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The biotechnological exploitation of microor-

ganisms enables the use of metabolism for

the production of economically valuable sub-

stances, such as drugs or food. It is, thus, un-

surprising that the investigation of microbial

metabolism and its regulation has been an ac-

tive research field for many decades. As a re-

sult, several theories and techniques were de-

veloped that allow the prediction of metabolic

fluxes and yields as biotechnologically rele-

vant output parameters. One important ap-

proach is to derive macrochemical equations

that describe the overall metabolic conversion

of an organism and basically treat microbial

metabolism as a black box. The opposite ap-

proach is to include all known metabolic re-

actions of an organism to assemble a genome-

scale metabolic model. Interestingly, both ap-

proaches are rather successful to characterise

and predict the expected product yield. Over

the years, especially macrochemical equations

have been extensively characterised in terms

of their thermodynamic properties. How-

ever, a common challenge when characteris-

ing microbial metabolism by a single equation

is to split this equation into two, describing

the two modes of metabolism, anabolism and

catabolism. Here, we present strategies to sys-

tematically identify separate equations for an-

abolism and catabolism. Based on metabolic

models, we systematically identify all theoret-

ically possible catabolic routes and determine

their thermodynamic efficiency. We then show

how anabolic routes can be derived, and use

these to approximate biomass yield. Finally,

we challenge the view of metabolism as a lin-

ear energy converter, in which the free energy

gradient of catabolism drives the anabolic re-

actions.
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Introduction1

Microbial organisms are an essential part of most2

ecosystems. They function as vital members of nat-3

ural production chains leading to the formation of4

chemical compounds that have complexity unreach-5

able by current technological standards [29]. Not sur-6

prising, therefore, that much scientific effort has been7

spent to understand the metabolism of microbes nec-8

essary for the chemical interconversion of substances9

[34]. Today, the human exploitation of microbial10

metabolism has long left the stage of merely pro-11

ducing fermented products. Microbes, often viewed12

as natural factories, are used in biotechnological ap-13

plications as an integrated component of drug and14

food fabrication or bioremediation projects [51, 41, 7].15

However, the value of a microbial organism for eco-16

nomical usage depends on two main factors, metabolic17

capabilities, and thermodynamic constraints imposed18

on the microbial metabolism.19

Gaining full knowledge about microbial metabolism20

was and is a complex scientific problem. In the21

pre-genomic era, researchers used precise measure-22

ments of input (substrate) and output (product) re-23

lationships for microbial cultures and a deep under-24

standing of thermodynamics to design new biotech-25

nological strategies, based on so-called macrochemi-26

cal equations [32, 12, 13, 49, 34, 54]. A macrochemi-27

cal equation summarizes the conversion of substrates28

into metabolic products and biomass. Describing mi-29

crobial metabolism by a single macrochemical equa-30

tion essentially treats microbial metabolism as a black31

box, ignoring all intracellular metabolic details. Still,32

this single chemical equation can accurately describe33

the overall metabolic activity and thus can serve to34

understand and predict biotechnologically important35

metabolic properties (see e.g. [12]).36

Figure 1. The view of microbial metabolism as a thermodynamic energy con-

verter. Catabolic reactions have a large negative free energy gradient, driving

anabolic reactions.

The macrochemical equation can be understood as37

a sum of two separate reactions which describe38
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catabolism (the breakdown of nutrients to gain free39

energy in the form of ATP) and anabolism (the for-40

mation of new biomass from the nutrients) [46]. In41

this picture, microbial growth is described as a ther-42

modynamic energy converter, where the catabolic re-43

actions provide the required free energy to drive an-44

abolism (see Fig. 1). Here, the negative free ener-45

gies of reaction of the catabolic and anabolic half-46

reactions, denoted by −∆catG and −∆anaG, respec-47

tively, are generalised thermodynamic forces, and the48

respective reaction rates, Jcat and Jana, are gener-49

alised thermodynamic fluxes. The relation between50

these generalised forces and fluxes is often assumed51

to be linear [40, 54, 50, 47], following Onsager’s the-52

ory [25] for non-equilibrium thermodynamics. On-53

sager has shown that the linearity holds in general54

for systems close to equilibrium. Despite the attrac-55

tiveness of the linear converter theory, it is not fully56

clear, to what extent this approximation is actually57

adequate for microbial growth. Regardless of these58

uncertainties, this simplified view of microbial growth59

as two coupled processes is insightful and allows es-60

timating some principle thermodynamic limitations,61

such as maximally possible yields.62

Describing macrochemical, catabolic and anabolic63

equations experimentally requires a precise measure-64

ments of all chemical substances that are consumed65

and produced by the growing microbes. These mea-66

surements are possible in controlled chemostat cul-67

tures, in which microbes grow on a defined growth68

medium. However, many mircobes cannot easily69

be cultured in chemically defined media, which pre-70

vents an experimental determination of macrochemi-71

cal growth equations. However, with the recent sci-72

entific advancement in genome sequencing, genomic73

data became available for a huge number of or-74

ganisms, including those which are difficult to cul-75

ture [22]. This information greatly facilitates build-76

ing a stoichiometric (or structural) metabolic models,77

manually or semi-automatically [11, 18, 20, 35]. With78

a structural model, metabolic capabilities can be sys-79

tematically assessed and optimal flux distributions80

optimizing some objective function (such as biomass81

production) can be easily calculated [27]. Thus, such82

models can support strategies to improve the prod-83

uct yield in biotechnological applications. Elemen-84

tary flux modes (EFM) are a systematic way to quan-85

tify the metabolic capabilities of an organism [36].86

EFMs describe all possible pathways between sub-87

strate and products. However, due to combinato-88

rial explosion [17], it is still challenging to calculate89

all EFMs for larger structural metabolic models, also90

with modern computational facilities. To overcome91

this, and because for many investigations only the92

conversion between substrate and product is relevant,93

elementary conversion modes (ECM) were introduced94

by Urbanczik and Wagner [44]. ECMs ignore all in-95

tracellular processes and only focus on the results of96

metabolic pathways. ECMs describe a minimal set of97

pathways that generates all steady-state substrate-to-98

product conversions [6]. Using ECMs instead of EFMs99

reduces the necessary computational power drasti-100

cally. Additionally, modern software, such as ecmtool101

that allows parallelization of the computation, helps102

to obtain an exhaustive list of all metabolic capabili-103

ties of an organism in the form of ECMs [5].104

As suggested in [6], we view ECMs as building blocks105

of macrochemical equations. We show how genome-106

scale metabolic models can be used to systemati-107

cally enumerate all possible catabolic pathways. With108

thermodynamic data, in particular energies of for-109

mation of substrates and products obtained from110

the eQuilibrator tool [2, 24], we characterise the111

catabolic pathways by their energy gradient. Using112

the network models, we further estimate the maximal113

ATP production capacity for each catabolic pathway,114

and thus determine their thermodynamic efficiencies.115

We then analyze experimental data for Saccharomyces116

cerevisiae [31] and Escherichia coli [15], grown un-117

der controlled chemostat conditions in defined me-118

dia, to separate the macrochemical equation into the119

catabolic and anabolic parts and characterise their120

thermodynamic properties. Interpreting our findings121

in the context of the energy converter model, we iden-122

tify the limitations of the applicability of the lin-123

ear converter model, but observe an interesting lin-124

ear scaling law between growth rate and metabolic125

power.126

Results127

Calculating elementary conversion modes to char-128

acterise catabolic pathways129

Genome-scale metabolic models are a formalisation130

of all known biochemical reactions of an organism.131

As such, they combine genomic, proteomic, and132

metabolic information to build an in silico representa-133

tion that can be used to derive steady-state flux dis-134

tributions. The inspection and analysis of genome-135

scale metabolic models benefit from a rich theory136

for metabolic networks (see e.g. [37, 28, 43, 27, 16]).137

Here we use elementary conversion modes (ECMs,138

see [6, 5]) to assess the metabolic capabilities of sev-139

eral genome-scale metabolic networks. To illustrate140

our approach, we begin our analysis with the E. coli141

core network [26], an E. coli core metabolism model142

of reduced complexity, with only 72 metabolites con-143

nected by 95 reactions, of which 20 are exchange re-144

actions. To systematically describe all theoretically145

possible catabolic routes, we used ecmtool [5] to cal-146

culate all ECMs which do not produce biomass. The147

resulting ECMs describe all possible routes and their148

stoichiometries by which external substances can be149

interconverted.150

We then calculated for each individual ECM the151
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Figure 2. Standard Gibbs free energies of all catabolic pathways, normalised to carbon mole. The catabolic pathways were derived using elementary conversion

modes (ECMs) calculated from the E. coli core network. Red symbolises ECMs that use oxygen, while blue denotes ECMs not using oxygen. Filled bars belong to

ECMs that include no compounds with the element nitrogen while empty ones include nitrogen containing metabolites. The black crosses indicate the maximal yield

of ATP per carbon mole nutrient for each ECM (right axis).

standard Gibbs free energy of reaction, based152

on the standard energies of formation estimated153

by eQuilibrator [2]. The standard energies of154

catabolism ∆catG
0, normalised to one carbon mole155

of consumed substrate, are displayed in Fig. 2. Most156

of the catabolic pathways have relatively low energy157

gradients between approximately 20 and 50 kJ/C-158

mol. To this large group of pathways belong key159

catabolic routes, such as the fermentation of glucose160

to lactate or ethanol. Few catabolic routes exhibit161

Gibbs free energies of reactions with a higher energy162

gradient than 50 kJ/C-mol (around 17 ECMs). The163

pathways with the largest absolute Gibbs free energy164

of reaction are the combustion of glucose (∆catG
0 ≈165

−488 kJ C-mol−1), and the production of formate166

from glucose (∆catG
0 ≈ −325 kJ C-mol−1). In partic-167

ular, oxygen-using ECMs belong to the group with the168

largest absolute ∆catG
0 (compare red bars in Fig. 2).169

As shown in Fig. 2, usage of nitrogen does not appear170

to be an indicator of whether the respective ECM has171

a high or low energy gradient.172

For each catabolic route, we use the metabolic model173

to calculate the maximal ATP yield. For this, the ex-174

change reactions were constrained to the stoichiome-175

tries of the respective ECM, and subsequently the flux176

through ATP hydrolysis was maximized (see Meth-177

ods). The resulting maximal ATP yields per carbon178

mole substrate are indicated by black crosses in Fig. 2.179

While as a tendency high energy gradient pathways180

also allow for a higher ATP yield, there are a consid-181

erable number of ECMs with very low ATP yield (34182

ECMs exhibit a maximal ATP yield of less than 0.1183

mol ATP per C-mol).184

Thermodynamic efficiency of catabolic185

routes186

To investigate whether these general patterns are also187

conserved in more complete and therefore realistic188

genome-scale models, we repeated our analysis for the189

iJR904 metabolic network model [30] of E. coli as190

well as for the iND750 metabolic network model [9]191

of the yeast S. cerevisiae. Fig. 3 illustrates the results192

for S. cerevisiae, obtained with the iND750 model.193

We identified all ECMs using one of the four carbon194

sources glucose, xylose, ³-ketoglutarate and pyruvate.195

Also here, most ECMs yield a low energy gradient,196

while those with the highest gradient correspond to197

the full oxidation of glucose and xylose. Full respira-198

tion for both sugars releases around 488 kJ C-mol−1
199

and are, thus, the ECMs with the highest free energy200

gradient. These two pathways also display the high-201

est ATP yield per carbon mole (approx. 2.92 mol/C-202

mol) as indicated in Fig. 3, left panel. In contrast to203

this, most other catabolic routes release energy in a204

range between 40 and 200 kJ C-mol−1 with low ATP205

production. Among these routes are, besides other206

metabolic modes, fermentation reactions, such as the207

metabolisation of glucose to lactate or ethanol.208

The thermodynamic efficiency ¸ of a thermodynamic209

engine is defined as the fraction of work generated per210

input energy provided to power the system. Defining211

the free energy used to drive ATP synthesis as the use-212

ful chemical work, we calculate the thermodynamic213

efficiency as214
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Figure 3. Thermodynamic characterisation of catabolic routes in S. cerevisiae genome-scale model (iND750) for α-ketoglutarate, glucose, xylose, and pyruvate as

carbon source. Additionally, oxygen is allowed to be a substrate in the calculation of the elementary conversion modes. The efficiency is based on a typical value of

46.5 kJ/mol for production of ATP in E. coli [42].

¸ =
cATP ·∆rGATPase

|∆catG|
, (1)

where cATP is the maximal ATP yield per carbon mol,215

∆rGATPase the energy of reaction for ATP synthesis216

from ADP and inorganic phosphate, and ∆catG the217

energy of reaction of the respective catabolic path-218

way. We assume the typical value of ∆rGATPase =219

46.5 kJ mol−1 [42]. Further, we approximate the220

Gibbs free energy of catabolism by the correspond-221

ing standard Gibbs free energy of reaction, because222

changes in substrate and product concentrations in223

the medium are likely to have only a minor effect on224

the quantity. The determined efficiencies ¸ are de-225

picted in the right panel of Fig. 3. Interestingly, the226

pathways with the highest energy gradient are not227

the most efficient. For instance, under full respira-228

tion of glucose, only 28% of the released free energy is229

converted to chemical work producing ATP. In con-230

trast, fermentation of glucose to lactate exhibits an231

efficiency of 43%. The fermentation of glucose to lac-232

tate is one of the most efficient reactions, with higher233

efficiencies only found in fermentation processes in-234

volving ethanol production.235

Deriving anabolic information from a metabolic net-236

work237

Likewise, also anabolic pathways can be investigated238

in separation by employing genome-scale metabolic239

models. The theoretical limit how much carbon in the240

nutrient can be converted to biomass carbon is given241

by the degree of reduction. If biomass is more reduced242

than substrate, a fraction of the substrate carbons243

need to be oxidised in order to ensure the overall redox244

balance. Specifically, if µS and µX are the degrees of245

reduction of substrate and biomass, respectively, then246

the theoretical maximal yield is given by [32]247

Y max
X/S =

{ γS

γX
for µS ≤ µX

1 else
. (2)

Based on the elemental composition of the biomass248

and the substrate, an ideal anabolic reaction stoi-249

chiometry can be determined. Assuming a substrate250

with a sum formula [S] = CHxOy (normalised to C-251

mol) and biomass with [X] = CHaObNc, µS = 4+x−252

2y and µX = 4+a−2b−3c (assuming ammonia as ni-253

trogen source, see [32]). If µS ≤ µX the stoichiometry254

reads255

1

Y max
X/S

[S]+ bNH3 −−→ [X]+

(

1+
1

Y max
X/S

)

CO2 + b4 H2O,

(3)

with b4 = (x/Y max
X/S +3b−a)/2 (see Methods).256

This equation allows for the calculation of the stan-257

dard energy of reaction of anabolism, ∆anaG0. To es-258

timate the Gibbs free energy of formation of biomass,259

which is required to determine the energy of reaction,260

we employ the empirical method proposed by Batt-261

ley [1].262

Constraint-based models can be employed to inves-263

tigate to what extent such an ideal anabolic reaction264

can be realised by a microorganism’s metabolism. We265

employ the genome-scale networks for S. cerevisiae266

and E. coli and minimise the nutrient uptake for267

a fixed biomass production, while allowing ATP to268

be provided externally (see Methods). A subsequent269

optimisation, in which the minimal nutrient uptake270

is fixed and the required reverse ATP hydrolysis is271

minimised, allows determining the minimal ATP re-272

quirement per carbon mole biomass formed. For the273

iJR904 model of E. coli metabolism, we obtain the274

following optimal anabolic stoichiometry for growth275

on glucose,276
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1.0530[S]+0.0046O2 +0.2577NH4
+ +0.0220HPO4

2− +0.0056SO4
2−

−−á¾−− 1[X]eco +0.0530CO2 +0.5635H2O+0.2205H+,

(4)

where [S] denotes 1 C-mol of substrate (1
6
C6H12O6)277

and [X]eco 1 C-mol of E. coli biomass, with the sum278

formula determined by the biomass reaction of the279

iJR904 model280

[X]eco = CH1.811O0.503N0.258P0.022S0.018−

0.006 , (5)

and a degree of reduction and energy of formation281

of282

µX,eco = 4.193, ∆fG
0
X,eco = −101.10 kJ C-mol−1.

(6)

The calculated maximal yield of Y max
X/S = 1

1.053
=283

95.0% is slightly lower than expected by Eq. (2). This284

is explained by the fact that also small amounts of285

oxygen are required for the pure anabolic biomass286

formation. In iJR904 this is caused by a minimal287

required flux through a cytochrome oxidase which re-288

quires molecular oxygen as substrate.289

A subsequent optimisation reveals a minimal require-290

ment of 1.766 mol ATP per carbon biomass pro-291

duced.292

For the iND750 metabolic model of S. cerevisiae, we293

obtain294

1.0718[S]+0.0518O2 +0.1557NH4
+ +0.0055HPO4

2− +0.0022SO4
2−

−−á¾−− 1[X]sce +0.0718CO2 +0.4035H2O+0.1404H+,

(7)

with295

[X]sce = CH1.8243O0.6589N0.1557P0.0055S0.0022 (8)

and a degree of reduction and energy of formation296

of297

µX,sce = 4.080, ∆fG
0
X,sce = −128.76 kJ C-mol−1.

(9)

Here, the descrepancy between the computationally298

determined maximal yield of Y max
X/S = 1

1.0718
= 93.3%299

and the 98.0% expected from Eq. (2) is even larger.300

The minimal requirement of ATP to produce biomass301

is predicted to be slightly larger than for E. coli with302

2.031 mol ATP per C-mol biomass.303

We repeated the calculations for different carbon304

sources. The results are summarized in Table 1. In305

general, the expected trend can be observed that the306

more oxidised carbon sources result in lower maximal307

yields. Moreover, the maximal yields predicted by308

the model are usually very close to the maximal yield309

predicted by the degree of reduction alone. Only for310

S. cerevisiae growing on oxoglutarate, yields predicted311

by the model are considerably lower. The reason for312

this is that the network defined by the iND750 model313

is not capable of producing biomass from oxoglutarate314

without metabolic side products. The optimal so-315

lution produces 0.073 mol xanthine (C5H4N4O2) per316

C-mol biomass. This leads to a reduced carbon (and317

in fact, nitrogen) yield, but a larger free energy gra-318

dient.319

Separating catabolism from anabolism based on320

chemostat data321

In a controlled continuous microbial cultivation sys-322

tem, such as a chemostat [21, 14], it is possible to grow323

microbial cultures at a steady state with pre-defined324

growth rates. Measuring nutrient and gas exchange325

rates as well as nutrient and product concentrations in326

the reactor allows experimental determination of the327

overall growth stoichiometries [12, 13, 48, 49].328

In the following we employ experimentally determined329

macrochemical equations for growth of S. cerevisiae330

[31] and E. coli [15] in chemostats at different dilution331

rates to calculate catabolic stoichiometries, ATP pro-332

duction potential, and thermodynamic efficiencies for333

each condition. The catabolic stoichiometry is calcu-334

lated by first identifying the ideal anabolic stoichiom-335

etry based on the degrees of reduction of substrate336

and biomass, and then subtracting this anabolic sto-337

ichiometry from the macrochemical equation (for de-338

tails, see Methods).339

The determined catabolic coefficients are summarised340

in Fig. 4. It can clearly be seen that the onset of over-341

flow metabolism, when glucose is partly fermented342

even in the presence of sufficient oxygen, occurs at343

growth rates of around 0.3 h−1 for S. cerevisiae and344

around 0.4 h−1 for E. coli. With the catabolic co-345

efficients, we calculate the standard Gibbs free en-346

ergy of reaction of the overall catabolic conversion,347

where we obtained the standard Gibbs free energies348

of formation, required for this calculation, from the349

equilibrator tool [2]. It can be observed (blue lines350

in Fig. 4) that with the onset of overflow metabolism,351

also the Gibbs free energy gradients are reduced sig-352

nificantly.353
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Table 1. Thermodynamic properties of anabolic pathways. The theoretical maximal yield Y max
X/S is calculated according to Eq. (2). The maximal yield Y max,model

X/S

predicted by the metabolic model was determined using the linear program (22). The minimal anabolic ATP requirement per carbon mole biomass, aATP,min was

determined using the linear program (23). The standard energies of reaction for anabolism, ∆anaG0, were determined from overall anabolic stoichiometries like given

for glucose in Eqs. (4) and (7).

Organism Carbon source Y
max

X/S Y
max,model

X/S
aATP,min (C-mol C-mol−1) ∆anaG

0 (kJ C-mol−1)

E. coli glucose 0.954 0.950 1.766 -54.81
xylose 0.954 0.950 1.813 -56.74

oxoglutarate 0.763 0.730 2.051 -44.28
pyruvate 0.795 0.791 2.268 -32.44

S. cerevisiae glucose 0.980 0.933 2.031 -74.51
xylose 0.980 0.933 2.245 -77.85

oxoglutarate 0.784 0.457 1.453 -279.33
pyruvate 0.817 0.815 2.684 -29.62

Figure 4. The catabolic stoichiometric coefficients and thermodynamic driving

forces determined for chemostat growth of E. coli [31] and S. cerevisiae [15] at

different dilution rates. All coefficients are given in mol/C-mol substrate, except

for ethanol and acetate, which are given in C-mol/C-mol substrate. For E. coli,

CO2 production is identical to O2 consumption. The thermodynamic driving

force is given as standard energy of reaction of the overall catabolic conversion,

normalised to one carbon mole of substrate.

Is the linear energy converter a good model for mi-354

crobial growth?355

In the original publication that we draw our data from356

for E. coli [15], also higher dilution rates were in-357

vestigated. For these, however, the carbon recovery358

rates were significantly below 90%, indicating that not359

all metabolic products were measured. The incom-360

plete carbon recovery prevents a reliable calculation of361

catabolic stoichiometries. We therefore omitted these362

data, and will in the following focus on the energetic363

analysis of the metabolism of S. cerevisiae.364

Microbial growth is often thermodynamically inter-365

preted in the context of a linear energy converter366

model [50, 47], which assumes that the anabolic and367

catabolic fluxes linearly depend on the catabolic and368

anabolic forces, i. e. that369

(

Jcat

Jana

)

= L ·

(

−∆catG
−∆anaG

)

, (10)

where the anabolic flux equals the growth rate, which370

in turn is set by the dilution rate of the chemostat,371

Jana = D. In this model, the matrix L is the On-372

sager matrix of the phenomenolocigal coefficients [25].373

Figure 5. Metabolic fluxes as function of the catabolic driving force. Shown are

the catabolic (blue), anabolic (red) and total (green) glucose consumption rates

in dependence of the catabolic driving force, −∆catG
0. On the x-axis on the

top, the force ratio x = ∆catG
0/∆anaG0 is given.

Considering the large energy gradients, we approx-374

imate the actual Gibbs free energies by the stan-375

dard energies. Moreover, we assume that the an-376

abolic Gibbs free energy, ∆anaG is approximately con-377

stant over different dilution rates, because the sto-378

ichiometry of anabolism remains constant, accord-379

ing to Eq. (18). Based on the experimentally de-380

termined biomass composition of S. cerevisiae [31]381

(CH1.79O0.57N0.15), we calculate the standard energy382

of formation of biomass with the empirical method of383

Battley [1] to384

∆fG
0
X = −104.9 kJ C-mol−1, (11)

and with that the anabolic energy of reaction385

to386

∆anaG0 = −42.2 kJ C-mol−1. (12)

With this full knowledge of catabolic and anabolic387

fluxes and forces, we can challenge the linear con-388

verter model. In Fig. 5 (Fig. S2 for E. coli) vari-389

ous fluxes (catabolic glucose consumption, anabolic390
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(growth) rate, total glucose consumption) are dis-391

played as a function over the catabolic driving force392

or, alternatively (x-axis on top), the force ratio393

x = ∆catG/∆anaG. It can clearly be observed that394

the fluxes do not linearly depend on the forces, as395

would be predicted by the linear converter model.396

On the contrary, fluxes are larger for smaller forces.397

This stark discrepancy from a linear converter model398

can readily be explained by considering that over-399

flow metabolism results from active regulatory pro-400

cesses inside the cells. Often, overflow metabolism401

is explained by capacity constraints within the cell:402

whereas respiration results in a considerably higher403

yield, it also requires higher protein investment than404

fermentation, and therefore, at very high growth405

rates, it is more efficient to ’waste’ substrate and op-406

erate a lower yield pathway (see e. g. [8, 23, 34]). This407

entails that there exist feedback regulation mecha-408

nisms, which are highly non-linear. It can be con-409

cluded that a linear energy converter model is too410

simplistic and is not in agreement with experimental411

data, at least over conditions in which the catabolic412

pathways change. The reason for this is to be sought413

in non-linear feedback mechanisms by which cells414

adapt their metabolism to external conditions.415

Similar to the calculation of maximal ATP yields of416

the different catabolic pathways, we determined the417

maximal ATP yield for the observed catabolic sto-418

ichiometries by constraining the genome-scale net-419

works to the observerd catabolic stoichiometries. The420

red circles in Fig. 3 present the result of this calcu-421

lation (left panel) and the respective thermodynamic422

efficiencies (right panel). Interestingly, the ATP yields423

as well as the efficiencies are higher than for elemen-424

tary conversion modes with similar energy gradients.425

This can be explained by considering that the ex-426

perimentally observed catabolic stoichiometries are427

a linear combination of two conversion modes (full428

respiration and fermentation) only, and that espe-429

cially the fermentation pathways were identified to430

have the highest thermodynamic efficiency (see Figs. 2431

and 3).432

With the usual definition of the power as the prod-433

uct of flux and force, we can quantify the catabolic434

and anabolic powers Pcat = −Jcat ·∆catG and Pana =435

−D ·∆anaG, as well as the power of ATP production436

PATP = cATP ·Jcat ·∆rGATPase in kJ C-mol−1. Fig. 6437

shows that the powers increase approximately linearly438

with growth rate, despite the fact that metabolism439

changes considerably for fast growth rates. Moreover,440

E. coli and S. cerevisiae behave rather similarly. For441

large growth rates, the powers of E. coli appear to be442

somewhat lower, but this could be a result from in-443

complete carbon recovery in the experiments, because444

besides acetate no other fermentation products were445

measured. This could lead to an underestimation of446

the Gibbs free energy gradients and consequently of447

Figure 6. Catabolic and anabolic powers, as well as power of ATP synthesis as

a function of growth rate. Catabolic power is depicted in blue, anabolic power in

red, and ATP synthase power in black. Circles present results for S. cerevisiae,

crosses for E. coli.

the ATP yields.448

Discussion & Conclusion449

Microbial organisms are a cornerstone of the mod-450

ern biotechnological industry. They are invaluable451

for producing pharmaceuticals, food, and construc-452

tion materials [4]. Today, by using sophisticated453

genetic techniques and engineering, microorganisms454

can be used to tackle modern problems of society,455

such as the remediation of waste land, production456

of drugs or the finding environmental sustainable457

building materials [39, 45, 38]. However, such ad-458

vancements in exploiting bacteria and unicellular eu-459

karyotes were only possible with a thorough under-460

standing of their metabolism. Multiple theories and461

techniques have been developed to gain knowledge462

about metabolic pathways. One of the currently463

most promising strategies is to develop genome-scale464

metabolic networks encoding almost all metabolic in-465

formation available for an organism [10].466

Genome-scale metabolic models are used to under-467

stand and probe the metabolic capabilities of an or-468

ganism, and allow calculation of maximal yields [33].469

The construction of such models only became possible470

with the advances in sequencing technologies, through471

which more and more fully sequenced genomes be-472

come available [22]. Before genome-scale metabolic473

networks, many scientists and engineers relied on474

macrochemical equations. These equations describe475

the metabolism of organisms as a black box by one476

overall chemical equation. Over the decades, this477

approach has been characterised extensively for its478

applicability and in the context of thermodynamics.479

However, a challenge when applying macrochemical480

equations is separating anabolism from catabolism481

so that both metabolic modes can be studied indi-482

vidually. Here, with the help of genome-scale mod-483

els and thermodynamic calculations, we showed how484

we can extract both anabolic and catabolic conver-485
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sions. We characterised both metabolic modes and486

challenged commonly used viewpoints on microbial487

metabolism, such as its representation as a linear en-488

ergy converter.489

By using elementary conversion modes (ECMs),490

which are an alternative to elementary flux modes, we491

could systematically enumerate catabolic routes from492

genome-scale networks of E. coli and S. cerevisiae (see493

Figs. S1 and 3). Combined with thermodynamic data494

of the Gibbs free energy of formation for all metabo-495

lites, as provided by the eQuilibrator tool, it is sim-496

ple to derive standard Gibbs free energy of reactions497

for all input-output relationships (ECMs). By doing498

so, we calculated the catabolic driving force of micro-499

bial growth for all theoretically possible routes.500

However, the second law of thermodynamics implies501

that not all of the available free energy can be used502

to perform useful chemical work. Combining ECMs503

with constraint-based modelling of genome-scale net-504

works, we calculated the thermodynamic efficiency of505

the ATP production of each catabolic route. Interest-506

ingly, we find the most efficient pathways to exhibit a507

thermodynamic efficiency between approximately 30508

and 45%. Interestingly, most catabolic routes show a509

considerably lower efficiency below 20%. It should be510

noted, though, that the values for the efficiency have511

to be interpreted with care. For one, we assumed stan-512

dard energies of reaction for the catabolic routes and513

the actual concentrations of nutrients and catabolic514

products in the medium may slightly affect these val-515

ues. Secondly, we have assumed a fixed value for the516

energy of reaction for ATP synthesis, which of course517

may change for different physiological conditions and518

depends primarily on the ATP:ADP ratio and the519

concentration of inorganic phosphate. Taking this520

into account, the highest efficiency, which is observed521

for the fermentation pathways, is very close to the522

50% that is predicted to yield the highest ATP pro-523

duction rates by simple linear thermodynamic energy524

converter models [52]. It is remarkable that the actu-525

ally realised catabolic pathways in chemostat cultures526

(see red circles in Fig. 3) provide a higher efficiency527

than elementary pathways with a similar free energy528

gradient. This observation stresses the important role529

of the pure respiration and fermentation pathways of530

catabolism. Because of their high efficiencies, oper-531

ating them in combination always provides a higher532

thermodynamic efficiency than any single elementary533

conversion mode.534

While a linear energy converter model seems adequate535

to predict optimal thermodynamic efficiencies of ATP536

producing pathways with a reasonable accuracy [52],537

our interpretation of experimental data shows that538

this is not the case when microbial growth is consid-539

ered. Our results clearly demonstrate that the flux-540

force relationship is not linear, and that in fact an-541

abolic and catabolic fluxes decrease with increasing542

catabolic driving force. In other words, the faster543

microbes grow, the lower the energy gradient that544

drives this growth. This observation, however, holds545

for conditions during which catabolism exhibits rather546

drastic changes, from pure respiration at low growth547

rates to largely fermentation at high growth rates.548

For growth in batch cultures on different substrate549

concentrations, however, it was shown that the lin-550

ear converter model yielded very good results, which551

indeed fit the data better than a simple Monod equa-552

tion [53]. It can therefore be hypothesized that the553

linear energy converter model is adequate as long as554

the catabolic mode does not change, and thus the555

driving force is mainly influenced by substrate con-556

centration, but fails as too simplistic if experimen-557

tal conditions encompass a change of catabolic path-558

ways.559

An interesting observation is that the output powers560

scale approximately linear with growth rate, and that561

the proportionality is very similar for two organisms562

as different as the bacterium E. coli and the eukary-563

ote S. cerevisiae. For the anabolic power (growth rate564

times anabolic driving force), this result is trivial be-565

cause we assumed the anabolic force, −∆anaG, to be566

constant. However, for the catabolic power (nutri-567

ent consumption rate for catabolism times catabolic568

driving force), this result is far from obvious. For569

technical systems, such as ships [3], bikes, cars or570

trains (see, [19] Chapter IIIA), the power increases571

over-proportionally with speed, approaching an ap-572

proximately quadratic relationship. The linear power-573

growth rate relationship entails that, employing engi-574

neering terms, a “resistance” that needs to be over-575

come by the thermodynamic driving forces when pro-576

ducing new biomass is a constant rather than depen-577

dent on the biomass production rate. Moreover, the578

force, corresponding to the slope of the power-growth579

rate curves, appears to be the same for E. coli and580

S. cerevisiae. Whether these laws are of a universal581

nature remains to be tested with systematic exper-582

iments of more microbial species grown on different583

nutrient sources.584

In summary, we could show how combining black-585

box macrochemical approaches and genome-scale586

metabolic models can help to systematically char-587

acterise catabolic routes and find separate chemical588

equations for anabolism and catabolism. Interpreting589

experimental data from chemostats with our theoreti-590

cal models reveals that the efficiency of catabolism ap-591

pears optimal, both for E. coli and the yeast S. cere-592

visiae, over a wide range of growth rates. Moreover,593

our analyses allow us to speculate that the linear594

power-growth rate relationship is a universal property595

of microbial growth.596
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Theory and Methods597

Calculating elementary conversion modes598

Elementary conversion modes (ECMs, [44]) are a fast599

way to describe metabolic capabilities of an organism.600

We calculated ECMs to thermodynamically charac-601

terize all catabolic routes for three metabolic models,602

the E. coli core model [26], the genome-scale model603

iJR904 for E. coli str. K-12 substr. MG1655 [30], and604

the genome-scale model iND750 for the yeast S. cere-605

visiae [9], using ecmtool [6, 5]. For the genome-scale606

models, we hid all external metabolites that contain607

phosphate, sulfur, or nitrogen and dismissed all com-608

pounds with more than six carbon atoms. These steps609

reduced the number of the catabolic routes consider-610

ably and allowed the calculations to be performed in a611

reasonable time. For the two genome-scale networks,612

we focused as input (carbon source) for ecmtool on613

simple sugars and carboxylic acids (glucose, xylose,614

pyruvate, 2-oxoglutarate). Moreover, we allowed oxy-615

gen to be present. The output of ecmtool is a ma-616

trix, in which the rows are the respective elementary617

conversion modes, and the columns are all external618

metabolites that were not hidden. For the E. coli619

core network [26], no metabolite had to be hidden,620

and thus the full catabolic potential of the core net-621

work could be described.622

Estimating Gibbs free energy of reaction623

To approximate the standard Gibbs free energy of re-624

action (∆catG
0) for each obtained ECM, we used the625

Python API of the eQuilibrator tool [24]. We ex-626

tracted the Gibbs free energies of formation (∆fG
◦)627

for all external metabolites involved in an ECM. Next,628

we normalized the ECMs with respect to the car-629

bon atoms of the carbon source (C-mol) and applied630

a Laplace transformation, adapting for temperature631

(298.15 K), pH (7.4), pMg (3.0), and ionic strength632

(0.25 M). We used Hess’s law to calculate the standard633

Gibbs free energy of reaction for each ECM,634

∆catG
0 =

m
∑

i=1

¿i∆fG
◦

i , (13)

where ¿i and ∆fG
◦

i are the stoichometric coefficient635

and the Gibbs free energy of formation of the ith ex-636

ternal compound in the ECM, respectively.637

For the calculation of the maximal ATP production638

for an ECM, we constrained all external fluxes to the639

values of the respective ECMs while maximizing ATP640

hydrolysis (excluding ATP maintenance):641

maximize vATPM,

such that N ·v = 0

vi,ex = ¿i for i ∈ ECM,

vj,ex = 0 for j /∈ ECM

(14)

where N is the stoichiometric matrix of the metabolic642

model, vATPM is the flux through the reaction643

ATP+H2O −−á¾−− ADP+Pi, (15)

and vi,ex are fluxes through the reaction exchanging644

metabolite i, which is constrained to the stoichiomet-645

ric coefficient ¿i obtained by the respective ECM. The646

stoichiometric coefficients are normalised to one car-647

bon mole substrate.648

The thermodynamic efficiency of ATP production cal-649

culates as650

¸ =
cATP ·∆rGATPase

|∆catG|
. (16)

For the Gibbs free energy of ATP synthesis, we651

used a typical value for E.coli of ∆rGATPase =652

46.5kJmol−1 [42].653

Calculating the stoichiometry of anabolism654

We assume that the substrate [S] has the nor-655

malised sum formula CHxOy and the biomass [X] has656

CHaObNc, and that the biomass is more reduced than657

the substrate, i.e.658

µS = 4+x−2y ≤ µX = 4+a−2b−3c. (17)

We assume an overall stoichiometry of659

b1 [S]+ b2 NH3 −−→ [X]+ b3 CO2 + b4 H2O. (18)

Every carbon that is converted to biomass will have660

to be reduced by µX −µS . From the overall redox bal-661

ance it follows that for each carbon that is converted662

into biomass,663

b3 =
µX −µS

µS
(19)

carbons have to be oxidised to CO2. From the carbon664

balance of (18) it follows that665
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b1 = 1+ b3 =
1

Y max
X/S

. (20)

The nitrogen and hydrogen balances entail666

that667

b2 = b and b4 =
b1x+3b2 −a

2
. (21)

It is straight-forward to generalise these calcula-668

tions to include sulfur and phosphorus into the669

biomass.670

Calcuating the optimal anabolic reaction671

To determine the maximal yield and the minimal ATP672

requirement for biomass formation, we perform two673

subsequent linear programs. First, the exchange re-674

actions are constrained, such that only the carbon675

source (substrate) and oxygen can be imported (nega-676

tive flux), but other metabolites can be released (pos-677

itive flux). The biomass reaction is constrained to678

one carbon mole per unit time. The ATP hydrolysis679

reaction is not constrained, which means it can run680

in reverse and provide ATP. Subsequently, substrate681

import (negative) is maximized:682

maximize vsubstrate,ex,

such that N ·v = 0

vbiomass = 1,

−∞ < vsubstrate,ex ≤ 0

−∞ < vO2,ex ≤ 0

0 ≤ vj,ex < ∞ for other metabolites

(22)

The resulting optimal flux is negative, and the abso-683

lute value denotes the minimal substrate requirement684

to produce one carbon mole of biomass, if ATP is685

provided in abundance.686

In a second step, the determined minimal substrate687

requirement vopt
substrate is fixed, and the ATP require-688

ment is minimized by maximizing the (negative) flux689

through reaction (15):690

maximize vATPM,

such that N ·v = 0

vbiomass = 1,

vsubstrate,ex = vopt
substrate

−∞ < vO2,ex ≤ 0

0 ≤ vj,ex < ∞ for other metabolites

(23)

The absolute value of the optimal flux, |vATPM| gives691

minimal ATP requirement for the production of one692

carbon mole biomass.693

Calculating the stoichiometry of catabolism694

Macrochemical equations of the form695

[S]+³1 O2 + c³2 NH3 −−→

³2 [X]+³3 C2H5OH+³4 CO2 +³5 H2O,
(24)

for S. cerevisiae (see [31]) and696

[S]+³1 O2 + c³2 NH3 −−→

³2 [X]+³3 CH3COOH+³4 CO2 +³5 H2O,
(25)

for E. coli were obtained from the original publica-697

tions. Here, we use the notation [S] for one carbon698

mole of substrate and [X] for one carbon mole of699

biomass. The sum formula of biomass is assumed to700

be given by CHaObNc (hence the factor c in the stoi-701

chiometry of NH3), and is given in both cases in the702

original publication. The stoichiometric coefficients703

were obtained as follows. For S. cerevisiae, Table 1704

in [31] already provides the stoichiometric coefficients705

for Eq. (24), which were, for our calculations, con-706

verted into carbon moles. For E. coli, we converted707

data from Table 2 in [15], which is given in g g−1 h−1
708

to C-mol C-mol−1 h−1, using the molecular weights of709

the chemical compounds as well as the biomass, nor-710

malised to one carbon mole.711

The coefficients for the catabolic reaction712

c1 [S]+ c2 O2 −−→ c3 CO2 + c4 C2H5OH+ c5 H2O
(26)

are simply determined by calculating (24) − ³2 · (18),713

resulting in the coefficients714

c1 = 1− b1³2 (27)

c2 = ³1 (28)

c3 = ³4 − b3³2 (29)

c4 = ³3 (30)

c5 = ³5 − b4³2. (31)

Subsequently, it is convenient to normalise this equa-715

tion to the consumption of one carbon mole of sub-716

strate, i.e. dividing all coefficients by c1.717

In the case of E. coli, acetate was excreted instead718

of ethanol at the onset of overflow metabolism [15].719

In the calculation, ethanol can simply be replaced720

by acetic acid and the calculation remains identi-721

cal.722
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50. Urs von Stockar, Vojislav Vojinović, Thomas Maskow, and Jingsong Liu. Can micro-891

bial growth yield be estimated using simple thermodynamic analogies to technical pro-892

cesses? Chemical Engineering and Processing: Process Intensification, 47(6):980–893

990, jun 2008.894

51. Amanda L Waters, Russell T Hill, Allen R Place, and Mark T Hamann. The expanding895

role of marine microbes in pharmaceutical development. Current opinion in biotechnol-896

ogy, 21(6):780–786, 2010.897

52. Sarah Werner, Gabriele Diekert, and Stefan Schuster. Revisiting the thermodynamic898

theory of optimal atp stoichiometries by analysis of various atp-producing metabolic899

pathways. J Mol Evol, 71(5-6):346–355, Dec 2010.900

53. Hans V. Westerhoff, Juke S. Lolkema, Roel Otto, and Klaas J. Hellingwerf. Thermody-901

namics of growth non-equilibrium thermodynamics of bacterial growth the phenomeno-902

logical and the mosaic approach. Biochimica et Biophysica Acta (BBA) - Reviews on903

Bioenergetics, 683(3-4):181–220, dec 1982.904

54. St Elmo Wilken, Victor Vera Frazão, Nima P Saadat, and Oliver Ebenhöh. The view of905

microbes as energy converters illustrates the trade-off between growth rate and yield.906

Biochemical Society Transactions, 49(4):1663–1674, 2021.907

Ebenhöh et al. | Thermodynamics of microbial metabolism | 12

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569601doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.01.569601
http://creativecommons.org/licenses/by/4.0/

