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I
n Pereira-Hernández et al.1, we reported the influence of the
high-temperature vapor-phase synthesis method (also called
atom trapping, or AT) on the activity for CO oxidation of a Pt/

CeO2 catalyst, compared to a conventional synthesis method
(strong electrostatic adsorption, or SEA). The findings suggest
that the AT method leads to increased activity compared to the
SEA method, and this is related to improved redox properties of
the support at low temperature. Recently, Ren and Chen2 ques-
tioned the interpretation of the results and suggested alternative
explanations for the findings. However, as addressed in this
paper, we are firmly of the opinion that the original analysis,
results, and conclusions provided in Pereira-Hernández et al.1 are
valid and accurately explain the phenomena observed.

The AT catalyst is significantly more active than the SEA
catalyst at 50 °C (Fig. 1 in Pereira-Hernández et al.1). Ren and
Chen2 suggested that the difference in activity between the two
catalysts might be related to a difference in metal dispersion.
However, Supplementary Fig. 41 shows that the mean particle
sizes for the AT and SEA catalysts are 1.68 ± 0.3 and 1.58 ± 0.33
nm, respectively, confirming that the two catalysts in the original
paper have a similar Pt dispersion. A similar particle size would
also imply a similar interface area. Hence, the difference in
reactivity arises from the nature of the ceria (different ceria redox
properties at 50 °C, confirmed by NAP–XPS). The major differ-
ence between AT and SEA is the activation of the ceria support.
In our recent publication3, we further demonstrated that CO
adsorbed on Pt in the AT sample reacts quickly at 70 °C, if oxygen
is available in interfacial sites. On the other hand, if the interfacial
oxygen is depleted, CO is bound strongly. This proves unequi-
vocally that the interfacial sites in the AT sample are necessary for
low-temperature CO oxidation.

Moreover, Ren and Chen2 express a concern that the QMS
results during the NAP–XPS experiments do not show a

significant signal for CO2 at temperatures where the packed-bed
reactor and CO-TPR show significant CO2 production. The low
signal can be easily explained since the flow geometry in the
NAP–XPS experiments is not optimized for accurate kinetic
measurements. Gases flow over the catalyst bed, and the residence
time is much lower than the CO-TPR experiment. The CO-TPR
is performed at ambient pressure versus 2 mbar in NAP–XPS.
The residence time in the NAP–XPS experiments is about two
orders of magnitude less than that in the CO-TPR experiments,
leading to about two orders of magnitude lower CO2 con-
centration, which makes CO2 more difficult to detect. In addition,
CO flows over the catalyst bed during NAP–XPS measurements,
likely resulting in external mass transfer limitation, making CO2

detection even more difficult. In other words, the geometry of the
NAP–XPS cell (gas flows over the sample) and location of the
QMS (differential pumping of the lens system, not the outlet of
the cell) are not designed for reactivity measurement. QMS data
from NAP to XPS are used to verify the composition of the
reactant gases fed to the catalyst in the cell.

Ren and Chen2 comment on the differences between the pre-
treatments used for CO-TPR versus NAP–XPS, and suggest that
the oxidative treatment converts the Pt to the oxide that gets
reduced to form CO2. If so, we would have expected similar
reduction behavior for the AT and SEA catalysts during CO-TPR
since the amount of Pt in both catalysts is the same. The fact that
CO2 is formed at lower temperatures on the AT catalyst is a result
of the enhanced reactivity of the ceria support in the AT catalyst.
The catalyst pretreatment for CO-TPR versus NAP–XPS cannot
account for this difference.

Furthermore, the geometry of the NAP–XPS cell (gas flows
over the sample) and location of the QMS (differential pumping
of the lens system, not the outlet of the cell) are not designed for
activity measurement. No reactivity data can be extracted with
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this type of system. Its function is only to provide qualitative
trends. CO conversion was also low at 50 °C (<30%) even in a
flow reactor without external mass transfer limitation (Fig. 1 in
Pereira-Hernández et al.1). Therefore, there is no contradiction in
the inability to detect CO2 during the NAP–XPS experiments.

In addition, Ren and Chen2 express concerns about the
NAP–XPS quantification of different Ce species due to our use of
a Shirley background. Quantification of the Ce3+/Ce4+ ratio from
fitting of the Ce3d line is challenging and requires experience and
use of advanced models. However, spectra fitting with the model,
which takes an account of the asymmetry of the u and v com-
ponents and Shirley-type background, is justified as shown by
recognized surface science groups specializing on ceria model
systems4–9. While the choice of the fitting model and the back-
ground do matter, consistency of fitting throughout the experi-
ments/samples (using the same measurement parameters) limits
the uncertainty only to the absolute Ce3+ concentration, with no
effect on the overall speciation on which the conclusions are
based5.

The quote used by Ren and Chen2 “However, the 2009 report10

cautioned about Shirley background and further stated that
decomposing the complicated spectrum is “partly ambiguous in
principle”” leaves out the following statement from Skala’s
seminal work. Immediately after the phrase quoted above, Skala
et al. conclude: “Despite these remarks we obtained a high-quality
and consistent fit—better than many of those already published in
the literature—and quite simple at the same time”. We therefore
feel justified in our use of the Shirley background for fitting
the data.

In addition, in an extensive overview recently published by
Paparazzo11, the fitting provided by Skala (and on which our
fitting is based) was assessed as “both accurate and consistent”.

Ren and Chen2 suggest that the different Pt/Ce ratios between
the two catalysts indicate different dispersion. However, it is
important to take into account that the AT catalyst was pretreated
at 800 °C in air for 10 h, leading to decreased surface area. This
explains a higher Pt/Ce ratio of ~0.030 on the AT catalyst versus
~0.015 on the SEA catalyst, despite similar particle sizes of Pt.
The presence of atomically dispersed Pt2+ on the AT catalyst
further increases the Pt/Ce ratio.

Ren and Chen2 raise additional concerns about the activity/
stability of the AT catalyst based on the QMS data during the
NAP–XPS experiments, suggesting that the activity is lost in
about 30 min. To address this concern, we point to Supplemen-
tary Fig. 2 of our recent publication1, which illustrates the
repeatability and stability of the AT catalyst. Five consecutive
runs up to ~140 °C were performed, and no loss of activity was
observed. We recently repeated these measurements using CO
reduction, and extended the reaction temperature to 300 °C. No
deactivation was observed, as shown in Fig. 1.

Ren and Chen2 point out that there might be a contradiction in
the Pt(0) content evolution throughout the NAP–XPS experi-
ments; however, under switches from CO+O2 to CO, not only
the coverage of CO on Pt would be different, contributing to the
significantly different spectrum, but also chemical potential of the
system substantially changes, leading to reconstruction of the
surface of Pt NPs12. That is why we not only observe a reversible
minor but significant shift in BE upon switches, but also a dif-
ference in intensity of the component. So, the picture inferred
from Pt(0) can be quite complicated and can be the subject of
further investigations. This is why we clearly stated in the paper1

“Further exposure to CO and CO+O2 environments at 50 °C
does not change significantly the fraction of Pt0 species in the
catalyst” for Figs. 5 and 6.

The results shown in Figs. 5 and 61 were performed in a SPECS
NAP–XPS system, while the results in Supplementary Fig. 101

were performed in a Kratos AXIS Ultra spectrometer. The latter
allows treatment of the catalyst at atmospheric pressure, but has
the potential issues caused by sample transfer, while the pressure
was limited to 10 mbar in the NAP–XPS system. Therefore,
comparisons of two catalysts should be performed using the same
equipment. In both cases, however, the AT catalyst shows more
Ce3+ species after reduction than the SEA catalyst, implying a
higher reducibility of ceria, which is consistent with the expla-
nation of an improved supply of oxygen species to the Pt surface.

As discussed above, the choice of the exact model (linear
background or Shirley type) might alter the absolute values
obtained from the fit. However, if the same processing approach
is used throughout all spectra, the trend will remain valid. The
comprehensive overview of fitting models for Ce3d core line
made by Paparazzo11 concluded that the fitting provided by Skala
(and on which our fitting is based) was assessed as “both accurate
and consistent”, further justifying our approach.

Ren and Chen2 suggest that the SEA catalyst might be more
active due to the higher amount of gas- phase CO2 seen during
the DRIFTS measurements. However, catalyst reactivity cannot
be inferred from IR spectra of the products, especially in the CO2

region because of interference from atmospheric CO2 outside the
DRIFTS cell. For example, the region for CO2 gas phase in Fig.
3d1 does not change during CO oxidation, He desorption, and O2

flow. If this signal was related to CO2, the peak should have
disappeared once the CO was stopped, which was not the case. To
clarify this, QMS results for the AT and SEA catalysts during
DRIFTS experiments (which were not included in the original
manuscript) are shown in Fig. 2. Both catalysts exhibit low
activity for CO oxidation at 50 °C, which can be explained by the
flow dynamics in the DRIFTS cell. However, increasing tem-
perature to 125 °C leads to clearly different activities between the
AT and SEA catalysts.

Ren and Chen2 proposed calculating TOF using “active ceria
sites”. It is understandable and logical that calculation of TOF
requires counting the number of active sites. While the sites at the
interface play a critical role in this reaction, quantifying the
number of these sites is very difficult. Simply using the perimeter
of a nanoparticle is not accurate due to variations in particle
shape compounded by the difficulty in accurate determination of
size and interfacial area in subnanometer particles. Previous work
by Cargnello et al.13, which focused on investigating the role of

Fig. 1 Sequential CO oxidation. Sequential CO oxidation light-off curves up

to 300 °C using a 1 wt%Pt/CeO2 catalyst synthesized by atom trapping

and further reduced at 275 °C with CO, as specified in Pereira-Hernández

et al.1.
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particle size (and interface sites), used the total amount of Pt for
normalizing reactivity. This is also the approach used by all
studies on single-atom catalysts (SACs); hence, we calculate TOF
based on the total number of Pt atoms.
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Fig. 2 QMS signals for CO, O2, and CO2 during CO oxidation reaction that

was performed and monitored by DRIFTS. Top: 1 wt.%Pt/CeO2 catalyst

synthesized by SEA. Bottom: 1 wt.%Pt/CeO2 catalyst synthesized by AT.

Both catalysts were reduced at 275 °C with CO, as specified in Pereira-

Hernández et al.1.
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