
1 

 

 

Distance-AF: Modifying Predicted Protein Structure Models by Alphafold2 with User-

Specified Distance Constraints 

 

Yuanyuan Zhang1, Zicong Zhang1, Yuki Kagaya2, Genki Terashi2, Bowen Zhao3, Yi Xiong3 & 

Daisuke Kihara1,2*
 

 

1 Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907, USA 

2 Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA 

3 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, 

Shanghai Jiao Tong University, Shanghai, 200240, China 

 

 

* Corresponding author:  

E-mail: dkihara@purdue.edu 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 

The three-dimensional structure of a protein plays a fundamental role in determining its function 
and has an essential impact on understanding biological processes. Despite significant progress in 
protein structure prediction, such as AlphaFold2, challenges remain on those hard targets that 
Alphafold2 does not often perform well due to the complex folding of protein and a large number 
of possible conformations. Here we present a modified version of the AlphaFold2, called Distance-
AF, which aims to improve the performance of AlphaFold2 by including distance constraints as 
input information. Distance-AF uses AlphaFold2's predicted structure as a starting point and 
incorporates distance constraints between amino acids to adjust folding of the protein structure 
until it meets the constraints. Distance-AF can correct the domain orientation on challenging 
targets, leading to more accurate structures with a lower root mean square deviation (RMSD). The 
ability of Distance-AF is also useful in fitting protein structures into cryo-electron microscopy 
maps.  
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Introduction 

Protein structure prediction is an important and challenging problems. Prior to Critical Assessment 
of Protein Structure Prediction (CASP13), traditional methods like I-Tasser [1], FragFold [2] are 
based on fragments derived from homologous structures to predict protein structures.  With the 
development of deep learning, methods such as CONFOLD2[3], RaptorX[4] have emerged, which 
improved the prediction performance. Furthermore, notable methods like AlphaFold [5], 
developed for CASP13, have shown impressive performance. This progress was further amplified 
in CASP14 [6], where AlphaFold2[7] and RoseTTAFold[8] made further improvement in the 
modeling accuracy. AlphaFold2 is a deep learning-based model that has gathered significant 
attention due to its notable performance in CASP14. It outperformed other methods and achieved 
unprecedented accuracy in predicting protein structures. Its ability to accurately capture the 
intricate folding patterns of proteins has been exemplified for better understanding protein function 
and aiding drug discovery efforts. 

Despite its impressive performance, it is important to note that AlphaFold2 is not always 
successful. It still encounters challenges in predicting the structures of certain proteins. The 
complex nature of protein folding, with its intricate energy landscapes and conformational 
diversity, presents inherent difficulties even for AlphaFold2. AlphaFold2 performs proficiency in 
accurately predicting individual domain structure, it may encounter challenges in accurately 
determining domain orientations. Therefore, further improvements are required to enhance its 
ability to correctly predict the spatial arrangement and orientations of these domains within the 
overall protein structure. 

Here, we propose Distance-AF, a novel deep learning-based approach that builds upon the 
structure module of AlphaFold2 by incorporating additional information of distances between 
amino acids. By considering the precise distances between amino acids, we exploit the inherent 
spatial relationships present in proteins and construct a comprehensive distance matrix.  This 
matrix plays a vital role in accurately predicting the intricate 3D structures of proteins within the 
Distance-AF framework. By utilizing limited number of distance constraints and taking the single 
and pair embeddings from AlphaFold2, Distance-AF effectively captures the geometric 
relationships between amino acids and significantly enhances the accuracy of predicted protein 
structures obtained solely from AlphaFold2 in an iteratively optimization way. Through rigorous 
evaluation and in-depth analysis, we show the remarkable performance of Distance-AF compared 
to existing methods on multiple evaluation scores on 25 targets. Furthermore, to demonstrate the 
wide practical applications of Distance-AF, our evaluation encompasses diverse protein targets, 
including the challenging category of G-protein coupled receptors (GPCRs), targets derived from 
Cryo-EM maps and multiple ensembled NMR targets.  

Methods 

Overview of Distance-AF  

AlphaFold2 leverages search mechanism against clustered protein sequences databases to gather 
information from multiple sequences alignment. The sequential information is encoded into both 
single and pair representations using the Evoformer module. The single representation contains 
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encoding at the residue level, while the pair representation embeds geometric distance information 
between pairs of amino acids. Built upon AlphaFold2, for a given sequence, Distance-AF takes 
single and pair representations, distance constraints as input, and predicts the 3D protein structure 
. In general, it operates in 2 steps. First, single and pair representations pass through structure 
module, to complete 3D structure prediction, which is regarded as the initial structure; second, 
distance constraints are incorporated to enhance the accuracy of the 3D structure prediction on the 
top of initial structure. This is achieved by calculating the loss function, which quantifies the 
discrepancy of the computed distances between amino acids in the predicted protein structure and 
the provided distance constraints. This information is iteratively backpropagated to optimize the 
parameters in the neural network in of IPA module, ensuring that the predicted structure adheres 
to the given distance constraints. The framework of Distance-AF is illustrated in Fig 1. 

 

Fig 1. Overall framework of Distance-AF consists of two phases. In Phase one, the method takes the protein 
sequence as input and performs multiple sequence alignment (MSA)[9] and template search against 
databases. The MSA and template features are then embedded and paired into two embeddings, MSA and 
pair representations. The evoformer with axial self-attention layers, utilizing frozen weights from 
AlphaFold2, processes the representations and generates single representation and pair representation as 
the final output of Phase one. Phase two of Distance-AF begins with inputting the two representations 
obtained from Phase one into the structure module. This module updates the backbone frames and single 
representation using invariant point attention layers and predicts atom-level 3D coordinates. To refine the 
predicted structure, distance constraints are introduced, which are defined as Euclidean distance on pairs of 
residues at the C³ atoms. Subsequently, the backbone is adjusted to meet these distance constraints. Once 
the moved backbone satisfies the constraints, the restoration of the sidechain structure is initiated using the 
local initial structure and ultimately leading to improved predictions that align closely with the native 
structure. 

Representations generation 
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To obtain single and pair representations, we utilize the AlphaFold2 framework. The general 
process in AlphaFold2 begins by inputting a protein sequence, which undergoes a database search. 
This search provides valuable insights into the co-evolutionary patterns of amino acids. The 
subsequent evoformer layers, equipped with an attention mechanism, learn and encode residue 
interactions into representations. Finally, the framework outputs the single and pair 
representations. One notable advantage of our pipeline is the consideration of the substantial time 
required to generate MSAs. We employ MSA search on the Uniref30 database[10] instead of 
searching the full database (Mgnify[11], Uniref90[12], Uniclust30[10], and BFD) within 
AlphaFold2, which saves much time.  

Distance constraints definition 

For specific protein structures, the desired distance constraints used by Distance-AF are defined 
as the expected Euclidean distances between pairs of �� atoms at amino acids. These distance 
constraints can be derived from experimental methods like cryo-electron microscopy (cryo-
EM)[13], nuclear magnetic resonance spectroscopy (NMR)[14], or chemical cross-linking[15]. In 
Distance-AF, distance constraints serve as important guidance during the modelling process, 
improving the accuracy and reliability of the predicted 3D structure. They ensure that the generated 
structures adhere to the experimentally observed spatial relationships between amino acids.  

Iteratively overfitting on Distance-AF 

Distance-AF employs an overfitting mechanism, iteratively updating network parameters until the 
predicted structure satisfies the given distance constraints. This iterative process allows the model 
to fine-tune its predictions, aligning them more accurately with the actual distances between amino 
acids. Thus, for various targets, Distance-AF eventually generates diverse sets of parameters 
tailored to specific targets, enabling it to effectively capture the unique characteristics of each 
protein. The whole procedures include the following steps, first, single and pair representation are 
as input into structure module, which predict the 3D protein structure; second, the coordinates of 
the ��  atoms corresponding to given distance constraints are predicted; next, the predicted 
distances between pairs of �� atoms are regarded as the divergence between the predicted and 
native structures by comparing to given distance constraints. To minimize the divergence and 
achieve the goal that predicted distances are supposed to be as close as possible to native distances, 
we define a new loss function called distance loss as Eq 1. shows: 

�!"# = $

%
3 (�" 2	�"&)'%
"($                                                       (1) 

Where �"  is the native distance on the pair of ��  atoms, �"&  is measured distance on 
predicted structure at the same pair of �� atoms.	� is the number of distance constraints. �!"# is 
integrated into final loss function with various weights during different optimization stages. 

The final loss function comprises four components. The first part is the distance loss in Eq 
1., which involves iteratively adjusting the positions of �� atoms to satisfy the specified distance 
constraints. The second component is the modified Frame aligned point error (FAPE) loss from 
AlphaFold2[7], which prevents the local structure from being destroyed during the optimization 
process driven by the distance loss function. This is necessary as the local 3D structure may be 
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compromised when the network is optimized solely for distance constraints. The third component 
is the angle loss, referring to the loss function that penalizes the deviation of predicted torsion 
angles, including �,�,� for backbone and �$, �', �), �*dihedral angles at sidechain. The fourth 
is the violation loss, related to structural violation in the predicted structure. Violation loss 
penalizes unidealized bond lengths, peptide bond angles and atom clashes, the distance between 
non-boned atoms inconsistent with physical properties[7]. In Distance-AF, as the true positions 
are unknown, we take the original structure predicted by AlphaFold2 as the pseudo-true positions 
in FAPE, angle and violation loss. Considering the various consequences of whether distance 
constraints are satisfied for the overall network optimization, Distance-AF uses dynamic weights 
to reweight each loss function at various phases. Eq. 2 shows the details about loss function. 

� =
«¬
«
¬§1.0 7 �!"# +	�+,-. +	�,/01. + �2"3																	�!"# > 10
2.0 7 �!"# +	�+,-. +	�,/01. + �2"3								5 < 	 �!"# < 10
4.0 7 �!"# +	�+,-. +	�,/01. + �2"3									1 < 		 �!"# < 5
1.0 7 �!"# + 10 7	�+,-. +	�,/01. + �2"3										�!"# < 1

                              (2) 

In Eq.2, the weights of �!"# and �+,-. change flexibly with the value of �!"# . When �!"# 
is greater than 10, which taking a large portion dominates the backpropagation process to optimize 
it. Thus, we assign it a small weight to avoid unbalanced parameter updates leading to local 
structure distortion. When �!"#  is at the range of 1 to 10, the distances in prediction are still 
unsatisfied to given constraints, so we add some weights to �!"#, expecting the neural network to 
still focus on optimizing distance loss. While �!"# achieves to ideal values, less than 1.0, meaning 
the predicted distances are almost satisfy given distance constraints, we lower down the weights 
of �!"# and emphasize on �+,-., with the goal that more efforts in backpropagation lead to local 

structure reconstruction in avoidance of too strict distance consistency at current stage. 

In particular, when utilizing Distance-AF for structure prediction on targets with defined 
distance constraints spanning distinct domains, it becomes imperative to address potential domain 
motion. In these instances, the FAPE (Frame Aligned Point Error) loss within the Distance-AF 
framework is adapted to exclusively calculate loss for residues within the same domain. 

Domain motion encompasses the structural shifts or relative displacements between 
discrete domains within a protein which holds substantial impact over the overall protein structure 
and its functional kinetics. However, when combined with the distance loss in Eq1, FAPE loss 
introduces a counterproductive effect by incorporating the loss between residues from different 
domains, effectively constraining the movement and compelling it back to its initial position. To 
resolve this problem, the formulation of FAPE loss within the Distance-AF framework is 
customized to specifically compute loss for interactions occurring within the confines of a single 
domain. This adjustment in the training process places greater emphasis on accurately situating 
and assembling fragments within each domain independently, all the while preserving the capacity 
for domain motion and flexibility.  

Overall, the modification of the FAPE loss in the Distance-AF framework to compute loss 
for intra-domain interactions when distance constraints are defined on different domains represents 
a crucial adaptation. To achieve the modified version of FAPE loss, the domain separation will be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569498doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.01.569498
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

passed to Distance-AF, this allows Distance-AF to differentiate between different domains and 
treat them as separate components by masking the parts related to inter-domain loss computation. 
The detailed pseudo-code of modified FAPE loss is as Fig 2. shows. 

 

Fig 2. The algorithm of modified FAPE loss only considering the residues belonging to intra-domain. As it 
is shown in line 3, those values calculated but associated with amino acids from different domains would 
be masked as 0 to avoid pulling the domain movement back achieved by distance loss. 

For other network settings of training Distance-AF, the network depth of structure module 
is 8, the learning rate is 0.001 using the Adam optimizer with �$ = 0.9 and �' = 0.99, controlling 
the exponential decay rate for the moving average of the first-order moment (mean) and second-
order moment (variance) of the gradients. 

Evaluation metric 

To evaluate the performance of Distance-AF, several evaluation scores are considered. These 
include Full-atom RMSD (Root Mean Square Deviation)[16], which measures the similarity 
between the predicted protein structure and the native structure at the level of individual atoms. 
The TM-score[17], which ranges from 0 to 1, is based on structural template comparison and 
calculates the RMSD between the aligned C³ atoms of the two structures. It is then normalized by 
a scaling factor that accounts for the length of the protein. Another criterion is GDT-TS[18], which 
assesses similarity by measuring the percentage of residues in the predicted structure that fall 
within specific distance thresholds compared to the native structure. These distance thresholds are 
typically set at 1, 2, 4, and 8 Å. A higher GDT-TS score indicates that the predicted residues are 
closer to the reference residues. Additionally, GDT-HA[18] calculates the percentage of residues 
in the predicted structure that fall within stricter distance thresholds compared to the reference 
structure. These distance thresholds are typically set at 0.5, 1, 2, and 4 Å. The aim of GDT-HA is 
to identify residues in the predicted structure that are extremely close to the reference structure, 
reflecting a high degree of accuracy. 

 

Results 

To demonstrate the performance of Distance-AF, we initially benchmarked it against 25 targets. 
This benchmarking process involved comparing Distance-AF to AlphaFold2[7] and Rosetta[19] 
using the four criteria above. Following the benchmarking, we provide the visualization of 
examples predicted by Distance-AF, which serve to highlight the model's accuracy and high-

Algorithm 1 Intra-Domain FAPE Loss(domain1, domain2, ~xpred, ~xinitial, Tpred, Tinitial,/ = 10−4Å2)

1: ~xpred local = T−1
pred � ~xpred

2: ~xinitial local = T−1
initial � ~xinitial

3: ~xpred local, ~xinitial local 2 RL×L×3

4: d =
q

k~xpred local � ~xinitial localk
2
+ /

5: di,j = 0, i 2 domain1, j 2 domain2 & i 2 domain2, j 2 domain1

6: LFAPE = 1
10meani,j(min(10, di,j))

7: return LFAPE
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quality predictions. Finally, we explore the implications of Distance-AF within the realm of 
GPCRs (G-protein coupled receptors)[20], Cryo-EM deposited and NMR targets with 
ensembles[21]. 

Dataset construction 

Thirty-eight protein monomers are selected from the Protein Data Bank (PDB)[22] for 
benchmarking and application purposes. Among these, twenty-five are normal monomer entries 
as general evaluation, further for application assessment, five are GPCRs, five are associated with 
EMDB, and the rest 3 are protein ensembled targets. The selection of targets follows specific 
criteria. For normal monomer entries, first, all targets are searched from the AlphaFold2 
Database[23], where AlphaFold2 is unable to predict accurately with RMSD values greater than 

10 +, second, these targets are filtered based on their average pLDDT score in descending order, 
ensuring a high quality of local structure prediction by AlphaFold2. Thirdly, most of the selected 
targets contain two distinct domain regions, aiming to correct any shifted domain causing a larger 
RMSD using Distance-AF. For GPCR cases, as the conformation change differs slightly between 
active and inactive states with much smaller RMSD, we select those whose structural 
rearrangement is folded incorrectly visually. For targets associated with Cryo-EM maps, those 
with predicted structures by AlphaFold2 falling outside the volume are considered. The last three 
targets are structural ensembles of intrinsically disordered proteins (IDPs) chosen from Protein 
Ensemble Database (PED)[21], where the structural variations are all about domain conformations 
change. 

Comparison to AlphaFold2  

In Distance-AF, several distance constraints are selected in advance before running. For typical 
targets, we choose 6 distance constraints for them. For the 25 targets under benchmarking, all of 
them contain 2 separate domains. So, while selecting distance constraints for them, each distance 
constraint connects 2 �� atoms from different domains. About the strategy to choosing distance 
constraints, we follow 2 rules. First, considering the targets have different oriented domains, some 
desired distances deviate significantly from the ones in the initial predicted structure. Therefore, 
the selected distance constraints are expected to provide such divergent information, with the 
difference between distances and initial distances being as large as possible. Second, since 
Distance-AF aims to move the whole domains to ideal conformation in line with the given distance 
constraints, it is better that the geometric distribution of selected distance constraints covers a large 
portion of the moved domain. Following the idea of constraint selection, we sampled 6 distance 
constraints for the 25 targets and run with Distance-AF. The benchmarking results are shown in 
Fig 3. 

Fig 3 a,b,c,d depict four summarized scatter plots that are directly related to RMSD, TM-
score, GDT-TS, and GDT-HA evaluations across the 25 examples on Distance-AF and 
AlphaFold2. These scatter plots provide a visual distribution of these metrics, by examining the 
patterns and trends displayed in these plots. It is evident that Distance-AF outperforms AlphaFold2 
across all four evaluation scores for the 25 targets considered. To be specific, Distance-AF 
successfully improves the RMSDs for all 25 targets to 10 Å below, even 18 out of 25 are under 5 
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Å, meaning the high quality of predicted structures by Distance-AF, while AlphaFold2 produces 
the 25 structures with RMSD greater than 10 Å generally. As for TM-score, Distance-AF also 
outperforms AlphaFold2, with 16 out of 25 targets achieve TM-score more than 0.8, while 
AlphaFold2 has only 3 targets above 0.8. Additionally, Distance-AF also wins at GDT-TS on all 
25 targets, and 15 out of 25 cases with the structures predicted by Distance-AF obtain relatively 
higher GDT-TS at above 0.7, compared to 4 out of 25 on AlphaFold2. For GDT-HA, Distance-AF 
outperforms on 20 among 25 targets compared to AlphaFold2.  

Comparison to Rosetta 

Rosetta[19, 24, 25] is a powerful computational tool extensively developed for protein structure 
refinement, particularly in the presence of distance constraints. Its incorporation of distance 
constraints enhances the accuracy of protein structure predictions, guiding the conformational 
sampling process and allowing Rosetta to explore the vast conformational space more effectively. 
Leveraging energy-based scoring functions and sophisticated sampling strategies, Rosetta 
optimizes the agreement between predicted protein structures and experimental distance 
constraints, ultimately improving the accuracy and reliability of protein structures. To demonstrate 
the performance of Distance-AF, we run Rosetta on the 25 cases we have experimented on with 
the same distance constraints. The version we used is Rosetta 3.13, which is downloaded from the 

official website of RosettaCommons[24, 25].We considered multiple factors that may be related 

to Rosetta9s performance while in evaluation. First, considering that the refined structures from 
Rosetta diverse a lot under a variety of Monte Carlo searching directions, we allow Rosetta to 
generate 10 structures for each target and choose the best one with lowest energy score to compare 
against Distance-AF. Second, a parameter called distance constraint weight to be set manually in 
Rosetta also plays a vital role in final structure. To find out the most appropriate weight to produce 
the best structure for Rosetta, we tested 5 values for it, 0.01, 0.1, 1.0(default set by Rosetta), 5.0 
and 10.0 on several targets. By checking and comparing the quality structures, eventually we 
decided to use 0.1 which performed best than other values generally. The performance comparison 
on 4 metrics has been shown in Fig 3. e, f, g, h, which specifically corresponds to full-atom RMSD, 
TM-score, GDT-TS and GDT-HA. For both RMSD and TM-score, there are 19 targets which 
Distance-AF works better than Rosetta. If we focus on those structures which are predicted with 
high quality, which are with RMSD less than 5 Å, Distance-AF succeeds on 18 targets against 
Rosetta on 13. Meanwhile, with TM-score of 0.8 as a cut-off, Distance-AF have 16 targets at this 
range while Rosetta only manages on 11 targets. Then for GDT-TS Distance-AF predicts more 
accurate structures than Rosetta on 20 out of 25 cases in terms of GDT-TS, with 15 targets get 0.7 
or higher GDT-TS score, 4 more than Rosetta. Finally at GDT-HA, Rosetta works worse than 
Distance-AF that Distance-AF wins 22 targets. There are 7 targets with GDT-HA above 0.7 for 
Distance-AF, but none for Rosetta. 
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Fig 3. Benchmarking on the 25 monomer targets, a. comparison of Distance-AF(x-axis) and AlphaFold2 
(y-axis) about RMSD; b. comparison of Distance-AF(x-axis) and AlphaFold2 (y-axis) about TM-score,; c. 
comparison of Distance-AF(x-axis) and AlphaFold2 (y-axis) about GDT-TS; d. comparison of Distance-
AF(x-axis) and AlphaFold2 (y-axis) about GDT-HA. To summarize for a,b,c,d, Distance-AF shows 
superior performance on all targets than AlphaFold2 on all 25 targets at RMSD, TM-Score and GDT-TS, 
while AlphaFold2 slightly outperforms Distance-AF at 5 targets on GDT-HA. Next, e. comparison between 
Distance-AF(x-axis) and Rosetta(y-axis), Distance-AF performed better at 19 out of 25 targets than Rosetta 
on RMSD; f. comparison about TM-score of Distance-AF(x-axis) and Rosetta(y-axis), which shows the 
similar trend to RMSD, Distance-AF wins on 19 targets; g. the comparison about GDT-TS between 
Distance-AF(x-axis) and Rosetta(y-axis), for this metric, Distance-AF works better at 20 out of 25 targets; 
h. the comparison about GDT-HA between Distance-AF(x-axis) and Rosetta(y-axis), Distance-AF beats 
Rosetta on 22 out of 25 targets. 

Case study of predicted structures 

Fig 4 shows 4 example cases. The reference structures are in green, and the predicted models are 
shown with different colors, AlphaFold2 is in cyan, and Distance-AF is in magenta. Chain B of 
6VW7(Figure 4 a.), chain B of 1NT2 (Figure 4 b.), chain A of 1IXC (Figure 4 c.) and chain A of 
2BJ7 (Figure 4 d.) are predicted almost perfectly by Distance-AF with an RMSD of 1.835 Å, 2.389 
Å, 1.958 Å and 2.278 Å, respectively. AlphaFold2 struggled with the prediction but on very large 
RMSD values at 18.690 Å, 13.097 Å, 16.328 Å and 11.829 Å, with clear wrong domain orientation. 
With the given 6 distance constraints defining on residues from different domains, Distance-AF 
correct the wrong domain orientation into a near-native way. 

a. b. c. d.

e. f. g. h.

Full-atom RMSD TM-Score GDT-TS GDT-HA
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Fig 4. Examples for case study, whose RMSD are greater than 10 + on AlphaFold2's predicted 
structures. Distance-AF shows substantial improvement overAlphaFold2 with significantly lower RMSD 
and are with much higher agreement with reference structures. a. Distance-AF performs much better than 
AlphaFold2 by decreasing the full-atom RMSD into 1.835 +, with a difference of 16.865 + on the chain B 
of 6V7W. b. The structure predicted by Distance-AF on chain B of 1NT2, has 9.551 + of full-atom RMSD 
lower than the one predicted by AlphaFold2. c. For chain A of 1IXC, Distance-AF outperform AlphaFold2 
by producing near native structure with only 1.958 + against that of 16.328 + by AlphaFold2. d. This is an 
example of chain A of 2BJ7, the predicted structure by Distance-AF is more accurate by reducing the 
RMSD of 10.608 + from the one by AlphaFold2. 

Implications of Distance-AF to structures deposited from Cryo-EM 

We found that although AlphaFold2 generally performs well in predicting protein structures, there 
are instances where it produces incorrect predictions. This becomes evident when comparing the 
predicted structures to experimentally determined structures obtained from Cryo-EM maps. These 
high-resolution experimental structures serve as reliable references for assessing the accuracy of 
protein predictions. In order to evaluate the ability of Distance-AF to address the limitations of 
AlphaFold2 on these targets, we choose several such cases and run Distance-AF and then evaluate 
the performance. 

In Figure 5, native structures are depicted in green with a cartoon representation. The 
structures in cyan represent predictions generated by AlphaFold2, exhibiting higher RMSD values 
and domain inconsistency. Conversely, structures in magenta correspond to predictions made by 
Distance-AF. These demonstrate improved alignment with the native structure, resulting in an 
enhanced overall match between the predicted structure and the cryo-EM density. 

a. 6V7W: B

1NT2: B

b.

c. 1IXC: A
d. 2BJ7: A

+

+

+

+

+
+

+

+
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Fig 5. Examples of Cryo-EM deposited structures. The left side shows native structures; the middle part 
displays initial structures predicted by AlphaFold2, and the right side is final structures predicted by 
Distance-AF. Specifically, a. Crystal structure of VP6 (PDB:1QHD_A), EMD1461 with resolution of 3.8 
Å. The predicted structure by AlphaFold2 results in RMSD of 8.023Å, while Distance-AF improves RMSD 
to 3.246 Å. b. Cryo-EM structure of EMD 23087, with reported resolution at 4.4 Å(PDB:7KZR_A). 
Distance-AF improved the structure by achieving much lower RMSD into 10.598 Å by 27.132 Å. c. Cryo-

a.

b.

c.

d.

e.

Native Structure
Predicted Structure by 
AlphaFold2

Predicted Structure by 
Distance-AF

RMSD: 8.023 Å RMSD: 3.246 Å
EMD_1461, resolution: 3.8 Å
PDB: 1QHD, chain A

RMSD: 37.730 Å RMSD: 10.598 Å
EMD_23087, resolution: 4.4 Å
PDB: 7KZR, chain A

RMSD: 8.319 Å RMSD: 2.502 Å
EMD_32773, resolution: 3.9 Å
PDB: 7WTA, chain A

RMSD: 11.119 Å RMSD:  3.304 Å
EMD_12977, resolution: 3.0 Å
PDB: 7OLD, chain C

RMSD: 10.398 Å RMSD:  3.464 Å
EMD_15803, resolution: 3.2 Å
PDB: 8B1R, chain B
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EM structures of human pyruvate carboxylase in apo state with EMD32773 with reported resolution of 3.9 
Å (PDB:7WTA_A). Distance-AF successfully lower down RMSD to 2.502 Å. Specifically, in b. and c, 
those structures are detected as missing residues are masked for better visualization. d. The high-resolution 
cryo-EM structures of EMD12977 at 3.0 Å (PDB: 7OLD_C). The full atom RMSD on predicted structure 
by AlphaFold2 is 11.119 Å, in comparison to the one by Distance-AF with 3.304 Å. e. The Structure of 
EMD15803 at resolution 3.2 Å (PDB: 8B1R_B). Distance-AF predicted at 3.431 Å on RMSD for it but 
AlphaFold2 produces the structure with RMSD of 10.398 Å. 

The first example, illustrated in Figure 5, is derived from PDB 1QHD, specifically from 
chain A, representing the crystal protein structure of VP6 at a resolution of 3.8 Å. Distance-AF 
demonstrates notable improvement in the predicted structure, yielding an RMSD of only 3.246 Å. 
The second example is a target with 1600 residues, identified by the PDB ID 7KZR on chain A, 
obtained from EMD-23087, with a reported resolution of 4.4 Å. AlphaFold2 exhibits much worse 
performance in terms of RMSD, resulting in a value of 37.730 Å. A large domain is notably 
misaligned, nearly extending beyond the designated region. Distance-AF, on the other hand, 
successfully predicts the large domain within the correct region, thereby rectifying its alignment 
within the density. This leads to an RMSD value of 10.598 Å. However, it's worth noting that the 
relatively elevated RMSD value for the Distance-AF predicted structure in this instance primarily 
stems from the inaccuracies in local structures predicted by AlphaFold2, an issue that Distance-
AF is unable to rectify. The third example, involving chain A from 7WTA, has two distinct 
domains, corresponding to EMD-32773, with a resolution of 3.9 Å. The structure of human 
pyruvate carboxylase in the apo state is represented. AlphaFold2's predicted structures yield an 
RMSD of 8.319 Å, with the smaller domain falling outside the designated volume, indicating 
inconsistency with the native structure. In contrast, Distance-AF produces more promising 
structure, attaining a significantly lower RMSD of 2.502 Å. The fourth example is derived from 
chain C from PDB 7OLD, deposited from EMD-12977, with a resolution of 3 Å. While 
AlphaFold2 excels at the individual domain level, one of the domains folds in a manner that 
compresses towards another, resulting in certain regions mislocating outside the density. This leads 
to a high RMSD value of 11.119 Å. Distance-AF proves effective in this case by extending the 
compressed domain to a reasonable level within the volume, thereby lowering the RMSD to 3.304 
Å. The final example, selected from chain B of 8B1R, is the DNA binding protein structure of 
RecBCD in complex with the phage protein gp5.9. This protein is deposited from EMD-15803 
with a resolution of 3.2 Å. AlphaFold2 encounters difficulty in predicting one of the domains, 
which shifts beyond the range of density, resulting in an RMSD of 10.398 Å. In comparison, the 
structure predicted by Distance-AF demonstrates an RMSD of only 3.431 Å. 

Exploration of Distance-AF to GPCRs 

G protein-coupled receptors (GPCRs) are known to undergo structural shifts upon activation or 
ligand binding, leading to changes in how specific regions within the receptor are arranged in space. 
These shifts often involve the movement or reorganization of distinct domains or subunits within 
the receptor, which subsequently bring about functional alterations in signal transduction. In order 
to thoroughly investigate the potential of Distance-AF, we conducted extensive experiments on 
GPCRs, with a particular emphasis on the structural changes associated with the transition between 
active and inactive states, as well as the adjustment of structures to conform to either active or 
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inactive states. Our findings clearly demonstrated that Distance-AF effectively captured these 
structural alterations and exhibited proficiency in predicting the alternate states. This underscores 
its effectiveness in leveraging distance constraints to accurately model the dynamic behavior of 
GPCRs. We established two subtasks to assess the effectiveness of Distance-AF on GPCRs. The 
first task involved examining state transitions. Given Distance-AF's proficiency in managing 
movement, we employed it to facilitate state switching in GPCR targets. This included 
transitioning between active and inactive states, as well as from inactive to active states. The 
second task focused on structure refinement. In our examination of individual GPCR targets, we 
observed instances where AlphaFold2 inaccurately predicted conformational changes. Here, 
Distance-AF played a crucial role in enhancing the accuracy of predicted structures, specifically 
in rectifying these mispredictions of conformational shifts. 

Subtask 1: Structural rearrangement between native states 

We initiated our experiments by focusing on subtask 1, which aimed to facilitate a switch 
in conformation between active and inactive states. To effectively demonstrate this state transition, 
we selected two pairs of targets that belong to the same family and share identical sequences. The 
results are presented in Fig 6.A and 6.B. In Figure 6.A, both targets share the UniProt ID P02699 
and are classified under the Rhodopsin family. Chain R of 6OYA represents the active state, while 
chain A of 3C9L represents the inactive state. Fig 6.A visually indicates the transition from the 
active state (6OYAR) to the inactive state (3C9LA) facilitated by Distance-AF. Notably, the 
structural rearrangement is highlighted within the rectangular box. Distance-AF successfully 
accomplishes this state transition by substituting the cyan chain with the magenta chain, in the 
magenta chain exhibits a high degree of superimposition with the green, inactive reference 
structure. Similarly, we conducted tests for the reverse transformation, transitioning from inactive 
to active states, using a different pair of targets. The active state is represented by chain A of 7BTS, 
while its inactive counterpart is chain A of 7BVQ. Both targets belong to the family of structures 
of the Beta-1 adrenergic receptor, sharing the same UniProt ID P08588. Fig 6.B illustrates the 
results, wherein the magenta structure predicted by Distance-AF shifts from the cyan structure of 
7BVQA, which represents the inactive state, towards the green structure, the native active state of 
7BTSA. Detailed examination reveals that Distance-AF is able to push TM5 and TM6 outwards, 
moving them closer to the green structure, thereby aligning with the movement direction observed 
in the native structure. 

Subtask 2: Correction of structural rearrangement on AlphaFold2 structures 

Next, we focused on subtask 2 by selecting three targets with the objective of rectifying 
erroneous conformations in the predictions generated by AlphaFold2. Among these, two of the 
targets, namely 6OYAR and 7BTSA, are in an active state, while the third, 5YQZR, is in an 
inactive state. This allows for a comprehensive assessment of Distance-AF's performance in both 
active and inactive state corrections, as depicted in Figures 6.c, 6.d, and 6.e. In the case of active 
states for both 6OYAR and 5YQZR, Distance-AF exhibits a notable outperformance over 
AlphaFold2. It accurately predicts the conformational changes, aligning closely with the native 
structure. These details are clearly illustrated in Figures 6.c, 6.d, and 6.e for both states. More 
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details can be observed in the rectangle areas, where magenta (the structures by Distance-AF) 
shows more agreement to green (native structures) than cyan (AlphaFold2 predicted structures). 

 

Fig 6. The results of Distance-AF for structural rearrangement on GPCRs. The native structures were 
depicted in green, representing the reference structures. The cyan structures corresponded to the structures 
predicted by AlphaFold2, the magenta-colored structures represented the structures predicted by Distance-
AF. Upon comparison, it was observed that the structures predicted by Distance-AF exhibited notable 
improvements and refinement compared to the initial predictions by AlphaFold2 on specific conformation 
changes of GPCRs. The magenta structures displayed enhanced agreement with the native structures, 
indicating the success of Distance-AF in effectively capturing and rectifying structural discrepancies. 

Application of Distance-AF to NMR structures 
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TM6
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TM3

TM4

TM5

TM6

TM7
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A. B.
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Magenta: Final, by Distance-AF
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Magenta: Final, by Distance-AF
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Magenta: Final, by Distance-AF
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NMR (Nuclear Magnetic Resonance) is a powerful method to investigate the dynamics of 
biological molecules in solution. Those solution-state structures, exploring the conformation of the 
molecule in a liquid (typically water) environment. Therefore, NMR structures are often 
represented as an ensemble of diverse conformers. However, existing methods even accurately 
like AlphaFold2 are limited to predict close conformers per target, while other diverse conformers 
are co-existed not getting predicted. Distance-AF is able to address the problem by applying a 
groups of distance constraints shared by different native conformers to predicting corresponding 
conformers in consistent with the given distance constraints. In this case, Distance-AF achieves 
the objective that distinguishable conformers of the same target can be predicted accurately. To 
evaluate how Distance-AF performs on NMR structures with multiple conformers, we carefully 
picked out 3 targets with more than 20 conformers to test, 2M8P, 1DMO and 1TNW. The PDB 
entry 2M8P[26], presents the solution structure of the HIV-1 capsid protein, which exists as a 
dynamic equilibrium between monomeric and dimeric forms among 100 conformers. Besides, 
1DMO and 1TNW are solution structure of calcium binding proteins, where 1DMO is ��'4 free 
calmodulin with 30 conformers compared to 1TNW is ��'4 saturated with 23 conformers. Even 
though 2 targets share similar intra-domain local structures, the presence of leads to major 
variations to domain surfaces, and domain conformation changes. 

Given that common distances between amino acid pairs are typically limited, usually fewer 
than three, while encompassing over fifteen conformers per target, the Distance-AF employs 

approximately common distance constraints, set at a cutoff of 2 + . These constraints are derived 
from manually selected conformers, each structurally distinct from the others, yet sharing several 

pairs of residues with distances within a difference of 2 +. We illustrate the examples of Distance-
AF9s performance on NMR structures in Fig. 7. For the left side of all panels, the selected native 
conformers are shown, in comparison to the predicted conformers by Distance-AF are at right side. 
The first target (Fig. 7a) exemplifies a calcium-saturated structure in solution, with eight 
conformers selected from a pool of twenty-three to establish a set of eight distance constraints. 
Distance-AF successfully generates seven reasonable structures out of eight, demonstrating an 

average RMSD of 4.629 + against their corresponding native structures. The second one (Fig. 7b), 
comprises thirty conformers with calcium absence in the solution. Among the seven selected native 

conformers, five are accurately predicted by Distance-AF, yielding an average RMSD of 4.981 +. 
The last target (Fig. 7c) represents the solution structure of the HIV-1 capsid protein, 
encompassing one hundred conformers. Distance constraints applied to Distance-AF originate 
from twelve conformers, with seven out of twelve being accurately predicted, resulting in an 

average RMSD of 4.871 +. 
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Fig 7. Examples of multiple conformers. The selected native conformers are shown at left, which shares 
the same group of distance constraints, while the conformers predicted by Distance-AF are shown at right 
side. a. chain A of 1TNW, NMR solution structure of calcium injected skeletal muscle troponin C reported 
with 23 conformers, Distance-AF achieves average full-atom RMSD across 7 predicted conformers is 4.629 
+; b. chain A of 1DMO, the solution structure of apo calmodulin with the removal of ��!"  with 30 
conformers reported. Across the 5 predicted conformers, the average full-atom RMSD is 4.981 +; c. chain 
A of 2M8P, the structure of the W184AM185A mutant of the HIV-1 capsid protein getting 100 conformers, 
Distance-AF predicted 7 conformers with average RMSD at 4.871 +. 

 

Discussion 

We propose Distance-AF, a novel deep learning method that harnesses the power of the 
AlphaFold2 framework while incorporating distance constraints to improve protein structure 
prediction. These constraints serve as essential spatial information regarding the proximity and 
relationships between specific residues and atoms within the protein structure, which can be 
derived from experimental techniques such as cryo-electron microscopy (cryo-EM), nuclear 
magnetic resonance (NMR) spectroscopy, or chemical crosslinking. In Distance-AF, the given 
distance constraints are integrated into the training process, navigating protein folding by 
simultaneously optimizing its predictions to satisfy both the fundamental principles of protein 

Native Conformers Predicted Conformers

PDB:1TNW_A

PDB:1DMO_A

PDB: 2M8P_A

AVG_RMSD: 4.629 +

AVG_RMSD: 4.981 +

AVG_RMSD: 4.871 +

a.

b.

c.
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structure and the experimentally derived distance constraints. Through the benchmarking 
experiments, Distance-AF show the potential to generate more accurate models compared to 
AlphaFold2 and Rosetta. Meanwhile, they exhibited exceptional performance on challenging 
protein classes such as G-protein-coupled receptors (GPCRs), structures obtained through Cryo-
EM and multiple conformation achievements on NMR targets. Those advancements presented by 
Distance-AF have significant implications for various fields, including drug discovery, protein 
engineering, and understanding the molecular mechanisms underlying biological processes. 
However, it's important to note a limitation that Distance-AF's applicability is currently optimized 
for only protein monomers with distinct domains. For much more flexible and uncompact 
structures, Distance-AF is unable to achieve good performance. It is conceivable that future 
iterations of Distance-AF may extend its applicability to protein multimers or even much larger 
protein complexes, further broadening its scope and impact across wider biological system 
applications. 

 

Supplementary Information 

Example of Domain Motion Trajectory 

To provide a more comprehensive understanding of how Distance-AF effectively corrects the 
incorrect domain shifts observed in AlphaFold2's predictions, Fig 7 shows the dynamic movement 
of domains at various stages during the training process. This figure offers a visual representation 
of the domain correction mechanism employed by Distance-AF. 

 

Fig 8. The ability of Distance-AF by capturing domain motion during different stages is illustrated 
in the predicted structures of PDB 6P66 above. The native structure is shown in green, while the starting 
structure predicted by AlphaFold2 is shown in cyan, the 2 structures are always fixed. The predicted 
structure by Distance-AF is shown in magenta, where one of its domains moves gradually from left top 
(stage 1) to left bottom (stage 6). 

3.2.1.

4.5.6.
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Structural changes with learning curves 

To obtain insight into the evolution of the predicted structure over 1000 epochs during the 
overfitting process, Fig 9 illustrates the structural changes at distinct intervals. Specifically, we 
selected significant time points representing various stages across four distinct loss functions. 
Epoch 0 denotes the initial structure, while epoch 7 marks the peak of the violation loss. At epoch 
100, the distance loss is in a transitional phase of reduction, while epoch 211 represents the point 
where the distance loss reaches its minimum. Epoch 255 corresponds to a stage where both Fape 
and angle loss attain their highest values. At epochs 400 and 600, Distance-AF is engaged in the 
recovery of local structures, indicated by the declining Fape and angle loss values. Finally, epoch 
1000 shows the ultimate predicted structure. 

 

Fig 9. The structural changes within 1000 epochs with evolutional learning curves 

 

Correlation study about distance loss to RMSD and TM-Score 

Epoch 0 Epoch 7 Epoch 100 Epoch 221 Epoch 255 Epoch 400 Epoch 600 Epoch 1000

Distance Loss

Fape Loss

Angle Loss

Violation Loss
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To further assess whether the proposed distance loss function aids in directing the domain towards 
the desired domain orientation, in accordance with the goals of RMSD and TM-Score to achieve 
more accurate structure, Fig 10 illustrates the correlation between the distance loss value at the last 
epoch and the final full-atom RMSD value in a., as well as the final TM-Score in b. Fig 10.a 
demonstrates the relationship between the absolute value of distance loss and full-atom RMSD 
across all 25 targets, while Fig 10.b illustrates the correlation between distance loss and TM-Score. 
When the distance loss value is relatively low, it signifies that the predicted structure adheres more 
closely to the provided distance constraints. Consequently, the corresponding RMSD value is also 
relatively lower, and the TM-Score is higher, indicating the folded structure agrees more with 
native structure. Both correlations indicate that the defined distance loss works consistently with 
the optimization of structural folding. 

 

Fig 10 a. The correlation on distance loss(x-axis) to full-atom RMSD(y-axis); b. The correlation on distance 
loss(x-axis) to TM-Score(y-axis) 

 

Availability 

The code of Distance-AF program is available at https://github.com/kiharalab/Distance-AF. 
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