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The biotechnological exploitation of microor-
ganisms enables the use of metabolism for
the production of economically valuable sub-
stances, such as drugs or food. It is, thus, un-
surprising that the investigation of microbial
metabolism and its regulation has been an ac-
tive research field for many decades. As a re-
sult, several theories and techniques were de-
veloped that allow the prediction of metabolic
fluxes and yields as biotechnologically rele-
vant output parameters. One important ap-
proach is to derive macrochemical equations
that describe the overall metabolic conversion
of an organism and basically treat microbial
metabolism as a black box. The opposite ap-
proach is to include all known metabolic re-
actions of an organism to assemble a genome-
scale metabolic model. Interestingly, both ap-
proaches are rather successful to characterise
and predict the expected product yield. Over
the years, especially macrochemical equations
have been extensively characterised in terms
of their thermodynamic properties. How-
ever, a common challenge when characteris-
ing microbial metabolism by a single equation
is to split this equation into two, describing
the two modes of metabolism, anabolism and
catabolism. Here, we present strategies to sys-
tematically identify separate equations for an-
abolism and catabolism. Based on metabolic
models, we systematically identify all theoret-
ically possible catabolic routes and determine
their thermodynamic efficiency. We then show
how anabolic routes can be derived, and use
these to approximate biomass yield. Finally,
we challenge the view of metabolism as a lin-
ear energy converter, in which the free energy
gradient of catabolism drives the anabolic re-
actions.
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Introduction

Microbial organisms are an essential part of most
ecosystems. They function as vital members of nat-

38

ural production chains leading to the formation of
chemical compounds that have complexity unreach-
able by current technological standards [29]. Not sur-
prising, therefore, that much scientific effort has been
spent to understand the metabolism of microbes nec-
essary for the chemical interconversion of substances
[34]. Today, the human exploitation of microbial
metabolism has long left the stage of merely pro-
ducing fermented products. Microbes, often viewed
as natural factories, are used in biotechnological ap-
plications as an integrated component of drug and
food fabrication or bioremediation projects [51, 41, 7].
However, the value of a microbial organism for eco-
nomical usage depends on two main factors, metabolic
capabilities, and thermodynamic constraints imposed
on the microbial metabolism.

Gaining full knowledge about microbial metabolism
was and is a complex scientific problem. In the
pre-genomic era, researchers used precise measure-
ments of input (substrate) and output (product) re-
lationships for microbial cultures and a deep under-
standing of thermodynamics to design new biotech-
nological strategies, based on so-called macrochemi-
cal equations [32, 12, 13, 49, 34, 54]. A macrochemi-
cal equation summarizes the conversion of substrates
into metabolic products and biomass. Describing mi-
crobial metabolism by a single macrochemical equa-
tion essentially treats microbial metabolism as a black
box, ignoring all intracellular metabolic details. Still,
this single chemical equation can accurately describe
the overall metabolic activity and thus can serve to
understand and predict biotechnologically important
metabolic properties (see e.g. [12]).

Catabolism Anabolism
y
Substrate Biomass
N
Energy
coupling
N
Products p Substrate

Figure 1. The view of microbial metabolism as a thermodynamic energy con-
verter. Catabolic reactions have a large negative free energy gradient, driving
anabolic reactions.

The macrochemical equation can be understood as
a sum of two separate reactions which describe
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catabolism (the breakdown of nutrients to gain free o
energy in the form of ATP) and anabolism (the for- s
mation of new biomass from the nutrients) [46]. In e
this picture, microbial growth is described as a ther- 1o
modynamic energy converter, where the catabolic re- 1o
actions provide the required free energy to drive an- e
abolism (see Fig. 1). Here, the negative free ener- 1o
gies of reaction of the catabolic and anabolic half- 10
reactions, denoted by —AcatG and —A,n2 G, respec-
tively, are generalised thermodynamic forces, and the
respective reaction rates, Jeat and Jana, are gener-
alised thermodynamic fluxes. The relation between
these generalised forces and fluxes is often assumed
to be linear [40, 54, 50, 47], following Onsager’s the-
ory [25] for non-equilibrium thermodynamics. On-'"
sager has shown that the linearity holds in general ™
for systems close to equilibrium. Despite the attrac- "™
tiveness of the linear converter theory, it is not fully
clear, to what extent this approximation is actually
adequate for microbial growth. Regardless of these
uncertainties, this simplified view of microbial growth
as two coupled processes is insightful and allows es-
timating some principle thermodynamic limitations,
such as maximally possible yields. "
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Describing macrochemical, catabolic and anabolic
equations experimentally requires a precise measure- 12
ments of all chemical substances that are consumed 123
and produced by the growing microbes. These mea- 124
surements are possible in controlled chemostat cul- 12
tures, in which microbes grow on a defined growth s
medium. However, many mircobes cannot easily
be cultured in chemically defined media, which pre-
vents an experimental determination of macrochemi-
cal growth equations. However, with the recent sci-
entific advancement in genome sequencing, genomic ,,
data became available for a huge number of or- "
ganisms, including those which are difficult to cul—1
ture [22]. This information greatly facilitates build-
ing a stoichiometric (or structural) metabolic models, N
manually or semi-automatically [11, 18, 20, 35]. Wlth N
a structural model, metabolic capabilities can be sys— .
tematically assessed and optimal flux dlstrlbutlons1
optimizing some objective function (such as blomass
production) can be easily calculated [27]. Thus, such "
models can support strategies to improve the prod— "
uct yield in biotechnological applications. Elemen—140
tary flux modes (EFM) are a systematic way to quan-
tify the metabolic capabilities of an organism [36].
EFMs describe all possible pathways between Sub—143
strate and products.

127

128

29

141

142

However, due to combmato—

rial explosion [17], it is still challenging to calculate ' s
all EFMs for larger structural metabolic models, also "
with modern computational facilities. To overcome
this, and because for many investigations only thems
conversion between substrate and product is relevant, »
elementary conversion modes (ECM) were mtroduced -
by Urbanczik and Wagner [44]. ECMs ignore all in-

tracellular processes and only focus on the results of s
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metabolic pathways. ECMs describe a minimal set of
pathways that generates all steady-state substrate-to-
product conversions [6]. Using ECMs instead of EFMs
reduces the necessary computational power drasti-
cally. Additionally, modern software, such as ecmtool
that allows parallelization of the computation, helps
to obtain an exhaustive list of all metabolic capabili-
ties of an organism in the form of ECMs [5].

As suggested in [6], we view ECMs as building blocks
of macrochemical equations. We show how genome-
scale metabolic models can be used to systemati-
cally enumerate all possible catabolic pathways. With
thermodynamic data, in particular energies of for-
mation of substrates and products obtained from
the eQuilibrator tool [2, 24], we characterise the
catabolic pathways by their energy gradient. Using
the network models, we further estimate the maximal
ATP production capacity for each catabolic pathway,
and thus determine their thermodynamic efficiencies.
We then analyze experimental data for Saccharomyces
cerevisiae [31] and Escherichia coli [15], grown un-
der controlled chemostat conditions in defined me-
dia, to separate the macrochemical equation into the
catabolic and anabolic parts and characterise their
thermodynamic properties. Interpreting our findings
in the context of the energy converter model, we iden-
tify the limitations of the applicability of the lin-
ear converter model, but observe an interesting lin-
ear scaling law between growth rate and metabolic
power.

Results

Calculating elementary conversion modes to char-
acterise catabolic pathways

Genome-scale metabolic models are a formalisation
of all known biochemical reactions of an organism.
As such, they combine genomic, proteomic, and
metabolic information to build an in silico representa-
tion that can be used to derive steady-state flux dis-
tributions. The inspection and analysis of genome-
scale metabolic models benefit from a rich theory
for metabolic networks (see e.g. [37, 28, 43, 27, 16]).
Here we use elementary conversion modes (ECMs,
see [6, 5]) to assess the metabolic capabilities of sev-
eral genome-scale metabolic networks. To illustrate
our approach, we begin our analysis with the F. coli
core network [26], an E. coli core metabolism model
of reduced complexity, with only 72 metabolites con-
nected by 95 reactions, of which 20 are exchange re-
actions. To systematically describe all theoretically
possible catabolic routes, we used ecmtool [5] to cal-
culate all ECMs which do not produce biomass. The
resulting ECMs describe all possible routes and their
stoichiometries by which external substances can be
interconverted.

We then calculated for each individual ECM the
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The six catabolic routes with highest energy yield per carbon mol:

CoHi20s + 40z = 2002 + 4CHOz™ 4 2 H:0 + 4H*
CoHi20s + 20z = 2CzH30;™ +2 €0z +2 H:0 + 2H*

400 CoHyz0p + 20, = C.H:0.2~ 4+ €O, +3 H,0 4+ 2H*

2CoHu0s 42 NHs* +3 0z =2 €0z + 2 CsNHs0s™ + 6 H20 + 4 H*
2C,HL0, +30, =4 CHO,~ + 2 H.0 + B H® + 2 C,H,0,2~

The five anaerobic catabolic routes with highest energy yield per carbon mol:
2CyHp0, = CoHi0.™ +CoH0 + HiO 4 5H* + 2 C,H.0,%

5 CoHp0p = 3 CoHy0 + 3H,0 4 12 HY 4+ 6 C,H07

200, + 3 CoHa0, = 2 CH.0.™ 4 2H,0 + 10 H” + 4 C,H.0.2 -

3C,HEp0, =2 CoHa0.™ + 2C,H,0 + 2 CHO,™ 4 BH® + 2C,H.02"
TCaH1z0g + 2 NH,* = 4 C3Hy0 + 2 CNHg0,™ + 6 Hy0 + 16 HT + 6 CH, 0,2

The two catabolic routes with highest ATP yield per free energy-
® CeH1z0s + Hz0 = CzH30:7 + C:HaO + 2 CHO:™ + 3 HT L1
CaH1z00 = CeHa0 + CHO:™ + 2H™ + C3Ha03”

Elementary conversion modes

w

maximum ATP yield per C-mol

bt x
A UL ,

Figure 2. Standard Gibbs free energies of all catabolic pathways, normalised to carbon mole. The catabolic pathways were derived using elementary conversion
modes (ECMs) calculated from the E. coli core network. Red symbolises ECMs that use oxygen, while blue denotes ECMs not using oxygen. Filled bars belong to
ECMs that include no compounds with the element nitrogen while empty ones include nitrogen containing metabolites. The black crosses indicate the maximal yield

of ATP per carbon mole nutrient for each ECM (right axis).

standard Gibbs free energy of reaction, based s
on the standard energies of formation estimated s
by eQuilibrator [2]. The standard energies of
catabolism A.,;G?, normalised to one carbon mole g
of consumed substrate, are displayed in Fig. 2. Most g,
of the catabolic pathways have relatively low energy ,q,
gradients between approximately 20 and 50 kJ/C-
mol. To this large group of pathways belong key ,q,
catabolic routes, such as the fermentation of glucose ,q4,
to lactate or ethanol. Few catabolic routes exhibit ,
Gibbs free energies of reactions with a higher energy o
gradient than 50 kJ/C-mol (around 17 ECMs). The
pathways with the largest absolute Gibbs free energy ,q,
of reaction are the combustion of glucose (AcatG® ~ 14
—488kJ C-mol™!), and the production of formate qq
from glucose (AcatG? &~ —325kJ C-mol™1). In partic-
ular, oxygen-using ECMs belong to the group with the ,,
largest absolute Ac,;G® (compare red bars in Fig. 2). ,,
As shown in Fig. 2, usage of nitrogen does not appear ,,
to be an indicator of whether the respective ECM has ,,,
a high or low energy gradient. 205

2
For each catabolic route, we use the metabolic model 2:
to calculate the maximal ATP yield. For this, the ex-
change reactions were constrained to the stoichiome-
tries of the respective ECM, and subsequently the flux
through ATP hydrolysis was maximized (see Meth-
ods). The resulting maximal ATP yields per carbon
mole substrate are indicated by black crosses in Fig. 2. 20
While as a tendency high energy gradient pathways i
also allow for a higher ATP yield, there are a consid- an
erable number of ECMs with very low ATP yield (34 21
ECMs exhibit a maximal ATP yield of less than 0.1 2
mol ATP per C-mol). 214
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Thermodynamic catabolic

routes

To investigate whether these general patterns are also
conserved in more complete and therefore realistic
genome-scale models, we repeated our analysis for the
iJR904 metabolic network model [30] of E. coli as
well as for the IND750 metabolic network model [9]
of the yeast S. cerevisiae. Fig. 3 illustrates the results
for S. cerevisiae, obtained with the iND750 model.
We identified all ECMs using one of the four carbon
sources glucose, xylose, a-ketoglutarate and pyruvate.
Also here, most ECMs yield a low energy gradient,
while those with the highest gradient correspond to
the full oxidation of glucose and xylose. Full respira-
tion for both sugars releases around 488kJ C-mol™!
and are, thus, the ECMs with the highest free energy
gradient. These two pathways also display the high-
est ATP yield per carbon mole (approx. 2.92 mol/C-
mol) as indicated in Fig. 3, left panel. In contrast to
this, most other catabolic routes release energy in a
range between 40 and 200 kJ C-mol~! with low ATP
production. Among these routes are, besides other
metabolic modes, fermentation reactions, such as the
metabolisation of glucose to lactate or ethanol.

efficiency of

The thermodynamic efficiency 7 of a thermodynamic
engine is defined as the fraction of work generated per
input energy provided to power the system. Defining
the free energy used to drive ATP synthesis as the use-
ful chemical work, we calculate the thermodynamic
efficiency as
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Figure 3. Thermodynamic characterisation of catabolic routes in S. cerevisiae genome-scale model (IND750) for a-ketoglutarate, glucose, xylose, and pyruvate as
carbon source. Additionally, oxygen is allowed to be a substrate in the calculation of the elementary conversion modes. The efficiency is based on a typical value of

46.5 kd/mol for production of ATP in E. coli [42].
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248

where caTp is the maximal ATP yield per carbon mol
A;G ATPase the energy of reaction for ATP synthes1s 0
from ADP and inorganic phosphate, and Ac.tG the
energy of reaction of the respective catabolic path—
way. We assume the typical value of A;GATpase =
46.5kJmol~! [42]. Further, we approximate the zz:
Gibbs free energy of catabolism by the correspond-
ing standard Gibbs free energy of reaction, because
changes in substrate and product concentrations in
the medium are likely to have only a minor effect on
the quantity. The determined efficiencies 7 are de-
picted in the right panel of Fig. 3. Interestingly, the
pathways with the highest energy gradient are not
the most efficient. For instance, under full respira- 25
tion of glucose, only 28% of the released free energy is
converted to chemical work producing ATP. In con-
trast, fermentation of glucose to lactate exhibits an »o
efficiency of 43%. The fermentation of glucose to lac-
tate is one of the most efficient reactions, with higher »
efficiencies only found in fermentation processes in-
volving ethanol production.

253
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264
Deriving anabolic information from a metabolic net- .

work
Likewise, also anabolic pathways can be investigated 26
in separation by employing genome-scale metabolic zes
models. The theoretical limit how much carbon in the 2
nutrient can be converted to biomass carbon is given 27
by the degree of reduction. If biomass is more reduced o
than substrate, a fraction of the substrate carbons ez
need to be oxidised in order to ensure the overall redox 275
balance. Specifically, if vg and yx are the degrees of 274
reduction of substrate and biomass, respectively, then a7
the theoretical maximal yield is given by [32]

266

276
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for vs <vx
else

max

X/s =

s
{ @)
Based on the elemental composition of the biomass
and the substrate, an ideal anabolic reaction stoi-
chiometry can be determined. Assuming a substrate
with a sum formula [S] = CH,O, (normalised to C-
mol) and biomass with [X] = CH,OpN¢, v =4+ —
2y and vx =4+ a—2b— 3¢ (assuming ammonia as ni-
trogen source, see [32]). If vg < yx the stoichiometry
reads

1
Ymax anax

[S] +bNH3 — [X] + (1
X/S

) CO2 +b4H50,

(3)

with by = (/Y FPRX

X/s +3b— a)/2 (see Methods).

This equation allows for the calculation of the stan-
dard energy of reaction of anabolism, Agu.GC. To es-
timate the Gibbs free energy of formation of biomass,
which is required to determine the energy of reaction,
we employ the empirical method proposed by Batt-
ley [1].

Constraint-based models can be employed to inves-
tigate to what extent such an ideal anabolic reaction
can be realised by a microorganism’s metabolism. We
employ the genome-scale networks for S. cerevisiae
and F. coli and minimise the nutrient uptake for
a fixed biomass production, while allowing ATP to
be provided externally (see Methods). A subsequent
optimisation, in which the minimal nutrient uptake
is fixed and the required reverse ATP hydrolysis is
minimised, allows determining the minimal ATP re-
quirement per carbon mole biomass formed. For the
iJR904 model of E. coli metabolism, we obtain the
following optimal anabolic stoichiometry for growth
on glucose,
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301

302
1.0530[S] +0.0046 O3 +0.2577 NH4 T 4+ 0.0220 HPO,4 %~ +0.0056 S04%~
303
= 1[X]eco +0.0530 CO2 +0.5635 HoO +0.2205 HT,

(4)
304
305
where [S] denotes 1 C-mol of substrate (#CgH1206) 4
and [X]eco 1 C-mol of E. coli biomass, with the sum
formula determined by the biomass reaction of the .,
iJR904 model 206

310
311

(5) 312

313

0.018—
[X]eco = CH1.81100.503N0.258P0.0225¢ 006 >

and a degree of reduction and energy of formation”"

315
of
316

317

318

A{GX oo = —101.10kJ C-mol 1.
(6)

YX,eco = 4193a

The calculated maximal yield of Y = T =

95.0% is slightly lower than expected by Eq. (2). This ’
is explained by the fact that also small amounts of *
oxygen are required for the pure anabolic biomass
formation. In iJR904 this is caused by a minimal **
required flux through a cytochrome oxidase which re-°
quires molecular oxygen as substrate. %0

21

25

327
A subsequent optimisation reveals a minimal require- s
ment of 1.766 mol ATP per carbon biomass pro-
duced.

329

For the iND750 metabolic model of S. cerevisiae, we 3%

obtain 331
332

333

1.0718[S] +0.0518 O3 +0.1557 NH4 ™ 4+ 0.0055 HPO,4 %~ +0.002250,%~ 33
= 1[X]sce +0.0718 CO2 +0.4035H20 + 0.1404 H ™, 835
(7) 336

337
338

with

339

340

[X]sce = CH1.824300.6580N0.1557P0.005550.0022  (8) .,
342

and a degree of reduction and energy of formation s
of 344
345

346

VX sce =4.080,  AG% oo = —128.76kJ C-mol !, ¥
(9) 348

349

350
Here, the descrepancy between the computationally ,,

determined maximal yield of ;g}%x = Tlns = 93.3% 4,
and the 98.0% expected from Eq. (2) is even larger. ss
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The minimal requirement of ATP to produce biomass
is predicted to be slightly larger than for E. coli with
2.031 mol ATP per C-mol biomass.

We repeated the calculations for different carbon
sources. The results are summarized in Table 1. In
general, the expected trend can be observed that the
more oxidised carbon sources result in lower maximal
yields. Moreover, the maximal yields predicted by
the model are usually very close to the maximal yield
predicted by the degree of reduction alone. Only for
S. cerevisiae growing on oxoglutarate, yields predicted
by the model are considerably lower. The reason for
this is that the network defined by the iND750 model
is not capable of producing biomass from oxoglutarate
without metabolic side products. The optimal so-
lution produces 0.073 mol xanthine (CsH4N4O2) per
C-mol biomass. This leads to a reduced carbon (and
in fact, nitrogen) yield, but a larger free energy gra-
dient.

Separating catabolism from anabolism based on
chemostat data

In a controlled continuous microbial cultivation sys-
tem, such as a chemostat [21, 14], it is possible to grow
microbial cultures at a steady state with pre-defined
growth rates. Measuring nutrient and gas exchange
rates as well as nutrient and product concentrations in
the reactor allows experimental determination of the
overall growth stoichiometries [12, 13, 48, 49].

In the following we employ experimentally determined
macrochemical equations for growth of S. cerevisiae
[31] and E. coli [15] in chemostats at different dilution
rates to calculate catabolic stoichiometries, ATP pro-
duction potential, and thermodynamic efficiencies for
each condition. The catabolic stoichiometry is calcu-
lated by first identifying the ideal anabolic stoichiom-
etry based on the degrees of reduction of substrate
and biomass, and then subtracting this anabolic sto-
ichiometry from the macrochemical equation (for de-
tails, see Methods).

The determined catabolic coefficients are summarised
in Fig. 4. It can clearly be seen that the onset of over-
flow metabolism, when glucose is partly fermented
even in the presence of sufficient oxygen, occurs at
growth rates of around 0.3h~! for S. cerevisiae and
around 0.4h~! for E. coli. With the catabolic co-
efficients, we calculate the standard Gibbs free en-
ergy of reaction of the overall catabolic conversion,
where we obtained the standard Gibbs free energies
of formation, required for this calculation, from the
equilibrator tool [2]. It can be observed (blue lines
in Fig. 4) that with the onset of overflow metabolism,
also the Gibbs free energy gradients are reduced sig-
nificantly.
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Table 1. Thermodynamic properties of anabolic pathways. The theoretical maximal yield Yy/¢* is calculated according to Eq. (2). The maximal yield YX’}‘S"‘X"““‘e'
predicted by the metabolic model was determined using the linear program (22). The minimal anabolic ATP requirement per carbon mole biomass, aarpmin Was
determined using the linear program (23). The standard energies of reaction for anabolism, A ., G°, were determined from overall anabolic stoichiometries like given

for glucose in Egs. (4) and (7).

Organism Carbon source Y;gl/asx Y)Znaéx’nwdel aATP,min (C-mol C-mol™) | AanaGP (kJ C-mol 1)
E. coli glucose 0.954 0.950 1.766 -54.81
xylose 0.954 0.950 1.813 -56.74
oxoglutarate 0.763 0.730 2.051 -44.28
pyruvate 0.795 0.791 2.268 -32.44
S. cerevisiae glucose 0.980 0.933 2.031 -74.51
xylose 0.980 0.933 2.245 -77.85
oxoglutarate 0.784 0.457 1.453 -279.33
pyruvate 0.817 0.815 2.684 -29.62
R I e . L 300 force ratio x = A5G YA 302 G°
S i 2 4 6 8 10 12
S 081 o yeast CO. production I A0 = =g O catabolic flux
= ; i =1 204 ® o anabalic flux L4
=] o yeast, Oz consumption i E = )
E 06| -%- E coli, 0z consumption Y Faoo L = @ © tOt‘.al metaho.llc Flux : =1
U . : ) 2] 8 f = [=} o *®  ratio catabolic/anabolic flux =
o o yeast, ethanol production e 1= 15 ]
g nad % E. coli, acetate production g 8 .f? 200 % :Q__ ﬁQ -3 ‘I‘I\
IS v yeast, —A_,G" i ‘L,a; g 8 E;'
' i a [ <] : =
% 02 -#- E coli, —A...G § g% L1oo | S 10 [} o B
E i @ x x
0.0 =% e e e 0 § 05 o =
01 02 03 04 = ® oo o 8 L1
dilution rate D/(1/h} N
R 200 300 400 500

Figure 4. The catabolic stoichiometric coefficients and thermodynamic driving
forces determined for chemostat growth of E. coli [31] and S. cerevisiae [15] at
different dilution rates. All coefficients are given in mol/C-mol substrate, except
for ethanol and acetate, which are given in C-mol/C-mol substrate. For E. coli,
CO, production is identical to O, consumption. The thermodynamic driving
force is given as standard energy of reaction of the overall catabolic conversion,
normalised to one carbon mole of substrate.

Is the linear energy converter a good model for mi- sz
crobial growth? a75
In the original publication that we draw our data from 7
for E. coli [15], also higher dilution rates were in-37
vestigated. For these, however, the carbon recovery 37
rates were significantly below 90%, indicating that not 37
all metabolic products were measured. The incom- 38
plete carbon recovery prevents a reliable calculation of 3
catabolic stoichiometries. We therefore omitted these 32
data, and will in the following focus on the energetic ss
analysis of the metabolism of S. cerevisiae. 384

Microbial growth is often thermodynamically inter-
preted in the context of a linear energy converter
model [50, 47], which assumes that the anabolic and
catabolic fluxes linearly depend on the catabolic and
anabolic forces, i. e. that ags

Jcat L. _AcatG
Jana *AanaG ’

where the anabolic flux equals the growth rate, which ssr
in turn is set by the dilution rate of the chemostat, sss
Jana = D. In this model, the matrix L is the On- ss
sager matrix of the phenomenolocigal coefficients [25]. as0

386

(10)
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catabolic driving force —A ;G %/(k)/C-mol)

Figure 5. Metabolic fluxes as function of the catabolic driving force. Shown are
the catabolic (blue), anabolic (red) and total (green) glucose consumption rates
in dependence of the catabolic driving force, — A G®. On the z-axis on the
top, the force ratio = AcatG®/ Aana G is given.

Considering the large energy gradients, we approx-
imate the actual Gibbs free energies by the stan-
dard energies. Moreover, we assume that the an-
abolic Gibbs free energy, AanaG is approximately con-
stant over different dilution rates, because the sto-
ichiometry of anabolism remains constant, accord-
ing to Eq. (18). Based on the experimentally de-
termined biomass composition of S. cerevisiae [31]
(CH1.7900.57No.15), we calculate the standard energy
of formation of biomass with the empirical method of
Battley [1] to

AGS = —104.9kJ C-mol (11)

and with that the anabolic energy of reaction
to

AanaG® = —42.2kJ C-mol 1, (12)
With this full knowledge of catabolic and anabolic
fluxes and forces, we can challenge the linear con-
verter model. In Fig. 5 (Fig. S2 for E. coli) vari-
ous fluxes (catabolic glucose consumption, anabolic
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(growth) rate, total glucose consumption) are dis-
played as a function over the catabolic driving force
or, alternatively (z-axis on top), the force ratio
T = AcatG/AanaG. It can clearly be observed that
the fluxes do not linearly depend on the forces, as
would be predicted by the linear converter model.
On the contrary, fluxes are larger for smaller forces.
This stark discrepancy from a linear converter model
can readily be explained by considering that over-
flow metabolism results from active regulatory pro-
cesses inside the cells. Often, overflow metabolism
is explained by capacity constraints within the cell:
whereas respiration results in a considerably higher
yield, it also requires higher protein investment than
fermentation, and therefore, at very high growth
rates, it is more efficient to 'waste’ substrate and op-
erate a lower yield pathway (see e. g. [8, 23, 34]). This
entails that there exist feedback regulation mecha-
nisms, which are highly non-linear. It can be con-**®
cluded that a linear energy converter model is too
simplistic and is not in agreement with experimental
data, at least over conditions in which the catabolic *
pathways change. The reason for this is to be sought s
in non-linear feedback mechanisms by which cells s
adapt their metabolism to external conditions. 452

9

453
Similar to the calculation of maximal ATP yields of ,

the different catabolic pathways, we determined the
maximal ATP yield for the observed catabolic sto-
ichiometries by constraining the genome-scale net-
works to the observerd catabolic stoichiometries. The .,
red circles in Fig. 3 present the result of this calcu-
lation (left panel) and the respective thermodynamic ,;
efficiencies (right panel). Interestingly, the ATP yields ,,,
as well as the efficiencies are higher than for elemen- ,,
tary conversion modes with similar energy gradients. ,,
This can be explained by considering that the ex-,,
perimentally observed catabolic stoichiometries are
a linear combination of two conversion modes (full
respiration and fermentation) only, and that espe-
cially the fermentation pathways were identified to 47
have the highest thermodynamic efficiency (see Figs. 2 4
and 3). 469
470
With the usual definition of the power as the prod-
uct of flux and force, we can quantify the catabolic «7
and anabolic powers Peat = —Jeat - AcatG and Papy = s
—D-A,naG, as well as the power of ATP production 47
Pa1p = carp - Jeat - ArG ATPase 1n kJ C-mol— 1. Fig. 6475
shows that the powers increase approximately linearly 7
with growth rate, despite the fact that metabolism «7
changes considerably for fast growth rates. Moreover, «7s
E. coli and S. cerevisiae behave rather similarly. For 47
large growth rates, the powers of E. coli appear to be «o
somewhat lower, but this could be a result from in- s
complete carbon recovery in the experiments, because s
besides acetate no other fermentation products were s
measured. This could lead to an underestimation of s
the Gibbs free energy gradients and consequently of «s

457
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Figure 6. Catabolic and anabolic powers, as well as power of ATP synthesis as
a function of growth rate. Catabolic power is depicted in blue, anabolic power in
red, and ATP synthase power in black. Circles present results for S. cerevisiae,
crosses for E. coli.

the ATP yields.

Discussion & Conclusion

Microbial organisms are a cornerstone of the mod-
ern biotechnological industry. They are invaluable
for producing pharmaceuticals, food, and construc-
tion materials [4]. Today, by using sophisticated
genetic techniques and engineering, microorganisms
can be used to tackle modern problems of society,
such as the remediation of waste land, production
of drugs or the finding environmental sustainable
building materials [39, 45, 38]. However, such ad-
vancements in exploiting bacteria and unicellular eu-
karyotes were only possible with a thorough under-
standing of their metabolism. Multiple theories and
techniques have been developed to gain knowledge
about metabolic pathways. One of the currently
most promising strategies is to develop genome-scale
metabolic networks encoding almost all metabolic in-
formation available for an organism [10].

Genome-scale metabolic models are used to under-
stand and probe the metabolic capabilities of an or-
ganism, and allow calculation of maximal yields [33].
The construction of such models only became possible
with the advances in sequencing technologies, through
which more and more fully sequenced genomes be-
come available [22]. Before genome-scale metabolic
networks, many scientists and engineers relied on
macrochemical equations. These equations describe
the metabolism of organisms as a black box by one
overall chemical equation. Over the decades, this
approach has been characterised extensively for its
applicability and in the context of thermodynamics.
However, a challenge when applying macrochemical
equations is separating anabolism from catabolism
so that both metabolic modes can be studied indi-
vidually. Here, with the help of genome-scale mod-
els and thermodynamic calculations, we showed how
we can extract both anabolic and catabolic conver-

bioRxiv | 7


https://doi.org/10.1101/2023.12.01.569601
http://creativecommons.org/licenses/by/4.0/

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.01.569601; this version posted December 4, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

sions. We characterised both metabolic modes and s
challenged commonly used viewpoints on microbial s
metabolism, such as its representation as a linear en- ss
ergy converter. 546
By wusing elementary conversion modes (ECMs), :Z
which are an alternative to elementary flux modes, we o
could systematically enumerate catabolic routes from

genome-scale networks of E. coli and S. cerevisiae (see ::
Figs. S1 and 3). Combined with thermodynamic data N
of the Gibbs free energy of formation for all metabo- .
lites, as provided by the eQuilibrator tool, it is sim-

ple to derive standard Gibbs free energy of reactions =
for all input-output relationships (ECMs). By doing :::
so, we calculated the catabolic driving force of micro- o

bial growth for all theoretically possible routes. e

However, the second law of thermodynamics implies 5%
that not all of the available free energy can be used
to perform useful chemical work. Combining ECMs
with constraint-based modelling of genome-scale net-
works, we calculated the thermodynamic efficiency of
the ATP production of each catabolic route. Interest-
ingly, we find the most efficient pathways to exhibit a
thermodynamic efficiency between approximately 30,
and 45%. Interestingly, most catabolic routes show a
considerably lower efficiency below 20%. It should be
noted, though, that the values for the efficiency have
to be interpreted with care. For one, we assumed stan-
dard energies of reaction for the catabolic routes and
the actual concentrations of nutrients and catabolic
products in the medium may slightly affect these val- ,
ues. Secondly, we have assumed a fixed value for the
energy of reaction for ATP synthesis, which of course
may change for different physiological conditions and ,,,
depends primarily on the ATP:ADP ratio and the,,
concentration of inorganic phosphate. Taking this,,
into account, the highest efficiency, which is observed
for the fermentation pathways, is very close to the
50% that is predicted to yield the highest ATP pro-
duction rates by simple linear thermodynamic energy
converter models [52]. It is remarkable that the actu-
ally realised catabolic pathways in chemostat cultures
(see red circles in Fig. 3) provide a higher efficiency .,
than elementary pathways with a similar free energy ,,
gradient. This observation stresses the important role
of the pure respiration and fermentation pathways of
catabolism. Because of their high efficiencies, oper-
ating them in combination always provides a higher ®
thermodynamic efficiency than any single elementary *
conversion mode. 7

561

566

572

577

578

85

6

588
While a linear energy converter model seems adequate sso
to predict optimal thermodynamic efficiencies of ATP se0
producing pathways with a reasonable accuracy [52], sor
our interpretation of experimental data shows that se
this is not the case when microbial growth is consid- se
ered. Our results clearly demonstrate that the flux-se
force relationship is not linear, and that in fact an- ses
abolic and catabolic fluxes decrease with increasing ses
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catabolic driving force. In other words, the faster
microbes grow, the lower the energy gradient that
drives this growth. This observation, however, holds
for conditions during which catabolism exhibits rather
drastic changes, from pure respiration at low growth
rates to largely fermentation at high growth rates.
For growth in batch cultures on different substrate
concentrations, however, it was shown that the lin-
ear converter model yielded very good results, which
indeed fit the data better than a simple Monod equa-
tion [53]. It can therefore be hypothesized that the
linear energy converter model is adequate as long as
the catabolic mode does not change, and thus the
driving force is mainly influenced by substrate con-
centration, but fails as too simplistic if experimen-
tal conditions encompass a change of catabolic path-
ways.

An interesting observation is that the output powers
scale approximately linear with growth rate, and that
the proportionality is very similar for two organisms
as different as the bacterium FE. coli and the eukary-
ote S. cerevisiae. For the anabolic power (growth rate
times anabolic driving force), this result is trivial be-
cause we assumed the anabolic force, —A,n. G, to be
constant. However, for the catabolic power (nutri-
ent consumption rate for catabolism times catabolic
driving force), this result is far from obvious. For
technical systems, such as ships [3], bikes, cars or
trains (see, [19] Chapter IITA), the power increases
over-proportionally with speed, approaching an ap-
proximately quadratic relationship. The linear power-
growth rate relationship entails that, employing engi-
neering terms, a “resistance” that needs to be over-
come by the thermodynamic driving forces when pro-
ducing new biomass is a constant rather than depen-
dent on the biomass production rate. Moreover, the
force, corresponding to the slope of the power-growth
rate curves, appears to be the same for F. coli and
S. cerevisiae. Whether these laws are of a universal
nature remains to be tested with systematic exper-
iments of more microbial species grown on different
nutrient sources.

In summary, we could show how combining black-
box macrochemical approaches and genome-scale
metabolic models can help to systematically char-
acterise catabolic routes and find separate chemical
equations for anabolism and catabolism. Interpreting
experimental data from chemostats with our theoreti-
cal models reveals that the efficiency of catabolism ap-
pears optimal, both for E. coli and the yeast S. cere-
visiae, over a wide range of growth rates. Moreover,
our analyses allow us to speculate that the linear
power-growth rate relationship is a universal property
of microbial growth.
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Theory and Methods

Calculating elementary conversion modes

Elementary conversion modes (ECMs, [44]) are a fast
way to describe metabolic capabilities of an organism.
We calculated ECMs to thermodynamically charac-
terize all catabolic routes for three metabolic models,
the E. coli core model [26], the genome-scale model
iJR904 for E. coli str. K-12 substr. MG1655 [30], and ®2
the genome-scale model iND750 for the yeast S. cere-®
visiae [9], using ecmtool [6, 5]. For the genome-scale
models, we hid all external metabolites that contain
phosphate, sulfur, or nitrogen and dismissed all com-
pounds with more than six carbon atoms. These steps
reduced the number of the catabolic routes consider-
ably and allowed the calculations to be performed in a **
reasonable time. For the two genome-scale networks, *
we focused as input (carbon source) for ecmtool on“*
simple sugars and carboxylic acids (glucose, xylose, *
pyruvate, 2-oxoglutarate). Moreover, we allowed oxy- o8
gen to be present. The output of ecmtool is a ma- g
trix, in which the rows are the respective elementary s,
conversion modes, and the columns are all external
metabolites that were not hidden. For the E. coli
core network [26], no metabolite had to be hidden,
and thus the full catabolic potential of the core net-
work could be described.

651

652

Estimating Gibbs free energy of reaction -

To approximate the standard Gibbs free energy of re-
action (AcatG?) for each obtained ECM, we used the -
Python API of the eQuilibrator tool [24]. We ex-
tracted the Gibbs free energies of formation (A¢G®) s
for all external metabolites involved in an ECM. Next,
we normalized the ECMs with respect to the car- 7
bon atoms of the carbon source (C-mol) and applied 658
a Laplace transformation, adapting for temperature
(298.15 K), pH (7.4), pMg (3.0), and ionic strength
(0.25 M). We used Hess’s law to calculate the standard
Gibbs free energy of reaction for each ECM,

655

659

AcatC:O = Z ViAnga
i=1

(13)

660

661

662
where v; and A¢G7 are the stoichometric coefficient sss
and the Gibbs free energy of formation of the i*® ex-
ternal compound in the ECM, respectively.

For the calculation of the maximal ATP production
for an ECM, we constrained all external fluxes to the
values of the respective ECMs while maximizing ATP ess
hydrolysis (excluding ATP maintenance): 665

Ebenhdh etal. | Thermodynamics of microbial metabolism

maximize VATPM,

such that N-v =0
Vi ex = v; for i € ECM,
vjex =0 for j ¢ ECM

(14)

where N is the stoichiometric matrix of the metabolic
model, varpy is the flux through the reaction

ATP +H>O — ADP +Pi, (15)

and v; ox are fluxes through the reaction exchanging
metabolite 7, which is constrained to the stoichiomet-
ric coefficient v; obtained by the respective ECM. The
stoichiometric coefficients are normalised to one car-
bon mole substrate.

The thermodynamic efficiency of ATP production cal-
culates as

__ CATP" A1"GYATPase
|AcatG|

(16)

For the Gibbs free energy of ATP synthesis, we
used a typical value for E.coli of A.GATPase =
46.5kJmol ~! [42].

Calculating the stoichiometry of anabolism

We assume that the substrate [S] has the nor-
malised sum formula CH,O, and the biomass [X] has
CH,OpN,, and that the biomass is more reduced than
the substrate, i.e.

vs=4+x—2y<vx =4+a—2b—3c. (17)
We assume an overall stoichiometry of
b1 [S] + b2 NH3 — [X] 4+ b3 CO2 + by HoO. (18)

Every carbon that is converted to biomass will have
to be reduced by yx —g. From the overall redox bal-
ance it follows that for each carbon that is converted
into biomass,

py = 1X 7S

Vs (19)

carbons have to be oxidised to COs. From the carbon
balance of (18) it follows that

bioRxiv | 9


https://doi.org/10.1101/2023.12.01.569601
http://creativecommons.org/licenses/by/4.0/

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.01.569601; this version posted December 4, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

694

1 5
br=1+4b3 =y (20) "
X/S
The nitrogen and hydrogen balances entail
that
b 3bgy —
bo—b and by— ATEORTO L gqyee

2

It is straight-forward to generalise these calcula-
tions to include sulfur and phosphorus into the
biomass.

Calcuating the optimal anabolic reaction

To determine the maximal yield and the minimal ATP 7
98

. . . 6!
requirement for biomass formation, we perform two

subsequent linear programs. First, the exchange re- o
700
actions are constrained, such that only the carbon

source (substrate) and oxygen can be imported (nega- "

tive flux), but other metabolites can be released (pos- .
itive flux). The biomass reaction is constrained to

one carbon mole per unit time. The ATP hydrolysis o
705

reaction is not constrained, which means it can run

in reverse and provide ATP. Subsequently, substrate e
import (negative) is maximized:

707
708
709

. 710
mMaxXimlze Usybstrate,exs

such that N-v =0

71"

Ubiomass = 1, (22)
— 00 < Ugubstrate,ex <0

—00 < VOy,ex <0

0 < wj.ex < 00 for other metabolites

The resulting optimal flux is negative, and the abso-

lute value denotes the minimal substrate requirement 5
to produce one carbon mole of biomass, if ATP is,,

provided in abundance.

In a second step, the determined minimal substrate
requirement U;)Skt)strate is fixed, and the ATP require-
ment is minimized by maximizing the (negative) flux

through reaction (15):

maximize VATPM,
such that N-v =0

Ubiomass = 1,

715

 opt (23)
VUsubstrate,ex — VUgybstrate 716
—00 < V0y,ex <0 w
0 < vjex < 00 for other metabolites 718

719

The absolute value of the optimal flux, [vaTpMm| gives 7o

minimal ATP requirement for the production of one 7

carbon mole biomass. 722
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702

3

712

Calculating the stoichiometry of catabolism
Macrochemical equations of the form

[S] + a1 Og +cag NHg ——

(24)
a9 [X] + a3 CoHsOH 4 ag CO2 4 a5 Ho O,
for S. cerevisiae (see [31]) and
S 0) NH3 —
[S]+ a1 Oz +caz NH; (25)

a9 [X] + a3 CH3COOH + a4 CO2 + a5 H2 O,

for E. coli were obtained from the original publica-
tions. Here, we use the notation [S] for one carbon
mole of substrate and [X] for one carbon mole of
biomass. The sum formula of biomass is assumed to
be given by CH,O,N, (hence the factor ¢ in the stoi-
chiometry of NHj), and is given in both cases in the
original publication. The stoichiometric coefficients
were obtained as follows. For S. cerevisiae, Table 1
in [31] already provides the stoichiometric coefficients
for Eq. (24), which were, for our calculations, con-
verted into carbon moles. For E. coli, we converted
data from Table 2 in [15], which is given in gg='h~!
to C-mol C-mol~! h™!, using the molecular weights of
the chemical compounds as well as the biomass, nor-
malised to one carbon mole.

The coefficients for the catabolic reaction

c1 [S] +¢909 — ¢3C0O2 + ¢4 CoH50H + ¢5s Ho O
(26)

are simply determined by calculating (24) — aq - (18),
resulting in the coefficients

c1=1-bjas (27)
o =a (28)
C3 = (g — b3a2 (29)
C4 = Q3 (30)
cs = a5 — byao. (31)

Subsequently, it is convenient to normalise this equa-
tion to the consumption of one carbon mole of sub-
strate, i.e. dividing all coefficients by ¢ .

In the case of F. coli, acetate was excreted instead
of ethanol at the onset of overflow metabolism [15].
In the calculation, ethanol can simply be replaced
by acetic acid and the calculation remains identi-
cal.
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