

1 Transcriptomic correlates of state modulation in forebrain 2 interneurons: A cross-species analysis

3 Joram Keijser^{1,2, #}, Loreen Hertag¹, Henning Sprekeler^{1,3}

4 1. Modelling of Cognitive Processes, Technical University of Berlin, 10587, Berlin, Germany
5 2. Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, German
6 3. Bernstein Center for Computational Neuroscience Berlin, 10115, Berlin, Germany
7 # Corresponding author (keijser@tu-berlin.de)

8 Abstract

9 Inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical and functional prop-
10 erties. In mouse visual cortex, they also differ in their modulation with an animal's behavioural state, and
11 this state modulation can be predicted from the first principal component (PC) of the gene expression ma-
12 trix. Here, we ask whether this link between transcriptome and state-dependent processing generalises across
13 species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse,
14 human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences
15 between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimi-
16 larities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell
17 type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link
18 transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse in-
19 terneurons are differentially expressed between species. Circuit modelling and mathematical analyses delineate
20 the conditions under which these expression differences could translate into functional differences.

21 Introduction

22 Cortical inhibitory interneurons are a highly diverse population consisting of multiple cell types [1, 2]. In recent
23 years, single-cell RNA sequencing (scRNA-seq [3]) has revealed that these types can be further subdivided into
24 tens of subtypes [4, 5, 6] that also differ in their morphological and electrophysiological properties [7, 8]. So
25 far, it has been difficult to understand the functional relevance of this fine-grained diversity. Bugeon et al. [9]
26 recently bridged this gap by revealing that interneurons show subtype-specific modulation with an animal's
27 behavioural state, at least in layers 1-3 of mouse primary visual cortex (V1). Strikingly, this state modulation
28 could be predicted from the first transcriptomic principal component (tPC1). An interneuron's tPC1 score also
29 correlated with other dimensions of interneuron diversity, such as electrophysiology and connectivity, hinting at
30 an "approximate but general principle" of mouse cortical interneurons [9].

31 Intrigued by these findings, we wondered how general the principle embodied by tPC1 actually is (Fig. 1).
32 Are transcriptomic correlates of state modulation similar across different species, or at least across mouse
33 cortical layers and areas? If yes, this similarity would suggest conserved principles; if no, the difference could
34 reveal distinct solutions to shared computational problems [10, 11, 12]. The uniformity of interneurons in the
35 mouse brain [6] suggests that their gene expression and state modulation patterns observed in V1 might apply
36 generally. In fact, earlier work by the authors of ref. [9] found that hippocampal interneurons are also organized
37 along a single latent factor [13]. Similarly, recent comparative transcriptomic analyses have emphasized the
38 conservation of (cortical) inhibitory interneurons across mammals [14, 15, 16, 17], and more distantly related
39 species [18, 19, 20]. But these and other studies [21, 22] have also discovered species-specific interneuron
40 subtypes. Additionally, the relative proportions of interneuron types vary even across mouse cortex [23, 24], as
41 does the modulation of interneurons with brain state [25, 26, 27, 28].

42 We therefore investigated the transcriptomic correlates of state modulation in seven existing single-cell
43 RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) datasets from the forebrains of mice [9, 6, 29],
44 humans [14, 15], turtles [18], and songbirds [19]. These species each have homologous types of inhibitory
45 interneurons, but their evolutionary history and brain organization vary in important ways. For example,
46 humans are evolutionarily closest to mice, turtles also have a (three-layered) cortex with potentially different
47 evolutionary origins [30, 31, 18], and songbirds lack a cortex altogether [32, 33, 34].

48 We found that transcriptomic PCs show relatively minor differences across smaller evolutionary distances
49 (e.g., between mice and humans) but diverge over longer evolutionary time scales (e.g., mice and turtles).
50 Between-species differences dwarf within-species differences, likely due to biological rather than technical
51 reasons. Specifically, we trace differences in tPCs to species-specific cell type abundances and within-type gene
52 expression patterns. We also find a combination of conservation and divergence in the expression of the cholinergic
53 receptors correlated with state modulation in mice [9]. Circuit modelling predicts the connectivity patterns
54 for which differences in receptor expression translate into species-specific state modulation of interneurons and
55 cortical information flow.

Conerved and divergent transcriptomic correlates of state modulation

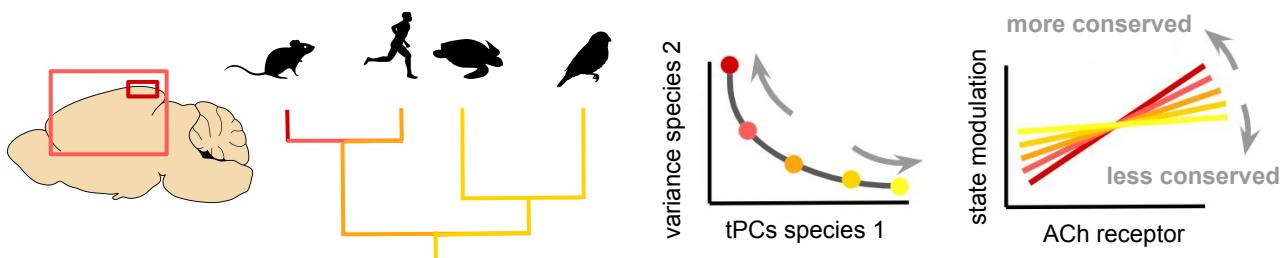


Figure 1: Schematic of our main question: could the same transcriptomic axis predict state modulation in other layers and areas of the mouse cortex and in other species? We investigate this by comparing transcriptomic principal components (tPCs) and cholinergic (ACh) receptor expression across RNA-seq datasets [9, 15, 19, 14, 6, 18, 29].

56 Results

57 We first validated our analysis pipeline by replicating the relevant results from Bugeon et al. [9] on their data
58 and conducting several additional analyses. Briefly, we reproduced the systematic variation of interneuron
59 subtypes with behavioural state (roughly, running vs stationary) and its correlation with tPC1 (Fig. S1). This

correlation seems driven by differences within and across cell types [35] and is strongest within the Pvalb and Sst populations (Fig. S2). Whether interneurons form a continuum or cluster along tPC1 depends on the preprocessing of the transcriptomic data (Fig. S3). These caveats aside, our analyses are consistent with those from Bugeon et al. and might reveal similar patterns—or the lack thereof—in other brain areas and species. A detailed description of the replication can be found in the supplementary material (see Replication of Bugeon et al.).

66 Conserved and divergent transcriptomic axes across species

Having validated our approach on mouse data, we next turn to the cross-species comparison using transcriptomic data from humans (*Homo sapiens*, [15]), turtles (*Trachemys scripta elegans*, [18]), and zebra finch (*Taeniopygia guttata*, [19]); see Table 1 for an overview of all analysed datasets. We compare these data with a large reference dataset from mouse V1Sp [6].

We first visualized the data from different species. To this end, we preprocessed the datasets using the same analysis pipeline and applied PCA to the resulting RNA count matrices (see Methods). The projection onto the first 2 tPCs of the human, but not turtle or zebra finch data, was similar to that of the mouse data (Fig. 2a). Mouse and human interneurons clustered by developmental area [36], with medial ganglionic eminence (MGE)-born Pvalb and Sst cells occupying one side of tPC1, and caudal ganglionic eminence (CGE)-born Lamp5, Vip, and Sncg cells the other. An intermediate position was occupied by a small group of Meis2 neurons [6], located in the white matter [37]. In contrast to the mammalian datasets, the turtle and finch data were characterised by a large population of Meis2-positive neurons (Fig. 2a, Table 2). Transcriptomic and morphological evidence suggests that these cells are likely homologous to neurons in the mammalian striatum rather than the white matter [18, 19].

We quantified these visual differences using the principal angles, which generalise the notion of angle between two lines in a plane (Fig. 2b; see Methods). Here, we computed the angles between subspaces spanned by each dataset's top 30 PCs. Consistent with the impression from the first 2 PCs, the principal angles were the smallest between mouse and human subspaces (Fig. 2c). Turtle and zebra finch PCs were both dissimilar to mouse PCs. Principal angles do not require a one-to-one relationship between individual principal components but also do not consider the variance explained by these components. For instance, a pair of highly similar but low-variance dimensions will result in small principal angles—inadvertently suggesting high similarity. We therefore performed a complementary analysis by computing the variance in the mouse data explained by the PCs of other datasets (Fig. 2d). The first human PC accounted for 15% of the variance explained by the first mouse PC; the turtle and songbird tPC1 accounted for 1.2% and 4.5%, respectively (Fig. 2e). Each tPC1 explained more variance than a random direction (0.3%), consistent with some shared global structure.

We confirmed that these results were not due to technical differences in the different datasets. We first controlled for sequencing depth using a subsampling procedure (Fig. S4, Methods). We also mapped each dataset onto the mouse data using anchor-based integration [38]. This method has been widely used in cross-species analyses (e.g., [14, 19, 39, 40]). As expected, computational integration increased the similarity among the datasets (Fig. S5), but the larger similarity between human and mouse data was preserved.

How might the transcriptomic differences relate to state modulation? Because state modulation information was only available for the mouse [9], we projected this data onto the tPCs from other datasets to determine their predictive ability (Fig. 2f). We found that the human tPC1 predicts state modulation in the mouse ($R^2 = 0.18$), but the turtle tPC1 did not ($R^2 = 0$) (Fig. 2g; compare with Fig. S1). The zebra finch tPC1 showed a weak but significant ability to predict state modulation ($R^2 = 0.07$). We conclude that human tPCs are similar to those of the mouse also on a functional level, in line with evolutionary history.

What evolutionary changes underlie the differences between transcriptomic PCs? At least two non-mutually exclusive processes are possible. First, homologous subclasses could evolve in a species-dependent manner, as indicated by differences in gene expression. Second, evolution can also change the relative abundance of otherwise conserved classes [15, 41]. We wondered if the relative abundance of cell classes was sufficient to explain the species differences. To this end, we resampled cells to equal fractions, such that the 3 classes (Pvalb, Sst, Vip) present in all datasets each accounted for one-third of the cells (Fig. 2h). This increased the visual similarity between the first two tPCs of the mammalian and non-mammalian datasets due to the absence of Meis2 neurons (Fig. S6). Still, the matched-abundance datasets were as dissimilar as the original datasets (Figs. 2j, S7). This highlights the divergence of homologous cell types as a driver of evolutionary change in the global transcriptomic landscape.

113

114 Similar transcriptomic axes across mouse datasets

115 The previous cross-species comparison is based on data collected with different sequencing protocols and from 116 different brain areas. To account for these factors, we calibrated the between-species differences against within-

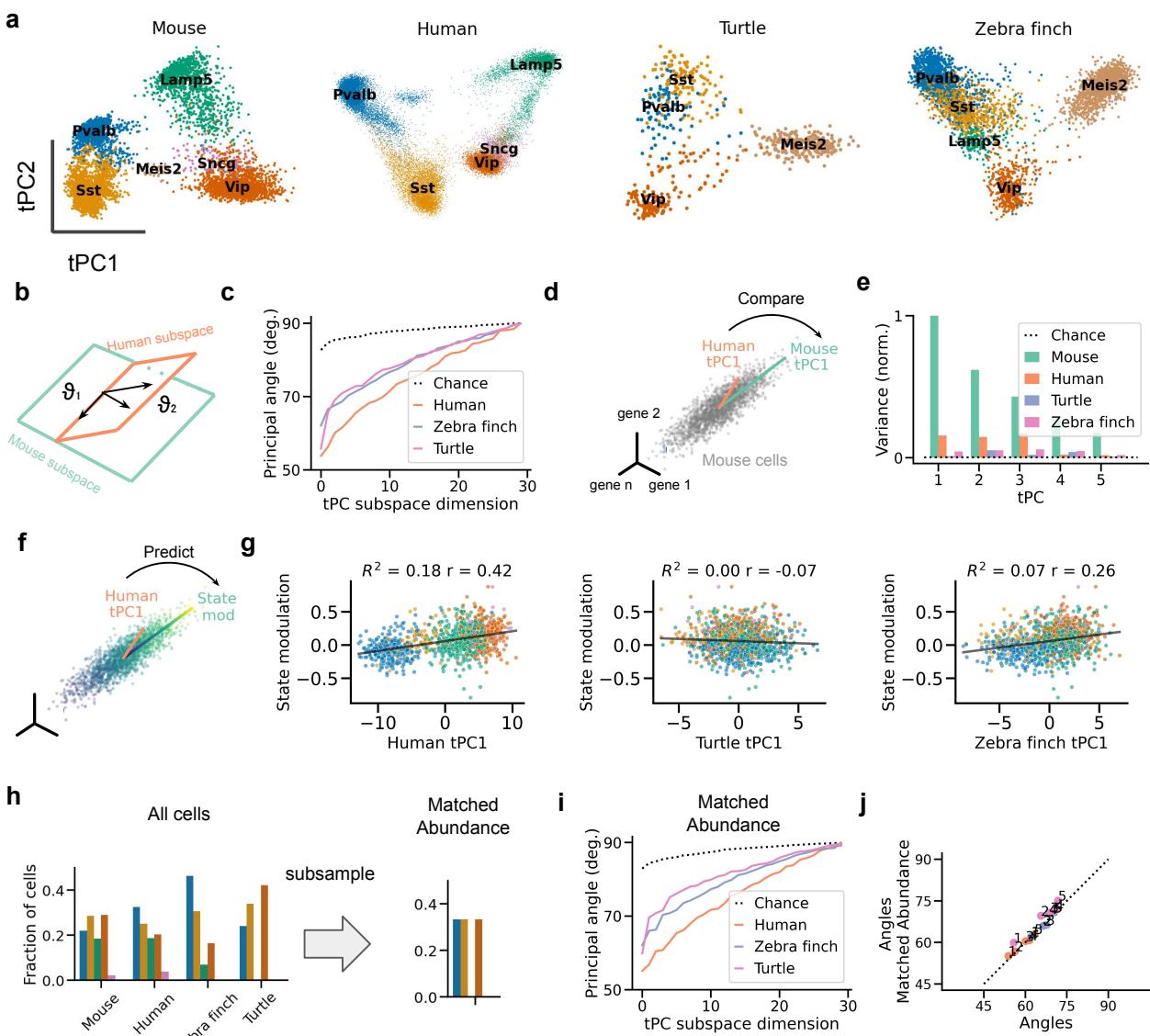


Figure 2: Transcriptomic PCs capture conserved and divergent global gene expression patterns.

(a) Projections of gene expression data from forebrain interneurons onto each dataset's first tPCs. Samples correspond to cells; colours indicate cell types. Variance explained by tPC1&2: 23.3% (mouse), 22.7% (human), 13.7% (turtle), and 12.9% (zebra finch). (b) Schematic: principal angles measure dissimilarity between subspaces spanned by two sets of tPCs (see Methods). Larger angles indicate larger differences. (c) Principal angles between human and mouse subspaces are smaller than between mouse and zebra finch or turtle subspaces. Chance level estimated by sampling random, normalized vectors. (d) Schematic: Variance explained in the mouse data as a measure of tPC similarity. A tPC's length is proportional to the variance it explains. (e) Variance of mouse data explained by tPCs of different datasets, normalized to the variance explained by mouse tPC1. The human, zebra finch, and turtle tPC1 explain 15.7%, 4.5%, and 1.2% of the variance explained by mouse tPC1. A random direction (dashed line) explains 0.3%. (f) Schematic: Predicting mouse state modulation from human tPC1. The colour gradient symbolizes the state modulation of mouse cells. (g) State modulation of mouse interneurons can be predicted from the interneuron's projection onto human tPC1 but not onto turtle or zebra finch tPC1. R^2 : cross-validated fraction of variance explained, r : Pearson correlation. (h) Subsampling procedure to control for the relative abundance of interneuron subclasses across datasets. Colours code for cell types (see (a)). (i,j) Matching the relative abundance does not increase the similarity of datasets as measured using principal angles. Numbers indicate order of PCs. Data from refs. [6] (mouse), [15] (human), [18] (turtle), [19] (zebra finch).

117 species differences by comparing three mouse datasets (Fig. 3a): the *in situ* data from VISp layers (L) 1-3 [9], the
 118 plate-based (SMART-seq2) data from VISp L1-6 [6], and the droplet-based (10X) data from multiple cortical
 119 and hippocampal areas (Ctx & Hpc, [29])

120 Visually, the projections onto the first tPCs were similar (Fig. 3b), with interneurons clustering by develop-

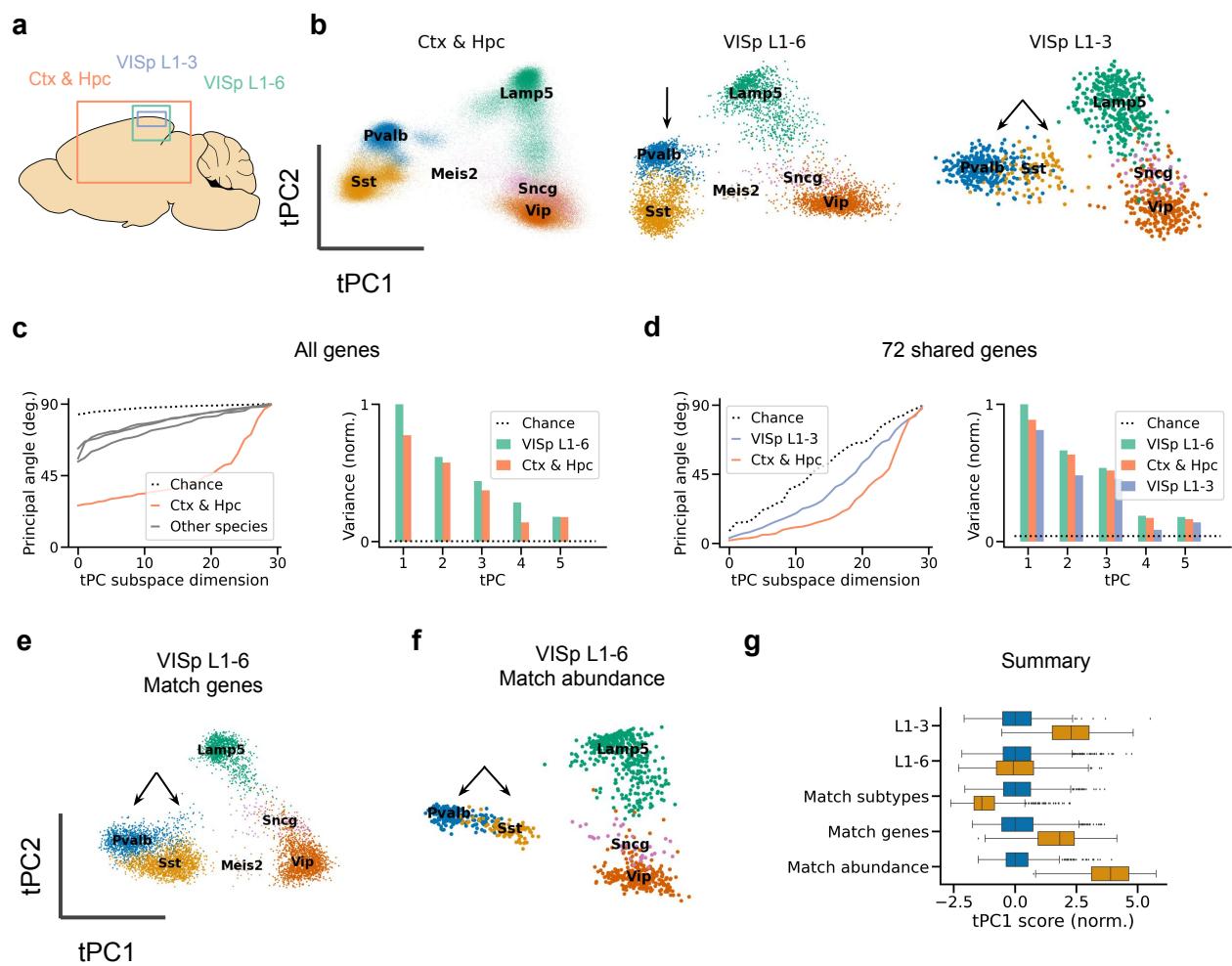


Figure 3: Similar transcriptomic PCs across mouse data sets. (a) Schematic of brain areas sequenced for different mouse datasets. Ctx: cortex, Hpc: hippocampal formation, VISp: primary visual cortex. The datasets were also collected using different technologies (Table 1). (b) Similar tPC1&2 across mouse datasets; tPCs1&2 jointly explain 18.0%, 23.8%, and 29.8% of variance, from left to right. Arrows indicate a qualitative difference: the relative position of Pvalb and Sst cells along tPC1. (c) Quantitative comparison with VISp L1-6 dataset based on 2000 highly variable genes; tPC1 of the Ctx & Hc dataset explains 77.5% of the variance explained by tPC1 of VISp L1-6. Grey lines: cross-species angles, taken from Fig. 2c. (d) As (c), but based on the 72 genes shared by the three datasets. In this reduced space, tPC1 of the Ctx & Hc and VISp L1-3 explains 88.7% and 81.3%, respectively, of the variance explained by VISp L1-6. (e) Relatively small change in Pvalb and Sst position after matching gene sets between L1-6 and L1-3 data. (f) Larger differences due to relative cell type abundance. (g) Distribution of tPC1 projection of Pvalb (blue) and Sst (orange) cells for the L1-3 data and different versions of the L1-6 data. Match subtypes: select only the Sst subtypes present in the L1-3 dataset. Match genes: select only the genes present in the L1-3 dataset. Match abundance: subsample such that Sst cells comprise only 8% of the samples, as in the L1-3 data. Projections were normalized such that the mean and variance of the respective Pvalb population were zero and one, respectively. Expression data from refs. [29] (Ctx & Hpc), [6] (VISp L1-6), and [9] (VISp L1-3).

121 mental area, as before. But subtle differences were also visible. For example, the L1-3 dataset lacked a Meis2
122 population present in both L1-6 datasets (Fig. S8; [6, 29]). The tPC1 score of Sst cells also varied between
123 datasets. In the L1-3 data, Sst cells occupied an intermediate position on tPC1 (and tPC2) compared to Pvalb
124 cells, consistent with their weaker state modulation (Fig. S1b). In contrast, Sst and Pvalb cells occupied similar
125 positions in the other datasets.

126 The three datasets were also quantitatively similar. Principal angles between different mouse datasets were
127 substantially smaller than angles between species (Fig. 3c). To compare the larger mouse datasets with the
128 smaller dataset of Bugeon et al. [9], we performed the same analyses after selecting the 72 genes shared by all
129 datasets. This revealed the Ctx & Hpc data to be more similar to the VISp L1-6 data than the VISp L1-3 data
130 (Fig. 3d), consistent with the varying relative positions of the cell types in the space of the first two PCs.

131 Several factors could explain the different positions of Pvalb and Sst cells along tPC1 and tPC2 (arrows

132 in Fig. 3b). We first tested if the difference was due to layer-specific subtypes known to be transcriptomically
133 identifiable (see, e.g., [6, 42]). However, selecting L1-3 subtypes from the L1-6 data followed by PCA only moved
134 the Sst cells further along tPC1 (Fig. 3g, "match subtypes"). We next tested for the influence of gene set by
135 performing PCA on the L1-6 data after selecting 72 genes describing the L1-3 dataset. This only modestly in-
136 creased the similarity to the *in situ* data (Fig. 3e), reflecting the careful selection of the gene panel [43]. Finally,
137 we reasoned that the intermediate position of Sst cells in the L1-3 data could be due to their relative sparsity
138 (8% in the L1-3 data vs 28% in the L1-6 data). After all, a given pattern of covariability explains less variance
139 when present in a smaller number of samples. Indeed, sampling the same number of cells from the entire Sst
140 population moved the Sst population to an intermediate tPC1 position (Fig. 3f). Therefore, the intermediate
141 position of Sst cells in the L1-3 dataset might be due to their relative sparsity.

142
143 In summary, mouse datasets are highly similar to cross-species datasets despite differences in brain area [6]
144 and sequencing technology [44]. Two human datasets [14, 15] showed equally high levels of similarity (Fig. S9).
145 Between-species differences, therefore, likely reflect biologically meaningful signals rather than technical arte-
146 facts.

147 Evolution of cholinergic receptor expression

148 So far, we have shown that interspecies expression differences are reflected in the first principal components.
149 This rules out a conserved tPC1 that predicts state modulation—at least across evolutionarily distant species.
150 However, it does not rule out that the species-specific tPCs predict state modulation. Unfortunately, this cannot
151 be tested directly due to the lack of data on state modulation for the other species. As a proxy, we, therefore,
152 analyzed the expression of cholinergic receptors that are known to contribute to the correlation between tPC1
153 and state modulation in mice (Fig. 4a, [9]).

154 According to our analysis (see Methods), five cholinergic receptors can predict state modulation of upper-
155 layer subtypes in held-out data in mice (Fig. S10). These receptors also ranked among the top genes in their
156 correlation with state modulation (Fig. 4b). The predictive nicotinic receptors (Chrna3,4,5) showed a rough
157 gradient along tPC1 (see, Fig. 4c). The only predictive inhibitory receptor (Chrm4), on the other hand, was
158 expressed by Pvalb neurons (Figs. 4d), consistent with their negative state modulation (Fig. S1b).

159 Do the same receptors mediate state modulation in other species? If yes, one would expect differential
160 expression across cell types, with a similar pattern as in mice. However, several receptors that predict state
161 modulation in mice show qualitatively different patterns of expression in the other species (Fig. 4e,f,g). For
162 example, Chrna4 and Chrna5 show much weaker expression in the human data than in mice (Fig. 4e). Chrm4
163 is overexpressed in the turtle data relative to the other species (Fig. 4f).

164 The general trend is that the predictive receptors are under-expressed in the other datasets. A possible
165 explanation is a regression to the mean: predictive receptors are, by necessity, expressed in mice. But the relative
166 expression in other datasets could also be due to technical reasons such as a lower sequencing depth (Table 1).
167 Indeed, the typical mouse cell contained several orders of magnitude more RNA counts than the typical human
168 cell (Fig. 4h). We controlled for this confound by downsampling the mouse data to the sequencing depths of
169 the other datasets (Methods). To measure variability, we also applied this procedure to two datasets from the
170 same species, which revealed typical log2-fold expression differences between -2 and 2 (Fig. S11)—downsampling
171 retained larger differences between species that are qualitatively consistent with the analysis of the full datasets.
172 In the human data, Chrm4, and to a lesser extent Chrna3 & 4, were still underexpressed after downsampling
173 (Fig. 4i). Chrm3 and Chrna5 were underexpressed in the turtle data, whereas Chrm4 was overexpressed (Fig. 4j).
174 In the songbird data, only Chrm4 was overexpressed (Fig. 4k).

175 Thus, several cholinergic receptors that might mediate state modulation in mice show species-specific ex-
176 pression. This suggests that homologous cell types in different species could show substantial differences in state
177 modulation.

178 Robustness of state modulation to cholinergic receptor expression

179 How do species-specific cholinergic receptor expression patterns influence cortical information flow? Since this
180 depends not just on the cell type-specific gene expression but also on the interplay of different interneurons,
181 we investigated this question using a circuit model (Methods). We focused on the most salient differences in
182 receptor expression between the three species with a cortex (mice, humans, and turtles).

183 The model consists of the three most common interneuron types, Pvalb, Sst, and Vip cells, whose connectivity
184 patterns have been mapped [45, 46] and are relatively conserved, at least in mice and humans [47]. Additionally,
185 the computational repertoire of this "canonical circuit" has previously been investigated [48, 49, 50]. To explore
186 the effect of cholinergic modulation on excitatory activity, we also included a two-compartmental pyramidal
187 neuron. These two compartments receive different information streams: whereas the soma receives feedforward

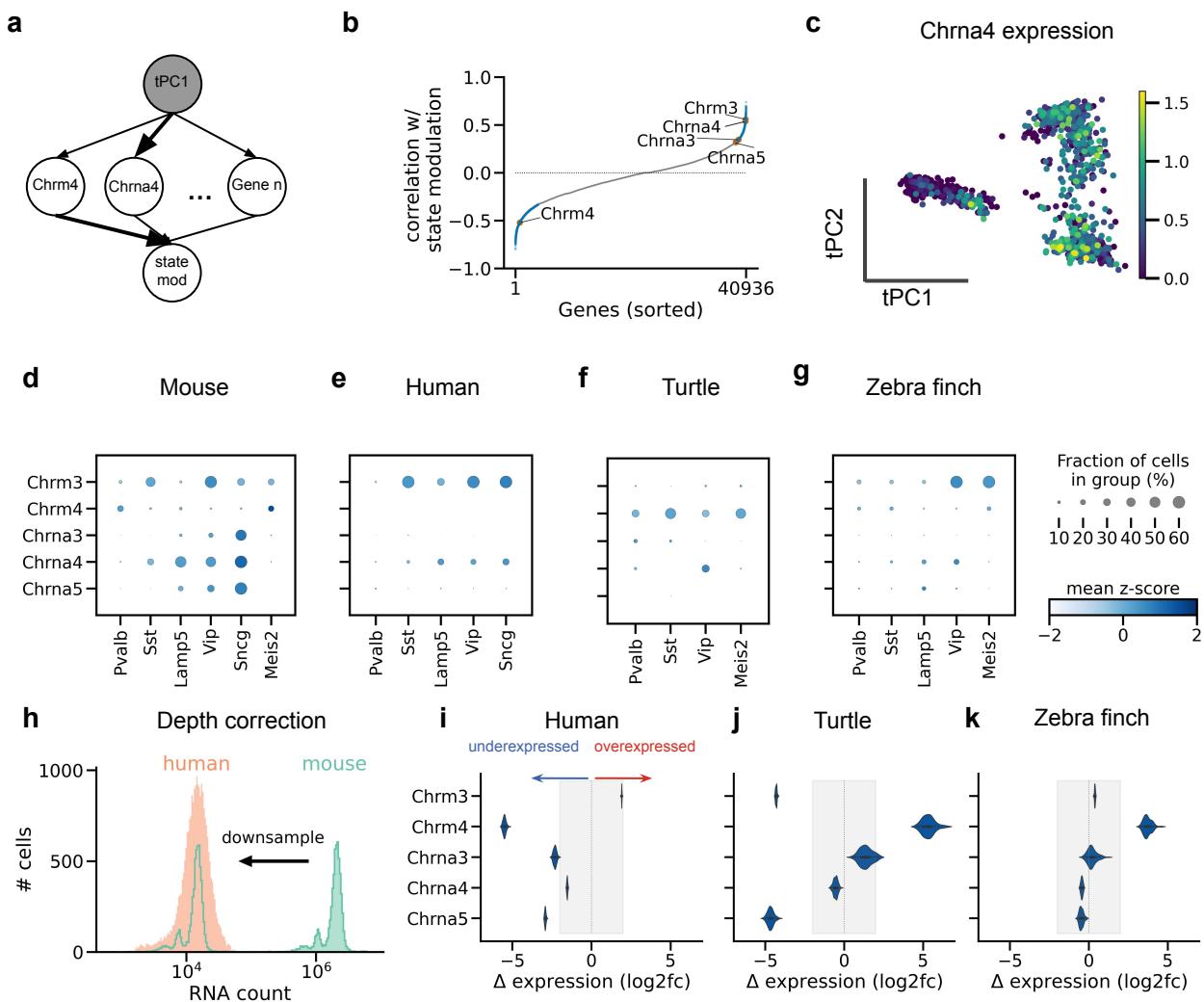


Figure 4: Evolution of cholinergic receptor expression (a) Graphical model of the relationship between tPC1, gene expression, and state modulation. The shaded variable tPC1 is not directly observable. Arrows indicate direct dependence relationships; arrow thickness indicates the strength of the relationship. (b) Correlation between gene expression and state modulation in the mouse data. Gene expression and state modulation were not measured in the same cells and were therefore combined at the level of subtypes (Methods). Blue: significant correlation ($p < 0.05$), grey: not significant. Annotated are the cholinergic receptors that predict state modulation (Fig. S10). Chrm4 is ranked 327th (top 1.5%) with the strongest negative correlation. Chrm3 and Chrna3, 4 & 5 are among the top 1.7%, 2.4%, 7.1%, and 8.1% with the strongest positive correlation. (c) tPC projection of mouse VISp L1-6, coloured by Chrna4 expression (log CP10K). Upper layer Sst types were selected before PCA to retain the cell type arrangement of Bugeon et al. (Fig. 3f) (d-g) Dotplots of cell type-specific cholinergic receptor expression, z-scored across all cells. (h) Schematic of RNA count subsampling to control for differences in sequencing depth. Each RNA count from the deeper dataset was sampled with a probability equal to the relative depth of the deep and the shallower dataset (Methods). (i-k) Log2-fold difference in expression with mouse data after subsampling; negative and positive values indicate under- and overexpression, respectively, compared to mouse data. Each violin plot shows the distribution of 100 subsampled datasets. Differences outside of shaded areas are larger than the typical differences between different datasets of the same species (Fig. S11). Without the subsampling procedure, a comparison of raw RNA counts would suggest that every receptor is overexpressed in the mouse by a factor of 8 or more due to the larger sequencing depth of the mouse data. Expression data from refs. [6] (mouse), [9] (VISp L1-3), and [6] (L1-6).

188 (sensory) input, the pyramidal dendrites receive top-down input [51, 52, 53]. For visualisation purposes, these
 189 input streams were represented by sinusoids of different frequencies (Fig. 5a).

190 We model cholinergic modulation as an additive input to the interneurons with a strength that is based
 191 on cell type-specific receptor expression data (Methods, Table 3). Cholinergic modulation inhibits the Pvalb
 192 population via muscarinic ACh receptors (Chrm4) while activating Vip cells and — to a lesser extent — Sst
 193 cells via nicotinic ACh receptors. The activated Sst cells suppress inputs arriving at the dendrites [54, 55, 56],

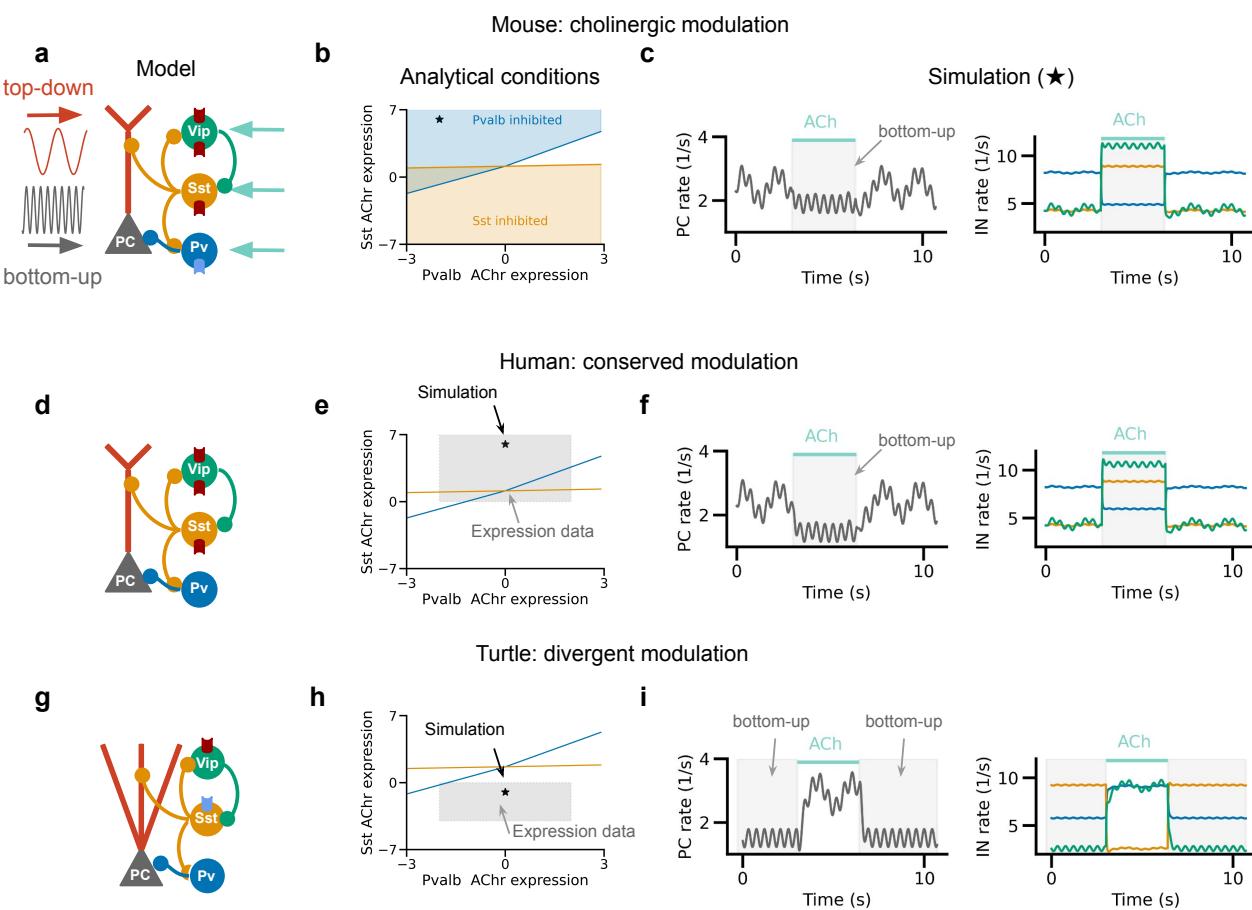


Figure 5: Circuit model predicts functional consequences of cholinergic receptor expression divergence

(a) Schematic of mouse cortical circuit model. PC: pyramidal cell. Grey and red sinusoids represent inputs to pyramidal soma and dendrites, respectively; teal arrows represent cholinergic modulation of interneurons. Excitatory and inhibitory ACh receptors are shown in red and blue, respectively.

(b) Analytical prediction of the Pvalb and Sst ACh receptor expression values for which Pvalb and Sst cells are inhibited by ACh (see Methods). The star indicates parameter settings used for simulation in **(c)**. At baseline, the PC rate reflects both somatic and dendritic inputs. Cholinergic activation inhibits the dendritic contribution by activating Sst cells.

(d) Human cortical circuit model, in which Pvalb cells lack inhibitory ACh receptors.

(e) As **(b)**, but with the shaded area indicating expression values qualitatively consistent with the human data. Star: parameter settings used for simulation in **(f)**. Cholinergic modulation has a qualitatively similar effect due to the indirect cholinergic inhibition of Pvalb neurons via the Sst neurons.

(g) Turtle circuit model with inhibitory ACh receptor expression in Sst cells.

(h) As **(b)**, but with the shaded area indicating turtle expression values. Star: parameter settings used for simulation in **(i)**. In contrast to the mammalian circuit models, cholinergic modulation causes a disinhibition of dendritic inputs.

194 and increase the effective cholinergic inhibition of Pvalb cells. By recruiting dendritic inhibition, ACh therefore
 195 limits the influence of top-down inputs on PC rates ([57, 58]; Fig. 5c) while enhancing the influence of top-down
 196 inputs [59, 60].

197 How might cholinergic modulation affect interneuron activity and information flow in other species? We
 198 modelled a human cortical circuit by deleting the inhibitory ChrM4 receptor from the Pvalb population, mim-
 199 icking the strongest difference with the mouse VISp data (Fig. 5d). Mathematical analyses indicate that Pvalb
 200 activity is still reduced in the presence of ACh due to inhibition from Sst cells (Fig. 5e,f; see Methods). The
 201 difference in direct cholinergic inhibition in Pvalb interneurons between humans and mice might therefore have
 202 a relatively weak functional consequence. This is consistent with experimental data [61] and the variable ChrM4
 203 expression across mouse datasets (Fig. S11). By contrast, we found a qualitatively different effect after changing
 204 the ACh receptor densities to mimic the turtle data (Fig. 5g): the over-expression of inhibitory ChrM4 receptors
 205 by Sst instead of Pvalb cells led to cholinergic disinhibition of dendritic inputs (Fig. 5h,i). This qualitative de-
 206 viation from the mammalian cortex could affect the state-dependent processing of bottom-up versus top-down
 207 inputs in reptiles (see Discussion).

208 These findings suggest that the computation performed by the circuit can be very sensitive to certain patterns
209 of differential expression and robust to others [62, 63].

210 Discussion

211 We have shown that the global gene expression patterns of inhibitory interneurons, as assessed by PCA, show
212 considerable similarity between mice and humans. However, such similarity is not observed between mice and
213 turtles or songbirds. This suggests that the first transcriptomic PC (tPC1) obtained from the upper layers of the
214 mouse cortex [9] may serve as an organizing principle for mammalian interneurons but not for reptilian and avian
215 interneurons. Control analyses indicate that technical factors cannot explain cross-species differences. Instead,
216 our results suggest that the evolutionary divergence of homologous interneurons is mainly explained by changes
217 in gene expression rather than changes in the relative abundance of cell types. Alongside the differences in global
218 expression patterns, we have also observed differences in the expression of cholinergic receptors, suggesting that
219 interneurons undergo species-specific modulation in their functional states.

220 Comparison to prior work

221 The gross transcriptomic differences between species might be surprising given the evolutionary conservation
222 of interneurons in the forebrain [18, 19, 15, 16] and other areas [20, 17]. However, these works also found
223 many genes to have species-specific expression, suggesting cell types might be homologous across species but
224 not preserved in their detailed properties. Moreover, fine interneuron subtypes are not necessarily conserved
225 across larger evolutionary distances [64].

226 Cholinergic modulation with arousal and other cognitive processes has been reported in many species (see,
227 e.g., [65, 66, 67, 68, 69, 70]), and might even be mediated by similar midbrain cell types [71]. However,
228 acetylcholine seems to achieve its conserved effects via species-specific pathways [72]. For example, most human
229 but not rat PV neurons express the Chrm1 receptor [73]. Even within a single species, cholinergic projections
230 and their effects vary across areas [74, 75, 27] and layers [76, 77]. Additionally, serotonergic receptors are
231 among the most differentially expressed gene sets between humans and mice [14]. Therefore, our differential
232 receptor expression findings are broadly consistent with earlier work. It should be noted, however, that technical
233 differences between datasets naturally pose a more serious limitation for comparing the expression of individual
234 genes than aggregate measures such as PCA. Future work will therefore need to confirm the present results
235 using, e.g., immunohistochemistry.

236 Interpretation of transcriptomic PCs

237 Across all datasets, one feature consistently stands out: the clustering along tPC1&2 by developmental area.
238 A similar pattern has been previously observed based on nonlinear dimensionality reduction and clustering
239 methods (see, e.g., [6, 40]). The structuring of top PCs by developmental origin and cell type is expected since
240 cell types are defined by developmentally-activated transcription factors that coregulate batteries of protein-
241 coding genes [78, 79]. These low-dimensional patterns of gene expression are naturally picked up by a method
242 like PCA.

243 A clear difference between the mouse datasets is given by two layer-specific subtypes: the deep-layer Meis2
244 cells [37, 6], and long-range projecting Sst Chodl cells [80, 6]. Their intermediate position along tPC1 (Fig. S8)
245 but distinct connectivity suggests that the correlation of tPC1 with cellular properties [9] might not apply to
246 these deep layer subtypes. This could be further tested using, for example, Patch-seq experiments [81, 82]. A
247 caveat is the relative sensitivity of PCA to cell-type proportions: the intermediate tPC1 scores of Meis2 cells
248 may be caused by their scarcity in the mouse data.

249 Evolution of cholinergic modulation

250 Many genes are at least as predictive of state modulation as cholinergic receptors (Fig. 4b). Some genes
251 might be causally related to state modulation, but others are merely co-regulated with causal genes (Fig. 4a).
252 Thus, strong correlations—the very property that allows the reliable identification of transcriptomic PCs—also
253 preclude the identification of causal genes based on regression analyses. Whether genes predict state modulation
254 also depends on factors only partially under genetic control, such as synaptic connectivity. For example, our
255 network simulations show that connectivity patterns influence which cholinergic receptor expression differences
256 affect state modulation (Fig. 5). Finally, species differences in state modulation may not necessarily imply
257 differences in function. An interesting example is turtle Sst cells' expression of the inhibitory Chrm4 receptor,
258 which might lead to cholinergic disinhibition of pyramidal dendrites. Since sensory inputs to turtle cortex arrive
259 in layer 1 instead of deeper layers [30, 83], we speculate that acetylcholine can thus disinhibit sensory inputs,
260 as it potentially does in mouse cortex. Alternatively, cholinergic modulation could have qualitatively different

261 effects on the processing of bottom-up versus top-down inputs in turtle compared to mouse cortex. Future
262 experiments could arbitrate between these alternatives.

263 Conclusion

264 The wide availability of transcriptomic data in different species offers new opportunities for comparative analyses.
265 Transcriptomic data can not only predict behavioural features such as state modulation but also the
266 electrophysiology and morphology of homologous cell types ([84, 7, 85], but see [24]) which are more accessible.
267 It will be exciting to see whether these predictions generalize across species and if they correlate with
268 high-variance transcriptomic dimensions. More generally, we expect that future cross-species experiments will
269 complement work in genetically accessible mice to reveal general principles of brain function.

270 Acknowledgements

271 We thank Trygve Bakken, Michael Brainard, Stéphane Bugeon, Bradley Colquitt, Kenneth Harris, and Bosiljka
272 Tasic for their feedback. We are also grateful to Sadra Sadeh for suggesting a modelling approach.

273 Methods

274 Code was written in Python and R and combined into a reproducible workflow using Snakemake [86]. The code
275 will be made available at https://github.com/JoramKeijser/transcriptomic_axes upon publication.

276 Datasets

277 An overview of the analysed datasets is shown in Table 1, Table 2 lists the relative frequency of different cell
278 types in each dataset.

Name	Species	Area(s)	Technology	Cells	Genes/cell	Reads
Bugeon [9]	Mus musculus	ViSp L1-3	CoppaFish (sc)	1,065	49	-
Tasic [6]	Mus musculus	ViSp	SS v4 (sc)	6,125	9,795	2,009,806
Yao [29]	Mus musculus	Ctx & Hpc	10x V2 (sc)	177,614	3,750	8,957
Bakken [15]	Homo sapiens	M1	SS v4 & 10X (sn)	23,992	4,719	14,337.5
Hodge [14]	Homo sapiens	MTG	SS V4 (sn)	4,164	8,344.5	1,901,796.5
Colquitt [19]	Taeniopygia guttata	HVC & RA	10X v2 (sn)	3,786	161.5	3,150.5
Tosches [18]	Trachemys scripta elegans	Ctx	Drop-Seq v3 (sc)	640	2,952	6,284

Table 1: Overview of analysed datasets. Sn: single nucleus, sc: single cell. SS: Smart-Seq. M1: primary motor cortex, ViSp: primary visual cortex, HVC: high vocal centre, MTG: middle temporal gyrus, Ctx: cortex, Hpc: hippocampal formation. Genes/cell: median number of genes detected per cell. Reads: median number of reads per cell. For the single nucleus data, reads aligned to exons and introns were used. The data from ref. [9] comprised already normalized counts; the number of reads was therefore unavailable.

	Bakken [15]	Bugeon [9]	Colquitt [19]	Hodge [14]	Tasic [6]	Tosches [18]	Yao [29]
Pvalb	32.4	27.9	31.9	17.5	21.8	13.8	17.2
Sst	25.0	8.5	21.0	30.6	28.4	19.5	26.7
Lamp5	18.6	35.8	4.7	27.8	18.3	0.0	23.7
Vip	20.2	24.4	11.2	24.1	28.7	24.2	24.6
Sncg	3.7	3.5	0.0	0.0	2.0	0.0	7.8
Meis2	0.0	0.0	31.3	0.0	0.7	42.5	0.0

Table 2: Percentage of cell types for each dataset, rounded to a single decimal place. The mammalian Meis2-positive cells are likely not homologous to the turtle/finch Meis2-positive cells ([19], see text) but are grouped for convenience.

279 Replication of Bugeon et al.

280 The starting point of our replication was the *in vivo* calcium imaging data and *in situ* transcriptomic data
281 previously described by Bugeon et al. [9]. We preprocessed and analysed these data following the original paper
282 unless indicated otherwise. We selected interneurons with a high-confidence assignment to a particular subtype

(posterior probability [43] at least 0.5) that belonged to a subtype with at least 3 cells. We used the previous assignment into 35 upper-layer subtypes and grouped Serpinfl cells into the Vip class. Consistent with the original publication, this resulted in 1065 cells, hierarchically distributed across 5 subclasses (e.g., Pvalb) and 35 subtypes (e.g., Pvalb-Reln-Itm2a). The Npy gene count of 58 cells was missing (NaN); we assumed these values were missing at random and imputed them with the subtype-specific median value. Zero-imputation gave similar results. We computed each cell's average activity per behavioural state. Whenever a cell was recorded during multiple sessions, we used the session with the longest period of “stationary synchronised” activity since this was the least frequent state. Since 193 cells were not recorded during the stationary synchronised state, state modulation was computed for the remaining 872 cells. The expression matrix contained continuously valued estimates of gene expression instead of integer counts. We normalized these values to 10,000 “counts” per cell for consistency with the other datasets, although this slightly decreased predictive performance. Finally, we log-transformed the normalized values after adding one pseudo-count, $\log(1 + x)$. The log transformation is a widely used preprocessing step in the analysis of count data [87, 88], although other transformations are also possible (see, e.g., [89, 90]). Linear least squares regression was used to predict state modulation from individual PCs or cholinergic receptors; cross-validated ridge regression was used to predict state modulation from multiple PCs, to mitigate overfitting.

Other datasets

The transcriptomic datasets each consisted of raw count matrices and metadata that included cell class and subtype/cluster. For the Tasic dataset, we only considered the VISp (not the ALM) cells to allow for a direct comparison with Bugeon et al. In the mouse datasets, we merged the small number of Serpinfl cells into the Vip cluster for consistency with the analyses from ref. [9]. From the Colquitt and Tosches datasets, we only used the zebra finch and turtle cells, respectively, since the data from other species (Bengalese finch and lizard) contained only a small number of interneurons. For both datasets, we assigned cells to putative mammalian homologues according to the correlation-based matching in the original publications [18, 19]. For the Hodge dataset, we assigned each cell a cell type based on the original publication [14]. Genes were named according to the mouse convention (e.g., “Npy” instead of the human “NPY”). We selected the 11968 shared genes by intersecting the gene lists from all datasets (except the Bugeon data, which has 72 genes) to put the datasets in a shared space.

Principal component analysis (PCA)

We scaled gene expression values to 10,000 counts per cell (CP10K) to account for differences in sequencing depth across cells, and log-transformed the normalized data. We then identified the top 2000 highly variable genes based on their dispersion across cells (Scanpy's `highly_variable_genes`; using 3000 genes gave similar results). We computed the top 30 PCs based on these highly variable genes. For visual comparison, we made an arbitrary but consistent choice for the signs of tPC1 and tPC2.

We quantified the similarity of PCs from different datasets using principal angles ([91]; Scipy's `subspace_angles`). More precisely, let W_X be the gene-by-PC matrix whose columns are the PCs of dataset A . The principal angles between the PC subspaces of datasets A and B are computed from the singular value decomposition (SVD) of the PC-by-PC matrix $W_A^T W_B$, i.e.

$$W_A^T W_B = U \Sigma V^T.$$

The columns of U and V contain paired linear combinations of PCs from datasets A and B , respectively, ordered by principal angles. The diagonal matrix Σ contains the singular values σ_i . The i th principal angle from the corresponding singular value σ_i is computed as

$$\vartheta_i = \arccos(\sigma_i).$$

As a complementary measure of PC subspace similarity, we computed the variance explained in one dataset by the top PCs of another dataset. Let $\mathbf{w}_{A,i}$ be the i th PC of dataset A , and let C^B be the covariance matrix of dataset B . The i th PC of dataset A explains an amount of variance in dataset B equal to

$$\mathbf{w}_{A,i}^T C^B \mathbf{w}_{A,i}.$$

For each pairwise comparison, we computed the covariance and PCs only from genes that were highly variable in both datasets. This was done to avoid the computation of large covariance matrices. For comparison, the variance of each PC was normalized by the variance explained by the first PC of the original dataset:

$$\text{normalized variance} = \frac{\mathbf{w}_{B,i}^T C^A \mathbf{w}_{B,i}}{\mathbf{w}_{A,1}^T C^A \mathbf{w}_{A,1}}.$$

317 Chance level was estimated by computing the variance explained by a random, normalized vector. To predict
 318 state modulation from the tPCs of other species, we first intersected their gene sets with the 72 genes from
 319 Bugeon et al. [9] We then separately preprocessed both datasets. Finally, we projected the Bugeon data onto
 320 tPC1 from the secondary dataset and used this to predict state modulation. Performance was quantified using
 321 leave-one-out R^2 and the Pearson correlation coefficient.

322 Subsampling gene counts

The datasets vary in their sequencing depth (the number of RNA counts per cell, see Table 1), presumably due to a combination of technical and biological differences. We aimed to control for these differences by downsampling counts to the depth of the shallower dataset, as follows. Let $X_{c,g}^d$ be the number of counts from gene g in cell c of dataset d . We defined the count depth of a dataset as the average counts per cell:

$$\text{depth}(d) = \frac{1}{C \cdot G} \sum_{c,g} X_{c,g}^d.$$

Here C is the number of cells, and G is the number of genes. If d_1 is the shallowest dataset, and d_2 is a deeper-sequenced dataset, we define their relative sequencing depth as

$$p = \frac{\text{depth}(d_1)}{\text{depth}(d_2)} \in (0, 1).$$

To match the sequencing depth of the shallower dataset, we keep each gene count with a probability p :

$$\hat{X}_{c,g}^{d_2} \sim \text{Binomial}(X_{c,g}^{d_2}, p).$$

323 This subsampling procedure equalizes the sequencing depth of the down-sampled dataset to that of the shallower
 324 dataset. The Tasic and Hodge data served as the reference datasets for comparison with the mouse and human
 325 expression values, respectively, since these were the deepest datasets.

326 Dataset integration

327 We used Seurat's anchor-based integration [38] to map datasets onto the Tasic data (Fig. S5). To this end,
 328 we converted the AnnData objects to Seurat objects. Next, we separately log normalized each dataset as
 329 described above (this time using the equivalent Seurat function `NormalizeData`), and found genes that were
 330 highly variable across datasets (`FindVariableFeatures`, followed by `SelectIntegrationFeatures`, with 2000
 331 features). Next, we found mutual nearest neighbours across datasets ("anchors") after projecting each dataset
 332 onto the other's PCA space (reciprocal PCA). A more flexible reduction method (canonical correlation analysis)
 333 gave similar results. We then used the anchors to identify and project out dataset-specific differences. After
 334 integration, PCA was performed separately on each transformed dataset.

335 Network simulations

We simulated a rate-based network of Pvalb, Sst, and Vip interneurons and excitatory pyramidal neurons. A single equation represented each cell type except for the pyramidal neurons, represented by two equations, modelling the somatic and dendritic compartments. The network state was defined by the rate vector $\mathbf{r} = (r_e, r_d, r_p, r_s, r_v)$, of somatic, dendritic, Pvalb, Sst, and Vip activity. The rate of cell type/compartment x evolved according to

$$\tau_x \dot{u}_x = -u_x + \sum_{y \neq x} w_{x,y} r_y + I_{x,0} + I_x + m_x, \quad x \in \{e, d, p, s, v\}, \quad (1)$$

$$r_x = f(u_x). \quad (2)$$

Here τ_x is the membrane time constant (2 ms for excitatory cells, 10 ms for inhibitory cells), $f(u) = \max(u, 0)$ is the rectified linear activation function, and the w_{xy} are recurrent weights. $I_{x,0}$ is a constant background input that sets the baseline rate, I_x is a time-varying external input, and m_x is an additive cholinergic modulation. We will refer to m_x as a cell's cholinergic receptor density to distinguish it from the "effective" cholinergic modulation, which also depends on the network dynamics (see Network analysis).

The recurrent connections were chosen based on experimental [45, 47] and theoretical work [50]. The only difference is relatively weak mutual inhibition between Sst and Vip neurons; strong inhibition could prevent the

simultaneous activation of these cell types observed in the data [9].

$$W = \begin{pmatrix} w_{ee} & w_{ed} & w_{ep} & w_{es} & w_{ev} \\ w_{de} & w_{dd} & w_{dp} & w_{ds} & w_{dv} \\ w_{pe} & w_{pd} & w_{pp} & w_{ps} & w_{pv} \\ w_{se} & w_{sd} & w_{sp} & w_{ss} & w_{sv} \\ w_{ve} & w_{vd} & w_{vp} & w_{vs} & w_{vv} \end{pmatrix} = \begin{pmatrix} 0.42 & 1 & -0.42 & 0 & 0 \\ 0.042 & 0 & 0 & -0.49 & 0 \\ 0.45 & 0 & -0.75 & -0.78 & 0 \\ 0.35 & 0 & 0 & 0 & -0.175 \\ 1 & 0 & 0 & -0.175 & 0 \end{pmatrix} \quad (3)$$

The background inputs $I_{x,0}$ were set to achieve the following baseline rates:

$$(r_e, r_d, r_p, r_s, r_v) = (1, 1, 8, 4, 3) \quad (1/\text{s}).$$

The external inputs to pyramidal soma and dendrites were defined as:

$$I_x(t) = 1 + .5 \sin(\varphi_x t), \quad x \in \{e, d\}.$$

336 with $\varphi_e = 1/300$ ms (soma) or $\varphi_d = 1/70$ ms (dendrite).

337 The interneurons received cholinergic modulation instead of external inputs, and their amplitudes were
 338 varied based on qualitative differences in cholinergic receptor expression (Table 3). These amplitudes were
 339 the only differences between species-specific networks. In the mouse network, Pvalb neurons were negatively
 340 modulated; Vip and — to a lesser extent — Sst neurons were positively modulated. This is consistent with both
 341 the activity and expression data from the mouse. For the other species, we only have expression data. In the
 342 human and turtle network, Pvalb neurons were not modulated consistent with their weak or absent expression
 343 of, e.g., Chrm4. In the turtle network, Sst neurons were negatively modulated; Vip neurons were positively
 344 modulated, but to a smaller extent, given the under-expression of Chrm3 and Chrna5 in the turtle data. For
 345 the turtle network, we added a positive external input (amplitude 5) to the Sst equation in the absence of
 346 cholinergic modulation. A similar result could be obtained by decreasing the dendritic drive during baseline.

species \ cell type	Pvalb	Sst	Vip
Mouse	-2	6	8
Human	0	6	8
Turtle	0	-1	4

Table 3: Network parameters: species and cell type-specific additive cholinergic modulation

347 The network dynamics were numerically integrated using a forward Euler scheme with a time step of 0.1
 348 milliseconds. Each simulation consisted of 11000 time steps divided into a baseline period of 3300 steps, a
 349 cholinergic modulation time of 3400 steps, and another baseline period of 4300 steps. Not shown in Fig. 5 is an
 350 initial settling time of 300 timesteps. These values were chosen to let the figure highlight the effect of turning
 351 the modulation on and off.

352 References

- 353 [1] Henry Markram, Maria Toledo-Rodriguez, Yun Wang, Anirudh Gupta, Gilad Silberberg, and Caizhi Wu.
 354 Interneurons of the neocortical inhibitory system. *Nature reviews neuroscience*, 5(10):793–807, 2004.
- 355 [2] Robin Tremblay, Soohyun Lee, and Bernardo Rudy. Gabaergic interneurons in the neocortex: from cellular
 356 properties to circuits. *Neuron*, 91(2):260–292, 2016.
- 357 [3] Fuchou Tang, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee, Nanlan Xu, Xiaohui
 358 Wang, John Bodeau, Brian B Tuch, Asim Siddiqui, et al. mrna-seq whole-transcriptome analysis of a
 359 single cell. *Nature methods*, 6(5):377–382, 2009.
- 360 [4] Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele La Manno, Anna
 361 Juréus, Sueli Marques, Herman Munguba, Liqun He, Christer Betsholtz, et al. Cell types in the mouse
 362 cortex and hippocampus revealed by single-cell rna-seq. *Science*, 347(6226):1138–1142, 2015.
- 363 [5] Anirban Paul, Megan Crow, Ricardo Raudales, Miao He, Jesse Gillis, and Z Josh Huang. Transcriptional
 364 architecture of synaptic communication delineates gabaergic neuron identity. *Cell*, 171(3):522–539, 2017.
- 365 [6] Bosiljka Tasic, Zizhen Yao, Lucas T Graybuck, Kimberly A Smith, Thuc Nghi Nguyen, Darren Bertagnolli,
 366 Jeff Goldy, Emma Garren, Michael N Economo, Sarada Viswanathan, et al. Shared and distinct
 367 transcriptomic cell types across neocortical areas. *Nature*, 563(7729):72–78, 2018.

368 [7] Nathan W Gouwens, Staci A Sorensen, Fahimeh Baftizadeh, Agata Budzillo, Brian R Lee, Tim Jarsky,
369 Lauren Alfiler, Katherine Baker, Eliza Barkan, Kyla Berry, et al. Integrated morphoelectric and tran-
370 scriptomic classification of cortical gabaergic cells. *Cell*, 183(4):935–953, 2020.

371 [8] Federico Scala, Dmitry Kobak, Matteo Bernabucci, Yves Bernaerts, Cathryn René Cadwell, Jesus Ra-
372 mon Castro, Leonard Hartmanis, Xiaolong Jiang, Sophie Latus, Elanine Miranda, et al. Phenotypic
373 variation of transcriptomic cell types in mouse motor cortex. *Nature*, 598(7879):144–150, 2021.

374 [9] Stephane Bugeon, Joshua Duffield, Mario Dipoppa, Anne Ritoux, Isabelle Pranker, Dimitris Nicolout-
375 sopoulos, David Orme, Maxwell Shinn, Han Peng, Hamish Forrest, et al. A transcriptomic axis predicts
376 state modulation of cortical interneurons. *Nature*, 607(7918):330–338, 2022.

377 [10] Michael M Yartsev. The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience
378 research. *Science*, 358(6362):466–469, 2017.

379 [11] Gilles Laurent. On the value of model diversity in neuroscience. *Nature Reviews Neuroscience*, 21(8):395–
380 396, 2020.

381 [12] Nicholas Jourjine and Hopi E Hoekstra. Expanding evolutionary neuroscience: insights from comparing
382 variation in behavior. *Neuron*, 109(7):1084–1099, 2021.

383 [13] Kenneth D Harris, Hannah Hochgerner, Nathan G Skene, Lorenza Magno, Linda Katona, Carolina Bengts-
384 son Gonzales, Peter Somogyi, Nicoletta Kessaris, Sten Linnarsson, and Jens Hjerling-Leffler. Classes and
385 continua of hippocampal ca1 inhibitory neurons revealed by single-cell transcriptomics. *PLoS biology*,
386 16(6):e2006387, 2018.

387 [14] Rebecca D Hodge, Trygve E Bakken, Jeremy A Miller, Kimberly A Smith, Eliza R Barkan, Lucas T
388 Graybuck, Jennie L Close, Brian Long, Nelson Johansen, Osnat Penn, et al. Conserved cell types with
389 divergent features in human versus mouse cortex. *Nature*, 573(7772):61–68, 2019.

390 [15] Trygve E Bakken, Nikolas L Jorstad, Qiwen Hu, Blue B Lake, Wei Tian, Brian E Kalmbach, Megan Crow,
391 Rebecca D Hodge, Fenna M Krienen, Staci A Sorensen, et al. Comparative cellular analysis of motor
392 cortex in human, marmoset and mouse. *Nature*, 598(7879):111–119, 2021.

393 [16] Jia-Ru Wei, Zhao-Zhe Hao, Chuan Xu, Mengyao Huang, Lei Tang, Nana Xu, Ruifeng Liu, Yuhui Shen,
394 Sarah A Teichmann, Zhichao Miao, et al. Identification of visual cortex cell types and species differences
395 using single-cell rna sequencing. *Nature Communications*, 13(1):6902, 2022.

396 [17] Bin Yu, Qianqian Zhang, Lin Lin, Xin Zhou, Wenji Ma, Shaonan Wen, Chunyue Li, Wei Wang, Qian
397 Wu, Xiaoqun Wang, et al. Molecular and cellular evolution of the amygdala across species analyzed by
398 single-nucleus transcriptome profiling. *Cell Discovery*, 9(1):19, 2023.

399 [18] Maria Antonietta Tosches, Tracy M Yamawaki, Robert K Naumann, Ariel A Jacobi, Georgi Tushev,
400 and Gilles Laurent. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell
401 transcriptomics in reptiles. *Science*, 360(6391):881–888, 2018.

402 [19] Bradley M Colquitt, Devin P Merullo, Genevieve Konopka, Todd F Roberts, and Michael S
403 Brainard. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. *Science*,
404 371(6530):eabd9704, 2021.

405 [20] Justus M Kebschull, Ethan B Richman, Noam Ringach, Drew Friedmann, Eddy Albarran, Sai Saroja
406 Kolluru, Robert C Jones, William E Allen, Ying Wang, Seung Woo Cho, et al. Cerebellar nuclei evolved
407 by repeatedly duplicating a conserved cell-type set. *Science*, 370(6523):eabd5059, 2020.

408 [21] Eszter Boldog, Trygve E Bakken, Rebecca D Hodge, Mark Novotny, Brian D Aevermann, Judith Baka,
409 Sándor Bordé, Jennie L Close, Francisco Diez-Fuertes, Song-Lin Ding, et al. Transcriptomic and mor-
410 phophysiological evidence for a specialized human cortical gabaergic cell type. *Nature neuroscience*,
411 21(9):1185–1195, 2018.

412 [22] Fenna M Krienen, Melissa Goldman, Qiangge Zhang, Ricardo CH del Rosario, Marta Florio, Robert Ma-
413 chold, Arpiar Saunders, Kirsten Levandowski, Heather Zaniewski, Benjamin Schuman, et al. Innovations
414 present in the primate interneuron repertoire. *Nature*, 586(7828):262–269, 2020.

415 [23] Yongsoo Kim, Guangyu Robert Yang, Kith Pradhan, Kannan Umadevi Venkataraju, Mihail Bota, Luis
416 Carlos García Del Molino, Greg Fitzgerald, Keerthi Ram, Miao He, Jesse Maurica Levine, et al. Brain-
417 wide maps reveal stereotyped cell-type-based cortical architecture and subcortical sexual dimorphism.
418 *Cell*, 171(2):456–469, 2017.

419 [24] Federico Scala, Dmitry Kobak, Shen Shan, Yves Bernaerts, Sophie Latsch, Cathryn Rene Cadwell,
420 Leonard Hartmanis, Emmanouil Froudarakis, Jesus Ramon Castro, Zheng Huan Tan, et al. Layer 4 of
421 mouse neocortex differs in cell types and circuit organization between sensory areas. *Nature communications*, 10(1):4174, 2019.

423 [25] Allan T Gullidge, Susanna B Park, Yasuo Kawaguchi, and Greg J Stuart. Heterogeneity of phasic
424 cholinergic signaling in neocortical neurons. *Journal of neurophysiology*, 97(3):2215–2229, 2007.

425 [26] Veronica C Galvin, Amy FT Arnsten, and Min Wang. Evolution in neuromodulation—the differential
426 roles of acetylcholine in higher order association vs. primary visual cortices. *Frontiers in neural circuits*,
427 12:67, 2018.

428 [27] Christine F Khoury, Noelle G Fala, and Caroline A Runyan. Region-specific modulation of somatostatin
429 activity during arousal. *bioRxiv*, pages 2022–01, 2022.

430 [28] Joshua X Bratsch-Prince, James W Warren III, Grace C Jones, Alexander J McDonald, and David D
431 Mott. Acetylcholine engages distinct amygdala microcircuits to gate internal theta rhythm. *bioRxiv*, pages
432 2023–02, 2023.

433 [29] Zizhen Yao, Cindy TJ van Velthoven, Thuc Nghi Nguyen, Jeff Goldy, Adriana E Sedeno-Cortes, Fahimeh
434 Baftizadeh, Darren Bertagnolli, Tamara Casper, Megan Chiang, Kirsten Crichton, et al. A taxonomy of
435 transcriptomic cell types across the isocortex and hippocampal formation. *Cell*, 184(12):3222–3241, 2021.

436 [30] Anton Reiner. Neurotransmitter organization and connections of turtle cortex: implications for the evolution
437 of mammalian isocortex. *Comparative Biochemistry and Physiology Part A: Physiology*, 104(4):735–
438 748, 1993.

439 [31] Robert K Naumann, Janie M Ondracek, Samuel Reiter, Mark Shein-Idelson, Maria Antonietta Tosches,
440 Tracy M Yamawaki, and Gilles Laurent. The reptilian brain. *Current Biology*, 25(8):R317–R321, 2015.

441 [32] Anton Reiner, David J Perkel, Laura L Bruce, Ann B Butler, András Csillag, Wayne Kuenzel, Loreta Medina,
442 George Paxinos, Toru Shimizu, Georg Striedter, et al. Revised nomenclature for avian telencephalon
443 and some related brainstem nuclei. *Journal of Comparative Neurology*, 473(3):377–414, 2004.

444 [33] Erich D Jarvis, Onur Güntürkün, Laura Bruce, András Csillag, Harvey Karton, Wayne Kuenzel, Loreta
445 Medina, George Paxinos, David J Perkel, Toru Shimizu, et al. Avian brains and a new understanding of
446 vertebrate brain evolution. *Nature Reviews Neuroscience*, 6(2):151–159, 2005.

447 [34] Onur Güntürkün and Thomas Bugnyar. Cognition without cortex. *Trends in cognitive sciences*, 20(4):291–
448 303, 2016.

449 [35] Claire Bomkamp, Shreejoy J Tripathy, Carolina Bengtsson Gonzales, Jens Hjerling-Leffler, Ann Marie
450 Craig, and Paul Pavlidis. Transcriptomic correlates of electrophysiological and morphological diversity
451 within and across excitatory and inhibitory neuron classes. *PLoS computational biology*, 15(6):e1007113,
452 2019.

453 [36] Lynette Lim, Da Mi, Alfredo Llorca, and Oscar Marín. Development and functional diversification of
454 cortical interneurons. *Neuron*, 100(2):294–313, 2018.

455 [37] Sarah Frazer, Julien Prados, Mathieu Niquille, Christelle Cadilhac, Foivos Markopoulos, Lucia Gomez,
456 Ugo Tomasello, Ludovic Telley, Anthony Holtmaat, Denis Jabaudon, et al. Transcriptomic and anatomic
457 parcellation of 5-HT3ar expressing cortical interneuron subtypes revealed by single-cell RNA sequencing.
458 *Nature communications*, 8(1):14219, 2017.

459 [38] Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, William M Mauck,
460 Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Comprehensive integration of single-cell
461 data. *Cell*, 177(7):1888–1902, 2019.

462 [39] David Hain, Tatiana Gallego-Flores, Michaela Klinkmann, Angeles Macias, Elena Ciarda, Anja Arends,
463 Christina Thum, Georgi Tushev, Friedrich Kretschmer, Maria Antonietta Tosches, et al. Molecular diversity
464 and evolution of neuron types in the amniote brain. *Science*, 377(6610):eabp8202, 2022.

465 [40] Joram Keijser and Henning Sprekeler. Cortical interneurons: fit for function and fit to function? evidence
466 from development and evolution. *Frontiers in Neural Circuits*, 2023.

467 [41] Thomas Chartrand, Rachel Dalley, Jennie Close, Natalia A Goriounova, Brian R Lee, Rusty Mann,
468 Jeremy A Miller, Gabor Molnar, Alice Mukora, Lauren Alfiler, et al. Morphoelectric and transcrip-
469 tomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. *Science*,
470 382(6667):eadf0805, 2023.

471 [42] Sherry Jingjing Wu, Elaine Sevier, Deepanjali Dwivedi, Giuseppe-Antonio Saldi, Ariel Hairston, Sabrina
472 Yu, Lydia Abbott, Da Hae Choi, Mia Sherer, Yanjie Qiu, et al. Cortical somatostatin interneuron subtypes
473 form cell-type-specific circuits. *Neuron*, 111(17):2675–2692, 2023.

474 [43] Xiaoyan Qian, Kenneth D Harris, Thomas Hauling, Dimitris Nicoloutsopoulos, Ana B Muñoz-Manchado,
475 Nathan Skene, Jens Hjerling-Leffler, and Mats Nilsson. Probabilistic cell typing enables fine mapping of
476 closely related cell types in situ. *Nature methods*, 17(1):101–106, 2020.

477 [44] Trygve E Bakken, Rebecca D Hodge, Jeremy A Miller, Zizhen Yao, Thuc Nghi Nguyen, Brian Aever-
478 mann, Eliza Barkan, Darren Bertagnolli, Tamara Casper, Nick Dee, et al. Single-nucleus and single-cell
479 transcriptomes compared in matched cortical cell types. *PloS one*, 13(12):e0209648, 2018.

480 [45] Carsten K Pfeffer, Mingshan Xue, Miao He, Z Josh Huang, and Massimo Scanziani. Inhibition of inhibition
481 in visual cortex: the logic of connections between molecularly distinct interneurons. *Nature neuroscience*,
482 16(8):1068–1076, 2013.

483 [46] Xiaolong Jiang, Shan Shen, Cathryn R Cadwell, Philipp Berens, Fabian Sinz, Alexander S Ecker, Saumil
484 Patel, and Andreas S Tolias. Principles of connectivity among morphologically defined cell types in adult
485 neocortex. *Science*, 350(6264):aac9462, 2015.

486 [47] Luke Campagnola, Stephanie C Seeman, Thomas Chartrand, Lisa Kim, Alex Hoggarth, Clare Gamlin,
487 Shinya Ito, Jessica Trinh, Pasha Davoudian, Cristina Radaelli, et al. Local connectivity and synaptic
488 dynamics in mouse and human neocortex. *Science*, 375(6585):eabj5861, 2022.

489 [48] Ashok Litwin-Kumar, Robert Rosenbaum, and Brent Doiron. Inhibitory stabilization and visual coding in
490 cortical circuits with multiple interneuron subtypes. *Journal of neurophysiology*, 115(3):1399–1409, 2016.

491 [49] Guangyu Robert Yang, John D Murray, and Xiao-Jing Wang. A dendritic disinhibitory circuit mechanism
492 for pathway-specific gating. *Nature communications*, 7(1):1–14, 2016.

493 [50] Loreen Hertag and Henning Sprekeler. Amplifying the redistribution of somato-dendritic inhibition by
494 the interplay of three interneuron types. *PLoS computational biology*, 15(5):e1006999, 2019.

495 [51] Matthew Larkum. A cellular mechanism for cortical associations: an organizing principle for the cerebral
496 cortex. *Trends in neurosciences*, 36(3):141–151, 2013.

497 [52] Niansheng Ju, Yang Li, Fang Liu, Hongfei Jiang, Stephen L Macknik, Susana Martinez-Conde, and
498 Shiming Tang. Spatiotemporal functional organization of excitatory synaptic inputs onto macaque v1
499 neurons. *Nature communications*, 11(1):697, 2020.

500 [53] Anna Schroeder, M Belén Pardi, Joram Keijser, Tamas Dalmai, Ayelén I Groisman, Erin M Schuman,
501 Henning Sprekeler, and Johannes J Letzkus. Inhibitory top-down projections from zona incerta mediate
502 neocortical memory. *Neuron*, 2023.

503 [54] Masanori Murayama, Enrique Pérez-Garci, Thomas Nevian, Tobias Bock, Walter Senn, and Matthew E
504 Larkum. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. *Nature*,
505 457(7233):1137–1141, 2009.

506 [55] Gilad Silberberg and Henry Markram. Disynaptic inhibition between neocortical pyramidal cells mediated
507 by martinotti cells. *Neuron*, 53(5):735–746, 2007.

508 [56] Joram Keijser and Henning Sprekeler. Optimizing interneuron circuits for compartment-specific feedback
509 inhibition. *PLoS Computational Biology*, 18(4):e1009933, 2022.

510 [57] Vinay Parikh, Rouba Kozak, Vicente Martinez, and Martin Sarter. Prefrontal acetylcholine release controls
511 cue detection on multiple timescales. *Neuron*, 56(1):141–154, 2007.

512 [58] Karine Guillem, Bernard Bloem, Rogier B Poorthuis, Maarten Loos, August B Smit, Uwe Maskos, Sabine
513 Spijker, and Huibert D Mansvelder. Nicotinic acetylcholine receptor $\beta 2$ subunits in the medial prefrontal
514 cortex control attention. *Science*, 333(6044):888–891, 2011.

515 [59] Michael E Hasselmo. Neuromodulation and cortical function: modeling the physiological basis of behavior.
516 *Behavioural brain research*, 67(1):1–27, 1995.

517 [60] Rosalyn J Moran, Pablo Campo, Mkael Symmonds, Klaas E Stephan, Raymond J Dolan, and Karl J Friston. Free energy, precision and learning: the role of cholinergic neuromodulation. *Journal of Neuroscience*, 33(19):8227–8236, 2013.

518

519

520 [61] Naiyan Chen, Hiroki Sugihara, and Mriganka Sur. An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. *Nature neuroscience*, 18(6):892–902, 2015.

521

522 [62] Astrid A Prinz, Dirk Bucher, and Eve Marder. Similar network activity from disparate circuit parameters. *Nature neuroscience*, 7(12):1345–1352, 2004.

523

524 [63] Eve Marder, Timothy O’Leary, and Sonal Shruti. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. *Annual review of neuroscience*, 37:329–346, 2014.

525

526

527 [64] Maria Antonietta Tosches and Gilles Laurent. Evolution of neuronal identity in the cerebral cortex. *Current opinion in neurobiology*, 56:199–208, 2019.

528

529 [65] Anita A Disney, Chiye Aoki, and Michael J Hawken. Gain modulation by nicotine in macaque v1. *Neuron*, 56(4):701–713, 2007.

530

531 [66] Zixiu Xiang, John R Huguenard, and David A Prince. Cholinergic switching within neocortical inhibitory networks. *Science*, 281(5379):985–988, 1998.

532

533 [67] Lucas Pinto, Michael J Goard, Daniel Estandian, Min Xu, Alex C Kwan, Seung-Hee Lee, Thomas C Harrison, Guoping Feng, and Yang Dan. Fast modulation of visual perception by basal forebrain cholinergic neurons. *Nature neuroscience*, 16(12):1857–1863, 2013.

534

535

536 [68] Fangchen Zhu, Sarah Elnozahy, Jennifer Lawlor, and Kishore V Kuchibhotla. The cholinergic basal forebrain provides a parallel channel for state-dependent sensory signaling to auditory cortex. *Nature neuroscience*, pages 1–10, 2023.

537

538

539 [69] Pavel A Puzerey, Kamal Maher, Nikil Prasad, and Jesse H Goldberg. Vocal learning in songbirds requires cholinergic signaling in a motor cortex-like nucleus. *Journal of neurophysiology*, 120(4):1796–1806, 2018.

540

541 [70] Paul I Jaffe and Michael S Brainard. Acetylcholine acts on songbird premotor circuitry to invigorate vocal output. *Elife*, 9:e53288, 2020.

542

543 [71] Matthew Lovett-Barron, Aaron S Andalman, William E Allen, Sam Vesuna, Isaac Kauvar, Vanessa M Burns, and Karl Deisseroth. Ancestral circuits for the coordinated modulation of brain state. *Cell*, 171(6):1411–1423, 2017.

544

545

546 [72] Jennifer J Coppola and Anita A Disney. Is there a canonical cortical circuit for the cholinergic system? anatomical differences across common model systems. *Frontiers in neural circuits*, 12:8, 2018.

547

548 [73] Anita A Disney and John H Reynolds. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: A comparative study of rat, guinea pig, ferret, macaque, and human. *Journal of Comparative Neurology*, 522(5):986–1003, 2014.

549

550

551 [74] C Avendano, D Umbriaco, RW Dykes, and L Descarries. Acetylcholine innervation of sensory and motor neocortical areas in adult cat: a choline acetyltransferase immunohistochemical study. *Journal of chemical neuroanatomy*, 11(2):113–130, 1996.

552

553

554 [75] Xiangning Li, Bin Yu, Qingtao Sun, Yalun Zhang, Miao Ren, Xiaoyan Zhang, Anan Li, Jing Yuan, Linda Madisen, Qingming Luo, et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. *Proceedings of the National Academy of Sciences*, 115(2):415–420, 2018.

555

556

557

558 [76] Rogier B Poorthuis, Bernard Bloem, Benita Schak, Jordi Wester, Christiaan PJ de Kock, and Huibert D Mansvelder. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. *Cerebral cortex*, 23(1):148–161, 2013.

559

560

561 [77] Joshua Obermayer, Matthijs B Verhoog, Antonio Luchicchi, and Huibert D Mansvelder. Cholinergic modulation of cortical microcircuits is layer-specific: evidence from rodent, monkey and human brain. *Frontiers in neural circuits*, 11:100, 2017.

562

563

564 [78] Oliver Hobert. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. *Proceedings of the National Academy of Sciences*, 105(51):20067–20071, 2008.

565

566 [79] Detlev Arendt, Jacob M Musser, Clare VH Baker, Aviv Bergman, Connie Cepko, Douglas H Erwin,
567 Mihaela Pavlicev, Gerhard Schlosser, Stefanie Widder, Manfred D Laubichler, et al. The origin and
568 evolution of cell types. *Nature Reviews Genetics*, 17(12):744–757, 2016.

569 [80] Sarah Melzer and Hannah Monyer. Diversity and function of corticopetal and corticofugal gabaergic
570 projection neurons. *Nature Reviews Neuroscience*, 21(9):499–515, 2020.

571 [81] Cathryn R Cadwell, Athanasia Palasantza, Xiaolong Jiang, Philipp Berens, Qiaolin Deng, Marlene Yilmaz,
572 Jacob Reimer, Shan Shen, Matthias Bethge, Kimberley F Tolias, et al. Electrophysiological, transcriptomic
573 and morphologic profiling of single neurons using patch-seq. *Nature biotechnology*, 34(2):199–203, 2016.

574 [82] Marcela Lipovsek, Cedric Bardy, Cathryn R Cadwell, Kristen Hadley, Dmitry Kobak, and Shreejoy J
575 Tripathy. Patch-seq: Past, present, and future. *Journal of Neuroscience*, 41(5):937–946, 2021.

576 [83] P Ulinski. Visual cortex of turtles. *Evolution of Nervous Systems*, 2:195–203, 2007.

577 [84] Shreejoy J Tripathy, Lilah Toker, Brenna Li, Cindy-Lee Crichlow, Dmitry Tebaykin, B Ogan Mancarci,
578 and Paul Pavlidis. Transcriptomic correlates of neuron electrophysiological diversity. *PLoS computational
579 biology*, 13(10):e1005814, 2017.

580 [85] Yves Bernaerts, Michael Deistler, Pedro J Goncalves, Jonas Beck, Marcel Stimberg, Federico Scala, An-
581 dreas S Tolias, Jakob H Macke, Dmitry Kobak, and Philipp Berens. Combined statistical-mechanistic
582 modeling links ion channel genes to physiology of cortical neuron types. *bioRxiv*, pages 2023–03, 2023.

583 [86] Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow engine. *Bioinfor-
584 matics*, 28(19):2520–2522, 2012.

585 [87] Malte D Luecken and Fabian J Theis. Current best practices in single-cell rna-seq analysis: a tutorial.
586 *Molecular systems biology*, 15(6):e8746, 2019.

587 [88] Constantin Ahlmann-Eltze and Wolfgang Huber. Comparison of transformations for single-cell rna-seq
588 data. *Nature Methods*, pages 1–8, 2023.

589 [89] Christoph Hafemeister and Rahul Satija. Normalization and variance stabilization of single-cell rna-seq
590 data using regularized negative binomial regression. *Genome biology*, 20(1):296, 2019.

591 [90] Jan Lause, Philipp Berens, and Dmitry Kobak. Analytic pearson residuals for normalization of single-cell
592 rna-seq umi data. *Genome biology*, 22(1):1–20, 2021.

593 [91] Ake Björck and Gene H Golub. Numerical methods for computing angles between linear subspaces.
594 *Mathematics of computation*, 27(123):579–594, 1973.

595 [92] Anaconda software distribution, 2020.

596 [93] Isaac Virshup, Sergei Rybakov, Fabian J Theis, Philipp Angerer, and F Alexander Wolf. anndata: Anno-
597 tated data. *bioRxiv*, 2021.

598 [94] J. D. Hunter. Matplotlib: A 2d graphics environment. *Computing in Science & Engineering*, 9(3):90–95,
599 2007.

600 [95] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
601 Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array programming
602 with numpy. *Nature*, 585(7825):357–362, 2020.

603 [96] The pandas development team. pandas-dev/pandas: Pandas, February 2020.

604 [97] Guido vanRossum. Python reference manual. *Department of Computer Science [CS]*, (R 9525), 1995.

605 [98] R Core Team. R: A language and environment for statistical computing. r foundation for statistical
606 computing, vienna, austria. 2012, 2021.

607 [99] F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene expression
608 data analysis. *Genome biology*, 19(1):1–5, 2018.

609 [100] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
610 R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
611 esnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830,
612 2011.

613 [101] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
614 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
615 Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
616 Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
617 Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
618 Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
619 Fundamental Algorithms for Scientific Computing in Python. *Nature Methods*, 17:261–272, 2020.

620 [102] Michael L. Waskom. seaborn: statistical data visualization. *Journal of Open Source Software*, 6(60):3021,
621 2021.

622 [103] Yuhang Hao, Stephanie Hao, Erica Andersen-Nissen, William M Mauck, Shiwei Zheng, Andrew Butler,
623 Maddie J Lee, Aaron J Wilk, Charlotte Darby, Michael Zager, et al. Integrated analysis of multimodal
624 single-cell data. *Cell*, 184(13):3573–3587, 2021.

625 [104] Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical modeling with python. In
626 *9th Python in Science Conference*, 2010.

627 Supporting Material

628 Replication of Bugeon et al.

We validated our analysis pipeline by replicating the relevant results from Bugeon et al. [9] on their data. These data consist of in vivo neural activity and in situ gene expression of neurons from layers 1-3 of mouse primary visual cortex (*Mus musculus* VISp). Expression data was limited to a panel of 72 genes previously selected to identify interneuron subtypes [43]. The data also contain behavioural variables (e.g., running speed) that assign each time point to a “behavioural state”. Bugeon et al. distinguished three possible states: running (distinguished by a positive running speed), stationary desynchronized (zero running speed and little neural oscillations), and stationary synchronised (zero running speed and prominent neural oscillations). A neuron’s state modulation was defined as the normalised difference between its average activity during the most and least active state:

$$\frac{\text{running activity} - \text{synchronized activity}}{\text{running activity} + \text{synchronized activity}} \quad (4)$$

629 Neurons that are more active during running compared to baseline will therefore have a positive state modulation.
630 In contrast, neurons that are less active during running will have a negative state modulation.

631 We selected high-quality cells following the criteria from Bugeon et al. ([9], see Methods), resulting in the
632 same number of 1,065 inhibitory interneurons reported in their work. These interneurons are hierarchically
633 distributed across 5 subclasses and 35 subtypes. State modulation could be computed for 872 neurons recorded
634 during both running and synchronized states. As previously reported, visualising the neural activity during
635 these states suggested differential state modulation between both cell classes and subtypes (Fig. S1a). We
636 then computed each neuron’s state modulation based on its time-averaged activity (Equation (4)). Consistent
637 with ref. [9], state modulation was negative for Pvalb (Pearson correlation -0.13), small and positive for Sst and
638 Lamp5 (both 0.02), and strongly positive for Vip and Sncg interneurons (0.13 and 0.21, respectively) (Fig. S1b).

639 Next, we aimed to replicate the correlation between the first transcriptomic principal component (tPC1) and
640 the state modulation. To compute tPC1, we first normalised and log-transformed the cell-by-gene expression
641 matrix to correct for differences in sequencing depth and to stabilise the gene-count variances. We then applied
642 principal component analysis to the transformed matrix. State modulation could indeed be predicted from
643 tPC1 projections, both for subtypes (Fig. S1c, leave-one-out $R^2 = 0.19$) and for individual neurons ($R^2 = 0.17$).
644 The predictive power of tPC1 is to some extent driven by between-subclass differences in gene expression [35]
645 since it is relatively modest within individual subclasses (Fig. S2). Additional tPCs contained less information
646 regarding state modulation: the second-best tPC (tPC29) achieved an R^2 of 0.10 and explained only 0.9% of
647 the variance, and tPC2 did not predict state modulation at all ($R^2 = -0.01$, Fig. S3). Together, the first 30
648 tPCs improved upon tPC1 ($R^2 = 0.60$, 76.2% of total variance).

649 Finally, we verified the correlation between state modulation and cholinergic receptor expression that might
650 reflect a mechanistic link between state modulation and transcriptome [9]. Since cholinergic receptor expression
651 was not measured for the in vivo recorded neurons (the 72 gene panel did not include these receptors), its
652 relationship with state modulation can only be tested using external expression values. Following ref. [9], we
653 obtained these values from the publicly available data of Tasic et al. [6]. We preprocessed the raw count data
654 like the Bugeon et al. expression matrix and selected the 35 upper-layer subtypes present in the in vivo data.
655 We then computed the average receptor expression of each subtype and compared this with its average state

656 modulation. Linear regression showed that the expression of 5 out of 15 cholinergic receptors (or receptor
657 subunits) could predict state modulation (Figs. S1d, S10). These consist of the 4 receptors shown by Bugeon
658 et al. (Chrm3,4 and Chrna4,5, their Fig. 6b) and an additional nicotinic receptor (Chrna3).

659 We found one qualitative difference with previous results (Fig. 5c in ref. [9]), namely a clustering of tPC1
660 scores into two groups corresponding to developmental origin [36]. This was caused by the log transformation
661 used here but not in the original analyses (Fig. S3). The log transformation is a widely used preprocessing step
662 in the analysis of count data [87, 88]. However, other transformations are also possible (see, e.g., [89, 90]). Here,
663 it had only a minor effect on the quantitative relationship between tPC1 and state modulation (Fig. S3).

664 Network analysis

665 The cholinergic receptor densities in our simulations were chosen consistently with the transcriptomic and activi-
666 ty data, but other choices are also possible, of course. We therefore investigated the effect of varying receptor
667 densities using mathematical analyses. In particular, we asked for which receptor densities the cholinergic ef-
668 fect might be different from that in the mouse. For example: does the lack of inhibitory receptors in human
669 Pvalb cells imply that these cells are not inhibited during cholinergic modulation? And does the expression of
670 inhibitory receptors by turtle Sst cells imply that these cells are actually inhibited?

In our simulations, all neurons receive net-positive inputs. Under these conditions, the network model contains only one nonlinearity: the rectification of dendritic activity that reaches the soma. The rectification is piecewise linear: if the dendrites are excited, the dendrites influence the soma ($w_{ed} = 1$); if the dendrites are inhibited, the dendrite remains inactive and decouple from the soma ($w_{ed} = 0$). The network dynamics are, therefore, governed by one of two connectivity matrices that only differ in the entry w_{ed} . Otherwise, the dynamics are linear:

$$\dot{\mathbf{r}} = -\mathbf{r} + W(w_{ed})\mathbf{r} + \mathbf{I}_0 + \mathbf{m}. \quad (5)$$

Here, \mathbf{m} is the vector modelling cholinergic modulation, and \mathbf{I}_0 is the external input. For a given somato-
dendritic coupling w_{ed} and cholinergic modulation \mathbf{m} , the steady state rates are found by solving $\dot{\mathbf{r}} = 0$:

$$\mathbf{r}(w_{ed}, \mathbf{m}) = [I - W(w_{ed})]^{-1}[\mathbf{I}_0 + \mathbf{m}] = A(w_{ed})[\mathbf{I}_0 + \mathbf{m}], \quad (6)$$

where we defined $A(w_{ed}) = [I - W(w_{ed})]^{-1}$ as the matrix that maps inputs to steady-state rates:

$$A(w_{ed}) = \begin{pmatrix} 1 - w_{ee} & w_{ed} & -w_{ep} & 0 & 0 \\ w_{de} & 1 & 0 & -w_{ds} & 0 \\ w_{pe} & 0 & 1 + w_{pp} & -w_{ps} & 0 \\ w_{se} & 0 & 0 & 1 & -w_{sv} \\ w_{ve} & 0 & 0 & -w_{vs} & 1 \end{pmatrix}^{-1} \quad w_{ab} \geq 0 \quad \forall a, b. \quad (7)$$

671 Below, we will compute the relevant entries of $A(w_{ed})$ up to its determinant, which is positive and therefore
672 does not affect the entries' signs.

673 We use equation (6) to compute the modulatory effect on the network activity as the difference between the
674 rates with and without modulation. We will consider the cases in which cholinergic modulation activates the
675 dendrite that was silent without modulation (off→on) or inactivates the dendrite that was activated without
676 ACh (on→off). The other two cases (on→on, off→on) can be derived analogously.

First, consider the case that modulation switches the dendrites off, as for the mouse and human circuits.
The resulting change in network activity equals:

$$\Delta\mathbf{r} = \mathbf{r}(0, \mathbf{m}) - \mathbf{r}(1, \mathbf{0}) \quad (8)$$

$$= A(0)[\mathbf{I}_0 + \mathbf{m}] - A(1)[\mathbf{I}_0 + \mathbf{0}] \quad (9)$$

$$= A(0)\mathbf{m} + [A(0) - A(1)]\mathbf{I}_0. \quad (10)$$

In case that modulation switches the dendrites on, as for the turtle circuit, the resulting change in network
activity equals:

$$\Delta\mathbf{r} = A(1)\mathbf{m} + [A(1) - A(0)]\mathbf{I}_0. \quad (11)$$

677 The first term in these equations is a linear combination of the receptor densities $\mathbf{m} = (m_e, m_d, m_p, m_s, m_v)$,
678 describing how the cholinergic modulation of individual populations propagates through the network. In our
679 model, pyramidal cells do not express cholinergic receptors ($m_e = m_d = 0$), such that the cholinergic effect is
680 a linear combination of only the interneuron receptor densities. The second term in Eq. (11) is independent of
681 the precise modulation and describes how the background input \mathbf{I}_0 propagates through the network with and

682 without activated dendrites. Since this term is small, we ignore it in the following derivations, but it is shown
 683 in Fig. 5.

First, consider the cholinergic effect on Pvalb cells, which equals:

$$\Delta r_p = A_{pp}m_p + A_{ps}m_s + A_{pv}m_v. \quad (12)$$

Substituting the entries of $A(0)$ gives:

$$\Delta r_p = A_{pp}m_p - A_{ps}(w_{sv} \cdot m_v - m_s) \quad (13)$$

$$= (1 - w_{ee}) \cdot (1 - w_{sv} \cdot w_{vs}) \cdot m_p + \quad (14)$$

$$w_{sv} \cdot (1 - w_{ee})(w_{ps} \cdot m_v - m_s). \quad (15)$$

684 An analogous equation describes Δr_s (see below). The lines in Figure 5 show $\Delta r_p = 0$ and $\Delta r_s = 0$ as a function
 685 of the Pvalb and Sst receptor densities m_p and m_s , for a fixed Vip density m_v . These boundaries delineate
 686 domains of positive and negative modulation of Pvalb and Sst interneurons.

So does the absence of inhibitory ACh receptors in human Pvalb cells (Fig. 4; $m_p = 0$) imply that these cells will not be inhibited? Equation Eq. (13) shows that these cells will still be inhibited indirectly under the condition that:

$$\Delta r_p = w_{sv} \cdot (1 - w_{ee})(w_{ps} \cdot m_v - m_s) < 0. \quad (16)$$

The coefficient $w_{sv} \cdot (1 - w_{ee})$ is positive, assuming the recurrent connectivity is not very strong ($w_{ee} \leq 1$). Inhibition of Pvalb cells is then equivalent to

$$\Delta r_p < 0 \iff w_{ps} \cdot m_v - m_s < 0. \quad (17)$$

687 According to the expression data, Sst and Vip cells are positively modulated ($m_s, m_v > 0$). Therefore, Pvalb
 688 cells will be inhibited by ACh as long as the inhibition from Ssts is stronger than the disinhibition from Vips.
 689 Under these conditions, the limited Chrm4 expression by human Pvalb cells is compatible with their inhibition.

690 Let us next consider the differential expression of inhibitory ACh receptors in Sst interneurons in turtles
 versus mammals. Intuitively, this is expected to cause a cholinergic suppression of Sst cells in the turtle, in
 contrast to the mouse. In the model, the cholinergic effect on Sst cells equals:

$$\Delta r_s = A_{sp}m_p + A_{ss}m_s + A_{sv}m_v. \quad (18)$$

Subsituuting the entries from $A(1)$ gives:

$$\Delta r_s = A_{sp}m_p + A_{ss}(m_s - w_{sv} \cdot m_v) \quad (19)$$

$$= w_{ep} \cdot (w_{sv} \cdot w_{ve} - w_{se}) \cdot m_p + \quad (20)$$

$$[(1 - w_{ee} - w_{de})(1 + w_{pp}) + w_{ep} \cdot w_{pe}] (m_s - w_{sv}m_s). \quad (21)$$

For the turtle circuit, $m_p \leq 0$, since Pvalb cells (weakly) express inhibitory ACh receptors. The first term will therefore be negative if $w_{sv} \cdot w_{ve} - w_{se} > 0$. Further, $m_s < 0$ and $m_v > 0$, such that $m_s - w_{sv}m_v < 0$. The contribution of the second term will therefore be negative if:

$$(1 - w_{ee} - w_{de})(1 + w_{pp}) + w_{ep} \cdot w_{pe} > 0.$$

691 This will be the case unless recurrent excitation is very strong or the feedback loop between PCs and Pvalb
 692 cells is very weak. In summary, the expression of inhibitory ACh receptors by turtle Sst cells will indeed lead
 693 to their cholinergic inhibition, provided that the excitation onto Sst cells and the recurrent excitation are not
 694 too strong.

695 Software

696 An Anaconda [92] environment with the appropriate software will be provided along with the code (Table 4).

Software	version
AnnData [93]	0.8.0
Matplotlib [94]	3.6.2
Numpy [95]	1.23.5
Pandas [96]	1.5.2
Python [97]	3.10.10
R [98]	4.3.0
Scanpy [99]	1.9.1
Scikit-learn [100]	1.2.1
Scipy [101]	1.9.3
Seaborn [102]	0.12.2
Seurat [103]	4.0
Snakemake [86]	7.8.2
Statsmodels [104]	0.13.5

Table 4: Software versions.

697 Supplementary figures

State modulation of interneurons can be predicted by first transcriptomic PC

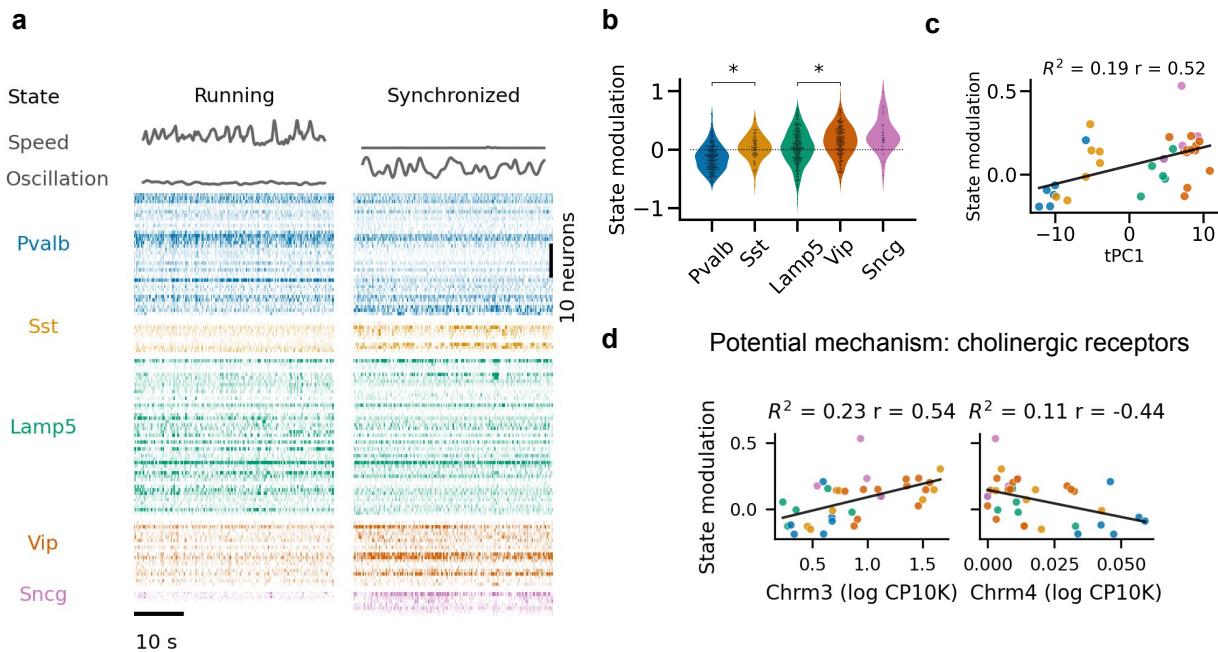


Fig. S1: Replication of previous findings from Bugeon et al. [9] (a) Neural activity systematically varies with behavioural state (measured by running speed and neural oscillations, see Methods) both between and within interneuron classes of mouse primary visual cortex (VISp) L1-3. (b) State modulation across all sessions for $n = 872$ interneurons. Stars indicate statistically significant differences between subclasses ($p < 0.05$, Mann-Whitney U test). (c) The first transcriptomic principal component (tPC1) of the cell-by-gene matrix predicts state modulation of subtypes ($n = 35$); Fig. S2a shows the relationship for individual cells. R^2 , leave-one-out fraction of variance explained; r , Pearson correlation. Note the two clusters along tPC1, consisting of MGE-derived (Pvalb & Sst) and CGE-derived (Lamp5, Vip, Sncg) interneurons. (d) Cholinergic receptors potentially link a neuron's transcriptome and state modulation. For example, interneurons that overexpress the excitatory receptor Chrm3 are positively state-modulated ($r = 0.54$; $p = 0.0008$), those that overexpress the inhibitory cholinergic receptor Chrm4 are negatively state-modulated ($r = -0.44$, $p = 0.0075$). CP10K, counts per 10 thousand. Data and findings from Bugeon et al. [9]. Cholinergic receptor expression in (d) from Tasic et al. [6].

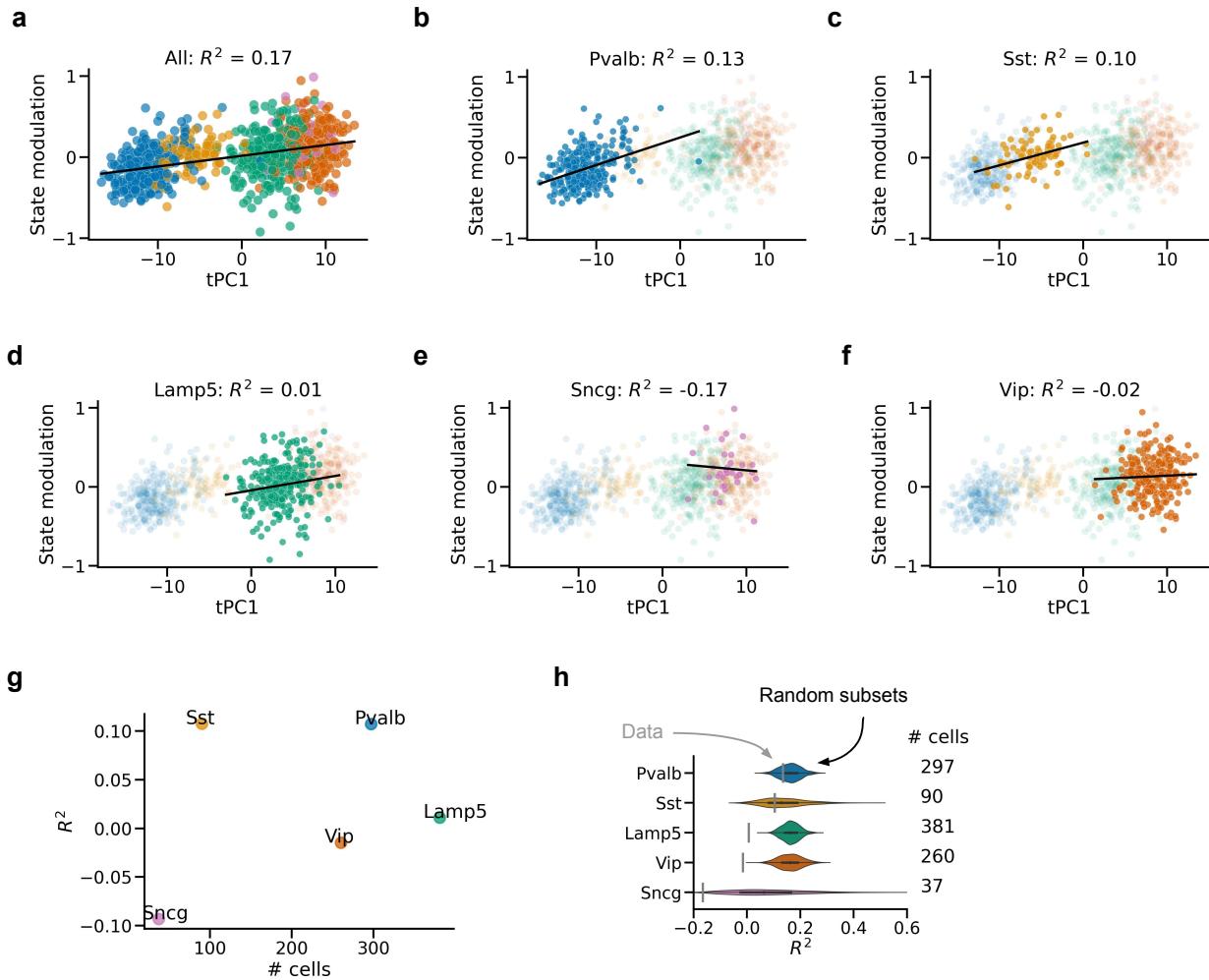


Fig. S2: Predicting state modulation from tPC1. Regression based on all cells (a) or cells from a single subclass (b-f). Predictive performance is worse for individual classes and only better than chance for Pvalb and Sst cells. The correlation between tPC1 and state modulation is therefore partially driven by between-subclass differences. However, tPC1 is still predictive of state modulation across all cells while controlling for subclass ($p = 0.003$, linear mixed model with subclass as random effect). R^2 : leave-one-cell-out fraction of variance explained; $R^2 < 0$ indicates a worse fit compared to predicting the same state modulation for each cell independent of tPC1 score. (g,h) Poor performance for certain subclasses is not due to a smaller sample size. (g) Sample size is not correlated with worse performance. (h) Size-matched subsets of all cells outperform below-chance subclasses, except for Sst cells. Grey bars: R^2 values for each subclass. Violin plots: distribution of R^2 values for 1000 random subsets of all cells with sample size matched to the subclass. Data from Bugeon et al. [9].

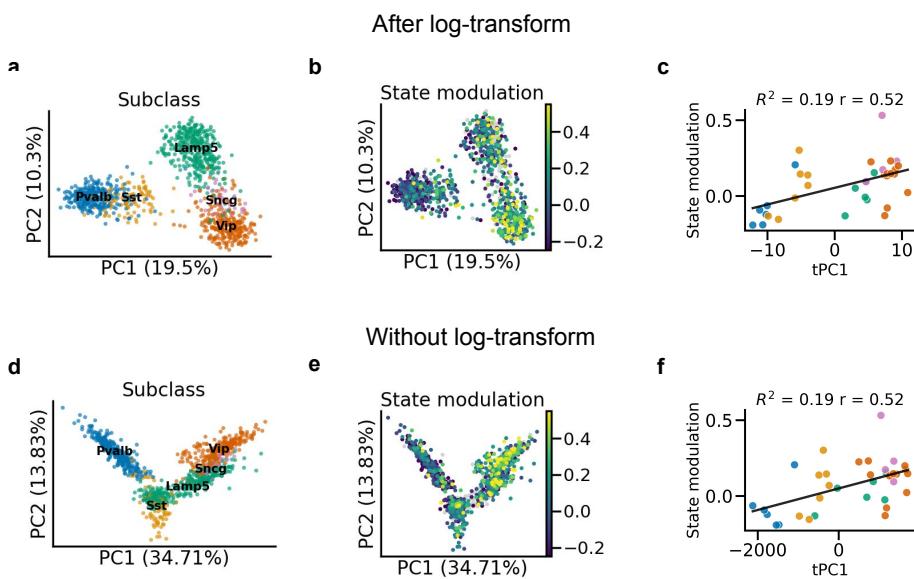


Fig. S3: Log-transformation leads to clustering by developmental origin. (a) First 2 transcriptomic principal components (tPCs) of the log-transformed count RNA data. (b) As (a), with colour indicating state modulation. (c) The first transcriptomic PC (tPC1) of log-transformed data predicts state modulation, replicated from Fig. S1c for comparison. R^2 : leave-one-out fraction of variance explained, r : Pearson correlation. (d-f) As (a-c), but without log-transformation. Interneurons now form a continuum along tPC1, but the quantitative relationship between tPC1 and state modulation is preserved (up to 2 digits). Data from Bugeon et al. [9].

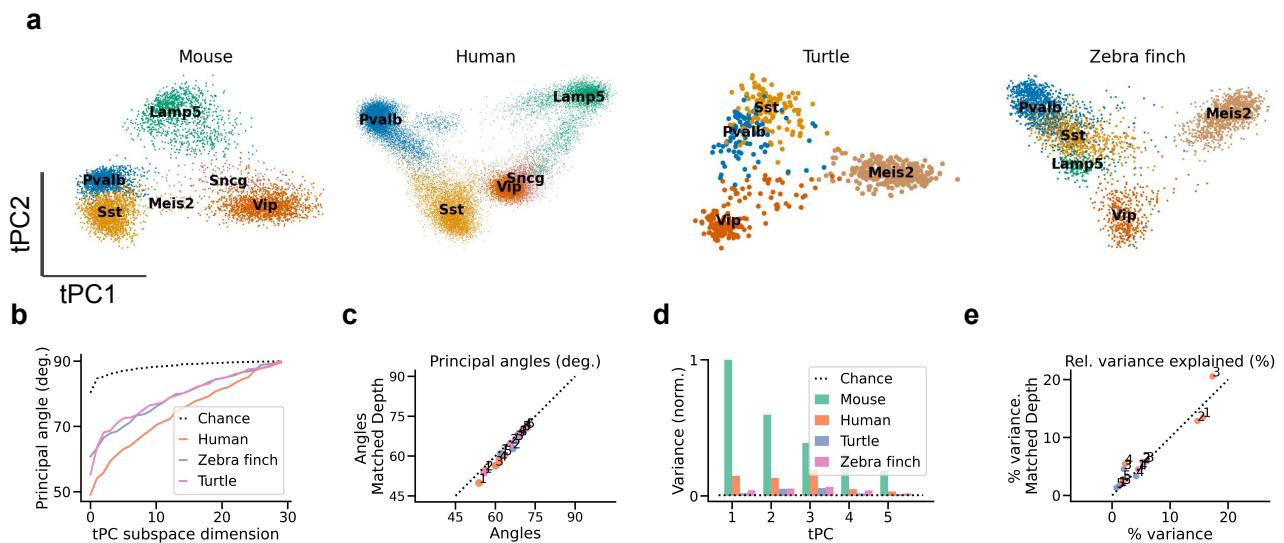


Fig. S4: Transcriptomic PCs robust to sequencing depth. (a) Projection of each dataset onto its first 2 transcriptomic PCs, after subsampling gene counts to the depth of the shallowest dataset (zebra finch, see Table 1). (b) Principal angles between tPC subspaces of subsampled data. (c) Comparison between angles of full-depth data and subsampled data. (d,e) As (b,c) but for variance explained. The human, turtle, and zebra finch tPC1 explain 14.0%, 1.2%, and 4.2% of the variance explained by mouse tPC1, respectively. Data from refs. [6] (mouse), [15] (human), [18] (turtle), [19] (zebra finch).

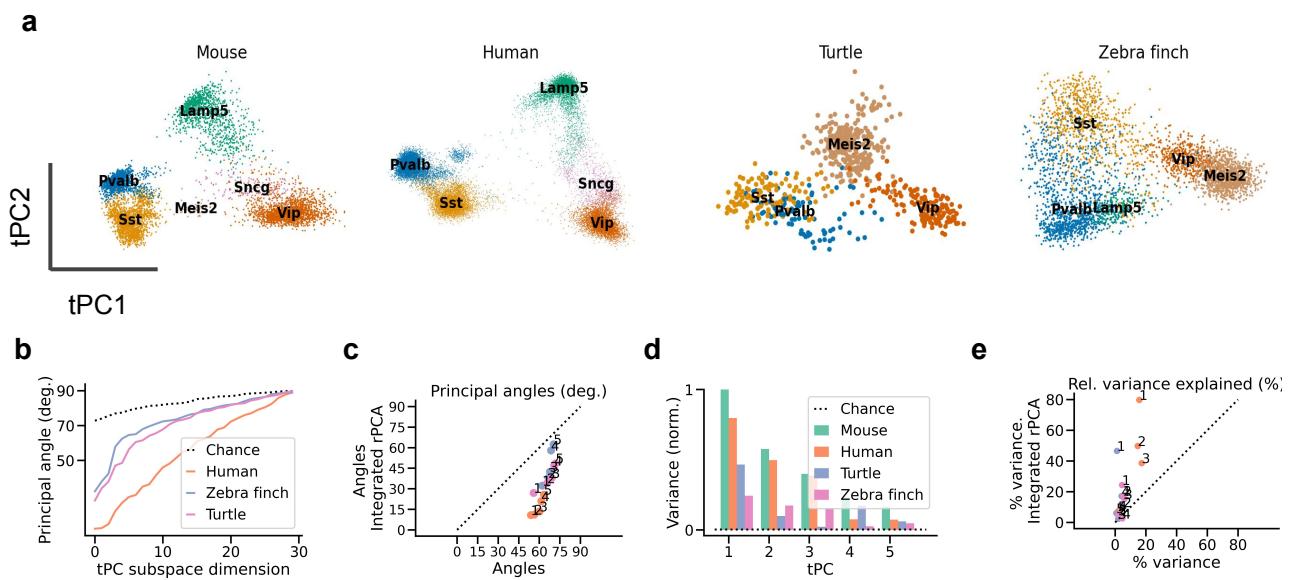


Fig. S5: Computational integration increases similarity of mouse and human data. (a) Projection of each dataset onto its first 2 transcriptomic PCs, after computational integration. Mouse and human datasets show increased similarity, but turtle cells no longer cluster by cell type (colour). (b) Principal angles between tPC subspaces computed after integration. (c) Comparison between angles computed without integration. Integration increased the similarity of all datasets, especially of the human data. (d,e) As (b,c) but for variance explained. The human, turtle, and zebra finch tPC1 explain 79.8%, 46.6%, and 24.4% of the variance explained by mouse tPC1, respectively. Data from refs. [6] (mouse), [15] (human), [18] (turtle), [19] (zebra finch).

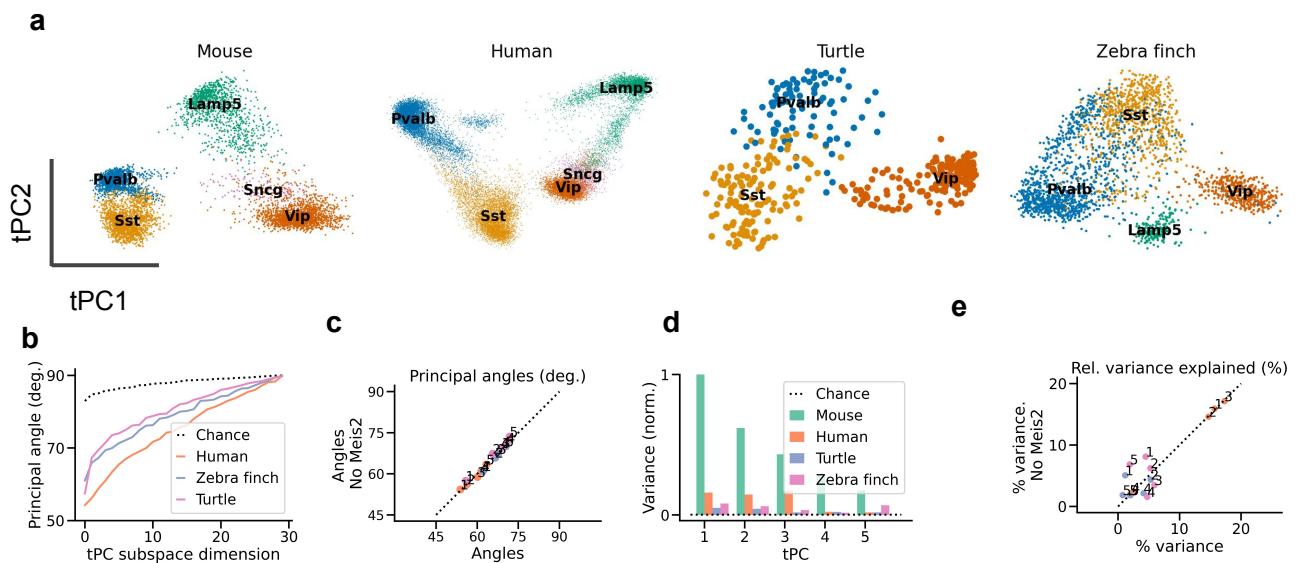


Fig. S6: Differences in tPCs not due to Meis2 cells. (a) Projection of each dataset onto its first 2 transcriptomic PCs, after removing Meis2 cells. (b) Principal angles between tPC subspaces computed without Meis2 cells. (c) Comparison between angles computed on all cells vs. cells without Meis2 population. (d,e) As (b,c) but for variance explained. The human, turtle, and zebra finch tPC1 explain 15.7%, 5.1%, and 8.1% of the variance explained by mouse tPC1, respectively. Data from refs. [6] (mouse), [15] (human), [18] (turtle), [19] (zebra finch).

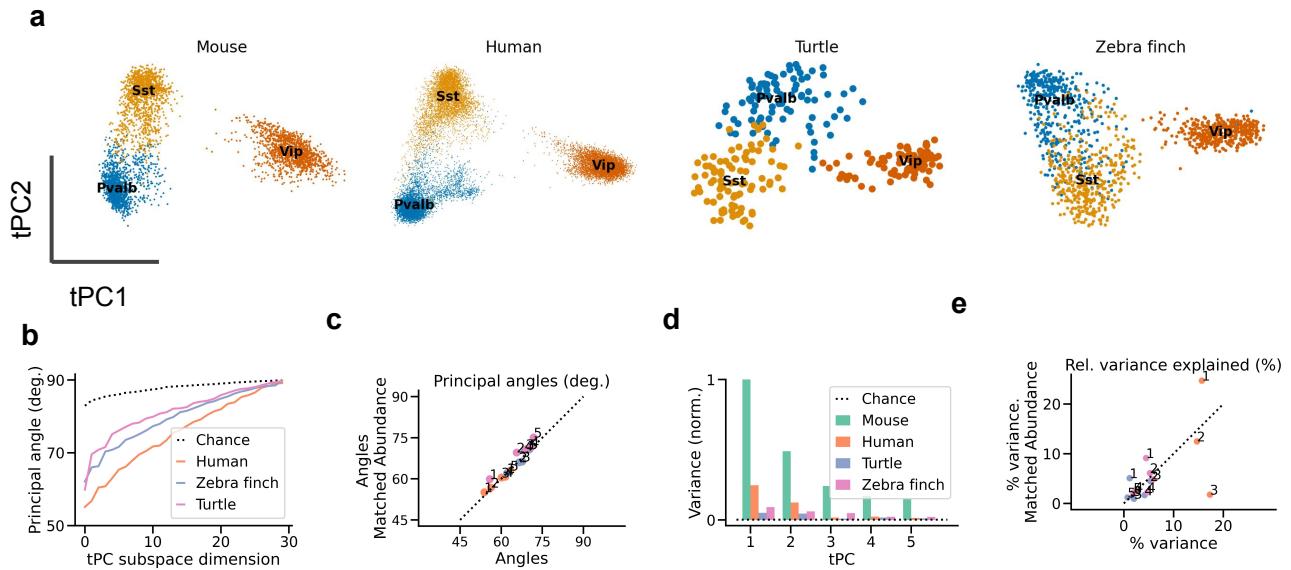


Fig. S7: Differences in tPCs not only due to cell type abundance. (a) Projection of each dataset onto its first 2 transcriptomic PCs, after matching cell type abundances (Fig. 2h). Principal angles between tPC subspaces. (c) Comparison between angles computed on all cells vs. cells after matching frequencies. (d,e) As (b,c) but for variance explained. The human, turtle, and zebra finch tPC1 explain 24.7%, 5.1%, and 9.2% of the variance explained by mouse tPC1, respectively. Data from refs. [6] (mouse), [15] (human), [18] (turtle), [19] (zebra finch).

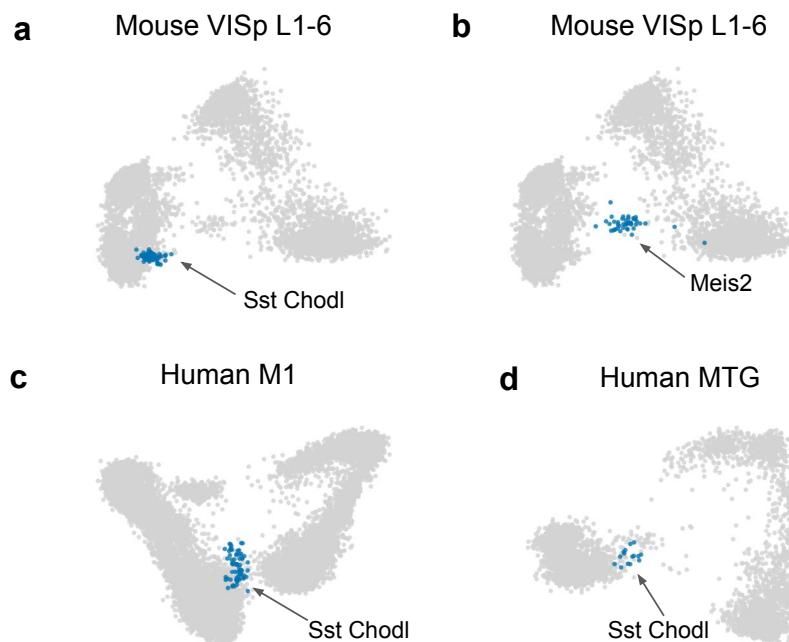


Fig. S8: Intermediate tPC1 position of Chodl and Meis2 neurons. Long range projecting Sst-Chodl (a) and white matter Meis2-Adamts19 cells (b) occupy an intermediate position along tPC1. (c,d) Sst Chodl neurons also have intermediate tPC1 scores in the human data. The human datasets do not contain Meis2 cells. Data from refs. [6] (a,b), [15] (c), and [14] (d).

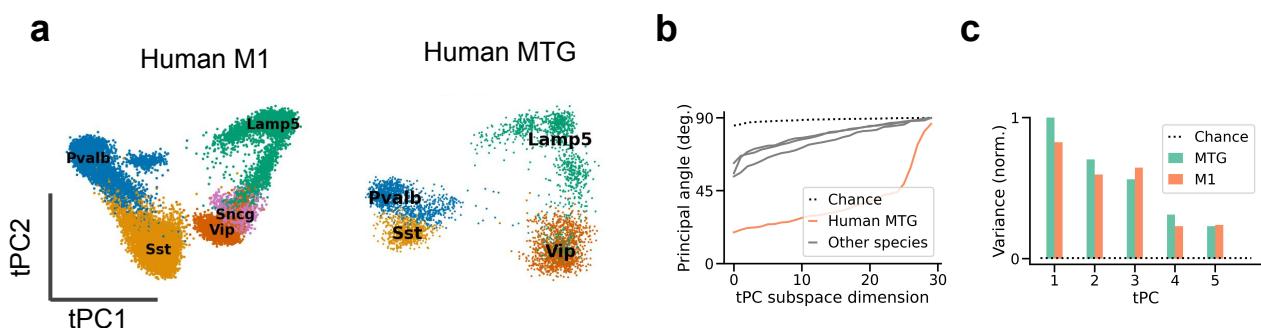


Fig. S9: Small differences in PCs of human datasets. (a) Projection of human datasets onto their first 2 tPCs. (b) Quantification of tPC similarity using principal angles between tPC subspaces of M1 and MTG data. (c) Quantification by variance explained in MTG data. The M1 tPC1 explains 82.6% of the MTG variance explained by the MTG tPC1. Data from refs. [15] and [14].

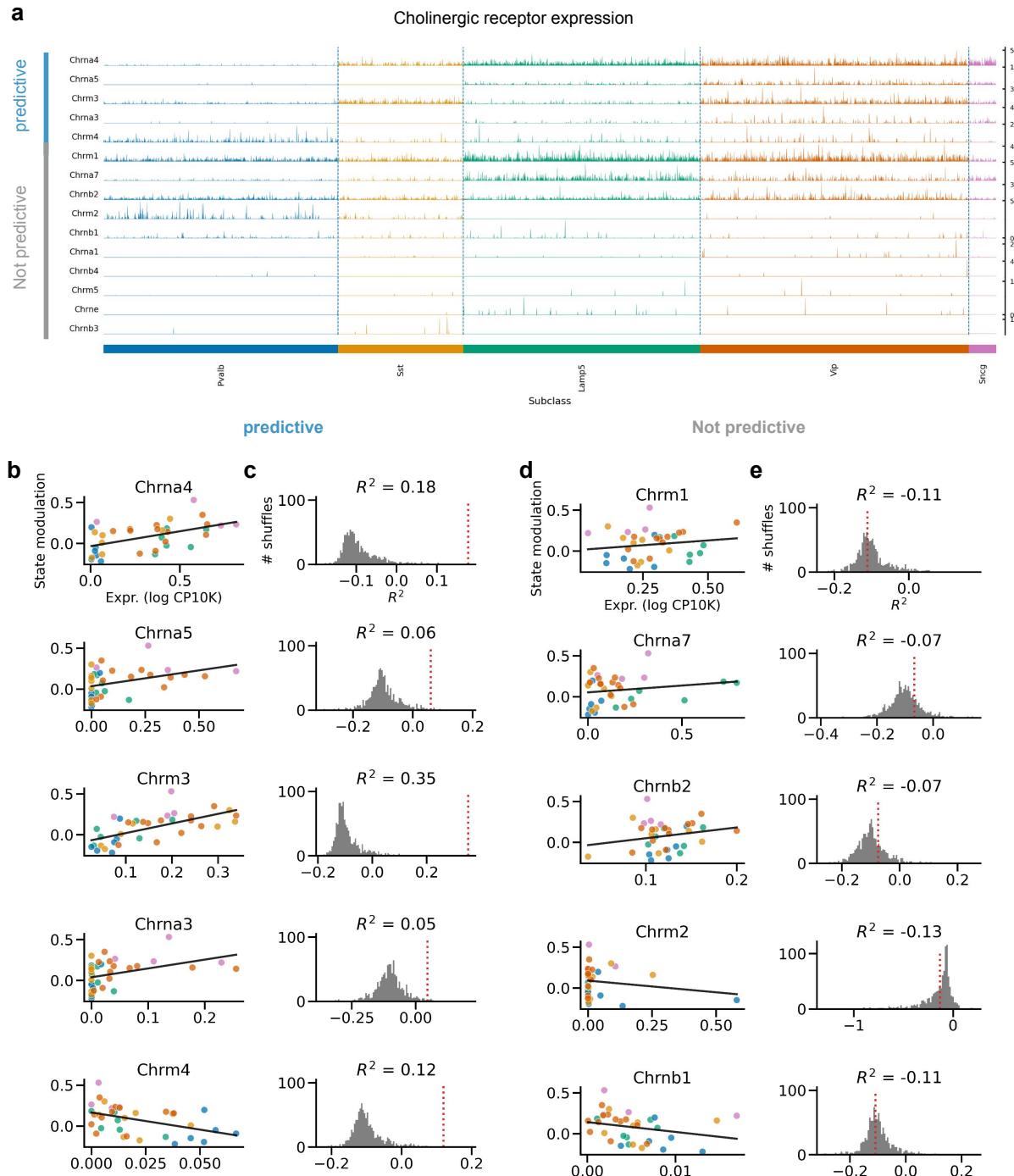


Fig. S10: Predicting state modulation from cholinergic receptor expression. (a) Tracks plot of cholinergic receptor (subunit) expression. The first 5 receptors predict state modulation; the remaining 10 do not (see b-e). Predictive and unpredictable receptors are independently sorted by expression based on expression levels. Shown are all receptors with an expression of at least 1 count per 10K. (b) Relationship between state modulation and log expression of receptors that are predictive of state modulation (1000 permutations, $p < 0.05$). (c) Grey: Null distribution of leave-one-out R^2 estimated by linear regression after permuting expression levels. Red: R^2 without permutation. (d,e) As (b,c) but for the 5 unpredictable receptors with the highest expression. Receptor expression from Tasic et al. [6]; state modulation from Bugeon et al. [9].

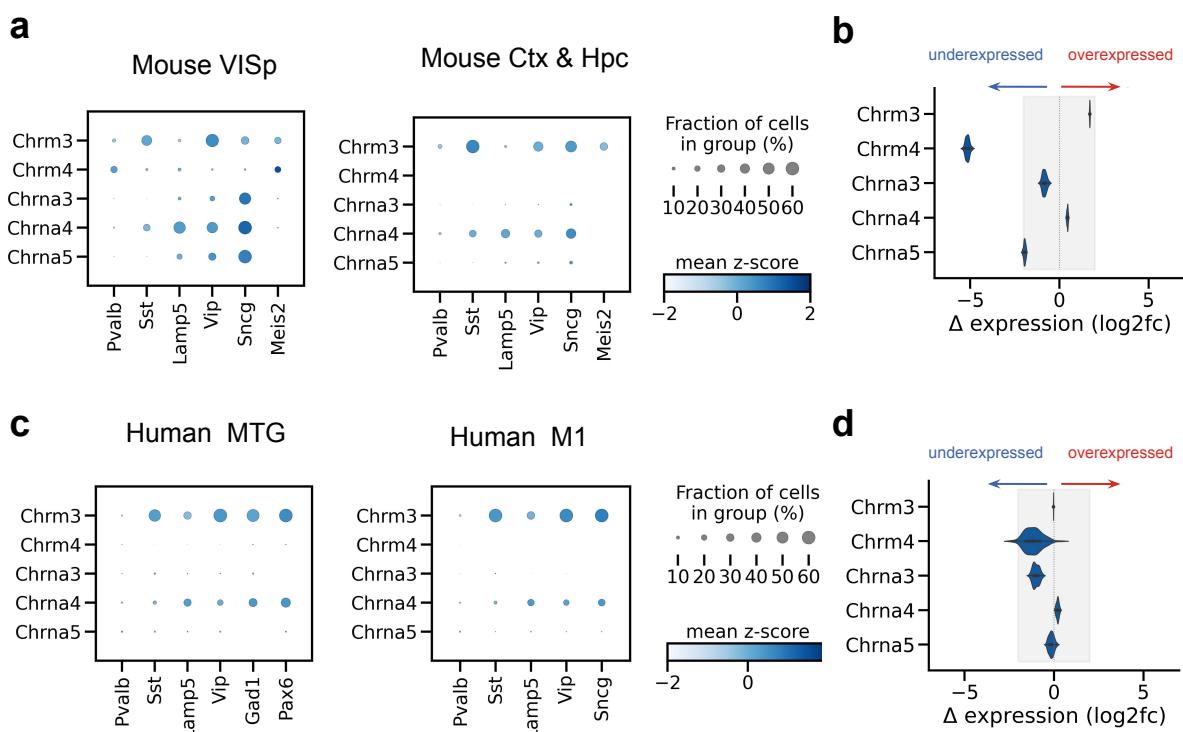


Fig. S11: Mostly small within-species differences in ACh receptor expression. (a) Dot plots showing the expression of the cholinergic receptors that predict state modulation in mouse VIsP L1-3 (b) Log2-fold differences in expression after downsampling the VIsP dataset to equal sequencing depth as the Ctx & Hpc data. Shaded area: log-fold difference of ± 2 , the range of most within-species differences. The exception is Chrm4, which is underexpressed in the Ctx & Hpc data compared to the VIsP data. (c,d) As (a,b), but for human datasets. The MTG dataset was downsampled to match the M1 data. Data from refs. [6] (mouse VIsP), [29] (mouse Ctx & Hc), [14] (human MTG), and [15] (human M1).