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Abstract13

Cancers are shaped by somatic mutations, microenvironment, and patient background, each altering gene ex-14

pression and regulation in complex ways, resulting in heterogeneous cellular states and dynamics. Inferring gene15

regulatory network (GRN) models from expression data can help characterize this regulation-driven heterogeneity,16

but network inference requires many statistical samples, traditionally limiting GRNs to cluster-level analyses that17

ignore intra-cluster heterogeneity. We propose to move beyond cluster-based analyses by using contextualized learn-18

ing, a multi-task learning paradigm which allows us to infer sample-specific models using phenotypic, molecular,19

and environmental information pertinent to the model, encoded as the model’s "context" to be conditioned on. We20

unify three network model classes (Correlation, Markov, Neighborhood) and estimate context-specific GRNs for21

7997 tumors across 25 tumor types, with each network contextualized by copy number and driver mutation profiles,22

tumor microenvironment, and patient demographics. Contextualized GRNs provide a structured view of expression23

dynamics at sample-specific resolution, which reveal co-expression modules in correlation networks (CNs), as well24

as cliques and independent regulatory elements in Markov Networks (MNs) and Neighborhood Regression Networks25

(NNs). Our generative modeling approach allows us to predict GRNs for unseen tumor types based on a pan-cancer26

model of how somatic mutations affect gene regulation. Finally, contextualized networks enable GRN-based preci-27

sion oncology, explaining known biomarkers in terms of network-mediated effects, and leading to novel subtypings28

for thyroid, brain, and gastrointestinal tumors that improve survival prognosis.29

Introduction30

Tumors are heterogeneous, developing through clonal evolution that accumulates mutations, including cancer-driving31

single-nucleotide variants (SNVs) and somatic copy number alterations (SCNAs). In addition to tumor cell intrinsic32

changes, tumors develop in and are shaped by a microenvironment that includes immune cells, the extracellular ma-33

trix, blood vessels and surrounding cells. This extensive heterogeneity necessitates hetereogeneous treatments targeted34
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Figure 1: (a) Traditional modeling approaches assume each training cohort or (sub)population is homogeneous and
samples are identically distributed. Cohorts must be large enough to allow robust inference, presenting a tradeoff be-
tween personalization and power. (b) Contextualization assumes model parameters are a function of context, allowing
powerful context-specific inference without a priori clustering of subpopulations or assuming homogeneity. Contexts
can be unique to each sample, permitting sample-specific model inference. (c) Sample-specific models reveal pop-
ulation heterogeneity, relate rare pathological mechanisms to more common ones, and provide new data views for
prognosis and biomarker identification. (d) Graphical depiction of the deep learning framework. Sample context is
used to predict weights on each of the model archetypes, which we call the subtype. The sample-specific network is
estimated as the tensor dot product of archetypal networks and subtype weights. The network archetypes are learned
simultaneously alongside the context encoder using backpropagation.

to individual patients. However, estimating treatment effects and patient prognosis at patient-specific resolution im-35

plies an n-of-1 approach to treatment that is technically and temporally infeasible. Instead, methods have historically36

sought to identify prognostic biomarkers that stratify patients into tumor subtype cohorts, and predictive biomarkers37

that identify patients who generally respond to treatment. The Cancer Genome Atlas1 (TCGA) derives prognostic38

subtypes via cluster analysis on clinical and molecular data, including cancer-driving SNVs, SCNAs, DNA methy-39

lation, mitochondrial DNA, RNA-seq, miRNA, protein abundance arrays, histology images, patient demographics,40

and/or immunological data, and further identifies prognostic biomarkers as features that differentiate these clusters41

[1–23]. While clusters can be analyzed in terms of feature stratification, clustering ignores the latent feature interac-42

tions and hierarchical feature relationships that define biological systems. Biomarkers identified by cluster analysis43

have no mechanistic interpretation, and require further experimentation to validate their role in tumorigenesis and44

1https://www.cancer.gov/tcga
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tumor pathology. Consequently, the identification of biomarkers using somatic DNA alterations or gene expression45

patterns has proved challenging [24], but biological dogma and notable exceptions (e.g. HER2 amplification in breast46

cancer) motivate us to find a systematic way to search for differentiating regulatory factors that reflect cellular states47

and foreshadow cellular responses to treatments. In our view, biomarker discovery should directly inform the devel-48

opment of novel treatments, revealing molecular features that relate to the robustness or fragility of molecular systems49

in individual tumors. Addressing the shortcomings of cluster analysis, we focus on three questions: (1) how do we50

model the mechanisms of molecular interactions as it relates to tumorigenesis and treatment efficacy, (2) how do we51

identify prognostic biomarkers for rare diseases and outlier patients that are too sparsely sampled to cluster, and (3)52

how can we quantify the heterogeneity of tumor pathology, which is widely acknowledged but poorly understood, and53

encode or represent the myriad of phenotypic, molecular, and environmental factors driving this heterogeneity from54

observational data alone?55

Toward representing interactions, gene regulatory networks (GRNs) represent the functional circuitry within cells56

that simultaneously respond to biomolecular stimulus and drive tumorigenesis. We intuit that many interactions be-57

tween disparate biomolecular features can be identified at the cellular level through transcriptomic regulation, both58

directly and indirectly. Further, tumor-specific GRNs capture regulatory redundancy and fragility in individual can-59

cers, whereby multi-omic features relate to GRN structure and organization, and GRN organization reveals the func-60

tional mechanisms of tumor pathology and the robustness of therapeutic targets. Single-cell and multi-omic profiling61

have advanced the potential for studying highly context-specific regulatory relationships in GRNs, but computational62

methods of inferring GRNs continue to rely on partitioning samples into homogeneous sets of samples [25–28]. As63

such, existing methods for high-resolution network inference either impose strong biological priors based on known64

transcription factor-gene regulation [29], or apply a sample-left-out approach that lacks statistical power [30, 31].65

Partition-based modeling is insufficient to capture high-resolution or continuously rewiring GRNs, a problem for pre-66

cision oncology because some types of cancer neither form discrete clusters [32] nor cluster by tissue of origin [33].67

More generally, the exponential increase of data set complexity, heterogeneity, and size, has motivated the need for68

sample-specific inference in many application areas [34–38]. Contextualized modeling [39] addresses this by repre-69

senting the heterogeneity in data as driven by sample-specific models, and explaining variation among sample-specific70

models in terms of sample context encodings. These contexts can be any information that may explain heterogeneity71

in the data (e.g. age, genotype, medical images, environmental factors). More traditionally, context-driven hetero-72

geneity might be controlled by performing probabilistic inference on context-specific data sets, but this fails to scale73

to high-dimensional and continuously-varying contexts, common in biomedical data, where context data splits have74

as few as one sample and most context conditions are missing entirely. The simplest and most classic version of75

the contextualization paradigm are varying-coefficient models [40], which account for the effects of a univariate and76

continuously-varying context on a linear model’s parameters.77

Modern contextualized models, proposed in [41] and generalized in [39], are a combination of statistical modeling78

and deep learning, where context encoders are typically neural networks that can utilize any multi-modal contextual79

information. This framework also introduces the concept of model archetypes (Figure 1d), whereby all sample-specific80

models are spanned by the set of model archetypes, constraining and explaining their variation through the context81

encoding which parameterizes this space (See Methods). Thus, these archetypes, also learned from data, link the82

heterogeneity of sample-specific models to variation in the context encoding and enable sharing information between83

sample-specific model inference tasks. Many notable works on heterogeneous linear effects use this framework [41–84

46], but contextualized models have yet to be extended to the more general graphical modeling regime.85

To infer tumor-specific GRNs that account for patient-to-patient heterogeneity, we propose to reframe GRN in-86

ference within the contextualized modeling paradigm, thereby sharing information among tumor-specific inference87

tasks by relating these tasks through their clinical and molecular contexts. By recasting networks as the output of a88

learnable function, our approach shares statistical power between samples while also permitting fine-grained varia-89

tion to capture the complexity of sample-specific contexts such as tissue-of-origin, somatic mutation landscape, tumor90

microenvironment and clinical measurements. We formulate three types of GRNs (Markov, Neighborhood, and Cor-91

relation networks) under this paradigm, and estimate sample-specific GRNs which enable sample-specific analyses of92

latent regulatory processes. By applying this computational framework to over 7000 samples, we find that contextu-93

alized networks improve prediction of held-out expression data and reveal latent heterogeneity which has previously94

been obscured by partition-based methods of network inference.95
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Results96

Graphical model inference is a canonical task in the life sciences, whereby unstructured observational data is trans-97

formed into graph revealing the latent structure, strength, and direction of interactions between biological entities.98

However, for heterogeneous populations where latent models change from individual to individual, such as how tu-99

morigenesis is driven by patient-specific environmental and molecular factors, traditional modeling approaches are100

ill-defined. We introduce contextualized GRNs, which learn to model the effect of individual clinical and molecular101

contexts on GRN parameters, revealing latent model-based drivers of GRN dysregulation and tumor heterogeneiety.102

While GRNs are commonly interpreted as adjacency graphs [25, 27, 29], existing methods for GRN inference can103

be categorized as variants of four probabilistic models: Markov networks, which represent pairwise dependencies,104

Pearson’s correlation networks, which represent pairwise correlations, neighborhood regression networks, which rep-105

resent each node as a linear combination of its neighbors, and Bayesian networks, and which represent directed and106

acyclic interactions. We focus on Markov, correlation, and neighborhood networks, unifying these models through a107

reparameterization trick, and thus enable them to be contextualized uniformly within our framework.108

The power gained from contextualization allows us to estimate highly accurate sample-specific network models109

without incorporating any prior knowledge of network structure. We apply contextualized graph estimation to infer110

context-specific networks for 7997 patients in TCGA, utilizing molecular contexts including cancer-driving single nu-111

cleotide variations (SNVs), somatic copy number alterations (SCNAs), biopsy composition metrics, and patient demo-112

graphics. Across all network classes, contextualized networks confer significant improvements for network accuracy113

and likelihood, generalizing to held-out populations and held-out disease types. We evaluate our 7997 patient-specific114

GRNs for new clinical and biological insights, discovering robust state-of-the-art prognostic subtypes for thyroid carci-115

noma (THCA) and brain lower grade glioma (LGG), as well as cross-tissue disease groups like the gastointestinal tract116

that includes four distinct tumor types. Finally, patient-specific networks relate prognostic biomarkers to changes in117

specific regulatory modules and gross GRN organization, and identify candidate biomarkers for further investigation.118

Contextualization Recovers Latent Variation from Heterogeneous Observational Data119

Observational data is cheap and abundant in comparison to experimental data, but suffers from complex environmen-120

tal confounders, contexts, and conditions. To recover latent processes of data generation through model estimation121

with observational data, the user must artificially control for on sample contexts and conditions to emulate a con-122

trolled experimental environment. However, controlling for all conditions and contexts simultaneously, especially on123

biomedical data with high-dimensional contexts, leads to conditions with as few as just one sample – too small to124

infer accurate context-specific models. Ignoring contextual effects (i.e. population modeling) is similarly ill-advised125

for heterogeneous data, leading to spurious results from models that are misspecified and inaccurate (e.g. Simpson’s126

paradox).127

Contextualization [39] addresses this by applying deep learning to the meta-relationship between contextual in-128

formation and context-specific model parameters. Contextualization unifies previous approaches such as varying-129

coefficient modeling [40], cluster analysis, and cohort analysis by introducing two simple concepts: a context en-130

coder which translates sample context into model parameters, and a sample-specific model which represents the latent131

context-specific mechanisms of data generation. By learning how models change in response to context, contextual-132

ization enables powerful control over high-dimensional and continuously varying contexts, discovering dynamic latent133

structure underlying data generation in heterogeneous populations.134

Contextualization Enables Estimation of Sample-Specific Correlation, Markov, and Neigh-135

borhood Networks136

To contextualize Markov, correlation, and neighborhood networks, we first unify them with linear parameterizations137

equivalent to each models’ unique constraints (See Methods). Linear parameterization provides a differentiable ob-138

jective for optimizing each model and the linear residual errors are proportional to the negative log likelihood of139

each network model under the data. Our unifying linearization of these models allows us to apply contextualization140

uniformly to each network class, and further enables us to benchmark and test the effects of common model personal-141

ization paradigms against contextualization in terms of model likelihood and modeling errors.142
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Markov Neighborhood Correlation

Population 0.985 ± 0.006 0.984 ± 0.004 0.963 ± 0.000
Cluster-specific 0.365 ± 0.014 0.349 ± 0.012 0.683 ± 0.052
Disease-specific 0.368 ± 0.003 0.351 ± 0.003 0.673 ± 0.002
Contextualized 0.322 ± 0.014 0.296 ± 0.013 0.529 ± 0.019

Error Reduction 14.6% ± 3.4% 18.1% ± 3.3% 20.2% ± 3.4%

Table 1: Error of inferred networks to match held-out gene expression profiles. For all three types of networks (Markov,
Neighborhood, and Correlation), we report mean-squared error (MSE) of gene expression predicted by the network.
Reported values are mean ± std over 30 runs with a bootstrapped training set and randomly initialized model weights.
Error reduction is reported relative to the best baseline, which in all cases is disease-specific modeling.

Contextualized Networks Improve Likelihood of Held-Out Expression Profiles143

Contextualization improves the fit of networks models to gene expression data (Table 1). We benchmark the contextu-144

alized networks by comparing against several granularities of partition-based models: (1) a population network model145

which estimates the same network for all samples, (2) cluster-specific networks that are estimated independently for146

each cluster of contextual information, and (3) disease-specific networks that are estimated independently for each147

cancer type (Fig. 7). For all three network models, we evaluate the fit of the network model to actual expression148

data by measuring the predictive performance of the network graphical model. These predictive performances are149

measured as mean-squared errors between predicted and observed expression data which are inversely proportional to150

the model likelihood under the probabilistic interpretation of the network graphical model. Relative to disease-specific151

model inference (the best baseline method), contextualized networks reduce modeling error on average by 14.6% for152

Markov networks, 18.1% for neighborhood selection, and 20.2% for correlation networks. Contextualized graphical153

models achieve this improved predictive performance by accounting for contextual dependencies in model parameters154

without imposing prior assumptions on the form of these dependencies. As a result, contextualized graphical mod-155

els capture context-specific effects that can be overlooked by group-level modeling approaches (e.g. cluster-specific,156

disease-specific models).157

Contextualized Networks Share Power Between All Cancer Types and Infer Models for Un-158

seen Diseases159

Contextualization relates transcriptional regulation to genomic variation through a context encoder (Fig. 1). During160

training, the encoder learns to modify the parameters of a downstream network model in response to contextual signals.161

At test time, the encoder uses learned context signals to generalize between sparsely sampled contexts. Rare or162

undersampled diseases like Kidney Chromophobe (KICH) and Glioblastoma multiforme (GBM) can benefit from163

contextual signals learned from well-sampled diseases in similar tissues (Figure 2b). In disease-specific modeling,164

these smaller subpopulations must either be lumped within a larger tissue group, ignoring subpopulation heterogeneity,165

or modeled individually, sacrificing statistical power in a "large p small n" regime. For example, there are n = 75166

training samples from KICH patients, while each disease-specific network has 50 × 50 edges, or p = 2500 parameters;167

estimating a disease-specific network from such limited data would be prohibitively high-variance.168

Furthermore, contextualization adapts models to unseen contexts at test time, responding to even extreme dis-169

tribution shift (Fig. 2a). For completely unseen contexts, the context encoder can still leverage learned relationships170

between contexts and models to infer zero-shot network models on-demand. We evaluate model performance through a171

disease-fold cross vaidation, where we hold out each of the 25 disease types in turn and learn to contextualize networks172

on the remaining 24. Notably, disease-specific modeling cannot be applied in this regime. In contrast, contextualized173

networks improve model performance and reduce error on 22 or 25 hold-out diseases, even when generalizing to an174

entirely new disease type.175
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(a) Contextualized Graphs are Generated On-Demand for Held-Out Disease Types

(b) Contextualized Graphs Generalize to Held-Out Patients and Improve Accuracy by Learning to Model Intra-disease Heterogeneity

Markov Graph
Inference Method

Figure 2: Performance of Contextualized Markov Networks. (a) Disease-fold cross-validation, in which each of the 25
disease types are held out from training and evaluated only at testing time. Disease-specific network inference cannot
be applied in this regime. (b) Testing on held-out patients. Results are from 30 bootstrapped runs for each hold-out
disease type and the hold-out patient set. Bar height is the group-averaged mean squared-error of the bootstrap-
averaged network models. Error bars are the standard deviation over bootstraps of the group-averaged mean squared-
error of the network models.
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Figure 3: Embeddings, colored by disease type, reveal the organization of different disease views. Context views
alone cannot capture tumor disease types. Transcriptomic views recapitulate disease types. Contextualized networks
discover new separations and similarities, revealing disease subtypes and cross-disease relationships.
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Contextualized Networks Reveal Tissue-Specific Regulatory Modules176

Contextualization produces context-specific network models, resulting in patient-specific networks for all 7997 pa-177

tients in our TCGA dataset. Organizing patients according to their network models reveals that tissue type is a primary178

driver, but not the sole factor in determining gene-gene interactions (Fig. 3). In particular, diseased networks dif-179

fer drastically from healthy networks, while gene and PCA-derived metagene expression profiles are still largely180

tissue-derived. Additionally, intra-disease (Fig. 5a) and inter-disease (Fig. 6a) subtypes are visible even at pan-cancer181

resolution (Fig. 3), making obvious common tumorigenesis mechanisms that underly noisy gene expression dynamics.182

Contextualized Networks Reveal Regulatory Modules Conserved Across Tissues in Cancer183

Contextualized networks reveal that tumors of the GI tract display a continuum of GRN dysregulation (Figure 6).184

While this continuum cannot be captured by existing TCGA subtypes [47], contextualized networks form clusters that185

relate existing subtypes to inter-disease and intra-disease heterogeneity via conserved regulatory motifs and shared186

dysregulation motifs. Contextualized networks reveal that tumors of the GI tract display a continuum of GRN dys-187

regulation (Figure 6). While this continuum cannot be captured by existing TCGA subtypes, contextualized networks188

form clusters that relate existing subtypes to inter-disease and intra-disease heterogeneity via conserved regulatory189

motifs and shared dysregulation motifs. Finally, contextualized networks discover disparate types of GRN dysregula-190

tion within patients assigned to the SCNA-derived GI.CIN subtype, comprising the majority of GI tract tumors (Fig.191

6a). Re-assigning patients based on GRN-derived subtypes improves prognosis (Fig. 6b) and reveals biomarkers of192

these dysregulation subtypes (Fig. 6a) including SNV-SCNA interactions such as HRAS mutations with chromosome193

18 arm p loss of heterozygosity.194

Contextualized Networks Discover Novel Prognostic Subtypes195

Expression TCGA CoCA Networks

Multivariate log-rank test (-log(p)) 8.53 9.65 11.24
Minimum Pairwise log-rank test (-log(p)) 8.27 9.55 11.71

Table 2: Stratification disease subtypes in terms of survival. Survival tests quantify the difference in survival distri-
butions between groups as a p-value. Contextualized networks improve on both tests on average by several orders of
magnitude compared with other subtyping methods. The multivariate log-rank test quantifies overall stratification of
survival distributions across all subtypes. The minimum pairwise result is the minimum p-value of all pairwise subtype
tests, showing the maximum survival stratification between prognostic subtypes.

For each of the 25 tumor types, we cluster patients by their contextualized networks to identify network-based tumor196

subtypes by flattening the network parameters and applying hierarchical ward clustering. To compare the prognostic197

utility of network-based subtypes against the prognostic utility of state-of-the-art TCGA subtypes and expression198

subtypes, we use the same number of clusters for each disease as subtypes annotated in TCGA. We find that network-199

based subtypes are more prognostic on average than both expression-derived subtypes and TCGA subtypes (Table 2).200

In general, we find that network-based subtypes either recapitulate or refine prognostic subtypes produced by TCGA,201

which often utilize additional data types including DNA methylation, miRNA, and histopathological imaging. All202

subtype comparisons by disease are available in Appendix S4. For 10 of 25 tumor types, contextualized networks203

reduce one of the survival function p-values by at least an order of magnitude, and in some cases, as much as 9204

orders of magnitude on KIRC, 4 orders of magnitude on LGG, 2.4 orders of magnitude on THCA, and 2.3 orders205

of magnitude on HNSC. On KICH, both network subtypes and TCGA subtyapes are outperformed by expression206

subtypes by 13.5 orders of magnitude. In the second and third worst cases for contextualized networks, network207

subtypes are outperformed by TCGA subtypes on GBM and UVM in terms of survival prognosis by about 1.5 and 1.3208

orders of magnitude, respectively.209
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Figure 4: Exploration of network subtypes for LGG, looking at correlated clinical information, arm-level copy alter-
ations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure 5: Exploration of network subtypes for THCA, looking at correlated clinical information, arm-level copy
alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure 6: Exploration of cross-disease network subtypes for cancers of the GI tract, including READ, COAD, STAD,
and ESCA, looking at correlated clinical information, arm-level copy alterations, gene-level copy alterations, and
gene-level single nucleotide variations.
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Discussion210

In this study, we propose contextualized GRNs as cohesive sample-specific representations of latent tumor states211

underlying disease progression and survival. Our models reveal new insights about cancer heterogeneity by relating212

transcriptomic, genetic, immune, and clinical factors to through tumor regulatory network topology.213

The importance of context in cancer development and treatment is well recognised with treatment decisions fre-214

quently determined by a tumor’s tissue of origin. The frequency of mutations in specific driver mutations varies215

substantially between tumors of different tissues and likely reflects the importance of distinct signaling pathways216

within distinct cellular contexts [48]. For example, BRAF(V600E) driver mutations vary substantially in frequency217

across cancer types and drugs that target the BRAF(V600E) mutant product are less effective in colorectal cancers218

than in skin cutaneous melanoma and non-small cell lung cancers with this mutation [49]. Further emphasizing the219

importance of context beyond the tissue-level, considerable variation in terms of aggressiveness, drug sensitivity, and220

genomic mutations, is also observed between tumors arising from the same cell type and tissue [50]. These hetero-221

geneous genetic contexts likely hinder efforts to define tumor subgroups based on specific mutations with epistasis,222

which involves the action of one gene on another, having been shown to affect treatment efficacy in acute myeloid223

leukemia where NPM1 mutations confer a favorable prognosis only in the presence of a co-occurring IDH1 or IDH2224

mutation [51].225

Although genetic heterogeneity between tumors from the same tumor type is known to be widespread, it has long226

been thought that heterogeneity at the phenotype level may not be so marked, with the same cellular pathways often227

affected [52]. For example, dysregulation of the G1–S transition is observed in almost all cancers, and may occur228

through multiple routes, both promoting proliferation and overriding cellular senescence [53]. However, in spite of229

the evidence for functional convergence, it is challenging with current statistical methods to identify biomarkers that230

define similar phenotypes on genetically diverse contexts in order to guide treatment.231

Many promising expression-based biomarkers use the level of expression across gene pathways or multiple genes232

rather than identifying specific somatic mutations [24]. Contextualized GRNs provide an intuitive way of identifying233

both subpopulations with differential transcriptomic regulation and the pathway-level cohorts of genes that should234

be studied as potential biomarkers, as well as the likely effect size of pathway dysregulation. Contextualized GRNs235

further identify associated contextual signals with these subpopulations, providing new leads for traditional classes of236

genomic biomarkers.237

More broadly, contextualized modeling seeks to estimate context-specific models beyond context-specific sam-238

pling constraints. By sharing information among samples while also allowing sample-specific variation, our frame-239

work models complex and dynamic distributions despite physical and technical barriers that would typically prohibit240

sample-specific inference. Context-dependent models models naturally account for non-identically distributed data241

and provide a principled method for performing statistical inference on data that would traditionally be too small or242

too heterogeneous. While it is generally believed that biological observations are a product of latent cellular states and243

tumors exhibit extreme patient-to-patient heterogeneity, these ideas are orthogonal in traditional modeling regimes.244

Contextualized GRNs are the first to effectively unite the two: networks are a useful latent representation, relating245

biomarkers to pathology through systems of molecular interactions, and accounting for network heterogeneity allows246

us to explore both population-level and per-patient tumor pathology in terms of latent representations of molecular247

systems.248

Materials and methods249

Contextualized Networks250

We seek a context-specific density of network parameters P(θ ∣ C) such that251

P(X ∣ C) = ∫
θ
dθPM(X ∣ θ)P(θ ∣ C)

is maximized, where PN(X ∣ θ) is the probability of gene expression X ∈ Rp under network model class M with252

parameters θ ∈ Rp×p and context C, which can contain both multivariate and real features. To overcome θ being a253
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high-dimensional, structured latent variable, we assume that all contextualized networks lie on a subspace spanned by254

a set of K network archetypes A ∶= span({Ak ∈ Rp×p ∶ A1, ...,AK}), i.e. θ ∈ A. Further, the space spanned by A is255

parameterized by a latent variable (“subtype”) Z ∈ RK such that Z is a deterministic function of context Z = f(C)256

and the context-specific network model θ (and subsequently the gene expression observations X) are independent of257

context given Z, i.e. C ⊥ (X,θ) ∣ Z. In this way, we constrain θ as a convex combination of network archetypes via258

latent mixing.259

P(X ∣ C) = ∫
θ,Z

dθdZPM(X ∣ θ)P(θ∣Z)P(Z ∣ C)

= ∫
θ,Z

dθdZPM(X ∣ θ)δ(θ −
K

∑
k=1

ZkAk)δ(Z − f(C))

= PM(X ∣ϕ(C; f,A))

ϕ(C; f,A) =
K

∑
k=1

ZkAk =
K

∑
k=1

f(C)kAk

Where the context encoder ϕ(C; f,A) is parameterized by a learnable context-to-subtype mapping f and the set of260

archetypes A. This architecture is shown in Figure 1d, and is learned end-to-end with backpropagation. While the261

archetypal networks Ak could use prior knowledge for initialization or regularization, no prior knowledge is required.262

In all experiments reported here, we do not use any prior knowledge of network structure or parameters.263

This framework unites three different perspectives of GRNs: (1) Correlation networks, in which network edges264

are the pairwise Pearson’s correlation between nodes, (2) Markov networks, in which edges are the pairwise precision265

values representing conditional dependencies between nodes, and (3) Neighborhood regression networks, in which266

edges represent directed linear relationships between nodes. The key challenge for each network class is to define a267

differentiable loss function ℓM that is proportional to the negative log probability of our contextualized network model.268

f̂ , Â = argmax
f,A

N

∑
n=1

log (PM(Xn∣ϕ(Cn; f,A)))

= argmin
f,A

N

∑
n=1

ℓM (ϕ(Cn; f,A),Xn)

The loss objective can be used in the end-to-end optimization, solving for the context encoder and the network269

archetypes simultaneously, and subsequently inferring the context-specific parameters θ. Below, we outline a uni-270

fying linear parameterization of each network loss. Implementation details are discussed in Appendix S1.271

Contextualized Neighborhood Regression272

We first apply contextualization to the graph variable selection algorithm proposed by Meinhausen and Buhlmann273

[54]. The direct relationship of this model to lasso regression links contextualized neighborhood regression to original274

works on contextualized linear models [41], making it a convenient stepping stone toward the graphical models in the275

sequel. The model is a Gaussian graphical model where X ∼ N(0,Σ) and Σ has sparse off-diagonal entries. The276

algorithm, neighborhood regression, recovers edges between nodes with non-zero partial correlations by solving the277

lasso regression for every feature Xi, given every other feature X−i, where regression maximizes P (Xi∣X−i) via the278

loss279

θ̂i = argmin
θ
∥Xi −X−iθ∥22 + λ∥θ∥1

resulting in edges with source Xj for every j ≠ i and sink Xi and strength θij , or no edge if θij = 0. Equivalently, we280

parameterize the neighborhood selection objective using the square matrix of network edge parameters θ ∈ Rp×p.281
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θ̂ = argmin
θ
∥X −Xθ∥2F + λ∑

i

∥θi∥1 s.t. diag(θ) = [0]

Where the contextualized neighborhood network objective replaces θ for each sample with a context-specific θn =282

ϕ(Cn; f,A). Finally, we define a function ϕ′ to mask the diagonal of θ, presenting the loss function ℓNN for contex-283

tualized neighborhood regression networks284

ℓNN(ϕ(C; f,A),X) = ∥X −Xϕ′(C; f,A)∥22 + λ∑
i

∥ϕ′(C; f,A)i∥1

ϕ′(C; f,A) = (1 − I) ⊗ ϕ(C; f,A)

where ⊗ is the hadamard product.285

Contextualized Markov Networks286

Linear regression and Gaussian graphical models are intrinsically related, allowing us to extend work on contextualized287

linear models to various graphical representations of the Gaussian graphical model. To estimate sample-specific288

precision matrices representing the conditional dependency structure of an undirected graphical model or Markov289

network, we assume the data is drawn from X ∼ N(0,Ω−1) where Ω = Σ−1 and estimate pairwise partial correlation290

coefficients. Using an equivalence defined by Peng et al. [55], the partial correlation coefficient is defined by regression291

as292

ρij = sign(βij)
√
βijβji = −

ωij

ωiiωjj

Where the precision matrix Ω has elements ωij and β is the ordinary least squares solution to multivariate linear293

regression βi = argminβ ∥Xi −X−iβ∥22. Critically, the precision matrix directly encodes conditional independence294

between features in X , and thus precision encodes the Markov network.295

ωij = 0 ⇐⇒ Xi ⊥Xj ∣X−{i,j}
Following [56], we assume constant diagonal precision wii = wjj∀i, j and therefore achieve proportionality between296

the regression and the precision matrix.297

ωij ∝ − sign(β̂ij)

√

β̂ij β̂ji

Assuming unit diagonal precisions ωii = 1, the proportionality becomes exact equivalence. Further, proportionality298

induces symmetry in the regression, i.e. βij = βji. We encode this in the objective by requiring our estimate for θ to299

be a symmetrically augmented matrix based on γ, i.e. β = γ + γT
300

γ̂ = argmin
γ
∥X −X(γ + γT

)∥
2
F s.t. diag(γ) = [0]

If Ω is sparse, we can apply lasso regularization to the multivariate regression objective [54]. Given the similarity301

between this differential Markov network objective and the neighborhood regression objective, we follow the exact302

contextualization procedure from above to contextualize γ and arrive at a loss function ℓMN303

ℓMN(ϕ(C; f,A),X) = ∥X −X(ϕ′(C; f,A) + ϕ′(C; f,A)T )∥22 + λ∑
i

∥ϕ′(C; f,A)i∥1

where ϕ′ is defined identically for masking the diagonal. The resulting precision matrix estimate is Ω̂ = −(ϕ′(C; f̂ , Â)+304

ϕ′(C; f̂ , Â)T ). In practice we do not threshold the estimated precision to non-zero values, instead using the exact pre-305

cision matrix to represent the Markov network, retaining information about dependency strength as well as dependency306

structure in the network.307

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569658doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.01.569658
http://creativecommons.org/licenses/by/4.0/


Contextualized Correlation Networks308

Correlation networks are simple to estimate and often state-of-the-art for gene regulatory network inference [27];309

contextualized correlation expand this utility to the granularity of sample-specific network inferences. To estimate310

sample-specific correlation networks, we assume the data was drawn from X ∼ N(0,Σ) and use the well known311

univariable regression view of Pearson’s marginal correlation coefficient:312

ρ2ij =
σij

σiiσjj
= βijβji

where the covariance matrix Σ has elements σij , and βij = argminβ(Xj −Xiβ)
2. This form converts correlation into313

two separable univariate least-squares regressions that maximize the marginal conditional probabilities P (Xi∣Xj) and314

P (Xj ∣Xi). Contextualizing this differentiable objective, we get the contextualized correlation network loss315

ℓCN(ϕ(C; f,A),X) = ∥X −X ⊗ ϕ(C; f,A)∥2F

where the context-specific correlation matrix is reconstructed as ρ̂2 = ϕ(C; f̂ , Â) ⊗ ϕ(C; f̂ , Â)T .316

Baselines317

We compare contextualized modeling with several traditional approaches for context-controlled and context-agnostic318

inference, including population modeling, cluster modeling, and cohort modeling (Fig. 7). A population model as-319

sumes that the entire sample population is identically distributed. As a result, population modeling infers a single320

model representing all observations. In reality, sample populations often contains two or more uniquely distributed321

subpopulations. If we expect that there are several subpopulations with many observations each, and that these subpop-322

ulations can be stratified by context, it may be appropriate to cluster the data by context to identify these subpopulations323

and then infer a model for each context-clustered subpopulation. This assumes that all context features are equally324

important and therefore does not tolerate noise features well. Alternatively, when subpopulation groupings are known325

to be determined by a few important features, cohort modeling is more appropriate. Sample cohorts can be identified326

based on prior knowledge about important context features (e.g. disease type).327

Figure 7: Modeling regimes for personalized inference.
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The baseline modeling regimes enjoy the benefits of traditional inference methods (i.e. identifiability, conver-328

gence) by relying on the assumption there are a discrete number of subpopulations underlying the observed data that329

are each defined by a latent model, and each of these subpopulations is well-sampled. This assumption is rarely, if330

ever, satisfied in a real-world setting. We develop contextualized modeling as a synthesis between traditional statis-331

tical inference and modern deep learning to enable model-based analysis of heterogeneous real data. Contextualized332

modeling assumes a functional dependency between models, but unlike prior methods makes no assumption about the333

form or complexity of this dependency. As such, contextualized models permit context-informed inference even when334

contexts are sparsely sampled and high dimensional.335

Data336

Our dataset is constructed from The Cancer Genome Atlas2 (TCGA) and related studies, covering 7997 samples337

from 7648 patients with 6397 samples for training and validation and 1600 as testing. For context, we use clinical338

information, biopsy composition, SCNAs and cancer-driving SNVs (Appendix S2). Gene expression data was log-339

transformed and compressed to a set of cancer driver genes, then transformed using PCA into 50 metagenes. Networks340

were learned on the metagene expression data.341

Code availability342

All methods are available in ContextualizedML, an open-source PyTorch library for contextualized modeling. Con-343

textualized graphical models, as well as contextualized regressors can be estimated using an intuitive sklearn-style344

import-fit-predict workflow.345

from contextualized.easy import ContextualizedCorrelationNetworks346

model = ContextualizedCorrelationNetworks()347

model.fit(C_train, X_train)348

err = model.measure_mses(C_test, X_test)349

r = model.predict_correlation(C)350

We provide demos and tutorials for network inference at https://contextualized.ml. Our code for generat-351

ing the figures in this manuscript is available at https://github.com/cnellington/CancerContextualized.352

Data availability353

The TCGA data used is public and available for download via the Genomic Data Commons Data Portal. Data pro-354

cessing is detailed in Appendix S2.355

2www.cancer.gov/tcga
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Supplemental Information for:518

Contextualized Networks Reveal Heterogeneous Transcriptomic Regulation in Tumors at Sample-Specific Resolution519

S1 Implementation520

Our entire framework (Fig. 1) is implemented in PyTorch using the PyTorch Lightning framework within our open-521

source software ContextualizedML. The context encoder, network archetypes, and contextualized network models are522

learned simultaneously using end-to-end backpropagation of the network loss (defined in Methods).523

Context Encoder & Training The context encoder is implemented as a multi-layer perceptron with 3 hidden layers,524

each 100 neurons wide with ReLU activations. The context data views (S2.2) are concatenated sample-wise to create525

a single context feature vector encompassing all views for each patient. We use a batch-size of 10 and our learning rate526

is chosen automatically using PyTorch Lightning’s auto-lr-find with an initial state of 1e-3. Model weights are527

initialized as Uniform[-0.01, 0.01]. We split our dataset into 80% training-validation and 20% testing. We528

create 30 bootstraps of the training-validation set and finally split into 80% training and 20% validation, resulting in a529

64-16-20 split for train-validation-test where the train and validation sets are bootstrapped to evaluate model variance.530

We use early-stopping with a patience of 5 to end training when the minimum validation loss has not been improved531

for 5 epochs. We retain only the model with the minimum validation loss for each bootstrap. In Table 1, we evaluate532

these bootstraps individually to get error means and variances. Following this, we apply each of our bootstrapped533

models to the non-bootstrapped training-validation set and average the outputs of each model to obtain a single graph534

for each patient in this set, which we evaluate in-depth in Figures 4, 5, and 6, and for all disease types in Appendix S4.535

The context encoder is a highly flexible component of our framework and a driving force for future work. This536

attribute can be used to enforce assumptions about the relationships between contexts and models, between context537

features, and about the archetype space. For instance, by using a neural additive model instead of a multi-layer538

perceptron, we provide context-feature-specific archetype weights for interpretability. Similarly, we can augment539

our context encoder with a convolutional base and include imaging modalities in our context views. At the context540

encoder head, we currently use an unconstrained output, but applying a softmax activation would require all of the541

sample-specific models to lie within a polytope defined by the archetypal networks.542

S2 Data543

S2.1 Data sources544

The Cancer Genome Atlas3 (TCGA) is a publicly-available pan-cancer datasource containing genomic, transcriptomic,545

and clinical profiling of tumors from dozens of landmark studies. We queried TCGA for samples with bulk RNA-546

sequencing and merged this dataset with two follow-up studies on an overlapping set of patients.547

Somatic copy number alterations (SCNAs) SCNAs affect a larger fraction of the genome than do any other type548

of somatic genetic alteration [57] and are a major driver of expression variation in cancer [58]. We used copy number549

profiles derived from TCGA samples using ASCAT [59] from a pan-cancer study of the role of allele-specific SCNAs550

in cancer [60].551

Driver single-nucleotide mutations (SNVs) SNVs can be classified into "driver" mutations thought to provide552

selective growth advantage and "passenger" mutations thought to have little role in promoting cancer development.553

We incorporated driver SNVs from the TCGA-derived CHASMplus dataset [61]554

3www.cancer.gov/tcga
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S2.2 Context data views555

Clinical information This data view incorporates sample tissue-of-origin, race, age at diagnosis, gender, year of556

birth, and days to collection provided by TCGA.557

Biopsy Composition This data view contains the sample’s percent tumor cells, percent normal cells, percent tumor558

nuclei, percent monocyte infiltration, percent lymphocyte infiltration, and percent neutrophil infiltration provided by559

TCGA. We also incorporate expression-derived estimates of the fraction of a sample consisting of tumor cells from560

[60].561

Copy Number Alterations From ASCAT [59], we gather whole genome doubling events as well as gain and loss562

events for bp-specific regions of hg19 based on data from [62]. We transform these gain and loss events into both arm-563

level and gene-level events, where arm-level events affect 85% of an entire arm in the same event, while genes-level564

events affect a single gene. We transform these into number of major and number of minor chromosome arms, and565

the number of major and minor alleles for the set of 295 genes that overlap between COSMIC [63] and MSigDB [64].566

For both gene and arm-level events, we create a separate indicator for loss of heterozygosity on each gene.567

Driver Mutations From CHASMplus [61] we gather the mutations on all COSMIC [63] oncogenes/tumor suppresor568

genes and binarize the presence or absence of a mutation in each gene.569

S2.3 Transcriptomic data views570

Transcriptomics We take the set of known oncogenes/tumor suppressor genes annotated in COSMIC [63] and571

included in TCGA gene expression panels. We then calculate the variance of each gene in each tumor type and take a572

weighted sum of these variances according to the total number of samples in each tumor type. We select the top 100573

genes by this metric of “intra-disease variance”.574

Baselines We are not aware of any other scalable meta-learning, deep learning, or varying-coefficient methods to575

produce context-informed correlation, Markov, and Bayesian networks under a universal framework. As such, our576

baselines apply the network estimators in S1 under several well-known and general paradigms for improving model577

personalization, broadly relating to cluster analysis. Our population baseline provides no personalization, learning a578

single model for the entire population of training samples. Our context-clustered baseline takes an unsupervised ap-579

proach to personalization by first doing a k-means clustering with k=25 on the aggregated context views (S2) and then580

inferring cluster-specific networks. Our disease-clustered baseline uses a personalization oracle, grouping samples by581

tumor type and then inferring disease-specific networks.582

S3 Related work583

State-of-the-art gene regulatory network estimators are limited to population, cohort, and cluster-based approaches584

[26, 65, 66]. Other proposals to estimate networks as the difference between a population model and a sample-left-585

out model lack statistical power [30]. Kolar et. al achieve sample-specific network estimation without sacrificing586

statistical power by using an approach similar to classic varying-coefficient models that weighs samples by their587

distance over context [67]. However, this approach inherently assumes smoothness of the parameters over a context,588

which does not align with our understanding of the non-linear, switch-like changes in biological systems that lead589

to disease. Contextual estimation networks (CENs) remove this smoothness assumption by inferring the relationship590

between context and model parameters with a neural network, but the CEN framework is only proposed as an adaptive591

learning approach for linear models [41]. Context-varying linear models have previously been applied to multi-omic592

cancer data, where context-varying coefficients inform how epigenetic markers have patient-specific effects on clinical593

outcomes [42]. Linear models do not inform us of the differential gene-gene interactions that explain changes in594

cellular behavior. To understand regulatory and metabolic variation at per-sample resolution, we require network595

models with context-varying structures and parameters.596
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S4 Extra Results597
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Disease Type TCGA Subtypes Expression Subtypes Network Subtypes

BLCA 0.411 0.151 0.713
BRCA 1.484 0.616 1.558
CHOL – – –
COAD 0.016 0.014 1.219
DLBC – – –
ESCA 0.044 0.884 0.049
GBM 1.644 0.958 0.101
HNSC 1.209 0.312 3.465
KICH 0.715 13.802 0.211
KIRC 5.042 6.109 13.741
KIRP 14.538 10.582 15.205
LGG 48.338 33.438 49.681
LIHC 0.009 0.427 0.827
LUAD 0.687 1.172 0.507
LUSC 0.123 0.105 0.249
OV 0.704 0.684 0.05
PAAD 0.439 1.104 1.494
PRAD – – –
READ 0.221 0.203 0.117
SKCM – – –
STAD 0.044 1.117 0.575
THCA 0.298 0.164 2.104
UCEC 6.937 3.343 7.07
UCS 0.319 0.023 0.048
UVM 4.838 2.589 3.565

Table S1: Multivariate log-rank test comparison across different subtyping methods in terms of -log(p-value). Only
samples shared between all datasets are used. – indicates no samples are shared, or subtypes do not exist for TCGA.
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Disease Type TCGA Subtypes Expression Subtypes Network Subtypes

BLCA 1.059 0.589 0.949
BRCA 2.056 1.13 2.542
CHOL – – –
COAD 0.162 0.159 2.026
DLBC – – –
ESCA 0.323 1.598 0.284
GBM 1.631 1.509 0.63
HNSC 1.855 0.853 3.307
KICH 0.715 13.802 0.211
KIRC 5.61 5.247 14.82
KIRP 19.696 9.241 18.661
LGG 36.533 25.894 40.656
LIHC 0.105 0.619 1.263
LUAD 1.67 2.29 1.198
LUSC 0.614 0.417 0.625
OV 1.414 1.325 0.287
PAAD 0.937 1.465 2.18
PRAD – – –
READ 0.431 0.723 0.474
SKCM – – –
STAD 0.469 1.777 1.428
THCA 0.837 0.831 3.242
UCEC 5.555 3.319 7.42
UCS 0.319 0.023 0.048
UVM 5.076 2.61 4.536

Table S2: Minimum pairwise log-rank test comparison across different subtyping methods in terms of -log(p-value).
Only samples shared between all datasets are used. – indicates no samples are shared, or subtypes do not exist for
TCGA.
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Figure S1: Exploration of network subtypes for Bladder Urothelial Carcinoma (BLCA), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S2: Exploration of network subtypes for Breast invasive carcinoma (BRCA), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S3: Exploration of network subtypes for Cholangiocarcinoma (CHOL), looking at correlated clinical informa-
tion, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S4: Exploration of network subtypes for Colon adenocarcinoma (COAD), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S5: Exploration of network subtypes for Esophageal carcinoma (ESCA), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S6: Exploration of network subtypes for Glioblastoma multiforme (GBM), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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(c) Network subtypes crosstab-
ulation with known subtype

CASP8 Mutated (-log(p) = 7.0)

HRAS Mutated (-log(p) = 12.6)

MLH1 Gene Loss of Heterozygosity (-log(p) = 25.6)

PPARG Gene Loss of Heterozygosity (-log(p) = 26.0)

XPC Gene Loss of Heterozygosity (-log(p) = 26.0)

RAF1 Gene Loss of Heterozygosity (-log(p) = 26.0)

VHL Gene Loss of Heterozygosity (-log(p) = 26.0)

FBLN2 Gene Loss of Heterozygosity (-log(p) = 26.4)

TGFBR2 Gene Loss of Heterozygosity (-log(p) = 26.4)

MYD88 Gene Loss of Heterozygosity (-log(p) = 26.7)

CTNNB1 Gene Loss of Heterozygosity (-log(p) = 27.1)

RHOA Gene Loss of Heterozygosity (-log(p) = 29.1)

3q Major Arm Amplified (-log(p) = 4.7)

4q Arm Loss of Heterozygosity (-log(p) = 5.0)

9q Arm Loss of Heterozygosity (-log(p) = 5.2)

4p Arm Loss of Heterozygosity (-log(p) = 5.2)

13q Arm Loss of Heterozygosity (-log(p) = 5.3)

17p Arm Loss of Heterozygosity (-log(p) = 5.5)

17q Arm Loss of Heterozygosity (-log(p) = 7.9)

5q Arm Loss of Heterozygosity (-log(p) = 8.5)

9p Arm Loss of Heterozygosity (-log(p) = 9.7)

3p Arm Loss of Heterozygosity (-log(p) = 11.9)

Ploidy (-log(p) = 9.5)

Purity (-log(p) = 1.2)

Stage (-log(p) = 1.6)

Age at Diagnosis (-log(p) = 1.5)

Sex (-log(p) = 5.3)

Race (-log(p) = 2.3)

TCGA Subtype

Network Subtype

Network Subtype

HNSC.Net.1

HNSC.Net.2

HNSC.Net.3

HNSC.Net.4

TCGA Subtype

HNSC.Atypical

HNSC.Basal

HNSC.Classical

HNSC.Mesenchymal

Race

american indian or alaska native

asian

black or african american

not reported

white

Sex

female

male

Stage

1.0

2.0

3.0

4.0

1.5 3.6 5.6

Ploidy

0.2 0.6 1.0

Purity

19 54 89

Age at Diagnosis

−1

−0.5

0

0.5

1

HNSC Oncoplot

Figure S7: Exploration of network subtypes for Head and Neck squamous cell carcinoma (HNSC), looking at cor-
related clinical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide
variations.
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(c) Network subtypes crosstab-
ulation with known subtype
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Figure S8: Exploration of network subtypes for Kidney Chromophobe (KICH), looking at correlated clinical informa-
tion, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S9: Exploration of network subtypes for Kidney renal clear cell carcinoma (KIRC), looking at correlated clin-
ical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S10: Exploration of network subtypes for Kidney renal papillary cell carcinoma (KIRP), looking at correlated
clinical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide varia-
tions.
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Figure S11: Exploration of network subtypes for Liver hepatocellular carcinoma (LIHC), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S12: Exploration of network subtypes for Brain Lower Grade Glioma (LGG), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S13: Exploration of network subtypes for Lung adenocarcinoma (LUAD), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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(c) Network subtypes crosstab-
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Figure S14: Exploration of network subtypes for Lung squamous cell carcinoma (LUSC), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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(a) Network subtypes crosstab-
ulation with known subtype
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Figure S15: Exploration of network subtypes for Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC),
looking at correlated clinical information, arm-level copy alterations, gene-level copy alterations, and gene-level single
nucleotide variations.
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(c) Network subtypes crosstab-
ulation with known subtype
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Figure S16: Exploration of network subtypes for Ovarian serous cystadenocarcinoma (OV), looking at correlated clin-
ical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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(c) Network subtypes crosstab-
ulation with known subtype
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Figure S17: Exploration of network subtypes for Pancreatic adenocarcinoma (PAAD), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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(a) Network subtypes crosstab-
ulation with known subtype
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Figure S18: Exploration of network subtypes for Prostate adenocarcinoma (PRAD), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S19: Exploration of network subtypes for Rectum adenocarcinoma (READ), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S20: Exploration of network subtypes for Skin Cutaneous Melanoma (SKCM), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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(b) Network subtypes survival function
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Figure S21: Exploration of network subtypes for Stomach adenocarcinoma (STAD), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S22: Exploration of network subtypes for Thyroid carcinoma (THCA), looking at correlated clinical informa-
tion, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S23: Exploration of network subtypes for Uterine Carcinosarcoma (UCS), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S24: Exploration of network subtypes for Uterine Corpus Endometrial Carcinoma (UCEC), looking at cor-
related clinical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide
variations.
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(c) Network subtypes crosstab-
ulation with known subtype
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Figure S25: Exploration of network subtypes for Uveal Melanoma (UVM), looking at correlated clinical information,
arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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