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1 ABSTRACT

Background and Hypothesis: Chronic schizophrenia is associated with white matter disruption
and topological reorganization of cortical connectivity but the trajectory of these changes over
the disease course are poorly understood. Current white matter studies in first-episode psychosis
(FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may
be detectable at the onset of psychosis, but specific results vary widely and few reports have
contextualized their findings with direct comparison to chronic patients. Here, we test the
hypothesis that structural changes are not a significant feature of early psychosis.

Study Design: Diffusion and T1-weighted 7T MR scans were obtained from N=113 (61 FEP
patients, 37 controls, 15 chronic patients) recruited from an established cohort in London,
Ontario. Voxel- and network-based analyses were used to detect changes in diffusion
microstructural parameters. Graph theory metrics were used to probe changes in the cortical
network hierarchy and to assess the vulnerability of hub regions to disruption. Experiments were
replicated with N=167 (111 patients, 56 controls) from the Human Connectome Project - Early
Psychosis (HCP-EP) dataset.

Study Results: Widespread microstructural changes were found in chronic patients, but changes
in FEP patients were minimal. Unlike chronic patients, no appreciable topological changes in the
cortical network were observed in FEP patients. These results were replicated in the early
psychosis patients of the HCP-EP datasets, which were indistinguishable from controls on nearly
all metrics.

Conclusions: The white matter structural changes observed in chronic schizophrenia are not a
prominent feature in the early stages of this illness.
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2 INTRODUCTION

The neuropathology of schizophrenia comprises a generalized dysconnectivity between brain
regions.'? The current consensus suggests a loss or “subtle randomization” of functional
relationships across the brain,>”’ predominantly affecting highly connected neural hubs. This
causes alterations of the cortical hierarchy,>® hampering the integrated processing of information
and causing disorganization of thoughts, speech, and behaviour.>!°

White matter pathology has long been explored as a causative or mediating factor of
schizophrenia.'® Two decades of diffusion magnetic resonance imaging (dMRI) research,
including a mega-analysis of 1963 individuals with schizophrenia,'' have established the
disruption of white matter (WM) integrity as a robust feature of chronic schizophrenia.>!?1>
Although the histological implications of these findings are not entirely clear, they may involve
some combination of the degradation of myelin sheaths on long axonal projections,'® decreased
axonal density!” or increased fibre disorganization.'®

If these changes arise early in the course of schizophrenia, they may reflect causative,
pathological processes, and their precise quantification may aid early detection. Such an idea is
easily motivated by our current developmental understanding of the disease.!*?° A substantial
genetic component?! and associations with childhood?? and perinatal trauma® suggest
schizophrenia arises from pathological processes beginning very early in life. Indeed, the first
psychotic episode is generally preceded by a subthreshold phase of disorganized thinking and
perceptual, motor and cognitive disruptions that can last for several years.?* We thus might
expect structural changes to have accumulated by the time of the first psychotic episode. If so,
such changes may be detectable, early, neural markers of the prodromal period.

Previous dMRI studies in first-episode psychosis (FEP) have thus far converged on a report of
reduced fractional anisotropy (FA) in FEP,% but the location and scale of these findings vary
across studies.?®7 Other reports have studied changes in the number of streamlines connecting
cortical regions, a metric that gives insight into the anatomical makeup of the structural
connectome. Results from such analyses have been relatively modest compared to FA.
Reductions and elevations of streamline counts are observed in scattered connections>®“” and the
connectivity of cortical hubs is slightly reduced.*!*?

Common to all the above studies is the relative paucity of findings compared to those observed
in chronic patients. In studies analyzing both groups together, disruption is consistently greater in
older, more chronic patients compared to those with FEP.****% These prior studies, however, are
limited either by limited methodologies** or small sample sizes,*** especially of FEP patients

(n <= 20).

The lack of a consistent, anatomically localized disruption in FEP may mask a more reproducible
topological effect. Individual deficits may be anatomically scattered, reflecting high inter-
individual variability difficult to observe at the group-level, yet still produce a converging effect
on the overall topology.®* Disruption in chronic patients is already known to be topologically
biased, with highly connected hub nodes bearing the greatest burden.!?*® Previous work has
mostly focused on anatomically localized disruption, and no prior studies of FEP patients have
studied both anatomical and topological disruption in concert.
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Finally, the use of single-site dMRI datasets hinders attempts at replication, as findings may
reflect the unique acquisition parameters of the dataset.*’ The availability of high quality, open-
access datasets allows us to replicate observations to ensure robustness of both positive and
negative findings. The recently released Human Connectome Project - Early Psychosis (HCP-
EP) dataset represents the first such openly available dataset specifically for early psychosis (<3
years since diagnosis). Its diffusion data has not yet been analyzed in any major connectivity
study of early psychosis.

In this study, we analyzed geometric and topological disruption in the brains of FEP and early
psychosis (EP) patients using the Tracking Outcomes in Psychosis (TOPSY) dataset, a 7T dMRI
dataset of untreated FEP patients, age matched controls, and chronic patients, and the HCP-EP
dataset. We hypothesize that, compared to chronic patients, FEP and EP patients will have
relatively intact network topology and a reduced extent of network disruption.

3 METHODS

3.1 DATA
3.1.1 TOPSY Dataset

61 FEP patients, 15 chronic patients, and 37 healthy controls (HCs) were recruited from an
established cohort enrolled in the Prevention and Early Intervention Program for Psychoses
(PEPP) in London, Ontario. All participants provided written, informed consent prior to
participation as per approval provided by the Western University Health Sciences Research
Ethics Board, London, Ontario. Inclusion criteria for study participation were as follows: for FEP
patients: individuals experiencing first-episode psychosis, with no more than 14 days of
cumulative lifetime antipsychotic exposure, no major head injuries (leading to a significant
period of unconsciousness or seizures), no known neurological disorders, and no concurrent
substance use disorder. Participants were not explicitly instructed to abstain from substances, and
patients on non-antipsychotic prescription medication were not excluded.

For FEP, the mean lifetime total defined daily dose days (DDD x days on medication) for
antipsychotic use was 1.57 days with 27 patients (47.4%) being completely antipsychotic naive
at the time of scanning. Of those who had started antipsychotic treatment, (N = 30; 52.6%), the
median total defined daily dose days was 2.81 days (range of 0.4—14 DDD days). Patients with
established (chronic) schizophrenia consisted of clinically stable patients on long-acting
injectable medications with 3 or more years since illness onset, no recorded hospitalization in the
past year, and receiving community-based care from physicians affiliated to a first-episode clinic
(PEPP, London Ontario). While many studies have focused on chronic schizophrenia patients in
their 40s or 50s, our approach enabled us to reduce (even if we cannot fully avoid) the age gap
with FEP and HC groups. Patient consensus diagnosis was established using the best estimate
procedure described by Leckman et al.*® following 6 months of treatment. Diagnoses were made
based on the Structured Clinical Interview for DSM-5.

HCs were recruited through posters and word-of-mouth advertising. Healthy control subjects had
no personal history of mental illness, no current use of medications, and no first-degree relatives
with a history of psychotic disorders. Healthy controls were group matched to the FEP cohort for
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age and parental socioeconomic status (the National Statistics Socioeconomic Classification:
five-class version). Similar to their FEP counterparts, those with a history of substance use
disorders in the past 12 months, significant head injury, or neurological disorders were excluded.

Data was acquired with a head-only, neuro-optimized 7T MRI (Siemens MAGNETOM Plus,
Erlangen, Germany) using dMRI and T1-weighted (T1w) imaging protocols. T1w data was
collected using an MP2RAGE sequence49 at 0.75 mm isotropic resolution, echo time = 2.83 ms,
repetition time = 6 s, field of view = 240x240 mm, number of slices = 208. The T1w image was
reconstructed using the robust algorithm introduce by O’Brien et al.>® Diffusion data was
acquired with an echo-planar imaging (EPI) sequence at 2mm isotropic resolution, echo time =
50.2 ms, repetition time = 5.1 s, field of view = 208 mm, number of slices = 72, MB acceleration
factor = 2, flip angle = 90. 64 directions were acquired in both the AP and PA directions at
b=1000, along with 2 b=0 images. Gradient nonlinearity correction was applied to all
acquisitions using in-house software.

3.1.2 HCP-EP Dataset

Human Connectome Project - Early Psychosis (HCP-EP) data was accessed according to the
Data Use Certification issued by the NIMH Data Archive. Data was acquired on a 3-T MRI
(Siemens MAGNETOM Prisma). T1w data was collected using an MPRAGE sequence at
0.8mm isotropic resolution, echo time = 2.22ms, repetition time = 2.4 s, field of view = 256 mm,
number of slices = 208. dMRI was acquired with an EPI sequence at 1.5mm isotropic resolution,
echo time = 89.2 ms, repetition time = 3.23 s, field of view = 210 mm, number of slices = 92,
MB acceleration factor = 2, flip angle = 78. 92 directions were acquired in both the AP and PA
directions at b=1500 and b=3000, along with 7 b=0 images.

3.2 PREPROCESSING
3.2.1 Anatomical data

For TOPSY data, segmentation of the anatomical images and construction of the cortical surface
mesh was performed using FastSurfer,”'>* a recently developed implementation of the cortical
parcellation and mesh creation algorithms pioneered by FreeSurfer, chosen for its improved
processing efficiency and more accurate parcellations (as determined with visual quality control).
Remaining processing of anatomical images was done using ciftify,>* an implementation of the
HCP-EP minimal preprocessing workflow.>> Of note, images were registered to the
MNI152NLin6Asym>® template space, and meshes were registered to the fsLR-32k template
space.’’

For the HCP-EP dataset, we used the minimally preprocessed anatomical images included in the
dataset.

3.2.2 Diffusion Data

Diffusion data was preprocessed using snakedwi,”® a preprocessing pipeline based on snakebids>

and snakemake.®® Briefly, Gibbs ringing artefacts were removed with mrdegibbs from
MRtrix3;5"%2 eddy currents and motion were corrected using eddy from FSL;% susceptibility-
induced distortions were corrected using topup in FSL, using the AP-PA pairs of images.®*% The
T1w image was skull stripped with SynthStrip;% bias field correction was applied with N4ITK
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from ANTS.®” A T1 proxy image was created from the diffusion image using SynthSR®® and used
to accurately register the diffusion image space to the T1w space using greedy.%® Diffusion
tensor imaging (DTI) metrics were calculated using dtifit from FSL with linear regression.”®

Tractography was performed using the MRtrix3%* software suite. Constrained Spherical
Deconvolution (CSD) was performed using the dhollander algorithm to estimate the response
functions for WM, grey matter (GM) and cerebrospinal fluid (CSF).”""> Single shell 3 tissue
CSD (SS3T-CSD), as implemented in MRtrix3Tissue (https://3tissue.github.io/), was performed
to obtain WM-like fibre orientation distibutions (FODs) as well as GM-like and CSF-like
compartments in all voxels.”> mtnormalise was used to correct for residual intensity
inhomogeneities.”*” Tractography was performed using the iFOD2 algorithm’® and
anatomically constrained tractography (ACT),”” with 50,000,000 streamlines, an FOD amplitude
cut-off of 0.06, a minimum streamline length of 4mm, and a maximum streamline length of
250mm. The anatomical segmentation used for ACT was obtained using SynthSeg.”® Spherical-
deconvolution informed filtering of tractograms 2 (SIFT2) was used to correct the streamline
counts based on the underlying FOD magnitude.”

The HCP-EP dataset was preprocessed in the same manner, except that multi-tissue CSD®® was
used instead of SS3T-CSD, and 10,000,000 streamlines were generated in tractography. All b-
values were used for the calculation of DTI metrics.

3.3 ANALYSIS

Voxelwise differences in FA, mean diffusivity (MD), radial diffusivity (RD), and axial
diffusivity (AD) were calculated using tract-based spatial statistics (TBSS).8! DTI metrics were
used because more complicated models could not be fit to our TOPSY dataset, which has a
maximum b-value of 1000. FA maps were first registered to a common template space roughly
corresponding to the average of all FA images using a pipeline based on greedy.® The other DTI
maps were then transformed into this space. FSL® was then used to skeletonize the maps, and
FSL randomise®? with TFCE-correction and 10,000 permutations was used to compare groups,
thresholding at a corrected p-value of 0.05. Sex and age were regressed as nuisance variables.
For HCP-EP data, acquisition site was additionally regressed.

Subject anatomical scans were parcellated using the Brainnetome atlas.®* These parcellations
were used to derive weighted connectivity matrices based on the tractography data. Average FA,
MD, RD, AD, and the log-transformed SIFT2-weighted streamline count were used as weights.
Edges in the resulting graphs with significantly differing weights across groups were identified
using network based statistic (NBS)® with extent based cluster sizes, a T threshold of 3.0,
10,000 iterations, and corrected p-value threshold of 0.05. Sex and age (and site for HCP-EP)
were regressed as nuisance variables.

Node hubness was calculated using a composite score®® based on four graph theory metrics:
degree, betweenness, clustering coefficient, and path length, all of which have been previously
used to capture hubness.?® These parameters were defined according the weighted definitions
given by van den Heuvel et al.%® These parameters were calculated for each node, and the nodes
were rank-ordered and assigned a score based on their rank. The score was defined as the node’s
position in the rank-ordered list divided by the total number of nodes. In other words, each node
had a score between 0 and 1, with 0 given to the node with the lowest value, and 1 given to the
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node with the highest. Such a score was calculated independently for each of the four metrics,
and the four scores for each node were averaged to get the overall hubness score. This entire
process was repeated independently for each subject, yielding subject-specific hubness scores for
all nodes. For group analyses, these hubness scores were averaged across the subjects within
each group.

Differences in node hubness were analyzed by comparing the relative rank order of nodes
between and within groups. First, Kendall’s tau®” was used to compare hubness rankings for all
subject pairs. This metric varies between -1 and 1, where 1 means the two lists have the same
order, 0 means the two lists have uncorrelated orders, and -1 means the two are reversed relative
to each other. We then calculated the average within-group and between-group Kendall’s tau,
1.e. the average metric for all subjects in one group compared to all subjects within the same
group, and the average metric for all subjects in one group compared to all subjects in another
group. Significance was assessed by randomly permuting the groups 10,000 times.

Connection disruption and node hubness were compared based on an analysis described in,!?
with some modification. To measure the disruption associated with nodes of a given hubness,
nodes were selected from the hubness band surrounding threshold k + r where the kernel radius
r was set to 0.05. The proportion of disrupted edges connected to these nodes was compared to
10,000 randomly selected groups of nodes of equal size. This analysis was repeated at values
0.1 < k < 0.9. This analysis was repeated using the ranked degree of each node, where each
node was assigned a value between 0 and 1 based on its position in a degree-ranked list of nodes.
Finally, both of these analyses were repeated using a threshold approach. Here, k was treated as
an upper or lower threshold. For each value of k, the subgraph of nodes above or below k was
considered, and only edges within that subgraph were evaluated. Empirical disruption
proportions were compared to 1000 equivalently sized, randomly selected subgraphs.

3.4 CODE AVAILABILITY

The analyses discussed above and resulting figures were made possible by openly available
python packages,® 8 particularly graph-tool®® , pybids,'**'°! nibabel,'* and nilearn.'®* All code
used is freely available at https://github.com/pvandyken/paper-CorticalDisruptionFEPMinimal.
Links to pipelines used for data preprocessing are listed at that repository.

4 RESULTS

4.1 DEMOGRAPHICS

In the TOPSY dataset, no significant difference was found between HCs and FEP patients for
sex, age, handedness, or SES. A similar lack of significant differences were found between HCs
and chronic patients, except that chronic patients were significantly older than the HC cohort

(t =4.72,p < 0.0001). Both FEP and chronic patients had significantly lower education levels,
higher cannabis use, and higher smoking prevalence than controls (Table 1).
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Table 1: TOPSY Demographics: Group distribution columns show mean (sd) unless otherwise
indicated. Comparison columns show test(df) = statistic. P values less than 0.05 are shown
in bold. M = male, F = female, SES = Socioeconomic status, CAST = Cannabis Abuse Screening
Test, AUDIT-C = Alcohol Use Disorders Identification Test, DUP = Duration of Untreated
Psychosis, DUI = Duration of Untreated lllness, SOFAS = Social Occupational Functioning
Assessment Scale, PANSS-8 = Positive and Negative Syndrome Scale 8

Sex (M/F)
Age

Handedness
(R/L/A)

Education

SES

CAST

AUDIT-C

Smoker (yes/no)

Cannabis (yes/no)

DUP (weeks) -
median (IQR)

DUI (weeks) -
median (IQR)

Antipsychotic

Duration (days)

Antipsychotic
Defined Daily

Dose Equivalents

SOFAS

HC
(n=37)

24/13

21.70
(3.49)

34/0/3

14.14
(2.18)

3.08
(1.34)

6.68
2.77)

3.03
(2.19)

1/36

10/27

N/A

N/A

N/A

N/A

82.03
(4.67)

FEP
(n=61)

50/11

22.82
(4.65)

53/1/7

12.83
(1.86)

3.53
(1.32)

12.14
(5.76)

2.28
(2.97)

17/44

36/19

18.50
(60.50)

139.00
(216.00)

1.56
(3.05)

1.08
(3.07)

41.62
(12.82)

chronic
(n=15)
12/3

28.93
(7.92)

13/1/1

12.71
(2.33)

3.40
(1.24)

11.54
(7.78)

3.38
(2.40)

/8

5/8

N/A

N/A

N/A

N/A

56.00

HC vs FEP
(1) =2.78,
p =0.096
1(96) = -1.26,
p=021

x(2)=
0.928, p =
0.63

1(94) = 3.12,
p =0.0024

1(85) =-1.55,
p=0.13

1(86) = -5.33,
p <0.001

1(81)=1.27,
p=0.21

(1) =8.12,
p = 0.0044
2(1)=11.6,
p <0.001

191)=17.2,

(11.41) p <0.001

HC vs chronic
v*(1)=0.547,
p=0.46
1(49) = -4.55,
p <0.001
v*(2) =2.53,
p=0.28

1(48) =2.03,
p =0.047
1(49) =-
0.785,
p=0.44
1(48) =-3.3,
p =0.0018
1(48) = -
0.494,p =
0.62

(1) =12.6,
p <0.001

v} (1)=0.178,
p=0.67

#(45)=11.2,
p <0.001

FEP vs
chronic

r(1)=0,p=
1

1(73) = -3.83,
p <0.001
¥(2) =142,
p=0.49

1(72) = 0.205,
p=0.84

1(64) = 0.339,
p=0.74

1(62)=0.311,
p=0.76
1(57)=-1.23,
p=0.23

(=12,
p=0.27
r(1)=2.17,
p=0.14

1(74) = -3.97,
p <0.001
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HC FEP chronic FEP vs
(n=37) (n=61) (n=15) HC vs FEP HC vs chronic  chronic

PANSS-8 Total 8.00 24.96 1450 #92)=-14.8, #49)=-5.68, #69)=35.03,

0.00) (6.94) (7.08) p<0.001  p<0.001 p <0.001
PANSS-8 300 1195 671  #92)=-193, #49)=-6.03, #69)=5.79,
Positive 0.00) (282) (381) p<0.001  p<0.001 p <0.001
PANSS-8 300 771 429  #93)=-6.62, #(49)=-4.19, «70)=2.89,
Negative 0.00) (432)  (1.90) p<0.001  p<0.001 p =0.0052
PANSS-8 General 2.00  5.34 357 #93)=-931, #49)=-3.79, 1(70) = 2.64,

0.00) (2.18) (2.56) p<0.001  p<0.001 p =0.01

In the HCP-EP dataset, no significant differences between HCs and patients were found for sex,
SES. Patients were significantly younger (t = 3.51, P < 0.001), more right-handed (y? =
4.36,P < 0.05), less educated (t = 3.23, P < 0.05), and more likely to smoke (x?=3.88,P<
0.05) than the HCs. Cannabis use was not reported amongst HCs, but 29% of patients had at
least some exposure (Table 2).

Table 2: HCP-EP Demographics: Group distribution columns show mean (sd). Comparison
columns show test(df) = statistic. P values less than 0.05 are shown in bold. SES =
Socioeconomic status, PANSS = Positive and Negative Syndrome Scale

HC (n=56) Patient (n=111) HC vs Patient
Sex (M/F) 37/19 68/43 v} (1)=0.192, p = 0.66
Education 15.88 (1.92) 14.21 (2.20) #(73) =3.23,p =0.0019
Age 2490 (4.08) 22.73(3.59) #(165)=3.51, p < 0.001
Handedness (R/L) 43/10 99/7 v’(1)=4.36,p = 0.037
SES 2.07 (1.07) 2.25(1.19) 1(163) =-0.955,p =0.34
Smoke (Yes/No) 3/51 20/89 (1) =3.88, p = 0.049
Pack years 0.02 (0.09) 0.71 (2.50) 1(131) =-1.82, p =0.071
Cannabis N/A 1.56 (0.89)
Antipsychotic Duration N/A 14.32 (15.65)
(months)
Antipsychotic Defined Daily N/A 163.51 (231.00)
Dose Equivalents
PANSS Total N/A 49.60 (10.74)
PANSS Positive N/A 11.05 (3.87)
PANSS Negative N/A 14.10 (5.32)

PANSS Global N/A 24.50 (5.26)
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4.2 MICROSTRUCTURE

We first looked for evidence of global disruption of WM in FEP and chronic patients. No
difference was found between the global average FA between FEP patients and HCs, but a
significant reduction of FA in chronic patients compared to HCs was noted (pqq; = 0.010). We
did not find a difference of FA between the early psychosis patients in the HCP-EP dataset and
their associated controls (Figure 1 A).

Compared to HCs, chronic patients also had a significant increase in global MD (p < 0.001),
RD (p < 0.001), and AD (p = 0.0025). Compared to FEP patients, chronic patients had
significantly increased global MD (p = 0.0053) and RD (p = 0.0034) (Figure S1). No
significant differences in these parameters were observed between EP patients and HCs in the
HCP-EP dataset.

To narrow down differences to a more regional level, we used TBSS to perform spatial
comparisons across HCs, FEP patients, and chronic patients (adjusted for age and sex). No
significant differences were found between HCs and FEP. When comparing chronic patients to
HCs, voxels with significant FA reduction were found in the left hemisphere occupying the
posterior junction of the corpus callosum and corona radiata (Figure 1 B). Further significant
voxels were found in chronic patients in comparison to FEP patients, located bilaterally in the
posterior corpus callosum and superior longitudinal fasciculus, and in the left hemisphere corona
radiata. (Figure 1 C). No significant differences were found between HCs and patients in the
HCP-EP dataset.

TBSS performed on other parameters also revealed extensive changes in both chronic and FEP
patients. Both patient groups had significantly higher MD than HCs in corpus callosum; the
bilateral corona radiata, thalamic radiation, and superior longitudinal fasciculus; and in the
superficial white matter of the parietal and occipital lobes (Figure 2 A,C). The MD changes in
FEP patients were generally more constrained to the superficial white matter and peripheral
white matter tracts, as opposed to the deeper, centralized changes in the chronic patients covering
more of the corpus callosum and internal capsule. Chronic patients had higher MD than FEP
patients only in the right hemisphere, in the splenium of the corpus callosum and the posterior
corona radiata (Figure 2 E). Chronic patients had higher RD than both HCs (Figure 2 B) and FEP
patients (Figure 2 F) throughout the corpus callosum, bilaterally in the internal capsule, corona
radiata, thalamic radiations, superior longitudinal fasciculus, and tapetum, as well as bilateral
superficial white matter in the parietal, temporal, and occipital lobes. Finally, FEP patients had
higher AD than HCs in the left hemisphere genu of the corpus callosum, anterior limb of the
internal capsule, anterior corona radiata, external capsule, and superficial white matter of the
frontal lobe (Figure 2 D). The full list of impacted regions and extent volume is tabulated in
Table S1. No significant results were found when testing any of the above models in reverse

(e.g. testing for regions in HCs with higher MD than FEP or chronic patients).

No significant differences of MD, RD, and AD were found between EP patients and HCs in the
HCP-EP dataset using TBSS.
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Figure 1: Global FA values are reduced in chronic but not FEP and early psychosis. A: Global
average of FA across brainnetome connectome connections. Left side shows data from TOPSY
dataset (one-way ANOVA, F(2,110) = 4.44,p = 0.014); post hoc analysis found a significant
reduction of FA in chronic patients compared to HCs (Tukey HSD, FWER=0.05, pyq; = 0.010).
A trending difference was observed between FEP and chronic patients (paq; = 0.0504). Right
side shows HCP-EP, no significant difference was found. B,C: Skeletonized voxels with
significantly lower FA in chronic patients compared to (B) HCs and (C) FEP patients, as show
by FSL’s TBSS. Results as shown are inflated for visualization, the actual significant voxels are
restricted to the skeleton, portrayed as a green overlay. Results are thresholded for a FWER of
0.05. Localization and size of the significant voxels is listed in Table S1.
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Figure 2 (preceding page): MD and RD increased in chronic patients relative to healthy controls
(HCs) and first-episode psychosis (FEP) patients; MD and AD increased in FEP patients
relative to controls. All figures show skeletonized voxels with a significantly higher parameter
value in the indicated patient group. Results as shown are inflated for visualization, coloured
according to the parameter they map (yellow=MD, blue=RD, green=AD), and thresholded for a
Sfamily-wise error rate of 0.05. The size and localization of significant voxels is listed in Table S1.
A and B show results in chronic patients versus healthy controls: A=MD, B=RD. C and D show
FEP patients versus healthy controls: C=MD, D=AD. E and F show chronic versus FEP
patients: E=MD, F=RD. Abbreviations: MD=Mean Diffusivity, AD=Axial Diffusivity,
RD=Radial Diffusivity.

4.3 CONNECTIVITY

To explore the effects of schizophrenia on connectivity, we used the Brainnetome cortical
parcellation® and NBS3 to search for connections with significantly reduced FA and streamline
count, comparing across HCs, FEP patients, and chronic patients. No specific connections with
significantly lower FA were found in FEP patients when compared to HCs, but many were found
both in chronic patients when compared to HCs or FEP patients (Figure 3 A). The disrupted
edges were predominantly interhemispheric, primarily originating from the temporal cortex,
insula, and frontal cortex (Figure 3 B). In the HCP-EP dataset, a small subnetwork of disrupted
connections restricted to the occipital cortex was found in FEP patients compared to HCs. No
differences were found between any group when looking at streamline count-weighted
connectomes (Figure 3 A).

Additionally, numerous edges with increased MD, AD, and RD were found in chronic patients
compared to both HCs and FEP patients (Figure S2 A,B). A smaller number of edges with
increased MD and AD were additionally found in FEP patients compared to HCs (Figure S2, C).
Disrupted edges primarily originated from temporal, parietal, occipital, and subcortical regions,
and were predominantly interhemispheric. Disrupted edges in FEP patients were predominantly
in the frontal lobe and intrahemispheric.

44 ToOPOLOGY

Changes in the cortical hierarchy have previously been associated with schizophrenia. In
particular, studies have found disrupted edges to be predominantly between topologically central
nodes. To investigate this, we performed a variation of an analysis previously reported by
Klauser et al.,'? which measured the proclivity of connections above a given threshold degree to
be disrupted, as determined by NBS. Here, we defined a composite metric of hubness comprising
four complementary graph theory measures: degree, average shortest path length, betweenness
centrality, and the clustering coefficient. All metrics were calculated using the structural
connectome weighted with the SIFT2-corrected streamline count. Across all subjects, hubs were
situated in locations previously implicated by the literature, including the prefrontal cortex,
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Figure 3: Chronic patients have more disrupted edges than FEP and early psychosis. In all
panels, the first row corresponds to results comparining HCs to chronic patients, the second
comparing FEPs to chronic patients, and the third comparing HCs in the HCP-EP dataset to the
early psychosis patients in that datset. A: Edges with significantly reduced FA as discovered with
NBS. Nodes corresponding to the Brainnetome parcellation are represented around the edge of
each graph diagram, are coloured according to lobe they belong to, and sized according to the
number of disrupted edges they connect with. Left hemisphere nodes are on the left side of the
figure, right hemisphere nodes are on the right. Visualized edges are those with significantly
lower FA in the control group (FEP in the FEP v chronic comparison). Edges are coloured
according the the T-value determined by NBS. B: Spatial distribution of nodes with (cont...)
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Figure 3 cont... disrupted edges. Regions are coloured according to the number of disrupted
edges connected to the region. C: Hubness of disrupted edges. X-axis corresponds to a band of
hubness values corresponding to the hubness x £ 0.05. Nodes within that hubness band are
selected and the proportion of disrupted edges connected to those nodes is calculated. This
proportion is compared to 1000 randomly selected groups of nodes of equal size. The 95%
confidence interval of this random distribution is represented by the red shaded region.

anterior and posterior cingulate cortex, precuneus, and parietal cortices (Figure 4 D). We
measured the probability that edges of a given hubness would be disrupted compared to the
general probability of disruption, using a sliding window approach. In all comparisons, there was
no particular hubness regime with a disproportionate extent of disruption (Figure 3 C). This
finding remained true when using a threshold version of the approach more comparable to the
original paper: instead of nodes within a fixed, sliding kernel, all nodes above a sliding threshold
were analyzed (Figure S3 A). Finally, no significant results were observed when using an upper-
bound threshold instead of a lower-bound (Figure S3 B), and when using the rank-ordered
degree of nodes instead of hubness (Figure S3 C,D,E).

To investigate changes in the topology and hierarchy of cortical connectivity, we compared the
average degree and global efficiency using the SIFT2-weighted structural connectomes. A
significant reduction in average degree was observed between HC and chronic patients (p =
0.0093), but not between any of the other groups (Figure 4 A). No changes in global efficiency
were found in any comparison (Figure 4 B). Changes in cortical hierarchy across groups were
measured by comparing the rank-ordered list of nodes sorted by increasing within-group average
hubness (Figure 4 C,D). Similarity was measured using the Kendall Tau Rank correlation
coefficient. The hubness rankings of chronic patients has significantly more within-group
variation than both HCs (p = 0.019) and FEP patients (p = 0.035) (Figure 4 E). Furthermore,
chronic patients significantly varied from both HCs (p = 0.0022) and FEP (p = 0.50) patients
compared to a permutation-based null distribution (Figure S4 B). No other groups showed
differences in hub ranking.

Importantly, the hierarchical changes observed in chronic patients were notably subtle. Although
chronic patients show a statistically significant hub reorganization from HCs and FEP patients
based on hubness rankings, the overall rankings remain broadly similar across all patients
(Figure S4 A). Furthermore, hierarchical disruption in chronic patients cannot be characterized
by any stereotyped rearrangements; instead, the individual rankings of patients are increasingly
idiosyncratic, as shown by the decreased within-group similarity compared to HCs and FEP

patients (Figure 4 E).

4.5 AGE-MATCHED HEALTHY CONTROLS AND CHRONIC PATIENTS

To see if the differences between HCs and chronic patients were driven by their difference in
age, we repeated significant analyses using an older subset of HCs (n=8) age-matched to our
chronic patients. Demographic comparisons between these two groups are shown in Table S2.
Differences in global FA (t(17) = 2.29,p = 0.035) persisted, but no significant differences
were found in sift2-based average connection degree (Figure S5 A). Many connections had
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Figure 4 (preceding page): Evidence of topological disruption in chronic but not in FEP or EP
patients. A,B: Comparison of graph features calculated on the Brainnetome-parcellated
connectome weighted with the logarithm of the SIFT2-weighted streamline count. TOPSY dataset
is shown on the left column, HCP-EP on the right. A: Average degree across all nodes. A
significant difference was found across all groups in the TOPSY dataset (one-way ANOVA,
F(2,110) = 4.95,p = 0.0088), with post hoc analysis finding a significant reduction in degree
in chronic patients compared to HCs (Tukey HSD, FWER=0.05, p = 0.0093). No significant
difference was found in the HCP-EP dataset. B: Average global efficiency across all nodes. No
differences were found between any groups in either the TOPSY or HCP-EP datasets. C:
Average rank-order of hub nodes across groups. The top graph corresponds to the TOPSY
dataset, the bottom to the HCP-EP. X-axis corresponds to the Brainnetome connectome nodes,
rank-ordered for each graph in order of increasing hubness for the datasets’s HCs. Disease
conditions are ordered in the same order as HCs for qualitative comparison. D: Spatial
distribution of nodes. Each region is coloured according to its hubness as shown in C. E: Rank-
order within-group similarity calculated using Kendall’s tau. The left chart displays
comparisons within the TOPSY dataset, the rightmost compares HCs and patients in the HCP-
EP dataset. Chronic patients have significantly less internal similarity than both HCs
(permutations=10,000, ) and FEP patients (permutations=10,000, ). The right chart show the
same analysis for the HCP-EP dataset. EP patients have less internal similarity than HCs
(permutations=10000, p = 0.034).

significantly lower FA as determined by NBS, although not as many as the main comparison
(family-wise error rate=0.05) (Figure S5 B,C). No significant clusters were found in the TBSS
subgroup analysis.

4.6 DURATION OF UNTREATED PSYCHOSIS

To see if global FA was related to the duration of untreated psychosis (DUP) in FEP, we
modified our TBSS and NBS analyses to test for a correlation between FA and DUP in our FEP
patients. N=47 patients had a valid DUP recorded. The mean DUP was 60.17 weeks, but the
median was 21, reflecting a highly left-skewed distribution. We thus took the log of DUP before
applying the regression with FA. No clusters were significantly associated with DUP in our
TBSS analysis, and no significantly disrupted subnetwork was found with NBS. This analysis
was not repeated in the HCP-EP data, as patients in that dataset have a variable duration of
treated psychosis, obfuscating any potential effect of DUP.

S DISCUSSION

Focusing on the nature of WM changes in FEP, EP, and chronic schizophrenia, we report 3 key
observations: (1) In both untreated FEP and treated early stages of psychosis, structural changes
of the WM are minimal, observable only at the level of a few individual tracts (Figure 3), and not
at a predictable spatial location (Figure 1); (2) consequently, both global metrics of WM integrity
and systems-level topological properties (degree, efficiency, similarity of hub distribution) are
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unaltered in these early stage samples, when compared to healthy individuals; (3) in contrast,
there is a widespread deterioration of tract-level, regional, and systems-level integrity in chronic
schizophrenia when compared to healthy subjects and the disease’s early stages. Taken together,
these results indicate that WM changes may not be necessary causal factors for the onset of
psychosis but may play a role in progression of the illness to chronic stages.

Given the system-wide patterns of disruption observed in chronic patients'? and the long
prodromal period preceding the first psychotic episode,?* one might expect a widespread,
accumulated disruption of connectivity in FEP patients. Observation of such disruption would
strengthen the case for the primacy of structural dysconnectivity in the clinical expression of
psychosis. However, our results demonstrate that connectivity deviations at the resolution
measurable by MRI are minimal by the time of the first psychotic episode, eliminating extensive
WM structural decline as a necessary precondition for the expression of psychotic symptoms.
The pronounced WM disruption seen in established cases of schizophrenia likely reflect
secondary mechanisms distinct from the causal pathway of symptom expression.

Nevertheless, there were some connections and regions in FEP patients with significantly higher
MD and AD than HC. Notably, a large number of voxels in the right frontal lobe and left
posterior lobe had significantly higher MD. Strikingly, although a similar number of voxels had
higher MD in both FEP and chronic patients compared to HCs, only a fraction of the connections
in FEP patients had higher MD (Figure S2 C.1) compared to the broad effect on connectivity
seen in chronic patients (Figure S2 A.1). This illustrates the importance of location in driving
network disruption. The MD changes in chronic patients were in central WM regions, around the
internal capsule and junctions of the corpus callosum and corona radiata. Changes in these
crossroad regions intersect with a vast number of association and commissural tracts, amplifying
their effect on the cortical network. Illustrating this effect, only a small anatomical region has
higher MD in chronic patients than FEP patients (Figure 2 E), but its central location by the
corpus callosum impacts a large number of connections (Figure S2 B.1). On the other hand, the
extensive but peripheral MD increases in FEP patients relative to HCs (Figure 2 C) translate to
comparatively few disrupted connections (Figure S2 C.1).

FEP patients furthermore maintain the structural hierarchy of the WM network. Across all
participants in both datasets, the hub nodes are generally focused in the prefrontal cortex,
cingulate gyrus, and precuneus, with high quantitative similarity between individuals (Figure 4
E). While chronic patients all have the same general distribution, they have significantly lower
rank similarity compared to other chronic patients, FEP patients, and HCs (Figure S4 B). We
note this observation was made in spite of the lack of any particular connections with a
significantly different streamline count, reflecting its topological, rather than anatomical, basis.

Thus, both anatomically and topologically, we observe disparities between FEP and chronic
patients. Three potential non-causal mechanisms may contribute to this.

First, structural decline may be a secondary phenotype of upstream disease processes. While we
lack longitudinal data to conclusively demonstrate this hypothesis, we cite three lines of evidence
supporting this notion. First, functional connectivity is known to be disrupted in FEP,'%+-1% and
long term interregional signalling patterns modify the strength of the connecting tracts,'?”-!% and
can affect tract myelination.'” Thus, aberrant functional signalling, over time, may lead to
reorganization of the anatomical network. Second, schizophrenia has been associated with
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neuroinflammation and myelin degradation. For instance, a meta-analysis by Najjar et al found
strong evidence for neuroinflammatory pathology in the WM of chronic schizophrenia
patients.!!” Third, several studies of FEP have found aggravated findings resulting from a longer
DUP. Kraguljac et al. found patients with longer DUP had lower global FA levels.?> A more
focused study of the tapetum found a similar result.!!! Note that Filippi et al. have reported the
opposite trend.! In our own results, we did not observe a relationship between DUP and FA,
however, our participants were significantly skewed toward low DUP, limiting our ability to
observe an effect. More study of the progression of untreated psychosis is needed to understand
the impact of early intervention and the disease halting potential of medication.

A second source of change may be the psychoactive drugs used therapeutically by schizophrenia
patients. Since most participants with chronic schizophrenia are undergoing treatment and
treatment cannot be ethically withheld, disambiguating the effects of the disease and treatment is
generally an ill-posed problem. A few studies, however, have achieved natural cross-sectional
experiments. In a rare sample of 17 unmedicated patients with chronic schizophrenia and an age
and illness duration matched group of treated patients, Luo et al. compared WM integrity''?
between groups. Unmedicated patients had slightly greater deviation from controls than treated
patients, indicating that antipsychotics may not be contributing to the reduced WM integrity per
se. Another report found no difference in FA reduction between medicated and unmedicated
patients.!? Thus, evidence to date is more suggestive of antipsychotics either ameliorating or
limiting the WM deficits associated with psychosis, rather than contributing to them.

Finally, network disruption may not result from schizophrenia or its treatment at all. Instead, a
subset of early-stage patients with lower WM integrity may preferentially progress towards
chronic stages of illness. If so, this would introduce a selection bias when recruiting a sample of
established cases of schizophrenia. The enrolled patients are likely to be the ones with severe-
enough illness that prompted continued engagement with the health care system. Our recruitment
approach for the TOPSY dataset selected from a consecutive samples of all referrals to the only
first episode program within our catchment, thus including patients irrespective of the later
severity and retention probability. Thus, our patient cohort may display a broader array of
neurological phenotypes, which, on average, becomes indistinguishable from healthy controls.
This would create an opportunity to find subgroups of patients with greater deviation, which
might in turn be predictive of long-term outcomes. Such exploration will be a focus of future
work.

The healthy controls recruited for our analysis were age-matched to our FEP patients, making
age a pertinent difference between both of these groups and our chronic patients. Age has been
previously associated with FA decline, however, the onset of this decline is typically observed
between 40 and 50 years of age.*!'3"!!5> Qur chronic patients have a mean age of 30, too early
for age related changes to have effect. Accordingly, our post-hoc analysis between chronic
patients and an age-matched subgroup of controls still found significant FA reductions in the
patients, and NBS found a large number of disrupted edges, although TBSS failed to produce
significant findings, possibly due to the smaller sample sizes involved.?®

Our results stand in contrast to some reports. In chronic schizophrenia, most disrupted structural
connections have been observed between the highly connected hub nodes found in the rich club
of the brain.!>#%!16 We did not observe this pattern of disruption between any of our groups. This
may be due to our relatively small sample size of chronic patients. A study by Cui et al.*! reports
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a reduction in connectivity amongst the rich-club nodes in FEP, and another found generalized
disruption of network efficiency and reported fewer hubs in FEP,*? but we were not able to
replicate this in either early psychosis dataset. To be sure, our FEP and EP datasets are
sufficiently powered and larger than many prior studies that report WM deficits in patient
groups. While this may be due to a greater patient heterogeneity discussed above or a study
effect stifling “negative” findings such as we report here, we cannot exclude the potential effects
of DUP,2>!11 age, scan parameters, and processing choices in these differences. We note,
however, that unlike data used in previous studies, the HCP-EP dataset is freely available for
research allowing for future replicability.

Our results do not support the longstanding hypothesis that extensive pre-onset disruption of
WM tracts contributes to the development of psychosis. Although some localized diffusivity
changes can be observed in FEP patients, these effects are restricted to the periphery and fail to
impact global connectivity in the manner observed in chronic patients. When considered with the
accumulating evidence discounting prominent grey matter changes preceding first episode
psychosis,'!” these findings suggest reduced WM integrity in schizophrenia may reflect an
accumulated burden wrought by severe mental illness over a sufficiently long period of time,
rather than an upstream cause of psychotic phenotypes.
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