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Abstract

Protein-peptide interactions play a key role in biological processes. Understanding the interactions
that occur within a receptor-peptide complex can help in discovering and altering their biological
functions. Various computational methods for modeling the structures of receptor-peptide
complexes have been developed. Recently, accurate structure prediction enabled by deep learning
methods has significantly advanced the field of structural biology. AlphaFold (AF) is among the
top-performing structure prediction methods and has highly accurate structure modeling
performance on single-chain targets. Shortly after the release of AlphaFold, AlphaFold-Multimer
(AFM) was developed in a similar fashion as AF for prediction of protein complex structures.
AFM has achieved competitive performance in modeling protein-peptide interactions compared
to previous computational methods; however, still further improvement is needed. Here, we
present DistPepFold, which improves protein-peptide complex docking using an AFM-based
architecture through a privileged knowledge distillation approach. DistPepFold leverages a teacher
model that uses native interaction information during training and transfers its knowledge to a
student model through a teacher-student distillation process. We evaluated DistPepFold's docking
performance on two protein-peptide complex datasets and showed that DistPepFold outperforms
AFM. Furthermore, we demonstrate that the student model was able to learn from the teacher
model to make structural improvements based on AFM predictions.
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1. Introduction

Protein-peptide interactions are crucial in many biological processes and are frequently used in the
early stages of many drug development pipelines, as they can often help better understand how to
target a protein of interest. Furthermore, many proteins have highly flexible peptide-like
intrinsically disordered regions that are crucial for biological functions and can mediate up to 40%
of all protein interactions [1]. However, experimental determination of protein-peptide complexes
via methods such as X-ray crystallography, cryo-electron microscopy, and nuclear magnetic
resonance spectroscopy are slow and resource intensive, thus there are limited structures available
for protein-peptide complexes in the Protein Data Bank (PDB) [2]. Consequently, there has been
a growing effort to develop in silico methods for the structure modeling of protein-peptide
complexes, as it can provide significant insight without the time or expense experimental methods
require. Computational methods have been developed for a wide range of tasks related to protein-
peptide interactions, ranging from predicting peptide binding residues [3] to directly predicting
protein-peptide complexes [4]. Nonetheless, due to the flexible nature of peptide structures,
predicting protein-peptide complexes remains a challenging problem in comparison to modeling
protein-protein complexes. Recent advances in deep learning have led to increased efforts in
developing structure prediction tools using deep neural networks [5], [6]. However, most methods
have focused on predicting protein-peptide interactions or binding residues rather than modeling
the peptide-receptor complex. AlphaFold (AF) has significantly elevated the field of structural
biology, allowing for the direct prediction of structures from sequences in an end-to-end fashion
with high accuracy [7]. Even though AF is primarily trained on monomeric structures, it has been
shown that AF can predict complex structures with minor modifications, such as adding residue
gaps between chains [8] or using a linker [9]. With the release of AlphaFold-Multimer (AFM) [10],
a re-trained version of AF using multimeric structures, it is now possible to model protein
complexes with more accurate interfaces compared to previous methods that relied on modifying
AF inputs. Several studies have also evaluated the performance of AFM in modeling protein-
peptide complexes [11], [12]. These studies have shown that there are often substantial errors in
modeling of the protein-peptide complexes, particularly in targets with sufficiently long peptide
sequences indicating that there is still room for improvement in accurately modeling protein-
peptide complexes.

Knowledge Distillation (KD) is a well-established concept in the field of machine learning,
offering a mechanism for transferring knowledge from one neural network to another. This concept
draws inspiration from the way humans learn, employing a framework akin to a teacher guiding a
student during the learning process. In this paradigm, a proficient teacher network imparts its
knowledge to a less proficient student network through a training process. KD has proven to be
particularly useful in enhancing the learning capabilities of the student network. There are two
main categories within the realm of KD:

1. Model-based distillation: In this approach, a teacher network with high model complexity
shares its knowledge with a student network designed to be much smaller and
computationally efficient [13], [14]. This process helps the student network learn important
features and relationships without being burdened by excessive complexity.

2. Feature-based distillation, which is also referred to as privileged knowledge distillation
(PKD): In this context, the teacher network has privileged access to additional information
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during training, and it strives to impart this privileged knowledge to the student network,
which does not possess the same access [15]. PKD has shown success in a variety of
computer vision tasks, including image segmentation [16] and object detection [17].

Building upon the promising developments in KD, here we introduce a novel approach,
DistPepFold (Peptide docking using Distillation) for the modeling of complexes between globular
proteins and peptides or other flexible or disordered protein regions. DistPepFold leverages PKD
to enhance the structural modeling of protein-peptide complexes using AFM. DistPepFold consists
of two integral components: 1. Teacher model: This model utilizes native interaction information
as privileged information during training. 2. Student model: The student network learns from the
teacher, absorbing the valuable knowledge and guidance imparted by the teacher. Both the teacher
and student models use AFM's single and pair representations as input and directly predict the 3D
coordinates of the protein-peptide complex structure. Our approach employs the teacher's
predicted structure and intermediate representations to guide the learning process of the student
network. Through rigorous evaluation on two datasets of protein-peptide complexes, we
demonstrate the efficacy of our proposed method. Notably, the student model consistently
outperforms AFM using traditional docking analysis metrics, showcasing the benefits of
knowledge distillation in this context. Moreover, in cases where AFM has low confidence scores
on its predicted structures, our method improved the modeling of protein-peptide interactions
compared to the AFM predicted structure.

2. Methods
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Figure 1: Overall framework of DistPepFold. DistPepFold consists of a teacher model and a student
model. The input to the teacher model includes single and pair representations, as well as the contact map
over the interaction region from the native structure. The input to the student model includes only the single
and pair representations. Both single and pair representations are generated from AFM. The teacher and
student models share similar architecture and largely follow that of AFM, each containing 5 blocks of
Evoformers and a structure module.
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2.1 Overall framework

Here we present the details of DistPepFold (Figure 1). The goal of the proposed framework is to
train a student model who can improve predicted structures from AFM. This is achieved by making

3


https://doi.org/10.1101/2023.12.01.569671
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.01.569671; this version posted December 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a student model learn better single and pair representations from a well-trained teacher model that
uses native-interaction information. Given sequences of the peptide and receptor as input, we first
run AFM to generate structures and intermediate representations. Here, the intermediate
representations consist of the single representation (L x 384), and pair representation (L x L x 128),
where L denotes the length of the input sequence. To extract the representations from AFM, we
used the single and pair representations from the last recycle iteration. Next, we train the teacher
model with native interaction information, where the teacher model learns from both AFM
representations and native structures. The teacher model consists of three components: 1) the
contact encoder (CE), 2) the trunk and 3) the structure module (SM). Then, after the teacher model
has completed training, we use the teacher models’ representations and predicted structure as hint
knowledge to train a student model of similar architecture on the same training set. During
inference, we first run AFM and then use the representations as input to the student model. The
student model will directly output the 3D coordinates of the structures.

2.2 Network Architecture

Our proposed method has two networks: a teacher model and a student model. The teacher model
is a native-interaction-privileged structure prediction network. The model consists of three parts:
1) the contact encoder (CE) that encodes contact information. 2) the trunk that uses Evoformer
architecture from AFM. 3) the structure module (SM) that predicts 3D structure coordinates from
the single representation. The teacher model uses single and pair representations as input. In
addition, we added contact information over the interaction region as input to the teacher model.
We first converted the coordinates of the native structures into binary contacts, in which two
residues are considered to be in contact if their Ca-Co distance is within 8 A. The processed contact
map is input into CE to generate high-level features to be used in later parts of the model. CE
leverages two blocks of ResNet [18]. Each ResNet block consists of two 2D-convolution layers
with 128 channels, a kernel size of 3 and a skip connection. The output of CE will be fused with
pair representations before feeding to the trunk. To fuse the information, we simply performed
element-wise addition of the representations. The trunk consists of 5 blocks of Evoformer. Since
we only use the single and pair representations from AFM, we eliminate column-wise attention
from the original Evoformer implementation. The rest of the architecture remains the same as the
proposed Evoformer used in AF. Lastly, the trunk will output the processed single and pair
representations and feed them into the SM for structure prediction. The student model shares the
same architecture as the teacher model, with the exception of the CE, thus containing only 5 blocks
of Evoformer and a structure module. The student model directly takes single and pair
representations as input and predicts the coordinates of the structure.

2.3 Loss Function

To train the teacher model, we used the structure loss as proposed in AF [7]. The structure loss
consists of the Frame Aligned Point Error (FAPE) loss and a series of auxiliary losses. The
structure loss for the teacher model can be defined as follows:

Lteacher = 0.5x Lfape + 0.5 = Laux + 0.1+ Lconf + 1+ Lviol’
where Lfqpe and Lg,, are FAPE computed over sidechain atoms and mainchain Co atoms
respectively. In addition, L, includes torsion angle losses as defined in AF. L,y is a confidence
score computed to estimate model accuracy in the form of predicted TM-score (pTM), which can
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be directly computed from the pair representation during training [10]. During inference, the
confidence of predicted structures is a weighted combination of pTM score computed over
interaction and non-interaction regions. L,;,; is the structure violation loss that penalizes any atom
clashes and encourages an acceptable quality of the predicted structures. We did not use distogram
loss and MSA loss from AF since they do not apply in our framework. We also omit the
experimentally resolved loss term as we did not observe improvements with the loss term. Similar
to AFM, backbone FAPE over interaction regions is up-weighted by using a clamping value of 30
compared to a clamping value of 10 for the non-interaction regions. In addition, to force the model
to pay more attention to the peptide structure, we up-weighted the FAPE over the peptide region
using a clamping value of 30 as well. We adopt the same weight value associated to each loss term
as in AF, since we observed no significant improvements through tuning these hyperparameters.

To train the student model, we follow the PKD strategy described previously [19]-[21]. First, we
define the structure loss for student as Ly cture, Which is computed between the student model’s
predicted structure and the native structure. We used the same formula as L;pq0per as described
above. In addition to the structure loss, we aim to transfer the knowledge from the teacher model
to the student model through soft label loss and latent space loss. We define soft label loss L, st
as the structural loss between the student’s predicted structure and the teacher’s predicted structure,
which can be described as:
Lsoft = 0.5 * Lgisin fape T 0.5 * Laistinn aux
where Lgistin fape a0d Lgistinn qux are FAPE compute for sidechain atoms and mainchain Ca
between the student and teacher’s structure outputs respectively. We omit the violation term due
to training stability issues. The idea of using soft label loss is to discover the relation between
representations and structures that are hard to optimize during training, which has been shown to
improve performance by previous knowledge distillation studies [22]. Moreover, we define latent
space 1oss Lj,¢ent @s the loss between the student and teacher’s single and pair representations,
which can be described as:
Ligtent = Lpair + Lsingle’

where Lyq;- is mean absolute error loss (L1 loss) between student and teacher’s pair
representations, which contain residue-residue distance information. Pair representations from the
teacher model contain native interaction information, especially over the interaction region. This
loss encourages the student to learn from such information and mimic the representation from the
teacher when native information is not presented. Lg;p g 18 the L1 loss between the student and
teacher’s single representations. The single representation contains per-residue level information,
which yields the final coordinates of the structure. The idea of using L;,ten: 1S to enforce the
student to not only produce teacher-like representations at the last layer of the network, but to also
produce teacher-like representations at intermediate layers of the network. This is often referred
to as “hint learning” in the general knowledge distillation framework [22], [23]. Both L, and
Liqtent are considered as distillation loss in our framework to ensure that the student model can
learn useful information for the teacher model. The total loss function for student L, gen: CONSists
Of Lgtructures Lsoft and Ligiens, Which can be described as:

Lstudent = o * Lstructure + Lsoft + Llatent-
We observed that FAPE between the predicted structure and the ground truth has strong
regularization effects in which it often leads training optimization into a certain local minima. It is
possible that some structures are hard to learn from the ground truth but are easier to learn from
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the teacher’s model. Thus, we use hyperparameter o to control this regularization effect. Lower
values of o indicates that less constraints are applied to the students to learn from the ground truth
and encourages the student to learn more from the teacher model.

3. Experiment
3.1 Dataset

We used pre-formatted files from the 2020-03-18 release of the PepBDB [24] to collect protein-
peptide complexes. PepBDB is a publicly available database that is designed for studying protein-
peptide interactions. Since we are specifically interested in longer peptides that are ordered when
bound to a receptor surface, we applied several filters to remove shorter peptides, and those that
lack a globular receptor. From the 13,527 entries in the PepBDB, we filtered out entries which 1)
have resolution lower than 3 A. 2) have a peptide length less than 10 resolved residues. 3) have a
receptor structure with less than 100 resolved residues. We also removed cases in which the same
PDB ID was listed in multiple PepBDB entries. This resulted in 3,975 entries. We then used
MMseq?2 [25] to cluster the sequences with 40% sequence similarity using the receptor sequence,
which resulted in 729 sequence clusters. We separated the 729 clusters into training, validation,
and testing with a ratio of 7:1:2. During training, we considered all redundant sequences. This
resulted in 3,048 training entries, 45 validation entries and 92 testing entries. From this data, we
created cleaned and renumbered Fasta and PDB files, and generated embeddings with the
AlphaFold2 v2.2.0 release [26].

To increase the amount of training data available, we derived peptide-protein complexes from
globular complexes present in the 2021-01-05 release of the PDB, as globular complex structures
have previously proven useful as peptide templates [27]. From these complexes, we ran Rosetta
Peptiderive [28], [29] on all pairwise combinations of chains within all PDB entries. Peptiderive
works by using a sliding window of amino acids (here we used 15 amino acids) of one chain, while
keeping the other fixed. The window with the best binding energy is kept and exported as a
potential peptide. From all generated peptide-protein complexes, we remove cases in which less
than 60% of the peptide is within 5 A of the receptor, where there were less than 150 residues
within the receptor, and cases in which cyclic peptides were generated. Although the complexes
are not real peptide-protein complexes, the interactions between the fragment and receptor
structures can still be useful in training. We noticed that AFM may have poor predictions on some
of the augmented entries due to false-positive protein-peptide interactions. This could lead to
adding noise into the training set. Therefore, we only selected augmented entries with global
backbone RMSD less than SA, which resulted in 1,137 augmented training entries.

To find additional data for testing, we scraped new entries from the PDB past the AF training
cutoff of 2018-04-30 on 2022-12-07. We kept cases in which the biounit had a resolution of 3.0 A
or higher, only contained protein chains, and had at least two chains. One chain must have no more
than 60, and no less than 10 resolved residues, and no more than 80 total residues. This chain was
labeled as the peptide ligand. Another chain must be present with at least 150 resolved residues,
which was labeled as the receptor. Data that shared a PDB ID with training cases already present
in the PepBDB data was removed, and remaining cases were cleaned and renumbered, clustered
via MMseqs2 against all prior data to remove redundancy, and created AlphaFold embeddings
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resulting in 837 new entries across 466 new clusters. We repeated this process on 2023-09-10
collecting data deposited since 2022-12-07 to generate a total of 46 new test cases.

3.2 Evaluation Metrics

To evaluate the predicted peptide-protein complex structures, we employed the traditional CAPRI
docking metrics. These include the Interface RMSD (I-RMSD) which measures the mainchain
RMSD of atoms at the interaction interface, Ligand RMSD (L-RMSD) which measures the
mainchain RMSD of the peptide ligand when the receptors are superimposed, and the Fraction of
native contacts (Fnat) which measures how many of the native contacts are present within the
predicted model. We also used the DockQ score [30] to measure the performance of our model
against several baseline methods. DockQ is a composite metric of the three traditional CAPRI
metrics and produces a score between 0 (worst) — 1 (best). DockQ scores larger than 0.8 are
considered as ‘high’ structure quality, and less than 0.23 are considered as ‘incorrect’ structure
quality.

3.3 Implementation Details

We implemented DistPepFold in PyTorch. All experiments were carried out on a single RTX 6000
GPU with 48 GB memory. We used OpenFold implementation of AF training code [31]. We
initialized the structure module for both the teacher and student models with AFM’s structure
module weights. Evoformer blocks in both the teacher and student models were randomly
initialized. For both the teacher and student models, we used AdamW optimizer with a learning
rate of le-3 and batch size of 4 with gradient accumulation steps of 8. We adopted Cosine
Annealing over a total of 200 training epochs. We slightly modified the continuous cropping
algorithm in AFM to ensure that the peptide residues are always included during training. The
teacher model and student model are trained separately with the teacher model’s weights fixed
during the student model training. During student training, we set hyperparamter o to 0.1.

4. Result and Discussion

A quantitative comparison of structure prediction performance is shown in Table 1. During
evaluation, we first applied sequence-based alignment on the receptor structure, and then metrics
were computed with respect to the peptide structure. To get the AFM prediction, we used AFM
v2.2.0 weights with the default parameter settings as proposed previously [10]. We extracted single
and pair representations from the last iteration of recycle and use these as input to our methods.
We compared against AFM with several methods: 1) Structure Module: Simply finetuning the
structure module. 2) Structure Module + Evoformer: same architecture as student model but
without distillation loss during training. 3) Student Model: our proposed student model trained
using privileged knowledge distillation. 4) Student Model + Augmentation: our proposed student
model trained using privileged knowledge distillation and additional augmentation data. As shown
in Table 1, the student model outperformed AFM across all evaluation metrics. In general, AFM
achieved decent performance in protein peptide docking performance with average DockQ scores
of 0.515 across 92 targets in the test set. However, we noticed that we gain slight improvement
across all metrics by finetuning the structure module. This indicates that the additional finetuning
with protein-peptide data is effective. Similarly, adding Evoformer blocks can further improve
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structure prediction performance of our model. The student model outperformed all other methods,
indicating that it is able to learn useful information through the knowledge distillation process. Use
of additional augmentation data did result in slight improvement in model performance, indicating
that our method can benefit from more training data. However, we observed that there were more
incorrect binding site predictions. This might be because too many false positive protein-peptide
interactions exist within the augmentation data, which introduces too much noise during training.

Test set L-RMSD I-RMSD Fhat Dock(Q

AFM 14.30 6.37 0.559 0.515
Structure Module 11.00 5.09 0.570 0.519
Structure Module + 9.99 4.83 0.564 0.519
Evoformer

Student Model 8.38 4.34 0.578 0.529
Student Model + 8.85 4.39 0.592 0.532
Augmentation

Table 1: Peptide modeling quality for DistPepFold models and AFM. Docking quality metrics were
calculated and averaged for predicted structures generated by our models, as well as AFM for all 92 targets
in the test set. L-RMSD and I-RMSD scores decrease with increasing structure quality. Fu and DockQ
both increase with increasing structure quality and range between 0 and 1.

We further investigate the improvements of the student model against AFM in Figure 2. Across
all metrics, we see that the majority of student predicted structures in the test set have similar
performance to that of AFM structures. However, for a fraction of targets the student model was
able to make great improvements over AFM. This trend were more prevalent in cases where AFM
had significant modeling errors (as indicated by low Fna and DockQ, and high I-RMSD and L-
RMSD). These significant improvements indicate the student model fixing key modeling errors in
binding site identification, peptide orientation, and peptide-protein contacts over AFM.
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Figure 2. Docking metric comparison between the student model and AFM. The a) DockQ score, b)
Fra,, ¢) LIRMSD, and d) L-RMSD were computed and compared between the student model and AFM across
all targets in the test set. The dashed lines indicate where the AFM model and student model performance
would be equivalent.

In Table 2, we show comparison on targets in the test set with low confidence values. Here, we
use AFM’s ptm + iptm score as confidence [10], which can be directly obtained from AFM’s
output. We first observed that the confidence score correlates with DockQ score, where targets
with high confidence tend to have high DockQ scores and targets with low confidence have low
DockQ scores. There are few targets where AFM is confident but DockQ score is low. Out of 92
targets in the test set, there are 36 targets with confidence < 0.7. Table 2 shows that the student
model made clear improvements compared to AFM, with 3.1% improvements in DockQ score.
This demonstrates that the student is able to make structure improvements based on AFM predicted
structures. We observed that models trained without knowledge distillation, i.e. Structure Module,
Structure Module + Evoformer, did not produce structure variations in the predictions compared
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to the student model. Instead, they tend to only make slight movements of peptide structure, which
resulted in marginal improvements on Fnat and improved DockQ score.

Test set L-RMSD I-RMSD Fhat Dock(Q

AFM 26.08 10.92 0.262 0.243
Structure Module 17.65 7.83 0.272 0.250
Structure Module + 16.33 7.46 0.283 0.255
Evoformer

Student Model 13.75 6.69 0.323 0.274
Student Model + 14.36 6.76 0.334 0.280
Augmentation

Table 2: Peptide modeling quality for low confidence structures. For 36 targets in the test set
where AFM has a low confidence score (ptm + iptm < (.7) averages of docking quality metrics
were calculated for predicted structures from AFM as well as our models. L-RMSD and I-RMSD
scores decrease with increasing structure quality. Fnar and DockQ both increase with increasing
structure quality and range between O and 1.

In Table 3, we show training evaluation comparison between the structure module, student model,
and teacher model. We observe that the distillation process was successful from a training point of
view. The student model was able to learn from the teacher model and correct poor quality
structures produced by AFM. Such effect was not observed when comparing to models trained
without distillation. We noticed that there was a difference between the student model training
performance and testing performance. We suspect that student generalization ability may be
limited by quantity and quality of the training data. In Figure 3, we computed Fnat for each target
predicted by the model in the training set and compared against AFM predictions. Figure 3A
shows that simple finetuning of the structure module did not provide significant improvement to
models with low quality Fnat values. However, in both the student and teacher models (Figure 3B
and Figure 3C), there was substantial improvement in targets in which AFM had low quality Fnat
values. As expected, this trend was more pronounced in the teacher model, but it was clear that
this ability has successfully been transferred to the student.

Model L-RMSD I-RMSD Fnat DockQ

AFM 14.35 6.37 0.559 0.515
Teacher 4.72 2.19 0.748 0.713
Student 8.39 425 0.581 0.525

Table 3: Comparison between AFM, the teacher model, and the student model. For all targets
within the test set, docking quality metrics were calculated and averaged for predicted structures
from AFM, the student model, and teacher model.
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Figure 3. F,a evaluation of the fine-tuned structure module, student model, and teacher model. F,
values were calculated for all predicted structures in the training set and compared against those of AFM
structures. This comparison is completed for a) finetuning of the structure module, b) the student model,
and c) teacher model. The dashed lines indicate where Fy. values between the models would be equivalent.

In addition to AFM, we also compared DistPepFold against several traditional peptide docking
methods, namely CABS-dock [32] and MDockPeP2 [33] (Table 4), on 46 targets that were
released after the AFM training cutoff date. Unlike DistPepFold and AFM which predict the
complex directly from the sequences, these traditional methods require the receptor structure,
along with the peptide sequence as input and output a structure of the receptor-peptide complex
structure. Among the 46 targets, we successfully run CABS-dock on and MDockPeP2 on 37 and
42 targets respectively. In addition, we reduced test redundancy by selecting the highest resolution
structure within a cluster. As result, we report performance on 32 targets where we are able collect
results from all method for comparison. The deep learning-based methods performed better than
traditional methods by a large margin. However, we observed that the structural quality is often
not satisfactory due to incorrectly identified binding sites. Our method was able to outperform all
baselines across all metrics. Compared to AFM, we achieved 2.60% and 3.28% DockQ and Fnat
improvement respectively. This is due to structural improvements on several targets and some
marginal improvements on most targets. We also report performance of top-5, top-10 for CABS-
dock and MdockPeP2. We selected structure with the best DockQ score among the top 10 model
ranked by CABS-dock and MDockPeP2’s confidence score. We observed that both CABS-dock
and MDockPeP2 benefited largely from selecting top-5, top-10 models.
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Method L-RMSD I-RMSD Fnat DockQ

CABS-dock 22.90 8.20 0.092 0.134
CABS-dock 14.24 5.25 0.181 0.233
(Top 5)

CABS-dock 12.31 4.61 0.213 0.272
(Top 10)

MDockPeP2 21.80 7.89 0.142 0.188
MDockPeP2 14.25 5.08 0.236 0.290
(Top 5)

MDockPeP2 10.49 3.88 0.310 0.369
(Top 10)

AFM 17.68 7.39 0.390 0.405
DistPepFold 11.27 5.08 0.428 0.431

Table 4: Comparison of DistPepFold to other methods. For 35 targets in the testing set that are not seen
by AFM, we generated protein-peptide complex structures with the DistPepFold student model, AFM,
CABS-Dock, and MDockPeP2, and calculated and averaged docking metrics for each method. CABS-Dock
and MDockPeP2 both produce an ensemble of models, so the highest quality model within the top 10 ranked
models was chosen for analysis.

We further investigated performance of DistPepFold against other modeling methods in terms of
DockQ scores (Figure 4). For CABS-dock and MDockPeP2, we selected the best model ranked
by score computed by the methods. The distribution of DockQ scores shows that CABS-dock and
MDockPeP2 are rarely able to achieve scores above 0.4. the performance of AFM was closer to
DistPepFold. However, DistPepFold was still able to make improvements on a majority of the
targets over AFM, particularly those with lower DockQ scores.
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Figure 4: Dock(Q score comparison between DistPepFold and other methods. DockQ scores were
calculated for structures generated by a) CABS-dock, b) MDockPeP2, and c) AFM for each of the 32 targets
in the testing set that are not seen by AFM and were subsequently plotted against the scores of the
DistPepFold student model. The dashed lines indicate where DockQ scores between the models would be
equivalent.
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To further explore how well the student learned, we inspected the pair representations before and
after the student’s model. Figure 5 shows examples of the native contact map (left) and embedding
difference (right) for two targets from the test set, 3n00 and 2rqw. To get the embedding difference,
we simply compute the hamming distance and normalized the value. We observe that the
embedding difference tends to be higher near contact regions, particularly near peptide-protein
interaction regions. This indicates that the student model wants to modify the contact region during
the structure modeling process, which also increases the model’s interpretability.

native contact
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50 0.8
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150

200
0.2

250

0.0
0 50 100 150 200 250

1.0

0.0

0 20 40 60 80 100 120

Figure 5: Examples of student model learning in the embedding space. The native contact map (left),
and normalized embedding difference between the pair representations before and after the student model
(right) are shown for two targets in the test set: 3n00 (a), and 2rqw (b). Black regions within the contact
map indicate contacting residues, and brighter regions within the embedding difference indicate that the
difference is large. The residue index for both the contact map and embedding difference start with the
receptor sequence, and end with the peptide sequence. For 3n00 (a), the receptor spans residues 1-246, with
the peptide spanning residues 247-268. For 2rqw (b), the receptor spans residues 1-106, with the peptide
spanning residues 107-131.
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We also analyzed the performance of the student model throughout the training process. Figure 6
shows two examples in the validation set, Sfvd (left) and Smlu (right). We observed that structure
quality increases during the training, which indicates that student has learned from the teacher and
is able to improve the structure based on AFM’s prediction. We also observed some targets are
hard to optimize during the training process. This could be due to the fact that the student may
have already reached its learning capability from the current dataset.

(a) (b)

5fvd_B_dockq Smlu_M_dockq
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Figure 6: Examples of the optimization process for two validation targets: Two targets from the
validation set, 5fvd (a), and Smlu (b) had DockQ scores calculated for every epoch throughout training. The
horizontal line indicates the DockQ score of AFM.

5. Conclusion

In this work, we proposed DistPepFold for end-to-end structure prediction of protein-peptide
complexes. We developed a teacher-student framework and improved the performance of structure
prediction through privileged knowledge distillation, in which the teacher has privileged
knowledge regarding protein contacts that can be learned by the student model. Throughout our
experiments, we showed that the teacher model is able to leverage the native contact information
and predict near-native structures, and that the student model is able to learn from the teacher to
make structure improvements. Benchmarking against traditional docking protocols CABS-dock
and MDockPeP2 showed substantial improvement in performance, as well as moderately better
performance over AFM, including several cases where DistPepFold was able to correctly identify
binding sites where AFM was not. Future work on Peptide-Protein docking may address
limitations in model’s generalization performance. The source code, training, and testing protocols
for DistPepFold, including model weights, are available on the Kihara lab GitHub page at
https://github.com/kiharalab/DistPepFold.
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