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1 ABSTRACT 

Background and Hypothesis: Chronic schizophrenia is associated with white matter disruption 
and topological reorganization of cortical connectivity but the trajectory of these changes over 
the disease course are poorly understood. Current white matter studies in first-episode psychosis 
(FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may 
be detectable at the onset of psychosis, but specific results vary widely and few reports have 
contextualized their findings with direct comparison to chronic patients. Here, we test the 
hypothesis that structural changes are not a significant feature of early psychosis. 

Study Design: Diffusion and T1-weighted 7T MR scans were obtained from N=113 (61 FEP 
patients, 37 controls, 15 chronic patients) recruited from an established cohort in London, 
Ontario. Voxel- and network-based analyses were used to detect changes in diffusion 
microstructural parameters. Graph theory metrics were used to probe changes in the cortical 
network hierarchy and to assess the vulnerability of hub regions to disruption. Experiments were 
replicated with N=167 (111 patients, 56 controls) from the Human Connectome Project - Early 
Psychosis (HCP-EP) dataset. 

Study Results: Widespread microstructural changes were found in chronic patients, but changes 
in FEP patients were minimal. Unlike chronic patients, no appreciable topological changes in the 
cortical network were observed in FEP patients. These results were replicated in the early 
psychosis patients of the HCP-EP datasets, which were indistinguishable from controls on nearly 
all metrics. 

Conclusions: The white matter structural changes observed in chronic schizophrenia are not a 
prominent feature in the early stages of this illness. 
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2 INTRODUCTION 

The neuropathology of schizophrenia comprises a generalized dysconnectivity between brain 
regions.1,2 The current consensus suggests a loss or <subtle randomization= of functional 
relationships across the brain,337 predominantly affecting highly connected neural hubs. This 
causes alterations of the cortical hierarchy,5,8 hampering the integrated processing of information 
and causing disorganization of thoughts, speech, and behaviour.9,10 

White matter pathology has long been explored as a causative or mediating factor of 
schizophrenia.10 Two decades of diffusion magnetic resonance imaging (dMRI) research, 
including a mega-analysis of 1963 individuals with schizophrenia,11 have established the 
disruption of white matter (WM) integrity as a robust feature of chronic schizophrenia.2,12315 
Although the histological implications of these findings are not entirely clear, they may involve 
some combination of the degradation of myelin sheaths on long axonal projections,16 decreased 
axonal density17 or increased fibre disorganization.18 

If these changes arise early in the course of schizophrenia, they may reflect causative, 
pathological processes, and their precise quantification may aid early detection. Such an idea is 
easily motivated by our current developmental understanding of the disease.19,20 A substantial 
genetic component21 and associations with childhood22 and perinatal trauma23 suggest 
schizophrenia arises from pathological processes beginning very early in life. Indeed, the first 
psychotic episode is generally preceded by a subthreshold phase of disorganized thinking and 
perceptual, motor and cognitive disruptions that can last for several years.24 We thus might 
expect structural changes to have accumulated by the time of the first psychotic episode. If so, 
such changes may be detectable, early, neural markers of the prodromal period. 

Previous dMRI studies in first-episode psychosis (FEP) have thus far converged on a report of 
reduced fractional anisotropy (FA) in FEP,25 but the location and scale of these findings vary 
across studies.26337 Other reports have studied changes in the number of streamlines connecting 
cortical regions, a metric that gives insight into the anatomical makeup of the structural 
connectome. Results from such analyses have been relatively modest compared to FA. 
Reductions and elevations of streamline counts are observed in scattered connections38340 and the 
connectivity of cortical hubs is slightly reduced.41,42 

Common to all the above studies is the relative paucity of findings compared to those observed 
in chronic patients. In studies analyzing both groups together, disruption is consistently greater in 
older, more chronic patients compared to those with FEP.39,43,44 These prior studies, however, are 
limited either by limited methodologies43 or small sample sizes,39,44 especially of FEP patients 
(Ā <= 20). 

The lack of a consistent, anatomically localized disruption in FEP may mask a more reproducible 
topological effect. Individual deficits may be anatomically scattered, reflecting high inter-
individual variability difficult to observe at the group-level, yet still produce a converging effect 
on the overall topology.8,45 Disruption in chronic patients is already known to be topologically 
biased, with highly connected hub nodes bearing the greatest burden.12,46 Previous work has 
mostly focused on anatomically localized disruption, and no prior studies of FEP patients have 
studied both anatomical and topological disruption in concert. 
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Finally, the use of single-site dMRI datasets hinders attempts at replication, as findings may 
reflect the unique acquisition parameters of the dataset.47 The availability of high quality, open-
access datasets allows us to replicate observations to ensure robustness of both positive and 
negative findings. The recently released Human Connectome Project - Early Psychosis (HCP-
EP) dataset represents the first such openly available dataset specifically for early psychosis (<3 
years since diagnosis). Its diffusion data has not yet been analyzed in any major connectivity 
study of early psychosis. 

In this study, we analyzed geometric and topological disruption in the brains of FEP and early 
psychosis (EP) patients using the Tracking Outcomes in Psychosis (TOPSY) dataset, a 7T dMRI 
dataset of untreated FEP patients, age matched controls, and chronic patients, and the HCP-EP 
dataset. We hypothesize that, compared to chronic patients, FEP and EP patients will have 
relatively intact network topology and a reduced extent of network disruption. 

3 METHODS 

3.1 DATA 

3.1.1 TOPSY Dataset 

61 FEP patients, 15 chronic patients, and 37 healthy controls (HCs) were recruited from an 
established cohort enrolled in the Prevention and Early Intervention Program for Psychoses 
(PEPP) in London, Ontario. All participants provided written, informed consent prior to 
participation as per approval provided by the Western University Health Sciences Research 
Ethics Board, London, Ontario. Inclusion criteria for study participation were as follows: for FEP 
patients: individuals experiencing first-episode psychosis, with no more than 14 days of 
cumulative lifetime antipsychotic exposure, no major head injuries (leading to a significant 
period of unconsciousness or seizures), no known neurological disorders, and no concurrent 
substance use disorder. Participants were not explicitly instructed to abstain from substances, and 
patients on non-antipsychotic prescription medication were not excluded. 

For FEP, the mean lifetime total defined daily dose days (DDD × days on medication) for 
antipsychotic use was 1.57 days with 27 patients (47.4%) being completely antipsychotic naive 
at the time of scanning. Of those who had started antipsychotic treatment, (N = 30; 52.6%), the 
median total defined daily dose days was 2.81 days (range of 0.4314 DDD days). Patients with 
established (chronic) schizophrenia consisted of clinically stable patients on long-acting 
injectable medications with 3 or more years since illness onset, no recorded hospitalization in the 
past year, and receiving community-based care from physicians affiliated to a first-episode clinic 
(PEPP, London Ontario). While many studies have focused on chronic schizophrenia patients in 
their 40s or 50s, our approach enabled us to reduce (even if we cannot fully avoid) the age gap 
with FEP and HC groups. Patient consensus diagnosis was established using the best estimate 
procedure described by Leckman et al.48 following 6 months of treatment. Diagnoses were made 
based on the Structured Clinical Interview for DSM-5. 

HCs were recruited through posters and word-of-mouth advertising. Healthy control subjects had 
no personal history of mental illness, no current use of medications, and no first-degree relatives 
with a history of psychotic disorders. Healthy controls were group matched to the FEP cohort for 
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age and parental socioeconomic status (the National Statistics Socioeconomic Classification: 
five-class version). Similar to their FEP counterparts, those with a history of substance use 
disorders in the past 12 months, significant head injury, or neurological disorders were excluded. 

Data was acquired with a head-only, neuro-optimized 7T MRI (Siemens MAGNETOM Plus, 
Erlangen, Germany) using dMRI and T1-weighted (T1w) imaging protocols. T1w data was 
collected using an MP2RAGE sequence49 at 0.75 mm isotropic resolution, echo time = 2.83 ms, 
repetition time = 6 s, field of view = 240x240 mm, number of slices = 208. The T1w image was 
reconstructed using the robust algorithm introduce by O’Brien et al.50 Diffusion data was 
acquired with an echo-planar imaging (EPI) sequence at 2mm isotropic resolution, echo time = 
50.2 ms, repetition time = 5.1 s, field of view = 208 mm, number of slices = 72, MB acceleration 
factor = 2, flip angle = 90. 64 directions were acquired in both the AP and PA directions at 
b=1000, along with 2 b=0 images. Gradient nonlinearity correction was applied to all 
acquisitions using in-house software. 

3.1.2 HCP-EP Dataset 

Human Connectome Project - Early Psychosis (HCP-EP) data was accessed according to the 
Data Use Certification issued by the NIMH Data Archive. Data was acquired on a 3-T MRI 
(Siemens MAGNETOM Prisma). T1w data was collected using an MPRAGE sequence at 
0.8mm isotropic resolution, echo time = 2.22ms, repetition time = 2.4 s, field of view = 256 mm, 
number of slices = 208. dMRI was acquired with an EPI sequence at 1.5mm isotropic resolution, 
echo time = 89.2 ms, repetition time = 3.23 s, field of view = 210 mm, number of slices = 92, 
MB acceleration factor = 2, flip angle = 78. 92 directions were acquired in both the AP and PA 
directions at b=1500 and b=3000, along with 7 b=0 images. 

3.2 PREPROCESSING 

3.2.1 Anatomical data 

For TOPSY data, segmentation of the anatomical images and construction of the cortical surface 
mesh was performed using FastSurfer,51353 a recently developed implementation of the cortical 
parcellation and mesh creation algorithms pioneered by FreeSurfer, chosen for its improved 
processing efficiency and more accurate parcellations (as determined with visual quality control). 
Remaining processing of anatomical images was done using ciftify,54 an implementation of the 
HCP-EP minimal preprocessing workflow.55 Of note, images were registered to the 
MNI152NLin6Asym56 template space, and meshes were registered to the fsLR-32k template 
space.57 

For the HCP-EP dataset, we used the minimally preprocessed anatomical images included in the 
dataset.55 

3.2.2 Diffusion Data 

Diffusion data was preprocessed using snakedwi,58 a preprocessing pipeline based on snakebids59 
and snakemake.60 Briefly, Gibbs ringing artefacts were removed with mrdegibbs from 
MRtrix3;61,62 eddy currents and motion were corrected using eddy from FSL;63 susceptibility-
induced distortions were corrected using topup in FSL, using the AP-PA pairs of images.64,65 The 
T1w image was skull stripped with SynthStrip;66 bias field correction was applied with N4ITK 
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from ANTS.67 A T1 proxy image was created from the diffusion image using SynthSR68 and used 
to accurately register the diffusion image space to the T1w space using greedy.69 Diffusion 
tensor imaging (DTI) metrics were calculated using dtifit from FSL with linear regression.70 

Tractography was performed using the MRtrix362 software suite. Constrained Spherical 
Deconvolution (CSD) was performed using the dhollander algorithm to estimate the response 
functions for WM, grey matter (GM) and cerebrospinal fluid (CSF).71,72 Single shell 3 tissue 
CSD (SS3T-CSD), as implemented in MRtrix3Tissue (https://3tissue.github.io/), was performed 
to obtain WM-like fibre orientation distibutions (FODs) as well as GM-like and CSF-like 
compartments in all voxels.73 mtnormalise was used to correct for residual intensity 
inhomogeneities.74,75 Tractography was performed using the iFOD2 algorithm76 and 
anatomically constrained tractography (ACT),77 with 50,000,000 streamlines, an FOD amplitude 
cut-off of 0.06, a minimum streamline length of 4mm, and a maximum streamline length of 
250mm. The anatomical segmentation used for ACT was obtained using SynthSeg.78 Spherical-
deconvolution informed filtering of tractograms 2 (SIFT2) was used to correct the streamline 
counts based on the underlying FOD magnitude.79 

The HCP-EP dataset was preprocessed in the same manner, except that multi-tissue CSD80 was 
used instead of SS3T-CSD, and 10,000,000 streamlines were generated in tractography. All b-
values were used for the calculation of DTI metrics. 

3.3 ANALYSIS 

Voxelwise differences in FA, mean diffusivity (MD), radial diffusivity (RD), and axial 
diffusivity (AD) were calculated using tract-based spatial statistics (TBSS).81 DTI metrics were 
used because more complicated models could not be fit to our TOPSY dataset, which has a 
maximum b-value of 1000. FA maps were first registered to a common template space roughly 
corresponding to the average of all FA images using a pipeline based on greedy.69 The other DTI 
maps were then transformed into this space. FSL65 was then used to skeletonize the maps, and 
FSL randomise82 with TFCE-correction and 10,000 permutations was used to compare groups, 
thresholding at a corrected p-value of 0.05. Sex and age were regressed as nuisance variables. 
For HCP-EP data, acquisition site was additionally regressed. 

Subject anatomical scans were parcellated using the Brainnetome atlas.83 These parcellations 
were used to derive weighted connectivity matrices based on the tractography data. Average FA, 
MD, RD, AD, and the log-transformed SIFT2-weighted streamline count were used as weights. 
Edges in the resulting graphs with significantly differing weights across groups were identified 
using network based statistic (NBS)84 with extent based cluster sizes, a T threshold of 3.0, 
10,000 iterations, and corrected p-value threshold of 0.05. Sex and age (and site for HCP-EP) 
were regressed as nuisance variables. 

Node hubness was calculated using a composite score85 based on four graph theory metrics: 
degree, betweenness, clustering coefficient, and path length, all of which have been previously 
used to capture hubness.86 These parameters were defined according the weighted definitions 
given by van den Heuvel et al.86 These parameters were calculated for each node, and the nodes 
were rank-ordered and assigned a score based on their rank. The score was defined as the node’s 
position in the rank-ordered list divided by the total number of nodes. In other words, each node 
had a score between 0 and 1, with 0 given to the node with the lowest value, and 1 given to the 
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node with the highest. Such a score was calculated independently for each of the four metrics, 
and the four scores for each node were averaged to get the overall hubness score. This entire 
process was repeated independently for each subject, yielding subject-specific hubness scores for 
all nodes. For group analyses, these hubness scores were averaged across the subjects within 
each group. 

Differences in node hubness were analyzed by comparing the relative rank order of nodes 
between and within groups. First, Kendall’s tau87 was used to compare hubness rankings for all 
subject pairs. This metric varies between -1 and 1, where 1 means the two lists have the same 
order, 0 means the two lists have uncorrelated orders, and -1 means the two are reversed relative 
to each other. We then calculated the average within-group and between-group Kendall’s tau, 
i.e. the average metric for all subjects in one group compared to all subjects within the same 
group, and the average metric for all subjects in one group compared to all subjects in another 
group. Significance was assessed by randomly permuting the groups 10,000 times. 

Connection disruption and node hubness were compared based on an analysis described in,12 
with some modification. To measure the disruption associated with nodes of a given hubness, 
nodes were selected from the hubness band surrounding threshold � ± ÿ where the kernel radius ÿ was set to 0.05. The proportion of disrupted edges connected to these nodes was compared to 
10,000 randomly selected groups of nodes of equal size. This analysis was repeated at values 0.1 < � < 0.9. This analysis was repeated using the ranked degree of each node, where each 
node was assigned a value between 0 and 1 based on its position in a degree-ranked list of nodes. 
Finally, both of these analyses were repeated using a threshold approach. Here, � was treated as 
an upper or lower threshold. For each value of �, the subgraph of nodes above or below � was 
considered, and only edges within that subgraph were evaluated. Empirical disruption 
proportions were compared to 1000 equivalently sized, randomly selected subgraphs. 

3.4 CODE AVAILABILITY 

The analyses discussed above and resulting figures were made possible by openly available 
python packages,88398 particularly graph-tool99 , pybids,100,101 nibabel,102 and nilearn.103 All code 
used is freely available at https://github.com/pvandyken/paper-CorticalDisruptionFEPMinimal. 
Links to pipelines used for data preprocessing are listed at that repository. 

4 RESULTS 

4.1 DEMOGRAPHICS 

In the TOPSY dataset, no significant difference was found between HCs and FEP patients for 
sex, age, handedness, or SES. A similar lack of significant differences were found between HCs 
and chronic patients, except that chronic patients were significantly older than the HC cohort 
(ā = 4.72, � < 0.0001). Both FEP and chronic patients had significantly lower education levels, 
higher cannabis use, and higher smoking prevalence than controls (Table 1). 
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Table 1: TOPSY Demographics: Group distribution columns show ÿÿ�Ā (Āþ) unless otherwise 

indicated. Comparison columns show āÿĀā(þĀ) = Āā�ā�Āā�ý. P values less than 0.05 are shown 

in bold. M = male, F = female, SES = Socioeconomic status, CAST = Cannabis Abuse Screening 

Test, AUDIT-C = Alcohol Use Disorders Identification Test, DUP = Duration of Untreated 

Psychosis, DUI = Duration of Untreated Illness, SOFAS = Social Occupational Functioning 

Assessment Scale, PANSS-8 = Positive and Negative Syndrome Scale 8 

 
HC 
(n=37) 

FEP 
(n=61) 

chronic 
(n=15) HC vs FEP HC vs chronic 

FEP vs 
chronic 

Sex (M/F) 24/13 50/11 12/3 χ²(1) = 2.78, 
p = 0.096 

χ²(1) = 0.547, 
p = 0.46 

χ²(1) = 0, p = 
1 

Age 21.70 
(3.49) 

22.82 
(4.65) 

28.93 
(7.92) 

t(96) = -1.26, 
p = 0.21 

t(49) = -4.55,  
p < 0.001 

t(73) = -3.83, 
p < 0.001 

Handedness 
(R/L/A) 

34/0/3 53/1/7 13/1/1 χ²(2) = 
0.928, p = 
0.63 

χ²(2) = 2.53, 
p = 0.28 

χ²(2) = 1.42, 
p = 0.49 

Education 14.14 
(2.18) 

12.83 
(1.86) 

12.71 
(2.33) 

t(94) = 3.12, 
p = 0.0024 

t(48) = 2.03, 
p = 0.047 

t(72) = 0.205, 
p = 0.84 

SES 3.08 
(1.34) 

3.53 
(1.32) 

3.40 
(1.24) 

t(85) = -1.55, 
p = 0.13 

t(49) = -
0.785, 
p = 0.44 

t(64) = 0.339, 
p = 0.74 

CAST 6.68 
(2.77) 

12.14 
(5.76) 

11.54 
(7.78) 

t(86) = -5.33, 
p < 0.001 

t(48) = -3.3, 
p = 0.0018 

t(62) = 0.311, 
p = 0.76 

AUDIT-C 3.03 
(2.19) 

2.28 
(2.97) 

3.38 
(2.40) 

t(81) = 1.27, 
p = 0.21 

t(48) = -
0.494, p = 
0.62 

t(57) = -1.23, 
p = 0.23 

Smoker (yes/no) 1/36 17/44 7/8 χ²(1) = 8.12, 
 p = 0.0044 

χ²(1) = 12.6,  
p < 0.001 

χ²(1) = 1.2,  
p = 0.27 

Cannabis (yes/no) 10/27 36/19 5/8 χ²(1) = 11.6,  
p < 0.001 

χ²(1) = 0.178, 
p = 0.67 

χ²(1) = 2.17, 
p = 0.14 

DUP (weeks) - 
median (IQR) 

N/A 18.50 
(60.50) 

N/A    

DUI (weeks) - 
median (IQR) 

N/A 139.00 
(216.00) 

N/A    

Antipsychotic 
Duration (days) 

N/A 1.56 
(3.05) 

N/A    

Antipsychotic 
Defined Daily 
Dose Equivalents 

N/A 1.08 
(3.07) 

N/A    

SOFAS 82.03 
(4.67) 

41.62 
(12.82) 

56.00 
(11.41) 

t(91) = 17.2, 
p < 0.001 

t(45) = 11.2,  
p < 0.001 

t(74) = -3.97, 
p < 0.001 
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HC 
(n=37) 

FEP 
(n=61) 

chronic 
(n=15) HC vs FEP HC vs chronic 

FEP vs 
chronic 

PANSS-8 Total 8.00 
(0.00) 

24.96 
(6.94) 

14.50 
(7.08) 

t(92) = -14.8, 
p < 0.001 

t(49) = -5.68, 
p < 0.001 

t(69) = 5.03, 
p < 0.001 

PANSS-8 
Positive 

3.00 
(0.00) 

11.95 
(2.82) 

6.71 
(3.81) 

t(92) = -19.3, 
p < 0.001 

t(49) = -6.03, 
p < 0.001 

t(69) = 5.79, 
p < 0.001 

PANSS-8 
Negative 

3.00 
(0.00) 

7.71 
(4.32) 

4.29 
(1.90) 

t(93) = -6.62, 
p < 0.001 

t(49) = -4.19, 
p < 0.001 

t(70) = 2.89, 
p = 0.0052 

PANSS-8 General 2.00 
(0.00) 

5.34 
(2.18) 

3.57 
(2.56) 

t(93) = -9.31, 
p < 0.001 

t(49) = -3.79, 
p < 0.001 

t(70) = 2.64, 
p = 0.01 

In the HCP-EP dataset, no significant differences between HCs and patients were found for sex, 
SES. Patients were significantly younger (ā = 3.51, � < 0.001), more right-handed (�2 =4.36, � < 0.05), less educated (ā = 3.23, � < 0.05), and more likely to smoke (�2 = 3.88, � <0.05) than the HCs. Cannabis use was not reported amongst HCs, but 29% of patients had at 
least some exposure (Table 2). 

Table 2: HCP-EP Demographics: Group distribution columns show ÿÿ�Ā (Āþ). Comparison 

columns show āÿĀā(þĀ) = Āā�ā�Āā�ý. P values less than 0.05 are shown in bold. SES = 

Socioeconomic status, PANSS = Positive and Negative Syndrome Scale 

 HC (n=56) Patient (n=111) HC vs Patient 

Sex (M/F) 37/19 68/43 χ²(1) = 0.192, p = 0.66 

Education 15.88 (1.92) 14.21 (2.20) t(73) = 3.23, p = 0.0019 

Age 24.90 (4.08) 22.73 (3.59) t(165) = 3.51, p < 0.001 

Handedness (R/L) 43/10 99/7 χ²(1) = 4.36, p = 0.037 

SES 2.07 (1.07) 2.25 (1.19) t(163) = -0.955, p = 0.34 

Smoke (Yes/No) 3/51 20/89 χ²(1) = 3.88, p = 0.049 

Pack years 0.02 (0.09) 0.71 (2.50) t(131) = -1.82, p = 0.071 

Cannabis N/A 1.56 (0.89)  

Antipsychotic Duration 
(months) 

N/A 14.32 (15.65)  

Antipsychotic Defined Daily 
Dose Equivalents 

N/A 163.51 (231.00)  

PANSS Total N/A 49.60 (10.74)  

PANSS Positive N/A 11.05 (3.87)  

PANSS Negative N/A 14.10 (5.32)  

PANSS Global N/A 24.50 (5.26)  
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4.2 MICROSTRUCTURE 

We first looked for evidence of global disruption of WM in FEP and chronic patients. No 
difference was found between the global average FA between FEP patients and HCs, but a 
significant reduction of FA in chronic patients compared to HCs was noted (���� = 0.010). We 
did not find a difference of FA between the early psychosis patients in the HCP-EP dataset and 
their associated controls (Figure 1 A). 

Compared to HCs, chronic patients also had a significant increase in global MD (� < 0.001), 
RD (� < 0.001), and AD (� = 0.0025). Compared to FEP patients, chronic patients had 
significantly increased global MD (� = 0.0053) and RD (� = 0.0034) (Figure S1). No 
significant differences in these parameters were observed between EP patients and HCs in the 
HCP-EP dataset. 

To narrow down differences to a more regional level, we used TBSS to perform spatial 
comparisons across HCs, FEP patients, and chronic patients (adjusted for age and sex). No 
significant differences were found between HCs and FEP. When comparing chronic patients to 
HCs, voxels with significant FA reduction were found in the left hemisphere occupying the 
posterior junction of the corpus callosum and corona radiata (Figure 1 B). Further significant 
voxels were found in chronic patients in comparison to FEP patients, located bilaterally in the 
posterior corpus callosum and superior longitudinal fasciculus, and in the left hemisphere corona 
radiata. (Figure 1 C). No significant differences were found between HCs and patients in the 
HCP-EP dataset. 

TBSS performed on other parameters also revealed extensive changes in both chronic and FEP 
patients. Both patient groups had significantly higher MD than HCs in corpus callosum; the 
bilateral corona radiata, thalamic radiation, and superior longitudinal fasciculus; and in the 
superficial white matter of the parietal and occipital lobes (Figure 2 A,C). The MD changes in 
FEP patients were generally more constrained to the superficial white matter and peripheral 
white matter tracts, as opposed to the deeper, centralized changes in the chronic patients covering 
more of the corpus callosum and internal capsule. Chronic patients had higher MD than FEP 
patients only in the right hemisphere, in the splenium of the corpus callosum and the posterior 
corona radiata (Figure 2 E). Chronic patients had higher RD than both HCs (Figure 2 B) and FEP 
patients (Figure 2 F) throughout the corpus callosum, bilaterally in the internal capsule, corona 
radiata, thalamic radiations, superior longitudinal fasciculus, and tapetum, as well as bilateral 
superficial white matter in the parietal, temporal, and occipital lobes. Finally, FEP patients had 
higher AD than HCs in the left hemisphere genu of the corpus callosum, anterior limb of the 
internal capsule, anterior corona radiata, external capsule, and superficial white matter of the 
frontal lobe (Figure 2 D). The full list of impacted regions and extent volume is tabulated in 
Table S1. No significant results were found when testing any of the above models in reverse 
(e.g. testing for regions in HCs with higher MD than FEP or chronic patients). 

No significant differences of MD, RD, and AD were found between EP patients and HCs in the 
HCP-EP dataset using TBSS. 
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Figure 1: Global FA values are reduced in chronic but not FEP and early psychosis. A: Global 

average of FA across brainnetome connectome connections. Left side shows data from TOPSY 

dataset (one-way ANOVA, �(2,110) = 4.44, � = 0.014); post hoc analysis found a significant 

reduction of FA in chronic patients compared to HCs (Tukey HSD, FWER=0.05, ���� = 0.010). 

A trending difference was observed between FEP and chronic patients (���� = 0.0504). Right 

side shows HCP-EP, no significant difference was found. B,C: Skeletonized voxels with 

significantly lower FA in chronic patients compared to (B) HCs and (C) FEP patients, as show 

by FSL’s TBSS. Results as shown are inflated for visualization; the actual significant voxels are 
restricted to the skeleton, portrayed as a green overlay. Results are thresholded for a FWER of 

0.05. Localization and size of the significant voxels is listed in Table S1. 
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Figure 2 (preceding page): MD and RD increased in chronic patients relative to healthy controls 

(HCs) and first-episode psychosis (FEP) patients; MD and AD increased in FEP patients 

relative to controls. All figures show skeletonized voxels with a significantly higher parameter 

value in the indicated patient group. Results as shown are inflated for visualization, coloured 

according to the parameter they map (yellow=MD, blue=RD, green=AD), and thresholded for a 

family-wise error rate of 0.05. The size and localization of significant voxels is listed in Table S1. 

A and B show results in chronic patients versus healthy controls: A=MD, B=RD. C and D show 

FEP patients versus healthy controls: C=MD, D=AD. E and F show chronic versus FEP 

patients: E=MD, F=RD. Abbreviations: MD=Mean Diffusivity, AD=Axial Diffusivity, 

RD=Radial Diffusivity. 

 

4.3 CONNECTIVITY 

To explore the effects of schizophrenia on connectivity, we used the Brainnetome cortical 
parcellation83 and NBS84 to search for connections with significantly reduced FA and streamline 
count, comparing across HCs, FEP patients, and chronic patients. No specific connections with 
significantly lower FA were found in FEP patients when compared to HCs, but many were found 
both in chronic patients when compared to HCs or FEP patients (Figure 3 A). The disrupted 
edges were predominantly interhemispheric, primarily originating from the temporal cortex, 
insula, and frontal cortex (Figure 3 B). In the HCP-EP dataset, a small subnetwork of disrupted 
connections restricted to the occipital cortex was found in FEP patients compared to HCs. No 
differences were found between any group when looking at streamline count-weighted 
connectomes (Figure 3 A). 

Additionally, numerous edges with increased MD, AD, and RD were found in chronic patients 
compared to both HCs and FEP patients (Figure S2 A,B). A smaller number of edges with 
increased MD and AD were additionally found in FEP patients compared to HCs (Figure S2, C). 
Disrupted edges primarily originated from temporal, parietal, occipital, and subcortical regions, 
and were predominantly interhemispheric. Disrupted edges in FEP patients were predominantly 
in the frontal lobe and intrahemispheric. 

4.4 TOPOLOGY 

Changes in the cortical hierarchy have previously been associated with schizophrenia. In 
particular, studies have found disrupted edges to be predominantly between topologically central 
nodes. To investigate this, we performed a variation of an analysis previously reported by 
Klauser et al.,12 which measured the proclivity of connections above a given threshold degree to 
be disrupted, as determined by NBS. Here, we defined a composite metric of hubness comprising 
four complementary graph theory measures: degree, average shortest path length, betweenness 
centrality, and the clustering coefficient. All metrics were calculated using the structural 
connectome weighted with the SIFT2-corrected streamline count. Across all subjects, hubs were 
situated in locations previously implicated by the literature, including the prefrontal cortex,  
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Figure 3: Chronic patients have more disrupted edges than FEP and early psychosis. In all 

panels, the first row corresponds to results comparining HCs to chronic patients, the second 

comparing FEPs to chronic patients, and the third comparing HCs in the HCP-EP dataset to the 

early psychosis patients in that datset. A: Edges with significantly reduced FA as discovered with 

NBS. Nodes corresponding to the Brainnetome parcellation are represented around the edge of 

each graph diagram, are coloured according to lobe they belong to, and sized according to the 

number of disrupted edges they connect with. Left hemisphere nodes are on the left side of the 

figure, right hemisphere nodes are on the right. Visualized edges are those with significantly 

lower FA in the control group (FEP in the FEP v chronic comparison). Edges are coloured 

according the the T-value determined by NBS. B: Spatial distribution of nodes with (cont…) 
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Figure 3 cont… disrupted edges. Regions are coloured according to the number of disrupted 

edges connected to the region. C: Hubness of disrupted edges. X-axis corresponds to a band of 

hubness values corresponding to the hubness � ± 0.05. Nodes within that hubness band are 

selected and the proportion of disrupted edges connected to those nodes is calculated. This 

proportion is compared to 1000 randomly selected groups of nodes of equal size. The 95% 

confidence interval of this random distribution is represented by the red shaded region. 

 

anterior and posterior cingulate cortex, precuneus, and parietal cortices (Figure 4 D). We 
measured the probability that edges of a given hubness would be disrupted compared to the 
general probability of disruption, using a sliding window approach. In all comparisons, there was 
no particular hubness regime with a disproportionate extent of disruption (Figure 3 C). This 
finding remained true when using a threshold version of the approach more comparable to the 
original paper: instead of nodes within a fixed, sliding kernel, all nodes above a sliding threshold 
were analyzed (Figure S3 A). Finally, no significant results were observed when using an upper-
bound threshold instead of a lower-bound (Figure S3 B), and when using the rank-ordered 
degree of nodes instead of hubness (Figure S3 C,D,E). 

To investigate changes in the topology and hierarchy of cortical connectivity, we compared the 
average degree and global efficiency using the SIFT2-weighted structural connectomes. A 
significant reduction in average degree was observed between HC and chronic patients (� =0.0093), but not between any of the other groups (Figure 4 A). No changes in global efficiency 
were found in any comparison (Figure 4 B). Changes in cortical hierarchy across groups were 
measured by comparing the rank-ordered list of nodes sorted by increasing within-group average 
hubness (Figure 4 C,D). Similarity was measured using the Kendall Tau Rank correlation 
coefficient. The hubness rankings of chronic patients has significantly more within-group 
variation than both HCs (� = 0.019) and FEP patients (� = 0.035) (Figure 4 E). Furthermore, 
chronic patients significantly varied from both HCs (� = 0.0022) and FEP (� = 0.50) patients 
compared to a permutation-based null distribution (Figure S4 B). No other groups showed 
differences in hub ranking. 

Importantly, the hierarchical changes observed in chronic patients were notably subtle. Although 
chronic patients show a statistically significant hub reorganization from HCs and FEP patients 
based on hubness rankings, the overall rankings remain broadly similar across all patients 
(Figure S4 A). Furthermore, hierarchical disruption in chronic patients cannot be characterized 
by any stereotyped rearrangements; instead, the individual rankings of patients are increasingly 
idiosyncratic, as shown by the decreased within-group similarity compared to HCs and FEP 
patients (Figure 4 E). 

4.5 AGE-MATCHED HEALTHY CONTROLS AND CHRONIC PATIENTS 

To see if the differences between HCs and chronic patients were driven by their difference in 
age, we repeated significant analyses using an older subset of HCs (n=8) age-matched to our 
chronic patients. Demographic comparisons between these two groups are shown in Table S2. 
Differences in global FA (ā(17) = 2.29, � = 0.035) persisted, but no significant differences 
were found in sift2-based average connection degree (Figure S5 A). Many connections had  
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Figure 4 (preceding page): Evidence of topological disruption in chronic but not in FEP or EP 

patients. A,B: Comparison of graph features calculated on the Brainnetome-parcellated 

connectome weighted with the logarithm of the SIFT2-weighted streamline count. TOPSY dataset 

is shown on the left column, HCP-EP on the right. A: Average degree across all nodes. A 

significant difference was found across all groups in the TOPSY dataset (one-way ANOVA, �(2,110) = 4.95, � = 0.0088), with post hoc analysis finding a significant reduction in degree 

in chronic patients compared to HCs (Tukey HSD, FWER=0.05, � = 0.0093). No significant 

difference was found in the HCP-EP dataset. B: Average global efficiency across all nodes. No 

differences were found between any groups in either the TOPSY or HCP-EP datasets. C: 

Average rank-order of hub nodes across groups. The top graph corresponds to the TOPSY 

dataset, the bottom to the HCP-EP. X-axis corresponds to the Brainnetome connectome nodes, 

rank-ordered for each graph in order of increasing hubness for the datasets’s HCs. Disease 
conditions are ordered in the same order as HCs for qualitative comparison. D: Spatial 

distribution of nodes. Each region is coloured according to its hubness as shown in C. E: Rank-

order within-group similarity calculated using Kendall’s tau. The left chart displays 
comparisons within the TOPSY dataset, the rightmost compares HCs and patients in the HCP-

EP dataset. Chronic patients have significantly less internal similarity than both HCs 

(permutations=10,000, ) and FEP patients (permutations=10,000, ). The right chart show the 

same analysis for the HCP-EP dataset. EP patients have less internal similarity than HCs 

(permutations=10000, � = 0.034). 

 

significantly lower FA as determined by NBS, although not as many as the main comparison 
(family-wise error rate=0.05) (Figure S5 B,C). No significant clusters were found in the TBSS 
subgroup analysis. 

4.6 DURATION OF UNTREATED PSYCHOSIS 

To see if global FA was related to the duration of untreated psychosis (DUP) in FEP, we 
modified our TBSS and NBS analyses to test for a correlation between FA and DUP in our FEP 
patients. N=47 patients had a valid DUP recorded. The mean DUP was 60.17 weeks, but the 
median was 21, reflecting a highly left-skewed distribution. We thus took the log of DUP before 
applying the regression with FA. No clusters were significantly associated with DUP in our 
TBSS analysis, and no significantly disrupted subnetwork was found with NBS. This analysis 
was not repeated in the HCP-EP data, as patients in that dataset have a variable duration of 
treated psychosis, obfuscating any potential effect of DUP. 

5 DISCUSSION 

Focusing on the nature of WM changes in FEP, EP, and chronic schizophrenia, we report 3 key 
observations: (1) In both untreated FEP and treated early stages of psychosis, structural changes 
of the WM are minimal, observable only at the level of a few individual tracts (Figure 3), and not 
at a predictable spatial location (Figure 1); (2) consequently, both global metrics of WM integrity 
and systems-level topological properties (degree, efficiency, similarity of hub distribution) are 
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unaltered in these early stage samples, when compared to healthy individuals; (3) in contrast, 
there is a widespread deterioration of tract-level, regional, and systems-level integrity in chronic 
schizophrenia when compared to healthy subjects and the disease’s early stages. Taken together, 
these results indicate that WM changes may not be necessary causal factors for the onset of 
psychosis but may play a role in progression of the illness to chronic stages. 

Given the system-wide patterns of disruption observed in chronic patients12 and the long 
prodromal period preceding the first psychotic episode,24 one might expect a widespread, 
accumulated disruption of connectivity in FEP patients. Observation of such disruption would 
strengthen the case for the primacy of structural dysconnectivity in the clinical expression of 
psychosis. However, our results demonstrate that connectivity deviations at the resolution 
measurable by MRI are minimal by the time of the first psychotic episode, eliminating extensive 
WM structural decline as a necessary precondition for the expression of psychotic symptoms. 
The pronounced WM disruption seen in established cases of schizophrenia likely reflect 
secondary mechanisms distinct from the causal pathway of symptom expression. 

Nevertheless, there were some connections and regions in FEP patients with significantly higher 
MD and AD than HC. Notably, a large number of voxels in the right frontal lobe and left 
posterior lobe had significantly higher MD. Strikingly, although a similar number of voxels had 
higher MD in both FEP and chronic patients compared to HCs, only a fraction of the connections 
in FEP patients had higher MD (Figure S2 C.1) compared to the broad effect on connectivity 
seen in chronic patients (Figure S2 A.1). This illustrates the importance of location in driving 
network disruption. The MD changes in chronic patients were in central WM regions, around the 
internal capsule and junctions of the corpus callosum and corona radiata. Changes in these 
crossroad regions intersect with a vast number of association and commissural tracts, amplifying 
their effect on the cortical network. Illustrating this effect, only a small anatomical region has 
higher MD in chronic patients than FEP patients (Figure 2 E), but its central location by the 
corpus callosum impacts a large number of connections (Figure S2 B.1). On the other hand, the 
extensive but peripheral MD increases in FEP patients relative to HCs (Figure 2 C) translate to 
comparatively few disrupted connections (Figure S2 C.1). 

FEP patients furthermore maintain the structural hierarchy of the WM network. Across all 
participants in both datasets, the hub nodes are generally focused in the prefrontal cortex, 
cingulate gyrus, and precuneus, with high quantitative similarity between individuals (Figure 4 
E). While chronic patients all have the same general distribution, they have significantly lower 
rank similarity compared to other chronic patients, FEP patients, and HCs (Figure S4 B). We 
note this observation was made in spite of the lack of any particular connections with a 
significantly different streamline count, reflecting its topological, rather than anatomical, basis. 

Thus, both anatomically and topologically, we observe disparities between FEP and chronic 
patients. Three potential non-causal mechanisms may contribute to this. 

First, structural decline may be a secondary phenotype of upstream disease processes. While we 
lack longitudinal data to conclusively demonstrate this hypothesis, we cite three lines of evidence 
supporting this notion. First, functional connectivity is known to be disrupted in FEP,1043106 and 
long term interregional signalling patterns modify the strength of the connecting tracts,107,108 and 
can affect tract myelination.109 Thus, aberrant functional signalling, over time, may lead to 
reorganization of the anatomical network. Second, schizophrenia has been associated with 
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neuroinflammation and myelin degradation. For instance, a meta-analysis by Najjar et al found 
strong evidence for neuroinflammatory pathology in the WM of chronic schizophrenia 
patients.110 Third, several studies of FEP have found aggravated findings resulting from a longer 
DUP. Kraguljac et al. found patients with longer DUP had lower global FA levels.25 A more 
focused study of the tapetum found a similar result.111 Note that Filippi et al. have reported the 
opposite trend.31 In our own results, we did not observe a relationship between DUP and FA, 
however, our participants were significantly skewed toward low DUP, limiting our ability to 
observe an effect. More study of the progression of untreated psychosis is needed to understand 
the impact of early intervention and the disease halting potential of medication. 

A second source of change may be the psychoactive drugs used therapeutically by schizophrenia 
patients. Since most participants with chronic schizophrenia are undergoing treatment and 
treatment cannot be ethically withheld, disambiguating the effects of the disease and treatment is 
generally an ill-posed problem. A few studies, however, have achieved natural cross-sectional 
experiments. In a rare sample of 17 unmedicated patients with chronic schizophrenia and an age 
and illness duration matched group of treated patients, Luo et al. compared WM integrity112 
between groups. Unmedicated patients had slightly greater deviation from controls than treated 
patients, indicating that antipsychotics may not be contributing to the reduced WM integrity per 

se. Another report found no difference in FA reduction between medicated and unmedicated 
patients.12 Thus, evidence to date is more suggestive of antipsychotics either ameliorating or 
limiting the WM deficits associated with psychosis, rather than contributing to them. 

Finally, network disruption may not result from schizophrenia or its treatment at all. Instead, a 
subset of early-stage patients with lower WM integrity may preferentially progress towards 
chronic stages of illness. If so, this would introduce a selection bias when recruiting a sample of 
established cases of schizophrenia. The enrolled patients are likely to be the ones with severe-
enough illness that prompted continued engagement with the health care system. Our recruitment 
approach for the TOPSY dataset selected from a consecutive samples of all referrals to the only 
first episode program within our catchment, thus including patients irrespective of the later 
severity and retention probability. Thus, our patient cohort may display a broader array of 
neurological phenotypes, which, on average, becomes indistinguishable from healthy controls. 
This would create an opportunity to find subgroups of patients with greater deviation, which 
might in turn be predictive of long-term outcomes. Such exploration will be a focus of future 
work. 

The healthy controls recruited for our analysis were age-matched to our FEP patients, making 
age a pertinent difference between both of these groups and our chronic patients. Age has been 
previously associated with FA decline, however, the onset of this decline is typically observed 
between 40 and 50 years of age.43,1133115 Our chronic patients have a mean age of 30, too early 
for age related changes to have effect. Accordingly, our post-hoc analysis between chronic 
patients and an age-matched subgroup of controls still found significant FA reductions in the 
patients, and NBS found a large number of disrupted edges, although TBSS failed to produce 
significant findings, possibly due to the smaller sample sizes involved.28 

Our results stand in contrast to some reports. In chronic schizophrenia, most disrupted structural 
connections have been observed between the highly connected hub nodes found in the rich club 
of the brain.12,86,116 We did not observe this pattern of disruption between any of our groups. This 
may be due to our relatively small sample size of chronic patients. A study by Cui et al.41 reports 
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a reduction in connectivity amongst the rich-club nodes in FEP, and another found generalized 
disruption of network efficiency and reported fewer hubs in FEP,42 but we were not able to 
replicate this in either early psychosis dataset. To be sure, our FEP and EP datasets are 
sufficiently powered and larger than many prior studies that report WM deficits in patient 
groups. While this may be due to a greater patient heterogeneity discussed above or a study 
effect stifling <negative= findings such as we report here, we cannot exclude the potential effects 
of DUP,25,111 age, scan parameters, and processing choices in these differences. We note, 
however, that unlike data used in previous studies, the HCP-EP dataset is freely available for 
research allowing for future replicability. 

Our results do not support the longstanding hypothesis that extensive pre-onset disruption of 
WM tracts contributes to the development of psychosis. Although some localized diffusivity 
changes can be observed in FEP patients, these effects are restricted to the periphery and fail to 
impact global connectivity in the manner observed in chronic patients. When considered with the 
accumulating evidence discounting prominent grey matter changes preceding first episode 
psychosis,117 these findings suggest reduced WM integrity in schizophrenia may reflect an 
accumulated burden wrought by severe mental illness over a sufficiently long period of time, 
rather than an upstream cause of psychotic phenotypes. 
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