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Abstract: Background: Artificial Intelligence (AI)-based Deep Neural Networks (DNNs) can handle

a wide range of applications in image analysis, ranging from automated segmentation to diagnostic

and prediction. As such, they have revolutionized healthcare, including in the liver pathology field.

Objective: The present study aims to provide a systematic review of applications and performances

provided by DNN algorithms in liver pathology throughout the Pubmed and Embase databases up to

December 2022, for tumoral, metabolic and inflammatory fields. Results: 42 articles were selected and

fully reviewed. Each article was evaluated through the Quality Assessment of Diagnostic Accuracy

Studies (QUADAS-2) tool, highlighting their risks of bias. Conclusions: DNN-based models are well

represented in the field of liver pathology, and their applications are diverse. Most studies, however,

presented at least one domain with a high risk of bias according to the QUADAS-2 tool. Hence, DNN

models in liver pathology present future opportunities and persistent limitations. To our knowledge,

this review is the first one solely focused on DNN-based applications in liver pathology, and to

evaluate their bias through the lens of the QUADAS2 tool.

Keywords: digital pathology; liver; hepatology; deep learning; artificial intelligence; performance metrics

1. Introduction

1.1. Introduction to AI

Artificial Intelligence (AI) is probably the next revolution in pathology. “Artificial
Intelligence” is a broad term encompassing many different approaches for problem-solving.
Among them, Machine Learning (ML), and Deep Neural Networks (DNN) in particular, are
capable of handling huge amounts of data by increasingly complex mathematical systems
that have proven time and time again to at least perform similarly to pathologists for the
segmentation of clinically relevant regions and classification of tumors. Moreover, they
might contribute to standardizing care by reducing inter-observer lack of reproducibility.
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Inspired by neuroanatomy, algorithms known as Deep Learning Algorithms (DLA) rely on
architectures known as Deep Neural Networks (DNN) and are able to produce astounding
results in imagery recognition and classification. As a mostly image-based discipline,
pathology is particularly suitable for the application of such AIs. Therefore, there is a
growing field of interest, both academic and industrial, for the development of efficient,
fast, robust and precise AI-based solutions for pathologists, among them liver pathology [1].

1.2. Principles of Deep Neural Networks Algorithms

In pathology, most DNN-based tasks can be separated into three categories: segmen-
tation, classification and prediction [2]. Briefly, segmentation algorithms aim to identify
anatomical structures on a virtual slide. For example, they may be useful for detecting cell
boundaries, tumoral areas or structures such as portal tracts or fibrotic septa [3,4]. Classi-
fication algorithms aim to discriminate between, in general, binary modalities, “tumoral
vs. non tumoral” being the most common example. Non-binary modalities can also be
investigated through the lens of artificial intelligence, some examples in liver pathology
being fibrosis grading and hepatitis severity assessment. Prediction algorithms function
similarly to classification algorithms, taking input data and proposing an output answer.
The difference between classification and prediction algorithms lies in how the “ground
truth” is established; in a classification model, “ground truth” can be established directly
from the input data (in pathology: a Whole Slide Image), whereas in a prediction model
other techniques are to be performed (such as molecular testing). Moreover, “prediction”
models include a temporal aspect, because their predicted outcome will not be measurable
immediately (either because additional analysis is required, or because clinical follow-up
is needed).

Notwithstanding their assigned goal, all DNN-based algorithms share some similarities [5].
DNN systems can be either supervised (Supervised Learning SL) or unsupervised (UL).
SL requires the pre-definition of a “ground truth” through the annotations of the devel-
opmental dataset. In UL, the model is intended to find a pattern by itself through the
numerous unannotated examples it is given, so that it is generalizable to the data ensemble.
Development of a DNN-based algorithm is divided into training, testing and validation
phases. On the training dataset, the algorithm is given inputs (annotated example of interest
if the model is supervised) so as to determine the optimal combinations of features giving
the most correct outputs. The validation step aims to fine-tune the hyper-parameters of the
algorithm (for example, the number of artificial neuron layers) and to prevent overfitting on
the training dataset. Finally, the testing dataset evaluates the model’s performance metrics.
In order to obtain high precision, a huge amount of data is often required. Moreover, in
supervised learning, the dataset must be labeled to establish a “ground truth” for training
the model. The SL can be either “supervised”, with many refined annotations made by an
expert (for example, manual definition of precise Region Of Interest for a segmentation
model) or “semi-supervised” (for example, a “tumor” or “non-tumor” label for a classifica-
tion model). Hence, establishing a sufficiently large and labeled dataset is time-consuming
and may introduce bias, such as lack of reproducibility by experts [6]. Some data aug-
mentation principles (mathematical transformations of images such as artificial blurring,
rotations and inversions, changes of color...) have been proposed and are commonly used
to try and mitigate such issues [5].

1.3. Evaluation of Algorithms by Performance Metrics

Throughout the literature, many performance metrics have been used to evaluate
DNN algorithms. What they refer to and how they compare to one another is sometimes
challenging. The most commonly used performance metrics and their major characteristics
are summarized in Table 1. A 2 × 2 contingency table may be used to either present or
explicit the metrics; such an example is given in Figure 1. It is to be noted that no per-
formance metric is widely recognized as superior to the others, nor are they comparable
to one another, and as such they are often used in conjunction. In ideal conditions, per-
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formance assessment is to be performed on an external validation set, so as to generalize
the results and not risk a bias of overfitting the algorithm to the developmental dataset
and causing an inability to generalize performance with unseen data (staining differences,
artefacts, etc.) [7].

Table 1. Most commonly used performance metrics used in the literature, with key features summarized.

Performance
Metric

Rationnal Interpretation Key Concepts Main Applications

Jaccard Index
Also known as the ratio
of Intersection over
Union (IoU)

0 ≤ x ≤ 1 the closer
to 1 the best

Very simple to use, the Jaccard
index is a way of
conceptualizing accuracy for
object detection. It quantifies
the similarity of the algorithm
vision with those of the
annotated ground truth

object/area
segmentation (may also
be employed for binary
classification)

Accuracy

Number of correct
predictions (true
positives and true
negatives) divided by
the total number of
predictions

0 ≤ x ≤ 1 the closer
to 1 the best

Very simple to use, accuracy
quantifies the percentage of
correct predictions by the
algorithm. However, it is not
adapted to imbalanced
problems (where positive and
negative proportions are greatly
different) nor to problems
where the “cost” of false
positives/negatives must be
taken into account (such as
screening situations). Therefore,
it may not be suited for
evaluating algorithms in certain
medical situations

classification/prediction

F1-score

Combines Precision
(ratio of true
positives/total
positives predicted)
and Recall (ratio of true
positives/total
positives in ground
truth)

0 ≤ x ≤ 1 the closer to
1 the best enhancing
Precision OR Recall
leads to a better score

Useful for evaluating
performance in situations
where Accuracy would be
misleading (see above). It is
adapted to unbalanced
problems. It is, however,
difficult to interpret when low:
is it because of low Precision
(too much false positives) or
low Recall (not enough true
positives)?

classification/prediction

AUROC (or
AUC)

Combines Recall (ratio
of true positives/total
positives in ground
truth) and Fallout (ratio
of false positives/total
negatives in ground
truth)

0 ≤ x≤1 the closer to
1 the best enhancing
Precision OR
diminishing Fallout
leads to a better score

Useful for evaluating the
diagnostic ability of a (binary)
classifier, because it takes both
true positives and true
negatives into account.
Therefore (and contrary to
F1-score), diminishing the
number of false negatives is
taken into account (which is of
importance in screening
situations)

classification/prediction

c-index
(concordance
index)

Generalization of
AUROC for assessing
the correct ranking of
events

0 ≤ x ≤ 1 the closer
to 1 the best

Adapted to datasets with censored data (survival studies,
prediction of adverse events, etc.)
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Figure 1. Example of a 2 × 2 contingency table used for calculating performance metrics such as pre-

cision, recall and fallout. Histological images are courtesy of the CHU Pontchaillou, Rennes, France.

1.4. Aim of the Present Review

As Artificial Intelligence in healthcare is an ever-growing subject, many publications
have aimed to review its impact in numerous medical fields, be it radiology, pathology or
clinical specialties [8]. The present study aims to provide a synthetic and comprehensive
review of applications provided by DNN algorithms in liver pathology throughout the
literature, in the tumoral as well as metabolic and inflammatory fields, and to discuss the
potential bias and opportunities opened by Artificial Intelligence for liver pathologists.

2. Materials and Methods

This systematic review follows the Preferred Reporting Items for Systematic Review
and Meta-Analyses (PRISMA) statement (Supplementary Material Table S1) [9].

2.1. Inclusion and Exclusion Criteria

All studies published until 12 January 2022 using deep learning in hepatology on
histopathologic slides are included. Exclusion criteria were as follows: (1) not using Whole
Slide Images (WSI) of human tissue slides; (2) not published in English; (3) review articles,
editorials or other unrelated topics.

2.2. Online Registration Information

The search protocol was not registered online prior to data extraction.

2.3. Data Sources and Literature Search Strategy

The first author (A.P.) searched the Pubmed and Embase databases to identify studies
up to 01 December 2022. The search terms used were as follows: (Liver OR Hepatic) AND
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(artificial intelligence OR deep learning OR machine learning) AND (Whole slide image
OR digital pathology OR pathomics OR pathomic) AND (Human). Manual selection of
relevant articles through crosschecking references was additionally performed.

2.4. Studies Selection and Data Extraction

The first author screened the articles according to inclusion/exclusion criteria, re-
moved duplicates and added relevant articles through crosschecking references. For each
article, information regarding authors, year of publication, country, algorithm type (seg-
mentation vs. classification vs. prediction), number of WSI used for development and
validation, and the most pertinent performance outcomes were extracted. One author (A.P.)
extracted data from each study and a second independent author (K-J.S-F.) validated the
extracted data. All studies were separated and summarized in two tables: “tumoral” for
all studies related to cancer segmentation, classification or prediction (Table 2), and “non-
tumoral” for all other liver pathologies (Table 3). The features extracted included author
and year of publication, first author’s country, category of algorithm, size of developmental
and external validation sets, and main performance metrics as appropriate.

2.5. Assessment of the Risk of Bias and Applicability

Each article was evaluated keeping the Quality Assessment of Diagnostic Accuracy
Studies (QUADAS-2) guidelines in mind, so that any potential bias and limitations could be
discussed [10]. Notably, the following criteria were taken into account to stratify as “high
risk”: patient selection: developmental set <60 WSI, unicentric study; index test: no external
validation set, no use of image augmentation principles; reference standard: definition of
“ground truth” solely based on one expert, no use of standardized scoring system when
appropriate, lightly-supervised or unsupervised model; flow and timing: for prospective
studies only, patient exclusions from final analysis, multiple reference standard provided.

3. Results

3.1. Search Results

The result of the search yielded 167 articles (127 non-duplicated). After excluding
articles based on title and abstract screening, 35 articles remained and were reviewed by
full text screening. Seven articles were added manually by manual reference checking,
amounting to 42 selected articles for systematic review. Twenty-two articles were labeled
“tumoral” and 20 articles were labeled “non-tumoral” based on full text review (Figure 2).
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Figure 2. Flowchart of literature search.
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3.2. Tumoral

Twenty-two articles were reviewed through full text screening (Table 2) [11–32]. No
studies used prospectively collected data. The algorithms primary goal was either seg-
mentation (6/22) [11–16], classification (6/22) [17–22] or prediction (10/22) [23–32]. The
majority of studies (18/22) were focused on hepatocellular carcinoma. The others were re-
spectively reporting on liver metastasis (3/22) [12,19,28] or cholangiocarcinoma (1/22) [32].
Six studies used The Cancer Genome Atlas (TCGA) database for either their developmental
or external validation set (including the one from Liao et al., whose full-text access was
unavailable through our institution [25]). More than half of the studies (13/22) tested their
algorithms on at least one external validation set. The DNN models used in each study are
reported in Supplementary Material Table S2.

Three published segmentation studies used the same developmental and external
testing set, namely the Pathology Artificial Intelligence Platform (PAIP) dataset from the
PAIP 2019 Challenge [11,13,14]. PAIP challenge’s goal is to evaluate new and existing
algorithms for automated liver cancer detection in WSI, either with or without peritu-
moral/intratumoral stroma-reaction, using a predefined fully annotated dataset from Seoul
National University Hospital, South Korea [33]. As of the writing date of the present article,
more than 1500 participating teams were numbered, and the PAIP 2019 Challenge is still
ongoing. Among the published studies, Roy et al. demonstrated the highest performance,
using a classification model to achieve an F1-score of 0.94 [13].

Cheng et al. proposed a DNN-classification model to help discriminate hepatic nodular
lesions (HNL), comprising hepatocellular adenoma, hepatocellular carcinoma, dysplatic
nodule and focal nodular hyperplasia [22]. Their model was trained and validated on
HE biopsy specimens and showed a good discrimination power between (pre)neoplastic
lesions and benign hepatocellular proliferation or background with an AUC of 0.94.

DNN-prediction models were shown to be able to predict genetic somatic mutations
or signatures directly from HE WSI. Chen et al. demonstrated an algorithm able to predict
CTNNB1, FMN2, TP53 and ZFX4 somatic status in HCC slides ailing from TCGA, with
AUCs ranging from 0.71 to 0.89 [23]. Zeng et al. developed a DNN-model predicting
activation of 6 immune gene signatures in advanced HCC directly from histology [30].
Those immune gene signatures were previously shown to be associated with better re-
sponse/survival rates after nivolumab therapy (an anti PD-1 antibody).

Prediction of post-surgical recurrence-free interval or survival in HCC was also ex-
plored through DNN-based systems. Saillard et al. proposed a DNN-based system com-
puting a risk score of independent prognostic value after hepatocellular surgery based on
the resected tumor’s WSI (c-index 0.70) [25]. That score was shown to be significant on
an external validation dataset, even after stratification of patients on the disease’s stage,
vascular invasion and presence of satellite nodules, and to outperform a composite score
based on clinical, biological and pathological features. In the same vein, Yamashita et al.
developed a DNN approach of post-surgical recurrence risk stratification for HCC with
WSI from the TCGA and validated their model on the Stanford Department of Pathology
slide archive, achieving an AUC of 0.96 and a c-index of 0.67 on the external validation set
with a 10-year follow-up.

Among the individual studies, the highest amount of WSI used for the developmental
dataset was 2917 WSI in a predictive study from Chen et al. [29]. This study aimed to
predict the existence of microvascular invasion in patients with HCC by a DNN analysis
of the WSI on the primary tumor. Their model was deemed able to successfully and
independently predict microvascular invasion in the external validation set with an AUC
of 0.87. Furthermore, Chen et al. strived to implement their model into a clinical setting
and showed that the presence of microvascular invasion as predicted by their DNN model
is correlated with a poorer outcome.
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Table 2. Key features of reported studies regarding the use of Deep Neural Networks (DNN) on

Whole Image histology Slides (WSI) in the “tumoral” field.

Authors (Year)
[Reference]

Country Algorithm Goal
Development

Dataset

External
Validation

Dataset

Performance
Metrics

Feng Y. et al. (2021)
[11]

France
segmentation

(HCC)
60 WSI 40 WSI

Jaccard score 0.90
F1 score 0.47

Cancian P. et al.
(2021) [12]

Italy segmentation (LM) 303 WSI no Jaccard score 0.89

Roy M. et al. (2021)
[13]

USA
segmentation

(HCC)
60 WSI 40 WSI F1 score 0.94

Wang X. et al. (2021)
[14]

China
segmentation

(HCC)
60 WSI 40 WSI Jaccard score 0.797

Feng S. et al. (2021)
[15]

China
segmentation

(HCC)
592 WSI 157 WSI (TCGA) Accuracy 0.88

Yang TL. et al. (2022)
[16]

Taiwan
segmentation

(HCC)
46 WSI no Jaccard score 0.89

Li S. et al. (2017) [17] China
segmentation

(HCC)
127 WSI not provided

Accuracy 0.97
F1 score 0.94

Kiani A. et al. (2020)
[18]

USA
classification (HCC

and CCK)
70 WSI 80 WSI Accuracy 0.84

Schau GF. et al.
(2020) [19]

USA classification (LM) 257 WSI no F1 score 0.77

Ercan C. et al. (2022)
[20]

Switzerland
classification

(HCC)
98 WSI no

Accuracy 0.84
F1 score 0.91

Diao S. et al. (2022)
[21]

China
classification

(HCC)
100 WSI (TCGA) no AUC 0.92

Cheng N. et al.
(2022) [22]

China
classification

(HCC)
649 WSI 234 WSI AUC 0.94

Chen M. et al. (2020)
[23]

China prediction (HCC) 387 WSI 101 WSI AUC 0.71

Liao H. et al. (2020)
[24]

China prediction (HCC) not provided not provided AUC 0.89

Saillard C. et al.
(2020) [25]

France prediction (HCC) 390 WSI 342 WSI (TCGA) c-index 0.70

Yamashita et al.
(2021) [26]

USA prediction (HCC) 299 WSI (TCGA) 198 WSI c-index 0.67

Saito A. et al. (2021)
[27]

Japan prediction (HCC) 158 WSI no Accuracy 0.90

Xiao C. et al. (2022)
[28]

China prediction (LM) 611 WSI no AUC 0.85

Chen Q. et al. (2022)
[29]

China prediction (HCC) 2917 WSI 504 WSI AUC 0.87

Zeng Q. et al. (2022)
[30]

France prediction (HCC) 349 WSI (TCGA) 139 WSI AUC 0.92

Qu WF. et al. (2022)
[31]

China prediction (HCC) 576 WSI 147 WSI (TCGA) c-index 0.71

Xie J. et al. (2022)
[32]

China prediction (CCK) 766 WSI no AUC 0.68

HCC: Hepatocellular Carcinoma; CCK: Cholangiocarcinoma; LM: Liver Metastasis.
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3.3. Non-Tumoral

Twenty articles were reviewed through full text screening (Table 3) [34–53]. As for
tumoral studies, none used prospectively collected data. The algorithms primary goal was
either segmentation (4/20) [34–37], classification (15/20) [38–52] or prediction (1/20) [53].
The most prevalent thematic included inflammation detection and quantification, espe-
cially in Non-Alcoholic SteatoHepatitis (NASH) (6/20) and fibrosis detection and grading
(4/20). Two studies reported on the evaluation of steatosis to evaluate the quality of the
graft in liver transplantation [36,48]. All studies relied on HE staining, with or without
additional immunohistochemical stains, except for one, which relied only on CK7 immuno-
chemistry [50]. No study validated their algorithm on an external validation dataset, be it
designed for either segmentation, classification or prediction. The DNN models used in
each study are reported in Supplementary Material Table S2.

The number of WSI incorporated into the developmental set was disparate among
studies. In particular, Puri developed a machine learning model on 1277 digital slides
to detect drug-induced liver injuries on the cellular level, based on both rat and human
hepatocytes, achieving 0.99 Accuracy [43]. On the other end of the spectrum, studies such
as Gawrieh et al. and Perez Sans et al. showed the feasibility of developing a steatosis
classifier on a training dataset as low as 18 and 20 WSI, respectively [47,48].

NASH scoring is a combination of multiple cardinal features, namely steatosis, lob-
ular inflammation, hepatocyte ballooning and fibrosis. Attempts to develop automated
DNN-based classification algorithms for NASH scoring occurred as early as 2015 by Van-
derbeck et al., whose model achieved an AUC of 0.95 for lobular inflammation and 0.98
for hepatocyte ballooning detection [39]. Other teams used machine learning programs to
help discriminate between NAFLD and NASH [45,46], chronic hepatitis and NASH [49]
or alcoholic steatohepatitis and NASH [51]. Heinemann et al. proposed an algorithm not
only capable of identifying the cardinal features of NASH but also able to score NASH as a
discrete pathologist-like score (as per the Kleiner score of NASH activity score, NAS) [52].
Inter-observator agreement between the DNN algorithm and pathologists was best for
steatosis and fibrosis class assessment (kappa 0.92 and 0.81, respectively), but dropped for
ballooning and inflammation class assessment (kappa 0.42 and 0.40, respectively).

Constantinescu et al. were the sole proposer of a predictive deep-learning based model
to predict early (within 30 days) post-surgical complications after liver surgery [53]. To
that end, their model assessed neoangiogenesis and inflammation through both HE and
immunohistochemical stains and was able to predict the arising of complications with an
accuracy of 0.97 and an AUC of 0.97 on the internal testing dataset.

Table 3. Key features of reported studies regarding the use of Deep Neural Networks (DNN) on

Whole Image histology Slides (WSI) in the “non tumoral” field.

Authors (Year)
[Reference]

Country Algorithm Goal
Development

Dataset

External
Validation

Dataset

Performance
Metrics

Guo X. et al. (2018) [34] USA
segmentation

(steatosis)
451 WSI no

Jaccard score 0.77
F1 score 0.66

Jirik M. et al. (2020) [35] Czech Republic
segmentation

(intra vs.
extralobular)

33 WSI no Accuracy 0.91

Roy M. et al. (2020) [36] USA
segmentation

(steatosis)
36 WSI no F1 score 0.94

Yu H. et al. (2022) [37] USA
segmentation
(portal tracts)

53 WSI no
Jaccard score 0.80

F1 score 0.89
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Table 3. Cont.

Authors (Year)
[Reference]

Country Algorithm Goal
Development

Dataset

External
Validation

Dataset

Performance
Metrics

Vanderbeck S. et al.
(2014) [38]

USA

classification
(steatosis, bile
ducts, vascular

structures)

47 WSI no AUC 0.83

Vanderbeck S. et al.
(2015) [39]

USA
classification

(NASH)
59 WSI no AUC 0.98

Wang TH et al. (2015)
[40]

Taiwan
classification

(fibrosis)
175 WSI no AUC 0.82

Munsterman I. et al.
(2019) [41]

Netherlands
classification

(NASH)
79 WSI no AUC 0.97

Klimov S. et al. (2019)
[42]

USA
classification

(fibrosis)
115 WSI no AUC 0.70

Puri M. (2020) [43] USA
classification

(DILI)
1277 WSI no Accuracy 0.99

Forlano et al. (2020) [44] UK
classification

(NASH)
246 WSI no AUC 0.80

Teramoto T. et al. (2020)
[45]

Japan
classification

(NASH)
79 WSI no AUC 0.85

Salvi M. et al. (2020) [46] Italy
classification

(steatosis)
385 WSI no Accuracy 0.97

Gawrieh S. et al. (2020)
[47]

USA
classification

(NASH)
18 WSI no AUC 0.79

Perez-Sans F. et al. (2021)
[48]

Spain
classification

(steatosis)
20 WSI no AUC 0.98

Marti-Aguado D. et al.
(2021) [49]

Spain
Classification

(chronic hepatitis)
156 WSI no

AUC 0.75 (NASH)
AUC 0.99 (Chronic
Hepatitis model)

Sjöblom N. et al. (2021)
[50]

Finland
classification

(chronic
cholestatis)

210 WSI no Accuracy 0.93

Ramkissoon R. et al.
(2022) [51]

USA
classification

(NASH)
97 WSI no AUC 0.96

Heinemann F. et al.
(2022) [52]

USA
classification

(NASH)
467 WSI no

F1 score 0.37 to
0.85

Constantinescu C. et al.
(2022) [53]

Romania
prediction (liver

surgery
complications)

500 WSI no AUC 0.97

NASH: Non-Alcoholic Steatohepatitis; NAFLD: Non-Alcoholic Fatty Liver Disease; DILI: Drug Induced Liver Injuries.

3.4. Assessment of the Risk of Bias and Applicability through the QUADAS-2 Tool

The overall assessment of the reviewed studies is presented in Figure 3. When the
overall risk of bias was measured with the QUADAS-2 tool, a majority of studies (30/42)
presented at least one high-risk factor. Algorithms developed on unicentric datasets inferior
to 60 WSI were deemed at high risk for the patient selection domain. All studies without
an external validation set were judged at high risk for the “index test domain”. For the
“reference standard” domain, high risk was applied if “ground truth” was determined by
only one pathologist and on criteria deemed either too subjective or that were notoriously
low-reproducible. Finally, as no study fitted the criteria for evaluation by the “flow and
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timing” domain, it was categorized as “not applicable”. Per study evaluation with the
QUADAS-2 tool is provided in Table S2.
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Figure 3. Global overview of reviewed studies, including evaluation of risk of bias through the

QUADAS-2 tool for the “tumoral” (A) and “non tumoral” (B) fields.
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4. Discussion

As shown, the applications and opportunities offered by AI are manifold, even for a
field as specialized as liver pathology, in terms of both the tumoral (hepatocellular carci-
noma, cholangiocarcinoma and secondary tumors in liver) and non-tumoral (NAFLD and
NASH, chronic hepatitis, fibrosis staging, iatrogenic-induced lesions) aspects. DNN-based
models are such promising tools that they have led to numerous publications throughout
the last decade, with an increasing rate over the past few years. We have strived to provide
a comprehensive, systematic and updated review of AI in liver pathology. Pathologists
may sometimes feel estranged regarding this topic, because AI is foremost a mathematical
and computational discipline, with a wide array of performance metrics, architectures and
other specificities. Hence, navigating the literature might sometimes prove challenging.
Previous reviews have discussed the opportunities of AI in liver diseases as a whole, or as
part of clinical, radiological and sometimes pathological applications in gastroenterology
and hepatology [2–8]. To our knowledge, this review is the first to solely focus on DNN-
based applications in liver pathology, and to evaluate their bias through the lens of the
QUADAS2 tool.

4.1. AI in Tumoral Liver Pathology: What to Remember

The practical value of segmentation algorithms in the tumoral liver pathology field
may seem poor, because most of the time pathologists have no trouble identifying HCC
areas in the liver. In a similar fashion, classification algorithms such as Kiani et al.’s [18],
which aimed to distinguish HCC and CCK, may seem of limited value, because there are
already robust immunohistochemical tools available. However, the major contribution of
such algorithms might be a gaining of time in everyday practice, and one might argue that
this alone is pertinent enough in the context of a shortage in liver pathologists, as has been
raised by several authors in other domains of pathology [54–57]. The development of clas-
sification algorithms targeting lesions of difficult diagnosis such as benign hepatocellular
proliferations (hepatocellular adenoma and focal nodular hyperplasia) might prove the
most beneficial, especially on biopsy specimens, such as in Chens et al.’s study [22].

The development of DNN-based algorithms tackling the tumoral field in liver pathol-
ogy seem to be more advanced and robust throughout the literature than those in the
non-tumoral field. Indeed, our global evaluation through the QUADAS-2 tool showed that
studies in the tumoral field were less prone to risk of bias in all domains. The reasons for
this include the availability of public online databases such as The Cancer Genome Atlas
(TCGA), which compiles molecular data and whole slide images of numerous cancers,
which are an invaluable resource for the development and external validation of many
DNN-based algorithms for pathology, including hepatocellular carcinoma [15,26,32]. Like-
wise, multicentric studies with a development cohort in one hospital and an external testing
dataset in another may be easier to design for DNN-based studies in the tumoral rather
than the metabolic field [22,24,30].

The most promising uses for DNN-based algorithms in tumoral hepatology seem to lie
in prediction algorithms. Predicting recurrence [23] or survival [26] from histological WSI
is especially appealing, because its clinical applications in patient’s care are obvious and,
as of today, out of reach. The prediction of gene signature without resorting to molecular
testing [31] could also prove a gain of both time and money. As of yet, there is no targeted
therapy in HCC. The prediction of genomic alterations in CCK might, on the other hand,
yield therapeutical value [58,59]. One must keep in mind that the predictive information
of survival or recurrence is complex and most certainly multimodal. As such, DNN-
based algorithms could provide yet another tool for patient management, in association
with existing pathological (TNM classification), clinical (Performance Status) or radiology
scoring systems [60,61]. Hence, multimodal approaches such as DNN-based systems
compiling radiological and pathological imaging data (reflected through the concepts
of “radiomics” and “pathomics”, respectively) have been proposed for non-small lung
cancer [62], cervical cancer [63], breast cancer [64] and glioblastoma [65] but have yet to
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be developed in liver pathology. Radiological imaging data are particularly suited to the
development and use of deep learning artificial intelligence and share many of its concepts
and limitations with the field of pathology [66].

4.2. AI in Non-Tumoral Liver Pathology: What to Remember

On the other hand, classification DNN-based systems are of paramount interest in the
metabolic liver pathology field. For example, steatohepatitis diagnosis and grading has
been shown to present poor inter-observer reproducibility [67]. In particular, hepatocyte
ballooning recognition seems to be poorly reproducible, even between expert patholo-
gists, hindering DNN development on the subject, as acknowledged by authors such as
Brunt et al. [68]. DNN-based models may prove useful in the future to standardize such
difficult diagnosis, yet a “reference standard bias” may represent a pitfall in their develop-
ment if overlooked. To avoid this, “ground truth” (i.e., the annotations) should be defined
by standard scoring systems such as the Non-Alcholic Fatty Liver Disease Activity Score
for NAFLD and by a consensus of more than one pathologist, and this could be built once
again on a multimodal level including clinical, biological and radiological data.

While external validation is feasible enough for studies on tumoral material (13/22 in
this review), it seems an acute limitation for those on inflammatory or metabolic diseases.
In fact, among the papers we reviewed, none (0/20) of them tested their model on an
external validation set. There are in fact, at the time of this article’s writing, no online
database similar to TCGA for metabolic or inflammatory liver diseases. Setting up such a
public annotated database might prove beneficial to put DNN-based algorithms to trial.

4.3. Persistent Limitations to the Implementation of AI in Daily Practice

AI integration into healthcare increases at an ever-growing speed, and DNN-based
models seem to be promising tools in the image analysis field as a whole, in radiology
and, since the arising of whole slide imaging, in pathology. At present, image-analysis
DNN-tools do not outmatch trained physicians, but they might prove useful for alleviating
complex and time-consuming tasks [69]. As great as their promises may be, DNN systems
are hampered by some limitations. Most of the studies reported in this review were
stratified as having at least one domain of high risk of bias according to the QUADAS-2
tool. Some steps should be taken when designing a DNN-based study, among them (but
not limited to) building a multicentric, sufficiently large development database with a
“ground truth” defined by consensual, if possible multimodal, criteria and systematically
validated on an external dataset. However, economic and practical constraints should be
taken into consideration, for most DNN models require a curated and sufficiently large
developmental dataset, which can prove time-consuming and costly [70]. The explainability
of predictive algorithms is also a common shortcoming that some authors have begun to
tackle by looking back at the most predictive histological tiles of their models [25,29,30].
To further that end, the role of pathologists will be of paramount importance. Ethical
questions such as minorities and low-income country integration should also always be
kept in mind [71], because AI’s usefulness relies on its success in a clinical setting, and
its scope is always increasing [72,73]. As such, predictive risk-stratification models in
particular may be of the utmost interest.

4.4. Present Review’s Limitations

We focused on two databases, namely Pubmed and Embase, and may have missed
papers published in specialized, non-healthcare-related journals. It is also to be noted that
the QUADAS-2 tool, though encouraged by the PRISMA guidelines, is not perfectly suited
for the qualitative assessment of AI-related studies. Indeed, the QUADAS-2 guidelines
do not provide precise criteria to assess the robustness of AI-related studies. Our criteria
stratifying “low risk of bias” and “high risk of bias” are therefore subjective. QUADAS-IA
is an extension of QUADAS-2 and is specifically designed to tackle this issue, and to date
is still to be published [74]. When available, it should prove an even more precise tool
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to evaluate diagnostic research in the AI field. Cabitza and Campagner also proposed a
checklist of 30 items for the qualitative assessment of medical AI studies [75]. While not
specifically designed for pathology, it may be useful when designing an AI-based study in
healthcare; it is available online and was additionally performed in the present review for
each study (Supplementary Material Table S3) [76].

5. Conclusions

For the moment, contrary to other fields of pathology, there are no commercially
available AI-based solutions in liver pathology. Studies are still impaired by a lack of
external validation cohorts. Therefore, multicentric studies and expert collaborations are
needed to further develop DNN-based algorithms.
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