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16 Abstract

17 Identifying and validating biomarkers of aging is pivotal for understanding the aging process and
18 testing longevity interventions. Despite the development of numerous aging biomarkers, their
19 clinical validation remains elusive, largely due to the lack of cross-population validation, which
20 is hampered by disparate biomarker designs and inconsistencies in dataset structures. To bridge
21 this gap, we introduce Biolearn, an innovative open-source library dedicated to the
22 implementation and application of aging biomarkers. Biolearn facilitates (1) harmonization of

23 existing aging biomarkers, while presenting a structured framework for novel biomarkers in
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24 standardized formats; (2) unification of public datasets, ensuring coherent structuring and
25 formatting, thus simplifying cross-population validation studies; and (3) provision of
26 computational methodologies to assess any harmonized biomarker against unified datasets. By
27 furnishing a community-driven platform, Biolearn significantly augments the development,
28 assessment, and validation trajectories of aging biomarkers, paving the way toward more
29 rigorous clinical validation and, ultimately, application in clinical trials targeting healthy
30 longevity. The Biolearn package is open-source and freely available at

31 https://Bio-Learn.github.i0/

32 Introduction

33 The quest for reliable biomarkers of aging (BoAs) is an essential focus in aging research, driven
34 by a growing understanding of aging as a fundamental factor in chronic diseases and mortality. A
35 plethora of biomarkers have been proposed to quantify biological age or the pace of aging and
36 elucidate the underlying biological intricacies; however, their clinical validation remains a
37 significant challenge due to varied formulations and disparate structures in validation datasets
38 across populations. Since the introduction of composite omic biomarkers of aging, epitomized by
39 Horvath’s seminal work on DNA methylation aging clocks !, subsequent efforts have expanded
40 the repertoire of aging biomarkers, which now span a wide array of omic modalities, including

41 epigenomics, transcriptomics, and proteomics 7.

42 DNA methylation-based clocks are currently the most developed class of omic biomarkers of
43 aging and represent robust tools for biological age estimation, offering insights into age-related
44 changes at the molecular level and their implications for human health and longevity "»¢. For
45 instance, the Horvath multi-tissue clock and the subsequent DNA methylation-based clocks, such
46 as DunedinPACE :, GrimAge *, causality-enriched DamAge/AdaptAge °, PRC2 clock », and
47 others, have shown promising correlations with various age-related conditions and mortality,
48 reflecting the intricate interplay between epigenetic modifications and the aging trajectory sz,
49 However, the diverse formulation of these biomarkers and the inconsistency in structure across
50 different validation datasets pose substantial hurdles for systematic cross-population validation

51 and benchmarking of these biomarkers, critical steps towards their clinical translation.
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52 Publicly available datasets, such as those from the Gene Expression Omnibus ", the National
53 Health and Nutrition Examination Survey (NHANES), and the Framingham Heart Study (FHS)
54 have the potential to greatly accelerate the validation of biomarkers of aging. However, their use
55 for this purpose is complicated by the lack of a standardized framework that can accommodate
56 the heterogeneous nature of their datasets. Thus, there is a clear need for a unified platform that
57 can seamlessly integrate and analyze various biomarkers of aging across datasets with
58 harmonized structures. Such a platform would transform the validation process, foster the
59 discovery of novel biomarkers, and provide a structured avenue for community-driven efforts in

60 advancing the field of aging biology.

61 To address this need, we introduce Biolearn, an open-source library designed to bridge these
62 gaps by providing a unified framework for the harmonization and computational analysis of
63 BoAs (Figure 1la). Biolearn serves as an innovative tool that harmonizes existing BoAs,
64 structures, and formats human datasets and offers computational methodologies for assessing
65 biomarkers against these datasets. By fostering a community-driven approach, Biolearn aims to
66 propel the development and validation process of BoAs, ultimately contributing to a deeper
67 understanding of the aging process, facilitating the discovery of interventions for age-related

68 diseases, and bringing BoAs to the clinic.

69 Results

70 Harmonization of Biomarkers of Aging

71 We successfully harmonized 22 well-established epigenetic aging clocks and biomarkers (Table
72 1), as well as two phenotypic biomarkers (Phenotypic Age and Mahalanobis distance metrics)

73 and implemented these BoAs in Biolearn. The epigenetic biomarkers include chronological

1,14

74 clocks like Horvath’s multi-tissue clock, Hannum’s blood clock ; healthspan and

8,15-17.

75 mortality-related clocks like GrimAge, GrimAge2, PhenoAge, and Zhang clock ;
76 biomarkers of the rate of aging including DunedinPoAm38 and DunedinPACE *'%;
77 causality-enriched clocks including Ying’s CausAge, DamAge, and AdaptAge °; as well as many
78 other clocks and DNAm-based biomarkers (Table 1). All of the biomarkers were formatted into
79 standardized input structures, allowing for consistent application across disparate datasets. This

8o harmonization process involved collecting and unifying the annotation of clock specifications,
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81 such as tissue type, predicted age range, and source references, ensuring transparent and
82 reproducible analyses. To further support ongoing research in this field, we developed and
83 implemented an open-source framework
84 (https://github.com/bio-learn/biolearn/blob/master/biolearn/model.py).  This framework is
85 designed to provide a standardized format for epigenetic biomarkers, facilitating the seamless
86 integration and comparison of any future aging clocks that are developed. This addition aims to

87 foster collaboration and innovation in the study of aging biomarkers.

g8 Integration of Diverse Human Datasets

89 To facilitate cross-population validation studies using publicly available data, we harnessed
90 Biolearn’s capabilities to integrate and structure multiple public datasets (Table 2). The
91 structured datasets were refined to enable a shared analysis platform, addressing the challenges
92 of data heterogeneity and formatting inconsistencies '*'°. With this capacity, the Biolearn is used

5, enabling the systemic

93 as the backend of ClockBase for epigenetic age computation
94 harmonization of over 200,000 human samples from Gene Expression Omnibus (GEO) array

95 data.

96 Computational Analysis and Biomarker Assessment

97 Using Biolearn’s computational methodologies, we conducted extensive evaluations of the
98 harmonized biomarkers of aging. As an example, we applied several models to two GEO dataset
99 GSE41169 (N = 95) and GSE64495 (N = 113), with DNA methylation profiles across

20 'We show that with a few lines of code, Biolearn is able to

100 approximately 480,000 CpGs
101 efficiently compute results for over 20 epigenetic biomarkers across hundreds of samples on the
102 order of seconds (Figure 1b-c). Biolearn also allows rapid comparison of the performance of
103 different biomarkers in independent datasets (Figure 1d). For example, in both testing datasets,
104 the top 5 performing clocks, in terms of R? with chronological age, are the Zhang clock, Horvath

105 v2 and v1, Hannum clock, and YingCausAge (Figure 1d).

106 Beyond aging biomarkers, we also integrated several common epigenetic predictors in Biolearn.
107 For instance, sex can be inferred (Wang et al. ') from DNAm profiles with high accuracy

108 (Figure le).
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109 Clinical Data Harmonization

110 To provide further utility in handling clinical data, we implemented the blood-test-based

16 and Mahalanobis distance-based biomarker in Biolearn ?*. These clinical

111 Phenotypic Age
112 biomarkers may be combined with the analysis tools built into Biolearn. For example, we
113 calculated Phenotypic Ages for the NHANES 2010 dataset and illustrated the relationship
114 between biological and chronological age using Biolearn. We further performed a survival
115 analysis that distinguished between individuals with accelerated versus decelerated aging based
116 on biological age discrepancies. The entire analysis was completed with only a few lines of code

117 (Figure 2a-b) '°.

118 Discussion

119 Among the most significant challenges in aging biomarker research is the cross-population

2 To take steps to address this need and provide an

120 validation of proposed biomarkers
121 open-source tool for validation efforts across the field, we built Biolearn to integrate a broad
122 range of datasets, including those with varied formats and structures, and provide a suite of
123 analysis tools. By standardizing data inputs and modeling approaches across multiple
124 populations, Biolearn has demonstrated its potential to facilitate more extensive and robust

125 validation processes that are essential for the clinical translation of biomarkers of aging *.

126 With Biolearn, we have also harmonized and evaluated several well-established aging clocks,
127 providing the opportunity for these biomarkers to be refined and potentially for new ones to be
128 developed. The modular design of Biolearn encourages the addition of new models and datasets,
129 making it a living library that will grow in tandem with the field itself. By centralizing resources
130 and knowledge, Biolearn considerably reduces redundancy and accelerates biomarker

131 development and validation efforts 7.

132 Our approach emphasizes transparency and reproducibility, core tenets of open science. By
133 making Biolearn publicly available and maintaining detailed documentation and development
134 guidelines, we have established an ecosystem that supports open collaboration and knowledge
135 sharing. This open-science framework ensures that findings and tools can be widely accessed,
136 providing equitable opportunities for researchers globally to contribute to and benefit from the

137 collective advances in aging research. Moreover, our hope is that the open-access nature of
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138 Biolearn will promote cross-fertilization between aging researchers and scientists currently
139 outside of the field, incentivizing the development of novel and innovative biomarker models

140 and validation approaches.

141 Previous efforts to harmonize biomarkers of aging, notably methylCIPHER and BioAge ***,

142 have been limited in scope, focusing on methylation or blood-based biomarkers only.
143 Furthermore, being R packages limits their scope of use in production. Biolearn supports
144 biomarkers based on multiple different biological data modalities and is written in Python, which
145 has a much broader reach. In comparison to PyAging *°, a preliminary contemporaneous Python
146 biomarker library, Biolearn is focused on ease of use and reproducibility through automated

147 testing against reference data.

148 While Biolearn represents a significant advance for the field, certain limitations remain.
149 Currently, the library is tailored to biomarkers derived from biological samples, predominantly
150 DNA methylation data. Moving forward, the scope of Biolearn will continue to expand to
151 encompass diverse biological modalities—such as proteomics, metabolomics, and
152 microbiomics—broadening its applicability >'°. Moreover, integration with larger and more
153 diverse population datasets will be vital in advancing cross-population validation efforts. As new
154 datasets emerge, Biolearn will adapt to incorporate these resources, ensuring ongoing robustness
155 and scalability *’. Finally, bioinformatics tools, including Biolearn, depend on a user base
156 proficient in programming and data analysis. Efforts to make these tools more accessible to a
157 wider audience, including those with limited computational expertise, will be crucial. This could
158 involve the development of graphical user interfaces (GUls) or web-based platforms to

159 streamline the user experience.

160 We anticipate that Biolearn will become a key resource for the field and will transform many
161 facets of aging biomarker studies. Our preliminary survival studies conducted using Biolearn
162 demonstrate not only the power of this new platform, but illuminate the real-world implications
163 of validated biomarkers. Biolearn’s standardization and analysis capabilities stand to serve as
164 pivotal tools for researchers seeking to bridge the gap between biomarker discovery and clinical

165 implementation %*.
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166 Methods

167 Overview of Biolearn Library

168 Biolearn is an open-source computational suite that facilitates the harmonization and analysis of
169 biomarkers of aging (BoAs). It is written in Python and is readily accessible through the Python
170 Package Index (PyPI). Biolearn is developed using modern software engineering practices,
171 including automated testing to ensure correctness and adherence to software design principles
172 that ensure the safe interchangeability of like components. The library is designed to be
173 user-friendly while offering robust functionalities for researchers across various disciplines

174 involved in aging studies.

175 System Requirements and Installation

176 Biolearn requires Python version 3.10 or newer. It can be installed using the Python package
177 manager, pip, with the command pip install biolearn. The successful installation of the
178 library can be verified through the import test of Biolearn’s core classes. The library is
179 cross-platform and is compatible with major operating systems, including Windows, MacOS,
180 and Linux. The more detailed instructions can  be found  here:

181 https://Biolearn.github.io/quickstart.html

182 Data Library and Model Gallery

183 Biolearn incorporates a data library capable of loading and structuring datasets from a multitude
184 of public sources like Gene Expression Omnibus (GEO), National Health and Nutrition
185 Examination Survey (NHANES), and Framingham Heart Study. The model gallery within
186 Biolearn holds reference implementations for various aging clocks and biomarkers, presenting a
187 unified interface for users to apply these models to their datasets. All models were verified to be
188 correct by comparing the outputs on a reference data set against their original implementations

189 where available.

190 Harmonization Process

191 We used Biolearn to harmonize several aging clocks. Clock definitions were standardized,
192 specifying the name, publication year, applicable species, target tissue, and the biological aspect
193 they predict (e.g., age, mortality risk). We provided sources for both the original publications and

194 the coefficients necessary for clock applications. Coherence across biological modalities and


https://bio-learn.github.io/quickstart.html
https://doi.org/10.1101/2023.12.02.569722
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.02.569722; this version posted December 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

195 datasets was assured through Biolearn’s systematic approach to data preprocessing,

196 normalization, and imputation procedures.

197 Integration with Public Datasets

198 Biolearn’s ability to interface seamlessly with public datasets was tested by integrating and
199 formatting data from GEO and NHANES. Preprocessing pipelines were developed to convert
200 raw data into a harmonized format suitable for subsequent analysis. Particular attention was
201 given to metadata structures, variable normalization, and missing data treatment, ensuring

202 consistent input formats required by the aging models.

203 Statistical Analysis

204 All statistical analyses were performed using tools embedded within the Biolearn library or
205 through integration with renowned Python statistics libraries such as statsmodels and seaborn for
206 visualization. The robustness and reproducibility of the analysis were ensured through the use of
207 randomized cross-validation techniques for model assessment and bootstrapping methods for

208 estimating confidence intervals where applicable.
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215 Tables and Figures

216 Table 1. Harmonized biomarkers of aging in Biolearn.

Name Year Species Tissue Predicts

Horvathv1 ! 2013 Human Multi-tissue Age (Years)

Hannum '* 2013 Human Blood Age (Years)

Lin # 2016 Human Blood Age (Years)

PhenoAge '¢ 2018 Human Blood Age (Years)
Horvathv2? 2018 Human Skin + blood Age (Years)

PEDBE * 2019 Human Buccal Age (Years)

Zhang_ 107 2019 Human Blood Mortality Risk
GrimAge 8 2019 Human Blood Age Adjusted by Mortality Risk (Years)
GrimAge2 2022 Human Blood Age Adjusted by Mortality Risk (Years)
DunedinPoAm38 '* 2020 Human Blood Aging Rate (Years/Year)
DunedinPACE * 2022 Human Unknown Aging Rate (Years/Year)
AlcoholMcCartney *! 2018 Human Blood Alcohol Consumption
BMI_McCartney *' 2018 Human Blood BMI

DNAmTL * 2019 Human Blood, Adipose Telomere Length
Knight * 2016 Human Cord Blood Gestational Age
LeeControl 3 2019 Human Placenta Gestational Age
LeeRefinedRobust ** 2019 Human Placenta Gestational Age
LeeRobust ** 2019 Human Placenta Gestational Age
YingCausAge/DamAge/AdaptAge * | 2022 Human Blood Age (Years)
SmokingMcCartney *' 2018 Human Blood Smoking Status
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218 Table 2. Harmonized datasets in Biolearn.

ID Title Format Samples Age Sex Present
Present

GSE40279 Genome-wide Methylation Profiles Reveal Quantitative Views o... | Illumina450k | 656 Yes Yes

GSE19711 Genome wide DNA methylation profiling of United Kingdom Ilumina27k 540 Yes No
Ovar...

GSE51057 Methylome Analysis and Epigenetic Changes Associated with [lumina450k | 329 Yes Yes
Me...

GSE42861 Differential DNA methylation in Rheumatoid arthritis Illumina450k | 689 Yes Yes

GSE41169 Blood DNA methylation profiles in a Dutch population Ilumina450k | 95 Yes Yes

GSES51032 EPIC-Italy at HuGeF Illumina450k | 845 Yes No

GSE73103 Many obesity-associated SNPs strongly associate with DNA Illumina450k | 355 Yes Yes
met...

GSE69270 Aging-associated DNA methylation changes in middle-aged [llumina450k | 184 Yes No
indi...

GSE36054 Methylation Profiling of Blood DNA from Healthy Children Illumina450k | 192 No No

GSE64495 DNA methylation profiles of human blood samples from a sever... | Illumina450k | 113 Yes Yes

GSE30870 DNA methylomes of Newborns and Nonagenarians Illumina450k | 40 Yes No

NHANES National Health and Nutrition Examination Survey Phenotypic 2877 Yes Yes

FHS Framingham Heart Study Phenotypic 4434 Yes Yes

219
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221 Figure 1. a. Overview of Biolearn’s functionalities. b. The code snippet showing that the DNAm

222 age can be calculated with a few lines of code using Biolearn library. ¢. Scatter plot of predicted

11
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223 age (y-axis) vs. chronological age (x-axis) for the GSE41169 (N = 95) and GSE64495 (N = 113)
224 datasets. The top 7 clocks with the smallest mean absolute errors are shown in the plot. Pearson’s
225 R and unadjusted P-values based on two-sided tests are provided. d. Bar graph showing the
226 R-square (x-axis) of methylation biomarker prediction vs. chronological age. The color indicates
227 the overall rank of the clock based on the R-square value. The unadjusted P-values based on
228 two-sided tests are shown on the bar. e. Stacked bar graph shows the actual vs. predicted sex
229 distribution in four different datasets: GSE51057, GSE42861, GSE41169, and GSE64495. The

230 accompanying table provides the sex prediction accuracy for each dataset.
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233 Figure 2. a. Overview of Biolearn’s phenotypic biomarker functionalities. The code snippet
234 shows that the DNAm age can be calculated with a few lines of code using the Biolearn library.
235 b. Scatter plot of chronological age vs. phenotypic age for the NHANES 2010 dataset. ¢, d.
236 Survival analysis of the NHANES 2010 dataset (N = 2877), stratified by biological age
237 discrepancies (marked by different colors) based on Phenotypic Age (c) and Mahalanobis
238 distance metrics (d). Individuals with biological age higher than chronological age are marked as
239 biologically older and vice versa. For the purpose of demonstration, the result is not adjusted by

240 chronological age. The shadow shows the standard error.
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