

1 **Reversing the decline of threatened koala (*Phascolarctos cinereus*) populations in New
2 South Wales: Using genomics to define meaningful conservation goals**

3
4 Matthew J. Lott^{1,14}, Greta J. Frankham¹, Mark D.B. Eldridge¹, David E. Alquezar-Planas¹,
5 Lily Donnelly², Kyall R. Zenger³, Kellie A. Leigh⁴, Shannon R. Kjeldsen³, Matt A. Field^{5,6},
6 John Lemon^{7,8}, Daniel Lunney^{1,9,10}, Mathew S. Crowther¹⁰, Mark B. Krockenberger¹¹, Mark
7 Fisher¹², Linda E. Neaves¹³

8

9 ¹*Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New
10 South Wales 2010, Australia*

11 ²*Molecular Ecology and Evolutionary Laboratory, College of Science and Engineering,
12 James Cook University, Townsville, Queensland 4811, Australia*

13 ³*Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and
14 Engineering, James Cook University, Townsville, Queensland 4811, Australia*

15 ⁴*Science for Wildlife Ltd, PO Box 5, Mount Victoria, New South Wales 2786, Australia*

16 ⁵*Centre for Tropical Bioinformatics and Molecular Biology, James Cook University,
17 Townsville, Queensland 4811, Australia*

18 ⁶*Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South
19 Wales 2010, Australia*

20 ⁷*JML Environmental Consultants, 16 Illallangi Close, Armidale, New South Wales 2350,
21 Australia*

22 ⁸*School of Environmental and Rural Science, University of New England, Armidale, New
23 South Wales 2351, Australia*

24 ⁹*Department of Planning and Environment, Locked Bag 5022, Parramatta, New South Wales
25 2124, Australia*

26 ¹⁰*School of Life and Environmental Sciences, University of Sydney, Camperdown 2006, New
27 South Wales, Australia*

28 ¹¹*Sydney School of Veterinary Science, University of Sydney, Camperdown 2006, New South
29 Wales, Australia*

30 ¹²*3D Ecology Mapping, Emerald Beach 2456, New South Wales, Australia*

31 ¹³*Fenner School of Environment and Society, the Australian National University, Canberra,
32 Australian Capital Territory 2600, Australia*

33 ¹⁴*Corresponding author (Phone: +61 02 9320 6488. Email: matthew.lott@australian.museum)*

34

35

36 **Abstract**

37 Genetic management is a critical component of threatened species conservation.
38 Understanding spatial patterns of genetic diversity is essential for evaluating the resilience of
39 fragmented populations to accelerating anthropogenic threats. Nowhere is this more relevant
40 than on the Australian continent, which is experiencing an ongoing loss of biodiversity that
41 exceeds any other developed nation. Using a proprietary genome complexity reduction-based
42 method (DArTSeq), we generated a data set of 3,239 high quality Single Nucleotide
43 Polymorphisms (SNPs) to investigate spatial patterns and indices of genetic diversity in the
44 koala (*Phascolarctos cinereus*), a highly specialised folivorous marsupial that is experiencing
45 rapid and widespread population declines across much of its former range. Our findings
46 demonstrate that current management divisions across the state of New South Wales (NSW)
47 do not fully represent the distribution of genetic diversity among extant koala populations,
48 and that care must be taken to ensure that translocation paradigms based on these frameworks
49 do not inadvertently restrict gene flow between populations and regions that were historically
50 interconnected. We also recommend that koala populations should be prioritised for
51 conservation action based on the scale and severity of the threatening processes that they are
52 currently faced with, rather than placing too much emphasis on their perceived value (e.g., as
53 reservoirs of potentially adaptive alleles), as our data indicate that existing genetic variation
54 in koalas is primarily partitioned amongst individual animals. As such, the extirpation of
55 koalas from any part of their range represents a potentially critical reduction of genetic
56 diversity for this iconic Australian species.

57

58 **Keywords:** *Phascolarctos cinereus*, phylogeography, conservation genomics, wildlife
59 monitoring, threatened species management

60

61 **Abbreviations:** ACT, Australian Capital Territory; AMOVA, analysis of molecular variance;
62 ARKS, areas of regional koala significance; CLUMPAK, cluster Markov packager across K;
63 DAPC, discriminant analysis of principal components; DArT, Diversity Arrays Technology;
64 EPBC Act, Commonwealth Environment Protection and Biodiversity Conservation Act 1999;
65 GDR, Great Dividing Range; HL, homozygosity by locus; HWE, Hardy–Weinberg
66 equilibrium; IR, internal relatedness; KMA, koala management area; NSW, New South
67 Wales; QLD, Queensland; SA, South Australia; SNP, single nucleotide polymorphism; VIC,
68 Victoria

69

70 **1. Introduction**

71 The koala (*Phascolarctos cinereus*) is an iconic Australian marsupial that presents a complex
72 management challenge because it is not uniformly threatened across its range. In 2012, the
73 collective koala populations of Queensland (QLD), New South Wales (NSW) and the
74 Australian Capital Territory (ACT) were classified as ‘Vulnerable’ under the Commonwealth
75 Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) following an
76 inquiry launched by the Australian Senate the previous year to evaluate the appropriate
77 conservation status of the species (Senate, 2011; Shumway et al., 2015). Less than a decade
78 later, in 2021, the status of these same populations was upgraded to ‘Endangered’ following a
79 reassessment undertaken by the Threatened Species Scientific Committee in the wake of the
80 unprecedented extreme fire season or “Black Summer” of 2019-2020 (TSSC, 2021).

81 Conversely, koala populations in the states of Victoria (VIC) and South Australia (SA) are
82 widely considered to be stable, or even overabundant in some cases, and are therefore not
83 listed under the EPBC Act. The management of specific koala populations across Australia
84 has been further complicated by inconsistent state-level legislative priorities and conservation

85 planning frameworks that have, at different times, afforded the species varying levels of
86 significance and protection (Senate, 2011; Adams-Hosking et al., 2016; McAlpine et al.,
87 2015).

88 In NSW, a large body of evidence collected over nearly four decades demonstrates
89 that koalas are experiencing widespread population declines due to a variety of threats that
90 are often synergistic in nature (Reed et al., 1990; Lunney et al., 1995; Lunney et al., 2000;
91 Lunney et al., 2009). Chief among these is the loss or fragmentation of critical native habitats
92 due to land clearing, urbanisation and, more recently, extreme environmental disturbances
93 associated with anthropogenic climate change (e.g., severe drought and altered fire regimes).
94 Other notable threats to koalas include disease, heat waves, vehicle strikes, and dog attacks
95 (Adams-Hosking et al., 2016; McAlpine et al., 2015, DAWE, 2022). Within this context,
96 devising objective and unambiguous criteria for identifying and prioritising conservation
97 targets is a crucial first step in the development of evidence-based management paradigms
98 that will make the most efficient use of limited resources to stabilise or rehabilitate declining
99 koala populations. To date, particular emphasis has been placed on using data-driven spatial
100 analyses to create management divisions which represent areas and habitats with the greatest
101 importance for the long-term persistence of the species (DECC, 2008; DPIE, 2020; DPE,
102 2022).

103 The specific criteria used to define management divisions for koalas across NSW
104 have changed considerably over time. The ‘Recovery plan for the koala (*Phascolarctos*
105 *cinereus*)’, released in 2008 by the former Department of Environment and Climate Change
106 NSW, identified seven koala management areas (KMAs) based on a combination of local
107 government boundaries and the known distributions of preferred koala food tree species
108 (DECC, 2008). By contrast, the NSW Koala Strategy 2022 (DPE, 2022) does not reference
109 these KMAs but instead identifies a total of 50 koala populations, which were derived from
110 the 48 Areas of Regional Koala Significance (ARKS) developed by the NSW Department of
111 Planning and Environment using state-wide information on koala occurrence (DPIE, 2020;
112 DPE, 2022). The primary objective of defining both the KMAs and the ARKS was to create
113 broad management areas which could be used to identify and combat threatening processes at
114 local and regional scales. The NSW Koala Strategy 2022 further delineates the state’s koala
115 populations into two main intervention categories. The first consists of 19 populations that
116 are considered to be supported by sufficient information to warrant immediate targeted
117 conservation actions. The second category covers the remaining 31 koala populations, where
118 key knowledge gaps persist that could hinder the effectiveness of interventions to mitigate
119 threats, enhance habitat quality, and improve overall population viability (DPE, 2022). One
120 of the most critical of these knowledge gaps, as addressed by both the NSW Koala Strategy
121 2022 and the NSW Chief Scientist and Engineer’s Report, is an understanding of the
122 mechanisms that have shaped the distribution of genome-wide genetic diversity in koalas
123 (DPE, 2022; NSW Chief Scientist, 2016).

124 An extensive body of theoretical and empirical research spanning decades has
125 established that the reduction of genetic diversity in small, fragmented populations can
126 increase their vulnerability to extinction from both inbreeding depression and a reduced
127 ability to adapt to rapid environmental change (Frankham, 2015; Hoffmann et al., 2020, Ralls
128 et al., 2020). However, the importance of genetic diversity to wildlife conservation has often
129 been neglected in both policy and practice. The NSW parliamentary inquiry (2020) into
130 “Koala populations and habitat in New South Wales” failed to mention genetics in its 16
131 findings or 42 recommendations “to help ensure the future of the koala”, despite the
132 testimony of several expert witnesses emphasising the importance of integrating genetic
133 monitoring into ongoing management strategies (NSW parliament, 2020). Fortunately, this
134 situation is beginning to change, with genetic and genomic approaches finding an

135 increasingly wide range of applications in threatened species recovery efforts. These include,
136 resolving taxonomic uncertainties (Frankham, 2010; Neaves et al., 2018; Mu et al., 2022),
137 reconstructing historical demographic shifts (Jensen et al., 2018; Saremi et al., 2019),
138 assessing population size and connectivity (Lowe and Allendorf, 2010; Younger et al., 2017,
139 Hohenlohe et al. 2021), defining biologically meaningful management units (Moritz, 1994;
140 Fraser and Bernatchez, 2002) optimising captive breeding programs (Miller et al., 2010;
141 Witzenberger and Hochkirch, 2011), and investigating ecological or symbiotic interactions
142 that could inform the success of future or existing conservation paradigms, such as the
143 composition of gut microbiomes (Brice et al., 2019; Blyton et al. 2022) or host-parasite
144 assemblages (Lott et al., 2015a; Lott et al., 2015b; Vermeulen et al., 2016a; Vermeulen et al.,
145 2016b).

146 While several previous studies have investigated koala population structure and
147 phylogeography at various scales (Houlden et al., 1999; Lee et al., 2010; Lee et al., 2011;
148 Kjeldsen et al., 2016; Neaves et al., 2016; Dennison et al., 2017; Kjeldsen et al., 2019; Lott et
149 al., 2022), little is currently known about the levels or distribution of genetic diversity across
150 existing management divisions in NSW. Collecting this information is therefore not only
151 essential for determining the overall vulnerability of regional and local koala populations to
152 different threatening processes, and by extension their priority for targeted conservation
153 efforts, but will also provide baseline data against which the success of future and ongoing
154 conservation policies can be empirically assessed. The emergence of cost effective, high-
155 throughput next-generation sequencing platforms has made the implementation of large-scale
156 genetic monitoring programs increasingly feasible. Researchers are now able to identify
157 thousands or even millions of hypervariable genetic markers, such as single nucleotide
158 polymorphisms (SNPs), which can often be linked to specific regions of interest within the
159 wider genome (Morin et al., 2004; Wright et al., 2015). Coupled with the greater availability
160 of whole genome reference data from non-model organisms, massively parallel sequencing is
161 facilitating the exploration of genetic diversity, population structure, and local adaptation in a
162 wide range of threatened fauna, including koalas (Funk et al., 2012; Garner et al., 2016; Hogg
163 et al. 2023).

164 In this study, we used a data set of high-quality single nucleotide polymorphisms
165 (SNPs) generated using a reduced-representation sequencing approach to address the
166 following three research aims: (1) analyse the fine-scale spatial genetic structure of extant
167 populations of koalas across NSW; (2) estimate spatial patterns and rates of inter-population
168 gene flow; (3) generate comparative genetic diversity metrics for existing management
169 divisions (ARKS), and test for relationships between the quality of koala habitat and overall
170 levels of genetic diversity.

171

172 **2. Methods**

173 **2.1 Sample Collection**

174 Blood, tissue and buccal swab samples, representing 314 individuals from 29 of the 48 ARKS
175 (corresponding to 14 of the 19 populations for immediate investment, and 16 of the 31
176 populations with key knowledge gaps), were obtained from researchers, environmental
177 consultants, veterinarians, and wildlife rehabilitators from across the state of NSW (Table
178 S1.1; Figure 1). This constitutes the most geographically comprehensive survey of genetic
179 diversity in NSW koalas to date. Where possible, sampling gaps were also filled by sourcing
180 archived biological material from the Australian Museum Koala Tissue Biobank, the
181 designated repository for koala tissue and genetic material obtained in NSW. All samples
182 were stored in 70%–100% ethanol or frozen at –80°C prior to DNA extraction and
183 genotyping.

184

185 **2.2 DNA extraction and genotyping**

186 Genomic DNA was extracted using either the Bioline Isolate II Genomic DNA Kit (Bioline,
187 Eveleigh, Australia) following the manufacturer's protocols, or a standard high-salt
188 precipitation procedure (Sunnucks and Hales, 1996). Genotyping was performed using the
189 Diversity Arrays Technology platform (DArTseq™). DArTseq is a restriction enzyme-based
190 genome complexity reduction method that has been utilised to generate SNP data in a wide
191 range of vertebrate species for phylogeographic, phylogenetic, and population genetic
192 studies. DNA was processed as per Kilian et al. (2012), using paired adaptors which
193 corresponded to two different restriction enzyme overhangs: PstI and SphI. The PstI-
194 compatible adapter included an Illumina flow cell attachment sequence, a sequencing primer
195 binding site, and a varying length barcode region. The reverse adapter contained a SphI-
196 compatible overhang sequence and a flow cell attachment region. A digestion–ligation
197 reaction was performed at 37 °C for 2 h with ~100–200 ng of gDNA per sample. The DNA
198 fragments that were successfully cut by both PstI and SphI were then amplified by 30 cycles
199 of polymerase chain reaction (PCR), and the PCR products were sequenced as 77-bp or 138-
200 bp single-end reads on the HiSeq 2500 and Novaseq 6000 platforms, respectively (Illumina,
201 San Diego, USA). After demultiplexing and adapter trimming, the short-read sequence data
202 were processed using Stacks v2.64. Sequencing reads were standardised by truncating them
203 to 69bp in length and low-quality data (based on the PHRED scores provided in the FASTQ
204 files) were identified and discarded using the process_radtags program (Catchen et al. 2013).
205 Sequencing reads were discarded when the probability of them being correct dropped below
206 99.9% (i.e., a PHRED score of 30). Prior to implementing ref_map.pl in Stacks, the cleaned
207 FASTQ files from the previous step were aligned to the koala reference genome
208 (GCA_002099425.1_phACin_unsw_v4.1, Johnson et al. 2018) using the mem function in
209 Burrows-Wheeler Aligner (BWA) v0.7.15 (Li and Durbin, 2010; Willet et al., 2021). These
210 alignments were subsequently converted to BAM format using SAMtools v1.6 (Li et al.,
211 2009). The reference-aligned data were then used to assemble the sequences into loci and
212 identify SNPs using the *ref_map.pl* pipeline in Stacks (Catchen et al. 2013). Briefly, this
213 pipeline aligns matching sequences into 'stacks', which are in turn merged to form putative
214 loci. At each of these loci, nucleotide positions are examined, and SNPs are called using a
215 maximum likelihood framework. A catalogue is then created of all possible loci and alleles,
216 against which the individual samples are matched. The *ref_map.pl* pipeline was implemented
217 using the default parameters, with one exception: the alpha threshold required to call a SNP
218 was reduced from 0.05 to 0.01 (i.e., a greater number of sequence reads were required to
219 make a SNP call statistically significant at each locus) in order to minimise the risk of
220 introducing markers that represented false positives into the data set. Similarly, to reduce the
221 probability of linkage between markers, a single SNP was extracted from each locus using
222 the *populations* program in Stacks. The entire procedure, from library preparation to SNP
223 calling, was repeated a second time for 60 technical replicates. Only biallelic loci with 100%
224 reproducibility (i.e., no genotyping errors) were retained. Further filtering of the genotypes
225 was then performed in PLINK v 1.9 (Purcell et al., 2007). Variant sites with call rates of
226 <90% and minor allele frequencies of <0.005 were removed from the data set. This MAF
227 threshold was chosen to reduce the probability of including false alleles originating from
228 sequencing error by guaranteeing that each allele was sampled in in ≥2 individuals
229 independently (as shown by the formula $3/2 N: 3/(2 \times 317) = 0.005$) (Wright et al., 2019; Lott
230 et al., 2020). Finally, to accommodate downstream genetic analyses requiring a neutral set of
231 markers, the data set was further filtered to remove SNPs out of Hardy-Weinberg
232 equilibrium, and outlier SNPs that potentially represented loci under selection. Candidate
233 outlier SNPs were identified using the program PCAdapt for the R-software (Luu et al.,

234 2017). PCAdapt employs a Bayesian hierarchical factor model to describe population
235 structure as latent factors, and locus-specific effects on population structure as correlated
236 factor loadings (Duforet-Frebbourg et al., 2014). Unlike many alternative outlier detection
237 models, PCAdapt bypasses the assumption of an island model of gene flow and avoids the
238 need to define population structure a priori. Based on scree plots depicting the proportion of
239 explained variance (Figure S2.1), 4 K populations were chosen to account for neutral
240 structure in the data set using Cattell's rule, which states that components corresponding to
241 eigenvalues to the left of the straight line should be kept (Cattell 1966). Outlier loci were
242 scored based on Bonferroni corrected p-values and a stringent false detection rate threshold
243 of 0.01 was selected. After controlling for the effects of neutral population structure, a total of
244 13 loci were identified as candidates for being under selection and removed from the data set.
245 Departure from Hardy–Weinberg equilibrium (HWE) was tested for each locus using the
246 package pegas v0.12. for the R software (Paradis, 2010). However, as the failure to consider
247 existing population structure by HWE filters has been shown to result in heterozygote
248 deficiencies at potentially informative loci due to Wahlund effects (De Meeûs, 2018), genetic
249 structure was first assessed by performing a discriminant analysis of principal components
250 (DAPC). The primary advantage of DAPC is that it does not rely on a particular population
251 genetics model and is therefore free from assumptions about HWE or linkage disequilibrium.
252 The major genetic clusters identified by DAPC were then used as the basis for partitioning
253 samples for HWE filtering. While sampling locations are more commonly used as a proxy for
254 genetic populations in the literature, such an approach might artificially inflate divergence
255 estimates between sampling locations if they do not accurately reflect the underlying
256 population structure (Pearman et al. 2022). Consequently, to maximise the retention of
257 potentially informative loci, while also accommodating downstream analyses which require
258 neutral genetic markers, we elected to only remove loci that deviated from HWE in all major
259 genetic clusters identified by DAPC. The quality control criteria described above resulted in a
260 data set of 3,239 high quality SNPs that, except where specifically indicated, were used for
261 all downstream analyses.

262

263 **2.3 Fixed difference analysis**

264 To examine the possibility that some existing management divisions might represent
265 demographically independent units characterised by restricted gene flow, a fixed difference
266 analysis was performed in dartR (Gruber et al., 2018) using the default parameters. A fixed
267 difference occurs when two populations share no alleles at a particular locus. Therefore, the
268 accumulation of fixed differences between populations strongly indicates a lack of gene flow.
269 We elected to partition koala samples by ARKS for this and all other analyses requiring a
270 priori assignment of individuals into specific management divisions, as the criteria that were
271 used to develop them are transparent and well documented. Conversely, the rationale for
272 modifying the 48 ARKS into the 50 populations outlined in the NSW Koala Strategy has not
273 been published. Using the *gl.collapse.recursive* function (Gruber et al., 2018), fixed
274 differences were summed over pairwise groupings of populations (i.e., ARKS). When no
275 fixed differences were detected between the two populations in question, they were
276 amalgamated. This process was repeated until no further consolidation was possible. As
277 noted by Georges et al. (2018), the decision to amalgamate two populations can be made with
278 relative certainty, but the separation of two populations based on the detection of one or more
279 fixed differences can be influenced by false positives that may arise as a consequence of the
280 finite sample sizes involved. As such, the groupings of ARKS identified by the fixed-
281 difference analysis described above were tested for significance. Population pairs for which
282 the number of fixed differences was not statistically significant (i.e., the observed number of
283 fixed differences was not significantly different from the expected rate of false positives)

284 were further amalgamated. The fixed difference analysis was performed using a data set that
285 retained SNPs that were putatively under selection and/or out of HWE (i.e., unfiltered), as
286 removing these loci could potentially inflate the counts of fixed allelic differences between
287 ARKS.

288

289 **2.4 Analysis of population structure**

290 The fine-scale population structure and admixture history of koalas across NSW was
291 investigated using a Bayesian model-based clustering approach implemented in the program
292 STRUCTURE 2.3.4 (Pritchard et al., 2000). Ten independent runs were used to model up to
293 15 populations (i.e., $K = 1-15$), with each run consisting of a burn-in period of 10^5 iterations,
294 followed by 2×10^5 Markov chain Monte Carlo (MCMC) replicates. We did not use location
295 information to establish priors and the chosen ancestry model assumed both admixture and
296 correlated allele frequencies. Structure Harvester (Earl and Von Holdt, 2012) was then used
297 to determine the optimal value of K by calculating both the maximum delta log likelihood
298 (ΔK Evanno et al., 2005) and the maximum posterior probability ($L(K)$ Pritchard et al., 2000).
299 Finally, the Cluster Markov Packager Across K (CLUMPAK) web server (Kopelman et al.,
300 2015) was used to merge and visualise replicate runs as bar plots. Following the
301 recommendations of Janes et al. (2017), each of the clusters identified by this procedure was
302 subsequently rerun to test for additional sub-structuring. For all downstream analyses,
303 individual samples were categorised into distinct populations according to their membership
304 coefficients, defined here as the proportion of each genotype that could be attributed to a
305 particular genetic cluster. Admixed koalas were assigned to the population which accounted
306 for the largest percentage of their genome.

307 To quantify interpopulation genetic similarity, pairwise F_{ST} indices and their 95%
308 confidence intervals were calculated with 1000 bootstraps in the R package dartR (Gruber et
309 al., 2018). The hierarchical partitioning of genetic variation was assessed using an analysis of
310 molecular variance (AMOVA) in the R package Poppr version 2.7.1 (Kamvar et al., 2014).
311 Finally, the correlation between geographical and genetic distances was examined using a
312 Mantel test performed in dartR (Gruber et al., 2018).

313

314 **2.5 Estimating contemporary inter-population gene flow**

315 Contemporary migration patterns were further investigated in BayesAss version 3.0 (Wilson
316 and Rannala, 2003). This software program utilises a Bayesian statistical framework to
317 estimate recent immigration rates from multilocus genotypes. Following the
318 recommendations of Meirmans, (2013), sampling locations were pooled (i.e., fewer
319 populations with many individuals) to increase the statistical power of the analyses. The
320 koala samples were partitioned into a total of six pools, with four of these pools directly
321 corresponding to a major genetic cluster identified by DAPC and STRUCTURE. The final
322 two pools were created by subdividing the fifth major genetic cluster into two groups in order
323 to separate samples sourced from collection sites to the east and west of the Great Dividing
324 Range (GDR; Table S1.1). This was done to test the hypothesis of Lott et al, (2022) that a
325 source-sink population dynamic currently exists across the GDR. To achieve the
326 recommended acceptance rates (0.2-0.4), the mixing parameters for the inbreeding coefficient
327 and allele frequency were set to 0.10 and 0.30 respectively. Analyses were then run for $2 \times$
328 10^7 iterations, with a burn-in period of 5×10^6 iterations, and a sampling frequency of 2,000.
329 The analysis was repeated five times with different starting-seed values. Convergence was
330 diagnosed using two different approaches: first, by confirming that mean parameter estimates
331 were consistent between replicate runs and, second, by ensuring that large log-probability
332 fluctuations were confined to the burn-in phase and that no major oscillations occurred which

333 might influence parameter estimates (Figure S2.2). The median migration rates of the five
334 independent BayesAss runs were used to construct 95% credible sets by multiplying the
335 mean standard deviation for each migration rate by 1.96, as suggested in the BayesAss user
336 manual. Migration rates were considered to be significant when the credible set did not
337 overlap with zero.

338

339 **2.6 Comparative genetic diversity metrics**

340 Homozygosity by locus (HL), an individual-based measure of genetic variation, was
341 calculated for each sample using the GENHET function (Coulon, 2010) in R. The primary
342 advantage of this method is that it accounts for allelic variability when weighing the
343 contribution of each locus to the homozygosity index (i.e., greater weight is given to the most
344 informative loci) (Aparicio et al., 2006). Consequently, HL is expected to be more strongly
345 correlated with inbreeding coefficients and genome-wide homozygosity than other commonly
346 used individual-based measures of genetic variation such as the uncorrected proportion of
347 homozygous loci or internal relatedness (IR) (Aparicio et al., 2006), particularly in open
348 populations with varying levels of dispersal and/or admixture, as is likely to be the case in
349 koalas. Mean HL values were calculated for both the 29 sampled ARKS, and the five major
350 genetic clusters identified by DAPC and STRUCTURE.

351 To investigate the relationship between genetic diversity in koalas and several key
352 aspects of their environment we employed a multilevel mixed-effects linear model, where HL
353 was modelled as the response variable (R Core Team, 2014). Information on the basic
354 characteristics for each ARK was sourced from the Koala Habitat Information Base (DPIE,
355 2019; Table S1.2). Three key predictors were included in the final model: the percentage of
356 high and moderate functional habitat, the percentage of low and very low functional habitat,
357 and human population density. Additionally, as the effects of these predictors are unlikely to
358 be entirely independent, we included several interaction terms in our final model,
359 specifically: the percentage of high and moderate functional habitat and the percentage of low
360 and very low functional habitat, the percentage of high and moderate functional habitat and
361 human population density, and the percentage of low and very low functional habitat and
362 human population density. These interaction terms appear as bilinear functions of the paired
363 predictors. Finally, the major genetic clusters from which individual koala samples were
364 sourced were fitted as random effects. Prior to analysis, the continuous data were scaled to a
365 range between 0 and 1, while the categorical variable was recoded into a set of separate
366 binary variables (i.e., dummy coding). The model outputs were compared using an analysis
367 of deviance table.

368

369 **3. Results**

370 With the exception of Wollemi National Park, all of the sampled ARKS collapsed into a
371 single operational taxonomic unit (OTU) based on corroborated fixed differences. While the
372 two identified OTUs differed by only two fixed differences, subsequent testing supported
373 their significance (false positive expectation = 0.4, $p < 0.001$). It is important to note,
374 however, that the false positive rate for fixed differences is largely a product of sample size.
375 As the Wollemi National Park ARKS was represented by only two specimens, these results
376 must be interpreted extremely cautiously as it is highly probable that they represent a false
377 positive.

378

379 **3.2 Population structure**

380 The initial DAPC analyses supported the existence of five major genetic clusters in koalas
381 across the state of NSW (Figure 2). This was consistent with the results of the Bayesian
382 model-based clustering procedure implemented in STRUCTURE which indicated that either
383 two (maximum ΔK) or five (maximum $L(K)$) populations best described the distribution of
384 genetic variability (Figure 3). Furthermore, re-running STRUCTURE separately for each of
385 the sample groups identified by the $K=5$ solution uncovered an additional putative sub-
386 cluster. Given that the demographic, environmental and historical processes that have led to
387 the current distribution of genetic diversity in koalas are likely to be multifaceted and
388 complex, it is perhaps unsurprising that different levels of organisation would be present in
389 the genetic structure. Determining the clustering solution which best describes population
390 structure in koalas is therefore a non-trivial task. Janes et al. (2017) has shown that ΔK tends
391 to underestimate population structure by identifying only the highest level of differentiation.
392 Conversely, Perez et al. (2018) demonstrated that STRUCTURE outputs can be heavily
393 influenced by isolation-by-distance, most often through the detection of artificial and
394 misleading genetic clusters. However, given that the STRUCTURE and DAPC analyses both
395 converged on five clusters as best describing the distribution of genetic diversity in
396 contemporary NSW koala populations, a value of five was used for any downstream analyses
397 that incorporated assumptions of population structure.

398 The pairwise F_{ST} values indicated low to moderate differentiation between the five
399 major genetic clusters of koalas (Table 1). The AMOVA demonstrated that the greatest
400 proportion of genetic variance occurred within individual koalas (69.280%), while variance
401 between individuals within the 29 ARKS and between ARKS within the five major genetic
402 clusters accounted for 8.977% and 11.918% of genetic diversity, respectively (Table 2). In
403 contrast, genetic structure among the five major population clusters represented 9.825% of
404 total variance. Finally, the Mantel test indicated that a positive correlation existed between
405 genetic distances and geographic distances in NSW koalas ($r = 0.573$, $p = 0.025$).

406

407 **3.3 Estimating inter-population gene flow**

408 Bayesian estimations of contemporary migration rates between the major genetic clusters of
409 koalas varied but were generally low and highly asymmetrical (Figure 4; Table S3.1). The
410 largest proportion of migrants appeared to be the result of unidirectional dispersal from
411 Cluster 1 into Cluster 2 (0.250 ± 0.032). This is consistent with the high levels of admixture
412 that were observed between these two major genetic clusters. Low but statistically significant
413 northward dispersal was also detected between Cluster 3 (East GDR) and Cluster 1 ($0.058 \pm$
414 0.028). Additionally, Cluster 3 (East GDR) was found to be a significant source of migrants
415 for the western koala populations that constituted Cluster 3 (West GDR) (0.208 ± 0.039). The
416 movement of koalas appeared to be highly asymmetric, as comparable levels of southward
417 and eastward dispersal were not detected. The 95% credibility intervals of migration rates
418 between all other major genetic clusters encompassed zero and were therefore interpreted to
419 be nonsignificant.

420

421 **3.4 Comparative genetic diversity metrics**

422 Homozygosity by locus varied across the 29 sampled ARKS (Figure 5). While precise
423 estimates of genetic diversity should be interpreted cautiously when sample sizes are small,
424 the Gunnedah, Port Stephens, Queen Charlottes Creek, and Numeralla ARKS all exhibited
425 HL values that were significantly higher than the state average. Furthermore, a geographical
426 pattern of genetic diversity emerged in which HL values increased with latitude. Of the five
427 major genetic cluster identified by the DAPC and STRUCTURE analyses, Cluster 4 (centred
428 on Gunnedah and the Liverpool Plains) had the lowest overall genetic diversity, while Cluster

429 1 (in far north-east NSW) had the highest. Multilevel mixed-effects linear models indicated
430 that, when major genetic cluster of origin was controlled for, neither the chosen predictors
431 nor their interaction terms were significantly correlated with genetic diversity in koalas
432 (Table 3).

433

434 **4. Discussion**

435 **4.1 Koala population structure in NSW**

436 Significant genetic structuring was detected in koala populations across the state of NSW.
437 Both multivariate and model-based clustering analyses indicated that there are five extant
438 major genetic clusters, with additional hierarchical structure identified within at least one of
439 these clusters. This distribution of genetic diversity broadly corresponds to that described
440 previously by Kjeldsen et al., (2016), Johnson et al., (2018) and Lott et al., (2022). Perhaps
441 unsurprisingly, vicariance across biogeographic barriers for forest adapted taxa appears to
442 have been an important driver of genetic differentiation in NSW koala populations. A
443 prominent north-south separation was observed across the Sydney Basin region, with the
444 southernmost lineage (Cluster 5) corresponding to what has been termed the South Coast
445 NSW cluster (Johnson et al., 2018; Kjeldsen et al., 2019; Lott et al., 2022). The Sydney Basin
446 and neighbouring Illawarra region are defined by extensive, low-lying coastal plains which
447 are bordered to the west by both the Blue Mountains and a region of uplifted sandstone known
448 as the Illawarra Escarpment (Bryant and Krosch, 2016). It has been speculated that the
449 vicariance of coastal forest habitat across these areas during the Miocene-Pleistocene may
450 have played an important role in structuring genetic diversity within a wide array of
451 vertebrate species, including koalas (Sumner et al., 2010; Pepper et al., 2014; Frankham et
452 al., 2016).

453 Further north, three distinct genetic clusters of koalas were found to inhabit coastal
454 NSW. The distribution of one of these lineages (Cluster 3) appeared to match that of the Mid-
455 Coast NSW genetic cluster previously identified by Johnson et al., (2018) and Lott et al.,
456 (2022), which is hypothesised to be bordered by the Clarence River Corridor in the north, and
457 either the Hunter Valley or the Sydney Basin in the south. Both of these putative
458 biogeographic barriers are lower elevation zones of dry, warm, open woodland or grassland
459 that are expected to represent a significant obstacle to the movement of koalas. Cluster 3 was
460 also found to extend west of the GDR, where an additional koala lineage (Cluster 4) was
461 identified, which was apparently centred on the Liverpool Plains in the North-West Slopes
462 region of NSW. There are several possible reasons why two distinct genetic clusters may
463 have been detected across these regions where Johnson et al., (2018) and Lott et al., (2022)
464 previously reported only one. The first is that the intensive, local-level sample collection
465 paradigm employed in this study may have allowed the detection of additional population
466 structure across the state of NSW that was masked from previous, continent-wide genetic
467 surveys of koalas. Alternatively, it may be because the aforementioned genetic studies were
468 based on the analysis of SNPs derived exclusively from exons (protein coding gene regions).
469 The level of genetic diversity found in exons is often lower than in non-protein coding
470 regions of the genome (e.g., introns). This has variously been attributed to stronger purifying
471 selection, higher mismatch repair activity or some combination of the two (Frigola et al.,
472 2017). In practice, this means that exons in biogeographically isolated koala populations can
473 be expected to retain their identity longer than non-protein coding regions, and analyses
474 based on molecular markers derived from these parts of the genome may therefore be biased
475 towards the detection of older divisions between populations. Conversely, molecular markers
476 primarily derived from non-protein coding regions (as, statistically, is likely to be the case
477 with the DArTSeq data set used in this study) may reflect population structure that has arisen

478 comparatively more recently, possibly even as a consequence of anthropogenic habitat
479 fragmentation.

480 The final two NSW koala lineages identified by our analyses (Cluster 1 and Cluster
481 2), which were coincident with the South-East Queensland genetic cluster previously
482 identified by Johnson et al., (2018) and Lott et al., (2022), did not appear to be strongly
483 associated with vicariance across any of the biogeographic barriers which have been
484 proposed to exist in this region. While it is unclear at present how these two lineages have
485 maintained their unique genetic identities despite their close geographical proximity, one
486 possibility is that it is a consequence of historically restricted dispersal caused by the
487 expansion of rainforest habitat in the vicinity of the McPherson and Border Ranges during the
488 Pleistocene interglacials (Bryant and Krosch, 2016; Flores-Rentería et al., 2021).
489 Alternatively, higher-than-average recruitment in natal colonies and other social factors may
490 be reinforcing philopatry-related genetic structure. However, further research would be
491 required to either confirm or disprove this interpretation.

492

493 **4.2 Spatial patterns of gene flow**

494 Mantel tests revealed that a significant relationship exists between genetic distances (F_{ST}) and
495 geographical distances in koalas. Genetic isolation-by-distance is therefore likely to be a
496 significant driver of regional variation in NSW koala populations. However, the detection of
497 genetic structuring across relatively small areas also suggests that koala dispersal can be
498 impeded by features of the landscape. These two scenarios are by no means mutually
499 exclusive, and it seems clear that the movement of individuals between vicariant genetic
500 clusters, however infrequently, has resulted in complex patterns of genetic diversity across
501 the state of NSW. Comparatively rare, long-distance dispersal events, possibly coupled with
502 ancestral range expansions from the isolated refugia that are hypothesised to have existed
503 during one or more of the Pleistocene glacial periods (Adams-Hosking et al., 2011; Lott et
504 al., 2022), appear to have resulted in a state-wide isolation-by-distance effect which reflects
505 the once continuous geographic distribution of koalas across NSW. However, this isolation-
506 by-distance effect has failed to obscure the pre-existing genetic structure caused by vicariance
507 across more ancient biogeographic barriers.

508 Despite evidence for widespread admixture between the major genetic clusters,
509 contemporary gene flow was generally limited. The koala populations of the Liverpool Plains
510 (Cluster 4) and to the south of the Sydney Basin (Cluster 5) were found to be particularly
511 isolated, with no evidence for effective dispersal in recent generations. Koalas to the west of
512 the GDR are characterised by an increasingly disjunct and scattered distribution, and our
513 findings would be consistent with habitat fragmentation limiting gene flow between
514 previously interconnected regions and populations. Conversely, there is reason to believe that
515 koalas in both these areas (i.e., the Liverpool Plains and southern NSW) have long been
516 relatively isolated from the rest of the state. It has been hypothesised that the more marginal
517 habitat towards the western edge of the koala's distribution has historically supported low
518 density, widely dispersed populations that have only transiently increased in size following
519 periods where climatic conditions (e.g., rainfall) have briefly improved (Ellis et al., 2017;
520 Lunney et al., 2012; Lunney et al., 2017; Predavec et al., 2018; Lunney et al., 2020). The
521 absence of large, stable patches of functional habitat to support long-term population growth
522 and provide corridors for effective dispersal may have served to reinforce the genetic
523 distinctiveness of western edge koala populations relative to their coastal conspecifics.
524 Similarly, the apparent isolation of koala populations in southern NSW may indicate that the
525 heterogenous landscapes of the Sydney Basin/Illawarra region have historically represented a
526 greater obstacle to dispersal than the biogeographic barriers that have been hypothesised to

527 exist in other parts of the state. It is also highly likely that additional barriers to gene flow
528 have been created by the widespread urbanisation and land clearing that has occurred across
529 these areas since the European colonisation of Australia (Lunney and Leary, 1988; Lunney et
530 al., 2010; Lunney et al., 2014). While the koala populations of the Liverpool Plains and to the
531 south of the Sydney Basin/Illawarra region appear to have been effectively isolated from the
532 rest of the state in recent generations, the underlying barriers to dispersal have clearly not
533 always been absolute. Small numbers of highly admixed individuals were detected within
534 both groups, indicating that they may have once enjoyed greater, although perhaps still
535 limited, connectivity to genetically distinct koala populations across NSW. Alternatively,
536 undocumented translocations could have introduced some genotypes into areas where they
537 would otherwise not be expected to occur.

538 While contemporary gene flow between the major genetic clusters was generally low
539 or absent, there were several notable exceptions. Koala populations from the Mid North
540 Coast (Cluster 3) were found to be a significant source of migrants to multiple neighbouring
541 regions, including those to the west of the GDR. While the precise mechanisms underlying
542 state-wide dispersal patterns remain unclear, these observations strongly suggest that a
543 source–sink dynamic exists in this species, whereby the relatively large and stable koala
544 populations occupying high-quality coastal habitats are contributing a disproportionate
545 number of immigrants to less densely populated regions in the west. Identifying populations
546 or major genetic clusters that are net exporters of immigrants has important implications for
547 koala conservation. Extreme weather events, such as drought and heat waves, are strongly
548 associated with poor health and increased mortality in koalas, particularly for populations
549 living near the arid edge of the species' current distribution (Adams-Hosking, et al., 2011;
550 Lunney et al., 2012; Davies et al., 2013; Davies et al., 2014; Seabrook et al., 2014; Lunney et
551 al., 2014; Lunney et al., 2020). If the koalas occupying marginal habitats are
552 disproportionately vulnerable to periodic population crashes caused by long-term fluctuations
553 in temperature and rainfall, then the asymmetric dispersal of individuals from larger, self-
554 supporting coastal populations may help facilitate their recovery by maintaining genetic
555 diversity and overall population viability in subsequent generations. Consequently, failure to
556 conserve koala source populations, and the critical native habitats that supports them, may
557 also negatively affect the survival of dependent sinks towards the western edge of koala
558 distribution.

559

560 **4.3 Genetic diversity metrics**

561 With several exceptions, genome-wide genetic diversity did not differ significantly between
562 the sampled ARKS. Notably, the Gunnedah, Port Stephens, Queen Charlottes Creek, and
563 Numeralla ARKS all exhibited levels of genetic diversity that were significantly lower than
564 the state average. While further sampling is required to confirm some of these findings, this
565 may indicate that koalas in these ARKS are more vulnerable to key threatening processes
566 than populations in other regions. When examining the five major genetic clusters, the
567 western (Cluster 4) and southern (Cluster 5) most lineages were found to have the lowest
568 overall levels of genome-wide genetic diversity. These results largely support the findings of
569 Johnson et al., (2018) and Lott et al., (2022) which demonstrated that, on a continental-scale,
570 koala genetic diversity decreased along a north-south cline. In the past, this phenomenon has
571 been attributed primarily to hunting or habitat-loss associated population bottlenecks
572 following European colonisation of Australia. However, mounting evidence suggests that a
573 much older demographic shift, such as regional differences in the effective sizes of koala
574 populations supported by climatic refugia during the Pleistocene glaciations, may underly this
575 phenomenon (Tsangaras et al., 2012, Neaves et al., 2016, Lott et al., 2022). Interestingly,

576 multilevel mixed-effects linear models failed to detect any relationship between the scale of
577 key threatening processes (e.g., habitat loss) and the level of genetic diversity in NSW koala
578 populations. This highlights the importance of directly assessing genetic diversity when
579 developing risk management frameworks as the genetic health of populations clearly cannot
580 be inferred or predicted from other observable features of the environment.

581

582 **4.4 Management Implications and Directions for Future Research**

583 Despite near universal public support (Brown et al., 2018; Fielding et al., 2022), ongoing
584 attention from the scientific community, and unprecedented financial investment by both the
585 State and Federal governments, koala populations are declining across large parts of NSW.
586 As the rate at which anthropogenic processes destroy or irreversibly alter natural habitats
587 continues to accelerate, the development of strategies for facilitating gene flow between
588 small, fragmented populations will be integral to successful conservation efforts. In the
589 absence of natural dispersal corridors, such strategies are increasingly likely to take the form
590 of translocations. While there are numerous well documented benefits of wildlife
591 translocations, ongoing controversy surrounds their use as a tool for threatened species
592 management (Liddell et al., 2021). Common criticisms include a lack of clear program
593 objectives, poor follow-up monitoring, concerns that translocations do not address, and may
594 even legitimise, the processes that drive local extinctions (e.g., habitat loss), and fears of
595 outbreeding depression caused by the movement of individuals between genetically
596 dissimilar populations (i.e., genetic rescue) (Fischer and Lindenmayer, 2000; Germano et al.,
597 2015; Dresser et al., 2017). Fortunately, there is a growing body of evidence that the risks of
598 outbreeding depression are often exaggerated, and that any negative consequences will
599 typically only persist for a few generations, if they manifest at all (Frankham et al. 2015;
600 Ralls et al. 2020). Furthermore, widespread evidence of past admixture between major
601 genetic clusters of koalas, coupled with the lack of fixed genetic differences between the
602 ARKS, suggests that genetic rescue is a viable conservation strategy for this species.
603 However, there are other concerns about koala translocations that cannot be so easily
604 dismissed. The National Recovery Plan for the Koala 2022 repeatedly acknowledges that
605 translocations are likely to be important for the long-term conservation of this species, while
606 the 2022 NSW Koala Strategy includes the explicit goal of facilitating up to eight
607 translocation projects by 2026. Despite this, there are currently no nationally recognised
608 guidelines for either implementing or critically evaluating the success of koala translocations,
609 and the identification of genetically and ecologically meaningful management divisions
610 remains an ongoing challenge. The results of this study indicate that neither the ARKS nor
611 the derived populations referenced in the NSW Koala Strategy entirely reflect the
612 contemporary distribution of genetic diversity across the State's koala populations. Most of
613 the major genetic clusters were found to span multiple ARKS, while the Far north-east
614 Hinterland ARKS appeared to contain two genetically distinct groups (Cluster 1 and 2). This
615 is not to suggest that the approach of using koala occurrence records, or data on ecological
616 threats and geographic barriers, to define management divisions lacks merit, simply that care
617 must be taken to ensure that translocation decisions based on these frameworks do not
618 inadvertently restrict gene flow between populations and regions that, historically, are likely
619 to have been interconnected. Similarly, the decision in the NSW Koala Strategy to further
620 divide the Bungonia ARKS into three subregions cannot be justified based on the current
621 genetic data. Koalas across southern NSW represent a single major genetic cluster and
622 display lower levels of diversity on average than their conspecifics further north. Artificially
623 imposing additional divisions on populations that are already relatively small and fragmented
624 may only serve to accelerate the erosion of this diversity. Consequently, the use of
625 translocations to promote gene flow between ARKS that represent the same major genetic

626 clusters should be encouraged where possible, with the understanding that precautions must
627 also be taken to reduce the possibility of negative nongenetic effects caused by the
628 introduction of pathogens (Woodford and Rossiter, 1993; Kock et al., 2010; Dalziel et al.,
629 2017) or the modification of existing host-parasite dynamics (Lott et al., 2012; Aiello et al.
630 2014; Lott et al., 2015a; Lott et al., 2015b; Lott et al., 2018; Dunlop and Watson, 2022). The
631 movement of individuals between parapatric genetic clusters should also not be ruled out,
632 although the net genetic effects of translocations between specific populations cannot be
633 predicted without further research. The Narrandera ARKS represents one region where the
634 long-term consequences of translocation between genetically divergent koalas could be
635 studied, as this population is a product of admixture between founders from Victoria and
636 north-east NSW/south-east Queensland; two groups of koalas that would not be expected to
637 come into contact naturally (Parsons, 1990; Menkhorst, 2008). Future sample collection
638 efforts targeting regions or management divisions which are currently data deficient will also
639 be critical for determining the precise boundaries between genetically divergent koala
640 populations, particularly those that do not appear to be strongly associated with known
641 biogeographic barriers.

642 It is important to note that conservation planning generally places a greater emphasis
643 on population-level variation than individual genetic diversity metrics (Avise, 2008; Hoban,
644 2018; Liddell et al., 2020). However, our data demonstrate that most of the remaining genetic
645 variation to be found in NSW koalas is distributed between individuals rather than among
646 management divisions, or even the major genetic clusters. This strongly suggests that each
647 koala in NSW represents an important reservoir of genetic diversity and evolutionary
648 potential. To enhance conservation outcomes, it is therefore vital that stakeholders reduce
649 koala mortality rates across the entire State, while simultaneously maintaining habitat
650 connectivity and gene flow between as many surviving populations as possible. Given the
651 key knowledge gaps that persist for many koala populations, particularly in southern and
652 western NSW where the species is patchily distributed and detectability is proportionately
653 low, it is highly probable that the development of intensive evidence-based management
654 actions which target specific groups of koalas will ultimately prove impossible. Achieving
655 meaningful conservation outcomes will therefore require the implementation of more robust
656 legislation and management frameworks which address the root causes of ongoing koala
657 population declines (particularly drought and habitat loss). Where existing or emerging data
658 do exist to guide more targeted interventions, the authors recommend that policy makers,
659 land managers, and other stakeholders prioritise the protection of populations which are at the
660 most immediate risk of extinction, rather than those perceived to be more “valuable” based
661 on metrics such as the level or type of genetic diversity that they represent. Our results clearly
662 demonstrate that the loss of any koalas or populations represents a potentially critical
663 reduction of genetic diversity for this iconic Australian marsupial.

664

665 **Acknowledgements**

666 Funding for this project was provided by the New South Wales Government under the New
667 South Wales Koala Strategy (Grant Agreement No. KR_2019_01), and the Australian
668 Museum Foundation. Samples sourced from living koalas were collected using methods
669 approved under the Australian Museum Animal Care and Ethics Committee (Permit
670 numbers: 11-03, 15_05), the New South Wales Director General Animal Ethics Committee
671 (Animal Research Authority approval number: TRIM13/349), the New South Wales Office
672 of Environment and Heritage Scientific License (Permit numbers: SL100280 and SL101687),
673 and the Department of Environment and Primary Industries Animal Ethics Committee
674 (Permit number: 14.14). The authors would like to thank Karen Bettink, Zaiga Deist, James

675 Fitzgerald, Sean Fitzgibbon, Cheyne Flanagan, Sara Goodwin, Bronwyn Houlden, Ros Irwin,
676 Rhonda James, Julie Jennings, Rhonda Pascoe, Ruth Thompson, and Richard Woodman for
677 their assistance with sample collection.

678

679 **Declaration of Interests Statement**

680 The authors declare that they have no known competing financial interests or personal
681 relationships that could have influenced the work reported in this manuscript.

682

683 **References**

684 Adams-Hosking, C., Grantham, H.S., Rhodes, J.R., McAlpine, C., Moss, P.T.
685 (2011). Modelling climate-change-induced shifts in the distribution of the koala. *Wildlife*
686 *Research*, 38 (2), 122–130. doi: <https://doi.org/10.1071/WR10156>

687

688 Adams-Hosking, C., McBride, M.F., Baxter, G., Burgman, M., de Villiers, D., Kavanagh, R.,
689 ... McAlpine, C.M. (2016). Use of expert knowledge to elicit population trends for the koala
690 (*Phascolarctos cinereus*). *Diversity and Distributions*, 22 (3), 249–262. doi:
691 <https://doi.org/10.1111/ddi.12400>

692

693 Aiello, C.M., Nussear, K.E., Walde, A.D., Esque, T.C., Emblidge, P.G., Sah, P., ... Hudson,
694 P.J. (2014). Disease dynamics during wildlife translocations: disruptions to the host
695 population and potential consequences for transmission in desert tortoise contact networks.
696 *Animal Conservation*, 17 (1), 27-39. doi: <https://doi.org/10.1111/acv.12147>

697

698 Aparicio, J. M., Ortego, J., Cordero, P. J. (2006). What should we weigh to estimate
699 heterozygosity, alleles or loci? *Molecular Ecology*, 15, 4659–4665. doi:
700 <https://doi.org/10.1111/j.1365-294X.2006.03111.x>

701

702 Avise, J.C. (2008). The history, purview, and future of conservation genetics. In S.P., Carroll
703 and C.W., Fox (Eds.), *Conservation biology: evolution in action* (pp.5-15). *Oxford University*
704 *Press*, Oxford.

705

706 Blyton, M.D.J., Soo, R.M., Hugenholtz, P., Moore B.D. (2022). Maternal inheritance of the
707 koala gut microbiome and its compositional and functional maturation during juvenile
708 development. *Environmental Microbiology*, 24 (1), 475-493. doi:
709 <https://doi.org/10.1111/1462-2920.15858>

710

711 Brice, K.L., Trivedi, P., Jeffries, T.C., Blyton, M.D.J., Mitchell, C., Singh, B.K., Moore, B.D.
712 (2019). The koala (*Phascolarctos cinereus*) faecal microbiome differs with diet in a wild
713 population. *PeerJ*, e6534. doi: <https://doi.org/10.7717/peerj.6534>

714

715 Brown, G., McAlpine, C., Rhodes, J., Lunney, D., Goldingay, R., Fielding, K., ... Vass, L.
716 (2018). Assessing the validity of crowdsourced wildlife observations for conservation using
717 public participatory mapping methods. *Biological Conservation*, 227, 141-151. doi:
718 <https://doi.org/10.1016/j.biocon.2018.09.016>

719

720 Bryant, L.M., and Krosch, M.N. (2016). Lines in the land: a review of evidence for eastern

721 Australia's major biogeographical barriers to closed forest taxa. *Biological Journal of the*
722 *Linnean Society*, 119 (2), 238–264. doi: <https://doi.org/10.1111/bij.12821>

723

724 Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A., Cresko, W.A. (2013). Stacks: an
725 analysis tool set for population genomics. *Molecular Ecology*, 22 (11), 3124–3140. doi:
726 <https://doi.org/10.1111/mec.12354>

727

728 Cattell, R.B. (1966). The scree test for the number of factors. *Multivariate Behavioral*
729 *Research*, 1 (2), 245–276. doi: https://doi.org/10.1207/s15327906mbr0102_10

730

731 Chief Scientist and Engineer NSW (2016). Report of the independent review into the decline
732 of koala populations in key areas of NSW, accessed 15 September 2023.

733

734 Coulon, A. (2010). genhet: an easy-to-use R function to estimate individual heterozygosity.
735 *Molecular Ecology Resources*, 10(1), 167–169. doi: <https://doi.org/10.1111/j.1755-0998.2009.02731.x>

737

738 Dalziel, A.D., Sainsbury, A.W., McInnes, K., Jakob-Hoff, R., Ewen, J.G. (2017). A
739 comparison of disease risk analysis tools for conservation translocations. *EcoHealth*, 14, 30–
740 41. doi: <https://doi.org/10.1007/s10393-016-1161-5>

741

742 DAWE (2022). National Recovery Plan for the koala: *Phascolarctos cinereus* (combined
743 populations of Queensland, New South Wales and the Australian Capital Territory).
744 Canberra, ACT: Department of Climate Change, Energy, the Environment and Water,
745 accessed 15 September 2023.

746

747 Davies, N., Gillett, A., McAlpine, C., Seabrook, L., Baxter, G., Lunney, D., Bradley, A.
748 (2013). The effect of ACTH upon faecal glucocorticoid excretion in the koala. *Journal of*
749 *Endocrinology*, 219, 1–12.

750

751 Davies, N., Gramotnev, G., McAlpine, C., Seabrook, L., Baxter, G., Lunney, D., Rhodes, J.,
752 Bradley, A. (2014). Climate-driven changes in diet composition and physiological stress in an
753 arboreal folivore at the semi-arid edge of its distribution. *Biological Conservation*, 172, 80–
754 88. doi: <https://doi.org/10.1016/j.biocon.2014.02.004>

755

756 DECC (NSW). (2008). Recovery plan for the koala (*Phascolarctos cinereus*), Department of
757 Environment and Climate Change, Sydney, NSW, accessed 15 September 2023.

758

759 De Meeûs, T. (2018). Revisiting FIS, FST, Wahlund Effects, and Null Alleles. *Journal of*
760 *Heredity*, 109 (4), 446–456. doi: <https://doi.org/10.1093/jhered/esx106>

761

762 Dennison, S., Frankham, G.J., Neaves, L.E., Flanagan, C., FitzGibbon, S., Eldridge, M.D.B.,
763 Johnson, R.N. (2017). Population genetics of the koala (*Phascolarctos cinereus*) in
764 north-eastern New South Wales and south-eastern Queensland. *Australian Journal of*
765 *Zoology*, 64 (6), 402–412. doi: <https://doi.org/10.1071/ZO16081>

766

767 DPE (2022). NSW Koala Strategy. Environment and Heritage Group, Department of
768 Planning and Environment, on behalf of NSW Government. Parramatta, NSW, accessed 15
769 September 2023.

770

771 DPIE (2019) Koala Habitat Information Base Technical Guide. Department of Planning,
772 Industry and Environment, Sydney, NSW, accessed 15 February 2023.

773

774 DPIE (2020). Framework for the spatial prioritisation of koala conservation actions in NSW.
775 Department of Planning, Industry and Environment, Sydney, NSW, accessed 15 September
776 2023.

777

778 Dresser, C.M., Ogle, R.M., Fitzpatrick, B.M. (2017). Genome scale assessment of a species
779 translocation program. *Conservation Genetics*, 18, 1191-1199. doi:
780 <https://doi.org/10.1007/s10592-017-0970-6>

781

782 Duforet-Frebourg, N., Bazin, E., Blum, M.G.B. (2014) Genome scans for detecting footprints
783 of local adaptation using a Bayesian factor model. *Molecular Biology and Evolution*, 31(9),
784 2483–2495. doi: <https://doi.org/10.1093/molbev/msu182>

785

786 Dunlop, J.A, and Watson, M.J. (2022). The hitchhiker's guide to Australian conservation: A
787 parasitological perspective on fauna translocations. *Austral Ecology*, 47 (4), 748-764. doi:
788 <https://doi.org/10.1111/aec.13171>

789

790 Earl, D., and Von Holdt, B. (2012). STRUCTURE HARVESTER: a website and program for
791 visualizing STRUCTURE output and implementing the Evanno method. *Conservation
792 Genetics Resources*, 4, 359–361. doi: <https://doi.org/10.1007/s12686-011-9548-7>

793

794 Ellis, M. V., Rhind, S. G., Smith, M., Lunney, D. (2017). Changes in the distribution of
795 reports of the koala (*Phascolarctos cinereus*) after 16 years of local conservation initiatives at
796 Gunnedah, north-west New South Wales, Australia. *Pacific Conservation Biology*, 23, 63-70.
797 doi: <http://dx.doi.org/10.1071/PC16004>

798

799 Evanno, G., Regnaut, S., Goudet, J. (2005). Detecting the number of
800 clusters of individuals using the software STRUCTURE: a simulation study. *Molecular
801 Ecology*, 14 (8), 2611–2620. doi: <https://doi.org/10.1111/j.1365-294X.2005.02553.x>

802

803 Fielding, K., Lunney, D., Rhodes, J., Goldingay, R., Hetherington, S., Brace, A., ...
804 McAlpine, C. (2022). What predicts community members' intentions to take action to protect
805 koalas? *Pacific Conservation Biology*, 29 (1), 26-37. doi: <https://doi.org/10.1071/PC21041>

806

807 Fischer, J., and Lindenmayer, D.B. (2000). An assessment of the published results of animal
808 relocations. *Biological Conservation*, 96 (1), 1-11. doi: [https://doi.org/10.1016/S0006-3207\(00\)00048-3](https://doi.org/10.1016/S0006-3207(00)00048-3)

810

811 Flores-Rentería, L., Rymer, P.D., Ramadoss, N., Riegler, M. (2021). Major biogeographic
812 barriers in eastern Australia have shaped the population structure of widely distributed

813 *Eucalyptus moluccana* and its putative subspecies. *Ecology and Evolution*, 11 (21), 14828-
814 14842. doi: <https://doi.org/10.1002/ece3.8169>

815

816 Frankham, G.J., Handasyde, K.A., Eldridge, M.D.B. (2016). Evolutionary and
817 contemporary responses to habitat fragmentation detected in a mesic zone marsupial, the
818 long-nosed potoroo (*Potorous tridactylus*) in south-eastern Australia. *Journal of*
819 *Biogeography*, 43 (4), 653–665. doi: <https://doi.org/10.1111/jbi.12659>

820

821 Frankham, R. (2010). Challenges and opportunities of genetic approaches to biological
822 conservation. *Biological Conservation*, 143 (9), 1919-1927. doi:
823 <https://doi.org/10.1016/j.biocon.2010.05.011>

824

825 Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis
826 reveals large and consistent benefits of gene flow. *Molecular Ecology*, 24, 2610–2618. doi:
827 <https://doi.org/10.1111/mec.13139>

828

829 Fraser D.J., and Bernatchez, L. (2002). Adaptive evolutionary conservation: towards a
830 unified concept for defining conservation units. *Molecular Ecology*, 10 (12), 2741-2752. doi:
831 <https://doi.org/10.1046/j.0962-1083.2001.01411.x>

832

833 Frigola, J., Sabarinathan, R., Mularoni, L., Muiños, F., Gonzalez-Perez, A., López-Bigas, N.
834 (2017). Reduced mutation rate in exons due to differential mismatch repair. *Nature genetics*,
835 49 (12), 1684–1692. doi: [10.1038/ng.3991](https://doi.org/10.1038/ng.3991)

836

837 Funk, W.C., McKay, J.K., Hohenlohe, P.A., Allendorf, F.W. (2012). Harnessing genomics
838 for delineating conservation units. *Trends in Ecology and Evolution*, 27 (9), 489–496. doi:
839 [10.1016/j.tree.2012.05.012](https://doi.org/10.1016/j.tree.2012.05.012)

840

841 Garner, B.A., Hand, B.K., Amish, S.J., Bernatchez, L., Foster, J.T., Miller, K.M., ... Luikart,
842 G. (2016). Genomics in conservation: case studies and bridging the gap between data and
843 application. *Trends in Ecology and Evolution*, 31 (2), 81-83. doi:
844 <https://doi.org/10.1016/j.tree.2015.10.009>

845

846 Georges, A., Gruber, B., Pauly, G.B., White, D., Adams, M., Young, M.J., ... Unmack, P.J.
847 (2018). Genomewide SNP markers breathe new life into phylogeography and species
848 delimitation for the problematic short-necked turtles (Chelidae: *Emydura*) of eastern
849 Australia. *Molecular Ecology*, 27 (24), 5195-5213. doi: <https://doi.org/10.1111/mec.14925>

850

851 Germano, J.M., Field, K.J., Griffiths, R.A., Clulow, S., Foster, J., Harding, G., Swaisgood,
852 R.R. (2015). Mitigation-driven translocations: are we moving wildlife in the right direction?
853 *Frontiers in Ecology and the Environment*, 13 (2), 100-105. doi:
854 <https://doi.org/10.1890/140137>

855

856 Gruber, B., Unmack, P.J., Berry, O.F., Georges, A. (2018). dartr: An r package to facilitate
857 analysis of SNP data generated from reduced representation genome sequencing. *Molecular*
858 *Ecology Resources*, 18 (3), 691-699. doi: <https://doi.org/10.1111/1755-0998.12745>

859

860 Hoban, S. (2018). Integrative conservation genetics: Prioritizing populations using climate
861 predictions, adaptive potential and habitat connectivity. *Molecular Ecology Resources*, 18:
862 14-17. doi: <https://doi.org/10.1111/1755-0998.12752>

863

864 Hoffmann, A.A., Miller A.D., Weeks, A.R. (2020). Genetic mixing for population
865 management: From genetic rescue to provenancing. *Evolutionary Applications*, 14 (3), 634-
866 652. doi: <https://doi.org/10.1111/eva.13154>

867

868 Hogg CJ, Silver L, McLennan EA, Belov K. (2023). Koala Genome Survey: An Open Data
869 Resource to Improve Conservation Planning. *Genes*, 14 (3), 546. doi:
870 <https://doi.org/10.3390/genes14030546>

871

872 Hohenlohe P.A., Funk, W.C., Rajora, O.P. (2021). Population genomics for wildlife
873 conservation and management. *Molecular Ecology*, 30 (1), 62-82. doi:
874 <https://doi.org/10.1111/mec.15720>

875

876 Houlden, B.A., Costello, B.H., Sharkey, D., Fowler, E.V., Melzer, A., Ellis, W., ...
877 Elphinstone, M.S. (1999). Phylogeographic differentiation in the mitochondrial control
878 region in the koala, *Phascolarctos cinereus* (Goldfuss 1817). *Molecular Ecology*, 8 (6), 999-
879 1011. doi: <https://doi.org/10.1046/j.1365-294x.1999.00656.x>

880

881 Janes, J. K., Miller, J. M., Dupuis, J. R., Malenfant, R. M., Gorrell, J. C., Cullingham, C. I.,
882 Andrew, R. L. (2017). The K = 2 conundrum. *Molecular Ecology*, 26(14), 3594–3602. doi:
883 <https://doi.org/10.1111/mec.14187>

884

885 Jensen, E. L., Edwards, D. L., Garrick, R. C., Miller, J. M., Gibbs, J. P., Cayot, L. J., ...
886 Russello, M. A. (2018). Population genomics through time provides insights into the
887 consequences of decline and rapid demographic recovery through head-starting in a
888 Galapagos giant tortoise. *Evolutionary Applications*, 11, 1811– 1821. doi:
889 <https://doi.org/10.1111/eva.12682>

890

891 Johnson, R.N., O'Meally, D., Chen, Z., Etherington, G.J., Ho, S.Y.W., Nash, W.J., ... Belov,
892 K. (2018). Adaptation and conservation insights from the koala genome. *Nature Genetics*, 50,
893 1102–1111. doi: <https://doi.org/10.1038/s41588-018-0153-5>

894

895 Kamvar, Z. N., Tabima, J. F., Grunwald, N. J. (2014). Poppr: an R package for genetic
896 analysis of populations with clonal, partially clonal, and/ or sexual reproduction. *PeerJ*, 2,
897 e281. doi: <https://doi.org/10.7717/ peerj.281>

898

899 Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H.,...Uszynski, G. (2012).
900 Diversity Arrays Technology: A generic genome profiling technology on open platforms. In:
901 F., Pompanon, A., Bonin (Eds.), Data production and analysis in population genomics.
902 Methods in Molecular Biology (Methods and Protocols), vol 888. *Humana Press*, Totowa,
903 NJ. doi: https://doi.org/10.1007/978-1-61779-870-2_5

904

905 Kjeldsen, S.R., Zenger, K.R., Leigh, K., Ellis, W., Tobey, J., Phalen, D., ... Raadsma, H.W.
906 (2016). Genome-wide SNP loci reveal novel insights into koala (*Phascolarctos cinereus*)
907 population variability across its range. *Conservation Genetics*, 17, 337-353. doi:
908 <https://doi.org/10.1007/s10592-015-0784-3>

909

910 Kjeldsen, S.R., Raadsma, H.W., Leigh, K.A., Tobey, J.R., Phalen, D., Krockenberger A., ...
911 Zenger, K.R. (2019). Genomic comparisons reveal biogeographic and anthropogenic impacts
912 in the koala (*Phascolarctos cinereus*): a dietary-specialist species distributed across
913 heterogeneous environments. *Heredity*, 122, 525–544. doi: <https://doi.org/10.1038/s41437-018-0144-4>

915

916 Kock, R.A., Woodford, M.H., Rossiter, P.B. (2010). Disease risks associated with the
917 translocation of wildlife. *OIE Revue Scientifique et Technique*, 29, 329-350. doi:
918 [10.20506/rst.29.2.1980](https://doi.org/10.20506/rst.29.2.1980)

919

920 Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., Mayrose, I. (2015).
921 Clumpak: a program for identifying clustering modes and packaging population structure
922 inferences across K. *Molecular Ecology Resources*, 15 (5), 1179–1191. doi: <https://doi.org/10.1111/1755-0998.12387>

924

925 Lee, K.E., Seddon, J.M., Corley, S.W., Ellis, W.A.H.E., Johnston, S.D., de Villiers, D.L., ...
926 Carrick, F.N. (2010). Genetic variation and structuring in the threatened koala populations of
927 Southeast Queensland. *Conservation Genetics*, 11, 2091–2103. doi:
928 <https://doi.org/10.1007/s10592-009-9987-9>

929

930 Lee, T., Zenger, K.R., Close, R.L., Phalen, D.N. (2011). Genetic analysis reveals a distinct
931 and highly diverse koala (*Phascolarctos cinereus*) population in South Gippsland, Victoria,
932 Australia. *Australian Mammalogy* 34(1), 68-74.

933

934 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009).
935 1000 Genome Project Data Processing Subgroup. 2009. The Sequence alignment/map (SAM)
936 format and SAMtools. *Bioinformatics*, 1000(25), 2078–2207.

937

938 Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler
939 transform. *Bioinformatics*, 26(5), 589–595. doi:
940 <https://doi.org/10.1093/bioinformatics/btp698>

941

942 Liddell, E., Cook, C.N., Sunnucks, P. (2020). Evaluating the use of risk assessment
943 frameworks in the identification of population units for biodiversity conservation. *Wildlife
944 Research*, 47, 208–216. doi: <https://doi.org/10.1071/WR18170>

945

946 Liddell, E., Sunnucks, P., Cook, C.N. (2021). To mix or not to mix gene pools for threatened
947 species management? Few studies use genetic data to examine the risks of both actions, but
948 failing to do so leads disproportionately to recommendations for separate management.
949 *Biological Conservation*, 256, 109072. doi: <https://doi.org/10.1016/j.biocon.2021.109072>

950

951 Lott, M.J., Eldridge, M.D.B., Hose, G.C., Power, M.L. (2012). Nematode community
952 structure in the brush-tailed rock-wallaby, *Petrogale penicillata*: implications of captive
953 breeding and the translocation of wildlife. *Experimental parasitology*, 132 (2), 185-192. doi:
954 <https://doi.org/10.1016/j.exppara.2012.06.013>

955

956 Lott, M.J., Isberg, S.R., Power, M.L. (2015a) Genetics and infection dynamics of
957 *Paratrichosoma* sp in farmed saltwater crocodiles (*Crocodylus porosus*). *Parasitology*
958 *research*, 114, 727-735. doi: <https://doi.org/10.1007/s00436-014-4240-y>

959

960 Lott, M.J., Hose, G.C., Power, M.L. (2015b). Parasitic nematode communities of the red
961 kangaroo, *Macropus rufus*: richness and structuring in captive systems. *Parasitology*
962 *Research*, 114, 2925-2932. doi: <https://doi.org/10.1007/s00436-015-4494-z>

963

964 Lott, M.J., Moore, R.L., Milic, N.L., Power, M., Shilton, C.M., Isberg, S.R. (2018).
965 Dermatological conditions of farmed Crocodilians: A review of pathogenic agents and their
966 proposed impact on skin quality. *Veterinary microbiology*, 225, 89-100. doi:
967 <https://doi.org/10.1016/j.vetmic.2018.09.022>

968

969 Lott, M. J., Wright, B. R., Kemp, L. F., Johnson, R. N., Hogg, C. J. (2020). Genetic
970 management of captive and reintroduced bilby populations. *The Journal of Wildlife*
971 *Management*, 84(1), 20–32. doi: <https://doi.org/10.1002/jwmg.21777>

972

973 Lott, M.L., Wright, B.R., Neaves, L.E., Frankham, G.J., Dennison, S., Eldridge, M.D.B.,...
974 Johnson, R.N. (2022). Future-proofing the koala: synergising genomic and environmental
975 data for effective species management. *Molecular Ecology*, 31 (11), 3035-3055. doi:
976 <https://doi.org/10.1111/mec.16446>

977

978 Lowe, W.H., and Allendorf, F.W. (2010). What can genetics tell us about population
979 connectivity? *Molecular Ecology*, 19 (15), 3038-3051. doi: <https://doi.org/10.1111/j.1365-294X.2010.04688.x>

981

982 Lunney, D., and Leary, T. (1988). The impact on native mammals of land-use changes and
983 exotic species in the Bega District (New South Wales) since settlement. *Australian Journal of*
984 *Ecology*, 13: 67-92. doi: <https://doi.org/10.1111/j.1442-9993.1988.tb01417.x>

985

986 Lunney, D., Curtin, A., Ayers, D., Cogger, H.G., Dickman, C.R. (1995). An ecological
987 approach to identifying the endangered fauna of New South Wales. *Pacific Conservation*
988 *Biology*, 2 (3), 212-31. doi: <https://doi.org/10.1071/PC960212>

989

990 Lunney, D., Curtin, A.L., Ayers, D., Cogger, H.G., Dickman, C.R., Maitz, W., ... Fisher, D.
991 (2000). The threatened and non-threatened native vertebrate fauna of New South Wales:
992 status and ecological attributes, pp 1-132. *Environmental and Heritage Monograph Series*
993 No. 4. National Parks and Wildlife Service, Hurstville, NSW.

994

995 Lunney, D., Crowther, M.S., Shannon, I., Bryant, J.V. (2009). Combining a map-based public
996 survey with an estimation of site occupancy to determine the recent and changing distribution

997 of the koala in New South Wales. *Wildlife Research* 36 (3), 262-273. doi:
998 <https://doi.org/10.1071/WR08079>

999

1000 Lunney, D., Close, R., Crowther, M.S., Bryant, J., Shannon, I., Madden, K., Ward, S. (2010).
1001 Campbelltown's koalas: their place in the natural history of Australia. In: D., Lunney, P.,
1002 Hutchings, D., Hochuli (Eds.) *The Natural History of Sydney* (pp. 319-325). *Royal*
1003 *Zoological Society of NSW*, Mosman.

1004

1005 Lunney, D., Crowther, M.S., Wallis, I., Foley, W.J., Lemon, J., Wheeler, R., ... Stalenberg,
1006 E. (2012). Koalas and climate change: a case study on the Liverpool Plains, north-west NSW.
1007 In: D., Lunney and P., Hutchings (Eds.) *Wildlife and climate change: towards robust*
1008 *conservation strategies for Australian fauna* (pp. 150-168). *Royal Zoological Society of NSW*,
1009 Mosman.

1010

1011 Lunney, D., Stalenberg, E., Santika, T., Rhodes, J. R. (2014). Extinction in Eden: identifying
1012 the role of climate change in the decline of the koala in south-eastern NSW. *Wildlife*
1013 *Research* 41 (1): 22-34. doi: <https://doi.org/10.1071/WR13054>

1014

1015 Lunney, D., Predavec, M., Sonawane, I., Kavanagh, R., Barrott-Brown, G., Phillips, S., ...
1016 Milledge, D (2017). 'The remaining Koalas (*Phascolarctos cinereus*) of the Pilliga forests,
1017 north-west New South Wales: refugial persistence or a population on the road to extinction?',
1018 *Pacific Conservation Biology*, 23 (3), 277-294. doi: <https://doi.org/10.1071/PC17008>

1019

1020 Lunney, D., Sonawane, I., Wheeler, R., Tasker, E., Ellis, M., Predavec, M., Fleming, M.
1021 (2020). An ecological reading of the history of the koala population of Warrumbungle
1022 National Park. *Proceedings of the Linnean Society of New South Wales* 141 Supplement,
1023 S131-S154. <https://openjournals.library.sydney.edu.au/index.php/LIN/index>

1024

1025 Luu, K., Bazin, E., Blum, M.G.B. (2017). pcadapt: an R package to perform genome scans
1026 for selection based on principal component analysis. *Molecular Ecology Resources*, 17 (1),
1027 67-77. doi: <https://doi.org/10.1111/1755-0998.12592>

1028

1029 McAlpine, C.A., Lunney, D., Melzer, A., Menkhorst, P., Phillips, S., Phalen D, ... Close R.
1030 (2015). Conserving koalas: A review of the contrasting regional trends, outlooks and policy
1031 challenges. *Biological Conservation*, 192, 226-236. doi:
1032 <https://doi.org/10.1016/j.biocon.2015.09.020>

1033

1034 Meirmans, P. G. (2013). Nonconvergence in Bayesian estimation of migration rates.
1035 *Molecular Ecology Resources*, 14 (4), 726-733. doi: <https://doi.org/10.1111/1755-0998.12216>

1037

1038 Menkhorst, P. (2008). Hunted, marooned, re-introduced, contracepted: a history of koala
1039 management in Victoria. In: D. Lunney D, A. Munn, W. Meikle (Eds.) *Too Close for*
1040 *Comfort. Contentious issues in human-wildlife encounters* (pp. 73-92). *Royal Zoological*
1041 *Society of NSW*, Mosman.

1042

1043 Miller, W., Wright, S. J., Zhang, Y., Schuster, S.C., Hayes, V.M. (2010). Optimization
1044 methods for selecting founder individuals for captive breeding or reintroduction of
1045 endangered species. *Biocomputing*, 43–53 (2010). doi:
1046 https://doi.org/10.1142/9789814295291_0006

1047

1048 Morin, P. A., Luikart, G., Wayne, R. K., SNP Workshop Group. (2004). SNPs in ecology,
1049 evolution and conservation. *TRENDS in Ecology and Evolution* 19, 208–216. doi:
1050 <https://doi.org/10.1016/j.tree.2004.01.009>

1051

1052 Moritz, C. (1994). Defining 'evolutionarily significant units' for conservation. *Trends in
1053 ecology and evolution*, 9, 373–375.

1054

1055 Mu, X.Y., Wu, J., Wu, J. (2022). Taxonomic uncertainty and its conservation implications in
1056 management, a case from *Pyrus hopeiensis* (Rosaceae). *Diversity*, 14 (6), 417. doi:
1057 <https://doi.org/10.3390/d14060417>

1058

1059 Neaves, L.E., Frankham, G.J., Dennison, S., FitzGibbon, S., Flannagan, C., Gillett, A., ...
1060 Johnson, R.N. (2016). Phylogeography of the koala, (*Phascolarctos cinereus*), and
1061 harmonising data to inform conservation. *PLoS one*, 11, e0162207. doi:
1062 <https://doi.org/10.1371/journal.pone.0162207>

1063

1064 Neaves, L.E., Danks, M., Lott, M.J., Dennison, S., Frankham, G.J., King, A., ... Divljan, A.
1065 (2018). Unmasking the complexity of species identification in Australasian flying-foxes. *PLoS
1066 one*, 13 (4), e0194908. doi: <https://doi.org/10.1371/journal.pone.0194908>

1067

1068 NSW parliament (2020). Koala populations and habitat in New South Wales / Portfolio
1069 Committee No. 7 – Planning and Environment. Sydney, NSW, accessed 15 September 2023.

1070

1071 Paradis, E. (2010). Pegas: An R package for population genetics with an integrated-modular
1072 approach. *Bioinformatics*, 26 (3), 419–420. doi:
1073 <https://doi.org/10.1093/bioinformatics/btp696>

1074

1075 Parsons, G. (1990). Narrandera koala colony: a brief history of the koalas in the Narrandera
1076 Nature Reserve. In D., Lunney, C.A., Urquhart, P., Reed (Eds.), Koala Summit. Managing
1077 koalas in NSW (p. 69). *National Parks and Wildlife Service*, Hurstville.

1078

1079 Pearman, W.S., Urban, L., Alexander, A. (2022). Commonly used Hardy–Weinberg
1080 equilibrium filtering schemes impact population structure inferences using RADseq data.
1081 *Molecular Ecology*, 22 (7), 2599–2613. doi: <https://doi.org/10.1111/1755-0998.13646>

1082

1083 Pepper, M., Barquero, M.D., Whiting, M.J., Keogh, J.S. (2014). A multi-locus molecular
1084 phylogeny for Australia's iconic jacky dragon (Agamidae: *Amphibolurus muricatus*):
1085 phylogeographic structure along the Great Dividing Range of south-eastern Australia.
1086 *Molecular Phylogenetics and Evolution*, 71, 149–156. doi:
1087 <https://doi.org/10.1016/j.ympev.2013.11.012>

1088

1089 Perez, M. F., Franco, F. F., Bombonato, J. R., Bonatelli, I. A. S., Khan, G., Romeiro-Brito, ...
1090 Moraes, E. M. (2018). Assessing population structure in the face of isolation by distance: are
1091 we neglecting the problem? *Diversity and Distributions*, 24 (12), 1883–1889. doi:
1092 <https://doi.org/10.1111/ddi.12816>

1093

1094 Predavec, M., Lunney, D., Shannon, I., Lemon, J., Sonawane, I., Crowther, M. (2018). Using
1095 repeat citizen science surveys of koalas to assess their population trend in the north-west of
1096 NSW: scale matters. *Australian Mammalogy*, 40: 47-57. doi:
1097 <http://dx.doi.org/10.1071/AM16059>

1098

1099 Pritchard, J.K., Stephens, M., Donnelly, P. (2000). Inference of population structure using
1100 multilocus genotype data. *Genetics*, 155 (2), 945–959.

1101

1102 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira Manuel, A. R., Bender, D., ...
1103 Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based
1104 linkage analyses. *The American Journal of Human Genetics*, 81 (3), 559–575. doi:
1105 <https://doi.org/10.1086/519795>

1106

1107 R Core Team (2014). R: A language and environment for statistical computing. R Foundation
1108 for Statistical Computing. <http://www.R-project.org/>

1109

1110 Ralls, K., Sunnucks, P., Lacy, R.C., Frankham, R. (2020). Genetic rescue: A critique of the
1111 evidence supports maximizing genetic diversity rather than minimizing the introduction of
1112 putatively harmful genetic variation. *Biological Conservation*, 251, 108784. doi:
1113 <https://doi.org/10.1016/j.biocon.2020.108784>

1114

1115 Reed, P.C., Lunney, D., Walker, P. (1990). A 1986–1987 survey of the koala *Phascolarctos*
1116 *cinereus* (Goldfuss) in New South Wales and an ecological interpretation of its distribution.
1117 In: A.K. Lee, K.A. Handasyde, G.D. Sanson (Eds.), *Biology of the Koala. Surrey Beatty and*
1118 *Sons in association with World Koala Research Corporation* (pp. 55–74). Chipping Norton,
1119 NSW.

1120

1121 Saremi, N. F., Supple, M. A., Byrne, A., Cahill, J. A., Coutinho, L. L., Dalén, L., ... Shapiro,
1122 B. (2019). Puma genomes from North and South America provide insights into the genomic
1123 consequences of inbreeding. *Nature Communications*, 10, 4769. doi:
1124 <https://doi.org/10.1038/s41467-019-12741-1>

1125

1126 Seabrook, L., McAlpine, C., Baxter, G., Rhodes, J. Bradley, A., Lunney, D. (2014).
1127 Determining range edges: habitat quality, climate or climate extremes? *Diversity and*
1128 *Distributions* 20: 95-106. doi: <https://doi.org/10.1111/ddi.12152>

1129

1130 Senate Environment and Communications References Committee (Senate), 2011. The koala –
1131 Saving our national icon. Parliament House, Canberra, accessed 15 September 2023.

1132

1133 Shumway, N., Lunney, D., Seabrook, L., McAlpine, C. (2015). Saving our national icon: An
1134 ecological analysis of the 2011 Australian Senate inquiry into status of the koala.
1135 *Environmental Science and Policy*, 54, 297-303. doi:
1136 <http://dx.doi.org/10.1016/j.envsci.2015.07.024>

1137

1138 Sumner, J., Webb, J. K., Shine, R., Keogh, J. S. (2010). Molecular and morphological
1139 assessment of Australia's most endangered snake, *Hoplocephalus bungaroides*, reveals two
1140 evolutionarily significant units for conservation. *Conservation Genetics*, 11, 747–758. doi:
1141 <https://doi.org/10.1007/s10592-009-9863-7>

1142

1143 Sunnucks, P., and Hales, D. (1996). Numerous transposed sequences of mitochondrial
1144 cytochrome oxidase I-II in aphids of the genus *Sitobion* (Hemiptera: Aphidae). *Molecular
1145 Ecology*, 13 (3), 510–524. doi: <https://doi.org/10.1093/oxfordjournals.molbev.a025612>

1146

1147 Tsangaras, K., Ávila-Arcos, M.C., Ishida, Y., Helgen, K.M., Roca, A.L., Greenwood, A.D.
1148 (2012). Historically low mitochondrial DNA diversity in koalas (*Phascolarctos cinereus*).
1149 *BMC Genetics*, 13, 92. doi: <https://doi.org/10.1186/1471-2156-13-92>

1150

1151 TSSC 2021, Conservation Advice for *Phascolarctos cinereus* (Koala) combined populations
1152 of Queensland, New South Wales and the Australian Capital Territory, Threatened Species
1153 Scientific Committee, Canberra, accessed 15 September 2023.

1154

1155 Vermeulen, E.T., Lott, M.J., Eldridge, M.D.B., Power, M.L. (2016a). Evaluation of next
1156 generation sequencing for the analysis of *Eimeria* communities in wildlife. *Journal of
1157 microbiological methods*, 124, 1-9. doi: <https://doi.org/10.1016/j.mimet.2016.02.018>

1158

1159 Vermeulen, E.T., Lott, M.J., Eldridge, M.D.B., Power, M.L. (2016b). Parasites on the hop:
1160 Captive breeding maintains biodiversity of *Eimeria* communities in an endangered marsupial.
1161 *Biological Conservation*, 200, 17-25. doi: <https://doi.org/10.1016/j.biocon.2016.05.019>

1162

1163 Willet, C., Chew, T., Samaha, G., Menadue, B. J., Downton, M., Sun, Y., ... Sadsad, R.
1164 (2021). Fastq-to-BAM (Version 2.0) [Computer software].
1165 <https://doi.org/10.48546/workflowhub.workflow.146.1>

1166

1167 Wilson, G.A., and Rannala, B. (2003). Bayesian Inference of Recent Migration Rates Using
1168 Multilocus Genotypes, *Genetics*, 163 (3). 1177-1191. doi:
1169 <https://doi.org/10.1093/genetics/163.3.1177>

1170

1171 Witzenberger, K.A., and Hochkirch, A. (2011). Ex situ conservation genetics: a review of
1172 molecular studies on the genetic consequences of captive breeding programmes for
1173 endangered animal species. *Biodiversity and Conservation*, 20, 1843–1861. doi:
1174 <https://doi.org/10.1007/s10531-011-0074-4>

1175

1176 Woodford, M.H., and Rossiter, P.B. (1993). Disease risks associated with wildlife
1177 translocation projects. *Revue Scientifique et Technique*, 12 (1), 115-135. doi:
1178 [10.20506/rst.12.1.667](https://doi.org/10.20506/rst.12.1.667)

1179

1180 Wright, B., Morris, K., Grueber, C.E., Willet, C.E., Gooley, R., Hogg, C.J., ... Belov, K.
1181 (2015). Development of a SNP-based assay for measuring genetic diversity in the Tasmanian

1182 devil insurance population. *BMC genomics*, 16 (1), 1-11. doi: <https://doi.org/10.1186/s12864-015-2020-4>

1184

1185 Wright, B. R., Grueber, C. E., Lott, M. J., Belov, K., Johnson, R. N., Hogg, C. J. (2019).
1186 Impact of reduced-representation sequencing protocols on detecting population structure in a
1187 threatened marsupial. *Molecular Biology Reports*, 46, 5575–5580. doi:
1188 <https://doi.org/10.1007/s11033-019-04966-6>

1189

1190 Younger J.L., Clucas, G.V., Kao, D., Rogers, A.D., Gharbi, K., Hart, T., Miller, K.J. (2017).
1191 The challenges of detecting subtle population structure and its importance for the
1192 conservation of emperor penguins. *Molecular Ecology*, 26 (15), 3883-3897. doi:
1193 <https://doi.org/10.1111/mec.14172>

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226 **Tables**

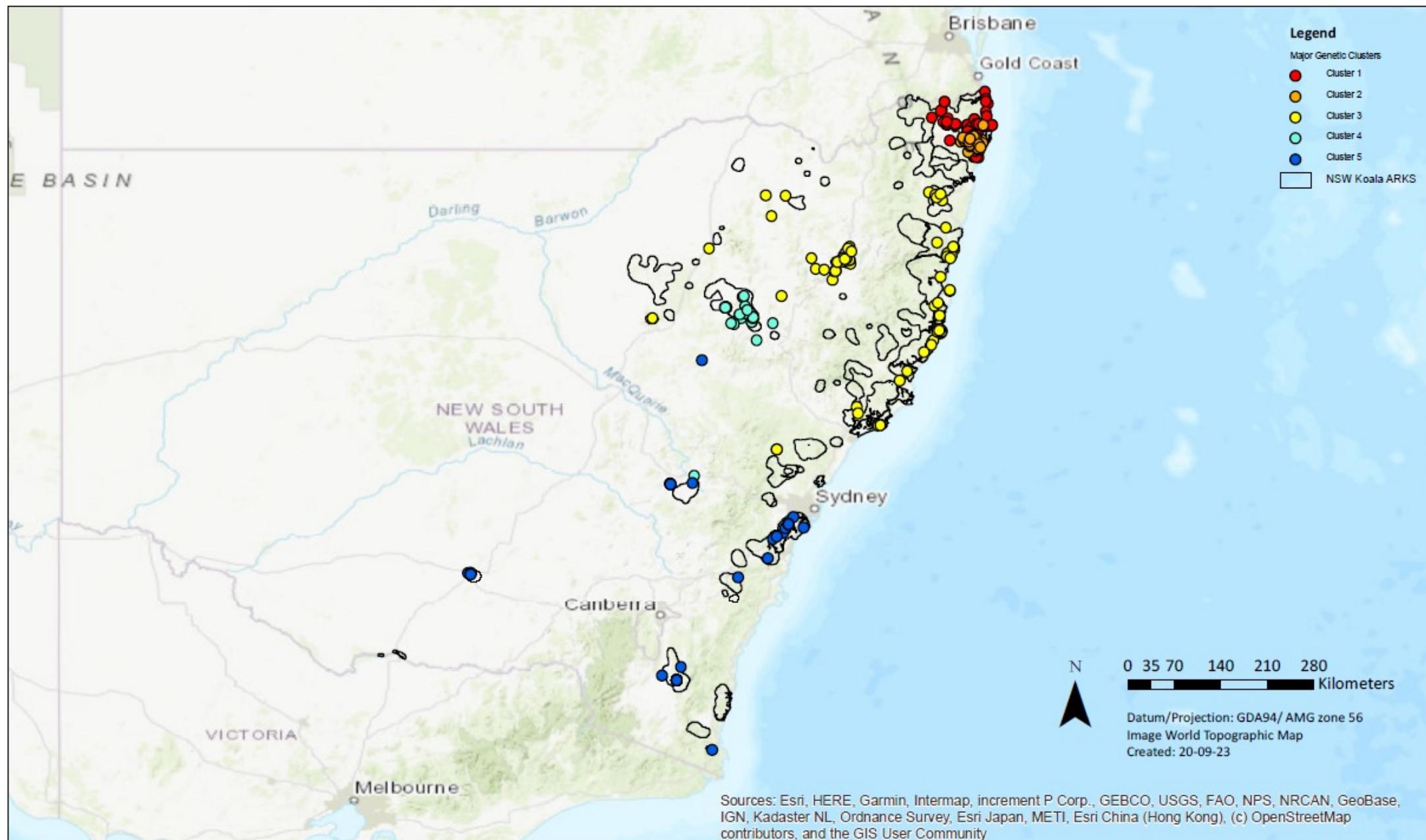
1227

1228 **Table 1.** Pairwise genetic differentiation (F_{ST}) between the five major genetic clusters of
1229 koalas (bottom-left diagonal) and their associated Bonferroni-corrected p -values (top-right
1230 diagonal).
1231

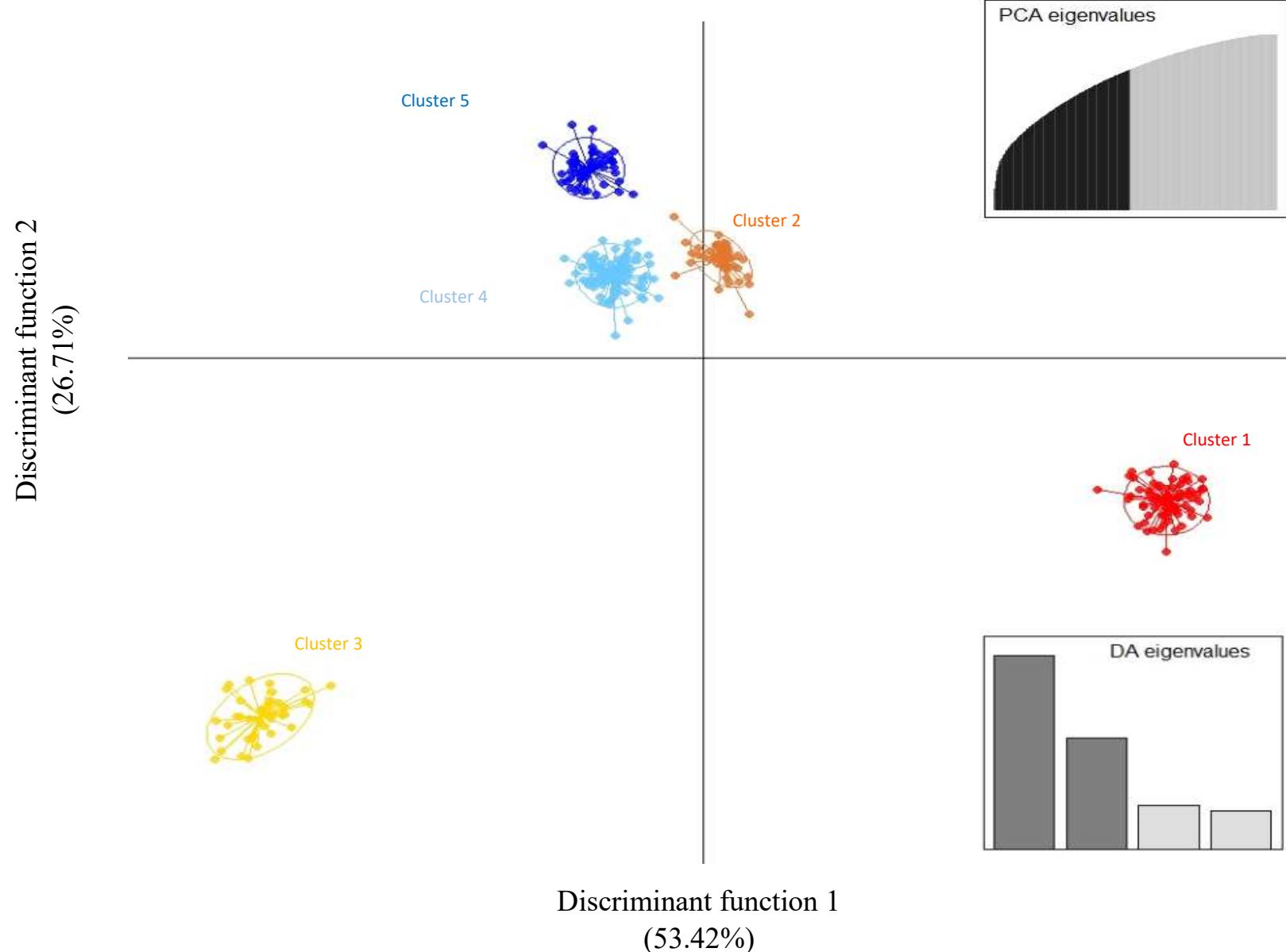
	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Cluster 1	–	0.073-0.085	0.082-0.095	0.198-0.222	0.173-0.194
Cluster 2	0.079	–	0.156-0.177	0.277-0.307	0.240-0.266
Cluster 3	0.088	0.166	–	0.134-0.153	0.120-0.136
Cluster 4	0.21	0.292	0.143	–	0.183-0.206
Cluster 5	0.183	0.253	0.128	0.194	–

1232

1233 **Table 2.** Hierarchical AMOVA results showing levels of genetic structure among the five
1234 major genetic clusters identified by STRUCTURE/DAPC, the areas of regional koala
1235 significance (ARKS), and individual animals (n=314).
1236


Source of variation	d.f.	Sums of squares	Variance components	Percentage variation
Among clusters	4	9143.858	43.481	9.825
Among ARKS Within Clusters	29	941.136	52.748	11.918
Among Samples Within ARKS	280	386.077	39.731	8.977
Among samples	314	306.615	306.615	69.28

1237


1238 **Table 3.** Analysis of variance using Satterthwaite's method for changes in homozygosity by
1239 locus (HL) based on multilevel mixed-effects linear modelling.

Predictor	Sum of Squares	Degrees of	Denominator degrees	<i>p</i> -value
		Freedom	of freedom	
Percentage of high & moderate functional habitat	<0.001	1	302.65	0.509
Percentage of low & very low functional habitat	0.001	1	303.54	0.476
Human population density	<0.001	1	292.14	0.843
Percentage of high & moderate functional habitat × percentage of low & very low functional habitat	0.008	1	142.90	0.054
Percentage of high & moderate functional habitat × human population density	<0.001	1	292.14	0.841
Percentage of low & very low functional habitat × human population density	<0.001	1	292.15	0.846

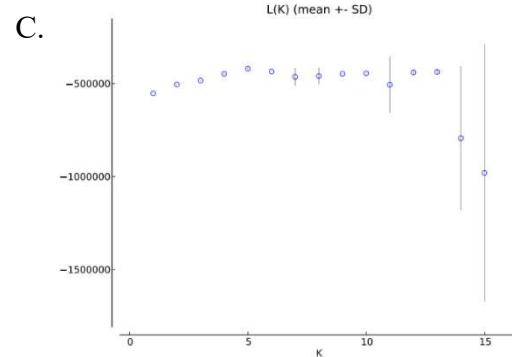
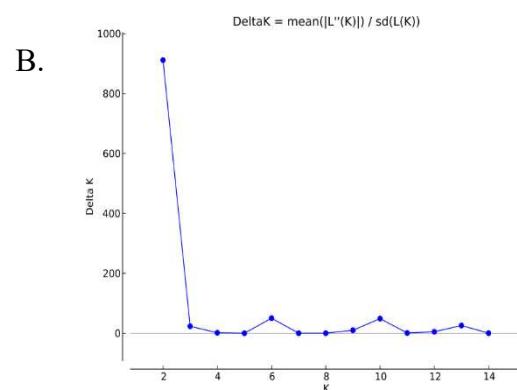
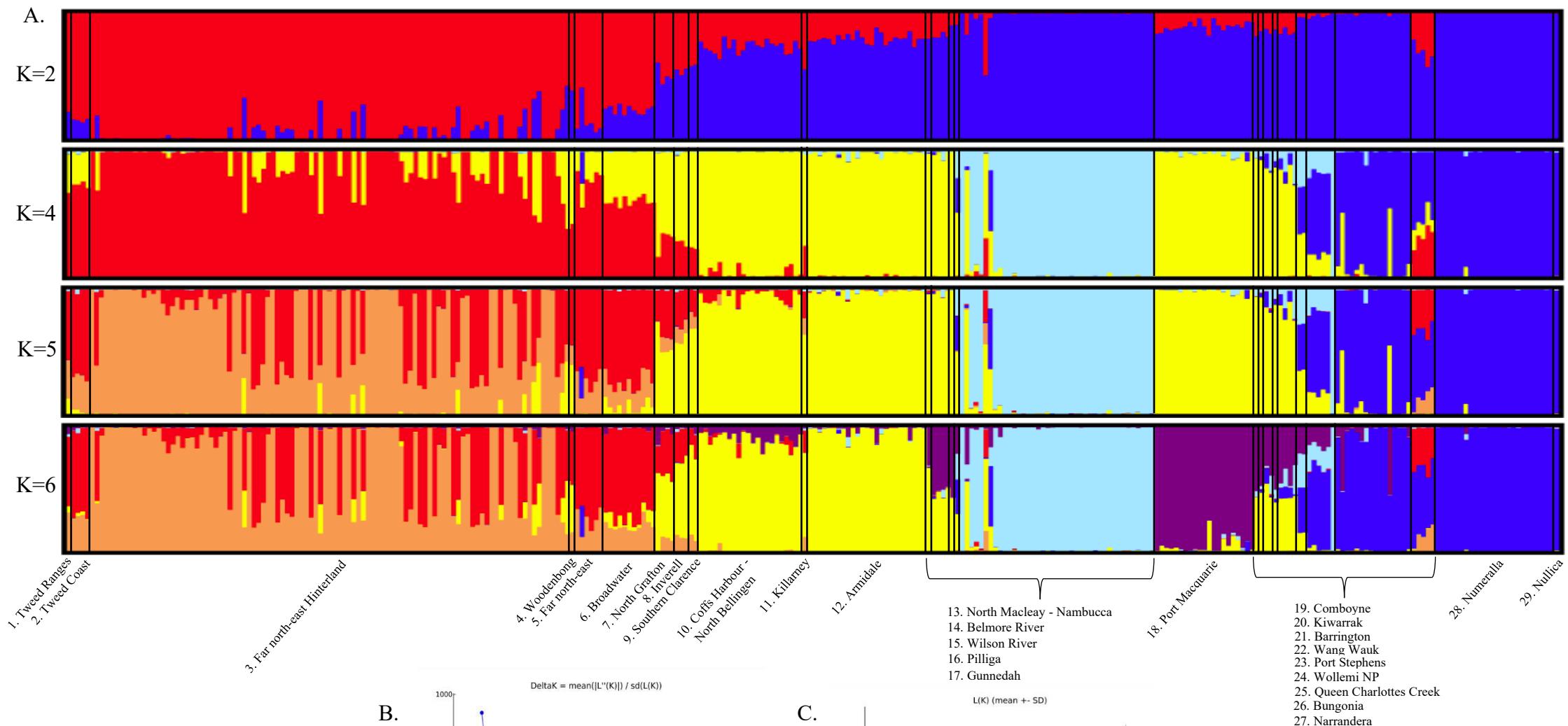



Figures


Figure 1. Distribution of the 314 koala specimens included in this study relative to the 48 Areas of Regional Koala Significance (ARKS). Samples are colour coded by major genetic cluster of origin, as identified by both DAPC and STRUCTURE.

Figure 2. Scatterplot showing the first two principal components of the discriminant analysis of principal components (DAPC) which was applied to the data set prior to filtering the loci that were out of Hardy-Weinberg equilibrium. Each koala genome is represented by a single dot, while inertial ellipses are depicted as ovals, with the lines extending to the centroids of each cluster. The number of principal components retained for each analysis (PCA) and the relative amount of genetic variation contained in each discriminant factor (DA) are shown using eigenvalue plots.

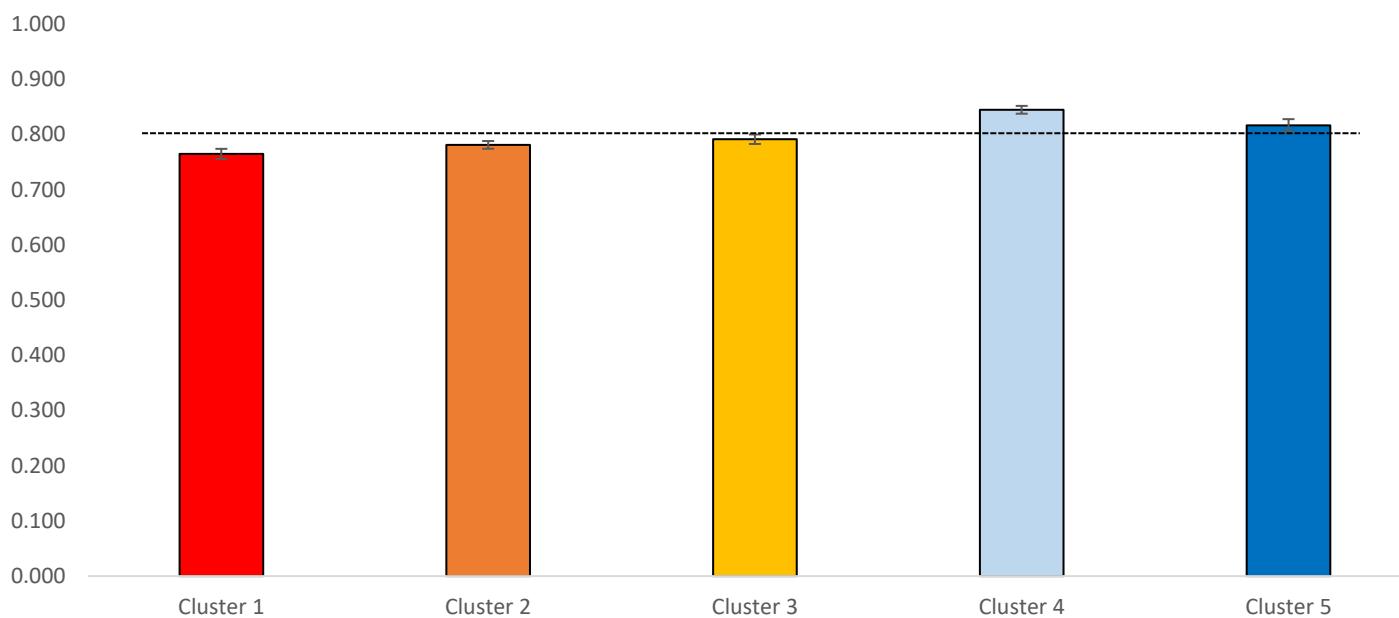


Figure 3. Distribution of genetic diversity in contemporary koala populations across the state of NSW. A) STRUCTURE plots showing the inferred ancestry proportions for 314 koalas sourced from 29 Areas of Regional Koala Significance (ARKS) at four different values of K. Optimal clustering solutions according to B) maximum delta log likelihood (ΔK) and C) maximum posterior probability $L(K)$.

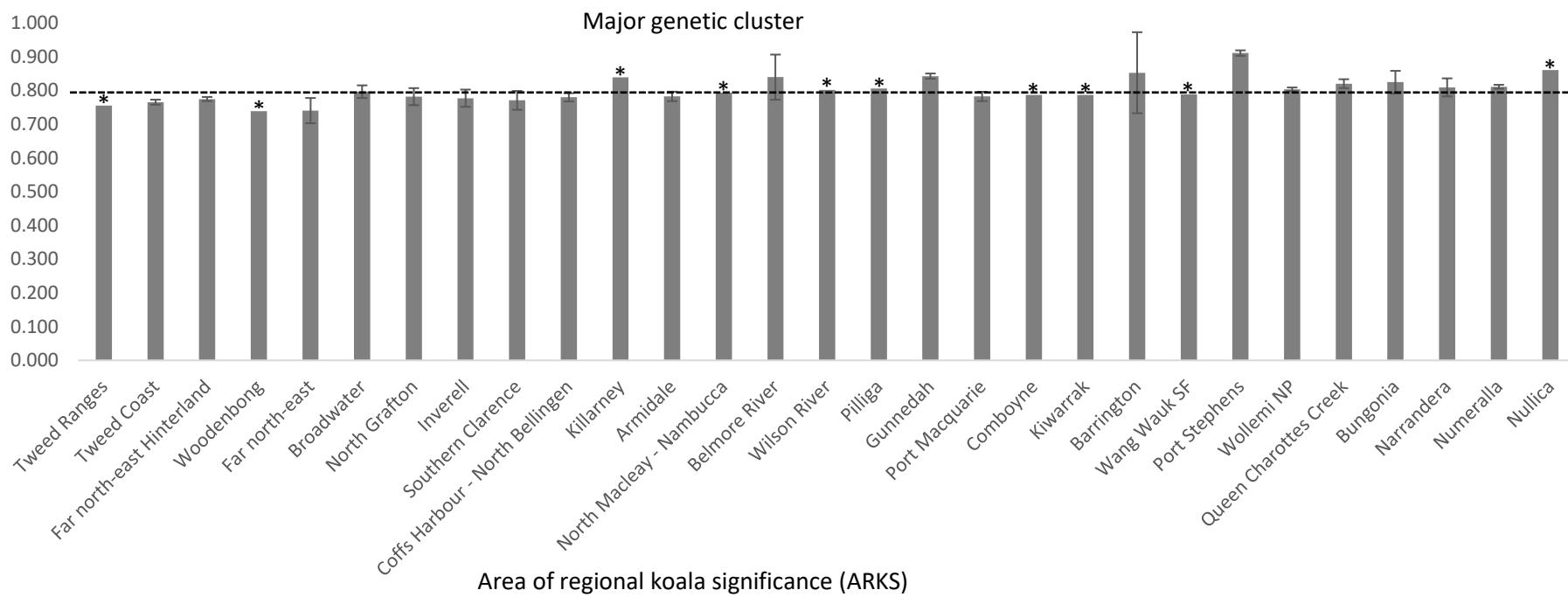


Figure 4. Chord diagram depicting contemporary gene flow estimates for NSW koalas derived from BayesAss (raw BayesAss results are displayed in Table S3.1 in Supplementary Material). The thickness of the chords represents the rate of migration from the source to the recipient population/s; only migration rates significantly different from zero are displayed. The proportion of migrants relative to total population size is depicted on the outer section axis.

A.

B.

Figure 5. Mean homozygosity by locus (HL) scores and associated 95% confidence intervals for A) the five major genetic clusters identified by DAPC/STRUCTURE and B) 29 Areas of Regional Koala Significance (ARKS). In both instances, the mean state-wide HL is represented by a broken black line. ARKS represented by a single sample are denoted with an asterisk, indicating that these values cannot be taken as representative of the overall levels of genetic diversity within these management divisions.