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Abstract 

Background. Hereditary hemochromatosis (HH) is the most common form of genetic 

iron loading disease. It is mainly related to the HFE C282Y/C282Y homozygous 

genotype that is however a necessary but not a sufficient condition to develop clinical 

and even biochemical HH. This suggests that modifiers genes are likely involved in 

the expressivity of the disease. Our aim was to identify such modifier genes. 

Patients and methods. We performed a genome-wide association study (GWAS) 

using DNAs collected from 474 unrelated C282Y homozygotes. Associations were 

examined for both quantitative iron burden indices and clinical outcomes with 

534,213 single nucleotide polymorphisms (SNP) genotypes, with replication analyses 

in an independent sample of 748 C282Y homozygotes from four different European 

centres.  

Results. One SNP met genome-wide statistical significance for association with 

transferrin concentration (rs3811647, GWAS p-value of 7×10−9 and replication p-

value of 5×10−13). This SNP located within intron 11 of TF gene had pleiotropic effect 

on serum iron (GWAS p-value of 4.9×10−6 and replication p-value of 3.2×10−6). Both 

serum transferrin and iron levels were associated with serum ferritin levels, amount of 

iron removed and global clinical stage (p<0.01). Serum iron levels were also 

associated with fibrosis stage (p<0.0001). 

Conclusion. This GWAS, the largest one performed so far in unselected HFE-HH 

patients, identified the rs3811647 polymorphism in the TF gene as the only SNP 

significantly associated with iron metabolism through serum transferrin and iron 

levels. Because these two outcomes were clearly associated with the biochemical 

and clinical expression of the disease, an indirect link between the rs3811647 

polymorphism and the phenotypic presentation of HFE-HH is likely.  
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Introduction 

 

Genetic hemochromatoses are hereditary disorders proceeding from impairment in 

the production and/or activity of the key regulator of plasma iron, hepcidin, and 

resulting in progressive iron loading of parenchymas. HFE-hemochromatosis 

accounts for more than 95% of genetic hemochromatosis cases in Caucasian 

populations [1]. It is chiefly related to one major mutation, p.Cys282Tyr (C282Y), 

whose frequency ranges from 5% to 15% according to an increasing gradient from 

South/East to North/West but whose penetrance is far from complete [2]. 

 

Large studies based on systematic genotyping of large populations [2-6] have 

consistently found that transferrin saturation and serum ferritin levels, the key 

biochemical markers of genetic hemochromatosis, were significantly increased in 

C282Y homozygotes when compared to sex-matched controls with other HFE 

genotypes. According to studies, the percentage of C282Y homozygous subjects 

with elevated transferrin saturation ranged from 73 to 84% in males compared to 40 

to 73% in females. The same was found for serum ferritin levels with a prevalence of 

increased values ranging from 70 to 88% in males and 33 to 69% in females. As a 

whole, the biochemical penetrance of C282Y in homozygotes can be estimated as 

about 75% in males and 50% in females. However, only a few studies of the clinical 

expressivity of C282Y homozygotes achieved a sufficient statistical power and 

referred to a control group to allow for a correct interpretation of the data. [2,5,7-9] 

Based on these studies, it can be concluded that the clinical expressivity of the 

C282Y homozygous genotype is indisputably much lower than previously admitted, 

averaging 28% in males and 1% in females when using strict definitions of both iron 

overload and iron-related organ damage [2]. The main manifestations of HFE-

hemochromatosis are chronic fatigue, arthritis and liver disease. The frequency of 

heart disease and diabetes are not significantly increased in C282Y homozygotes 

compared with controls [1]. However fatigue and arthritis are not clearly correlated 

with the amount of iron burden. With respect to liver disease, serum ferritin levels 

lower than 1000µg/L allow exclusion of significant fibrosis, as demonstrated by 

Guyader et al [10] and confirmed by Allen et al [2]. Thus C282Y homozygosity 

appears to be a necessary but not a sufficient condition for the development of HFE-
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hemochromatosis and the existence of both environmental and genetic modifiers of 

its penetrance is strongly suggested. 

 

Although familial studies have shown that non-HFE iron-related genes are involved in 

the modulation of iron burden in C282Y homozygotes, only a few putative genetic 

modifiers have been identified so far in humans. A mitochondrial polymorphism has 

been reported as more frequent in iron loading expressing than in non-expressing 

C282Y homozygotes [11] but this was not confirmed by another study [12]. Co-

inheritance of mutations in the hepcidin gene (HAMP) [13,14] or in the hemojuvelin 

gene (HFE2) [15] together with C282Y homozygosity was found to be associated with 

more severe iron burden of earlier onset in a French cohort of C282Y homozygotes 

[13,15]. However these mutations have a frequency lower than 2‰ among C282Y 

homozygotes and can thus explain increased disease severity in a few patients only. 

Based on these results, the BMP - SMAD pathway regulating hepcidin production 

was highlighted as an important pathway that was likely including potential modifying 

genes. This was confirmed by the finding, in a large cohort of C282Y homozygotes, 

of an association between common variants in the BMP pathway and the level of iron 

burden [16,17]. The full expression of HFE-hemochromatosis may thus be linked to 

abnormal hepatic expression of hepcidin, through both impairment in HFE function 

and functional modulation in the BMP pathway. Other results support the hypothesis 

that polymorphisms in different genes regulating iron metabolism may modulate 

penetrance of HFE-HH. CYBRD1 was shown to be a possible modifier gene of iron 

phenotype in patients with HFE-HH [18,19] and, recently, the p.Ala736Val TMPRSS6 

polymorphism was shown to be likely a modifier of HFE-HH in a highly selected 

subgroup of male C282Y homozygotes [20]. 

 

We hypothesized that other common variants located in genes outside this pathway 

could modulate iron overload in HFE-HH. To identify these variants, we conducted a 

genome-wide association study in 518 C282Y homozygous HFE-HH patients from 

the tertiary referral centre of Rennes, France. The association between SNPs and 7 

clinical and biochemical outcomes was examined and a replication study of candidate 

SNPs was conducted in a sample of 748 HFE-HH patients from 4 Italian and French 

centres. In this paper, we present the results of this GWAS study that is the largest 

conducted so far in HFE-HH patients.  
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Materials and Methods 

 

Study population and replication sample 

 

Approval for the genome-wide association study was obtained from the local ethical 

committee (reference 09/10-722 – 23/03/2009). All participants gave written informed 

consent. Samples were collected thanks to the Logifer database comprising all 

C282Y homozygous probands and relatives referred to the Liver Unit in Rennes, 

France, and collected retrospectively before 1989 and, then, prospectively. According 

to French rules, Logifer was declared to the national committee “Informatics and 

Freedom” (CNIL). Data are recorded from patient’s files by data-managers and 

keyboarded twice. A clinical research assistant provides quality control, and 

coherence control and statistical analysis are performed by a bio-statistician. 

 

Selection criteria included availability of sex, age at diagnosis, serum ferritin level at 

diagnosis before any venesection therapy, amount of iron removed by phlebotomy 

and frozen DNA samples stored at -20°C in the Centre of Biological Resources of 

Rennes. Carriers of the H63D mutation were excluded from this study. Of the 1730 

C282Y homozygotes recorded in Logifer at the time of the study, 518 fulfilled these 

criteria. Replication for SNPs identified from the GWAS was conducted in 748 C282Y 

homozygous patients with informed consent from four different European Centres: 

Toulouse in Southern France (n=279), Brest and Rennes in Brittany (n=226 and 

n=124, respectively), and Monza in Northern Italy (n=119). Seven clinical and 

biochemical outcomes were examined: serum transferrin concentration, serum iron, 

serum ferritin, transferrin saturation, amount of iron removed by phlebotomy, liver 

fibrosis, and mixed biochemical and clinical score referred as the HAS score (Haute 

Autorité de Santé) [21]. All clinical and biochemical data were recorded at the time of 

diagnosis before any venesection therapy. Table 1 presents the characteristics of all 

the samples included in the GWAS and replication studies. 

 

Liver fibrosis was assessed using the Metavir scoring system when liver biopsy was 

available (n=227) [22]. Patients were classified as having severe fibrosis when the 

Metavir score was either F3 or F4. In the absence of liver biopsy, according to 

Guyader’s algorithm, severe liver fibrosis was considered as absent when serum 
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ferritin was < 1000 µg/L. HAS score [21] ranged from 0 to 4 according to the 

absence/presence of increased transferrin saturation (stage 1), elevated serum 

ferritin levels (stage 2), iron-related functional symptoms (asthenia, distal arthralgia; 

stage 3) and iron-related organ damage (liver fibrosis, diabetes; stage 4). In addition, 

the following data, recorded at the time of diagnosis, were available for the Rennes 

GWAS cohort: alcohol consumption, tobacco smoking, medicinal iron and drug 

intake, year(s) and number of blood donations, year(s) and number of pregnancies, 

age at menopause, weight and height, blood pressure, common blood tests including 

serum cholesterol, triglycerides, ASAT, ALAT, glucose, uric acid, creatinine, and HCV 

antibody and HBs antigen (negative in all patients).  

 

Laboratory Methods 

 

We determined iron status by measuring the levels of serum iron (mmol/L), 

transferrin saturation with iron (%) and serum ferritin (µg/L). Amount of iron removed 

(g) was assessed from the volume of blood extracted during initial depletion therapy 

until the achievement of low body iron stores (serum ferritin � 50), assuming that 500 

ml of blood contains 250 mg of elemental iron. For patients that were not subject to 

phlebotomy because of the absence of significant iron overload, it was assumed to 

be 0. Genomic DNA was extracted from peripheral blood cells by the phenol-

chloroform method or by use of the Flexigen DNA kit (Qiagen). Only DNA samples 

with quality in accordance with Illumina recommendations were kept. 

 

Genome-wide genotyping and quality control procedures 

 

GWAS was performed on the 518 cases with the Illumina™ InfiniumHD technology 

(Human660W-Quad). A total of 657,366 markers were assessed for quality. Quality 

control tests were carried out using the GenABEL library [23] of the R statistical 

package (http://www.r-project.org/). The quality control flow diagram is presented in 

supplementary Fig. 1. Quality control assessments resulted in the exclusion of 

95,988 CNV markers and 27,165 SNPs because of at least one of the following 

criteria: a minor allele frequency less than 1%, a call rate less than 95%, or rejection 

of Hardy-Weinberg equilibrium (HWE) at p-value equal to 10-6. Thirty-one samples 

were excluded from the analysis due to a call rate <99%, too high autosomal 
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heterozygosity (FDR <1%), an average identity-by-state (IBS) value > 0.2, or 

misclassification of sex. Iterative principal component analyses (PCA) of a matrix of 

IBS distances computed from the SNP genotype data excluded 13 patients as 

heterogeneous in ancestry or outliers. After filtering of SNPs and samples, there were 

534,213 SNPs available for analysis in a sample of 474 cases. Genetic population 

structure was assessed by PCA thanks to the OriginMineR R package. [24] 

 

Genotyping and quality control procedures for replication samples 

 

Replication for SNPs identified from the GWAS was carried out by custom Fluidigm 

SNPtype assays based on allele-specific PCR SNP detection chemistry and 

designed for the BioMark HD System. Each sample was assessed for completeness 

of data (>90%) and genotype data were assessed for deviation from HWE (p<10-6), 

minor allele frequency (>5%) and completeness (>99%). 

 

Statistical analyses  

 

Statistical analyses of the GWAS genotype data were carried out using the GenABEL 

R library for genome-wide association analysis [23]. The quantitative iron status 

outcomes were analysed using linear regression after rank-based inverse normal 

transformation to avoid inflated type I error resulting from departure from normality. 

Genotypes were coded as 0, 1 or 2, indicating the number of copies of the less 

frequent of the two alleles in the genotype. The regression models for all outcomes 

included the additive genotype term and the covariates: age, with consideration of 

age groups of 10 years, and sex. Population stratification was also taken into account 

by adjusting models for the two principal components obtained from the PCA of the 

whole genotype data. For liver fibrosis, logistic regression was performed and we 

used ordered logistic regression (R cran function, polr) to model HAS-score. For the 

replication phase, a four-level factor indicating the centre where the sample was 

collected was added to each model instead of the principal components. As we 

conducted several analyses using different phenotypes and performed 8 * 534,213 
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tests in our entire GWA analysis, we considered p-values < 10-8 (0.05/4.3 × 106) to 

indicate genome-wide significance in our study. 

The 20 SNPs tested in the replication study consisted of (i) SNPs with P<10-6 from 

which only two SNPs were selected by LD block (Table 2), and, (ii) SNPs with P<10-5 

and P>10-6 with one SNP being selected for each LD block to avoid redundancy 

(Supplementary Table 1). 

 

Genotype imputation 

 

Data were imputed for over 10 million SNPs using data from the 1000 Genomes 

Project [25]. Genotypes were aligned to the positive strand in both imputation and 

genotyping. SHAPEIT2 [26] and IMPUTE2 [27] were used for imputation of non-

genotyped SNPs in the Illumina Human660W-Quad chips. We removed SNPs with 

minor allele frequency less than 1% and impute info measure less than 0.8. Genome-

wide association analyses were conducted using SNPtest [27]. 
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Results 

 

Characteristics of patients 

The clinical and biological characteristics of patients belonging to the primary and 

replication cohorts are reported in Table 1. With respect to primary cohort, additional 

descriptive data were as follows:  BMI (men: 25.15±3.27, women: 24.25± 4.5), 

excessive alcohol consumption (men: 16%, women: 5%), tobacco consumption 

(men: 31%, women:15%), blood donation (men: 23%, women: 21%), proportion of 

pregnancies (none=17%, one or 2: 37%, greater than 3: 24.5%) , number of 

menopausal women (44%). Link between biological iron data and these putative 

modifying factors was investigated using both univariate and multivariate Gaussian 

regression models. Alcohol consumption was strongly associated with body iron 

(p=0.004) and serum ferritin (p=6x10-7) in univariate analyses. This association 

remains significant only with serum ferritin in a multivariate analysis including gender 

and age. In women, pregnancy and menopause were associated with body iron 

(p=0.04 and p=0.02, respectively), serum ferritin (p=0.04 and p=0.01, respectively) 

and serum iron (NS and p=0.002, respectively) in univariate analyses only. Thus, 

GWAS was performed with regression including age and sex as only covariates. For 

ferritin, an analysis including also alcohol consumption was performed. 

 

Genome-wide Association Study 

The sequencing of the HFE gene confirmed that all participants were homozygous for 

the p.Cys282Tyr mutation and did not carry any other mutation in this gene known to 

be involved in HH. Following quality control, a total of 534,213 SNP and 474 patients 

were included in the GWAS (supplementary Fig. 1). All HFE-HH patients were 

identified as being from European ancestry and particularly from Western Europe 

(supplementary Fig. 2).  

Figure 1 shows the Manhattan plot obtained for GWAS of all the seven clinical and 

biochemical outcomes. P-values <10-6 were obtained for ten SNPs on chromosomes 

2, 3, 6, 16 and 9 (Table 2) and 41 SNPs were found associated with at least one of 

the seven outcomes with p-values between 10-6 and 10-5 (Supplementary Table 1 

and Supplementary Fig. 3).  However, GWAS analyses identified only one locus 

reaching the genome-wide significance threshold of 10-8 (Figure 2). This locus 

associated with serum transferrin concentration was located on chromosome 3q22 
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(TF gene; rs3811647, intron 11, p-value = 7×10−9). This SNP was also associated 

with serum iron (p-value = 4.9×10−6) but not associated with other phenotypic 

descriptors. The effect of rs3811647 was additive with each A allele increasing both 

serum transferrin and serum iron concentration. It explained 7.7% of the variance of 

serum transferrin concentration and 4.7% of the variance of serum iron levels. Other 

potential associations were found between serum ferritin and rs3849200 on 

chromosome 6p16.3 (p-value = 6.2×10−7) and rs4544229 on chromosome 16q21 (p-

value = 8.9×10−7), between the amount of iron removed and rs4371141 (VAV2 gene) 

on chromosome 9q34 (p-value = 9.4×10−7), and between the HAS-score and 

rs3900546 located between LOC644013 and MAP4K4 on chromosome 2 (p-value = 

2×10−7). Associations between serum ferritin and rs3849200 and rs4544229 were 

conserved when alcohol consumption was included in the regression model. 

 

Follow-up Association Study 

 

In the second phase, twenty SNPs were selected for validation on an independent 

sample of 748 patients. Iron parameters distributions for patients included in the 

replication study are presented Table 1. Data distributions were compared between 

centres with linear models adjusted by age and gender (Supplementary Fig. 4). Raw 

iron parameters were found to vary significantly between centres (Supplementary 

Fig. 4 and 5A) but differences between centres were clearly reduced after rank-based 

inverse normal transformations (Supplementary Fig. 5B). After quality controls, a total 

of 18 SNPs were retained for replication, rs3849200 and rs2810493 being removed 

because of no call rate. Among these SNPs, only rs3811647 in the TF gene showed 

evidence for association with both serum transferrin and serum iron with p-values of 

5x10-13 and 3.6x10-6, respectively (Supplementary Table 2).  

 

Association Analysis of Combined GWAS and Follow-up Samples 

 

The GWAS and follow-up study data were combined (n=1220 patients) and were 

analysed for each outcome in a model that included age, sex, the collection centre 

variable and a variable to indicate if patients were from the GWAS or the follow-up 

study. Results are presented in Supplementary Table 3. Genome-wide significance 

was found for the association of rs3811647 in the TF gene with serum transferrin (p-
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value = 1×10−20) and serum iron (p-value = 9.24×10−11). Besides these strong 

associations, no significant direct association with other phenotypic descriptors was 

found. Four other loci show potential association signals but with low significance (p-

value around 10−3): rs10788066, located between the PPAPDC1A and SEC23IP 

genes, with serum ferritin, amount of iron removed, severe liver fibrosis, and HAS-

score; rs2941832, near the gene SALL3, with serum ferritin and amount of iron 

removed; rs2810473 and rs4406471 in the VAV2 gene with serum ferritin and, to a 

lesser extent, amount of iron removed, and rs17012214, located within the gene 

TTC27, with severe liver fibrosis. 

 

As the role of TMPRSS6 has been highly documented in iron metabolism in the last 

few years [29-33], we also assessed, in the combined cohort, the association of the 7 

outcomes with two common variants in TMPRSS6 (rs855791 and rs4820268). Using 

the same models, we found weak signals of association with the HAS-score for both 

SNPs (rs855791, p-value = 1×10−4 and rs4820268, p-value = 6×10−4), and with the 

amount of iron removed for rs4820268 only (p-value = 4×10−4). No association was 

detected with other parameters of iron status.  

 

rs3811647 genotypes in the general population 

We investigate the frequency of rs3811647 alleles from genotyping data obtained in 

a non-HFE population from Brittany (n=191). We found that A allele has frequency of 

0.343 (AA, n=21; AG, n=89; GG, n=81). We compared allele frequency in the 

population of C282Y homozygous patients against this population of Brittany and 

against GBR and CEU from 1000 Genomes and did not find any difference (chi-

squared test). 

 

Clinical, biochemical, and rs3811647 genotype correlations 

 

Clinical and biochemical parameters were investigated in relation with rs3811647 

genotypes in patients included in the GWAS study. Except for the additive effect of 

rs3811647, with each A allele increasing both serum transferrin and serum iron 

concentration, no significant influence of the rs3811647 genotype on clinical and 

other biochemical parameters was found (Table 3a). However, significant positive 

associations were detected between serum transferrin and serum iron levels and 
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between serum iron levels and all phenotypic outcomes studied. Serum transferrin 

levels were negatively correlated with all other phenotypic markers except fibrosis 

(Table 3b).  
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Discussion 

 

In this paper, we report the first study designed at the genome-wide scale to identify 

SNPs associated with clinical and biochemical expression of HFE-hemochromatosis. 

This study was performed in a large sample of well-defined C282Y homozygous 

patients, totalizing more than 1,200 individuals presenting with a wide range of 

phenotypic expression. No significant association was found between SNPs and 

clinical outcomes. With respect to biochemical outcomes, only one chromosomal 

region including the rs3811647 SNP in the TF gene showed clear evidence for 

association with serum transferrin in the GWAS (p-value=7×10−9), in the replication 

study (p-value=5x10-13) and the combined analysis (p-value=1×10−20). Unexpectedly, 

this SNP was also clearly associated with serum iron, and therefore indirectly linked 

to biochemical and clinical outcomes.  

 

Notably, in the general population, rs3811647 was reported as associated with serum 

transferrin but not with serum iron [33-35] contrary to what we found in 

hemochromatosis patients. It is possible that, in the general population, the power of 

detecting association with serum iron was compromised by the limited range of the 

values of this parameter. In contrast, our sample of C282Y homozygotes is a 

combination of biochemically expressing and non-expressing individuals. The 

necessarily wider range of serum iron in these patients may have allowed us to 

highlight the role of rs3811647 genotype in modulating not only serum transferrin but 

also serum iron levels.  

 

However, our study did not find a direct link between the rs3811647 SNP in the TF 

gene and the phenotypic presentation of HH. Indeed, although this SNP was 

associated with serum iron, it was not significantly associated with serum ferritin, 

transferrin saturation, or any of the clinical outcomes tested. Indirect tests of 

associations are less powered than direct tests and may require much larger sample 

sizes than the ones used in this study to allow us to demonstrate a possible influence 

of the genotype at rs3811647 on other parameters of disease severity. However, we 

cannot exclude that such an association exists in HFE hemochromatosis only 
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through the dysregulation of iron cellular efflux secondary to the impairment of 

hepcidin expression (Figure 3). 

 

Our study indicates that the association of rs3811647 with serum transferrin 

concentration is maintained in C282Y homozygous patients and that the lowest 

serum transferrin levels are observed in those bearing the GG genotype. However, 

even the patients with the rs3811647 AA genotype have less serum transferrin than 

normal controls polymorphism (data not shown). This finding fits with the common 

observation of decreased serum transferrin levels in C282Y homozygotes, which is 

attributed to the preservation of a physiologic negative feedback of transferrin 

synthesis by elevated body iron stores. This could contribute to aggravate the iron 

burden through the increase of transferrin saturation and the consecutive increase of 

non-transferrin bound iron, which is considered as the main factor of visceral iron 

loading in hemochromatosis. However, although they had lower serum transferrin 

levels, patients with the rs3811647 GG genotype had no increased transferrin 

saturation when compared to other patients.  This is in line with the concomitant 

decrease in serum iron levels, and could suggests that transferrin levels, as 

determined by rs3811647 polymorphisms, may participate per se in the regulation of 

systemic iron, possibly through a direct interaction with the molecular cascade 

involved in hepcidin production. [37] 

 

We took advantage of this study to investigate putative candidate genes selected 

from literature and/or coding for molecules involved in iron-related metabolic 

pathways and previously identified GWAS-significant SNPs (Supplementary Table 4 

and Supplementary Table 5). No association, even borderline, was found. Finally, we 

focused on TMPRSS6, a modifier gene identified by Valenti et al. in a highly selected 

population of 96 non-alcoholic male C282Y homozygotes [20]. In the subset of 230 

non-alcoholic male C282Y homozygotes from the GWAS sample, an association was 

detected with SNPs located in this gene at the 1% nominal level (p-value = 0.006 

with AIR), but this association did not resist multiple testing corrections at the 

genome-wide level. It remains possible that TMPRSS6 acts as a modifier-gene but 

with a weak effect compared to age and sex.  HH is a long-standing disease whose 

diagnosis is made at adulthood. Along the constitution of iron excess, many factors 
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are able to act, at various periods and in opposite directions, resulting in highly 

variable iron burden from an individual to another. These factors include, apart blood 

donation, pregnancies and menopause that are easy to take into account and to 

quantify, regimen, drugs (including iron auto-medication), menstrual blood loss, 

alcohol consumption and evolution of metabolic features that are difficult to reliably 

assess over a long period. This highlights the need for better controlling 

environmental factors, not only alcohol consumption, which implies to study much 

larger population than in the present GWAS. 

 

The present study suffered from several limitations. First, the phenotypic description 

of HH remains difficult and imprecise. Two types of indicators are available: those 

measuring the iron burden and those assessing organ damage. The degree of iron 

burden is usually deduced, at the time of diagnosis, from serum ferritin levels, hepatic 

iron concentration assessed either by biochemical determination or magnetic 

resonance imaging, histological semi-quantitative evaluation of hepatic iron stores, 

and, to a lesser extent, transferrin saturation. However, all these indicators have to 

be interpreted according to age and gender and are subject to frequent limitations. 

Conditions that often coexist in hemochromatosis and may result in overestimation of 

iron burden can modify serum ferritin levels (i.e. excessive alcohol intake, metabolic 

syndrome, cell necrosis and inflammatory syndrome). Because it requires an invasive 

approach, histological and biochemical determination of hepatic iron concentration is 

less and less performed.  It also depends on both liver volume and hepatic iron 

distribution that may be heterogeneous, especially in case of cirrhosis. Hepatic iron 

concentration measurement by MRI is reliable within the range of 60-300 µmol/g of 

dry liver only, which precludes correct assessment of iron burden in patients with 

early and late hemochromatosis. Finally, transferrin saturation is a rough indicator of 

iron burden because it is usually rapidly complete regardless of excess iron amount. 

Then, we chose to select only patients with amount of iron removed (AIR) available, 

since AIR is considered as the most reliable means to assess iron burden. However, 

because AIR is retrospective and often difficult to calculate, numerous C282Y 

homozygotes of the cohort were lost for inclusion. Indicators of organ damage allow 

for a precise case description, but the non-specificity of most clinical symptoms and 

high prevalence of co-damaging factors, such as metabolic syndrome and alcohol, 
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may result in overestimating the role of iron in the clinical presentation. Second, the 

present study may have been underpowered due to the limited number of cases for a 

GWAS (n = 474 from the 518 eligible cases) and to the few participants with low or 

normal body iron stores. Because the frequency of HFE C282Y homozygotes is very 

low, collecting enough sample size for such a study design to detect variants with 

moderate effect size is a challenge. Alternative strategy might be needed, such as 

conducting GWAS of iron status in the general population and then test the identified 

loci in the C282Y homozygous patients. Large genome-wide studies in which the 

authors looked for loci controlling serum iron, serum transferrin, transferrin saturation 

and serum ferritin in the general population have been published recently [33-35]. 

Although performed on large sample sizes, these studies did not provide evidence for 

variants with significant effects on any of the parameters examined, except for 

variants in the HFE and TMPRSS6 genes that were controlling serum iron, and 

variants in TF that were controlling serum transferrin. In this study we found that, in 

addition to being associated with serum transferrin, the same variants in the TF gene 

were also associated with serum iron in hemochromatosis patients. If we consider 

less stringent p-values, the variants in TMPRSS6 can also be considered as 

marginally associated with some of the iron burden parameters in this sample of 

hemochromatosis patients. The success rate of this strategy is therefore quite good, 

but there were not many variants segregating with iron burden in the general 

population. In addition, it is also possible that different variants control iron 

parameters in the general population and in hemochromatosis patients, which 

motivated this particular study. Unfortunately, the C282Y mutation is not routinely 

screened in the general population, and only few participants with low or normal 

parameters of iron burden are included in our GWAS study. Therefore, the power of 

this study is probably compromised to some extent by the limited range of expression 

of these parameters. Although large-scale studies in the general population could 

help identify such C282Y homozygotes with low or normal iron parameters, it should 

be remembered that the frequency of this genotype is only 3-5/1000, and obtaining a 

number of non-penetrant cases from the same area sufficient to increase the power 

of this study is unrealistic for the moment. The third limitation is the lack of suitable 

information about environmental factors. For example, data on regimen with respect 

to daily iron intake and tea consumption were missing in the database. However, 

data on alcohol consumption, tobacco smoking, blood donation, and, in females, 
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number of pregnancies and menopause status were collected and analyzed. We did 

not find significant association when taking alcohol consumption into account but 

samples sizes were probability too small to detect possible gene-environment 

interactions. Fourth, although a large number of SNPs were tested (n = 534,213), the 

present study was far from covering all putative genetic variants able to act as 

modifiers of iron burden and/or organ damage. Using the SNP-chip data, we 

investigated the possible role of CNV and did not find any association. However, we 

were not able to investigate low frequency and rare variants that are not targeted nor 

tagged by the SNP-chip. We thus cannot exclude based on our results the 

involvement of one or more modifier genes but we can rule out the role of common 

variants with large effect outside the TF gene. 

 

In conclusion, our results indicate that, in C282Y/C282Y HFE-HH, the rs3811647 

polymorphism in the TF gene continues to regulate serum transferrin levels and is 

unexpectedly associated with serum iron levels. Our study also demonstrates a 

potential indirect but weak link, through serum iron levels, between the rs3811647 

polymorphism and the clinical and biological expression of the disease. Finally it 

shows, by contrast to candidate gene studies, that, in an unselected and large 

population of C282Y homozygotes, i.e. in “true life”, there is no other common 

polymorphism exerting a significant phenotypic effect. At this stage, the role of rare 

and low frequency variants that are not tagged by SNP-chips remains to be 

investigated. Next-generation sequencing technologies will enable to explore their 

role and determine if there exist some rare mutations with clinical significance in 

HFE-HH. In designing exome or whole genome sequencing studies, it will however 

be important to carefully select patients  and to control for environmental factors.   

 

 

 

 

Acknowledgements 

The authors are indebted to the medical doctors and the nurse staff of the Liver Unit 

and to the Centre de Ressources Biologiques of the Rennes University Hospital. 

They acknowledge all the patients for accepting to participate in the study. The 



  

���

authors would also like to acknowledge Michelle Perrin (Inserm CIC 0203) and Jeff 

Morcet (Inserm CIC 0203) for managing quality control and statistical analysis of the 

Rennes Logifer database, Laura Pages (Inserm U1043) for collecting clinical data on 

the patients, Céline Besson-Fournier (Inserm U1043) for preparing the DNA samples, 

Frédéric Martins and Jean-José Maoret (GeT Platform, Genotoul) for running the 

SNPtype assays, and Pr. Jean-Pierre Vinel (Hepatogastroenterology Unit, CHU 

Purpan, Toulouse) for his support. We thank Pr. W. Bodmer and the People of the 

British Isles project for the genotyping of controls from Brittany. 

  



  

���

References 

[1] Liver, E. A. F. T. S. O. T. (2010), 'EASL clinical practice guidelines for HFE hemochromatosis.', J 
Hepatol 53(1), 3--22. 
 
[2] Allen, K. J.; Gurrin, L. C.; Constantine, C. C.; Osborne, N. J.; Delatycki, M. B.; Nicoll, A. J.; 
McLaren, C. E.; Bahlo, M.; Nisselle, A. E.; Vulpe, C. D.; Anderson, G. J.; Southey, M. C.; Giles, G. G.; 
English, D. R.; Hopper, J. L.; Olynyk, J. K.; Powell, L. W. & Gertig, D. M. (2008), 'Iron-overload-related 
disease in HFE hereditary hemochromatosis.', N Engl J Med 358(3), 221--230. 
 
[3] Adams, L. A.; Angulo, P.; Abraham, S. C.; Torgerson, H. & Brandhagen, D. (2006), 'The effect of 
the metabolic syndrome, hepatic steatosis and steatohepatitis on liver fibrosis in hereditary 
hemochromatosis.', Liver Int 26(3), 298--304. 
 
[4] Beutler, E.; Felitti, V. J.; Koziol, J. A.; Ho, N. J. & Gelbart, T. (2002), 'Penetrance of 845G--> A 
(C282Y) HFE hereditary haemochromatosis mutation in the USA.', Lancet 359(9302), 211--218. 
 
[5] Deugnier, Y.; Jouanolle, A.; Chaperon, J.; Moirand, R.; Pithois, C.; Meyer, J.; Pouchard, M.; 
Lafraise, B.; Brigand, A.; Caserio-Schoenemann, C.; Mosser, J.; Adams, P.; Gall, J. L. & David, V. 
(2002), 'Gender-specific phenotypic expression and screening strategies in C282Y-linked 
haemochromatosis: a study of 9396 French people.', Br J Haematol 118(4), 1170--1178. 
 
[6] Jackson, H. A.; Carter, K.; Darke, C.; Guttridge, M. G.; Ravine, D.; Hutton, R. D.; Napier, J. A. & 
Worwood, M. (2001), 'HFE mutations, iron deficiency and overload in 10,500 blood donors.', Br J 
Haematol 114(2), 474--484. 
 
[7] Adams, P. C.; Reboussin, D. M.; Barton, J. C.; McLaren, C. E.; Eckfeldt, J. H.; McLaren, G. D.; 
Dawkins, F. W.; Acton, R. T.; Harris, E. L.; Gordeuk, V. R.; Leiendecker-Foster, C.; Speechley, M.; 
Snively, B. M.; Holup, J. L.; Thomson, E.; Sholinsky, P.; Hemochromatosis & Investigators, I. O. S. (H. 
S. R. (2005), 'Hemochromatosis and iron-overload screening in a racially diverse population.', N Engl J 
Med 352(17), 1769--1778. 
 
[8] Andersen, R. V.; Tybjaerg-Hansen, A.; Appleyard, M.; Birgens, H. & Nordestgaard, B. G. (2004), 
'Hemochromatosis mutations in the general population: iron overload progression rate.', Blood 103(8), 
2914--2919. 
 
[9] Beutler, E. (1997), 'The significance of the 187G (H63D) mutation in hemochromatosis.', Am J Hum 
Genet 61(3), 762--764. 
 
[10] Guyader, D.; Jacquelinet, C.; Moirand, R.; Turlin, B.; Mendler, M. H.; Chaperon, J.; David, V.; 
Brissot, P.; Adams, P. & Deugnier, Y. (1998), 'Noninvasive prediction of fibrosis in C282Y 
homozygous hemochromatosis.', Gastroenterology 115(4), 929--936. 
 
[11] Livesey, K. J.; Wimhurst, V. L. C.; Carter, K.; Worwood, M.; Cadet, E.; Rochette, J.; Roberts, A. 
G.; Pointon, J. J.; Merryweather-Clarke, A. T.; Bassett, M. L.; Jouanolle, A.; Mosser, A.; David, V.; 
Poulton, J. & Robson, K. J. H. (2004), 'The 16189 variant of mitochondrial DNA occurs more 
frequently in C282Y homozygotes with haemochromatosis than those without iron loading.', J Med 
Genet 41(1), 6--10. 
 
[12] Beutler, E.; Beutler, L.; Lee, P. L. & Barton, J. C. (2004), 'The mitochondrial nt 16189 
polymorphism and hereditary hemochromatosis.', Blood Cells Mol Dis 33(3), 344--345. 
 
[13] Jacolot, S.; Gac, G. L.; Scotet, V.; Quere, I.; Mura, C. & Ferec, C. (2004), 'HAMP as a modifier 
gene that increases the phenotypic expression of the HFE pC282Y homozygous genotype.', Blood 
103(7), 2835--2840. 
 
[14] Merryweather-Clarke, A. T.; Cadet, E.; Bomford, A.; Capron, D.; Viprakasit, V.; Miller, A.; McHugh, 
P. J.; Chapman, R. W.; Pointon, J. J.; Wimhurst, V. L. C.; Livesey, K. J.; Tanphaichitr, V.; Rochette, J. 
& Robson, K. J. H. (2003), 'Digenic inheritance of mutations in HAMP and HFE results in different 
types of haemochromatosis.', Hum Mol Genet 12(17), 2241--2247. 
 



  

���

[15] Le Gac, G.; Scotet, V.; Ka, C.; Gourlaouen, I.; Bryckaert, L.; Jacolot, S.; Mura, C. & Férec, C. 
(2004), 'The recently identified type 2A juvenile haemochromatosis gene (HJV), a second candidate 
modifier of the C282Y homozygous phenotype.', Hum Mol Genet 13(17), 1913--1918. 
 
[16] Milet, J.; Dehais, V.; Bourgain, C.; Jouanolle, A. M.; Mosser, A.; Perrin, M.; Morcet, J.; Brissot, P.; 
David, V.; Deugnier, Y. & Mosser, J. (2007), 'Common variants in the BMP2, BMP4, and HJV genes of 
the hepcidin regulation pathway modulate HFE hemochromatosis penetrance.', Am J Hum Genet 
81(4), 799--807. 
 
[17] Milet, J.; Gac, G. L.; Scotet, V.; Gourlaouen, I.; Thèze, C.; Mosser, J.; Bourgain, C.; Deugnier, Y. 
& Férec, C. (2010), 'A common SNP near BMP2 is associated with severity of the iron burden in HFE 
p.C282Y homozygous patients: a follow-up study.', Blood Cells Mol Dis 44(1), 34--37. 
 
[18] Constantine, C. C.; Anderson, G. J.; Vulpe, C. D.; McLaren, C. E.; Bahlo, M.; Yeap, H. L.; Gertig, 
D. M.; Osborne, N. J.; Bertalli, N. A.; Beckman, K. B.; Chen, V.; Matak, P.; McKie, A. T.; Delatycki, M. 
B.; Olynyk, J. K.; English, D. R.; Southey, M. C.; Giles, G. G.; Hopper, J. L.; Allen, K. J. & Gurrin, L. C. 
(2009), 'A novel association between a SNP in CYBRD1 and serum ferritin levels in a cohort study of 
HFE hereditary haemochromatosis.', Br J Haematol 147(1), 140--149. 
 
[19] Pelucchi, S.; Mariani, R.; Calza, S.; Fracanzani, A. L.; Modignani, G. L.; Bertola, F.; Busti, F.; 
Trombini, P.; Fraquelli, M.; Forni, G. L.; Girelli, D.; Fargion, S.; Specchia, C. & Piperno, A. (2012), 
'CYBRD1 as a modifier gene that modulates iron phenotype in HFE p.C282Y homozygous patients.', 
Haematologica 97(12), 1818--1825. 
 
[20] Valenti, L.; Fracanzani, A. L.; Rametta, R.; Fraquelli, M.; Soverini, G.; Pelusi, S.; Dongiovanni, P.; 
Conte, D. & Fargion, S. (2012), 'Effect of the A736V TMPRSS6 polymorphism on the penetrance and 
clinical expression of hereditary hemochromatosis.', J Hepatol 57(6), 1319--1325. 
 
[21] Brissot, P.; Troadec, M.; Bardou-Jacquet, E.; Lan, C. L.; Jouanolle, A.; Deugnier, Y. & Loréal, O. 
(2008), 'Current approach to hemochromatosis.', Blood Rev 22(4), 195--210. 
 
[22] Bedossa, P. & Poynard, T. (1996), 'An algorithm for the grading of activity in chronic hepatitis C. 
The METAVIR Cooperative Study Group.', Hepatology 24(2), 289--293. 
 
[23] Aulchenko, Y. S.; Ripke, S.; Isaacs, A. & van Duijn, C. M. (2007), 'GenABEL: an R library for 
genome-wide association analysis.', Bioinformatics 23(10), 1294--1296. 
 
[24] de Tayrac, M.; Babron M.C.; Génin E. (2012) 'OriginMiner : show me your genes and I’ll tell you 
where you come from.' Presented at the 62nd Annual Meeting of The American Society of Human 
Genetics, November 7, 2012 in San Francisco, California. 
[25] The 1000 Genomes Project Consortium. (2010). ‘A map of human genome variation from 
population-scale sequencing.’ Nature 467 (7319):1061-1073. 
 
[26] O. Delaneau, J. Marchini, ‘The 1000 Genomes Project Consortium (2014) Integrating sequence 
and array data to create an improved 1000 Genomes Project haplotype reference panel’. Nature 
Communications 5 3934 
 
[27] Marchini J, Howie B, Myers S, McVean G, Donnelly P. (2007) ‘A new multipoint method for 
genome-wide association studies by imputation of genotypes.’ Nat Genet 39(7):906–13. 
 
 
[28] Pruim, R. J.; Welch, R. P.; Sanna, S.; Teslovich, T. M.; Chines, P. S.; Gliedt, T. P.; Boehnke, M.; 
Abecasis, G. R. & Willer, C. J. (2010), 'LocusZoom: regional visualization of genome-wide association 
scan results.', Bioinformatics 26(18), 2336--2337. 
 
[29] Finberg, K. E.; Heeney, M. M.; Campagna, D. R.; Aydinok, Y.; Pearson, H. A.; Hartman, K. R.; 
Mayo, M. M.; Samuel, S. M.; Strouse, J. J.; Markianos, K.; Andrews, N. C. & Fleming, M. D. (2008), 
'Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA).', Nat Genet 40(5), 569--
571. 
 



  

���

[30] Du, X.; She, E.; Gelbart, T.; Truksa, J.; Lee, P.; Xia, Y.; Khovananth, K.; Mudd, S.; Mann, N.; 
Moresco, E. M. Y.; Beutler, E. & Beutler, B. (2008), 'The serine protease TMPRSS6 is required to 
sense iron deficiency.', Science 320(5879), 1088--1092. 
 
[31] Chambers, J. C.; Zhang, W.; Li, Y.; Sehmi, J.; Wass, M. N.; Zabaneh, D.; Hoggart, C.; Bayele, H.; 
McCarthy, M. I.; Peltonen, L.; Freimer, N. B.; Srai, S. K.; Maxwell, P. H.; Sternberg, M. J. E.; 
Ruokonen, A.; Abecasis, G.; Jarvelin, M.; Scott, J.; Elliott, P. & Kooner, J. S. (2009), 'Genome-wide 
association study identifies variants in TMPRSS6 associated with hemoglobin levels.', Nat Genet 
41(11), 1170--1172. 
 
[32] Benyamin, B.; Ferreira, M. A. R.; Willemsen, G.; Gordon, S.; Middelberg, R. P. S.; McEvoy, B. P.; 
Hottenga, J.; Henders, A. K.; Campbell, M. J.; Wallace, L.; Frazer, I. H.; Heath, A. C.; de Geus, E. J. 
C.; Nyholt, D. R.; Visscher, P. M.; Penninx, B. W.; Boomsma, D. I.; Martin, N. G.; Montgomery, G. W. 
& Whitfield, J. B. (2009), 'Common variants in TMPRSS6 are associated with iron status and 
erythrocyte volume.', Nat Genet 41(11), 1173--1175. 
 
[33] Tanaka, T.; Roy, C. N.; Yao, W.; Matteini, A.; Semba, R. D.; Arking, D.; Walston, J. D.; Fried, L. 
P.; Singleton, A.; Guralnik, J.; Abecasis, G. R.; Bandinelli, S.; Longo, D. L. & Ferrucci, L. (2010), 'A 
genome-wide association analysis of serum iron concentrations.', Blood 115(1), 94--96. 
 
[34] Benyamin, B.; McRae, A. F.; Zhu, G.; Gordon, S.; Henders, A. K.; Palotie, A.; Peltonen, L.; Martin, 
N. G.; Montgomery, G. W.; Whitfield, J. B. & Visscher, P. M. (2009), 'Variants in TF and HFE explain 
approximately 40% of genetic variation in serum-transferrin levels.', Am J Hum Genet 84(1), 60--65. 
 
[35] Pichler, I.; Minelli, C.; Sanna, S.; Tanaka, T.; Schwienbacher, C.; Naitza, S.; Porcu, E.; Pattaro, 
C.; Busonero, F.; Zanon, A.; Maschio, A.; Melville, S. A.; Piras, M. G.; Longo, D. L.; Guralnik, J.; 
Hernandez, D.; Bandinelli, S.; Aigner, E.; Murphy, A. T.; Wroblewski, V.; Marroni, F.; Theurl, I.; 
Gnewuch, C.; Schadt, E.; Mitterer, M.; Schlessinger, D.; Ferrucci, L.; Witcher, D. R.; Hicks, A. A.; 
Weiss, G.; Uda, M. & Pramstaller, P. P. (2011), 'Identification of a common variant in the TFR2 gene 
implicated in the physiological regulation of serum iron levels.', Hum Mol Genet 20(6), 1232--1240. 
 
[36] Ruchala P, Nemeth E. (2014) 'The pathophysiology and pharmacology of hepcidin.' Trends 
Pharmacol Sci. 35(3):155-61. 
 
[37] Finberg, K. E. (2013), 'Regulation of systemic iron homeostasis.', Curr Opin Hematol 20(3), 208--
214. 
  



  

���

Tables 

 

Table 1 – Main clinical and demographic characteristics of the primary and 

replication cohorts 

  GWAS sample 
Replication  samples 

Rennes Toulouse Brest Monza 

Sample size 474 124 279 224 119 

Gender (female) (male) (200)(274) (67)(57) (108)(171) (93)(133) (26)(93) 

Age at diagnosis (years) 45±12 44±14.2 47±12 46.0±13 45±12.2 

Serum iron (mmol/l) 34.5 (29 -  39.3) 34.00 (29.34 -  38.90) 35.6 (30.4 - 40.8) 36.0 (31.0 - 41.0) 36.43(33.48 - 39.55) 

NA’s 26 11 44 16 0 

Serum Transferrin (g/L) 1.80  (1.60-2.00) 1.88  (1.60-2.01) 1.78  (1.60-2.03) 1.77 (1.60-2.00) 1.83  (1.58-2.06) 

NA’s 38 14 55 16 0 
Transferrin saturation 
(%) 80 (65 - 89) 78 (66.5 - 85.85) 84 (67 - 92) 83 (73 - 92) 84 (72 - 90) 

NA’s 28 10 35 0 33 

AIR (g) 4.7 (2.1 - 8.2) 3.8 (1.7 - 7.8) 6.1 (3.5 - 11.2) 4.1 (2.12 - 6.8) 6(4 - 10.75) 

NA’s 0 0 197 0 0 

Serum ferritin (µg/L) 776 (446 - 1565) 570 (318 - 1136) 1118 (634 - 2315) 688 (370 - 995) 1120 (719-2374) 

NA’s 11 5 0 0 0 

Fibrosis (grading)      
  

no 367 100 128 161 81 

severe 72 14 30 41 25 

NA’s 35 10 121 22 13 

HAS (grading) 

0 13 3 3 0 1 

1 44 12 10 0 3 

2 131 45 89 0 48 

3 164 32 141 0 39 

4 76 18 36 0 28 

NA’s 46 14 0 224 0 

a Median value ± sd. 

b Median value (25th–75th percentile). 
* Amount of Iron Removed (weekly or bimonthly venesections until serum ferritin < 50; 1 L of blood = 0,5 g of iron) 
NA = non available 

 

Table 2. GWA Analyses results  with P-values <10-6 

SNP Trait Chr Position 
Closest 
gene 

Location A1 A2 maf N effB Pvalue Geno1.freq Geno2.freq Geno3.freq Replication 

rs2692695 sTF 3 134968144 TF intron G A 0.41 437 -0.35 
1.85E-
07 

A/A: 78   G/A:230   G/G:166   NA 

rs3811647 sTF 3 134966719 TF intron G A 0.33 437 0.41 
7.00E-
09 

A/A: 46   G/A:217   G/G:211   X 

rs6794945 sTF 3 135001153 SRPRB flanking_5UTR G A 0.3 437 0.38 
6.03E-
07 

A/A: 33   G/A:219   G/G:222   NA 

rs3849200 sFRT 6 101765612 GRIK2 flanking_5UTR G A 0.1 463 0.44 
6.19E-
07 

A/A:  5   G/A: 88   G/G:381   X 

rs4371141 sFRT 16 57773110 GOT2 flanking_5UTR G A 0.19 463 0.34 
9.43E-
07 

A/A: 18   G/A:144   G/G:312   X 

rs4544229 sFRT 16 57786093 GOT2 flanking_5UTR G A 0.19 463 0.34 
8.91E-
07 

A/A: 18   G/A:143   G/G:313   X 

rs2810472 AIR 9 135750460 VAV2 intron A G 0.25 472 -0.31 
9.79E-
07 

A/A:271   A/G:170   G/G: 33   NA 

rs2810473 AIR 9 135750672 VAV2 intron G A 0.25 472 -0.31 
9.79E-
07 

A/A: 33   G/A:170   G/G:271   X 

rs2810493 AIR 9 135756956 VAV2 intron G A 0.27 472 -0.3 
9.44E-
07 

A/A: 36   G/A:181   G/G:257   X 

rs3900546 HAS 2 101560458 FLJ42986 flanking_5UTR A C 0.26 474 -0.75 
2.00E-
07 

A/A:265   A/C:170   C/C: 39   X 

Abbreviations: sTF=serum transferrin concentration, sFRT= serum ferritin concentration, AIR= amount of iron removed, HAS= 

HAS score, A1= reference allele, A2: non-reference allele, maf=minor allele frequency, effB= Effect of the non-reference allele 

in allelic test. 
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Table 3. rs3811647 genotypes, clinical and biochemical correlations 

a. 

rs3811647 Serum iron Serum transferrin 
Transferrin 
saturation 

 Serum 
ferritin 

 Iron 
removed 

Fibrosis HAS score 

AA 
38.8 ± 9.1 1.98 ± 0.30 78.3 ± 17.4 1632 ± 1646 7.3 ± 6.2 0.18 ± 0.38 2.66 ± 1.03 

(n=43) (n=43) (n=44) (n=45) (n=45) (n=40) (n=44) 

AG 
34.3 ± 9.1 1.87 ± 0.28 74.7 ± 18.8 1145 ± 1329 5.9 ± 4.9 0.14 ± 0.35 2.56 ± 1.03 

(n=207) (n=198) (n=203) (n=213) (n=210) (n=198) (n=201) 

GG 
32.4 ± 7.1 1.74 ± 0.33 75.9 ± 17.8 1296 ± 1356 6.7 ± 6.1 0.16 ± 0.36 2.56 ± 0.99 

(n=98) (n=195) (n=199) (n=205) (n=201) (n=194) (n=200) 

 p<0.001 p<0.001 p=0.453 p=0.08 p=0.188 p=0.844 p=0.837 

 

b. 

Phenotypic 
markers 

Serum iron Serum transferrin 
Transferrin 
saturation 

 Serum 
ferritin 

 Iron 
removed 

Fibrosis HAS score 

Serum iron   
r = 0.257 (n=436) 

p<0.0001 

r = 0.747 
(n=437) 

p<0.0001 

r = 0.279 
(n=445) 

p<0.0001 

r = 0.216 
(n=430) 

p<0.0001 

r = 0.165 
(n=411) 

p=0.0008  

r = 0.346 
(n=424) 

p<0.0001 

Serum 
transferrin 

r = 0.257 (n=436) 
p<0.0001 

  
r = - 0.388   
(n=436)     

p<0.0001 

r = - 0.081 
(n=433) 

p<0.0001 

r = -0.123 
(n=419) 

p=0.0118 

r = - 0.025 
(n=402) 

p=0.6115 

r = - 0.126 
(n=414) 

p=0.0104 

Transferrin 
saturation 

r = 0.747 (n=437) 
p<0.0001 

r = - 0.388          
(n=436)      

p<0.0001 
  

r = 0.347 
(n=443) 

p<0.0001 

r = 0.339 
(n=429) 

p<0.0001 

r = 0.197 
(n=410) 

p=0.0001 

r = 0.437 
(n=424) 

p<0.0001 

Correlations between semi-quantitative variables (fibrosis and HAS score) and quantitative variables 
were also performed using one-way analysis of variance and gave the same results. 
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Figure Legends 

Figure 1 - Manhattan plots displaying results from GWAS of quantitative iron 

burden indices and clinical outcomes of HFE-HH.  

Genome-wide analyses were performed for quantitative iron burden indices (serum 

transferrin concentration, serum iron, transferrin saturation, amount of iron removed 

by phlebotomy, and serum ferritin), and clinical outcomes (severe liver fibrosis, and 

HAS-score). All the analyses were performed on 534,213 genotyped SNPs. 

Horizontal lines indicate a suggestive p-value threshold of 10-6.  

 

Figure 2 – Regional plots for rs3811647 located within TF gene. 

Regional plots for imputed results are presented for rs3811647 identified as the 

single locus reaching the genome-wide significance threshold of 10-8: for A. serum 

transferrin concentration analysis (p-value = 7 ×10-9), and B. with pleiotropic effect on 

serum iron (p-value = 4.9 ×10-6).  The rs3811647 SNPs is represented as a diamond. 

Other SNPs are gray scaled following their r2 value with the most associated SNP. 

The blue line represents variation in recombination rate. Plots were generated by 

LocusZoom. [28] 

 

Figure 3 – Regulation of hepcidin transcription through the bone 

morphogenetic protein (BMP) – Smad pathway. 

Binding of holotransferrin to transferrin receptor 1 (TfR1) displaces HFE from TfR1 to 

TfR2. The HFE-TfR2 complex binds to a complex associating BMPs, BMP receptor 

(BMPR) and hemojuvelin (HJV). Neogenin and transmembrane serine protease 6 

(TMPRSS6) modulate hepcidin transcription by cleaving HJV. Hepcidin acts by 

favoring the internalization and degradation of the transmembrane iron transporter, 

ferroportin (FRP), which results in decreasing the systemic biodisponiblity of iron. In 

HFE hemochromatosis, the C282Y mutation impairs the migration of HFE to the cell 

membrane and thus the activation of the BMP – BMPR- HJV complex. This results in 

the preservation of FRP at the cell membrane and thus a high iron efflux. [36] 
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