

1 Biolearn, an open-source library for biomarkers of aging

2 Kejun Ying^{1,2,*}, Seth Paulson^{3,*}, Martin Perez-Guevara⁴, Mehrnoosh Emamifar⁵, Maximiliano

3 Casas Martínez⁶, Dayoon Kwon⁷, Jesse R. Poganik¹, Mahdi Moqri^{1,8✉}, Vadim N. Gladyshev^{1,✉}

4 ¹ Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard

5 Medical School, Boston, MA, USA

6 ² T. H. Chan School of Public Health, Harvard University, Boston, MA, USA

7 ³ Independent Researcher, Boston, MA, USA

8 ⁴ Mind Operating Systems, Paris, FR

9 ⁵ College of Engineering, Northeastern University, Boston, MA, USA

10 ⁶ Division of Exact Sciences, Department of Mathematics, Instituto Tecnológico Autónomo de

11 México, Mexico City, Mexico

12 ⁷ Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA

13 ⁸ Department of Genetics, Stanford University, Stanford, CA, USA

14 * Contributed equally

15 ✉ email: vgladyshev@bwh.harvard.edu, mmoqri@stanford.edu

16 Abstract

17 Identifying and validating biomarkers of aging is pivotal for understanding the aging process and

18 testing longevity interventions. Despite the development of numerous aging biomarkers, their

19 clinical validation remains elusive, largely due to the lack of cross-population validation, which

20 is hampered by disparate biomarker designs and inconsistencies in dataset structures. To bridge

21 this gap, we introduce Biolearn, an innovative open-source library dedicated to the

22 implementation and application of aging biomarkers. Biolearn facilitates (1) harmonization of

23 existing aging biomarkers, while presenting a structured framework for novel biomarkers in

24 standardized formats; (2) unification of public datasets, ensuring coherent structuring and
25 formatting, thus simplifying cross-population validation studies; and (3) provision of
26 computational methodologies to assess any harmonized biomarker against unified datasets. By
27 furnishing a community-driven platform, Biolearn significantly augments the development,
28 assessment, and validation trajectories of aging biomarkers, paving the way toward more
29 rigorous clinical validation and, ultimately, application in clinical trials targeting healthy
30 longevity. The Biolearn package is open-source and freely available at
31 <https://Bio-Learn.github.io/>

32 Introduction

33 The quest for reliable biomarkers of aging (BoAs) is an essential focus in aging research, driven
34 by a growing understanding of aging as a fundamental factor in chronic diseases and mortality. A
35 plethora of biomarkers have been proposed to quantify biological age or the pace of aging and
36 elucidate the underlying biological intricacies; however, their clinical validation remains a
37 significant challenge due to varied formulations and disparate structures in validation datasets
38 across populations. Since the introduction of composite omic biomarkers of aging, epitomized by
39 Horvath's seminal work on DNA methylation aging clocks ¹, subsequent efforts have expanded
40 the repertoire of aging biomarkers, which now span a wide array of omic modalities, including
41 epigenomics, transcriptomics, and proteomics ²⁻⁷.

42 DNA methylation-based clocks are currently the most developed class of omic biomarkers of
43 aging and represent robust tools for biological age estimation, offering insights into age-related
44 changes at the molecular level and their implications for human health and longevity ^{1,2,4}. For
45 instance, the Horvath multi-tissue clock and the subsequent DNA methylation-based clocks, such
46 as DunedinPACE ³, GrimAge ⁸, causality-enriched DamAge/AdaptAge ⁹, PRC2 clock ¹⁰, and
47 others, have shown promising correlations with various age-related conditions and mortality,
48 reflecting the intricate interplay between epigenetic modifications and the aging trajectory ^{4,8,11,12}.
49 However, the diverse formulation of these biomarkers and the inconsistency in structure across
50 different validation datasets pose substantial hurdles for systematic cross-population validation
51 and benchmarking of these biomarkers, critical steps towards their clinical translation.

52 Publicly available datasets, such as those from the Gene Expression Omnibus ¹³, the National
53 Health and Nutrition Examination Survey (NHANES), and the Framingham Heart Study (FHS)
54 have the potential to greatly accelerate the validation of biomarkers of aging. However, their use
55 for this purpose is complicated by the lack of a standardized framework that can accommodate
56 the heterogeneous nature of their datasets. Thus, there is a clear need for a unified platform that
57 can seamlessly integrate and analyze various biomarkers of aging across datasets with
58 harmonized structures. Such a platform would transform the validation process, foster the
59 discovery of novel biomarkers, and provide a structured avenue for community-driven efforts in
60 advancing the field of aging biology.

61 To address this need, we introduce Biolearn, an open-source library designed to bridge these
62 gaps by providing a unified framework for the harmonization and computational analysis of
63 BoAs (Figure 1a). Biolearn serves as an innovative tool that harmonizes existing BoAs,
64 structures, and formats human datasets and offers computational methodologies for assessing
65 biomarkers against these datasets. By fostering a community-driven approach, Biolearn aims to
66 propel the development and validation process of BoAs, ultimately contributing to a deeper
67 understanding of the aging process, facilitating the discovery of interventions for age-related
68 diseases, and bringing BoAs to the clinic.

69 Results

70 Harmonization of Biomarkers of Aging

71 We successfully harmonized 22 well-established epigenetic aging clocks and biomarkers (Table
72 1), as well as two phenotypic biomarkers (Phenotypic Age and Mahalanobis distance metrics)
73 and implemented these BoAs in Biolearn. The epigenetic biomarkers include chronological
74 clocks like Horvath's multi-tissue clock, Hannum's blood clock ^{1,14}; healthspan and
75 mortality-related clocks like GrimAge, GrimAge2, PhenoAge, and Zhang clock ^{8,15-17};
76 biomarkers of the rate of aging including DunedinPoAm38 and DunedinPACE ^{3,18};
77 causality-enriched clocks including Ying's CausAge, DamAge, and AdaptAge ⁹; as well as many
78 other clocks and DNAm-based biomarkers (Table 1). All of the biomarkers were formatted into
79 standardized input structures, allowing for consistent application across disparate datasets. This
80 harmonization process involved collecting and unifying the annotation of clock specifications,

81 such as tissue type, predicted age range, and source references, ensuring transparent and
82 reproducible analyses. To further support ongoing research in this field, we developed and
83 implemented an open-source framework
84 (<https://github.com/bio-learn/biolearn/blob/master/biolearn/model.py>). This framework is
85 designed to provide a standardized format for epigenetic biomarkers, facilitating the seamless
86 integration and comparison of any future aging clocks that are developed. This addition aims to
87 foster collaboration and innovation in the study of aging biomarkers.

88 **Integration of Diverse Human Datasets**

89 To facilitate cross-population validation studies using publicly available data, we harnessed
90 Biolearn's capabilities to integrate and structure multiple public datasets (Table 2). The
91 structured datasets were refined to enable a shared analysis platform, addressing the challenges
92 of data heterogeneity and formatting inconsistencies ^{13,19}. With this capacity, the Biolearn is used
93 as the backend of ClockBase for epigenetic age computation ¹³, enabling the systemic
94 harmonization of over 200,000 human samples from Gene Expression Omnibus (GEO) array
95 data.

96 **Computational Analysis and Biomarker Assessment**

97 Using Biolearn's computational methodologies, we conducted extensive evaluations of the
98 harmonized biomarkers of aging. As an example, we applied several models to two GEO dataset
99 GSE41169 (N = 95) and GSE64495 (N = 113), with DNA methylation profiles across
100 approximately 480,000 CpGs ²⁰. We show that with a few lines of code, Biolearn is able to
101 efficiently compute results for over 20 epigenetic biomarkers across hundreds of samples on the
102 order of seconds (Figure 1b-c). Biolearn also allows rapid comparison of the performance of
103 different biomarkers in independent datasets (Figure 1d). For example, in both testing datasets,
104 the top 5 performing clocks, in terms of R² with chronological age, are the Zhang clock, Horvath
105 v2 and v1, Hannum clock, and YingCausAge (Figure 1d).

106 Beyond aging biomarkers, we also integrated several common epigenetic predictors in Biolearn.
107 For instance, sex can be inferred (Wang et al. ²¹) from DNAm profiles with high accuracy
108 (Figure 1e).

109 Clinical Data Harmonization

110 To provide further utility in handling clinical data, we implemented the blood-test-based
111 Phenotypic Age¹⁶, and Mahalanobis distance-based biomarker in Biolearn²². These clinical
112 biomarkers may be combined with the analysis tools built into Biolearn. For example, we
113 calculated Phenotypic Ages for the NHANES 2010 dataset and illustrated the relationship
114 between biological and chronological age using Biolearn. We further performed a survival
115 analysis that distinguished between individuals with accelerated versus decelerated aging based
116 on biological age discrepancies. The entire analysis was completed with only a few lines of code
117 (Figure 2a-b)¹⁶.

118 Discussion

119 Among the most significant challenges in aging biomarker research is the cross-population
120 validation of proposed biomarkers²³. To take steps to address this need and provide an
121 open-source tool for validation efforts across the field, we built Biolearn to integrate a broad
122 range of datasets, including those with varied formats and structures, and provide a suite of
123 analysis tools. By standardizing data inputs and modeling approaches across multiple
124 populations, Biolearn has demonstrated its potential to facilitate more extensive and robust
125 validation processes that are essential for the clinical translation of biomarkers of aging⁴.

126 With Biolearn, we have also harmonized and evaluated several well-established aging clocks,
127 providing the opportunity for these biomarkers to be refined and potentially for new ones to be
128 developed. The modular design of Biolearn encourages the addition of new models and datasets,
129 making it a living library that will grow in tandem with the field itself. By centralizing resources
130 and knowledge, Biolearn considerably reduces redundancy and accelerates biomarker
131 development and validation efforts^{3,7}.

132 Our approach emphasizes transparency and reproducibility, core tenets of open science. By
133 making Biolearn publicly available and maintaining detailed documentation and development
134 guidelines, we have established an ecosystem that supports open collaboration and knowledge
135 sharing. This open-science framework ensures that findings and tools can be widely accessed,
136 providing equitable opportunities for researchers globally to contribute to and benefit from the
137 collective advances in aging research. Moreover, our hope is that the open-access nature of

138 Biolearn will promote cross-fertilization between aging researchers and scientists currently
139 outside of the field, incentivizing the development of novel and innovative biomarker models
140 and validation approaches.

141 Previous efforts to harmonize biomarkers of aging, notably methylCIPHER and BioAge ^{24,25},
142 have been limited in scope, focusing on methylation or blood-based biomarkers only.
143 Furthermore, being R packages limits their scope of use in production. Biolearn supports
144 biomarkers based on multiple different biological data modalities and is written in Python, which
145 has a much broader reach. In comparison to PyAging ²⁶, a preliminary contemporaneous Python
146 biomarker library, Biolearn is focused on ease of use and reproducibility through automated
147 testing against reference data.

148 While Biolearn represents a significant advance for the field, certain limitations remain.
149 Currently, the library is tailored to biomarkers derived from biological samples, predominantly
150 DNA methylation data. Moving forward, the scope of Biolearn will continue to expand to
151 encompass diverse biological modalities—such as proteomics, metabolomics, and
152 microbiomics—broadening its applicability ^{5,10}. Moreover, integration with larger and more
153 diverse population datasets will be vital in advancing cross-population validation efforts. As new
154 datasets emerge, Biolearn will adapt to incorporate these resources, ensuring ongoing robustness
155 and scalability ²⁷. Finally, bioinformatics tools, including Biolearn, depend on a user base
156 proficient in programming and data analysis. Efforts to make these tools more accessible to a
157 wider audience, including those with limited computational expertise, will be crucial. This could
158 involve the development of graphical user interfaces (GUIs) or web-based platforms to
159 streamline the user experience.

160 We anticipate that Biolearn will become a key resource for the field and will transform many
161 facets of aging biomarker studies. Our preliminary survival studies conducted using Biolearn
162 demonstrate not only the power of this new platform, but illuminate the real-world implications
163 of validated biomarkers. Biolearn's standardization and analysis capabilities stand to serve as
164 pivotal tools for researchers seeking to bridge the gap between biomarker discovery and clinical
165 implementation ²³.

166 Methods

167 Overview of Biolearn Library

168 Biolearn is an open-source computational suite that facilitates the harmonization and analysis of
169 biomarkers of aging (BoAs). It is written in Python and is readily accessible through the Python
170 Package Index (PyPI). Biolearn is developed using modern software engineering practices,
171 including automated testing to ensure correctness and adherence to software design principles
172 that ensure the safe interchangeability of like components. The library is designed to be
173 user-friendly while offering robust functionalities for researchers across various disciplines
174 involved in aging studies.

175 System Requirements and Installation

176 Biolearn requires Python version 3.10 or newer. It can be installed using the Python package
177 manager, pip, with the command `pip install biolearn`. The successful installation of the
178 library can be verified through the import test of Biolearn's core classes. The library is
179 cross-platform and is compatible with major operating systems, including Windows, MacOS,
180 and Linux. The more detailed instructions can be found here:
181 <https://Biolearn.github.io/quickstart.html>

182 Data Library and Model Gallery

183 Biolearn incorporates a data library capable of loading and structuring datasets from a multitude
184 of public sources like Gene Expression Omnibus (GEO), National Health and Nutrition
185 Examination Survey (NHANES), and Framingham Heart Study. The model gallery within
186 Biolearn holds reference implementations for various aging clocks and biomarkers, presenting a
187 unified interface for users to apply these models to their datasets. All models were verified to be
188 correct by comparing the outputs on a reference data set against their original implementations
189 where available.

190 Harmonization Process

191 We used Biolearn to harmonize several aging clocks. Clock definitions were standardized,
192 specifying the name, publication year, applicable species, target tissue, and the biological aspect
193 they predict (e.g., age, mortality risk). We provided sources for both the original publications and
194 the coefficients necessary for clock applications. Coherence across biological modalities and

195 datasets was assured through Biolearn's systematic approach to data preprocessing,
196 normalization, and imputation procedures.

197 **Integration with Public Datasets**

198 Biolearn's ability to interface seamlessly with public datasets was tested by integrating and
199 formatting data from GEO and NHANES. Preprocessing pipelines were developed to convert
200 raw data into a harmonized format suitable for subsequent analysis. Particular attention was
201 given to metadata structures, variable normalization, and missing data treatment, ensuring
202 consistent input formats required by the aging models.

203 **Statistical Analysis**

204 All statistical analyses were performed using tools embedded within the Biolearn library or
205 through integration with renowned Python statistics libraries such as statsmodels and seaborn for
206 visualization. The robustness and reproducibility of the analysis were ensured through the use of
207 randomized cross-validation techniques for model assessment and bootstrapping methods for
208 estimating confidence intervals where applicable.

209 **Acknowledgments**

210 We thank all the members of the Biomarkers of Aging Consortium for their valuable feedback
211 and suggestions. This work was heavily inspired by methylCIPHER, an R package for DNA
212 methylation clocks ²⁴. Supported by grants from the National Institute on Aging, Hevolution
213 Foundation, Methuselah Foundation, and VoLo Foundation.

214

215 Tables and Figures

216 **Table 1.** Harmonized biomarkers of aging in Biolearn.

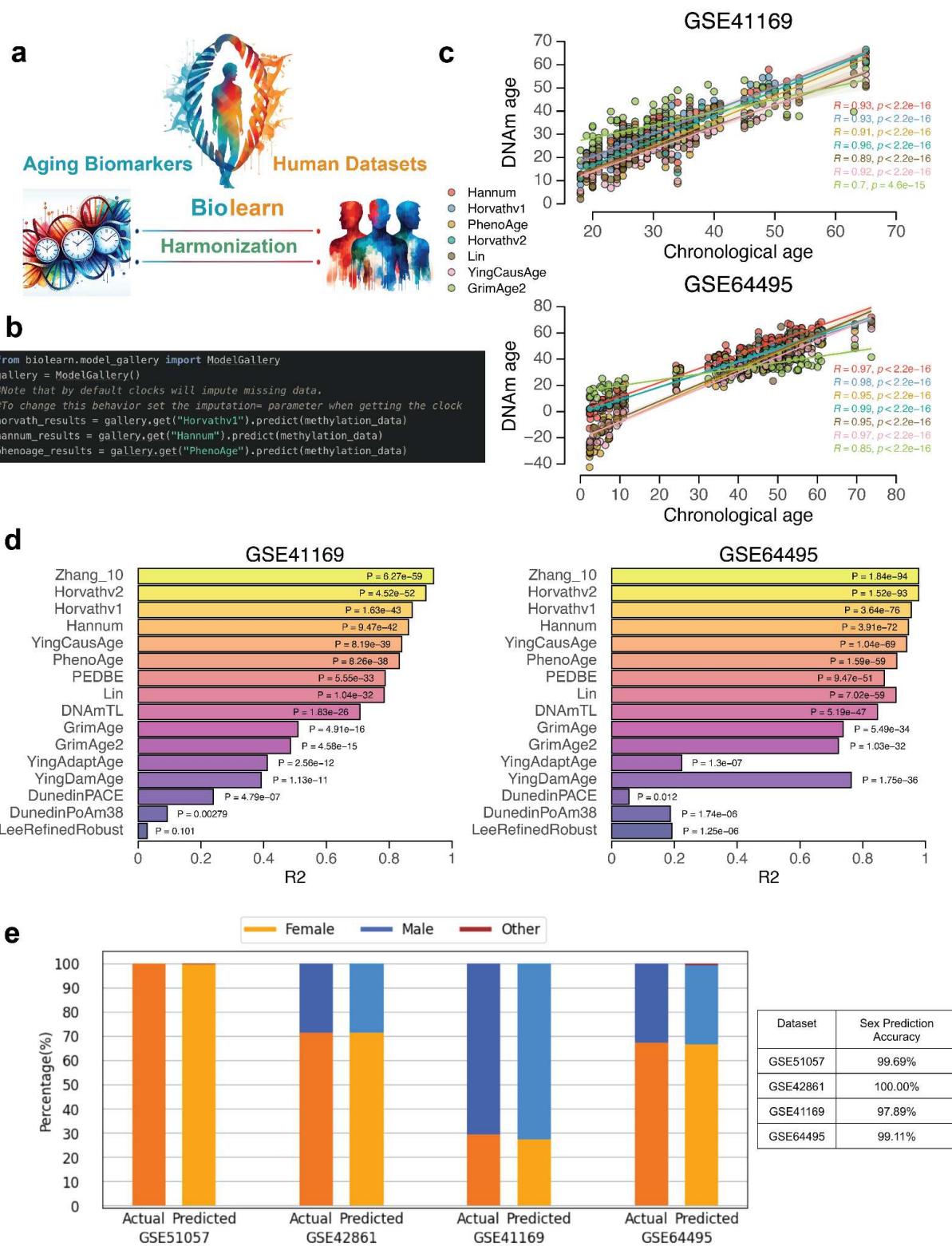
Name	Year	Species	Tissue	Predicts
Horvathv1 ¹	2013	Human	Multi-tissue	Age (Years)
Hannum ¹⁴	2013	Human	Blood	Age (Years)
Lin ²⁸	2016	Human	Blood	Age (Years)
PhenoAge ¹⁶	2018	Human	Blood	Age (Years)
Horvathy2 ²⁹	2018	Human	Skin + blood	Age (Years)
PEDBE ³⁰	2019	Human	Buccal	Age (Years)
Zhang_10 ¹⁷	2019	Human	Blood	Mortality Risk
GrimAge ⁸	2019	Human	Blood	Age Adjusted by Mortality Risk (Years)
GrimAge2 ¹⁵	2022	Human	Blood	Age Adjusted by Mortality Risk (Years)
DunedinPoAm38 ¹⁸	2020	Human	Blood	Aging Rate (Years/Year)
DunedinPACE ³	2022	Human	Unknown	Aging Rate (Years/Year)
AlcoholMcCartney ³¹	2018	Human	Blood	Alcohol Consumption
BMI_McCartney ³¹	2018	Human	Blood	BMI
DNAmTL ³²	2019	Human	Blood, Adipose	Telomere Length
Knight ³³	2016	Human	Cord Blood	Gestational Age
LeeControl ³⁴	2019	Human	Placenta	Gestational Age
LeeRefinedRobust ³⁴	2019	Human	Placenta	Gestational Age
LeeRobust ³⁴	2019	Human	Placenta	Gestational Age
YingCausAge/DamAge/AdaptAge ⁹	2022	Human	Blood	Age (Years)
SmokingMcCartney ³¹	2018	Human	Blood	Smoking Status

217

218 Table 2. Harmonized datasets in Biolearn.

ID	Title	Format	Samples	Age Present	Sex Present
GSE40279	Genome-wide Methylation Profiles Reveal Quantitative Views o...	Illumina450k	656	Yes	Yes
GSE19711	Genome wide DNA methylation profiling of United Kingdom Ovar...	Illumina27k	540	Yes	No
GSE51057	Methylome Analysis and Epigenetic Changes Associated with Me...	Illumina450k	329	Yes	Yes
GSE42861	Differential DNA methylation in Rheumatoid arthritis	Illumina450k	689	Yes	Yes
GSE41169	Blood DNA methylation profiles in a Dutch population	Illumina450k	95	Yes	Yes
GSE51032	EPIC-Italy at HuGeF	Illumina450k	845	Yes	No
GSE73103	Many obesity-associated SNPs strongly associate with DNA met...	Illumina450k	355	Yes	Yes
GSE69270	Aging-associated DNA methylation changes in middle-aged indi...	Illumina450k	184	Yes	No
GSE36054	Methylation Profiling of Blood DNA from Healthy Children	Illumina450k	192	No	No
GSE64495	DNA methylation profiles of human blood samples from a sever...	Illumina450k	113	Yes	Yes
GSE30870	DNA methylomes of Newborns and Nonagenarians	Illumina450k	40	Yes	No
NHANES	National Health and Nutrition Examination Survey	Phenotypic	2877	Yes	Yes
FHS	Framingham Heart Study	Phenotypic	4434	Yes	Yes

219

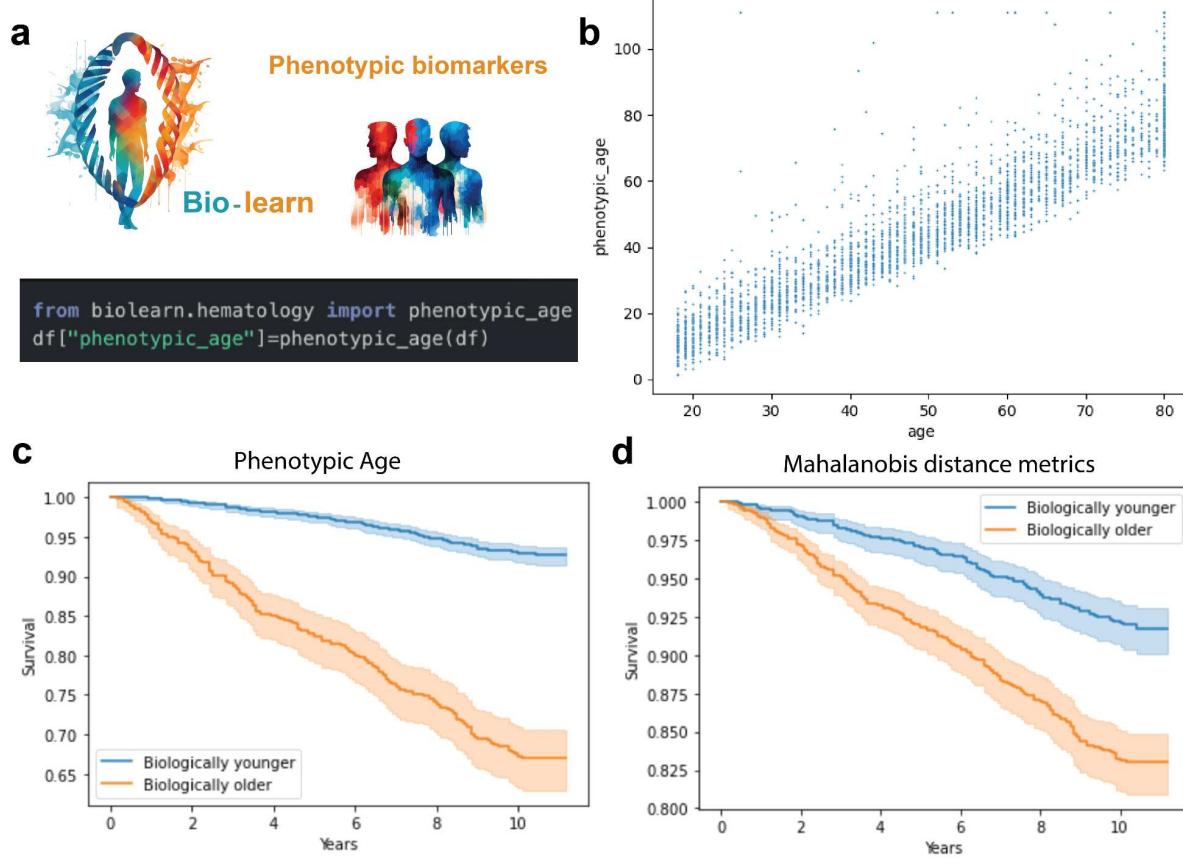


220

221 **Figure 1. a.** Overview of Biolearn's functionalities. **b.** The code snippet showing that the DNAm
 222 age can be calculated with a few lines of code using Biolearn library. **c.** Scatter plot of predicted

223 age (y-axis) vs. chronological age (x-axis) for the GSE41169 (N = 95) and GSE64495 (N = 113)
224 datasets. The top 7 clocks with the smallest mean absolute errors are shown in the plot. Pearson's
225 R and unadjusted P-values based on two-sided tests are provided. **d.** Bar graph showing the
226 R-square (x-axis) of methylation biomarker prediction vs. chronological age. The color indicates
227 the overall rank of the clock based on the R-square value. The unadjusted P-values based on
228 two-sided tests are shown on the bar. **e.** Stacked bar graph shows the actual vs. predicted sex
229 distribution in four different datasets: GSE51057, GSE42861, GSE41169, and GSE64495. The
230 accompanying table provides the sex prediction accuracy for each dataset.

231



233 **Figure 2.** **a.** Overview of Biolearn's phenotypic biomarker functionalities. The code snippet
234 shows that the DNAm age can be calculated with a few lines of code using the Biolearn library.
235 **b.** Scatter plot of chronological age vs. phenotypic age for the NHANES 2010 dataset. **c, d.**
236 Survival analysis of the NHANES 2010 dataset (N = 2877), stratified by biological age
237 discrepancies (marked by different colors) based on Phenotypic Age (c) and Mahalanobis
238 distance metrics (d). Individuals with biological age higher than chronological age are marked as
239 biologically older and vice versa. For the purpose of demonstration, the result is not adjusted by
240 chronological age. The shadow shows the standard error.

241

242 References

- 243 1. Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biology* **14**, R115 (2013).
- 244 2. Bell, C. G. *et al.* DNA methylation aging clocks: challenges and recommendations. *Genome Biol* **20**, 249 (2019).
- 245 3. Belsky, D. W. *et al.* DunedinPACE, a DNA methylation biomarker of the pace of aging. *Elife* **11**, e73420 (2022).
- 246 4. Chen, B. H. *et al.* DNA methylation-based measures of biological age: meta-analysis predicting time to death. *Aging* **8**, 1844–1865 (2016).
- 247 5. Galkin, F. *et al.* Biohorology and biomarkers of aging: Current state-of-the-art, challenges and opportunities. *Ageing Research Reviews* **60**, 101050 (2020).
- 248 6. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. *Nat Rev Genet* **19**, 371–384 (2018).
- 249 7. Jylhävä, J., Pedersen, N. L. & Hägg, S. Biological Age Predictors. *EBioMedicine* **21**, 29–36 (2017).
- 250 8. Lu, A. T. *et al.* DNA methylation GrimAge strongly predicts lifespan and healthspan. *Aging* **11**, 303–327 (2019).
- 251 9. Ying, K. *et al.* Causal Epigenetic Age Uncouples Damage and Adaptation. 2022.10.07.511382 Preprint at <https://doi.org/10.1101/2022.10.07.511382> (2022).
- 252 10. Moqri, M. *et al.* PRC2 clock: a universal epigenetic biomarker of aging and rejuvenation. 2022.06.03.494609 Preprint at <https://doi.org/10.1101/2022.06.03.494609> (2022).
- 253 11. Marioni, R. E. *et al.* The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. *Int. J. Epidemiol.* **44**, 1388–1396 (2015).
- 254 12. Field, A. E. *et al.* DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. *Molecular Cell* **71**, 882–895 (2018).
- 255 13. Ying, K. *et al.* ClockBase : a comprehensive platform for biological age profiling in human and mouse. 2023.02.28.530532 Preprint at <https://doi.org/10.1101/2023.02.28.530532> (2023).
- 256 14. Hannum, G. *et al.* Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. *Molecular Cell* **49**, 359–367 (2013).
- 257 15. Lu, A. T. *et al.* DNA methylation GrimAge version 2. *Aging* **14**, 9484–9549 (2022).
- 258 16. Levine, M. E. *et al.* An epigenetic biomarker of aging for lifespan and healthspan. *Aging* **10**, 573–591 (2018).
- 259 17. Zhang, Q. *et al.* Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. *Genome Med* **11**, 54 (2019).
- 260 18. Belsky, D. W. *et al.* Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. *Elife* **9**, e54870 (2020).
- 261 19. Thompson, M. J. *et al.* A multi-tissue full lifespan epigenetic clock for mice. *Aging* **10**, 2832–2854 (2018).
- 262 20. Horvath, S. *et al.* Aging effects on DNA methylation modules in human brain and blood tissue. *Genome Biol* **13**, R97 (2012).
- 263 21. Wang, Y. *et al.* DNA methylation-based sex classifier to predict sex and identify sex chromosome aneuploidy. *BMC Genomics* **22**, 484 (2021).
- 264 22. Li, Q. *et al.* An objective metric of individual health and aging for population surveys. *Popul Health Metr* **20**, 11 (2022).
- 265 23. Moqri, M. *et al.* Biomarkers of aging for the identification and evaluation of longevity interventions. *Cell* **186**, 3758–3775 (2023).
- 266 24. Thrush, K. L., Higgins-Chen, A. T., Liu, Z. & Levine, M. E. R methylCIPHER: A Methylation Clock Investigational Package for Hypothesis-Driven Evaluation & Research. 2022.07.13.499978 Preprint at <https://doi.org/10.1101/2022.07.13.499978> (2022).

277 25. Kwon, D. & Belsky, D. W. A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge.

278 *GeroScience* **43**, 2795–2808 (2021).

279 26. Camillo, L. P. de L. pyaging: a Python-based compendium of GPU-optimized aging clocks. 2023.11.28.569069 Preprint at

280 <https://doi.org/10.1101/2023.11.28.569069> (2023).

281 27. Yang, J. *et al.* Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis.

282 *International Journal of Infectious Diseases* **94**, 91–95 (2020).

283 28. Lin, Q. *et al.* DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. *Aging* **8**, 394–401

284 (2016).

285 29. Horvath, S. *et al.* Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. *Aging*

286 (*Albany NY*) **10**, 1758–1775 (2018).

287 30. McEwen, L. M. *et al.* The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. *Proc. Natl. Acad. Sci. U.S.A.*

288 **117**, 23329–23335 (2020).

289 31. McCartney, D. L. *et al.* Epigenetic prediction of complex traits and death. *Genome Biol* **19**, 136 (2018).

290 32. Lu, A. T. *et al.* DNA methylation-based estimator of telomere length. *Aging* **11**, 5895–5923 (2019).

291 33. Knight, A. K. *et al.* An epigenetic clock for gestational age at birth based on blood methylation data. *Genome Biol* **17**, 206 (2016).

292 34. Lee, Y. *et al.* Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. *Aging* **11**, 4238–4253 (2019).

293