

1

2 **In field use of water samples for genomic surveillance of ISKNV infecting**
3 **tilapia fish in Lake Volta, Ghana**

4

5 **Shayma Alathari¹, Andrew Joseph², Luis M. Bolaños¹, David Studholme¹, Aaron Jeffries¹,**
6 **Patrick Appenteng⁴, Kwaku Duodu⁴, Eric Sawyerr⁴, Richard Paley², Charles R. Tyler^{1,3},**
7 **and Ben Temperton¹**

8 ¹ Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.

9 ²Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road,
10 Weymouth DT4 8UB, UK.

11 ³Sustainable Aquaculture Futures Centre, University of Exeter, Exeter EX4 4QD, UK.

12 ⁴Fisheries Commission, Ministry of Fisheries and Aquaculture Development, Accra, Ghana.

13 Corresponding Authors:

14 Shayma Alathari, Ben Temperton

15 Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.

16 Email address: sa655@exeter.ac.uk, b.temperton@exeter.ac.uk

17

18 **Abstract**

19 Viral outbreaks are a constant threat to aquaculture, limiting production for better global food
20 security. A lack of diagnostic testing and monitoring in resource-limited areas hinders the capacity
21 to respond rapidly to disease outbreaks and to prevent viral pathogens becoming endemic in
22 fisheries productive waters. Recent developments in diagnostic testing for emerging viruses,
23 however, offers a solution for rapid *in situ* monitoring of viral outbreaks. Genomic epidemiology
24 has furthermore proven highly effective in detecting viral mutations involved in pathogenesis and
25 assisting in resolving chains of transmission.

26 Here, we demonstrate the application of an in-field epidemiological tool kit to track viral outbreaks
27 in aquaculture on farms with reduced access to diagnostic labs, and with non-destructive sampling.
28 Inspired by the “lab in a suitcase” approach used for genomic surveillance of human viral
29 pathogens and wastewater monitoring of COVID19, we evaluated the feasibility of real-time
30 genome sequencing surveillance of the fish pathogen, Infectious spleen and kidney necrosis virus
31 (ISKNV) in Lake Volta. Viral fractions from water samples collected from cages holding Nile
32 tilapia (*Oreochromis niloticus*) with suspected ongoing ISKNV infections were concentrated and
33 used as a template for whole genome sequencing, using a previously developed tiled PCR method
34 for ISKNV. Mutations in ISKNV in samples collected from the water surrounding the cages
35 matched those collected from infected caged fish, illustrating that water samples can be used for
36 detecting predominant ISKNV variants in an ongoing outbreak. This approach allows for the
37 detection of ISKNV and tracking of the dynamics of variant frequencies, and may thus assist in
38 guiding control measures for the rapid isolation and quarantine of infected farms and facilities.

45 Introduction

46
47 Today, 811 million people globally suffer from hunger and 3 billion cannot afford a healthy
48 diet. The United Nations has listed Zero Hunger as one of the global sustainable development goals
49 and to end extreme poverty by 2030 (Boykin et al. 2018). As populations continue to grow,
50 aquaculture is expected to play an increasingly important role in improving food security, and most
51 notably in Low- and Middle-Income Countries (Cai 2022). New strategies have been developed
52 such as "Blue Transformation" to enhance the role of aquaculture in food production, by providing
53 the legal, policy and technical frameworks required to sustain growth and innovation systems to
54 do so (FAO 2022). Despite significant increases in aquaculture output in the last few decades, all
55 forms of aquaculture are limited by infectious diseases (FAO 2019). Fish disease is usually
56 triggered by poor water and poor farm management and inadequate biosecurity practices (Ragasa
57 et al. 2022). Implementation of biosecurity measures in resource-limited countries is, in part,
58 challenging due to a lack of suitable real-time and/or effective diagnostics.
59

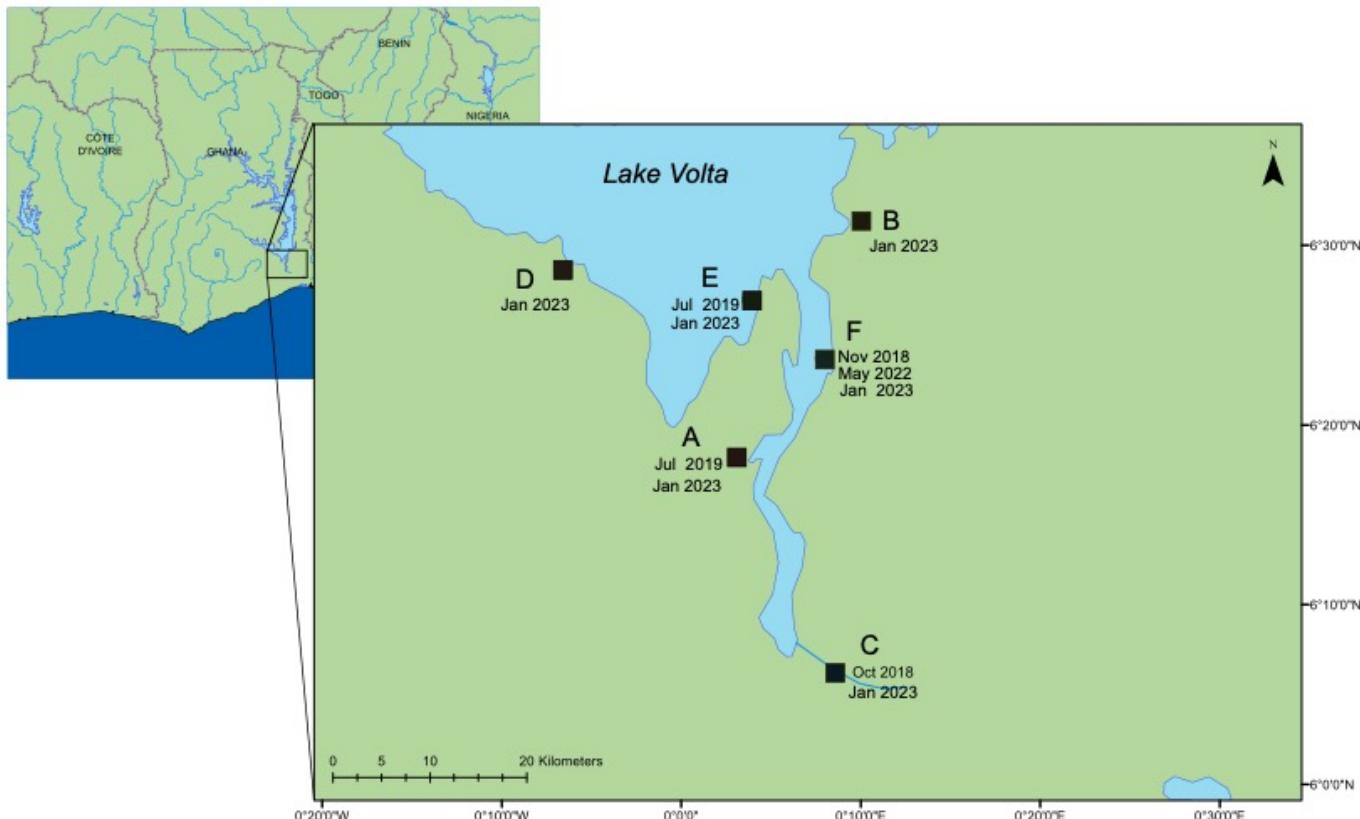
60 In Ghana, ISKNV, a Megalocytivirus, has become endemic in tilapia in Lake Volta, following a
61 series of outbreaks in 2018 and this has significantly affected local farmers and their livelihoods
62 (Ramírez-Paredes et al. 2021) According to these farmers, attempts to minimise the effects of the
63 impact of outbreaks through heat shocking fish, to reduce the effectiveness of the virus, or
64 increasing fingerling production, have not helped to improve total production. Genome sequencing
65 provides an unparalleled ability to track infectious disease outbreaks, from the initial detection to
66 understanding factors that contribute to the geographical spread. Indeed, it is emerging as a critical
67 tool in real-time responses to these outbreaks, by providing insights into how viruses transmit,
68 spread and evolve (Quick et al. 2017; Gardy, Loman, and Rambaut 2015). Accurate reconstruction
69 of strain-resolved genomes is useful to monitor the outbreak of viruses, to track their evolutionary
70 history and develop effective vaccines and drugs, as well as detect the emergence of novel variants
71 that may impact the course of an epidemic(Luo, Kang, and Schönhuth 2022; Child et al. 2023).
72

73 In aquaculture, monitoring large numbers of infections through tissue sampling poses challenges
74 in large-scale outbreaks, particularly in resource-limited settings, as it is time consuming and
75 requires well practised personnel. In human health, analyses of wastewater samples have been
76 used to understand mutations and infection dynamics, as well as an early indicator of infection
77 (Dharmadhikari et al. 2022). This method was used to monitor the ongoing evolution of SARS-
78 CoV-2 during the pandemic, and the water-based epidemiological programmes has provided
79 insights into its prevalence and diversity in different communities and detecting the emergence
80 and spread of variants (Brunner et al. 2023). In the context of fish pathogens, water-based
81 epidemiology provides a non-invasive routine method to early detection of viruses in
82 asymptomatic fish and ongoing infections, reducing the sacrifice of fish for testing.
83

84 In this study, we tested the utility of an in-field water sampling method for whole genome
85 sequencing of ISKNV, using a tiled PCR method that we developed previously (Alathari et al.
86 2023), as a potential alternative to destructive tissue sampling for genomic surveillance of a disease
87 outbreak in Lake Volta, Ghana. We show water samples collected in the immediate vicinity of the
88 cage fish showed similar variants to infected tissue samples in tilapia at that site, providing
89 confidence in-field water sampling method for genomic surveillance.
90

91 **Materials & Methods**

92


93 **2.1 Samples**

94

95 In an ongoing outbreak of ISKNV, water and tilapia tissue samples were collected from six
96 geographically distinct Nile tilapia farms (*Oreochromis niloticus*) situated on Lake Volta, Ghana,
97 in January 2023, (see Figure 1 & Table 1). Water samples (250-500 mL) were collected from high
98 density cage-based farms on the lake and processed by sequential filtration through a 0.45 μ m pore
99 (PES filters), 0.22 μ m pore (Merck, Millipore (Durapore PVDF Membrane)), and finally
100 concentrating viral particles on 0.1 μ m pore filters (Merck, Millipore (Durapore PVDF
101 Membrane)), housed within Luer-lock syringe-compatible casings. An Erwin® quick-grip minibar
102 clamp (6") was used to facilitate the pumping of the water, with a custom 3D-printed adaptor for
103 the syringe (Supplementary Figure 1).

104

105 Viruses on 0.1 μ m filters were preserved *in situ* by addition of RNALater®, filling the filter
106 housing, and the inlet and outlet of the filters were sealed with Parafilm®. Filters were transferred
107 to the University of Exeter for further processing. For matching tissue samples, a total of 12 fish
108 were selected from each of the six farms, typically four fish from each of three cages across various
109 fish life stages. Fish were humanely euthanized with a lethal overdose of tricaine methanesulfonate
110 1,000 mg/g (Pharmaq, Hampshire, UK), and the spleen, liver and kidney were collected on site.
111 Tissue samples were either processed in the field, or were preserved in RNALater®, and taken for
112 further processing at the University of Exeter. Fish size, life stages, and any observed clinical signs
113 are detailed in Supplementary Table 1. For the samples from farm (F), one cage (number three)
114 had been heat-shocked by the farmers as part of their routine treatment before sampling (timeframe
115 unknown).

117
118
119
120
121

Figure 1. A Map of the lower region of Lake Volta; showing sampled farms between 2018-2023, and the date of sampling. Sample ID, type, and date of collect are listed in Supplementary Table 1 & 2.

<i>Farm name (current study)</i>	<i>Region</i>	<i>Farm name (Previous study)</i>
A	Akosombo	Farm 3 (near Farm 7)
B	Dodi	New
C	Akuse	Farm 1
D	Akaten	New
E	Dasasi	Farm 6
F	Asikuma	Farm 2

122
123
124
125
126

Table 1 Labelling system for fish farms on Lake Volta, and a comparison with labels in previous study (Ramírez-Paredes et al. 2021).

2.2 DNA Extraction

127
128
129 DNA extraction from viral filters was undertaken using the Total nucleic acid Extraction Kit
130 (MasterPure complete DNA/RNA purification kit, Epicenter). Using a Luer-lock syringe (shown

131 in Figure 2) excess liquid was flushed from the filter's housing prior to adding the extraction buffer.
132 Extraction buffer was prepared by adding 2 μ L from the supplied Proteinase K to 1 mL of the
133 either X1 T+C lysis solution or Red Lysis buffer, resulting in 100 μ g mL⁻¹ Proteinase K
134 concentration. A total of 1 mL of the extraction buffer was gently pushed from the outlet to the
135 inlet of the filter using a 3 mL syringe. A further 3 mL syringe was connected to the filter inlet and
136 the assembly was placed into a rotating incubator for 15 minutes at 65°C in a hybridization oven
137 (Steward and Culley 2010; Mueller, Culley, and Steward 2014). The assembly was removed and
138 allowed to cool briefly at room temperature. The extract was pulled into the aspiration syringe and
139 transferred into a 2 mL microcentrifuge tube and chilled on ice for 3 minutes. One-half volume of
140 MPC protein precipitation reagent was added and vortexed for 10 seconds. The debris was pelleted
141 by centrifugation at 20,000 \times g for 15 minutes at 4°C, and the supernatant was transferred to a
142 sterile 2 mL microcentrifuge tube, adding 1 μ L of polyacryl carrier to the sample. An equal volume
143 100% isopropanol was added and mixed by inverting the tube. The sample was centrifuged at
144 20,000 \times g, for 45 min. The supernatant was then discarded, retaining the pellet, which was washed
145 twice with 1 mL of 70% ethanol and centrifuged for 1 min. The pellet was air-dried, then dissolved
146 in a 35 μ L elution buffer (EB, NEB) heated to 50°C. An additional water sample from farm (F)
147 was eluted in nuclease free water (NFW, Ambion).
148

149 DNA extraction from tissue samples was performed using the DNeasy Blood and Tissue kit
150 (Qiagen, Manchester, UK), with a starting material of ~10 mg of tissue from pooled organs (liver,
151 kidney and spleen), which were dried for 5 min prior to DNA extraction using the manufacturer's
152 protocol. The nucleic acid, eluted in Elution Buffer, was stored at 4°C until processing.
153 Quantification of DNA for water samples was performed using the high sensitivity reagents for
154 the Qubit Fluorometer, with broad range reagents used for the tissue samples. Tissue samples were
155 given an alphanumeric name in the format <farm>.<cage>.<fish>.
156

157 A positive control for water samples was used to test the efficiency of the DNA extraction method.
158 This was done using the ISKNV viral particles collected from the 2019 outbreak from Lake Volta
159 (lot: PM 38259) and passaged on BF-2 and or GF cell lines at Cefas. Infected cell lines were stored
160 at -20°C and thawed at room temperature before filtration. Cell debris was removed by
161 centrifugation at 900 \times g for 20 min, and the clarified supernatant was retained. Isolated virus from
162 clarified harvested cell culture supernatant was filtered and DNA extracted, as mentioned above
163 for field samples.
164

2.3 Droplet digital PCR for viral quantification:

165 To quantify the number of template strands of ISKNV in water samples, a droplet-digital PCR
166 (ddPCR) amplification test was performed, using an Evagreen assay, described in (Alathari et al.
167 2023), in accordance with the manufacturer's instructions (Bio-Rad, USA). The positive control
168 mentioned above was used as a positive control for viral quantification and detection using the
169 ddPCR. The concentration of DNA input and results are shown in Supplementary Table 2.
170

171 For tissue samples, a probe-based ddPCR assay, using primers and probes by (Lin et al. 2017),
172 were used following the manufacturer's instructions (Bio-Rad, USA), generating a 22 μ L reaction.
173 This was achieved following the same method described for the Evagreen assay, except the total
174 concentration of the forward and reverse primer was 900 nM, and a concentration of 200 nM for
175

177 the probe. The DNA volume template added was different according to sample concentration
178 (Supplementary Table 2).

179

180 **2.4 Tiled PCR:**

181

182 Extracted DNA from filtered water and tissue samples was quantified using a Qubit fluorometer,
183 and a tiled PCR approach was performed to generate 2kb amplicons for sequencing. For water
184 samples a total of 5 μ L of each DNA template was added to the reaction, and 1 μ L of DNA was
185 added for the tissue samples (concentrations are listed in Supplementary Table 2). The amount of
186 DNA template in the water sample from farm (D) was too high and failed to amplify, therefore the
187 amount was reduced to 2.5 μ L. For tissue samples 0.1 μ L of extracted DNA was taken forward for
188 the tiled PCR (Supplementary Table 2). Two primer pools were prepared with alternating primer
189 sets, described in (Alathari et al. 2023), and Q5 Hotstart High-Fidelity Polymerase (NEB) was
190 used for amplification. Amplicons were quantified using the Qubit dsDNA BR kit (Invitrogen),
191 and the two pools (A & B) of amplicons were combined.

192

193 **2.5 Library preparation and sequencing:**

194

195 **2.5.1 Long read Sequencing:**

196 **a. Water samples:**

197

198 Amplicons generated from water samples from each farm and the prepared mock sample were
199 taken forward for sequencing. Library preparation was performed using the Ligation Sequencing
200 kit 1D (SQK-LSK109) (ONT) and Native Barcoding system (EXP-NBD104) (ONT), according
201 to the manufacturer's instructions, and following the Native barcoding amplicon protocol: version
202 *NBA_9093_v109_revD_12Nov2019*. Equimolar amounts of each barcoded sample were pooled
203 and taken forward for the adaptor ligation step using a total volume of 60 μ L of DNA, 5 μ L of
204 Adaptor Mix II (AMII), and 25 μ L of Ligation Buffer (LNB) and 10 μ L of T4 DNA Ligase were
205 all added to the barcoded DNA. The reaction was incubated for 10 min at room temperature, and
206 a 0.5 \times AMPure XP bead clean-up was performed, followed by 2 \times 250 μ L of SFB (ONT) washes.
207 The pellet was then resuspended in 15 μ L of Elution Buffer (EB) for 10 min at 37°C. 15 μ L of the
208 elute was retained and ~1 μ g of adaptor ligated DNA was taken forward for priming and loading
209 onto a FLO-MIN 106 (R9.4.1) flow cell.

210

211 A MinION run was performed for ~70 hours, and the flow cell was refuelled with FB after 25 hrs
212 from the start of the sequencing run. All generated sequences were basecalled using the Oxford
213 Nanopore Guppy tool, version v.6.0.4 with super high accuracy, and demultiplexed
214 using *guppy_barcode* Reads were trimmed at 1800-2200 bp. Downstream analysis was
215 performed using the Artic Network pipeline to produce a consensus sequence using *nanopolish*,
216 and the percentage of genome recovery with at least 20 \times coverage was calculated (Alathari et al.
217 2023). All sequences were visualised and polymorphisms were evaluated in Geneious Prime
218 2022.1.1.

219

220

221 **b. Tissue samples matching water samples**

222

223 ONT updated their flow cells during this study, therefore a second library was prepared using the
224 new R10.4 flow cell, to evaluate impact on variant calling. One tissue sample was selected from
225 the same water sampled cages. One filter sample from farm F and one positive control filter sample
226 (both previously sequenced), were sequenced alongside the matching tissue samples from the same
227 cage, as a positive control, and were barcoded using the Native barcoding kit SQK-NBD114-24.
228 Real-time basecalling was performed on MinKNOW version 23.04.5 with super high accuracy, to
229 produce pod5 files, and demultiplexed with a requirement for barcodes on both ends and a
230 minimum average q-score of 10. The total run was for ~22 hrs. Pod5 files were converted to fast5
231 files and downstream analysis was performed in a similar way to all previous samples except using
232 Medaka (v.1.4.3) was used instead of nanopolish for variant calling, due to incompatibility
233 between nanopolish and R10 data. Reads were processed using the Artic MinION method of
234 the Artic bioinformatics pipeline: (<https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html>)
235

236

237 **c. All tissue samples**

238

239 All amplicons generated from tissue samples that produced a visible band on gel electrophoresis
240 following the tiled PCR, and where quantification indicated a concentration more than 10 ng/µL,
241 were taken forward for sequencing. Samples that showed less than 400 viral templates/µL in a
242 ddPCR assay were not taken forward for sequencing (Alathari et al. 2023). A total of 259 ng of
243 DNA was loaded to a FLO-MIN 106 (R9.4.1) flow cell with following library preparation using
244 the Ligation Sequencing kit 1D (SQK-LSK109) (ONT) and Barcoding system (EXP-NBD104)
245 (ONT), according to the manufacturer's instructions: version *NBA_9093_v109_revD_12Nov2019*.
246 The total run was for 72 hrs. A total of 5.24 million reads were generated, and the reads were
247 processed as described above.

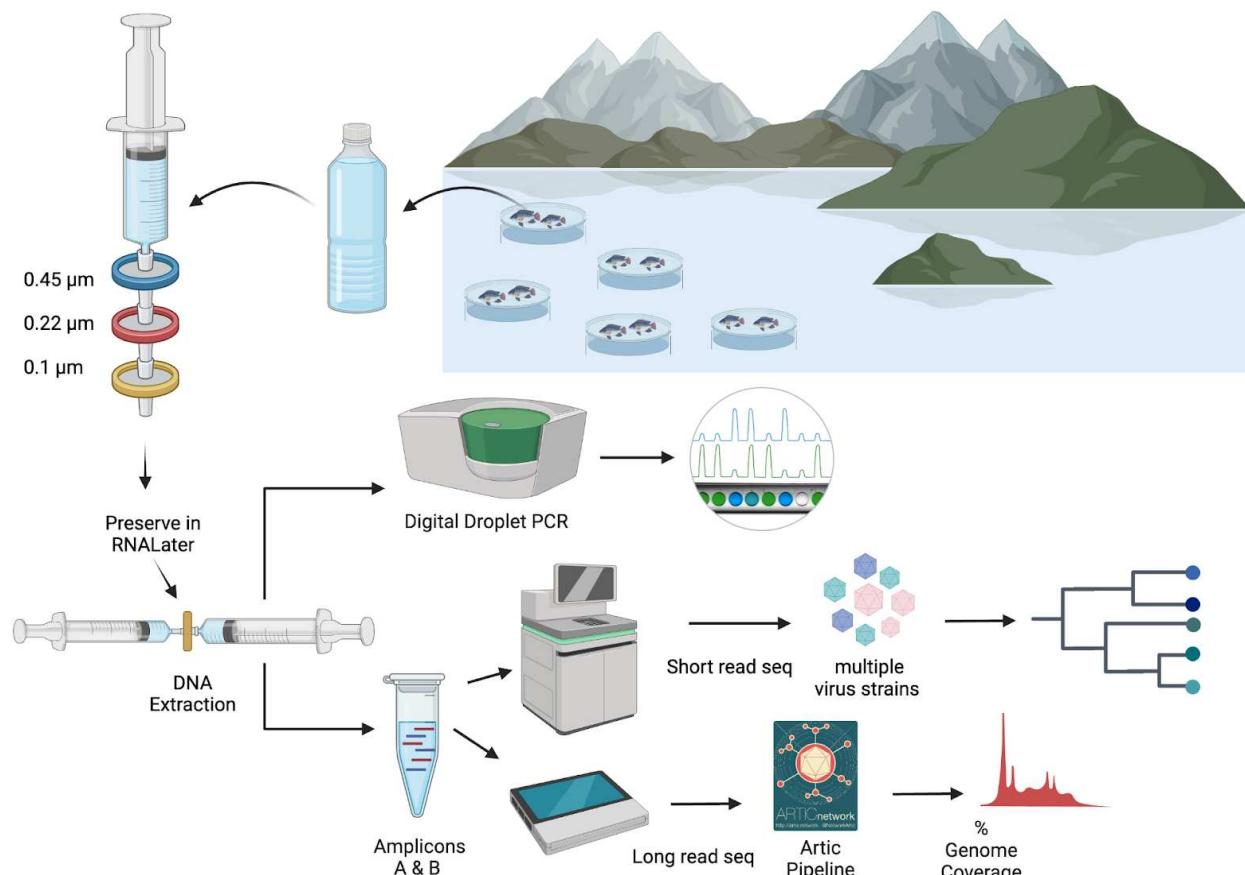
248

249

2.5.2 Short read sequencing

250

251 In contrast to tissue samples, where a fish is assumed to be infected by a single variant of ISKNV,
252 water samples capture the population of variants circulating within a population. In such samples,
253 consensus basecalling to remove read error from ONT reads is unable to discriminate between
254 natural variation and sequencing error. Therefore, water samples from three farms (C, D, F) were
255 selected to be sequenced using short read sequencing to identify the variants circulating the
256 floating cages in the lake and determine if more than one variant was present. DNA was extracted
257 as previously described and a tiled PCR was performed using the v2 primers (Alathari et al. 2023),
258 to generate 2 kb amplicons spanning the full genome, followed by 0.6× bead clean-up with
259 AMPure XP beads. Library preparation was performed with the DNA NEB PCR-free kit, followed
260 by sequencing using the Illumina NovaSeq 6000 using a SP 300 flowcell. Short read sequences
261 were trimmed using Artic guppyplex, and mapped against the ISKNV reference genome from the
262 NCBI (NC_003494) with minimap2 (Li 2018) to generate a bam file, which was visualised in
263 Geneious (v. 2022.1.1). Reads were visualised and polymorphisms were identified in Geneious
264 and IGV (v. 2.16.2).


265

266

2.6. Phylogeographic analysis

267

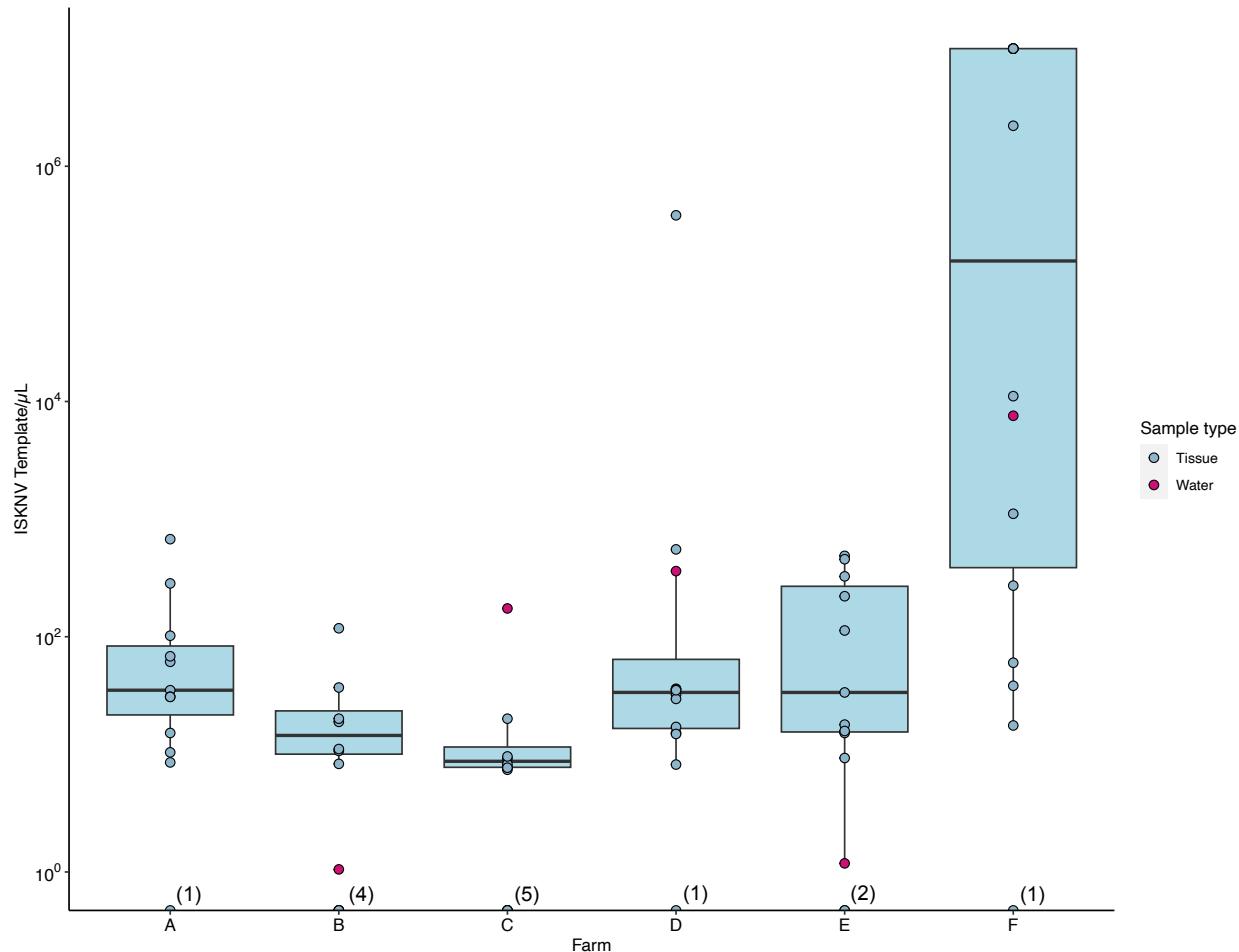
268 A phylogeographic tree was constructed comprising 52 whole genome sequences from fish
269 samples collected between 2018- 2023, from (Alathari et al. 2023), and this study (Supplementary
270 Table 3). Consensus genomes were aligned using the *augur* toolkit version 3.0.6
271 (github.com/Nextstrain/augur) in Nextstrain, where sequences were aligned using MAFFT (Katoh
272 et al. 2002), and a phylogeny was reconstructed using IQ-Tree (Nguyen et al. 2015). The tree was
273 further processed using *augur* translate and *augur* clade to assign clades to nodes and to
274 integrate phylogenetic analysis with the metadata, where finally *augur* output was exported and
275 visualised in *auspice* (github.com/Nextstrain/auspice) (Hadfield et al. 2018). All the consensus
276 sequences generated from each sample were aligned to the ISKNV reference genome, accession
277 no. (NC_003494).
278

279
280
281

282 **Figure 2. An overview of processing of water samples from around the tilapia cages on Lake**
283 **Volta.** The figure illustrates the concentrating of ISKNV onto filters, through to DNA extraction,
284 quantification, and sequencing for variant detection.

285
286

287 **Results**


288
289 **ISKNV detection and quantification in tissue and water samples**
290

291 DNA extraction was performed for tissue samples collected from six different locations across
292 Lake Volta, with matching water samples taken at five locations. Quantification of DNA for all
293 samples was performed using the Qubit Fluorometer and are provided in Supplementary Table 2.
294

295 ddPCR was used to detect and quantify the number of template strands of ISKNV in the extracted
296 DNA from each tissue and water sample. Tissue samples were dominated by non-ISKNV DNA
297 (most likely host DNA). There was an average of 317.45 ng/µL of DNA for all tissue samples,
298 however ddPCR revealed low ISKNV viral template copies in most tissue samples; 71% of the
299 tissue samples had fewer than 100 copies/µL, and in 14 out of the 74 tissue samples no ISKNV
300 was detected, mainly in fish sampled from farms (B) and (C). For water samples, the highest DNA
301 concentration seen, at 21.4 ng/µL, was collected from farm (C).
302

303 The number of ISKNV templates in samples collected from water and tissue samples varied
304 considerably across the different farm sites (Figure 3). At farm (C), tissue samples contained on
305 average only 5 copies/µL, while the matching water sample had 174 copies/µL (Supplementary
306 Figure 2). The average concentration of ISKNV templates found in tissue samples collected from
307 farm (D) in contrast was much higher at 70.6 copies/µL except for one sample (D.3.3) and with
308 very high viral templates, at 382,700 copies/µL, from one fish fingerling. The water samples
309 collected from this cage site also had a high concentration of ISKNV at 361.2 copies/µL. The
310 highest concentration of ISKNV in water samples was seen at farm (F), at 7,560 ISKNV copies
311 /µL, followed by farms (D) & (C), respectively. Contrasting with these farms, (B) and (E) had very
312 low concentrations of ISKNV in the water (~ 1 copy/µL). Despite the low water concentration of
313 ISKNV at farm E tissues samples had a high ISKNV copy number, with at least 200 copies/µL. In
314 six tissue samples collected from farm (F), the ddPCR failed to provide an accurate count. This
315 was due to saturation of positive droplets at high concentration of DNA template, and this persisted
316 despite further testing with a 20-fold dilution. Negative samples showed no viral template, while
317 the mock filter sample (using viral particles harvested from cell culture) contained 1,584 ISKNV
318 copies/µL. Heat-shocked fish samples from one cage in farm (F) showed no difference in the
319 concentration of ISKNV compared with untreated (non-heat shocked) fish.
320

321 Spatial distribution of ISKNV detected across Lake Volta, showed the two farms (B, E) with very
322 low concentrations of ISKNV in the water were both floating cages located far away from other
323 farm cages, and were furthest from the shore (approximately 12 km). The highest titre of ISKNV,
324 were seen in water samples collected from farm (F), and the highest concentration of ISKNV in
325 tilapia were in juveniles and fingerlings. Moreover, fish in this farm showed the most obvious
326 clinical signs and were experiencing ongoing mortality (Supplementary Table 1). In general, all
327 life stages were positive for ISKNV, but the lowest concentrations were seen in adult fish.

328
329

330 **Figure 3: The number of viral templates of ISKNV in tissue and water samples collected**
331 **from the ISKNV outbreak of 2023 in Lake Volta, Ghana;** Distribution of ISKNV template
332 strands in tissue samples (blue) and water samples (red). The number of samples with no ISKNV
333 detected are given parentheses on the x axis.

334

335 A tiled PCR was performed on each sample, followed by a gel electrophoresis for each pool. All
336 water samples yielded bands at 2kb, indicative of amplification of ISKNV. Bands for farms (B)
337 & (E) were faint, supporting low template concentrations as measured by ddPCR (Supplementary
338 Figure 3). Farm (E) showed multiple bands, with the strongest bands at 1kb. Despite some samples
339 showing faint bands, all the tiled PCR products with any bands at 2kb were taken forward for
340 sequencing.

341

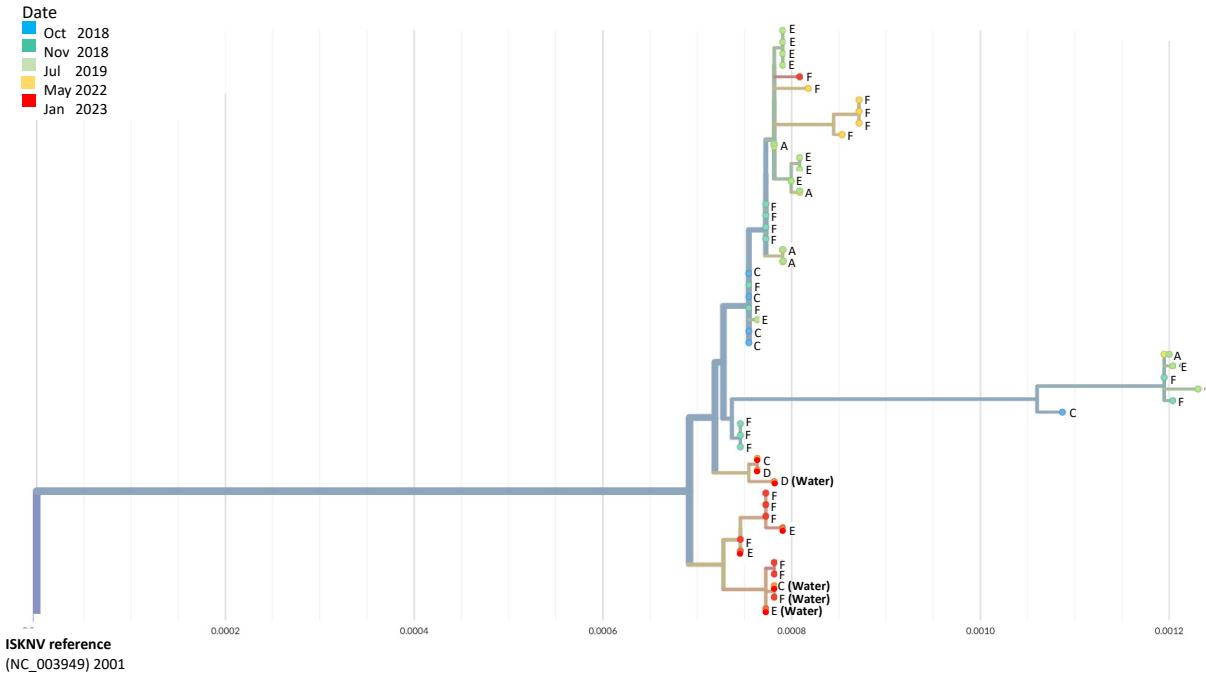
342 **Sequencing and phylogeographic analysis for all samples collected from Ghana- Changes to**
343 **MinION chemistry do not affect our tiled PCR method**

344

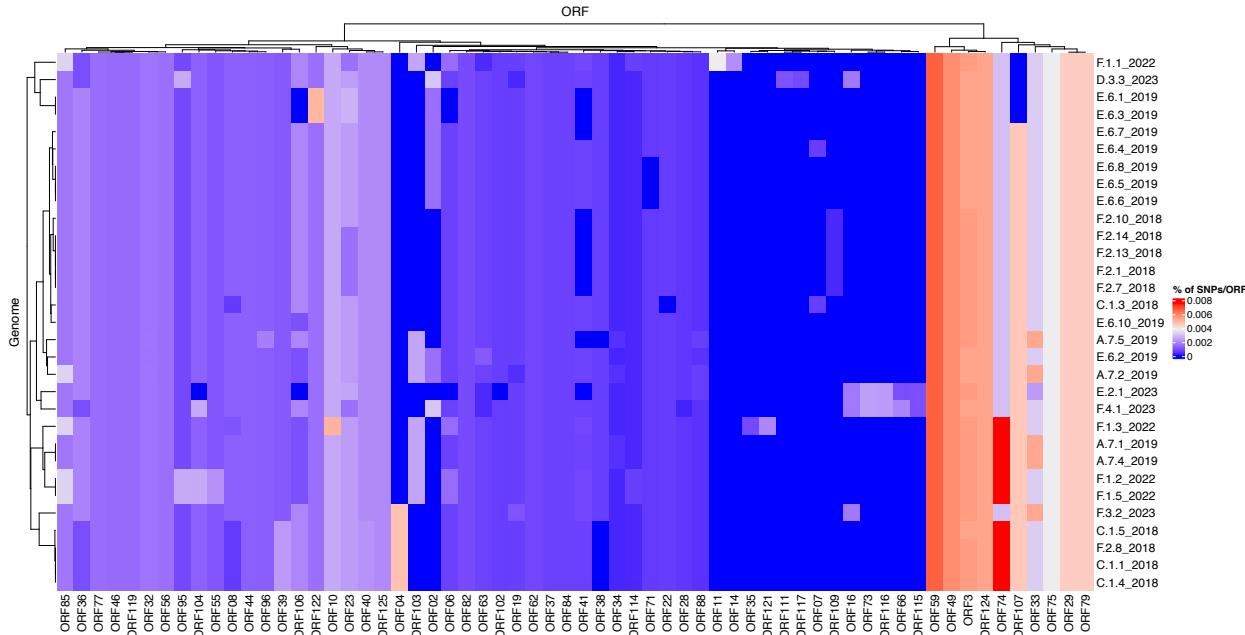
345 A total number of 4.93 M reads were produced from the five water samples, and a total of 5.23 M
346 reads were generated from the five matched tissue samples. The final sequencing run for ISKNV
347 collected from tissue samples was 1.19 M reads. The median length of all samples is reported in
348 Supplementary Table 3.

349

350 When compared to the ISKNV reference genome, the greatest proportion of the whole genome
351 recovered was 98.18% in a tissue sample of a fingerling from cage 4 at farm (F). The highest
352 genome recovery for water samples was 97.49%, collected from the same cage at farm F.
353 Additionally, one sample (from fingerling tissue) from farm (D) had high genome recovery of
354 97.51%, matching water samples that showed high concentration of ISKNV by ddPCR, and
355 sequencing resulted in genome recovery of 85.6%. Around two-thirds of all sequenced samples
356 recovered at least 50% of the full ISKNV genome. In our previous study, we identified a minimum
357 requirement of 482 copies/µL of ISKNV to yield a genome with >50% recovery (Alathari et al.
358 2023). Here, in water samples with fewer than 482 copies/µL of ISKNV produced more than 50%
359 of genome recovery, suggesting lower input requirements for water samples due to an unknown
360 mechanism. A list of genome recovery for each sample is provided in Supplementary Table 3.


361

362 Phylogeographic analysis was performed to investigate the epidemiology of ISKNV virus and
363 disease in Lake Volta, and as a potential indicator of transmission for which closely related
364 genomes indicate closely related infections, shown in Figure 4. For all except one case, the tissue
365 samples collected from farms (E) and (F) in 2023, formed a separate clade, including the two water
366 samples collected from those farms, and the water sample from farm (C). The 2023 tissue sample
367 from farm (C) along with the tissue and water samples from farm (D) grouped together closely
368 though were separate to earlier samples from the same farm (2018-2022). The highest divergence
369 was seen in samples collected in 2023 from farm F sample (F.3.2), and was related most closely
370 to samples collected from the same farm in 2022.


371

372 A group of samples collected from (F) in 2022 diverged from a clade of samples from a previous
373 sampling at this location, clustering separately, due to a mutation occurring in the major capsid
374 protein (MCP) that is unique to these samples. Genome recovery and variant detection was
375 comparable between R9 and R10 flow cells.

376

377
378 **Figure 4. A phylogenetic tree of full ISKNV genomes from samples collected from Lake Volta, Ghana**
379 since 2018; Tissue and water samples collected from the latest outbreak were included and the colour
380 represents the date of sampling. Water samples are identified in brackets. The tree was produced in
381 Nextstrain (Hadfield et al. 2018).
382
383 To investigate differences of mutation profiles between genes across the ISKNV genome, we
384 compared the percentage of polymorphic positions in any ORF for each of the genomes
385 sequenced using the original ISKNV genome as a reference. The genomes selected were those
386 that had 80% of genome recovery or above, compared with the reference ISKNV genome
387 (2001), with remaining genomes removed from the analysis to avoid spurious SNPs from low
388 coverage. Additionally, the repeat region (ORF025) was removed, as this represents a gene
389 duplication and a potential region for circular permutation of the genome, rather than a coding
390 region.
391

Figure 5. Mutational frequencies within the ISKNV genomes of fish tissue samples in Lake Volta, Ghana, since 2018; Heatmap shows the percentage of mutations per gene (ORF), represented on the x axis. Genomes with less than 80% genome recovery and ORFs with no mutations across all samples were removed, as well as ORF025 (repeat gene).

The highest percentage of mutations per gene were in ORF074 and ORF059, which have no assigned function. In general, ISKNV samples collected from Ghana had similar mutations, but samples collected from 2023 had mutations in samples collected from farms (E) and (F) which were not observed in any samples collected throughout previous years samplings. Mutations in the ORF004 were exclusively seen in four samples collected from 2018 with an outlier sample from (F.3.2) collected in 2023, which may explain its divergence from the clade of the outbreak of 2018 on the phylogenetic tree (Figure 4). All samples collected from Ghana shared a mutation in the ankyrin repeat protein (ORF125), an immunogenic gene, while another immunogenic gene (ORF117) showed a mutation only in a sample collected from farm (D). This mutation was also seen in the matching water sample. All samples had a mutation in ORF022, a proposed virulence gene, except one sample collected from 2018. Mutations in the MCP (ORF006) were higher in samples collected in 2022 than all other samples due to two mutations at this location for four out of five samples.

Short read sequences of the water sample from farm (F), produced a total of 7,915,456 reads. Manual curation of the data using IGV (v. 2.16.2) showed the number of identified SNPs to be different to the number of SNPs detected using Geneious when using the default parameters to annotate and predict SNPs. A total of 86 SNPs were observed in IGV, while only 58 SNPs (46 SNPs with 200 \times coverage) were listed in Geneious, with five deletions, and two insertions. A total of 27 of these were non-synonymous mutations. In comparison, the consensus sequence for the same sample generated using long read sequencing showed 46 SNPs with two insertions and four deletions. When examining the alignment in Geneious and variant/SNP calling using annotation default settings, some locations, such as a SNP in ORF058- C51,475T (coverage 4,282) was found

422 to have a variant frequency of 90.7%, where 8.1% belonged to the original reference sequence. A
423 similar SNP was manually detected in ORF040, location (C40,742T), however this SNP was not
424 detected by the Geneious software, using the “annotate and predict” feature.

425
426 Long read sequencing of water sample from farm (F) showed 33 SNPs in common with short read
427 sequences, and the same mutation at ORF058 with variant frequency of 89%, where only two fish
428 tissue samples collected from the same farm showed the same mutation. Long read sequences from
429 both water and tissue samples from farm (F), had 51 SNPs in common, with three extra SNPs that
430 were unique to the water sample, and another three unique to tissue samples. Polymorphisms and
431 substitutions were annotated in Geneious for short read and long read sequences from farm (F)
432 listed in Supplementary Table 4.

433
434 In addition, another water sample from farm (D) was sequenced using short read sequencing, and
435 produced 16,788,272 reads. Annotation in Geneious detected 34 non-synonymous mutations out
436 of a total of 48 SNPs, where 33 SNPs had at least 200x coverage, and four deletions. The unique
437 SNP for ORF0117 in water and tissue samples collected from the (D) farm using long read
438 sequencing, was confirmed in short read sequencing. Finally, a mutation in the ISKNV MCP was
439 confirmed by short read sequencing, and at the same location for all samples previously collected
440 from Lake Volta outbreaks (Alathari et al. 2023). Water samples from farms (C) and (D) were
441 sequenced using short read sequencing, and produced 21,394,234 and 16,788,272 reads,
442 respectively. Annotation detected 33 non-synonymous mutations out of a total of 48 SNPs in the
443 farm (C) sample, 39 of these SNPs had at least 200x coverage. On the other hand, sample from
444 farm (D) sample showed 34 non-synonymous mutations of a total of 48 SNPs, where 33 SNPs had
445 at least 200 \times coverage. The two SNPs mentioned above in farm (F) were detected in short reads
446 from farm (C) but not in the farm (D). Finally, a mutation in the ISKNV MCP was confirmed by
447 short read sequencing, and at the same location for all samples previously collected from Lake
448 Volta outbreaks (Alathari et al. 2023).

449

450

451 **Discussion**

452

453 This case study demonstrates the potential of using water samples for genomic surveillance of a
454 large sized DNA virus, here for ISKNV infecting cultured tilapia in Ghana, using portable
455 equipment in a farm setting. ISKNV was detected in both fish tissue samples and water samples
456 collected from farm sites across Lake Volta and the in-field water sampling and sequencing
457 method both distinguished between the different strains of the virus, and illustrated their
458 relatedness. Sampling water within or close to the fish cages provides insight into the wider
459 diversity of viruses on the farm than the more typical approach of tissue sampling because the
460 latter is often based on a small number of fish, whereas the water may contain viral particles
461 derived from many, potentially hundreds of fish, on the farm. Adopting the use of water sampling
462 also avoids destructive sampling of fish with improved animal welfare benefits and reduced costs
463 to the farmers.

464

465 ISKNV was detected in 81% of the fish sampled from the floating fish cages on Lake Volta in
466 January 2023, with farm (F) having the highest viral load in both water and tissue samples of the

467 farm sites studied. Although fish from farm (C) had very low concentrations of ISKNV in the body
468 tissues sampled there was a relatively high concentration of viral particles in the surrounding water.
469 Phylogenetic analysis of this water sample revealed it clustered with water samples collected from
470 the upper region of Lake Volta. Farm (C) is surrounded by other tilapia farm cages in the Akuse
471 region of Lake Volta and thus the likelihood is that ISKNV circulating strains may have been
472 transported via the water from other nearby infected farms. In the current outbreak, some farmers
473 reported a new trend of moribund tilapia, with fingerlings and juvenile fish being more susceptible
474 than adult fish, and differing from that seen previously where no apparent age-related effect was
475 reported. In our analysis, ISKNV positive samples were seen at all maturation stages of tilapia, but
476 the lowest concentration and infection rates were, in general, seen in adult fish. This may be as a
477 consequence of ISKNV now being practically endemic in Lake Volta, and thus fish surviving to
478 adulthood have likely been exposed previously and thus on re-infection with new outbreaks are
479 able to mount a more effective immune response, thus limiting viral replication.
480

481 Farms (E) and (B) showed very low concentrations of ISKNV in the water, but there were
482 relatively high titres of virus particles detected in the tissue samples. The floating fish cages in
483 both these two farms were located up to 12 km from the lake shoreline and from other farms, and
484 this likely meant there was a far greater dilution of ISKNV from nearby fish in the water.
485 Contrasting with this, water samples collected from farm (D) contained a high concentration of
486 ISKNV, but for all of the fish, except one, sampled at this site there was a low body burden of the
487 virus; this low viral template resulted in an inability to amplify it through our tiled PCR approach.
488 We hypothesise this differential between the fish tissue and water titres of ISKNV might indicate a
489 recent introduction of the virus to the farm and thus an early detection of virus presence through
490 our water sampling approach, highlighting further the potential utility of water sampling in
491 monitoring for this pathogen. Another explanation could be that the fish have recovered from a
492 viral episode at the time of sampling, with the surviving fish having overcome the infection.
493

494 Integrating this data set with our previously sequenced genomes collected from Lake Volta,
495 phylogenetic analysis groups the majority of the 2023 sequences in a separate clade indicating that
496 the ISKNV currently infecting tilapia in Lake Volta, are not a descendent of an ongoing /previous
497 infection but rather an emergence of a different endemic strain, or a new introduction to the Lake;
498 most likely through fish importation. Moreover, farm (D) clustered separately from all other
499 samples, except for a tissue sample from farm (C), and revealed an additional mutation in ORF
500 117 (C105,539A) in both its tissue and water samples. ORF117 is a transmembrane protein
501 (Throngnumchai et al. 2021) which plays a vital role in viral replication and virulence (DiMaio
502 2014). The presence of this mutation likely explains why the water sample collected from farm
503 (D) clustered separately from all other water samples. The close relatedness in the water and tissue
504 sample in farm (D) highlights the capability of water sampling in detecting current, infective
505 strains of ISKNV in fish. This was also confirmed when comparing the water and tissue samples
506 of farm (F), where almost all SNPs were identical. It is also worth mentioning that the close
507 relatedness of all but one of the samples collected in 2023, could indicate the same strain of ISKNV
508 circulating in the water where this newly identified variant might be replacing the previous strain
509 collected between 2018-2022. Sample (F.3.2) collected from farm (F) in 2023 clustered with
510 samples collected in 2018 and might be a strain persisting from previous infections. Interestingly,
511 water samples with less than 482 copies/µL of ISKNV, as calculated in our previous study
512 (Alathari et al. 2023), were able to recover more than 50% of the full ISKNV genome, yet this

513 wasn't possible for tissue samples. This could be due to an increased diversity in the environmental
514 samples, allowing for more primer binding to extracted DNA, or the tissue DNA from tissue
515 samples may contain inhibitors that may affect the amplification.

516
517 The heat map of mutational frequencies highlighted the presence of different SNPs in some of the
518 samples collected in 2023 when compared to samples collected from previous years. We observed
519 the presence of four new mutations in samples collected from farm (E.2.1) and (F.4.1), which were
520 lacking in all the tissue samples collected previously. At least one SNP was seen in the MCP, but
521 samples from 2022 showed two SNPs in this location. The second SNP could have become a
522 reversed mutation in samples collected in 2023, and maybe have been corrected in the ISKNV
523 genome due to its insufficient role in increasing the virus's fitness, or more simply the group that
524 contains this second SNP wasn't sampled during this study. All samples collected from Ghana
525 showed a mutation in ORF125 when compared to its reference genome. This ORF is an ankyrin
526 repeat protein and also one of the major antigenic proteins and involved in modulating intracellular
527 signalling networks during viral infections (Guo et al. 2011) (Throngnumchai et al. 2021).

528
529 Short read sequencing of a water sample collected from farm (F) showed a SNP in ORF40
530 (C40,742T) and ORF58 (C51,475T). The SNP located in ORF58 had a variant frequency of 91.6%,
531 with 8.2% showing the original reference sequence, indicating circulation of more than one variant
532 in the farm. The SNP in ORF40 was not detected by the Geneious software, only by manual
533 analysis. This mutation was present in both short and long read sequences, with the short read
534 sequencing able to show at least two strains circulating the water. Both mutations were also seen
535 in the water sample collected from farm (C) but not in farm (D), and could be the reason behind
536 the (C) water sample clustering with (F) water sample. When comparing the water sample with
537 the tissue samples, only two out of seven tissue samples collected from the same farm showed the
538 same mutation at ORF058. This may indicate that the variant without the mutation at ORF058
539 derives from an historically earlier infection with a new mutation from a newly evolved variant.
540 This is not presented in the heat map as the relevant samples, F.4.4, and F.4.3, generated a sequence
541 recovery of less than 75% of the full ISKNV genome and were thus excluded from the analysis.
542 Short read and long read sequencing produced a comparable number of SNPs and both approaches
543 thus had the ability to detect the different variants.

544
545 In contrast to single-gene PCR approaches, whole genome sequencing can capture the full range
546 of variants, providing vital information for vaccine and drug design. Other studies focusing on the
547 MCP have shown their limitation in discriminating between viruses collected from different
548 locations and at different time points (Ayiku et al. 2023). The portability of a next generation
549 sequencer, and the invention of other portable technologies for amplicon generation and library
550 preparation has led to long read sequencing being a preferred method for this analysis. These
551 advancements have enabled performing studies like ours in remote and resource limited areas, with
552 fast turnaround times, contrasting with that previously where the turnaround time at distant labs is
553 in many months and likely unaffordable to many fish farm holders.

554
555 There are currently minimal disease control options for ISKNV and an urgent need for preventative
556 measures. The approach we present in this paper for Lake Volta, show that water sampling has
557 great potential for use in identifying the ISKNV associated with infected fish, and for determining
558 the variants circulating within the system and infecting the fish at the time of sampling. This could

559 assist in improving disease prevalence estimates and in the detection of emerging variants. The
560 fact that in many cases the water for the inland ponds for hatchery stages is drawn from the lake,
561 is likely the reason for the presence (and repeated cycling) of ISKNV infections in all fish life
562 stages. Seeking to combat this cycle of infections and re-infections of ISKNV, encouraging
563 farmers to seek, and pressure for, farms designated free of ISKNV for their seeding stock would
564 be a prudent step. Indeed, some larger farms with greater resources have already implemented
565 this practice. Importantly, this requires that the supporting systems for aquaculture programmes
566 in Ghana need to enable disease free hatcheries to be established and this inevitably requires also
567 training of fisheries officers and farmers in biosecurity practice and the associated resources to
568 deliver this.

569
570 The methods applied here to ISKNV, in addition to its capability for application to reach remote
571 regions, could be adapted for other viral infections affecting the growth and development of
572 aquaculture. Combining field data with in-field genomic tools can provide opportunities to
573 understand the genetic architecture of disease resistance, leading to new opportunities for disease
574 control in real time. Finally, there are very few available whole genome sequences for ISKNV and
575 other important fish viruses in the database, therefore, and routine sequencing of these viruses will
576 benefit significantly, understanding of the mutations that occur across the genome, and their role
577 in virulence and/or transmissibility of the viral diseases in aquaculture.

578

579

580 **Acknowledgements**

581

582 SA was funded on a PhD programme through the centre for Sustainable Aquaculture Futures, a
583 joint partnership between the University of Exeter and the Centre for Environment, Fisheries and
584 Aquaculture Sciences (Cefas) which is gratefully acknowledged. We thank Janet Gyogluu
585 Anchirinah, the Lake Volta local farmers and the Commission of Fisheries in Ghana involved in
586 the investigation for their support and provision of information and samples. We also thank Joshua
587 Quick for his insightful comments and Anke Lange, Victoria Jackson, Stephanie Andrews, Remy
588 Chait, Exeter Microfluidics Facility, and Karen Moore for technical support and sequencing work.
589 This project used equipment funded by the Wellcome Trust (Multi-User Equipment Grant award
590 number 218247/Z/19/Z) to the Exeter Sequencing Centre.

591

592 **Data Availability Statement**

593

594 All data are deposited in NCBI BioProject ID: PRJNA935699.

595

596 **References**

597

- 598 1. Alathari, Shayma, Dominique L. Chaput, Luis M. Bolaños, Andrew Joseph, Victoria
599 L. N. Jackson, David Verner-Jeffreys, Richard Paley, Charles R. Tyler, and Ben
600 Temperton. 2023. “A Multiplexed, Tiled PCR Method for Rapid Whole-Genome
601 Sequencing of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Tilapia.”
602 *Viruses* 15 (4): 965.

603 2. Ayiku, Angela N. A., Abigail A. Adelani, Patrick Appenteng, Mary Nkansah, Joyce
604 M. Ngoi, Collins M. Morang'a, Francis Djabeng, et al. 2023. "Molecular Epidemiology
605 and Current Management of Infectious Spleen and Kidney Necrosis Virus (ISKNV)
606 Infection in Ghanaian Cultured Tilapia." *Aquaculture* , November, 740330.

607 3. Boykin, Laura, Ammar Ghalab, Bruno Rossitto De Marchi, Anders Savill, James M.
608 Wainaina, Tonny Kinene, Stephen Lamb, et al. 2018. "Real Time Portable Genome
609 Sequencing for Global Food Security." *F1000Research* 7 (1101): 1101.

610 4. Brunner, Franziska S., Alexander Payne, Edward Cairns, George Airey, Richard
611 Gregory, Natalie D. Pickwell, Myles Wilson, et al. 2023. "Utility of Wastewater
612 Genomic Surveillance Compared to Clinical Surveillance to Track the Spread of the
613 SARS-CoV-2 Omicron Variant across England." *Water Research* 247 (October):
614 120804.

615 5. Cai, Junning. 2022. "Top 10 Species Groups in Global Aquaculture 2020." *FAO*, June.
616 <http://dx.doi.org/>.

617 6. Child, Harry T., Paul A. O'Neill, Karen Moore, William Rowe, Hubert Denise, David
618 Bass, Matthew J. Wade, et al. 2023. "Optimised Protocol for Monitoring SARS-CoV-
619 2 in Wastewater Using Reverse Complement PCR-Based Whole-Genome
620 Sequencing." *PloS One* 18 (4): e0284211.

621 7. Dharmadhikari, Tanmay, Vinay Rajput, Rakeshkumar Yadav, Radhika Boargaonkar,
622 Dhawal Patil, Saurabh Kale, Sanjay P. Kamble, Syed G. Dastager, and Mahesh S.
623 Dharne. 2022. "High Throughput Sequencing Based Direct Detection of SARS-CoV-
624 2 Fragments in Wastewater of Pune, West India." *The Science of the Total Environment*
625 807 (Pt 3): 151038.

626 8. DiMaio, Daniel. 2014. "Viral Miniproteins." *Annual Review of Microbiology* 68
627 (April): 21–43.

628 9. FAO. 2019. "The State of the World's Aquatic Genetic Resources for Food and
629 Agriculture." ReliefWeb. 2019. <https://reliefweb.int/report/world/state-world-s-aquatic-genetic-resources-food-and-agriculture>.

630 10. FAO. 2022. *Blue Transformation – Roadmap 2022–2030: A Vision for FAO's Work
631 on Aquatic Food Systems*. FAO.

632 11. Gardy, Jennifer, Nicholas J. Loman, and Andrew Rambaut. 2015. "Real-Time Digital
633 Pathogen Surveillance - the Time Is Now." *Genome Biology* 16 (1): 155.

634 12. Guo, Chang-Jun, Wei-Jian Chen, Li-Qun Yuan, Li-Shi Yang, Shao-Ping Weng, Xiao-
635 Qiang Yu, and Jian-Guo He. 2011. "The Viral Ankyrin Repeat Protein (ORF124L)
636 from Infectious Spleen and Kidney Necrosis Virus Attenuates Nuclear Factor-KB
637 Activation and Interacts with IκB Kinase β." *The Journal of General Virology* 92 (Pt
638 7): 1561–70.

639 13. Hadfield, James, Colin Megill, Sidney M. Bell, John Huddleston, Barney Potter,
640 Charlton Callender, Pavel Sagulenko, Trevor Bedford, and Richard A. Neher. 2018.
641 "Nextstrain: Real-Time Tracking of Pathogen Evolution." *Bioinformatics* 34 (23):
642 4121–23.

643 14. Katoh, Kazutaka, Kazuharu Misawa, Kei-Ichi Kuma, and Takashi Miyata. 2002.
644 "MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast
645 Fourier Transform." *Nucleic Acids Research* 30 (14): 3059–66.

646 15. Li, Heng. 2018. "Minimap2: Pairwise Alignment for Nucleotide Sequences."
647 *Bioinformatics* 34 (18): 3094–3100.

648

649 16. Lin, Qiang, Xiaozhe Fu, Lihui Liu, Hongru Liang, Huizhi Guo, Shuwen Yin,
650 Venkatesh Kumaresan, Zhibin Huang, and Ningqiu Li. 2017. “Application and
651 Development of a TaqMan Real-Time PCR for Detecting Infectious Spleen and Kidney
652 Necrosis Virus in *Siniperca chuatsi*.” *Microbial Pathogenesis* 107 (June): 98–105.
653 17. Luo, Xiao, Xiongbin Kang, and Alexander Schönhuth. 2022. “Strainline: Full-Length
654 de Novo Viral Haplotype Reconstruction from Noisy Long Reads.” *Genome Biology*
655 23 (1): 29.
656 18. Mueller, Jaclyn A., Alexander I. Culley, and Grieg F. Steward. 2014. “Variables
657 Influencing Extraction of Nucleic Acids from Microbial Plankton (Viruses, Bacteria,
658 and Protists) Collected on Nanoporous Aluminum Oxide Filters.” *Applied and
659 Environmental Microbiology* 80 (13): 3930–42.
660 19. Nguyen, Lam-Tung, Heiko A. Schmidt, Arndt von Haeseler, and Bui Quang Minh.
661 2015. “IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating
662 Maximum-Likelihood Phylogenies.” *Molecular Biology and Evolution* 32 (1): 268–74.
663 20. Quick, Joshua, Nathan D. Grubaugh, Steven T. Pullan, Ingra M. Claro, Andrew D.
664 Smith, Karthik Gangavarapu, Glenn Oliveira, et al. 2017. “Multiplex PCR Method for
665 MinION and Illumina Sequencing of Zika and Other Virus Genomes Directly from
666 Clinical Samples.” *Nature Protocols* 12 (6): 1261–76.
667 21. Ragasa, Catherine, Harrison Charo-Karisa, Eugene Rurangwa, Nhuong Tran, and
668 Kelvin Mashisia Shikuku. 2022. “Sustainable Aquaculture Development in Sub-
669 Saharan Africa.” *Nature Food* 3 (2): 92–94.
670 22. Ramírez-Paredes, José Gustavo, Richard K. Paley, William Hunt, Stephen W. Feist,
671 David M. Stone, Terence R. Field, David J. Haydon, et al. 2021. “First Detection of
672 Infectious Spleen and Kidney Necrosis Virus (ISKNV) Associated with Massive
673 Mortalities in Farmed Tilapia in Africa.” *Transboundary and Emerging Diseases* 68
674 (3): 1550–63.
675 23. Steward, Grieg F., and Alexander I. Culley. 2010. “Extraction and Purification of
676 Nucleic Acids from Viruses.” In *Manual of Aquatic Viral Ecology*, 154–65. American
677 Society of Limnology and Oceanography.
678 24. Throngnumchai, Boonyalit, Sarocha Jitrakorn, Pakkakul Sangsuriya, Sasimanas
679 Unajak, Pongsak Khunrae, Ha Thanh Dong, Vanvimon Saksmerprome, and Triwit
680 Rattanarojpong. 2021. “Refolded Recombinant Major Capsid Protein (MCP) from
681 Infectious Spleen and Kidney Necrosis Virus (ISKNV) Effectively Stimulates Serum
682 Specific Antibody and Immune Related Genes Response in Nile Tilapia (*Oreochromis
683 Niloticus*).” *Protein Expression and Purification* 184 (August): 105876.