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Abstract

Rare genetic iron overload diseases are an evolving field due to major advances in genetics and molecular
biology. Genetic iron overload has long been confined to the classical type 1 hemochromatosis related to the
HFE C282Y mutation. Breakthroughs in the understanding of iron metabolism biology and molecular
mechanisms led to the discovery of new genes and subsequently new types of hemochromatosis. To date four
types of hemochromatosis have been identified: HFE-related or typel hemochromatosis, the most frequent
form in Caucasians, and four rare types, named type 2 (A and B) hemochromatosis (juvenile hemochromatosis
due to hemojuvelin and hepcidin mutation), type 3 hemochromatosis (related to transferrin receptor 2
mutation), and type 4 (A and B) hemochromatosis (ferroportin disease). The diagnosis relies on the
comprehension of the involved physiological defect ,that can now be explored by biological and imaging tools,
which allow non invasive assessment of iron metabolism. A multidisciplinary approach is essential to support

the physicians in the diagnosis and management of those rare diseases.



Introduction

Since the description of Hemochromatosis by Trousseau in 1865, and the demonstration of its genetic nature !
many studies have shed light on its putative pathophysiological mechanism. The first major breakthrough was
the discovery of the HFE gene 2. This made it possible to diagnose the most common form of hereditary
hemochromatosis (HFE or Type 1 hemochromatosis) due to the p.Cys282Tyr mutation (C282Y) in the HFE gene.
Further discoveries unraveled iron metabolism regulation and its molecular mechanism, leading to the
description of new and rarer form of hemochromatosis which are referred as non HFE hemochromatosis.
Hepcidin, which is coded by the HAMP gene 3 plays a central role®”. Mainly secreted by the liver®’, this small
peptide was shown to interact with ferroportin8 (coded by the SLC40A1 gene), the only known cellular iron
exporter, this interaction inducing ferroportin internalization and degradation. Thus, through its regulation of

ferroportin, hepcidin can reduce iron export from macrophages and enterocytes into the bloodstream. The

9,10 11-13
(

Transferrin Receptor 2™ (TFR2, coded by the TFR2 gene) and Hemojuvelin coded by the HJV gene) are
critical cofactors in hepcidin secretion regulation. Each of these genes can have mutation leading to different
peculiar forms of Hemochromatosis, whose phenotypical expression can share common signs or have specific
features. These discoveries, and the broader availability of genetic testing, enabled a better discrimination of
HFE and non-HFE related Hemochromatosis from various secondary causes of iron overload. However, if
physiology needs to be known for enlightening the expression of these conditions, it makes the diagnosis
workup more complex since the phenotype can be mixed and the appropriate tests to perform difficult to
choose. This emphasizes the relevant role of referral centers who can provide guidelines, genetic advice, and

in-house genotyping testing to support physicians for proper evaluation of their patients with suspected rare

genetic iron overload syndromes.



PHYSIOLOGY AND PATHOLOGY

IRON METABOLISM

IRON UPTAKE AND EXPORT

Iron uptake occurs in the proximal part of the duodenum where two forms of iron are available: heme iron,
mainly found in meat from the degradation of myoglobin and hemoglobin, and non heme iron found in
vegetable and grains. Heme iron is carried out by endocytosis through the apical membrane of enterocytes,
possibly by the Heme Carrier Protein 1" the subsequent catabolism pathways are not yet definitely
demonstrated. Non heme iron is transported into the cytoplasm of enterocytes by Divalent Metal Transporter

1*18 is the only known cell iron exporter, located at the basal membrane of

1(DMT1)". Ferroportin (SLCA40A1)
enterocytes and at the membrane of macrophages, where it allows iron egress from the cytoplasm to the

bloodstream with subsequent oxidation by hephaestin ¥ and binding to transferrin (Figure 1).

HEPCIDIN

Hepcidin (HAMP) is a small peptide, first identified as an antimicrobial peptide4'6. Mainly synthesized in the
liver by hepatocytes, it is also produced at a lower level by adipocytes20 and macrophage521. Highly expressed
in iron overload and inflammation **’, hepcidin was later shown to be the key hormone of iron metabolism

72328 Hepcidin interacts with ferroportin: circulating hepcidin binds to membrane ferroportin and

regulation
causes subsequent ferroportin internalization and degradation = (Figure 1). As a consequence, cellular iron

egress is impaired. Hepcidin causes hypoferremia by decreasing cellular release into the plasmazs, therefore

regulating body iron availability through influencing iron release by both enterocytes and macrophages.



HEPCIDIN REGULATION

The regulation of hepcidin expression has been mainly studied at a transcriptional level *®In inflammation,

27-30

hepcidin induction results from the signaling of interleukin-6 through its receptor and STAT3 (signal

transducer and activator of STAT3). Basal expression is regulated through a bone morphogenetic protein (BMP)

12,31-33

/SMAD pathway . BMP6 *** is thought to play a major role in association with its coreceptor

11-13
(

hemojuvelin HJV), and is also involved in the response of hepcidin expression to iron stores %, Although

molecular mechanisms remain not fully elucidated, it is currently accepted that HFE, TFR1, TFR2 and HJV form a

37-39

complex at the hepatocyte membrane , Which is thought to play a major role in the sensing of iron stores

. . . . . - . 9,40,41
according to serum transferrin saturation, with subsequent regulation of hepcidin expression

(Figure 1).
TFR2 has been reported to activate signal transduction involving MAP kinase pathway 2 A post-traductional

level of hepcidin activity control, which implicates the furin dependent cleavage process, has been recently

highlighted ****.



IRON OVERLOAD

Iron overload arising from mutations in genes involved in iron metabolism are induced by two types of

mechanisms

HEPCIDIN DEFICIENCY

Hepcidin deficiency is the key mechanism explaining iron overload in type HFE, H/V, HAMP and TFR2 related
hemochromatosis. The corresponding mutations lead, through disturbances of signal induction cascades, to

decreased hepatic synthesis of hepcidin. In HFE hemochromatosis it was demonstrated in mice and confirmed

45,46

in humans that correction of liver hepcidin secretion normalized iron metabolism . Hepcidin deficiency

leads to a sustained and unregulated activity of ferroportin with a double patho-physiological consequence A7
On one hand, it leads to increased duodenal absorption of iron, and on the other hand, it enhances the release
by macrophages into the blood of splenic iron originating from erythrophagocytosis. The overall result is
increased plasma iron concentration associated to increased transferrin saturation. Beyond a certain level of
transferrin saturation, peculiar biochemical iron species appear, named non-transferrin bound iron (NTBI) 4849
NTBI has the property to be very rapidly taken up by the liver 0 pancreas and heart, and therefore produces
parenchymal iron excess (namely hepatocytes for the liver). Moreover, an NTBI component, called labile
51,52

plasma iron (LPI) **°%, which appears whenever plasma transferrin saturation is over 75%, corresponds to a

potentially damaging iron species due to its high propensity for generating reactive oxygen species.

IRON TRANSPORT ANOMALIES



The iron exporter Ferroportin can be involved in two types of diseases. In type A, mutations lead to a loss of
activity of the proteinSS, and iron overload is related to decreased iron release from the macrophages as a
consequence of functional deficiency. Conversely, in type B, the mutated ferroportin becomes resistant to

> thus despite an increased serum hepcidin level, the resulting “functional hepcidin

hepcidin action
deficiency” produces, through decreased ferroportin degradation, an increased ferroportin activity as in HFE

hemochromatosis.

Mutations of the ceruloplasmin gene can hamper its ferroxydase activity (which transforms ferrous iron into
ferric iron) which is mandatory for iron uptake by circulating transferrin after iron has been exported by
ferroportin. As a consequence, excessive ferroportin degradation may occur, leading to decreased cellular

. 55
export of iron ™.

As one can see, in types HFE, HJV, TFR2, HAMP, and type B ferroportin hemochromatosis, cellular iron excess is
due to an hepcidin deficiency with increased entry of excessive plasma iron into cells (predominantly
parenchymal cells) whereas, in types A ferroportin disease and in hereditary aceruloplasminemia, cellular iron
overload is related to decreased iron egress from cells with low circulating iron. These two different
mechanisms have important implications both for the phenotypic expression of the diseases and for their

therapeutic approaches.



ETIOLOGY

Actors of iron metabolism can suffer genetic alterations leading to perturbations of its physiological
equilibrium. According to theinvolved genes and subsequent affected mechanisms, the phenotypes differ, thus

dividing hemochromatosis in different subtypes.

HFE-RELATED (TYPE 1) HEMOCHROMATOSIS

HFE related hemochromatosis *° is the classical, and first described form, of genetic iron overload. The HFE
gene located on chromosome 6 codes for the membrane protein HFE, a MCH-Like protein whose definite role
at the membrane remains unclear. Associated with B2-globulin, TFR1 and potentially TFR2 and HJV, it plays a

>34 However, the definite subsequent signaling

critical role in iron load sensing to regulate hepcidin secretion
cascade, although interacting with the BMP/SMAD pathway, remains to be determined. Alterations in the
protein can eventually lead to a decreased and unregulated hepcidin secretion, promoting iron absorption and

57-61

iron overload . The paramount role of liver in this alteration of iron metabolism has been proven by its

. . . . 46
evolution after liver transplantation in humans™.

The most frequent and classical mutation of this gene is the p.Cys282Tyr (C282Y) mutation, which can lead to
iron overload when present in the homozygous state ® The mutation prevalence is high in Caucasian
populations 63,64 (10% of the subjects are heterozygous, 3 to 5 subjects per thousand are homozygous), but
almost absent in the non Caucasian populations % Other genotypes than C282Y homozygosity cannot explain
overt hemochromatosis : C282Y heterozygosity, H63D heterozygosity or homozygosity and compound
heterozygosity C282Y/H63D do not result in clinically significant iron overload in the absence of cofactors

66,67

accounting for disturbed iron metabolism (alcoholism or metabolic syndrome) . However some patients

with compound heterozygosity C282Y/H63D may have, even without known cofactors, increased transferrin

saturation and serum ferritin suggesting mild to moderate iron overload. Although they won’t develop overt

iron overload, and because many patients with C282Y homozygosity will also have only mild to moderate iron

overload, the clinical relevance of compound heterozygosity is still debated. Moreover there is currently no

data to define, biologically or clinically, what is a significant iron overload advocating for further diagnosis




workup. Thus the role of compound heterozygosity in the diagnosis remains elusive in clinical guidelineses'eg.

Other rare (private) mutations of the HFE gene have been described associated to those frequent genotypes,

.. . 70
thus explaining cases of iron overload .

The phenotypic expression of C282Y homozygosity is quite variable, and the full-blown form of the disease

71-74

(especially with cirrhosis) is rare . Given that C282Y homozygosity is necessary but not sufficient for iron

overload development, the role of modifying factors, impacting iron metabolism or hepcidin secretion, has

75,76 77,78

been advocated. These factors can be acquired (diet , alcohol , hepatic dysfunction >° metabolic

20,79,80 63,64,71,81 2-

syndrome ), or genetic (gender-related or iron genes-related factors: well documented in mice 8

84, the modifying role of associated genes of iron metabolism appears more mitigated in humans 85'89).

JUVENILE (TYPE 2) HEMOCHROMATOSIS

Described before the availability of genetic testing % this rare disease encompasses two entities characterized
by the usual young age at diagnosis. Type 2A hemochromatosis is due to mutation of the hemojuvelin (HJV)
gene Y on chromosome 1 and type 2B is due to mutations of the hepcidin (HAMP) gene % itself, located on
chromosome 19. Both are autosomal recessive diseases. It is a particularly severe form of hemochromatosis,
usually affecting young patients (<30 years old), often associated with cardiac involvement and central
endocrine impact (hypogonadotropic hypogonadism). Iron overload is massive and liver fibrosis is frequent
although cardiac and endocrine manifestations are at the forefront. The major and early impact of HJV
mutations on metabolism emphasizes its critical role in hepcidin secretion regulation. Hemojuvelin is expressed
in muscle and liver, but iron metabolism is under the sole regulation of hepatocyte expressed hemojuvelin 3,
At the membrane of the hepatocyte, hemojuvelin act as a BMPs coreceptor modulating the BMP/SMAD
pathway eventually enhancing hepcidin expression. Mutations of HAMP have obvious direct impact on
hepcidin synthesis. Moreover, when associated with other form of hemochromatosis, mutations in the

promoting region of HAMP have been described as a worsening factor of iron overload ",



TFR2 RELATED (TYPE 3) HEMOCHROMATOSIS

Type 3 related hemochromatosis is an autosomal recessive disease that can be considered as an
“intermediate” disease between juvenile and HFE hemochromatosis. Caused by mutations of the transferrin
receptor 2 gene (TFR2) located on chromosome 7, its clinical picture mimics HFE hemochromatosis although

-101

. . 95. . .
patients are usually younger and iron overload more severe . Age of onset is usually described to be young

adulthood (>30 years old) although several report of children with type 3 hemochromatosis do suggest that

100,102 . .
. Cardiac and endocrine

peculiar genotypes or cofactors could lead to more severe and earlier diseases
dysfunctions are less frequent than in juvenile hemochromatosis. Arthropathy is not rare. TFR2 is undoubtedly
involved in hepcidin expression regulation, but its molecular mechanism remains unclear. TFR2 is
complementary to HFE for hepcidin regulation according to iron load sensing % Moreover, TFR2 is supposed

to interact with HFE at the hepatocyte membrane and may modulate the BMP/SMAP pathway through a cross

talk involving the MAP/Erk signaling pathway 2,

FERROPORTIN DISEASE — TYPE 4 HEMOCHROMATOSIS

103,104

This disease is due to mutations of the ferroportin (SLC40A1) gene located on chromosome 2 . Unlike

other types of hemochromatosis, inheritance is autosomal dominant. Although rare, it is more frequent than

types 2 and 3 hemochromatosis and has been reported worldwide 105107

. According to phenotypic expression it
can be subdivided in two subtypes: i) Type A, the classical form, is characterized by normal or low transferrin
saturation and liver biopsy shows macrophagic iron deposition ; ii) Type B variant which is more rare, is similar

to types 1 and 3 hemochromatosis with elevated transferrin saturation and parenchymal iron deposition.

.. . . . . .. 108 . .
Overall, the clinical manifestations of ferroportin disease are limited ~, with only seldom cases of liver damage



reported which were frequently associated with cofactors. Liver damage may be more frequent in type B than

intype A 109,110

As afore-mentioned, Ferroportin is the only know iron exporter at the cell membrane. In type A ferroportin
disease, mutations lead to loss of iron-export function and cause iron accumulation within macrophages
accounting for the predominant spleen iron overload seen by magnetic resonance imaging. Theoretically
trapped in the macrophages, iron biological availability is low explaining the normal or low transferrin
saturation and the potentially lower tolerance to venesections than in HFE hemochromatosis. In type B
ferroportin disease, mutations lead to resistance of ferroportin to hepcidin activity, resulting in an excessive
cellular iron efflux. Thus, the phenotypic picture mimicks that of type 1 Hemochromatosis with increased

serum iron and transferring saturation, and parenchymal iron deposition.

OTHER RARE IRON OVERLOAD DISEASES

Hereditary a(hypo)ceruloplasminemia is due to mutations of the ceruloplasmin gene 1 which either totally
inhibit protein production 2 or its ferroxidase activity e Clinically, iron overload is associated with anemia

and neurological symptoms. Other rare entities are presenting as anemia and iron overload syndromes: they

114

are related to mutations of transferrin (atransferrinemia)™™, DMT1 (Divalent Metal Transporterl)“s'lls, X linked

119 120 21

sideroblastic anemia (ALAS2™", ABC7""), or glutaredoxin 5 (GRLX5) genes !



DIAGNOSIS WORK UP

The diagnosis work up of iron overload involves crucial steps to avoid misleading diagnosis due to confounding
factors, and to optimize resource utilization. Many tools have been made available to help the physicians in this
sequential strategy. Reference centers can ultimately be of primary importance to discuss difficult cases and

assess the need for further specific explorations.

CAUSES OF REFERRAL, CLINICAL PRESENTATION

Clinical features associated with iron overload are diverse and can be more or less associated: asthenia,
impotence due to endocrinopathy, arthropathy and osteopenia, skin darkening, hepatomegaly and moderate
transaminase increase, diabetes, cardiomyopathy (cardiac failure or rhythm disturbance). However, due to
improved knowledge of the disease and more widespread screening, the currently major cause of referral is
elevated serum ferritin level, detected in the context of suspected iron overload, or uncovered during routine

biological check-up or work up for other suspected diseases.

TO ASCERTAIN IRON OVERLOAD

The first step is to confirm that elevated serum ferritin is related to iron overload by assessing potential
confounding factors, thus avoiding unnecessary explorations. This step is crucial and can be difficult as many
frequent conditions can alter serum ferritin levels. Moreover, some of these causes can be associated with iron

overload further increasing serum ferritin concentration.



CONFOUNDING CAUSES OF HIGH SERUM FERRITIN

 ALCOHOL CONSUMPTION

Alcohol can increase serum ferritin levels by different direct means: alcohol itself can induce ferritin synthesis
122, and inhibit hepcidin synthesis which can lead to mild iron overload 78, Moreover, alcohol can increase
serum ferritin by indirect means: as hepatocytes are the main storage sites of ferritin, cell lysis related to
alcoholic liver disease leads to release of ferritin in the bloodstream. Thus, serum ferritin should be interpreted
with care in case of alcohol consumption and should be, if possible, controlled after a few months of

abstinence. It should be kept in mind that marked fluctuations of serum ferritin levels are highly suggestive of

intermittent phases of excessive alcohol consumption.

METABOLIC SYNDROME

The definition of the metabolic syndrome initially suffered of controversy, but is now admitted to be'” :

- Increased waist circumference (94cm in man and 80 in women, with population specific definitions)
- Increased triglycerides (or specific treatment): > 1.7 mmol/L

- Reduced HDL cholesterol (or specific treatment): < 1 mmol/L in men and 1.3 mmol/L in women

- Increased blood pressure (or specific treatment): Systolic 2130 and/or diastolic 285 mm Hg

- Increased fasting glucose (or specific treatment) : >5.5 mmol/L



Metabolic syndrome is one of the most frequent causes of hyperferritinemia. Metabolic syndrome can be
associated with hyperferritinemia (often comprised between 500 and 1200 pg/L) without or with mild iron
overload "** (insulin resistance associated iron overload or dysmetabolic hepatosiderosis) and is usually

125 . . . .
. However, iron burden remains of lower intensity as

associated with increased serum hepcidin levels
compared to the pronounced serum ferritin increase. Serum transferrin saturation is usually normal although it

can sometimes be slightly increased. It leads frequently to an erroneous diagnosis of hemochromatosis.

NFLAMMATION

In the acute or chronic phase of inflammation, ferritin can be mobilized without iron excess, thus leading to
high serum ferritin which can range from mild to very high levels. One should think of inflammation especially
when serum iron is low. Therefore plasma C reactive protein (CRP) should always be part of the work up for

hyperferritinemia.

' LIVER DAMAGE

Acute or chronic liver injury resulting in hepatocyte damage can lead to increased serum ferritin regardless of
the underlying cause. Actually, ferritin is mainly stored in hepatocytes and serum ferritin is a only minor part of
total body ferritin stores and is used as a surrogate marker. Thus, similarly to aspartate amino transferase and
alanine aminotransferase, intracellular ferritin can be released into the bloodstream secondary to hepatocyte
injury. The determination of serum transaminase activities is therefore another important parameter to control

for proper interpretation of hyperferritinemia.



RARE CAUSES OF ELEVATED SERUM FERRITIN

Some peculiar conditions can be associated with high serum ferritin without iron overload

e Hereditary Hyperferritinemia-Cataract Syndrome

Mutation in the Iron Responsive Element in the non-coding region of the messenger RNA of the L-Ferritin gene

(FTL, coding for the light subunit of ferritin) causes hyperferritinemia (which can be very elevated, often above
1000 pg/L) associated, in the classical form, with an history of familial cataracts, often expressed in young

126-128 .. . . . ey .
. Transmission is autosomal dominant. This condition is

subjects and leading to early surgical treatment
not associated with iron overload and thus there is no indication for venesection therapy. Although long term

data are scarce, there is currently no data that advocate for a negative consequence of chronically elevated

serum ferritin in this context. Beside this classical form, mutations in the coding region of the FTL gene have

been recently described™”’. Those mutations, referred to as Hereditary L Ferritin syndrome in figure 2, lead to

elevated serum ferritin without iron overload or cataract.

e Gaucher’s disease

Gaucher’s disease can be associated with high serum ferritin and normal transferrin saturation. It is an
inherited metabolism anomaly (glucocerebrosidase deficiency) resulting in excessive storage of
glucocerebroside in the liver, spleen, bone, and bone marrow. The clinical signs are anemia, thrombocytopenia,
hepatosplenomegaly, and bone pain. Elevated serum ferritin is not at the forefront of the clinical picture and

should not postpone referral to a referent center.



e Macrophage activation syndrome

Hyperferritinemia, which is a diagnosis criteria, is massively elevated (>5000 pg/L) in the context of infectious
(EBV), inflammatory (Still'’s syndrome) or hematological diseases. It is associated with general symptoms (fever,

splenomegaly, cytopenia, high serum triglyceride levels) that need urgent referral for treatment.

TO QUANTIFY IRON OVERLOAD

Once iron overload is suspected by elevated serum ferritin, and the potential confounding factors have been
assessed, the next step is to assess body iron stores to quantify iron overload. Serum transferrin saturation
should first be performed. If elevated HFE related hemochromatosis is the most likely diagnosis in the
Caucasian population and should thus be confirmed by HFE C282Y testing before further exploration. Lack of

C282Y homozygosity requires definite evaluation of iron overload.

Using the paramagnetic property of iron, Magnetic resonance imaging (MRI) is a fast and efficient non invasive

129130 ¢ requires an 1,5 Tesla MRI device (which is the most

technique to assess liver iron concentration
frequent) and the algorithm for iron evaluation proposed by the Rennes University is freely accessible on the

website www.radio.univ-rennesl.fr.

A region of interest is drawn to compare the T2 signal between liver and paravertebral muscle, hyposignal
(meaning dark liver as compared to paravertebral muscles), representing higher tissue iron concentrations. The
very good correlation between hyposignal and hepatic iron overload allows to determine hepatic iron
concentration with a satisfactory reliability. Moreover, it is highly relevant to evaluate hepatic versus an
approximation of splenic iron load since a dominant splenic iron excess means preferential macrophagic iron

ey . . . . . . . . 131
deposition, therefore orientating the diagnosis towards transfusional iron excess or ferroportin disease

Alternative methods, using T2 relaxometry have been developed and are found to be more accurate to

130,132

quantify liver iron content at all levels of iron overload . However due to hardware requirement and lack of

standardization they are not yet widely available.



If MRI is not available or contra-indicated, liver biopsy, using Perls staining, remains a reference method for
diagnosing iron excess 3. Biochemical determination of iron concentration remains the gold standard.
Moreover, liver biopsy gives definite information regarding parenchymal or mesenchymal localization of iron

% However, due to its

overload which can be helpful in the diagnosis workup (review in Deugnier et al.
invasive nature, morbidity, cost and the increasing place of MRI, liver biopsy is rarely needed for diagnosing the
type of iron overload. Indications today are mainly to evaluate iron overload consequences in terms of hepatic
fibrosis and to search for possible co-factors such as steatohepatitis (alcoholic or not (NASH)). Regarding
fibrosis evaluation, there is growing evidence that non invasive procedures such as serum markers and/or

. . . . 135,136
transient elastography, can give relevant information .

PRIMARY OR SECONDARY IRON OVERLOAD

Once iron overload has been identified and quantified, its primary or secondary nature must be determined.

Oral supplementation, although rarely, can lead to iron overload B7 1t is thus necessary, through careful
questioning, to ensure that the patient has not undergone prolonged iron supplementation. It is of major
importance to assess this point in patient seeking sportive performance for professional B8 or non-professional

reasons, as it has been considered that iron supplementation could increase hemoglobin status.

The main cause of secondary iron overload is represented by hematological conditions. Chronic or rare
anemias such as thalassemia major, sickle cell disease, myelodysplatic syndromes, and congenital anemias, can

be associated with iron overload.

Two, more or less associated, mechanisms can be involved:

- Increased iron load through repeated transfusions represents, a major cause of iron overload (each

transfused unit provides 200-250 mg of iron so that significant iron excess develops after 10-20 units). This



mechanism leads to an increased recycling of red blood cells process with enhanced iron deposition within

macrophages, mainly in the spleen but also in hepatic Kupffer cells.

- Hepcidin deficiency. Ineffective erythropoiesis leads, through a yet not clearly defined pathway, to inhibition
of hepcidin expression. The proposed role of Growth Differentiation Factor 15 3%s now questioned since a
more direct link between erythropoiesis and hepcidin secretion has been recently reported. Indeed, a major
breakthrough is represented by the discovery of the hormone named erythroferrone which corresponds very
likely to the long-sought “erythropoietic factor” (Kautz et al, 2013, Biolron, London). This could explain why

40
, and

iron overload can develop in chronic anemia, like thalassaemia, even in the absence of transfusions
why hepcidin expression is relatively low in those diseases despite transfusional iron excess (which should lead

to increased hepcidin expression).

Past history of chemotherapy treatment should also be sought. Growth factor or sometimes multiple
transfusions used in this context can also lead to iron overload. The long term outcome of “transitional”

secondary iron overload is not known, but due to the absence of natural and effective iron elimination route, it

is likely that iron overload can persist for years.

TO IDENTIFY THE GENETIC ORIGIN OF IRON OVERLOAD

Identification of the genetic cause of primary iron overload is driven by the combination of patient’s clinical and

biological data that suggest the possible underlying physiological mechanism.

A precise determination of the suspected disease is highly recommended as most of the genetic studies are not
performed in routine and are both expensive and time consuming. Thus, a multidisciplinary approach is often

required in complex cases and the help of referral centers should be sought.

As an example, in France, a national reference center, working in a nextwork with several regional competence

centers, has been established (http://www.centre-reference-fer-rennes.org/) and proposes, on a weekly basis,

multidisciplinary meetings where difficult cases are discussed in order to support physicians in their diagnosis

work-up.



PATIENT AND FAMILY DATA

Patient’s clinical and biological data have to be gathered through the initial phases of work-up. It should be
emphasized that, due to important between and within-day variations of iron biological parameters (especially

141,142

serum iron and transferrin saturation ), repeated measurements should be performed especially to avoid

false positive results.

Family history is a major point to assess. Careful search for putative diagnosis of iron overload in relatives can

suggest the presence of a dominant or recessive disease and strengthen the need for genetic exploration.

DECISION TREE

The decision tree is summarized in Figure 2.

Serum transferrin saturation is the initial key point.

e Increased transferrin saturation

The most likely diagnosis in Caucasians is HFE related (or type 1) hemochromatosis as confirmed by C282Y
homozygosity. If there is a family history of dominant transmission the type B ferroportin disease

(hemochromatosis 4B) should be sought.

If the C282Y HFE mutation is absent, the next relevant information is the age of presentation: in young patients
(<30 years old) either type A (hemojuvelin mutations) or type B (hepcidin mutation) juvenile hemochromatosis
(type 2 hemochromatosis) should be looked for. In older patients, transferrin receptor 2 mutation (or type 3
hemochromatosis), type B ferroportin disease (hemochromatosis 4B) or private mutations of the HFE gene

(which require complete sequencing of the gene instead of routine HFE C282Y test) can be evoked. However



patient with very early presentation of type 3 hemochromatosis have been reported, and conversely patient
with type 2 hemochromatosis and late presentation have also been reported. Thus if age is a clue for deciding

which genetic test should be performed at first, if negative an unusual age of presentation must be considered.

¢ Normal or low transferrin saturation

In this case, the most likely diagnosis is the classical form of ferroportin disease (type A) which can be
confirmed be sequencing. However, given its simplicity, plasma ceruloplasmin levels should also be determined
despite the rarity of hereditary aceruloplasminemia. The latter diagnosis will of course be more likely in cases
of anemia and/or neurological symptoms. Ceruloplasmin levels are typically not detectable but, in some cases,

ceruloplasminemia is only significantly decreased.

MANAGEMENT OF NON HFE HEMOCHROMATOSIS

FAMILY SCREENING

Family screening is very important in the management of patients with genetic iron overload. It can provide
precious clues in the diagnosis work-up of the patient but also help to determine if a genetic anomaly is a
pathogenic mutation or a simple polymorphism by studying the genotype / phenotype correlations within the
family. Mostly, family screening, following the diagnosis of a specific mutation in a given patient, allows earlier

diagnosis thus preventing the development of iron-related organ damage related .

PHLEBOTOMY



The mainstay of treatment in genetic iron overload is removal of iron burden. Phlebotomies (venesections)
remain the most efficient and convenient way to remove iron by forcing the bone marrow to use stored iron

for intense erythropoiesis.

Treatment is performed in non-HFE hemochromatosis in a similar way to that of the type 1 form. The initial
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induction phase will remove the excessive iron and the maintenance phase will prevent its recurrence ~.

During induction phase, phlebotomy is performed on a weekly basis using a weight based volume of 7ml/Kg up
to 550ml. Hemoglobin should be monitored on a monthly basis. In case of anemia treatment should be
postponed until resolution ; if necessary volume and / or frequency of phlebotomy should be reduced. Serum
ferritin is monitored to assess treatment efficiency. Monitoring frequency relies upon serum ferritin value:

monthly as long as ferritin remains above the normal range, then fortnightly until the goal of 50ug/L is reached.

Once iron depletion has been achieved, the aim of maintenance treatment is to prevent recurrence of iron

overload. Venesection is thus performed every 2-4 months to maintain a serum ferritin value close to 50ug/L.

Special attention should be given to iron overload related to iron transport anomalies, like ferroportin disease,
as anemia could occur more frequently. Therefore, hemoglobin levels should be closely monitored and

phlebotomies should be performed initially less frequently to test for hematological tolerance.

OTHER THERAPEUTIC ASPECTS

DIET

Although very commonly questioned by patients, and probably partially involved in the variable expression of
the disease, no studies showed beneficial effect of dietary modification or alimentary iron avoidance in patient
undergoing phlebotomy treatment. Thus, it is advised to maintain a healthy diet without stringent restrictions
regarding iron. However, iron supplemented food should be avoided and it is usually recommended to limit

vitamin C intake due to its possible toxic effect.



Special emphasis should be given to alcohol consumption. It has been clearly shown that, like in many liver
. . . . . 77 . . eleas
diseases, excessive alcohol consumption increases liver damage "*. Moreover, a direct inhibition effect of

alcohol on hepcidin secretion favors iron overload.

. ORAL CHELATION

Deferasirox (Exjade®) is an oral iron chelator, which, taken once daily, is used in post-transfusional iron
overload. An international study in HFE hemochromatosis showed satisfactory results regarding safety and

14 Although off label, this treatment could be helpful in case of contraindication (anemia) or poor

efficiency
tolerance to phlebotomy. Moreover, it could be useful, in addition to venesections, in patients with massive

iron overload and organ damage requiring very rapid removal of iron burden.
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LEGENDS TO FIGURE

Figure 1: Iron metabolism regulation. HCP : Heme carrier protein. DMT1 : Divalent Metal Transporter 1. HIV :
Hemojuvelin. TFR1 : Transferrin Receptor 1. TFR2 : Transferrin Receptor 2. BMP Receptor : Bone Morphegenic

Protein receptor.
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Figure 2: Decision tree for diagnosis of genetic iron overload. HC : Hemochromatosis
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