. Janes et al. (2017) has shown that AK tends
391  to underestimate population structure by identifying only the highest level of differentiation.
392  Conversely, Perez et al. (2018) demonstrated that STRUCTURE outputs can be heavily

393 influenced by isolation-by-distance, most often through the detection of artificial and

394  misleading genetic clusters. However, given that the STRUCTURE and DAPC analyses both
395 converged on five clusters as best describing the distribution of genetic diversity in

396  contemporary NSW koala populations, a value of five was used for any downstream analyses
397 that incorporated assumptions of population structure.

398 The pairwise Fst values indicated low to moderate differentiation between the five
399  major genetic clusters of koalas (Table 1). The AMOV A demonstrated that the greatest

400  proportion of genetic variance occurred within individual koalas (69.280%), while variance
401  between individuals within the 29 ARKS and between ARKS within the five major genetic
402  clusters accounted for 8.977% and 11.918% of genetic diversity, respectively (Table 2). In
403  contrast, genetic structure among the five major population clusters represented 9.825% of
404  total variance. Finally, the Mantel test indicated that a positive correlation existed between
405  genetic distances and geographic distances in NSW koalas (r = 0.573, p = 0.025).

406

407 3.3 Estimating inter-population gene flow

408  Bayesian estimations of contemporary migration rates between the major genetic clusters of
409  koalas varied but were generally low and highly asymmetrical (Figure 4; Table S3.1). The
410 largest proportion of migrants appeared to be the result of unidirectional dispersal from

411 Cluster 1 into Cluster 2 (0.250 £ 0.032). This is consistent with the high levels of admixture
412  that were observed between these two major genetic clusters. Low but statistically significant
413  northward dispersal was also detected between Cluster 3 (East GDR) and Cluster 1 (0.058 +
414  0.028). Additionally, Cluster 3 (East GDR) was found to be a significant source of migrants
415  for the western koala populations that constituted Cluster 3 (West GDR) (0.208 + 0.039). The
416  movement of koalas appeared to be highly asymmetric, as comparable levels of southward
417  and eastward dispersal were not detected. The 95% credibility intervals of migration rates
418  between all other major genetic clusters encompassed zero and were therefore interpreted to
419  be nonsignificant.

420

421 3.4 Comparative genetic diversity metrics

422  Homozygosity by locus varied across the 29 sampled ARKS (Figure 5). While precise

423  estimates of genetic diversity should be interpreted cautiously when sample sizes are small,
424  the Gunnedah, Port Stephens, Queen Charlottes Creek, and Numeralla ARKS all exhibited
425  HL values that were significantly higher than the state average. Furthermore, a geographical
426  pattern of genetic diversity emerged in which HL values increased with latitude. Of the five
427  major genetic cluster identified by the DAPC and STRUCTURE analyses, Cluster 4 (centred
428  on Gunnedah and the Liverpool Plains) had the lowest overall genetic diversity, while Cluster
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429 1 (in far north-east NSW) had the highest. Multilevel mixed-effects linear models indicated
430  that, when major genetic cluster of origin was controlled for, neither the chosen predictors
431  nor their interaction terms were significantly correlated with genetic diversity in koalas

432  (Table 3).

433
434 4. Discussion
435 4.1 Koala population structure in NSW

436  Significant genetic structuring was detected in koala populations across the state of NSW.
437  Both multivariate and model-based clustering analyses indicated that there are five extant

438  major genetic clusters, with additional hierarchical structure identified within at least one of
439  these clusters. This distribution of genetic diversity broadly corresponds to that described

440  previously by Kjeldsen et al., (2016), Johnson et al., (2018) and Lott et al., (2022). Perhaps
441  unsurprisingly, vicariance across biogeographic barriers for forest adapted taxa appears to
442  have been an important driver of genetic differentiation in NSW koala populations. A

443  prominent north-south separation was observed across the Sydney Basin region, with the

444  southernmost lineage (Cluster 5) corresponding to what has been termed the South Coast

445  NSW cluster (Johnson et al., 2018; Kjeldsen et al., 2019; Lott et al., 2022). The Sydney Basin
446  and neighbouring Illawarra region are defined by extensive, low-lying coastal plains which
447  are boarded to the west by both the Blue Mountains and a region of uplifted sandstone known
448  as the Illawarra Escarpment (Bryant and Krosch, 2016). It has been speculated that the

449  vicariance of coastal forest habitat across these areas during the Miocene-Pleistocene may
450  have played an important role in structuring genetic diversity within a wide array of

451  vertebrate species, including koalas (Sumner et al., 2010; Pepper et al., 2014; Frankham et
452  al., 2016).

453 Further north, three distinct genetic clusters of koalas were found to inhabit coastal
454  NSW. The distribution of one of these lineages (Cluster 3) appeared to match that of the Mid-
455  Coast NSW genetic cluster previously identified by Johnson et al., (2018) and Lott et al.,

456  (2022), which is hypothesised to be bordered by the Clarence River Corridor in the north, and
457  either the Hunter Valley or the Sydney Basin in the south. Both of these putative

458  biogeographic barriers are lower elevation zones of dry, warm, open woodland or grassland
459  that are expected to represent a significant obstacle to the movement of koalas. Cluster 3 was
460  also found to extend west of the GDR, where an additional koala lineage (Cluster 4) was

461  identified, which was apparently centred on the Liverpool Plains in the North-West Slopes
462  region of NSW. There are several possible reasons why two distinct genetic clusters may

463  have been detected across these regions where Johnson et al., (2018) and Lott et al., (2022)
464  previously reported only one. The first is that the intensive, local-level sample collection

465  paradigm employed in this study may have allowed the detection of additional population
466  structure across the state of NSW that was masked from previous, continent-wide genetic
467  surveys of koalas. Alternatively, it may be because the aforementioned genetic studies were
468  based on the analysis of SNPs derived exclusively from exons (protein coding gene regions).
469  The level of genetic diversity found in exons is often lower than in non-protein coding

470  regions of the genome (e.g., introns). This has variously been attributed to stronger purifying
471  selection, higher mismatch repair activity or some combination of the two (Frigola et al.,

472 2017). In practice, this means that exons in biogeographically isolated koala populations can
473  be expected to retain their identity longer than non-protein coding regions, and analyses

474  based on molecular markers derived from these parts of the genome may therefore be biased
475  towards the detection of older divisions between populations. Conversely, molecular markers
476  primarily derived from non-protein coding regions (as, statistically, is likely to be the case
477  with the DArTSeq data set used in this study) may reflect population structure that has arisen
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478  comparatively more recently, possibly even as a consequence of anthropogenic habitat
479  fragmentation.

480 The final two NSW koala lineages identified by our analyses (Cluster 1 and Cluster
481  2), which were coincident with the South-East Queensland genetic cluster previously

482  identified by Johnson et al., (2018) and Lott et al., (2022), did not appear to be strongly

483  associated with vicariance across any of the biogeographic barriers which have been

484  proposed to exist in this region. While it is unclear at present how these two lineages have
485  maintained their unique genetic identities despite their close geographical proximity, one
486  possibility is that it is a consequence of historically restricted dispersal caused by the

487  expansion of rainforest habitat in the vicinity of the McPherson and Border Ranges during the
488  Pleistocene interglacials (Bryant and Krosch, 2016; Flores-Renteria et al., 2021).

489  Alternatively, higher-than-average recruitment in natal colonies and other social factors may
490  be reinforcing philopatry-related genetic structure. However, further research would be

491  required to either confirm or disprove this interpretation.

492
493 4.2 Spatial patterns of gene flow

494  Mantel tests revealed that a significant relationship exists between genetic distances (Fs7) and
495  geographical distances in koalas. Genetic isolation-by-distance is therefore likely to be a

496  significant driver of regional variation in NSW koala populations. However, the detection of
497  genetic structuring across relatively small areas also suggests that koala dispersal can be

498  impeded by features of the landscape. These two scenarios are by no means mutually

499  exclusive, and it seems clear that the movement of individuals between vicariant genetic

500 clusters, however infrequently, has resulted in complex patterns of genetic diversity across
501 the state of NSW. Comparatively rare, long-distance dispersal events, possibly coupled with
502 ancestral range expansions from the isolated refugia that are hypothesised to have existed

503  during one or more of the Pleistocene glacial periods (Adams-Hosking et al., 2011; Lott et
504 al., 2022), appear to have resulted in a state-wide isolation-by-distance effect which reflects
505 the once continuous geographic distribution of koalas across NSW. However, this isolation-
506  by-distance effect has failed to obscure the pre-existing genetic structure caused by vicariance
507  across more ancient biogeographic barriers.

508 Despite evidence for widespread admixture between the major genetic clusters,

509 contemporary gene flow was generally limited. The koala populations of the Liverpool Plains
510  (Cluster 4) and to the south of the Sydney Basin (Cluster 5) were found to be particularly

511  isolated, with no evidence for effective dispersal in recent generations. Koalas to the west of
512  the GDR are characterised by an increasingly disjunct and scattered distribution, and our

513  findings would be consistent with habitat fragmentation limiting gene flow between

514  previously interconnected regions and populations. Conversely, there is reason to believe that
515  koalas in both these areas (i.e., the Liverpool Plains and southern NSW) have long been

516 relatively isolated from the rest of the state. It has been hypothesised that the more marginal
517  habitat towards the western edge of the koala’s distribution has historically supported low
518 density, widely dispersed populations that have only transiently increased in size following
519  periods where climatic conditions (e.g., rainfall) have briefly improved (Ellis et al., 2017;

520 Lunney et al., 2012; Lunney et al., 2017; Predavec et al., 2018; Lunney et al., 2020). The

521  absence of large, stable patches of functional habitat to support long-term population growth
522  and provide corridors for effective dispersal may have served to reinforce the genetic

523  distinctiveness of western edge koala populations relative to their coastal conspecifics.

524  Similarly, the apparent isolation of koala populations in southern NSW may indicate that the
525  heterogenous landscapes of the Sydney Basin/Illawarra region have historically represented a
526  greater obstacle to dispersal than the biogeographic barriers that have been hypothesised to
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527  exist in other parts of the state. It is also highly likely that additional barriers to gene flow
528  have been created by the widespread urbanisation and land clearing that has occurred across
529 these areas since the European colonisation of Australia (Lunney and Leary, 1988; Lunney et
530 al., 2010; Lunney et al., 2014). While the koala populations of the Liverpool Plains and to the
531  south of the Sydney Basin/Illawarra region appear to have been effectively isolated from the
532  rest of the state in recent generations, the underlying barriers to dispersal have clearly not
533  always been absolute. Small numbers of highly admixed individuals were detected within
534  both groups, indicating that they may have once enjoyed greater, although perhaps still

535 limited, connectivity to genetically distinct koala populations across NSW. Alternatively,

536  undocumented translocations could have introduced some genotypes into areas where they
537  would otherwise not be expected to occur.

538 While contemporary gene flow between the major genetic clusters was generally low
539  or absent, there were several notable exceptions. Koala populations from the Mid North

540  Coast (Cluster 3) were found to be a significant source of migrants to multiple neighbouring
541  regions, including those to the west of the GDR. While the precise mechanisms underlying
542  state-wide dispersal patterns remain unclear, these observations strongly suggest that a

543  source—sink dynamic exists in this species, whereby the relatively large and stable koala

544  populations occupying high-quality coastal habitats are contributing a disproportionate

545  number of immigrants to less densely populated regions in the west. Identifying populations
546  or major genetic clusters that are net exporters of immigrants has important implications for
547  koala conservation. Extreme weather events, such as drought and heat waves, are strongly
548  associated with poor health and increased mortality in koalas, particularly for populations
549  living near the arid edge of the species’ current distribution (Adams-Hosking, et al., 2011;
550 Lunney et al., 2012; Davies et al., 2013; Davies et al., 2014; Seabrook et al., 2014; Lunney et
551 al., 2014; Lunney et al., 2020). If the koalas occupying marginal habitats are

552  disproportionately vulnerable to periodic population crashes caused by long-term fluctuations
553  in temperature and rainfall, then the asymmetric dispersal of individuals from larger, self-
554  supporting coastal populations may help facilitate their recovery by maintaining genetic

555  diversity and overall population viability in subsequent generations. Consequently, failure to
556  conserve koala source populations, and the critical native habitats that supports them, may
557  also negatively affect the survival of dependent sinks towards the western edge of koala

558 distribution.

559
560 4.3 Genetic diversity metrics

561  With several exceptions, genome-wide genetic diversity did not differ significantly between
562 the sampled ARKS. Notably, the Gunnedah, Port Stephens, Queen Charlottes Creek, and
563  Numeralla ARKS all exhibited levels of genetic diversity that were significantly lower than
564 the state average. While further sampling is required to confirm some of these findings, this
565 may indicate that koalas in these ARKS are more vulnerable to key threatening processes
566  than populations in other regions. When examining the five major genetic clusters, the

567  western (Cluster 4) and southern (Cluster 5) most lineages were found to have the lowest
568  overall levels of genome-wide genetic diversity. These results largely support the findings of
569  Johnson et al., (2018) and Lott et al., (2022) which demonstrated that, on a continental-scale,
570  koala genetic diversity decreased along a north-south cline. In the past, this phenomenon has
571  been attributed primarily to hunting or habitat-loss associated population bottlenecks

572  following European colonisation of Australia. However, mounting evidence suggests that a
573  much older demographic shift, such as regional differences in the effective sizes of koala
574  populations supported by climatic refugia during the Pleistocene glaciations, may underly this
575  phenomenon (Tsangaras et al., 2012, Neaves et al., 2016, Lott et al., 2022). Interestingly,
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576  multilevel mixed-effects linear models failed to detect any relationship between the scale of
577  key threatening processes (e.g., habitat loss) and the level of genetic diversity in NSW koala
578  populations. This highlights the importance of directly assessing genetic diversity when

579  developing risk management frameworks as the genetic health of populations clearly cannot
580 be inferred or predicted from other observable features of the environment.

581
582 4.4 Management Implications and Directions for Future Research

583  Despite near universal public support (Brown et al., 2018; Fielding et al., 2022), ongoing
584 attention from the scientific community, and unprecedented financial investment by both the
585  State and Federal governments, koala populations are declining across large parts of NSW.
586  As the rate at which anthropogenic processes destroy or irreversibly alter natural habitats
587  continues to accelerate, the development of strategies for facilitating gene flow between

588  small, fragmented populations will be integral to successful conservation efforts. In the

589  absence of natural dispersal corridors, such strategies are increasingly likely to take the form
590 of translocations. While there are numerous well documented benefits of wildlife

591 translocations, ongoing controversy surrounds their use as a tool for threatened species

592  management (Liddell et al., 2021). Common criticisms include a lack of clear program

593  objectives, poor follow-up monitoring, concerns that translocations do not address, and may
594  even legitimise, the processes that drive local extinctions (e.g., habitat loss), and fears of

595  outbreeding depression caused by the movement of individuals between genetically

596  dissimilar populations (i.e., genetic rescue) (Fischer and Lindenmayer, 2000; Germano et al.,
597  2015; Dresser et al., 2017). Fortunately, there is a growing body of evidence that the risks of
598 outbreeding depression are often exaggerated, and that any negative consequences will

599 typically only persist for a few generations, if they manifest at all (Frankham et al. 2015;

600  Ralls et al. 2020). Furthermore, widespread evidence of past admixture between major

601  genetic clusters of koalas, coupled with the lack of fixed genetic differences between the

602  ARKS, suggests that genetic rescue is a viable conservation strategy for this species.

603  However, there are other concerns about koala translocations that cannot be so easily

604  dismissed. The National Recovery Plan for the Koala 2022 repeatedly acknowledges that
605 translocations are likely to be important for the long-term conservation of this species, while
606  the 2022 NSW Koala Strategy includes the explicit goal of facilitating up to eight

607  translocation projects by 2026. Despite this, there are currently no nationally recognised

608  guidelines for either implementing or critically evaluating the success of koala translocations,
609  and the identification of genetically and ecologically meaningful management divisions

610 remains an ongoing challenge. The results of this study indicate that neither the ARKS nor
611  the derived populations referenced in the NSW Koala Strategy entirely reflect the

612  contemporary distribution of genetic diversity across the State’s koala populations. Most of
613  the major genetic clusters were found to span multiple ARKS, while the Far north-east

614  Hinterland ARKS appeared to contain two genetically distinct groups (Cluster 1 and 2). This
615  is not to suggest that the approach of using koala occurrence records, or data on ecological
616  threats and geographic barriers, to define management divisions lacks merit, simply that care
617  must be taken to ensure that translocation decisions based on these frameworks do not

618  inadvertently restrict gene flow between populations and regions that, historically, are likely
619  to have been interconnected. Similarly, the decision in the NSW Koala Strategy to further
620  divide the Bungonia ARKS into three subregions cannot be justified based on the current
621  genetic data. Koalas across southern NSW represent a single major genetic cluster and

622  display lower levels of diversity on average than their conspecifics further north. Artificially
623  imposing additional divisions on populations that are already relatively small and fragmented
624  may only serve to accelerate the erosion of this diversity. Consequently, the use of

625  translocations to promote gene flow between ARKS that represent the same major genetic
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626  clusters should be encouraged where possible, with the understanding that precautions must
627  also be taken to reduce the possibility of negative nongenetic effects caused by the

628 introduction of pathogens (Woodford and Rossiter, 1993; Kock et al., 2010; Dalziel et al.,
629  2017) or the modification of existing host-parasite dynamics (Lott et al., 2012; Aiello et al.
630  2014; Lott et al., 2015a; Lott et al., 2015b; Lott et al., 2018; Dunlop and Watson, 2022). The
631  movement of individuals between parapatric genetic clusters should also not be ruled out,
632  although the net genetic effects of translocations between specific populations cannot be

633  predicted without further research. The Narrandera ARKS represents one region where the
634  long-term consequences of translocation between genetically divergent koalas could be

635  studied, as this population is a product of admixture between founders from Victoria and
636  north-east NSW/south-east Queensland; two groups of koalas that would not be expected to
637  come into contact naturally (Parsons, 1990; Menkhorst, 2008). Future sample collection

638  efforts targeting regions or management divisions which are currently data deficient will also
639  be critical for determining the precise boundaries between genetically divergent koala

640  populations, particularly those that do not appear to be strongly associated with known

641  biogeographic barriers.

642 It is important to note that conservation planning generally places a greater emphasis
643  on population-level variation than individual genetic diversity metrics (Avise, 2008; Hoban,
644  2018; Liddell et al., 2020). However, our data demonstrate that most of the remaining genetic
645  variation to be found in NSW koalas is distributed between individuals rather than among
646  management divisions, or even the major genetic clusters. This strongly suggests that each
647  koala in NSW represents an important reservoir of genetic diversity and evolutionary

648  potential. To enhance conservation outcomes, it is therefore vital that stakeholders reduce
649  koala mortality rates across the entire State, while simultaneously maintaining habitat

650  connectivity and gene flow between as many surviving populations as possible. Given the
651  key knowledge gaps that persist for many koala populations, particularly in southern and

652  western NSW where the species is patchily distributed and detectability is proportionately
653  low, it is highly probable that the development of intensive evidence-based management

654  actions which target specific groups of koalas will ultimately prove impossible. Achieving
655  meaningful conservation outcomes will therefore require the implementation of more robust
656  legislation and management frameworks which address the root causes of ongoing koala

657  population declines (particularly drought and habitat loss). Where existing or emerging data
658  do exist to guide more targeted interventions, the authors recommend that policy makers,

659  land managers, and other stakeholders prioritise the protection of populations which are at the
660  most immediate risk of extinction, rather than those perceived to be more “valuable” based
661  on metrics such as the level or type of genetic diversity that they represent. Our results clearly
662  demonstrate that the loss of any koalas or populations represents a potentially critical

663  reduction of genetic diversity for this iconic Australian marsupial.
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1226  Tables
1227

1228  Table 1. Pairwise genetic differentiation (Fst) between the five major genetic clusters of
1229  koalas (bottom-left diagonal) and their associated Bonferroni-corrected p-values (top-right

1230  diagonal).

1231
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 - 0.073-0.085 0.082-0.095 0.198-0.222 0.173-0.194
Cluster 2 0.079 — 0.156-0.177 0.277-0.307 0.240-0.266
Cluster 3 0.088 0.166 - 0.134-0.153 0.120-0.136
Cluster 4 0.21 0.292 0.143 — 0.183-0.206
Cluster 5 0.183 0.253 0.128 0.194 -
1232

1233 Table 2. Hierarchical AMOVA results showing levels of genetic structure among the five

1234  major genetic clusters identified by STRUCTURE/DAPC, the areas of regional koala

ﬁ%g significance (ARKS), and individual animals (n=314).

Source of variation Sums of squares Variance components Percentage variation
Among clusters 9143.858 43.481 9.825
Among ARKS Within Clusters 941.136 52.748 11.918
Among Samples Within ARKS 386.077 39.731 8.977
Among samples 306.615 306.615 69.28

1237

1238  Table 3. Analysis of variance using Satterthwaite's method for changes in homozygosity by
1239  locus (HL) based on multilevel mixed-effects linear modelling.

Predictor Sum of Squares Degrees of Denominator degrees p-value
Freedom of freedom

Percentage of high & moderate
functional habitat <0.001 : 302.65 0.509
Percentage of low & very low
functional habitat 0.001 : 309.34 0.476
Human population density

<0.001 1 292.14 0.843
Percentage of high & moderate
functional habitat x percentage of
low & very low functional habitat 0.008 1 142.90 0.054
Percentage of high & moderate
functional habitat x human
population density <0.001 1 292.14 0.841
Percentage of low & very low
functional habitat x human

<0.001 1 292.15 0.846

population density
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Figure 1. Distribution of the 314 koala specimens included in this study relative to the 48 Areas of Regional Koala Significance
(ARKS). Samples are colour coded by major genetic cluster of origin, as identified by both DAPC and STRUCTURE.
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Figure 2. Scatterplot showing the first two principal components of the discriminant analysis of principal components (DAPC)
which was applied to the data set prior to filtering the loci that were out of Hardy-Weinberg equilibrium. Each koala genome is
represented by a single dot, while inertial ellipses are depicted as ovals, with the lines extending to the centroids of each cluster.
The number of principal components retained for each analysis (PCA) and the relative amount of genetic variation contained in
each discriminant factor (DA) are shown using eigenvalue plots.
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Figure 3. Distribution of genetic diversity in contemporary koala populations across the state of NSW. A) STRUCTURE plots
showing the inferred ancestry proportions for 314 koalas sourced from 29 Areas of Regional Koala Significance (ARKS) at four

different values of K. Optimal clustering solutions according to B) maximum delta log likelihood (AK) and C) maximum posterior
probability L(K).

15


https://doi.org/10.1101/2023.12.03.569474
http://creativecommons.org/licenses/by-nc-nd/4.0/

¥ JIsn|D
z J218n0

Figure 4. Chord diagram depicting contemporary gene flow estimates for NSW koalas derived from BayesAss (raw
BayesAss results are displayed in Table S3.1 in Supplementary Material). The thickness of the chords represents the
rate of migration from the source to the recipient population/s; only migration rates significantly different from zero
are displayed. The proportion of migrants relative to total population size is depicted on the outer section axis.
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Figure 5. Mean homozygosity by locus (HL) scores and associated 95% confidence intervals for A) the five major genetic clusters identified by
DAPC/STRUCTURE and B) 29 Areas of Regional Koala Significance (ARKS). In both instances, the mean state-wide HL is represented by a broken
black line. ARKS represented by a single sample are denoted with an asterisk, indicating that these values cannot be taken as representative of the
overall levels of genetic diversity within these management divisions.
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