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13 Abstract

14 Cancers are shaped by somatic mutations, microenvironment, and patient background, each altering gene ex-
15 pression and regulation in complex ways, resulting in heterogeneous cellular states and dynamics. Inferring gene
16 regulatory network (GRN) models from expression data can help characterize this regulation-driven heterogeneity,
17 but network inference requires many statistical samples, traditionally limiting GRNs to cluster-level analyses that
18 ignore intra-cluster heterogeneity. We propose to move beyond cluster-based analyses by using contextualized learn-
19 ing, a multi-task learning paradigm which allows us to infer sample-specific models using phenotypic, molecular,
20 and environmental information pertinent to the model, encoded as the model’s "context" to be conditioned on. We
21 unify three network model classes (Correlation, Markov, Neighborhood) and estimate context-specific GRNs for
22 7997 tumors across 25 tumor types, with each network contextualized by copy number and driver mutation profiles,
23 tumor microenvironment, and patient demographics. Contextualized GRNs provide a structured view of expression
24 dynamics at sample-specific resolution, which reveal co-expression modules in correlation networks (CNs), as well
25 as cliques and independent regulatory elements in Markov Networks (MNs) and Neighborhood Regression Networks
26 (NNs). Our generative modeling approach allows us to predict GRNs for unseen tumor types based on a pan-cancer
27 model of how somatic mutations affect gene regulation. Finally, contextualized networks enable GRN-based preci-
28 sion oncology, explaining known biomarkers in terms of network-mediated effects, and leading to novel subtypings
29 for thyroid, brain, and gastrointestinal tumors that improve survival prognosis.

» Introduction

31 Tumors are heterogeneous, developing through clonal evolution that accumulates mutations, including cancer-driving
32 single-nucleotide variants (SNVs) and somatic copy number alterations (SCNAs). In addition to tumor cell intrinsic
a3 changes, tumors develop in and are shaped by a microenvironment that includes immune cells, the extracellular ma-
s trix, blood vessels and surrounding cells. This extensive heterogeneity necessitates hetereogeneous treatments targeted
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(b) Contextualized Modeling

Parameters as Functions of Context

— [ ] [ ]
X X 0 Patient 2  J Patient 4 [ ] Patient 6
[— ° [ —— Model y ‘ Model @\ Model
| x ° o e
Cohort 1 ° ° [ ]
Model .
Disease o [} oce by L] (’ . ¢ :Aaéldeglt !
Cohort 1 91 [ ® Y e 3 Py [ == )
¢ e o ¢ o

Disease
Cohort 2

Disease
Cohort 3

Patients

[ ]
05 [ ]
[

Gene
Expr

Network
Params

Cohort 2
éz 3 Model

Cohort 3
Model

Patient

Gene

Patient 5
Model

Patient 1

a(0) Model

Context dim 2

Network

Context dim 1

Contexts  Expr

Params

(c) Sample-specific Models Reveal Individual Disease Mechanisms and Pan-disease Heterogeneity
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(d) Learning Sample-Specific Contextualized Graphical Models
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Figure 1: (a) Traditional modeling approaches assume each training cohort or (sub)population is homogeneous and
samples are identically distributed. Cohorts must be large enough to allow robust inference, presenting a tradeoff be-
tween personalization and power. (b) Contextualization assumes model parameters are a function of context, allowing
powerful context-specific inference without a priori clustering of subpopulations or assuming homogeneity. Contexts
can be unique to each sample, permitting sample-specific model inference. (c) Sample-specific models reveal pop-
ulation heterogeneity, relate rare pathological mechanisms to more common ones, and provide new data views for
prognosis and biomarker identification. (d) Graphical depiction of the deep learning framework. Sample context is
used to predict weights on each of the model archetypes, which we call the subtype. The sample-specific network is
estimated as the tensor dot product of archetypal networks and subtype weights. The network archetypes are learned
simultaneously alongside the context encoder using backpropagation.

to individual patients. However, estimating treatment effects and patient prognosis at patient-specific resolution im-
plies an n-of-1 approach to treatment that is technically and temporally infeasible. Instead, methods have historically
sought to identify prognostic biomarkers that stratify patients into tumor subtype cohorts, and predictive biomarkers
that identify patients who generally respond to treatment. The Cancer Genome Atlas' (TCGA) derives prognostic
subtypes via cluster analysis on clinical and molecular data, including cancer-driving SNVs, SCNAs, DNA methy-
lation, mitochondrial DNA, RNA-seq, miRNA, protein abundance arrays, histology images, patient demographics,
and/or immunological data, and further identifies prognostic biomarkers as features that differentiate these clusters
[1-23]. While clusters can be analyzed in terms of feature stratification, clustering ignores the latent feature interac-
tions and hierarchical feature relationships that define biological systems. Biomarkers identified by cluster analysis
have no mechanistic interpretation, and require further experimentation to validate their role in tumorigenesis and

"https://www.cancer.gov/tcga
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s tumor pathology. Consequently, the identification of biomarkers using somatic DNA alterations or gene expression
4 patterns has proved challenging [24], but biological dogma and notable exceptions (e.g. HER2 amplification in breast
47 cancer) motivate us to find a systematic way to search for differentiating regulatory factors that reflect cellular states
4 and foreshadow cellular responses to treatments. In our view, biomarker discovery should directly inform the devel-
s opment of novel treatments, revealing molecular features that relate to the robustness or fragility of molecular systems
so in individual tumors. Addressing the shortcomings of cluster analysis, we focus on three questions: (1) how do we
st model the mechanisms of molecular interactions as it relates to tumorigenesis and treatment efficacy, (2) how do we
52 identify prognostic biomarkers for rare diseases and outlier patients that are too sparsely sampled to cluster, and (3)
s3  how can we quantify the heterogeneity of tumor pathology, which is widely acknowledged but poorly understood, and
s« encode or represent the myriad of phenotypic, molecular, and environmental factors driving this heterogeneity from
55 observational data alone?

56 Toward representing interactions, gene regulatory networks (GRNs) represent the functional circuitry within cells
57 that simultaneously respond to biomolecular stimulus and drive tumorigenesis. We intuit that many interactions be-
s tween disparate biomolecular features can be identified at the cellular level through transcriptomic regulation, both
s directly and indirectly. Further, tumor-specific GRNs capture regulatory redundancy and fragility in individual can-
e cers, whereby multi-omic features relate to GRN structure and organization, and GRN organization reveals the func-
et tional mechanisms of tumor pathology and the robustness of therapeutic targets. Single-cell and multi-omic profiling
62 have advanced the potential for studying highly context-specific regulatory relationships in GRNs, but computational

es methods of inferring GRNs continue to rely on partitioning samples into homogeneous sets of samples [25-28]. As
e4 such, existing methods for high-resolution network inference either impose strong biological priors based on known
es transcription factor-gene regulation [29], or apply a sample-left-out approach that lacks statistical power [30, 31].

es Partition-based modeling is insufficient to capture high-resolution or continuously rewiring GRNs, a problem for pre-
67 cision oncology because some types of cancer neither form discrete clusters [32] nor cluster by tissue of origin [33].
68 More generally, the exponential increase of data set complexity, heterogeneity, and size, has motivated the need for
e sample-specific inference in many application areas [34—38]. Contextualized modeling [39] addresses this by repre-
70 senting the heterogeneity in data as driven by sample-specific models, and explaining variation among sample-specific
71 models in terms of sample context encodings. These contexts can be any information that may explain heterogeneity
72 in the data (e.g. age, genotype, medical images, environmental factors). More traditionally, context-driven hetero-
73 geneity might be controlled by performing probabilistic inference on context-specific data sets, but this fails to scale
7+ to high-dimensional and continuously-varying contexts, common in biomedical data, where context data splits have
75 as few as one sample and most context conditions are missing entirely. The simplest and most classic version of
76 the contextualization paradigm are varying-coefficient models [40], which account for the effects of a univariate and
77 continuously-varying context on a linear model’s parameters.

78 Modern contextualized models, proposed in [4 1] and generalized in [39], are a combination of statistical modeling
79 and deep learning, where context encoders are typically neural networks that can utilize any multi-modal contextual
s information. This framework also introduces the concept of model archetypes (Figure 1d), whereby all sample-specific
s models are spanned by the set of model archetypes, constraining and explaining their variation through the context
g2 encoding which parameterizes this space (See Methods). Thus, these archetypes, also learned from data, link the
s heterogeneity of sample-specific models to variation in the context encoding and enable sharing information between
s sample-specific model inference tasks. Many notable works on heterogeneous linear effects use this framework [41—
85 ], but contextualized models have yet to be extended to the more general graphical modeling regime.

86 To infer tumor-specific GRNs that account for patient-to-patient heterogeneity, we propose to reframe GRN in-
&7 ference within the contextualized modeling paradigm, thereby sharing information among tumor-specific inference
ss tasks by relating these tasks through their clinical and molecular contexts. By recasting networks as the output of a
s learnable function, our approach shares statistical power between samples while also permitting fine-grained varia-
90 tion to capture the complexity of sample-specific contexts such as tissue-of-origin, somatic mutation landscape, tumor
o1 microenvironment and clinical measurements. We formulate three types of GRNs (Markov, Neighborhood, and Cor-
92 relation networks) under this paradigm, and estimate sample-specific GRNs which enable sample-specific analyses of
o3 latent regulatory processes. By applying this computational framework to over 7000 samples, we find that contextu-
s alized networks improve prediction of held-out expression data and reveal latent heterogeneity which has previously
95 been obscured by partition-based methods of network inference.
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« Results

o7 Graphical model inference is a canonical task in the life sciences, whereby unstructured observational data is trans-
os formed into graph revealing the latent structure, strength, and direction of interactions between biological entities.
99 However, for heterogeneous populations where latent models change from individual to individual, such as how tu-
10 morigenesis is driven by patient-specific environmental and molecular factors, traditional modeling approaches are
101 ill-defined. We introduce contextualized GRNs, which learn to model the effect of individual clinical and molecular
102 contexts on GRN parameters, revealing latent model-based drivers of GRN dysregulation and tumor heterogeneiety.
103 While GRNs are commonly interpreted as adjacency graphs [25, 27, 29], existing methods for GRN inference can
104 be categorized as variants of four probabilistic models: Markov networks, which represent pairwise dependencies,
15 Pearson’s correlation networks, which represent pairwise correlations, neighborhood regression networks, which rep-
106 resent each node as a linear combination of its neighbors, and Bayesian networks, and which represent directed and
17 acyclic interactions. We focus on Markov, correlation, and neighborhood networks, unifying these models through a
18 reparameterization trick, and thus enable them to be contextualized uniformly within our framework.

100 The power gained from contextualization allows us to estimate highly accurate sample-specific network models
110 without incorporating any prior knowledge of network structure. We apply contextualized graph estimation to infer
11 context-specific networks for 7997 patients in TCGA, utilizing molecular contexts including cancer-driving single nu-
112 cleotide variations (SNVs), somatic copy number alterations (SCNAs), biopsy composition metrics, and patient demo-
1ns  graphics. Across all network classes, contextualized networks confer significant improvements for network accuracy
1a  and likelihood, generalizing to held-out populations and held-out disease types. We evaluate our 7997 patient-specific
115 GRNs for new clinical and biological insights, discovering robust state-of-the-art prognostic subtypes for thyroid carci-
11e noma (THCA) and brain lower grade glioma (LGG), as well as cross-tissue disease groups like the gastointestinal tract
117 that includes four distinct tumor types. Finally, patient-specific networks relate prognostic biomarkers to changes in
1s  specific regulatory modules and gross GRN organization, and identify candidate biomarkers for further investigation.

e Contextualization Recovers Latent Variation from Heterogeneous Observational Data

120 Observational data is cheap and abundant in comparison to experimental data, but suffers from complex environmen-
121 tal confounders, contexts, and conditions. To recover latent processes of data generation through model estimation
122 with observational data, the user must artificially control for on sample contexts and conditions to emulate a con-
123 trolled experimental environment. However, controlling for all conditions and contexts simultaneously, especially on
124 biomedical data with high-dimensional contexts, leads to conditions with as few as just one sample — too small to
125 infer accurate context-specific models. Ignoring contextual effects (i.e. population modeling) is similarly ill-advised
126 for heterogeneous data, leading to spurious results from models that are misspecified and inaccurate (e.g. Simpson’s
127 paradox).

128 Contextualization [39] addresses this by applying deep learning to the meta-relationship between contextual in-
120 formation and context-specific model parameters. Contextualization unifies previous approaches such as varying-
130 coefficient modeling [40], cluster analysis, and cohort analysis by introducing two simple concepts: a context en-
131 coder which translates sample context into model parameters, and a sample-specific model which represents the latent
12 context-specific mechanisms of data generation. By learning how models change in response to context, contextual-
133 ization enables powerful control over high-dimensional and continuously varying contexts, discovering dynamic latent
13« structure underlying data generation in heterogeneous populations.

s Contextualization Enables Estimation of Sample-Specific Correlation, Markov, and Neigh-
s borhood Networks

137 To contextualize Markov, correlation, and neighborhood networks, we first unify them with linear parameterizations
13s  equivalent to each models’ unique constraints (See Methods). Linear parameterization provides a differentiable ob-
139 jective for optimizing each model and the linear residual errors are proportional to the negative log likelihood of
120 each network model under the data. Our unifying linearization of these models allows us to apply contextualization
141 uniformly to each network class, and further enables us to benchmark and test the effects of common model personal-
142 ization paradigms against contextualization in terms of model likelihood and modeling errors.
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Markov Neighborhood Correlation

Population 0.985+0.006  0.984 +0.004  0.963 + 0.000
Cluster-specific ~ 0.365 + 0.014 0.349 £ 0.012 0.683 + 0.052
Disease-specific ~ 0.368 + 0.003 0.351 £ 0.003 0.673 £ 0.002
Contextualized 0.322+0.014 0.296+0.013 0.529+0.019

Error Reduction  14.6% +3.4%  18.1% +3.3%  20.2% + 3.4%

Table 1: Error of inferred networks to match held-out gene expression profiles. For all three types of networks (Markov,
Neighborhood, and Correlation), we report mean-squared error (MSE) of gene expression predicted by the network.
Reported values are mean + std over 30 runs with a bootstrapped training set and randomly initialized model weights.
Error reduction is reported relative to the best baseline, which in all cases is disease-specific modeling.

Contextualized Networks Improve Likelihood of Held-Out Expression Profiles

Contextualization improves the fit of networks models to gene expression data (Table 1). We benchmark the contextu-
alized networks by comparing against several granularities of partition-based models: (1) a population network model
which estimates the same network for all samples, (2) cluster-specific networks that are estimated independently for
each cluster of contextual information, and (3) disease-specific networks that are estimated independently for each
cancer type (Fig. 7). For all three network models, we evaluate the fit of the network model to actual expression
data by measuring the predictive performance of the network graphical model. These predictive performances are
measured as mean-squared errors between predicted and observed expression data which are inversely proportional to
the model likelihood under the probabilistic interpretation of the network graphical model. Relative to disease-specific
model inference (the best baseline method), contextualized networks reduce modeling error on average by 14.6% for
Markov networks, 18.1% for neighborhood selection, and 20.2% for correlation networks. Contextualized graphical
models achieve this improved predictive performance by accounting for contextual dependencies in model parameters
without imposing prior assumptions on the form of these dependencies. As a result, contextualized graphical mod-
els capture context-specific effects that can be overlooked by group-level modeling approaches (e.g. cluster-specific,
disease-specific models).

Contextualized Networks Share Power Between All Cancer Types and Infer Models for Un-
seen Diseases

Contextualization relates transcriptional regulation to genomic variation through a context encoder (Fig. 1). During
training, the encoder learns to modify the parameters of a downstream network model in response to contextual signals.
At test time, the encoder uses learned context signals to generalize between sparsely sampled contexts. Rare or
undersampled diseases like Kidney Chromophobe (KICH) and Glioblastoma multiforme (GBM) can benefit from
contextual signals learned from well-sampled diseases in similar tissues (Figure 2b). In disease-specific modeling,
these smaller subpopulations must either be lumped within a larger tissue group, ignoring subpopulation heterogeneity,
or modeled individually, sacrificing statistical power in a "large p small n" regime. For example, there are n = 75
training samples from KICH patients, while each disease-specific network has 50 x 50 edges, or p = 2500 parameters;
estimating a disease-specific network from such limited data would be prohibitively high-variance.

Furthermore, contextualization adapts models to unseen contexts at test time, responding to even extreme dis-
tribution shift (Fig. 2a). For completely unseen contexts, the context encoder can still leverage learned relationships
between contexts and models to infer zero-shot network models on-demand. We evaluate model performance through a
disease-fold cross vaidation, where we hold out each of the 25 disease types in turn and learn to contextualize networks
on the remaining 24. Notably, disease-specific modeling cannot be applied in this regime. In contrast, contextualized
networks improve model performance and reduce error on 22 or 25 hold-out diseases, even when generalizing to an
entirely new disease type.
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(a) Contextualized Graphs are Generated On-Demand for Held-Out Disease Types
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Figure 2: Performance of Contextualized Markov Networks. (a) Disease-fold cross-validation, in which each of the 25
disease types are held out from training and evaluated only at testing time. Disease-specific network inference cannot
be applied in this regime. (b) Testing on held-out patients. Results are from 30 bootstrapped runs for each hold-out
disease type and the hold-out patient set. Bar height is the group-averaged mean squared-error of the bootstrap-
averaged network models. Error bars are the standard deviation over bootstraps of the group-averaged mean squared-
error of the network models.
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Figure 3: Embeddings, colored by disease type, reveal the organization of different disease views. Context views
alone cannot capture tumor disease types. Transcriptomic views recapitulate disease types. Contextualized networks
discover new separations and similarities, revealing disease subtypes and cross-disease relationships.
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7 Contextualized Networks Reveal Tissue-Specific Regulatory Modules

177 Contextualization produces context-specific network models, resulting in patient-specific networks for all 7997 pa-
178 tients in our TCGA dataset. Organizing patients according to their network models reveals that tissue type is a primary
179 driver, but not the sole factor in determining gene-gene interactions (Fig. 3). In particular, diseased networks dif-
180 fer drastically from healthy networks, while gene and PCA-derived metagene expression profiles are still largely
181 tissue-derived. Additionally, intra-disease (Fig. 5a) and inter-disease (Fig. 6a) subtypes are visible even at pan-cancer
1.2 resolution (Fig. 3), making obvious common tumorigenesis mechanisms that underly noisy gene expression dynamics.

s Contextualized Networks Reveal Regulatory Modules Conserved Across Tissues in Cancer

1sa  Contextualized networks reveal that tumors of the GI tract display a continuum of GRN dysregulation (Figure 6).
1ss While this continuum cannot be captured by existing TCGA subtypes [47], contextualized networks form clusters that
16 relate existing subtypes to inter-disease and intra-disease heterogeneity via conserved regulatory motifs and shared
157 dysregulation motifs. Contextualized networks reveal that tumors of the GI tract display a continuum of GRN dys-
1s  regulation (Figure 6). While this continuum cannot be captured by existing TCGA subtypes, contextualized networks
180 form clusters that relate existing subtypes to inter-disease and intra-disease heterogeneity via conserved regulatory
190 motifs and shared dysregulation motifs. Finally, contextualized networks discover disparate types of GRN dysregula-
191 tion within patients assigned to the SCNA-derived GI.CIN subtype, comprising the majority of GI tract tumors (Fig.
1.2 6a). Re-assigning patients based on GRN-derived subtypes improves prognosis (Fig. 6b) and reveals biomarkers of
19a  these dysregulation subtypes (Fig. 6a) including SNV-SCNA interactions such as HRAS mutations with chromosome
19a 18 arm p loss of heterozygosity.

s Contextualized Networks Discover Novel Prognostic Subtypes

Expression TCGA CoCA  Networks

Multivariate log-rank test (-log(p)) 8.53 9.65 11.24
Minimum Pairwise log-rank test (-log(p)) 8.27 9.55 11.71

Table 2: Stratification disease subtypes in terms of survival. Survival tests quantify the difference in survival distri-
butions between groups as a p-value. Contextualized networks improve on both tests on average by several orders of
magnitude compared with other subtyping methods. The multivariate log-rank test quantifies overall stratification of
survival distributions across all subtypes. The minimum pairwise result is the minimum p-value of all pairwise subtype
tests, showing the maximum survival stratification between prognostic subtypes.

196 For each of the 25 tumor types, we cluster patients by their contextualized networks to identify network-based tumor
197 subtypes by flattening the network parameters and applying hierarchical ward clustering. To compare the prognostic
e utility of network-based subtypes against the prognostic utility of state-of-the-art TCGA subtypes and expression
199 subtypes, we use the same number of clusters for each disease as subtypes annotated in TCGA. We find that network-
200 based subtypes are more prognostic on average than both expression-derived subtypes and TCGA subtypes (Table 2).
201 In general, we find that network-based subtypes either recapitulate or refine prognostic subtypes produced by TCGA,
202 which often utilize additional data types including DNA methylation, miRNA, and histopathological imaging. All
203 subtype comparisons by disease are available in Appendix S4. For 10 of 25 tumor types, contextualized networks
20« reduce one of the survival function p-values by at least an order of magnitude, and in some cases, as much as 9
205 orders of magnitude on KIRC, 4 orders of magnitude on LGG, 2.4 orders of magnitude on THCA, and 2.3 orders
206 of magnitude on HNSC. On KICH, both network subtypes and TCGA subtyapes are outperformed by expression
207 subtypes by 13.5 orders of magnitude. In the second and third worst cases for contextualized networks, network
208 subtypes are outperformed by TCGA subtypes on GBM and UVM in terms of survival prognosis by about 1.5 and 1.3
200 orders of magnitude, respectively.
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(a) Network Clusters Reveal Prognostic Biomarkers in Molecular Contexts
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Figure 4: Exploration of network subtypes for LGG, looking at correlated clinical information, arm-level copy alter-
ations, gene-level copy alterations, and gene-level single nucleotide variations.
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(a) Network Clusters Reveal Prognostic Biomarkers in Molecular Contexts
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Figure 5: Exploration of network subtypes for THCA, looking at correlated clinical information, arm-level copy
alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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(a) Network Clusters Reveal Prognostic Biomarkers in Molecular Contexts Across Tissues
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Figure 6: Exploration of cross-disease network subtypes for cancers of the GI tract, including READ, COAD, STAD,
and ESCA, looking at correlated clinical information, arm-level copy alterations, gene-level copy alterations, and
gene-level single nucleotide variations.
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-0 Discussion

211 In this study, we propose contextualized GRNs as cohesive sample-specific representations of latent tumor states
212 underlying disease progression and survival. Our models reveal new insights about cancer heterogeneity by relating
213 transcriptomic, genetic, immune, and clinical factors to through tumor regulatory network topology.

214 The importance of context in cancer development and treatment is well recognised with treatment decisions fre-
215 quently determined by a tumor’s tissue of origin. The frequency of mutations in specific driver mutations varies
216 substantially between tumors of different tissues and likely reflects the importance of distinct signaling pathways
217 within distinct cellular contexts [48]. For example, BRAF(V600E) driver mutations vary substantially in frequency
218 across cancer types and drugs that target the BRAF(V600E) mutant product are less effective in colorectal cancers
219 than in skin cutaneous melanoma and non-small cell lung cancers with this mutation [49]. Further emphasizing the
220 importance of context beyond the tissue-level, considerable variation in terms of aggressiveness, drug sensitivity, and
221 genomic mutations, is also observed between tumors arising from the same cell type and tissue [50]. These hetero-
222 geneous genetic contexts likely hinder efforts to define tumor subgroups based on specific mutations with epistasis,
223 which involves the action of one gene on another, having been shown to affect treatment efficacy in acute myeloid
224 leukemia where NPM1 mutations confer a favorable prognosis only in the presence of a co-occurring IDH1 or IDH2
225 mutation [51].

226 Although genetic heterogeneity between tumors from the same tumor type is known to be widespread, it has long
227 been thought that heterogeneity at the phenotype level may not be so marked, with the same cellular pathways often
228 affected [52]. For example, dysregulation of the G1-S transition is observed in almost all cancers, and may occur
229 through multiple routes, both promoting proliferation and overriding cellular senescence [53]. However, in spite of
230 the evidence for functional convergence, it is challenging with current statistical methods to identify biomarkers that
231 define similar phenotypes on genetically diverse contexts in order to guide treatment.

232 Many promising expression-based biomarkers use the level of expression across gene pathways or multiple genes
233 rather than identifying specific somatic mutations [24]. Contextualized GRNs provide an intuitive way of identifying
23 both subpopulations with differential transcriptomic regulation and the pathway-level cohorts of genes that should
235 be studied as potential biomarkers, as well as the likely effect size of pathway dysregulation. Contextualized GRNs
23 further identify associated contextual signals with these subpopulations, providing new leads for traditional classes of
2;7  genomic biomarkers.

238 More broadly, contextualized modeling seeks to estimate context-specific models beyond context-specific sam-
230 pling constraints. By sharing information among samples while also allowing sample-specific variation, our frame-
240 work models complex and dynamic distributions despite physical and technical barriers that would typically prohibit
21 sample-specific inference. Context-dependent models models naturally account for non-identically distributed data
22 and provide a principled method for performing statistical inference on data that would traditionally be too small or
23 too heterogeneous. While it is generally believed that biological observations are a product of latent cellular states and
244 tumors exhibit extreme patient-to-patient heterogeneity, these ideas are orthogonal in traditional modeling regimes.
25 Contextualized GRNs are the first to effectively unite the two: networks are a useful latent representation, relating
26 biomarkers to pathology through systems of molecular interactions, and accounting for network heterogeneity allows
27 us to explore both population-level and per-patient tumor pathology in terms of latent representations of molecular
248 Systems.

« Materials and methods

=0 Contextualized Networks

21 We seek a context-specific density of network parameters P(6 | C') such that
P(X[C) = [ doPr(X|0)P(O] C)

252 is maximized, where Py (X | €) is the probability of gene expression X € RP under network model class M with
253 parameters 8 € RP*P and context C, which can contain both multivariate and real features. To overcome 6 being a
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25« high-dimensional, structured latent variable, we assume that all contextualized networks lie on a subspace spanned by
25 a set of K network archetypes A := span({Ay € RP*P : Ay, ..., Ak }), i.e. 0 € A. Further, the space spanned by A is
25 parameterized by a latent variable (“subtype”) Z € R¥ such that Z is a deterministic function of context Z = f(C)
257 and the context-specific network model § (and subsequently the gene expression observations X) are independent of
258 context given Z, i.e. C' 1 (X,0) | Z. In this way, we constrain 6 as a convex combination of network archetypes via
250 latent mixing.

P(X|C) = /9 ,d84ZBx (X [ 6)B(812)P(Z] C)

= faZdeZ]P’M(X 16)6(6 - i ZrAr)o(Z - f(C))
5 k=1
=Pu(X[9(Cs f,A))

K K
o(C; f,A) = > ZpAp =), f(C)rAs
k=1 k=1

20 Where the context encoder ¢(C'; f, A) is parameterized by a learnable context-to-subtype mapping f and the set of
261 archetypes A. This architecture is shown in Figure 1d, and is learned end-to-end with backpropagation. While the
22 archetypal networks Ay, could use prior knowledge for initialization or regularization, no prior knowledge is required.
263 In all experiments reported here, we do not use any prior knowledge of network structure or parameters.

264 This framework unites three different perspectives of GRNs: (1) Correlation networks, in which network edges
265 are the pairwise Pearson’s correlation between nodes, (2) Markov networks, in which edges are the pairwise precision
266 values representing conditional dependencies between nodes, and (3) Neighborhood regression networks, in which
27 edges represent directed linear relationships between nodes. The key challenge for each network class is to define a
268 differentiable loss function £ that is proportional to the negative log probability of our contextualized network model.

R N
f.A= ar%crﬁax > log (Par(Xnlo(Crs £, A)))
5 n=1

N
=argmin ) la (¢(Cy; f, A), Xy)
LA n=1

260 The loss objective can be used in the end-to-end optimization, solving for the context encoder and the network
270 archetypes simultaneously, and subsequently inferring the context-specific parameters 6. Below, we outline a uni-
2r1 fying linear parameterization of each network loss. Implementation details are discussed in Appendix S1.

2z Contextualized Neighborhood Regression

273 We first apply contextualization to the graph variable selection algorithm proposed by Meinhausen and Buhlmann
274 [54]. The direct relationship of this model to lasso regression links contextualized neighborhood regression to original
275 works on contextualized linear models [4 1], making it a convenient stepping stone toward the graphical models in the
7s  sequel. The model is a Gaussian graphical model where X ~ N(0,X) and X has sparse off-diagonal entries. The
277 algorithm, neighborhood regression, recovers edges between nodes with non-zero partial correlations by solving the
278 lasso regression for every feature X, given every other feature X_;, where regression maximizes P(X;|X_;) via the
279 loss

9; = argmin | X; - X,i6‘|\§ +A[0]1
0

20 resulting in edges with source X; for every j # ¢ and sink X; and strength 0;;, or no edge if ;; = 0. Equivalently, we
251 parameterize the neighborhood selection objective using the square matrix of network edge parameters 6 € RP*P.
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f = argmin | X - X0|% + A 65 )1 s.t. diag(6) = [0]
0 %

252 Where the contextualized neighborhood network objective replaces 6 for each sample with a context-specific 6,, =
23 ¢(Ch; f,.A). Finally, we define a function ¢’ to mask the diagonal of 6, presenting the loss function ¢y for contex-
28«  tualized neighborhood regression networks

Uvv(B(C: [, A), X) = |X - X' (C £ A3+ A 3 16/(C £, A)il
¢'(Ci f,A) = (1-T) ® ¢(C; f, A)

255 where ® is the hadamard product.

s Contextualized Markov Networks

257 Linear regression and Gaussian graphical models are intrinsically related, allowing us to extend work on contextualized
238 linear models to various graphical representations of the Gaussian graphical model. To estimate sample-specific
280 precision matrices representing the conditional dependency structure of an undirected graphical model or Markov
200 network, we assume the data is drawn from X ~ N(0,Q7!) where 2 = X! and estimate pairwise partial correlation
201 coefficients. Using an equivalence defined by Peng et al. [55], the partial correlation coefficient is defined by regression
292 asS

pis = Sign (B )/ Bis By = ——

WiiWjj

23 Where the precision matrix €2 has elements w;; and 3 is the ordinary least squares solution to multivariate linear
2 regression f; = argming | X; — X_;8]3. Critically, the precision matrix directly encodes conditional independence
205 between features in X, and thus precision encodes the Markov network.

Wij = 0 — Xi 1 Xj | X—{i,j}

26 Following [56], we assume constant diagonal precision w;; = w;; V1, j and therefore achieve proportionality between

207 the regression and the precision matrix.
wij o< —sign(Bi;)\/ Bij Bji

208 Assuming unit diagonal precisions w;; = 1, the proportionality becomes exact equivalence. Further, proportionality
20 induces symmetry in the regression, i.e. 8;; = 3;;. We encode this in the objective by requiring our estimate for 6 to
s0  be a symmetrically augmented matrix based on v, i.e. 5=~ +~7

7 = argmin | X - X (7 ++7)[% s.t. diag(y) = [0]
¥
a1 If € is sparse, we can apply lasso regularization to the multivariate regression objective [54]. Given the similarity

a2 between this differential Markov network objective and the neighborhood regression objective, we follow the exact
ss  contextualization procedure from above to contextualize -y and arrive at a loss function £, 5

Cun (D(C; £, A), X) = [ X = X(¢'(C; £, A) + ¢/ (C1 £ D) E+ AL 16/(C £ Al

a4 Where ¢’ is defined identically for masking the diagonal. The resulting precision matrix estimate is Q-= -(¢'(C; f, .Z) +
ws ¢ (C} 2 A\)T) In practice we do not threshold the estimated precision to non-zero values, instead using the exact pre-
a6 cision matrix to represent the Markov network, retaining information about dependency strength as well as dependency
a7 structure in the network.
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ws Contextualized Correlation Networks

as Correlation networks are simple to estimate and often state-of-the-art for gene regulatory network inference [27];
a0 contextualized correlation expand this utility to the granularity of sample-specific network inferences. To estimate
s sample-specific correlation networks, we assume the data was drawn from X ~ N(0,%) and use the well known
sz univariable regression view of Pearson’s marginal correlation coefficient:

Uij

2
Pij = = BijBji

0ii0jj
a3 where the covariance matrix X has elements o055, and §;; = argmin B(X j—XiB )2. This form converts correlation into
sis two separable univariate least-squares regressions that maximize the marginal conditional probabilities P(X;|X;) and

a5 P(X,]X;). Contextualizing this differentiable objective, we get the contextualized correlation network loss

ton(9(C; £, A),X) = |X - X @ ¢(C; f, A)|F

s where the context-specific correlation matrix is reconstructed as 5> = ¢(C; 7. A) ® ¢(C; 7. AT

s»  Baselines

asis  We compare contextualized modeling with several traditional approaches for context-controlled and context-agnostic
aie  inference, including population modeling, cluster modeling, and cohort modeling (Fig. 7). A population model as-
a0 sumes that the entire sample population is identically distributed. As a result, population modeling infers a single
321 model representing all observations. In reality, sample populations often contains two or more uniquely distributed
322 subpopulations. If we expect that there are several subpopulations with many observations each, and that these subpop-
223 ulations can be stratified by context, it may be appropriate to cluster the data by context to identify these subpopulations
22« and then infer a model for each context-clustered subpopulation. This assumes that all context features are equally
a5 important and therefore does not tolerate noise features well. Alternatively, when subpopulation groupings are known
a6 to be determined by a few important features, cohort modeling is more appropriate. Sample cohorts can be identified
a2z based on prior knowledge about important context features (e.g. disease type).

Population Context-clustered Disease-clustered  Contextualized
Baseline Baseline Baseline
Cg_l) X(11) ‘; X(ll) )
X3 € Xy 6, g 8, G X 61
¢ x® 5 x®
“oac I o 6(C)
i 6, § a,
x® x® 5 x®
623) X(13) 2 X(ls)
6; | § - 0; | €. Xa bn
® x® 5 x®

Figure 7: Modeling regimes for personalized inference.

14


https://doi.org/10.1101/2023.12.01.569658
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.01.569658; this version posted December 4, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

328 The baseline modeling regimes enjoy the benefits of traditional inference methods (i.e. identifiability, conver-
a0 gence) by relying on the assumption there are a discrete number of subpopulations underlying the observed data that
a0 are each defined by a latent model, and each of these subpopulations is well-sampled. This assumption is rarely, if
a1 ever, satisfied in a real-world setting. We develop contextualized modeling as a synthesis between traditional statis-
sz tical inference and modern deep learning to enable model-based analysis of heterogeneous real data. Contextualized
a3 modeling assumes a functional dependency between models, but unlike prior methods makes no assumption about the
s« form or complexity of this dependency. As such, contextualized models permit context-informed inference even when
a5 contexts are sparsely sampled and high dimensional.

xws Data

7 Our dataset is constructed from The Cancer Genome Atlas’ (TCGA) and related studies, covering 7997 samples
sss  from 7648 patients with 6397 samples for training and validation and 1600 as testing. For context, we use clinical
a0 information, biopsy composition, SCNAs and cancer-driving SNVs (Appendix S2). Gene expression data was log-
a0 transformed and compressed to a set of cancer driver genes, then transformed using PCA into 50 metagenes. Networks
a1 were learned on the metagene expression data.

s« Code availability

as  All methods are available in ContextualizedML, an open-source PyTorch library for contextualized modeling. Con-
as  textualized graphical models, as well as contextualized regressors can be estimated using an intuitive sklearn-style
a5 import-fit-predict workflow.

ss from contextualized.easy import ContextualizedCorrelationNetworks
a7 model = ContextualizedCorrelationNetworks ()

ug model.fit (C_train, X_train)

s err = model.measure_mses (C_test, X_test)

50 r = model.predict_correlation (C)

351 We provide demos and tutorials for network inference at ht tps://contextualized.ml. Our code for generat-
32 ing the figures in this manuscriptis availableat ht tps: //github.com/cnellington/CancerContextualized.

s Data availability

s« The TCGA data used is public and available for download via the Genomic Data Commons Data Portal. Data pro-
355 cessing is detailed in Appendix S2.

2www.cancer.qov/tcga
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515 Supplemental Information for:
si9  Contextualized Networks Reveal Heterogeneous Transcriptomic Regulation in Tumors at Sample-Specific Resolution

= S1 Implementation

set Our entire framework (Fig. 1) is implemented in PyTorch using the PyTorch Lightning framework within our open-
sz source software ContextualizedML. The context encoder, network archetypes, and contextualized network models are
523 learned simultaneously using end-to-end backpropagation of the network loss (defined in Methods).

s« Context Encoder & Training The context encoder is implemented as a multi-layer perceptron with 3 hidden layers,
525 each 100 neurons wide with ReLU activations. The context data views (S2.2) are concatenated sample-wise to create
s26  asingle context feature vector encompassing all views for each patient. We use a batch-size of 10 and our learning rate
s27 1 chosen automatically using PyTorch Lightning’s aut o—1r-find with an initial state of le-3. Model weights are
s2s  initialized as Uniform[-0.01, 0.01]. We split our dataset into 80% training-validation and 20% testing. We
s20  create 30 bootstraps of the training-validation set and finally split into 80% training and 20% validation, resulting in a
s0  64-16-20 split for train-validation-test where the train and validation sets are bootstrapped to evaluate model variance.
sst  We use early-stopping with a patience of 5 to end training when the minimum validation loss has not been improved
s for 5 epochs. We retain only the model with the minimum validation loss for each bootstrap. In Table 1, we evaluate
s33  these bootstraps individually to get error means and variances. Following this, we apply each of our bootstrapped
s« models to the non-bootstrapped training-validation set and average the outputs of each model to obtain a single graph
s for each patient in this set, which we evaluate in-depth in Figures 4, 5, and 6, and for all disease types in Appendix S4.
536 The context encoder is a highly flexible component of our framework and a driving force for future work. This
ss7  attribute can be used to enforce assumptions about the relationships between contexts and models, between context
s features, and about the archetype space. For instance, by using a neural additive model instead of a multi-layer
s perceptron, we provide context-feature-specific archetype weights for interpretability. Similarly, we can augment
s our context encoder with a convolutional base and include imaging modalities in our context views. At the context
s+t encoder head, we currently use an unconstrained output, but applying a softmax activation would require all of the
s sample-specific models to lie within a polytope defined by the archetypal networks.

« 92 Data

s S2.1  Data sources

sss  The Cancer Genome Atlas® (TCGA) is a publicly-available pan-cancer datasource containing genomic, transcriptomic,
s6  and clinical profiling of tumors from dozens of landmark studies. We queried TCGA for samples with bulk RNA-
se7  sequencing and merged this dataset with two follow-up studies on an overlapping set of patients.

s Somatic copy number alterations (SCNAs) SCNAs affect a larger fraction of the genome than do any other type
s¢9  of somatic genetic alteration [57] and are a major driver of expression variation in cancer [58]. We used copy number
ss0  profiles derived from TCGA samples using ASCAT [59] from a pan-cancer study of the role of allele-specific SCNAs
551 in cancer [00].

ss2 Driver single-nucleotide mutations (SNVs) SNVs can be classified into "driver" mutations thought to provide
553 selective growth advantage and "passenger” mutations thought to have little role in promoting cancer development.
55« We incorporated driver SN'Vs from the TCGA-derived CHASMplus dataset [61]

3
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s 92.2  Context data views

ss6  Clinical information This data view incorporates sample tissue-of-origin, race, age at diagnosis, gender, year of
ss7  birth, and days to collection provided by TCGA.

sss  Biopsy Composition This data view contains the sample’s percent tumor cells, percent normal cells, percent tumor
sse  nuclei, percent monocyte infiltration, percent lymphocyte infiltration, and percent neutrophil infiltration provided by
so0o  TCGA. We also incorporate expression-derived estimates of the fraction of a sample consisting of tumor cells from

se1  [00].

ss2 Copy Number Alterations From ASCAT [59], we gather whole genome doubling events as well as gain and loss
se3  events for bp-specific regions of hg19 based on data from [62]. We transform these gain and loss events into both arm-
se¢ level and gene-level events, where arm-level events affect 85% of an entire arm in the same event, while genes-level
ses  events affect a single gene. We transform these into number of major and number of minor chromosome arms, and
ses the number of major and minor alleles for the set of 295 genes that overlap between COSMIC [63] and MSigDB [64].
ss7  For both gene and arm-level events, we create a separate indicator for loss of heterozygosity on each gene.

sss  Driver Mutations From CHASMplus [61] we gather the mutations on all COSMIC [63] oncogenes/tumor suppresor
se9  genes and binarize the presence or absence of a mutation in each gene.

so 92.3 Transcriptomic data views

s7 Transcriptomics We take the set of known oncogenes/tumor suppressor genes annotated in COSMIC [63] and
sz included in TCGA gene expression panels. We then calculate the variance of each gene in each tumor type and take a
sz weighted sum of these variances according to the total number of samples in each tumor type. We select the top 100
s+ genes by this metric of “intra-disease variance”.

55 Baselines We are not aware of any other scalable meta-learning, deep learning, or varying-coefficient methods to
s produce context-informed correlation, Markov, and Bayesian networks under a universal framework. As such, our
s77 baselines apply the network estimators in S1 under several well-known and general paradigms for improving model
s personalization, broadly relating to cluster analysis. Our population baseline provides no personalization, learning a
s single model for the entire population of training samples. Our context-clustered baseline takes an unsupervised ap-
ss0 proach to personalization by first doing a k-means clustering with k=25 on the aggregated context views (S2) and then
ss1  inferring cluster-specific networks. Our disease-clustered baseline uses a personalization oracle, grouping samples by
ss2  tumor type and then inferring disease-specific networks.

s 93 Related work

ss¢  State-of-the-art gene regulatory network estimators are limited to population, cohort, and cluster-based approaches
sss [26, 65, 66]. Other proposals to estimate networks as the difference between a population model and a sample-left-
ss6  out model lack statistical power [30]. Kolar et. al achieve sample-specific network estimation without sacrificing
se7  statistical power by using an approach similar to classic varying-coefficient models that weighs samples by their
sss  distance over context [67]. However, this approach inherently assumes smoothness of the parameters over a context,
ss9  which does not align with our understanding of the non-linear, switch-like changes in biological systems that lead
s to disease. Contextual estimation networks (CENs) remove this smoothness assumption by inferring the relationship
s between context and model parameters with a neural network, but the CEN framework is only proposed as an adaptive
se2 learning approach for linear models [41]. Context-varying linear models have previously been applied to multi-omic
ses  cancer data, where context-varying coefficients inform how epigenetic markers have patient-specific effects on clinical
se¢ outcomes [42]. Linear models do not inform us of the differential gene-gene interactions that explain changes in
ses cellular behavior. To understand regulatory and metabolic variation at per-sample resolution, we require network
s models with context-varying structures and parameters.
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= 94 Extra Results
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Disease Type TCGA Subtypes Expression Subtypes Network Subtypes

BLCA 0411 0.151 0.713
BRCA 1.484 0.616 1.558
CHOL - - -
COAD 0.016 0.014 1.219
DLBC - - -
ESCA 0.044 0.884 0.049
GBM 1.644 0.958 0.101
HNSC 1.209 0.312 3.465
KICH 0.715 13.802 0.211
KIRC 5.042 6.109 13.741
KIRP 14.538 10.582 15.205
LGG 48.338 33.438 49.681
LIHC 0.009 0.427 0.827
LUAD 0.687 1.172 0.507
LUSC 0.123 0.105 0.249
ov 0.704 0.684 0.05
PAAD 0.439 1.104 1.494
PRAD - - -
READ 0.221 0.203 0.117
SKCM - - -
STAD 0.044 1.117 0.575
THCA 0.298 0.164 2.104
UCEC 6.937 3.343 7.07
UcCs 0.319 0.023 0.048
UVM 4.838 2.589 3.565

Table S1: Multivariate log-rank test comparison across different subtyping methods in terms of -log(p-value). Only
samples shared between all datasets are used. — indicates no samples are shared, or subtypes do not exist for TCGA.
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Disease Type TCGA Subtypes Expression Subtypes Network Subtypes
BLCA 1.059 0.589 0.949
BRCA 2.056 1.13 2.542
CHOL - - -
COAD 0.162 0.159 2.026
DLBC - - -
ESCA 0.323 1.598 0.284
GBM 1.631 1.509 0.63
HNSC 1.855 0.853 3.307
KICH 0.715 13.802 0.211
KIRC 5.61 5.247 14.82
KIRP 19.696 9.241 18.661
LGG 36.533 25.894 40.656
LIHC 0.105 0.619 1.263
LUAD 1.67 2.29 1.198
LUSC 0.614 0.417 0.625
ov 1.414 1.325 0.287
PAAD 0.937 1.465 2.18
PRAD - - -
READ 0.431 0.723 0.474
SKCM - - -
STAD 0.469 1.7717 1.428
THCA 0.837 0.831 3.242
UCEC 5.555 3.319 7.42
UcCs 0.319 0.023 0.048
UVM 5.076 2.61 4.536

Table S2: Minimum pairwise log-rank test comparison across different subtyping methods in terms of -log(p-value).
Only samples shared between all datasets are used. — indicates no samples are shared, or subtypes do not exist for

TCGA.
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Figure S1: Exploration of network subtypes for Bladder Urothelial Carcinoma (BLCA), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S2: Exploration of network subtypes for Breast invasive carcinoma (BRCA), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S3: Exploration of network subtypes for Cholangiocarcinoma (CHOL), looking at correlated clinical informa-
tion, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S4: Exploration of network subtypes for Colon adenocarcinoma (COAD), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S5: Exploration of network subtypes for Esophageal carcinoma (ESCA), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S6: Exploration of network subtypes for Glioblastoma multiforme (GBM), looking at correlated clinical infor-
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Figure S7: Exploration of network subtypes for Head and Neck squamous cell carcinoma (HNSC), looking at cor-
related clinical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide

variations.
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Figure S8: Exploration of network subtypes for Kidney Chromophobe (KICH), looking at correlated clinical informa-
tion, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S9: Exploration of network subtypes for Kidney renal clear cell carcinoma (KIRC), looking at correlated clin-
ical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S10: Exploration of network subtypes for Kidney renal papillary cell carcinoma (KIRP), looking at correlated
clinical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide varia-

tions.
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Figure S11: Exploration of network subtypes for Liver hepatocellular carcinoma (LIHC), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S12: Exploration of network subtypes for Brain Lower Grade Glioma (LGG), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S13: Exploration of network subtypes for Lung adenocarcinoma (LUAD), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S14: Exploration of network subtypes for Lung squamous cell carcinoma (LUSC), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S15: Exploration of network subtypes for Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC),
looking at correlated clinical information, arm-level copy alterations, gene-level copy alterations, and gene-level single
nucleotide variations.
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Figure S16: Exploration of network subtypes for Ovarian serous cystadenocarcinoma (OV), looking at correlated clin-
ical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S17: Exploration of network subtypes for Pancreatic adenocarcinoma (PAAD), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S18: Exploration of network subtypes for Prostate adenocarcinoma (PRAD), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S19: Exploration of network subtypes for Rectum adenocarcinoma (READ), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S20: Exploration of network subtypes for Skin Cutaneous Melanoma (SKCM), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S21: Exploration of network subtypes for Stomach adenocarcinoma (STAD), looking at correlated clinical
information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S22: Exploration of network subtypes for Thyroid carcinoma (THCA), looking at correlated clinical informa-
tion, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S23: Exploration of network subtypes for Uterine Carcinosarcoma (UCS), looking at correlated clinical infor-
mation, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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Figure S24: Exploration of network subtypes for Uterine Corpus Endometrial Carcinoma (UCEC), looking at cor-
related clinical information, arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide
variations.
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Figure S25: Exploration of network subtypes for Uveal Melanoma (UVM), looking at correlated clinical information,
arm-level copy alterations, gene-level copy alterations, and gene-level single nucleotide variations.
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