

1
2
3
4
5
6 Single-genome analysis reveals heterogeneous association of the Herpes Simplex
7 Virus genome with H3K27me2 and the reader PHF20L1 following infection of human
8 fibroblasts.

9
10
11 Alison K Francois¹, Ali Rohani¹, Matt Loftus¹, Sara Dochnal¹, Joel Hrit², Steven
12 McFarlane³, Abigail Whitford¹, Anna Lewis¹, Patryk Krakowiak¹, Chris Boutell³, Scott B.
13 Rothbart², David Kashatus¹, Anna R Cliffe^{1,*}

14
15 1. Department of Microbiology, Immunology and Cancer Biology, University of
16 Virginia, Charlottesville, VA, 22908.
17 2. Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503.
18 3. MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland

19
20 * Correspondence to cliffe@virginia.edu

21
22 Running title: Heterogenous silencing by H3K27me2 in HSV-1 lytic infection
23

24 **Abstract**

25 The fate of herpesvirus genomes following entry into different cell types is thought to
26 regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent
27 infection of neurons is characterized by association with repressive heterochromatin
28 marked with Polycomb silencing-associated lysine 27 methylation on histone H3
29 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene
30 expression in non-neuronal cells is unclear. To address this gap in knowledge, and with
31 consideration that the fate of the viral genome and outcome of HSV-1 infection could be
32 heterogeneous, we developed an assay to quantify the abundance of histone
33 modifications within single viral genome foci of infected fibroblasts. Using this approach,
34 combined with bulk epigenetic techniques, we were unable to detect any role for
35 H3K27me3 during HSV-1 lytic infection of fibroblasts. In contrast, we could detect the
36 lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent
37 with a role for H3K27 demethylases in promoting lytic gene expression. This was
38 consistent with a role for H3K27 demethylases in promoting lytic gene expression. In
39 addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and
40 this association was enhanced by inhibition of the H3K27 demethylases UTX and
41 JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following
42 infection with a transcriptionally defective virus in the absence of Promyelocytic
43 leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in
44 fibroblast-associated HSV genome silencing in a manner dependent on genome sub-
45 nuclear localization and transcriptional activity.

46

47 **Importance**

48 Investigating the potential mechanisms of gene silencing for DNA viruses in
49 different cell types is important to understand the differential outcomes of infection,
50 particularly for viruses like herpesviruses that can undergo distinct types of infection in
51 different cell types. In addition, investigating chromatin association with viral genomes
52 informs on the mechanisms of epigenetic regulation of DNA processes. However, there
53 is growing appreciation for heterogeneity in the outcome of infection at the single cell,
54 and even single viral genome, level. Here we describe a novel assay for quantifying
55 viral genome foci with chromatin proteins and show that a portion of genomes are
56 targeted for silencing by H3K27me2 and associate with the reader protein PHF20L1.
57 This study raises important questions regarding the mechanism of H3K27me2-specific
58 targeting to viral genomes, the contribution of epigenetic heterogeneity to herpesvirus
59 infection, and the role of PHF20L1 in regulating the outcome of DNA virus infection.

60

61

62

63

64 **Introduction**

65 The genomes of DNA viruses, especially those that replicate in the nucleus, have
66 an intimate association with host chromatin. Herpesviruses are double-stranded DNA
67 viruses that can undergo both lytic/productive replication and establish long-term latent
68 infections. There is growing evidence that the regulation of herpesvirus latent versus
69 lytic infection results from the deposition of cell type-specific types of chromatin, as
70 active euchromatin is enriched during productive *de novo* infection and reactivation,
71 whereas repressive heterochromatin is enriched on viral genome during latent infection
72 (1–14). However, the mechanisms that regulate the deposition of heterochromatin, and
73 functional outcomes in different cell types for many of the herpesviruses, remain
74 unknown.

75

76 Polycomb-mediated silencing is a type of facultative heterochromatin,
77 characterized in large part by the enrichment of lysine 27 tri-methylation on histone H3
78 (H3K27me3) and is associated with multiple latent herpesviruses (1, 2, 5, 9, 10, 12, 13,
79 15–20). Facultative heterochromatin is more readily converted to transcriptionally active
80 euchromatin than the more stable constitutive heterochromatin (21). Polycomb silencing
81 is primarily established on the host genome during pluripotency and remodeled during
82 cell specification. Hence, most data on Polycomb silencing comes from studies
83 investigating gene silencing in stem cells and during the early stages of development
84 (19, 22). Many herpesviruses infect differentiated host cells and Polycomb silencing of
85 latent herpesvirus genomes is believed to promote and/or maintain repression of the
86 viral lytic phase genes during latent infection (19). The mechanisms of Polycomb

87 silencing may differ between pluripotent and terminally differentiated cells. Therefore,
88 investigating the *de novo* deposition of chromatin onto incoming herpesvirus genomes
89 has the potential to inform on the mechanisms of heterochromatin formation in different
90 cell types.

91

92 Herpes simplex virus type I (HSV-1) is the prototype alphaherpesvirus, and
93 infection of neurons can result in a life-long latent infection in which lytic genes are
94 repressed. In contrast, infection of epithelial cells or fibroblasts results in productive
95 (lytic) replication. The molecular mechanisms that regulate entry into lytic replication or
96 silent latent infection are important to understand because HSV-1 (and the related HSV-
97 2) latent infection causes significant morbidity and mortality. Periodically, the virus
98 reactivates from latent infection to result in infectious virus production, which can lead to
99 lesions at the body surface, keratitis and encephalitis. In addition to these outcomes,
100 HSV-1 infection has been linked to the progression of late-onset neurodegenerative
101 disease (23–27).

102

103 When HSV-1 genomes initially enter the nucleus, they are devoid of chromatin.
104 There is evidence for rapid association of histones with incoming genomes mediated by
105 histone chaperone proteins (28–32). During a latent infection of neurons, HSV-1 lytic
106 genes are associated with cellular histones carrying H3K27me3 as well as di- and tri-
107 methylation of lysine 9 on histone H3 (H3K9me2/me3) (12, 15, 19, 33–35). One model
108 for heterochromatin association with the HSV-1 genome involves immediate recognition
109 of incoming viral DNA by the host cell, resulting in heterochromatin-mediated silencing,

110 which the virus must overcome for lytic replication (6, 36–40). In contrast, the virus is
111 thought to be unable to overcome gene silencing in neurons, and latency is established
112 (6). However, for Polycomb silencing, evidence supporting the initial deposition of
113 H3K27me3 during lytic infection is limited. Previously, ubiquitously transcribed
114 tetratricopeptide repeat, X chromosome (UTX) protein was shown to contribute to HSV-
115 1 gene expression in U2OS cells (41). UTX (also known as Lysine-specific
116 Demethylase 6A; KDM6A) is one of two H3K27-specific demethylases, the second
117 being Jumonji domain-containing protein-3 (JMJD3 or KDM6B). A further study
118 described transient formation of H3K9me3 and H3K27me3 on a lytic promoter
119 immediately upon infection, followed by distinct waves of removal (36). However, the
120 absolute levels of H3K27me3 enrichment observed in this study were orders of
121 magnitude lower than the enrichment on host chromatin. In addition, fully determining
122 presence of histone modifications can be problematic due to potential background
123 enrichment in these assays, and interpretation is further complicated by appreciated
124 issues with histone PTM antibody specificity (42). Another confounding factor is
125 potential heterogeneity in the outcome of HSV infection, even in mitotic fibroblast cell
126 lines (43–48). These studies suggest that sub-populations of viral genomes may
127 associate with certain types of heterochromatin, which would be difficult to detect in bulk
128 assays like chromatin immunoprecipitation (ChIP). Assays that can measure the
129 enrichment for certain types of chromatin at the single genome level would therefore be
130 beneficial to take into account this potential heterogeneity.

131

132 Previous studies have identified the presence of the constitutive heterochromatin
133 marks H3K9me2/me3 on the viral genome during lytic infection and defined their role in
134 gene silencing (36, 38, 49, 50). Notably, H3K9me2/me3-marked histones associate with
135 the histone chaperone protein DAXX prior to loading onto chromatin, facilitating rapid
136 association of repressive PTMs with viral DNA (51). DAXX also associates with
137 Promyelocytic leukemia (PML) nuclear bodies (NBs) (also known as ND10), and
138 previous literature supports a model in which PML-NBs are involved in constitutive
139 heterochromatin formation (32, 52–57). Upon infection of non-neuronal cells, HSV-1
140 genomes rapidly associate with PML-NBs and there is evidence for silencing through
141 H3K9me2/me3 at these bodies (32, 48). Consistent with this observation, PML-NBs
142 repress HSV-1 lytic replication, and the viral protein ICP0 degrades PML to overcome
143 this repression (58–64). However, histones pre-modified with methylated lysine H3K27
144 have not been previously detected (65). Given the association of viral genomes with
145 PML-NBs and Daxx, and how loss of PML shifts the balance of methylation from H3K9
146 to H3K27 (54), it is not clear whether incoming lytic genomes could be targeted for
147 Polycomb silencing simultaneously with H3K9 methylation. Notably, we recently
148 reported that primary neurons are devoid of PML-NBs (66), and hence if these bodies
149 do protect against Polycomb silencing, viral genomes would still be targeted for
150 H3K27me3 deposition following neuronal infection. However, the presence of PML-NBs
151 in non-neuronal cells could shift the balance of heterochromatin away from Polycomb
152 silencing and towards initial H3K9me2/3 deposition.

153

154 The previously observed kinetics of H3K27me3 formation (approximately 36
155 hours), at least in pluripotent cells, also do not support a role for this modification in
156 restricting lytic HSV-1 infection (67, 68). However, it cannot be ruled out that there are
157 different kinetics for *de novo* H3K27me3 formation on incoming viral genomes in more
158 differentiated cell types. Importantly, the deposition of H3K27me2 is much more rapid
159 (69). H3K27me2 is also associated with gene silencing, and a recent study identified
160 PHF20L1 as a repressive reader protein of this PTM (70). H3K27me2 is the most
161 abundant H3K27 methylation state in embryonic stem cells (69) and yet the H3K27me2
162 association with herpesvirus genomes, and any contribution to gene silencing, have not
163 previously been reported.

164

165 Here, we set out to define the contribution of Polycomb silencing of HSV-1
166 genomes to lytic gene repression in non-neuronal cells. Using a combination of
167 epigenetic, imaging and gene expression-based approaches, we determined that HSV-
168 1 infection in primary human foreskin fibroblasts (HFFs) does not result in Polycomb-
169 mediated H3K27me3 deposition or its subsequent removal. Importantly, we developed
170 a novel assay quantifying co-localization between viral genome foci and histone PTMs
171 in the nucleus, therefore accounting for heterogeneity between different genome
172 epigenetic structures. Combining this analysis with the inhibition of demethylases UTX
173 and JMJD3, we found that a sub-population of genomes was associated with
174 H3K27me2 and PHF20L1. Further, association with H3K27me2 increased on genomes
175 of virus lacking the transactivating function of VP16 in the absence of PML-NBs,
176 suggesting that association with PML-NBs limits H3K27me2 deposition on

177 transcriptionally inactive genomes and instead promotes more constitutive

178 heterochromatin formation.

179

180 **Results**

181

182 **H3K27me3 does not associate with the HSV-1 genome following infection of**
183 **human fibroblasts.**

184

185 To determine the potential contribution of H3K27 methylation mediated by
186 Polycomb repressive complexes during HSV-1 lytic replication in non-neuronal cells, we
187 set out to investigate the deposition of H3K27me3 on the viral genome following
188 infection of human fibroblasts. In a previous study, data from ChIP followed by qPCR
189 suggested a low level of H3K27me3 was present at 1-2 hours post-infection (hpi) and
190 was later reduced, co-incident with reduced total histone association and following ICP0
191 expression (36). However, without comparing H3K27me3 on the viral genome to
192 regions of host chromatin that are enriched for this PTM, it cannot be concluded
193 whether this modification is enriched on the viral genome. In addition, since this study
194 was published, data have emerged that many antibodies against H3K27 methylation
195 show non-specific binding to other histone PTMs (42), and it is therefore possible that
196 antibody cross-reactivity with other PTMs complicated interpretation of these data.

197

198 To resolve these issues, we infected HFFs with HSV-1 strain 17 Syn+ at an MOI
199 of 3 plaque forming units (PFU) per cell and carried out CUT&RUN 2 and 4 hpi; time
200 points chosen based on published observations that both H3K27me3 and total histone
201 levels peak at these times and are removed by 4 hpi (31, 36). The H3K27me3 antibody
202 used was chosen for its high target specificity, as determined by histone peptide array

203 analysis (42) (Figure S1A). To quantify enrichment at specific promoter sequences, we
204 analyzed the enrichment compared to the non-specific IgG control aligning to the KOS
205 reference strain (71). CUT&RUN data for both 2 and 4 hpi show very little enrichment
206 for H3K27me3 on viral lytic promoters, shown as the geometric means of 2 replicates
207 (linear enrichment over IgG) scaled to the host positive control (Myt1) promoter in
208 Figure 1. All IE and early gene promoters are shown, with a selection of late genes. In
209 the presence of JMJD3 and UTX inhibition (GSK-J4), the host genome showed higher
210 enrichment for H3K27me3 at 4 hpi the Myt1 promoter, in addition to an increase
211 compared to the 2h time-point, which is consistent with previous reports (72). GSK-J4
212 activity was validated for uninfected HFF chromatin by western blot (Figure S2A),
213 indicating that the lack of H3K27me3 accumulation on viral promoters is not due to a
214 lack of inhibitor activity. In stark contrast to the host promoters, no viral lytic promoters
215 showed notable enrichment for H3K27me3. Therefore, in bulk cultures, we were unable
216 to detect positive enrichment for H3K27me3 on the regions of the viral genome
217 examined.

218

219 **Analysis of individual HSV-1 genome foci for co-localization with H3K27me3**
220 **using NucSpotA**

221 Although the CUT&RUN data suggest there was very little H3K27me3 enriched
222 on the lytic HSV-1 genome following infection of fibroblasts, we could not rule out the
223 possibility that a subpopulation of viral genomes associates with H3K7me3 upon
224 fibroblast infection, which may not be detected by these bulk population-level methods.
225 Therefore, we developed an assay that would permit the quantification of histone

226 modifications associated with HSV-1 DNA at an individual genome, or genome spot,
227 resolution. Importantly, other studies have observed heterogeneity in the ability of cells
228 to support lytic replication (43, 48). Therefore, it was possible that there is heterogeneity
229 in heterochromatin association with viral genomes following infection of fibroblasts.

230

231 We prepared viral stocks that contained EdC-labelled genomes as previously
232 described (59). HFFs were infected with EdC-labelled HSV-1 (HSV^{EdC}), and Click
233 chemistry-based fluorescent staining (to visualize viral DNA) was carried out alongside
234 immunostaining with the chosen histone antibody (60). To accurately quantify the
235 enrichment of each histone PTM with the viral genome in an unbiased and high-
236 throughput manner, we developed a custom program (NucSpotA) that measures the
237 intensity of signal at a viral genome compared to the intensity of positive signal
238 throughout the nucleus (Figure 2). We first validated NucSpotA by quantifying the co-
239 localization with proteins that have been found enriched at sites of viral genomes; RNA
240 polymerase II (Figure 3A, top) and total histone H3 (Figure 3A, middle). H3 is known to
241 be rapidly deposited on the lytic HSV-1 genome (6, 30, 73–75), while RNA polymerase
242 II is essential for viral lytic gene expression (76) and has been shown previously to co-
243 localize with viral genomes (77). A higher intensity ratio represents a higher enrichment
244 of a protein at viral genomes.

245

246 We then used NucSpotA to quantify the enrichment of individual viral genome
247 foci with H3K27me3 (Figure 3A, bottom). We observed a reduced association of viral
248 genomes with H3K27me3 compared to total H3 at 1 hour post-infection (hpi), which was

249 statistically significant (Figure 3B). In contrast, RNA polymerase II intensity ratios were
250 even higher than for H3, resulting in the strongest co-localization with viral genomes at
251 each time post-infection. Therefore, H3 and RNA polymerase strongly co-localized with
252 viral DNA as expected, but H3K27me3 appears not to co-localize with lytic genomes
253 based on the results of the overall NucSpotA analysis.

254

255 The above data indicate that, overall, viral genomes show reduced association
256 with the H3K27me3 compared to host chromatin, and reduced levels also compared to
257 total H3. However, this bulk NucSpotA analysis still did not take into account the
258 possibility of a minority population of genomes that associate with H3K27me3.
259 Therefore, we set a cutoff (intensity ratio 1.5) above which genomes look visually co-
260 localized with H3K27me3 when assessed qualitatively. The percentages of genomes
261 above this cutoff (labeled as a dotted line on Figures 3B-D and 3F) serve as an indicator
262 of whether a subpopulation of genomes co-localizes with H3K27me3. Notably, this
263 method can be used to assess the heterogeneous association of viral genomes with
264 any nuclear protein of interest. Using this method, we observed that 11%, 9.8%, and
265 4.3% of viral genome foci had enrichment values for H3K27me3 above this threshold at
266 1-, 2- and 4 hpi, respectively (Figure 3B). As a positive control for H3K27me3 co-
267 localization, we also performed Click chemistry and immunostaining for latent genomes
268 in mouse superior cervical ganglia (SCG) neurons (Figures 3E, 3F). In latently infected
269 neurons, we observed enrichment of H3K27me3 on approximately 31% of latent HSV-1
270 genomes based on a NucSpotA intensity ratio above 1.5. This is consistent with
271 previous observations that H3K27me3 is both enriched on the latent HSV genomes and

272 its removal is important in reactivation (12, 15, 34, 35, 78–81). These data also highlight
273 the potential heterogeneity in the epigenetic nature of latent HSV genomes, which may
274 relate to different levels of expression of the latency-associated transcript between
275 individual neurons or differences in sub-nuclear genome localization (82, 83).
276 Importantly, these data support our use of intensity ratios to quantify co-localization
277 between HSV-1 genomes and H3K27me3.

278

279 It was not clear from this analysis whether positively co-localizing genomes
280 represent a true association, or if they are more co-localized than we would expect by
281 chance (random placement of a genome in the nucleus). We thus performed an
282 additional analysis, using each image to generate its control by rotating the viral
283 genome channel 90 degrees relative to nuclear and histone stain channels (Figure 2B).
284 This allows paired analysis between an original genome's intensity ratio and that for its
285 random placement within the same nucleus (84). Original image H3 co-localization was
286 significantly greater than that for its random control image at each time point (Figure
287 3C), as is the co-localization of latent genomes with H3K27me3. However, co-
288 localization with H3K27me3 in fibroblasts was similar to or below that expected by
289 chance at all three time points post-infection (Figure 3D). In conclusion, assessing the
290 co-localization of lytic viral genomes with histone modifications suggests that lytic
291 genomes do not stably co-localize with H3K27me3, in contrast to co-localization with
292 total histone H3.

293

294 **Inhibition of H3K27me3 deposition or removal does not alter its co-localization**
295 **with HSV-1 genomes in fibroblasts.**

296 Although the rotation analysis suggested that a similar proportion of viral
297 genomes could co-localize with H3K27me3 as those observed to co-localize by chance,
298 it was still possible that a minority population is targeted for H3K27me3. Therefore, to
299 thoroughly investigate whether this reflected deposition onto the viral genome, we pre-
300 treated cells with UNC1999 (85), an inhibitor of the H3K27 methyltransferases EZH1
301 and EZH2 in the PRC2 complex, and quantified co-localization of viral genomes in the
302 absence of H3K27 methyltransferase activity. Western blots of the total levels of
303 H3K27me3 in fibroblasts demonstrated that 1.8 μ M had the capability of reducing levels
304 over time (Figures S2B). Therefore, we pre-treated cells with 1.8 μ M UNC1999
305 followed by infection with HSV-1, maintaining drug treatment during and after infection.
306 At 2 hpi, the co-localization of H3K27me3 at viral genomes was not significantly lower
307 than for vehicle control (DMSO)-treated cells at the population level. The proportion of
308 genomes above the intensity ratio threshold of 1.5 also did not decrease with PRC2
309 inhibition (Figure 4A). Therefore, we conclude that the small proportion of viral genomes
310 with a threshold above 1.5 (5%) was not a result of active deposition of H3K27me3.

311

312 A final possibility was that H3K27me3 could be rapidly deposited and removed
313 from viral genomes. Therefore, we added GSK-J4, an inhibitor of the H3K27me3
314 demethylases JMJD3 and UTX (86). Cells were again pre-treated with GSK-J4 (10
315 μ M), and the inhibitor was included during the infection. Inhibitor activity at this
316 concentration was confirmed by assessing H3K27me3 retention on cellular chromatin

317 by western blot (Figure S2A). At 4 hpi, we did not observe an increase in the proportion
318 of viral genomes co-localizing with H3K27me3 in the presence of the inhibitor (Figure
319 4B), suggesting the mark was not added and then rapidly removed by the activity of
320 these histone demethylases. Taken together, these data suggest that H3K27me3 is not
321 deposited on lytic genomes in HFFs during the early stages of lytic infection of
322 fibroblasts.

323

324 **H3K27 demethylase inhibition restricts lytic gene expression.**

325 To determine whether the presence of methylated H3K27 can impact HSV gene
326 expression in fibroblasts, we carried out gene expression analysis on cells infected in
327 the presence of UNC1999. HFFs were again pre-treated with UNC1999, and then
328 infected with HSV-1, with the inhibitor treatment maintained throughout infection. We
329 then performed RT-qPCR to quantify lytic gene expression. We expected PRC2
330 inhibition with UNC1999 to enhance lytic gene expression if H3K27me3 were deposited
331 on the viral genome. However, we did not observe any change in the expression of the
332 IE mRNA *ICP27* and early mRNA *ICP8* transcripts with UNC1999 treatment (Figures
333 5A, 5B). A previous study found that long-term treatment with a high dose of UNC1999
334 can result in the expression of anti-viral genes including IL6, IFNA2 and IFNA1, and
335 inhibition of viral gene expression (87). However, in our experiments using a lower dose
336 of UNC1999 (3 μ M) and a shorter time frame of treatment, we did not observe changes
337 in *IL6* expression (Figure S2C), indicating the UNC1999 was not inducing an antiviral
338 response in our cells that would otherwise impact the interpretation of these gene
339 expression experiments. Therefore, these results indicate that the deposition of H3K27

340 methylation does not impact HSV-1 gene expression and support our conclusion that
341 H3K27me3 is not being deposited on the HSV-1 genome during lytic infection.

342

343 We also carried out the converse experiment and examined whether inhibition of
344 the removal of H3K27 methylation impacted HSV-1 gene expression in fibroblasts using
345 GSK-J4 (10 μ M). Unexpectedly, we observed a repressive effect with GSK-J4
346 treatment. Although data up to this point suggest that H3K27me3 is not forming on the
347 lytic genome, preventing H3K27 demethylation led to repression of all the immediate-
348 early (IE), early and late transcripts checked at 2 hpi (approximately 3-5, 50-80 and 80-
349 fold respectively; Figure 5C). By 5 hpi, some effect was still seen for early genes (2-3.5-
350 fold), and leaky late gene VP16 (5.4-fold), although this was less than that observed at
351 2 hpi, indicating the repression may be overcome later in infection (Figure 5D).
352 Therefore, inhibition of JMJD3 and UTX activity limits, but does not fully prevent, HSV-1
353 lytic gene expression. This was surprising given our observation that inhibition of the
354 H3K27 demethylases did not impact levels of H3K27me3 association. However, it was
355 possible that inhibition of removal of other forms of H3K27 methylation would impact
356 HSV-1 lytic gene expression.

357

358 **A subpopulation of genomes co-localize with H3K27me2 when H3K27
359 demethylation is inhibited.**

360 Given that the PRC2 and JMJD3/UTX complexes are responsible for methylation
361 dynamics between all three methylation states of H3K27, we considered that another
362 methylation state could be present and repressive to the lytic genome. We focused on

363 H3K27me2, as this modification is also repressive to transcriptional activity (69, 70).
364 Additionally, we considered that previous studies investigating the mechanisms of *de*
365 *novo* Polycomb silencing in murine embryonic stem cells (mESCs) have shown full tri-
366 methylation of H3K27 to take approximately 36 hours, a time frame inconsistent with the
367 rapid events unfolding during early HSV-1 infection (67, 88, 89). However, the same
368 studies demonstrate that H3K27me2 forms more rapidly. H3K27me2 is relatively
369 understudied but is also associated with gene silencing. It protects against the
370 deposition of H3K27 acetylation (an activating modification), and the H3K27me2 reader
371 protein PHF20L1 has been shown to restrict transcription (69, 90). Notably, H3K27me2
372 is also one of the most abundant histone PTMs on the host genome and is more
373 prevalent than H3K27me3 (69).
374

375 We therefore performed CUT&RUN and co-localization experiments, this time
376 investigating the H3K27me2 modification. We found it difficult to source an H3K27me2
377 antibody with appropriate binding specificity and performed multiple experiments with
378 one antibody (Diagenode C15410193) that turned out to have high binding affinity to
379 unmodified histone H3 (Figure S1D). Histone peptide binding array analysis was
380 conducted for four additional antibodies marketed to recognize H3K27me2, but none
381 were selective for this mark (Figure S1B-E). A comparison of co-localization and
382 CUT&RUN viral genome coverage using Diagenode C15410193 is shown in Figures
383 S3A-B. We note although we cannot fully rule out that the CUT&RUN signal is from
384 H3K27me2, the broad distribution across the genome pointed to non-specific binding. In
385 addition, the co-localization of H3K27me2 with the viral genome using Diagenode

386 C15410193 is higher than other H3K27me2 antibodies that were included in this study;
387 therefore, we did not continue experiments using Diagenode C15410193. The
388 explanation for the enhanced binding of this antibody to viral genomes is unclear but
389 may result from non-specific binding to unmodified histones. We include the data here
390 as an example of the need to accurately validate the binding specificities of histone
391 antibodies.

392

393 We analyzed H3K27me2 using a more specific antibody as determined by
394 histone peptide arrays (Figure S1B; Active motif 39245). Figure 6A shows
395 representative images of an infected nucleus at each time point post-infection. Without
396 any inhibitor treatment, the co-localization of viral DNA with H3K27me2 was below that
397 for total H3 (Figure 6B), and similar to or below that expected by chance from rotation
398 control analysis (Figure 6C). Further, PRC2 inhibition with UNC1999 (1.8 μ M) did not
399 reduce the co-localization of viral DNA with H3K27me2, indicating that under these
400 conditions we either could not detect active deposition of H3K27me2 onto viral
401 genomes or that it was rapidly removed (Figure 6E). Inhibition of H3K27 demethylation
402 using GSK-J4 (10 μ M) did cause a modest but significant increase in the fraction of viral
403 genome foci that co-localize with H3K27me2; up to 15.5% of genomes (Figure 6F).
404 Notably, the percentage increase in genomes co-localizing with H3K27me2 was
405 reproducible between independent biological replicates, including biological repetitions
406 with a separate H3K27me2 antibody (Active motif 61435 Figure S1E, Figure 6G).
407 Therefore, these viral genomes (representative images Figure 6D) may represent a

408 subpopulation of genomes that experience H3K27me2 deposition followed by removal
409 by JMJD3 and/or UTX.

410

411 **CUT&RUN reveals a low association of lytic gene promoters with H3K27me2 that**
412 **increases with K27 HDM inhibition.**

413 To investigate whether we could verify the association of H3K27me2 with the
414 viral genome and any changes with GSK-J4 treatment, we performed CUT&RUN with
415 paired-end sequencing, again using an antibody validated to bind H3K27me2 (CST
416 D18C8 9728, Figure S1C). We were unable to find any previous studies investigating
417 H3K27me2 association with the host genome in fibroblasts. Therefore, we found
418 regions with high and low association in our dataset for comparison with the HSV-1
419 genome. We chose the *SERPINA1* promoter as a region of high enrichment and the
420 *GAPDH* promoter as a region depleted for H3K27me2. In comparison to the *SERPINA1*
421 promoter, we observed modest enrichment on viral promoters at 2 hpi. The enrichment
422 of H3K27me2 was much lower at 4 hpi, likely because of ongoing viral DNA replication
423 at this time-point, active removal of the modification, or of histone H3 itself, which has
424 previously been reported independently of viral DNA replication (31). Notably, we did
425 observe an increase in H3K27me2 levels on the host genome between 2- and 4-hours
426 post-infection. Although a comparatively low level of H3K27me2 was detected on viral
427 genomes at 2 hpi, Figure 7B shows the same enrichment values plotted without scaling
428 to the host positive control. This representation shows an increase in H3K27me2
429 association in the presence of GSK-J4 at 2 hpi, indicating that a subpopulation of viral
430 genomes may retain H3K27me2 in the presence of H3K27 demethylase inhibition.

431 There appeared to be no correlation with gene class for the IE and early genes,
432 although *UL54* (encoding ICP27) had the highest level of enrichment. Overall, the
433 enrichment was higher in promoter regions compared to the gene bodies (Figure 7B).
434 Taken together, these results indicate that H3K27me2 is deposited and removed on at
435 least a subpopulation of viral genomes, and this removal enables more robust viral lytic
436 gene expression at early times during infection.

437

438 **Transcriptionally repressed genomes are enriched for H3K27me2 in the absence**
439 **of PML-NBs.**

440 We next explored whether we could enrich for viral genomes with the H3K27me2
441 modification, both to further validate that this modification is indeed targeted to viral
442 genomes in fibroblasts and to determine under what conditions its deposition may
443 occur. The methyltransferase activity of the PRC2 complex is known to be inhibited
444 under conditions of active transcription (91, 92). Viral lytic gene expression is stimulated
445 by the tegument protein, VP16, and the activation domain (AD) of VP16 recruits host
446 proteins that promote transcription and limit total histone association (28). Therefore,
447 taking into account this known function of the VP16AD, we investigated whether
448 mutation of this domain resulted in increased H3K27me2 deposition.

449

450 We prepared EdC-labelled stocks of the previously described VP16AD mutant
451 (RP5, KOS parent strain) (93). Initial parallel infections with RP5 compared to its
452 rescued virus (RP5R) at an MOI of 3 PFU/cell showed a higher number of RP5
453 genomes reaching the nucleus than for RP5R, despite infection at the same PFU/cell;

454 this is likely reflective of a reduced ability of RP5 to plaque on the U2OS cells used to
455 grow and titer the viruses (data not shown). We thus adjusted the MOI of RP5 to
456 achieve approximately 3 foci per nucleus when visualized with Click chemistry. The
457 expected reduction in viral gene expression by RP5 compared to RP5R was confirmed
458 by RT-qPCR from HFFs, although RP5 viral gene expression did still increase between
459 2 and 5 hpi albeit at a much-reduced level compared to the rescued virus (Figure 8A).
460 We then analyzed the co-localization of RP5 genomes with H3K27me2 in HFF-
461 telomerase immortalized cells (HFF-Ts) and observed approximately 24% that showed
462 positive co-localization with H3K27me2. However, this was not significantly above the
463 level for random placement determined using the rotated control images (Figure 8C).

464

465 However, it has previously been reported in several studies that transcriptionally
466 inactive HSV genomes associate with repressive PML-NBs in non-neuronal cells (61,
467 66, 82). PML-NBs can promote the deposition of H3K9me3 but are less linked to the
468 deposition of H3K27me2/me3. Therefore, we asked if the presence of PML-NBs was
469 preventing association with H3K27me2 on these transcriptionally repressed genomes
470 by promoting the more constitutive H3K9me3 association. We created PML knock-out
471 HFF-Ts (Figure 8D), the infection of which resulted in a significant increase in
472 H3K27me2 association with RP5 at 2 hpi over PML-expressing HFF-Ts (wild-type HFF-
473 Ts). Therefore, these data indicate that H3K27me2 associates with the HSV-1 genome
474 either as a consequence of transcription repression and/or lack of the VP16AD in the
475 absence of PML-NBs. Finally, to determine whether PML-NBs increase the association
476 with constitutive heterochromatin, we also measured H3K9me3 co-localization with RP6

477 genomes. We found an increase in H3K9me3 association at 2 hpi in the wild-type HFF-
478 Ts (Figure 8E), indicating that PML knock-out cells indeed favor H3K27me2 formation
479 over H3K9me3 formation at transcriptionally inactive viral genomes.

480

481 **Association of the H3K27me2 reader protein PHF20L1 with a sub-population of**
482 **HSV-1 genomes.**

483 To explore the repressive functional outcome of H3K27me2 formation on lytic HSV-1
484 genomes, we investigated the co-localization of viral genomes with a reader of this
485 histone PTM. PHD Finger Protein 20-Like Protein 1 (PHF20L1) was reported as an
486 H3K27me2 reader in the context of breast tumor growth, working with PRC2 and
487 nucleosome remodeling and deacetylase (NuRD) complexes to facilitate transcriptional
488 repression (70). PHF20L1 co-localization was consistently found in approximately one
489 third of genomes at 4 hpi (34% of genomes), and an increase in co-localized genomes
490 was observed with GSK-J4 treatment. This increase is reflected in a 9% increase in
491 genomes above the co-localization cutoff, as well as a statistically significant difference
492 between the two data sets (Figure 9B). Notably, the 9% increase in genomes co-
493 localizing with PHF20L1 is similar to the 11% increase in co-localization with H3K27me2
494 (Figure 6F-G.) Representative images in the presence and absence of GSK-J4 are
495 shown, including one genome that is co-localized with PHF20L1 (intensity ratio 1.72)
496 and one that is not (intensity ratio 0.69) within the same nucleus (Figure 9A).
497 Because we observed the highest levels of H3K27me2 association with RP5 genomes
498 in PML knock-out cells, we also investigated the association of RP5 genomes with
499 PHF20L1 in these same cells. Co-localization was indeed seen in a large proportion of

500 RP5 genomes (46%) 4 hpi, as shown with representative images (Figure 9C-D). This
501 further validates the potential for transcriptionally inactive genomes without PML-NBs to
502 be targeted for H3K27me2 and read by PHF20L1.

503

504

505

506

507

508 **Discussion**

509 The process of lytic infection with HSV-1 is often described as a battle between
510 the host cell and the infecting virus, with the host cell trying to silence gene expression
511 by depositing repressive heterochromatin on the viral genome and the virus overcoming
512 this silencing for gene expression to occur. However, for the Polycomb-associated
513 modification, H3K27me3, there was little experimental evidence to support this model.
514 Hence, using multiple techniques, we set out to determine whether any H3K27me3
515 could be detectably deposited on the incoming genome by the host, which the virus
516 removes for lytic replication to take place. This was important to understand, first, to
517 determine how the host cell attempts to silence incoming foreign HSV-1 DNA, and
518 second, because this modification is ultimately enriched on the HSV-1 genome during a
519 latent infection of neurons (12, 15, 19, 20, 34, 35). Although we were unable to detect
520 H3K27me3 enrichment on lytic genomes, are data suggest that a subpopulation of
521 genomes are targeted for silencing by H3K27me2. This is intriguing because less is
522 known about H3K27me2 versus the more commonly studied H3K27me3. The recent
523 identification of a protein that specifically reads H3K27me2, PHF20L1, has illuminated a
524 direct role for this modification in the recruitment of transcriptional repressors (70). In
525 line with a role for H3K27me2 in lytic gene repression, we could also detect co-
526 localization of viral genomes with PHF20L1 during lytic infection. Therefore, the
527 deposition of H3K27me2 appears to play a more prominent role than H3K27me3 in
528 repressing HSV-1 gene expression during lytic replication.

529

530 There are some caveats to our study. One being that we used small molecule
531 inhibitors to this histone methyltransferases and histone demethylases and have not
532 carried out knock-out or knock-down experiments. However, in attempting to do these
533 experiments, we found that knockdown of the histone demethylases resulted in
534 enhanced lytic gene expression, which is consistent with previous studies showing that
535 a lack of these enzymes results in a reduction in anti-viral gene expression (86).
536 Therefore, long-term loss of these enzymes in fibroblasts likely results in more indirect
537 impacts on gene expression, making this approach a challenge. A further caveat is that
538 antibody binding to histone PTMs can be influenced by neighboring PTMs. For
539 example, binding to H3K27me2/me3 can be occluded by phosphorylation of H3S28. In
540 preliminary studies using an H3K27me3/pS28 antibody, we were unable to detect co-
541 localization with the viral genome. However, there are currently no antibodies that
542 recognize the dual H3K27me2/pS28 modification state and therefore we cannot rule out
543 the possibility that a subpopulation has these combined modifications.

544

545 Determining the presence or absence of a particular protein or histone PTM on
546 viral genomes can be a challenge. Here, we decided to characterize the
547 H3K27me2/me3 distribution across the early lytic HSV-1 genome by CUT&RUN using
548 histone antibodies analyzed for their binding specificity (94). Using human genome loci
549 to validate each antibody's DNA yield, we observed a relatively low level of
550 H3K27me2/me3 across the viral genome. However, because of the known
551 heterogeneity in the fate of HSV genomes following infection of fibroblasts (43, 44, 46,
552 95–98), we developed a novel method for quantification of individual HSV genome foci

553 with nuclear proteins. This is particularly important since comparison to host regions
554 following CUT&RUN may obscure the enrichment at sub-populations of HSV genomes.
555 NucSpotA analysis accounts for variability amongst a set of images by thresholding the
556 green signal above a chosen percentage of its maximum intensity. We visually
557 determined an intensity ratio above which co-localization is occurring but found that it is
558 important not to rely on the number's magnitude alone. Appropriate controls, such as a
559 known positive control for co-localization or random placement in the nucleus through
560 channel rotation, helped inform our interpretation of the data. Additionally, statistical
561 analysis of the dataset applies to the whole population of genomes, but the shape of the
562 violin plot (data point density) can be indicative of a sub-population of genomes
563 emerging. This assay was particularly informative in combination with other variables,
564 such as inhibition of H3K27 methylation dynamics and the use of PML knockout cells. In
565 the future, we expect NucSpotA to be a useful tool for the field to analyze viral genome
566 co-localization with nuclear proteins where heterogeneity in the fate of viral genomes
567 can occur.

568

569 Our data suggests that H3K27me2 is deposited and removed from a
570 subpopulation of lytic genomes. The combined data using H3K27 demethylase
571 inhibitors and analyzing H3K27me2 genome co-localization and viral mRNA levels
572 supports a model by which H3K27me2 is repressive to lytic gene expression from a
573 subset of viral genomes and is removed to permit more robust expression. The full
574 spectrum of factors that regulate the deposition of H3K27me2 onto a subset of
575 genomes is not clear. Our data point to differences in the subnuclear positioning of viral

576 genomes and potentially viral transcriptional activity. Additional factors, which need not
577 be mutually exclusive include the cell state, stage in mitosis, diversity in viral genome
578 sequence, amount of infecting virus and responses from neighboring abortively or fully
579 infected cells, which have all been linked to heterogenous outcomes of HSV infection
580 (43, 44, 46, 95–98).

581

582 The H3K27me2 modification is understudied compared to H3K27me3 despite it
583 being a predominant modification on the host genome and also being implicated in the
584 repression of gene expression (19). There are several important implications of this
585 observation. The first would be the mechanisms of targeting of H3K27me2 to the viral
586 genome and investigating whether this is consistent between neurons and non-neuronal
587 cells. The PRC2 complex can be targeted and activated to methylate H3K27 via
588 different mechanisms (19). One model for H3K27me2/me3 involves general targeting to
589 chromatin, potentially via RNA or binding to unmethylated CpG motifs, and inhibition by
590 single-stranded RNA and activating histone PTMs (99–101). Our data showing
591 increased deposition onto the VP16 mutant virus potentially supports these
592 mechanisms, however, we cannot rule out other direct roles of VP16 in inhibiting PRC2
593 recruitment or inhibition. PRC2 can also be recruited following ubiquitination of lysine
594 119 on histone H2A (H2AK119ub) by PRC1 (102, 103). However, this pathway has only
595 been described in pluripotent cells and the protein that links H2AK119ub to PRC2
596 recruitment may not even be present in more differentiated cells (104). Further, it is
597 unknown whether the HSV-1 genome is enriched in H2AK119ub in non-neuronal cells.

598 However, as part of ongoing studies in our lab, we have found enrichment of
599 H2AK119ub on latent viral genomes (Dochnal et al, unpublished).

600

601 Previous studies have found that PML-NBs can promote H3K9me3, but not
602 H3K27me3 (32). Therefore, our data showing that PML-NBs may also limit H3K27me2
603 is consistent with this model. Notably, we previously found that primary neurons are
604 devoid of PML-NBs but can form with type I interferon treatment (66). In addition,
605 targeting of viral genomes to PML-NBs only occurred with type I interferon exposure.
606 Therefore, by combining data from our previous study with our new data in fibroblasts,
607 we can start to assemble a model by which the heterogeneity in the epigenetic structure
608 of the latent genome arises. For those genomes that enter neurons exposed to type I
609 interferon, and likely exposure specifically on the soma (64, 66, 105, 106), would result
610 in association with PML-NBs and H3K9me3 enrichment. For genomes that were not
611 targeted to PML-NB, they would be more likely to become enriched for H3K27me2/me3.
612 However, this model is based on extrapolating our findings here to neurons and
613 therefore requires additional testing using relevant neuronal model systems.

614

615 Our findings that H3K27me2 can be deposited on incoming HSV-1 genomes but
616 not H3K27me3 are consistent with our understanding of *de novo* H3K27me3 dynamics;
617 reintroducing PRC2 activity leads to nucleation of H3K27me3 sites after 12 hours, and
618 propagation across a region at 36 hours (67, 88, 89). However, these previous
619 observations were made in undifferentiated, mouse embryonic cells, and we therefore
620 had to consider that H3K27 methylation dynamics could be faster in the context of

621 infecting a differentiated cell type. The factors that regulate the progression from
622 H3K27me2 to H3K27me3 are not known. In the context of HSV latency establishment,
623 this will be important to understand. A previous study showed that H3K27me3 did not
624 form on latent genomes until 10-14 days post-infection of mice (12). Whether
625 H3K27me2 forms prior to this and plays a role in lytic-gene repression during entry into
626 latency is unknown.

627

628 Given the identified role for PHF20L1 as a repressive H3K27me2 reader, its co-
629 localization with HSV-1 genomes strengthens the evidence for a mechanism by which
630 H3K27me2 represses lytic genes soon after infection of a fibroblast. Hou et al. propose
631 a model whereby PRC2 and NuRD complexes are recruited by PHF20L1 binding to
632 H3K27me2, resulting in transcriptional repression in the context of breast tumorigenesis
633 (70). This model may link H3K27me2 on lytic HSV genomes with the transcriptional
634 repression we observed with H3K27 demethylase inhibition. Interestingly, proteomic
635 studies have shown NuRD complex components associated with both input and
636 replicating HSV-1 genomes (77, 107). This axis would represent a previously
637 undescribed defense mechanism against foreign DNA, and a corresponding pro-viral
638 role for H3K27 demethylation during lytic infection. It also remains to be determined
639 whether PHF20L1 plays a role during the establishment of latency in a neuron, where it
640 could be an important component of the factors regulating cell type-specific
641 transcriptional outcomes of HSV-1 infection.

642

643

644 **Materials and Methods**

645

646 Cells, viruses and drugs

647 Primary human foreskin fibroblast (HFF), U2OS, and Vero cells were all obtained
648 from American Type Culture Collection. Telomerase immortalized retinol pigmented
649 epithelial cells (RPE-T) have been described previously (59). HFF-Ts were generated
650 by telomerase immortalization by lentiviral transduction of HFFs using pLV-hTERT-
651 IRES-hgro (a gift from Tobias Meyer (Addgene plasmid # 85140 ;
652 <http://n2t.net/addgene:85140> ; RRID:Addgene_85140)) (108). HFF, U2OS, HFF-T and
653 RPE-T cells were cultured in Dulbecco modified Eagle Medium High Glucose (DMEM,
654 Gibco 11965-092) supplemented with 10% fetal bovine serum (FBS). RPE-Ts were
655 cultured in the presence of 5 µg/ml of Hygromycin. Vero cells were cultured in DMEM
656 supplemented with 10% Fetalplex (GeminiBio 50-753-2987). 293-LTV cells (Cell
657 Biolabs LTV-100) were cultured in DMEM High Glucose with 10% FBS and 1% MEM
658 NEAA (Gibco 11140-050).

659

660 Herpes simplex virus (HSV-1) strain 17Syn+ was grown on Vero cells infected at
661 an MOI of 0.1 PFU/cell, and cultured at 34°C for 2 days or until cytopathic effect was
662 observed. Heparin sodium (BP2425, Fisher Scientific) in phosphate buffered saline
663 (PBS) was added to flasks to a final concentration of 50µg/ml and incubated at 37°C for
664 4-6 hours, before supernatant collection and centrifugation at 4°C 150 RCF for 10
665 minutes. Supernatant was centrifuged at 20,000 RCF for 1 hour at 4°C, and virus pellet

666 resuspended in 10% glycerol in PBS, then sonicated at amplitude 20% for 20 seconds
667 before aliquoting and storage at -80°C. Stocks of 17Syn+ were titrated on Vero cells.
668 VP16 activation domain mutant (RP5) and rescue (RP5R) HSV-1 stocks were
669 generated by infecting U2OS cells at an MOI of 0.05 PFU/cell. RP5R and RP5 were
670 titrated on U2OS cells as described previously (75). RP5 was propagated and titrated in
671 the presence of hexamethylene bis-acetamide (HMBA) in PBS (Sigma Aldrich 224235-
672 50G) to a final concentration of 3 mM.

673

674 Inhibitors were resuspended in dimethyl sulfoxide (DMSO) and vehicle controls
675 performed with inhibitor-equivalent volumes of DMSO. UNC1999 (Cayman Chemical
676 Company 14621) was used at 1.8µM, and GSK-J4 (Sigma Aldrich SML0701) used at
677 10µM unless otherwise indicated.

678

679 PML nanoblade and knock-out cell production

680 Nanoblades were generated as previously described (109) in 293-LTV cells transfected
681 using jetPRIME (Polyplus 101000027) with plasmids pCMV-VSV-G (a gift from Bob
682 Weinberg Addgene plasmid # 8454 ; <http://n2t.net/addgene:8454> ;
683 RRID:Addgene_8454), BaEVRLess (gifted by Els Verhoeven; constructed with pCMV-
684 VSV-G)(110), p5349 (pBS-CMV-gagpol, a gift from Patrick Salmon (Addgene plasmid #
685 35614 ; <http://n2t.net/addgene:35614> ; RRID:Addgene_35614)), BIC-Gag-Cas9 (a gift
686 from Philippe Mangeot & Théophile Ohlmann & Emiliano Ricci (Addgene plasmid #
687 119942 ; <http://n2t.net/addgene:119942> ; RRID:Addgene_119942)(109) and pBLADE
688 PML (target sequence GCG GGT GTG TCT GCA CCT AGG GG) or pBLADE non-

689 targeted control (target sequence ATC GTT TCC GCT TAA CGG CG) (pBLADE
690 constructs a gift from Chris Boutell, BLADE was a gift from Philippe Mangeot &
691 Théophile Ohlmann & Emiliano Ricci (Addgene plasmid # 134912 ;
692 <http://n2t.net/addgene:134912> ; RRID:Addgene_134912) (109). Cas9 production was
693 quantified by serial dilution as described using Cas9 nuclease (New England BioLabs
694 M0386S). HFF-hTERT cells were transduced with Nanoblades with 8 µg/mL polybrene
695 (Boston BioProducts BM-862M-1) and cultured with 5 ng/ml human fibroblast growth
696 factor (FGF, Gemini Bio-Products 300-113P) throughout clonal selection. Knock-out
697 was verified by immunostaining for PML.

698

699 Production of EdC-labeled virus stocks

700 The EdC-labeling protocol was adapted from previously published procedure (59,
701 60). RPE-Ts were infected with 17Syn+ in 0.2% FBS DMEM at an MOI of 0.001
702 PFU/cell for WT 17Syn+ and RP5R, or 0.5 PFU/cell for RP5 and kept at 33°C. HMBA
703 was included in media at a final concentration of 3mM during EdC-labeling of RP5. EdC
704 (Sigma-Aldrich T511307) pulses diluted in 0.2% FBS DMEM were added at 6-24h, 48h,
705 and 72h post-infection to 1µM final concentrations. At 72 hpi heparin sodium was
706 added, incubated and supernatant was passed through a 0.45 µm PES syringe filter
707 and the supernatant virus harvested as above with the inclusion of an additional two
708 wash steps using DMEM containing 0.2% FBS.

709

710 Virus infections.

711 Cells were plated into 24 well plates 24 h prior to infection. Where specified, cells
712 were pre-treated for 1-2 h prior to infection with inhibitors. Virus was diluted in
713 phosphate-buffered saline (PBS) containing 0.1% glucose and 1% FBS. In all
714 experiments, this represents the 0 h time-point post-infection. After 1 h of adsorption at
715 37°C, cells were washed twice with PBS containing 0.1% glucose and 1% FBS. Cells
716 were overlaid with DMEM containing 1% FBS and incubated at 37°C.

717

718 Primary neuronal cultures

719 Sympathetic neurons from the superior cervical ganglia (SCG) of post-natal day
720 0–2 (P0-P2) CD1 Mice (Charles River Laboratories) were dissected as previously
721 described (79). Rodent handling and husbandry were carried out under animal protocols
722 approved by the Animal Care and Use Committee of the University of Virginia (UVA).
723 Ganglia were briefly kept in Leibovitz's L-15 media with 2.05 mM L-Glutamine before
724 dissociation in Collagenase Type IV (1 mg/mL) followed by Trypsin (2.5 mg/mL) for 20
725 min each at 37°C. Dissociated ganglia were triturated, and approximately 5,000 neurons
726 per well were plated onto rat tail collagen coated glass coverslips. Sympathetic neurons
727 were maintained in CM1 (Neurobasal Medium supplemented with PRIME-XV IS21
728 Neuronal Supplement (Irvine Scientific), 50 ng/mL Mouse NGF 2.5S, 2 mM L-
729 Glutamine, and Primocin). Aphidicolin (3.3 mg/mL) was added to the CM1 for the first 5
730 days post-dissection.

731

732 Establishment of latent HSV-1 infection in primary neurons

733 Neonatal SCGs were infected at postnatal days 6-8 with EdC labelled HSV at an
734 MOI of 7.5 PFU/cell assuming 5,000 cells/well in PBS supplemented with 1% FBS, 4.5
735 g/L glucose and 10 mM Acyclovir (ACV) for 3 hr at 37°C. Post-infection, the inoculum
736 was replaced with CM1 containing 50 mM ACV.

737

738 Click chemistry and immunofluorescence.

739 Cells were plated onto glass coverslips in 24 well plates and infected at the
740 indicated MOIs. Cells were washed twice with cytoskeletal (CSK) buffer (10 mM
741 HEPES, 100 mM NaCl, 300 mM Sucrose, 3 mM MgCl₂, 5 mM EGTA) then
742 simultaneously fixed and permeabilized in 1.8% formaldehyde (methanol-free, Thermo
743 Fisher Scientific 28906) and 0.5% Triton-X100 in CSK for 10 min. Cells were washed
744 three times in PBS and twice in CSK post-fixation. Coverslips were blocked with 3%
745 Bovine Serum Albumin (BSA, Fisher Bioreagents BP1600-100) prior to Click-chemistry
746 followed by immunostaining. EdC-labelled HSV was detected using the Click-iT Plus
747 EdU Alexa Fluor 555 Imaging Kit (Thermo Fisher Scientific C10638) according to the
748 manufacturer's instructions, using a working stock of picoyl azide-Alexa Fluor 555
749 (PCA-AF 555). For immunostaining, samples were incubated overnight with primary
750 antibodies in 3% BSA and washed in PBS three times. Following primary antibody
751 treatment, coverslips were incubated for one hour in Alexa Fluor conjugated secondary
752 antibodies (Invitrogen A-11008). Nuclei were stained with Hoechst 33258 (Life
753 Technologies H3570). Antibodies and their applications are listed in Table S1.

754

755 Image analysis

756 Epifluorescence microscopy images were acquired at 60 \times using an sCMOS
757 charge-coupled device camera (pco.edge) mounted on a Nikon Eclipse Ti Inverted
758 Epifluorescent microscope using NIS-Elements software (Nikon). Individual nuclei were
759 isolated from this field of view and 3D deconvolved using the Landweber method (10
760 iterations) in NIS- Elements software.

761

762 Deconvolved z-stacks processed by NucSpotA, which is part of the Mitogenie
763 suite, using thresholds to isolate positive immunostaining signal (visually determined) as
764 follows: 70.5% (all histone stains) and 65% (PHF20L1) for 17Syn+ infection of HFFs;
765 75% (H3K27me2), 70% (H3K9me3 and PHF20L1) for RP5 infection of HFF-Ts and
766 PML knockout HFF-Ts. Rotation control images were generated from original channel
767 combination images using FIJI, prior to analysis with NucSpotA. The stated co-
768 localization thresholds were blindly calibrated by eye.

769

770 Quantification of viral gene expression

771 Analysis of mRNA expression by reverse-transcription quantitative PCR (RT-
772 qPCR). To analyze HSV mRNA relative expression, total RNA was extracted using the
773 Zymo Research Quick-RNA MiniPrep Kit (R1055) with an on-column DNase digestion.
774 Reverse transcription was carried out on equivalent amounts of RNA using Maxima
775 Maxima First Strand cDNA Synthesis Kit (Thermo Scientific K1642), RiboLock RNase
776 Inhibitor (Thermo Scientific EO0382), Random Hexamer Primer (Thermo Scientific
777 SO142) and dNTP Set (Thermo Scientific R0181), and qPCR was carried out using
778 PowerUp SYBR Green Master Mix (Applied Biosystems A25741). The relative mRNA

779 copy number was determined using the $2^{-\Delta\Delta Ct}$ method and viral mRNAs were normalized
780 to that of the human reference gene mRNA transcript from *ACTG1* (actin gamma 1). All
781 samples were run in duplicate on an Applied Biosystems Quantstudio 6 Flex Real-Time
782 PCR System and analysis carried out using QuantStudio Real-Time PCR Software
783 v1.7. Primer sequences: ICP8 as published (78); TK as published (111); others are
784 listed in Table S2.

785

786

787 Western blotting

788 Confluent HFFs cultured in a 6-well plate were treated with indicated
789 concentrations of GSK-J4 or UNC1999 in 10% FBS DMEM for four days, with a media
790 change including fresh inhibitor on day two. Untreated cells were cultured in parallel.
791 Histones were isolated from inhibitor treated or untreated cells using the histone
792 extraction kit (Active Motif, 40028) and western blots performed. Histone extracts were
793 combined with Li-cor 4X Protein Loading Buffer (928-40004) and resolved on Bio-Rad
794 Mini-PROTEAN TGX 4-20% gel (4561094) in Boston BioProducts Tris-Glycine-SDS
795 Running Buffer (BP-150), and transferred onto an Immobilon-FL PVDF membrane
796 (IPFL00010) using Boston BioProducts Transfer Buffer (BP-190) made to 20% v/v
797 methanol. Membranes were blocked in Odyssey Blocking Buffer (OBB, 10 mM Tris-HCl
798 pH 7.5, 150 mM NaCl, 2% Fish gelatin, 1% Ovoalbumin) for a minimum of 1 hour at
799 room temperature, washed with TBS-T (Research Products International T60075-
800 4000.0 with 0.1% Tween 20, and incubated with primary antibody (diluted in OBB with
801 0.2% Tween 20) overnight at 4°C. Li-cor secondary antibodies (925-32211, 925-68070)

802 were diluted in OBB (with 0.2% Tween 20, 0.02% SDS) and blots imaged on a Li-Cor
803 Odyssey CLX-1374 . Band intensity quantification was performed using Li-Cor Image
804 Studio v5.2. Li-Cor Chameleon Duo Pre-Stained Protein Ladder (928-60000) was used.

805

806 Histone peptide array

807 Peptide synthesis and validation, array fabrication and antibody analysis were
808 performed as described (42, 112–114). Each peptide was spotted in triplicate twice per
809 array. Triplicate spots were averaged and treated as a single value for subsequent
810 statistical analysis as described (115).

811

812 CUT&RUN

813 CUT&RUN was carried out using the Epicypher CUTANA Chic/CUT&RUN Kit
814 and workflow (14-1048). Antibodies used for CUT&RUN are included in Table S1. Dual
815 indexed DNA libraries were prepared using Epicypher CUTANA CUT&RUN Library
816 Prep Kit (14-1001). Pair-ended, partial lane sequencing and de-multiplexing was carried
817 out using NovaSeq (Novogene). Data analysis was performed using command line and
818 R code, and workflow, adapted from the cited tutorial (116). The Rivanna high-
819 performance computing environment (UVA Research Computing) was used for
820 command line data processing.

821

822 The HSV-1 Syn17+ genome sequence (NCBI NC_001806.2) was used in
823 combination with the hg38 human genome assembly (RefSeq GCF_000001405.40) to
824 make a joint Bowtie2 index genome. Sequence alignment was performed with bowtie2

825 with the following settings: `--end-to-end --very-sensitive --no-mixed --no-discordant --`
826 `phred33 -I 10 -X 700`. Separate alignments were performed to spike-in *E. Coli* DNA
827 (MG1655, Genbank U00096.3), from which sequencing depth was calculated and reads
828 normalized accordingly before filtering into separate human and viral bedgraph files.
829 Data quality control and visualization were performed using R. Data are available in the
830 SRA database (PRJNA1047640).

831

832 Viral gene promoter coordinates previously identified for KOS strain (71) were
833 BLAST sequenced against the 17Syn+ genome, and the equivalent region on the
834 17Syn+ genome used to generate viral promoter coordinates. Bedtools Mapbed was
835 used to calculate the sum of scores at each defined promoter region, using normalized
836 bedgraph files as input (promoter coordinates are listed in Table S3). Where a region
837 lacked coverage, resulting in no score in the bedgraph file, a pseudovalue of 0.005 was
838 used to allow fold enrichment calculation. Viral gene body coordinates were defined
839 from the reference sequence NC_001806.2. Human promoters were located using the
840 Eukaryotic Promoter Database (<https://epd.expasy.org>). The ratio between the sums for
841 H3K27me2/3 and IgG was calculated to determine fold enrichment. MACS2 bdgcmp
842 was used to generate linear fold enrichment bedgraph files for visualization, and
843 Integrative Genome Viewer v2.16.1 was used to visualize bedgraph coverage files.

844

845 Acknowledgments

846 This work was supported by The Owens Family Foundation (ARC), National Institutes of
847 Health grants T32GM008136 (SAD and AKF), T32AI007046 (ALW), F32CA260116

848 (JH), MRC awards MC_UU_12014/5 and MC_UU_00034/2 (CB), and American Cancer
849 Society award RSG-21-031-01-DMC (SBR). We thank the following for sharing plasmid
850 constructs: Tobias Meyer (pLV-hTERT-IRES-hgro); Els Verhoeyen (pCMV-VSV-G,
851 BaEVRLess); Philippe Mangeot (pBS-CMV-gagpol, BLADE); and Philippe Mangeot,
852 Théophile Ohlmann, and Emiliano Ricci (BIC-Gag-Cas9). We thank David Knipe
853 (Harvard Medical School) and Steven Trienza (Van Andel Institute) for sharing the
854 RP5 and RP5R viruses and Sarah Dremel (National Cancer Institute) for advice and
855 input on the CUT&RUN analysis.

856

857

858

859

860

861

862

863

864

865

866

867

868

869 **References**

870

871 1. Toth Z, Maglinte DT, Lee SH, Lee H-R, Wong L-Y, Brulois KF, Lee S, Buckley JD, Laird
872 PW, Marquez VE, Jung JU. 2010. Epigenetic analysis of KSHV latent and lytic genomes.
873 PLoS Pathog 6:e1001013.

874 2. Günther T, Grundhoff A. 2010. The epigenetic landscape of latent Kaposi sarcoma-
875 associated herpesvirus genomes. PLoS Pathog 6:e1000935.

876 3. Reeves MB, MacAry PA, Lehner PJ, Sissons JGP, Sinclair JH. 2005. Latency, chromatin
877 remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy
878 carriers. Proc Natl Acad Sci U S A 102:4140–4145.

879 4. Hu M, Depledge DP, Flores Cortes E, Breuer J, Schang LM. 2019. Chromatin dynamics
880 and the transcriptional competence of HSV-1 genomes during lytic infections. PLoS Pathog
881 15:e1008076.

882 5. Sun R, Tan X, Wang X, Wang X, Yang L, Robertson ES, Lan K. 2017. Epigenetic
883 Landscape of Kaposi's Sarcoma-Associated Herpesvirus Genome in Classic Kaposi's
884 Sarcoma Tissues. PLoS Pathog 13:e1006167.

885 6. Knipe DM, Cliffe A. 2008. Chromatin control of herpes simplex virus lytic and latent
886 infection. Nat Rev Microbiol 6:211–221.

887 7. Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F. 2018. Molecular Determinants
888 and the Regulation of Human Cytomegalovirus Latency and Reactivation. Viruses 10.

889 8. Buschle A, Hammerschmidt W. 2020. Epigenetic lifestyle of Epstein-Barr virus. Semin
890 Immunopathol 42:131–142.

891 9. Jha HC, Lu J, Verma SC, Banerjee S, Mehta D, Robertson ES. 2014. Kaposi's sarcoma-
892 associated herpesvirus genome programming during the early stages of primary infection of
893 peripheral blood mononuclear cells. *MBio* 5:e02261-14.

894 10. Toth Z, Brulois K, Lee H-R, Izumiya Y, Tepper C, Kung H-J, Jung JU. 2013. Biphasic
895 euchromatin-to-heterochromatin transition on the KSHV genome following de novo
896 infection. *PLoS Pathog* 9:e1003813.

897 11. Conn KL, Schang LM. 2013. Chromatin dynamics during lytic infection with herpes simplex
898 virus 1. *Viruses* 5:1758–1786.

899 12. Cliffe AR, Coen DM, Knipe DM. 2013. Kinetics of facultative heterochromatin and polycomb
900 group protein association with the herpes simplex viral genome during establishment of
901 latent infection. *MBio* 4:e00590-12.

902 13. Ramasubramanyan S, Osborn K, Flower K, Sinclair AJ. 2012. Dynamic chromatin
903 environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome. *J Virol*
904 86:1809–1819.

905 14. Kobiler O, Afriat A. 2021. The Fate of Incoming HSV-1 Genomes Entering the Nucleus.
906 *Curr Issues Mol Biol* 41:221–266.

907 15. Cliffe AR, Garber DA, Knipe DM. 2009. Transcription of the herpes simplex virus latency-
908 associated transcript promotes the formation of facultative heterochromatin on lytic
909 promoters. *J Virol* 83:8182–8190.

910 16. Abraham CG, Kulesza CA. 2013. Polycomb repressive complex 2 silences human
911 cytomegalovirus transcription in quiescent infection models. *J Virol* 87:13193–13205.

912 17. Saviola AJ, Zimmermann C, Mariani MP, Signorelli SA, Gerrard DL, Boyd JR, Wight DJ,

913 Morissette G, Gravel A, Dubuc I, Flamand L, Kaufer BB, Frietze S. 2019. Chromatin
914 Profiles of Chromosomally Integrated Human Herpesvirus-6A. *Front Microbiol* 10:1408.

915 18. Woellmer A, Arteaga-Salas JM, Hammerschmidt W. 2012. BZLF1 governs CpG-methylated
916 chromatin of Epstein-Barr Virus reversing epigenetic repression. *PLoS Pathog* 8:e1002902.

917 19. Dochnal SA, Francois AK, Cliffe AR. 2021. De Novo Polycomb Recruitment: Lessons from
918 Latent Herpesviruses. *Viruses* 13:1470.

919 20. Whitford AL, Cliffe AR. 2022. Key questions on the epigenetics of herpes simplex virus
920 latency. *PLoS Pathog* 18:e1010587.

921 21. Trojer P, Reinberg D. 2007. Facultative heterochromatin: is there a distinctive molecular
922 signature? *Mol Cell* 28:1–13.

923 22. Kim JJ, Kingston RE. 2022. Context-specific Polycomb mechanisms in development. *Nat
924 Rev Genet* 23:680–695.

925 23. Itzhaki RF. 2021. Overwhelming Evidence for a Major Role for Herpes Simplex Virus Type
926 1 (HSV1) in Alzheimer's Disease (AD); Underwhelming Evidence against. *Vaccines (Basel)*
927 9.

928 24. Jamieson GA, Maitland NJ, Wilcock GK, Craske J, Itzhaki RF. 1991. Latent herpes simplex
929 virus type 1 in normal and Alzheimer's disease brains. *J Med Virol* 33:224–227.

930 25. Yong SJ, Yong MH, Teoh SL, Soga T, Parhar I, Chew J, Lim WL. 2021. The Hippocampal
931 Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer's Disease
932 and Memory Impairment. *Front Cell Neurosci* 15:695738.

933 26. Linard M, Baillet M, Letenneur L, Garrigue I, Catheline G, Dartigues J-F, Peres K, Helmer
934 C. 2021. Herpes simplex virus, early neuroimaging markers and incidence of Alzheimer's

935 disease. *Transl Psychiatry* 11:414.

936 27. Marcocci ME, Napoletani G, Protto V, Kolesova O, Piacentini R, Li Puma DD, Lomonte P,
937 Grassi C, Palamara AT, De Chiara G. 2020. Herpes Simplex Virus-1 in the Brain: The Dark
938 Side of a Sneaky Infection. *Trends Microbiol* 28:808–820.

939 28. Herrera FJ, Triezenberg SJ. 2004. VP16-dependent association of chromatin-modifying
940 coactivators and underrepresentation of histones at immediate-early gene promoters during
941 herpes simplex virus infection. *J Virol* 78:9689–9696.

942 29. Kutluay SB, Triezenberg SJ. 2009. Regulation of histone deposition on the herpes simplex
943 virus type 1 genome during lytic infection. *J Virol* 83:5835–5845.

944 30. Kent JR, Zeng P-Y, Atanasiu D, Gardner J, Fraser NW, Berger SL. 2004. During lytic
945 infection herpes simplex virus type 1 is associated with histones bearing modifications that
946 correlate with active transcription. *J Virol* 78:10178–10186.

947 31. Cliffe AR, Knipe DM. 2008. Herpes simplex virus ICP0 promotes both histone removal and
948 acetylation on viral DNA during lytic infection. *J Virol* 82:12030–12038.

949 32. Cohen C, Corpet A, Roubille S, Maroui MA, Poccardi N, Rousseau A, Kleijwegt C, Binda O,
950 Texier P, Sawtell N, Labetoulle M, Lomonte P. 2018. Promyelocytic leukemia (PML)
951 nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a
952 PML NB/Histone H3.3/H3.3 Chaperone Axis. *PLoS Pathog* 14:e1007313.

953 33. Wang Q-Y, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM. 2005. Herpesviral
954 latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-
955 gene promoters in latent infection. *Proc Natl Acad Sci U S A* 102:16055–16059.

956 34. Kwiatkowski DL, Thompson HW, Bloom DC. 2009. The polycomb group protein Bmi1 binds

957 to the herpes simplex virus 1 latent genome and maintains repressive histone marks during
958 latency. *J Virol* 83:8173–8181.

959 35. Nicoll MP, Hann W, Shivkumar M, Harman LER, Connor V, Coleman HM, Proen a JT,
960 Efstatihou S. 2016. The HSV-1 Latency-Associated Transcript Functions to Repress Latent
961 Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected
962 Neurons. *PLoS Pathog* 12:e1005539.

963 36. Lee JS, Raja P, Knipe DM. 2016. Herpesviral ICP0 Protein Promotes Two Waves of
964 Heterochromatin Removal on an Early Viral Promoter during Lytic Infection. *MBio*
965 7:e02007-15.

966 37. Sodroski CN, Knipe DM. 2023. Nuclear interferon-stimulated gene product maintains
967 heterochromatin on the herpes simplex viral genome to limit lytic infection. *Proc Natl Acad
968 Sci U S A* 120:e2310996120.

969 38. Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM. 2009. Inhibition of the histone
970 demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency.
971 *Nat Med* 15:1312–1317.

972 39. Liang Y, Vogel JL, Arbuckle JH, Rai G, Jadhav A, Simeonov A, Maloney DJ, Kristie TM.
973 2013. Targeting the JMJD2 histone demethylases to epigenetically control herpesvirus
974 infection and reactivation from latency. *Sci Transl Med* 5:167ra5.

975 40. Hill JM, Quenelle DC, Cardin RD, Vogel JL, Clement C, Bravo FJ, Foster TP, Bosch-Marce
976 M, Raja P, Lee JS, Bernstein DI, Krause PR, Knipe DM, Kristie TM. 2014. Inhibition of
977 LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic
978 suppression of viral genomes. *Sci Transl Med* 6:265ra169.

979 41. Oh HS, Bryant KF, Nieland TJF, Mazumder A, Bagul M, Bathe M, Root DE, Knipe DM.

980 2014. A targeted RNA interference screen reveals novel epigenetic factors that regulate
981 herpesviral gene expression. *MBio* 5:e01086-13.

982 42. Rothbart SB, Dickson BM, Raab JR, Grzybowski AT, Krajewski K, Guo AH, Shanle EK,
983 Josefowicz SZ, Fuchs SM, Allis CD, Magnuson TR, Rutherford AJ, Strahl BD. 2015. An
984 Interactive Database for the Assessment of Histone Antibody Specificity. *Mol Cell* 59:502–
985 511.

986 43. Drayman N, Patel P, Vistain L, Tay S. 2019. HSV-1 single cell analysis reveals anti-viral
987 and 382 developmental programs activation in distinct sub-populations. *Elife* 383:566489.

988 44. Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, Praktikno S, Walch-Rückheim B,
989 Bosse J, Rajewsky N, Grässer F, Akalin A, Landthaler M. 2019. Single-cell RNA-
990 sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral
991 program. *Nat Commun* 10:4878.

992 45. Scherer KM, Manton JD, Soh TK, Mascheroni L, Connor V, Crump CM, Kaminski CF.
993 2021. A fluorescent reporter system enables spatiotemporal analysis of host cell
994 modification during herpes simplex virus-1 replication. *J Biol Chem* 296:100236.

995 46. Drayman N, Karin O, Mayo A, Danon T, Shapira L, Rafael D, Zimmer A, Bren A, Kobiler O,
996 Alon U. 2017. Dynamic Proteomics of Herpes Simplex Virus Infection. *MBio* 8.

997 47. Tomer E, Cohen EM, Drayman N, Afriat A, Weitzman MD, Zaritsky A, Kobiler O. 2019.
998 Coalescing replication compartments provide the opportunity for recombination between
999 coinfecting herpesviruses. *FASEB J* 33:9388–9403.

1000 48. Cohen EM, Avital N, Shamay M, Kobiler O. 2020. Abortive herpes simplex virus infection of
1001 nonneuronal cells results in quiescent viral genomes that can reactivate. *Proc Natl Acad Sci
1002 U S A* 117:635–640.

1003 49. Orzalli MH, Conwell SE, Berrios C, DeCaprio JA, Knipe DM. 2013. Nuclear interferon-
1004 inducible protein 16 promotes silencing of herpesviral and transfected DNA. *Proc Natl Acad
1005 Sci U S A* 110:E4492-501.

1006 50. Narayanan A, Ruyechan WT, Kristie TM. 2007. The coactivator host cell factor-1 mediates
1007 Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation
1008 of infection. *Proc Natl Acad Sci U S A* 104:10835–10840.

1009 51. Carraro M, Hendriks IA, Hammond CM, Solis-Mezarino V, Völker-Albert M, Elsborg JD,
1010 Weisser MB, Spanos C, Montoya G, Rappaport J, Imhof A, Nielsen ML, Groth A. 2023.
1011 DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network.
1012 *Mol Cell* 83:1075-1092.e9.

1013 52. Cho S, Park JS, Kang Y-K. 2011. Dual functions of histone-lysine N-methyltransferase
1014 Setdb1 protein at promyelocytic leukemia-nuclear body (PML-NB): maintaining PML-NB
1015 structure and regulating the expression of its associated genes. *J Biol Chem* 286:41115–
1016 41124.

1017 53. Delbarre E, Ivanauskiene K, Küntziger T, Collas P. 2013. DAXX-dependent supply of
1018 soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin. *Genome Res*
1019 23:440–451.

1020 54. Delbarre E, Ivanauskiene K, Spirkoski J, Shah A, Vekterud K, Moskaug JØ, Bøe SO, Wong
1021 LH, Küntziger T, Collas P. 2017. PML protein organizes heterochromatin domains where it
1022 regulates histone H3.3 deposition by ATRX/DAXX. *Genome Res* 27:913–921.

1023 55. Park J, Lee H, Han N, Kwak S, Lee H-T, Kim J-H, Kang K, Youn BH, Yang J-H, Jeong H-J,
1024 Kang J-S, Kim S-Y, Han J-W, Youn H-D, Cho E-J. 2018. Long non-coding RNA ChR01
1025 facilitates ATRX/DAXX-dependent H3.3 deposition for transcription-associated

1026 heterochromatin reorganization. *Nucleic Acids Res* 46:11759–11775.

1027 56. Corpet A, Olbrich T, Gwerder M, Fink D, Stucki M. 2014. Dynamics of histone H3.3
1028 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-
1029 NBs important for pericentromeric heterochromatin organization. *Cell Cycle* 13:249–267.

1030 57. Rapkin LM, Ahmed K, Dulev S, Li R, Kimura H, Ishov AM, Bazett-Jones DP. 2015. The
1031 histone chaperone DAXX maintains the structural organization of heterochromatin domains.
1032 *Epigenetics Chromatin* 8:44.

1033 58. Everett RD. 2013. The spatial organization of DNA virus genomes in the nucleus. *PLoS*
1034 *Pathog* 9:e1003386.

1035 59. McFarlane S, Orr A, Roberts APE, Conn KL, Iliev V, Loney C, da Silva Filipe A, Smollett K,
1036 Gu Q, Robertson N, Adams PD, Rai TS, Boutell C. 2019. The histone chaperone HIRA
1037 promotes the induction of host innate immune defences in response to HSV-1 infection.
1038 *PLoS Pathog* 15:e1007667.

1039 60. Alandijany T, Roberts APE, Conn KL, Loney C, McFarlane S, Orr A, Boutell C. 2018.
1040 Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential
1041 regulation of intracellular host immunity to HSV-1 infection. *PLoS Pathog* 14:e1006769.

1042 61. Everett RD, Murray J, Orr A, Preston CM. 2007. Herpes simplex virus type 1 genomes are
1043 associated with ND10 nuclear substructures in quiescently infected human fibroblasts. *J*
1044 *Virol* 81:10991–11004.

1045 62. Lukashchuk V, Everett RD. 2010. Regulation of ICP0-null mutant herpes simplex virus type
1046 1 infection by ND10 components ATRX and hDaxx. *J Virol* 84:4026–4040.

1047 63. Everett RD, Parada C, Gripon P, Sirma H, Orr A. 2008. Replication of ICP0-null mutant

1048 herpes simplex virus type 1 is restricted by both PML and Sp100. *J Virol* 82:2661–2672.

1049 64. Cuddy SR, Cliffe AR. 2023. The Intersection of Innate Immune Pathways with the Latent
1050 Herpes Simplex Virus Genome. *J Virol* 97:e0135222.

1051 65. Alvarez F, Muñoz F, Schilcher P, Imhof A, Almouzni G, Loyola A. 2011. Sequential
1052 establishment of marks on soluble histones H3 and H4. *J Biol Chem* 286:17714–17721.

1053 66. Suzich JB, Cuddy SR, Baidas H, Dochnal S, Ke E, Schinlever AR, Babbis A, Boutell C,
1054 Cliffe AR. 2021. PML-NB-dependent type I interferon memory results in a restricted form of
1055 HSV latency. *EMBO Rep* 22:e52547.

1056 67. Oksuz O, Narendra V, Lee C-H, Descostes N, LeRoy G, Raviram R, Blumenberg L, Karch
1057 K, Rocha PP, Garcia BA, Skok JA, Reinberg D. 2018. Capturing the Onset of PRC2-
1058 Mediated Repressive Domain Formation. *Mol Cell* 70:1149-1162.e5.

1059 68. Laugesen A, Højfeldt JW, Helin K. 2019. Molecular Mechanisms Directing PRC2
1060 Recruitment and H3K27 Methylation. *Mol Cell* 74:8–18.

1061 69. Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stützer A, Fischle W, Bonaldi T,
1062 Pasini D. 2014. Polycomb-dependent H3K27me1 and H3K27me2 regulate active
1063 transcription and enhancer fidelity. *Mol Cell* 53:49–62.

1064 70. Hou Y, Liu W, Yi X, Yang Y, Su D, Huang W, Yu H, Teng X, Yang Y, Feng W, Zhang T,
1065 Gao J, Zhang K, Qiu R, Wang Y. 2020. PHF20L1 as a H3K27me2 reader coordinates with
1066 transcriptional repressors to promote breast tumorigenesis. *Sci Adv* 6:eaaz0356.

1067 71. Dremel SE, DeLuca NA. 2019. Genome replication affects transcription factor binding
1068 mediating the cascade of herpes simplex virus transcription. *Proc Natl Acad Sci U S A*
1069 116:3734–3739.

1070 72. Lewis HC, Kelnhofer-Millevolte LE, Brinkley MR, Arbach HE, Arnold EA, Sanders S, Bosse
1071 JB, Ramachandran S, Avgousti DC. 2023. HSV-1 exploits host heterochromatin for nuclear
1072 egress. *J Cell Biol* 222:e202304106.

1073 73. Oh J, Fraser NW. 2008. Temporal association of the herpes simplex virus genome with
1074 histone proteins during a lytic infection. *J Virol* 82:3530–3537.

1075 74. Placek BJ, Huang J, Kent JR, Dorsey J, Rice L, Fraser NW, Berger SL. 2009. The histone
1076 variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type
1077 1. *J Virol* 83:1416–1421.

1078 75. Hancock MH, Cliffe AR, Knipe DM, Smiley JR. 2010. Herpes simplex virus VP16, but not
1079 ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral
1080 genomes in U2OS osteosarcoma cells. *J Virol* 84:1366–1375.

1081 76. Packard JE, Dembowski JA. 2021. HSV-1 DNA Replication-Coordinated Regulation by
1082 Viral and Cellular Factors. *Viruses* 13:2015.

1083 77. Dembowski JA, DeLuca NA. 2018. Temporal Viral Genome-Protein Interactions Define
1084 Distinct Stages of Productive Herpesviral Infection. *MBio* 9:01182–01118.

1085 78. Cliffe AR, Arbuckle JH, Vogel JL, Geden MJ, Rothbart SB, Cusack CL, Strahl BD, Kristie
1086 TM, Deshmukh M. 2015. Neuronal Stress Pathway Mediating a Histone Methyl/Phospho
1087 Switch Is Required for Herpes Simplex Virus Reactivation. *Cell Host Microbe* 18:649–658.

1088 79. Cuddy SR, Schinlever AR, Dochnal S, Seegren PV, Suzich J, Kundu P, Downs TK, Farah
1089 M, Desai BN, Boutell C, Cliffe AR. 2020. Neuronal hyperexcitability is a DLK-dependent
1090 trigger of herpes simplex virus reactivation that can be induced by IL-1. *Elife* 9:e58037.

1091 80. Dochnal S, Merchant HY, Schinlever AR, Babnis A, Depledge DP, Wilson AC, Cliffe AR.

1092 2022. DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established
1093 in the Absence of Antivirals. *J Virol* 96:e0050822.

1094 81. Messer HGP, Jacobs D, Dhummakupt A, Bloom DC. 2015. Inhibition of H3K27me3-specific
1095 histone demethylases JMJD3 and UTX blocks reactivation of herpes simplex virus 1 in
1096 trigeminal ganglion neurons. *J Virol* 89:3417–3420.

1097 82. Catez F, Picard C, Held K, Gross S, Rousseau A, Theil D, Sawtell N, Labetoulle M,
1098 Lomonte P. 2012. HSV-1 genome subnuclear positioning and associations with host-cell
1099 PML-NBs and centromeres regulate LAT locus transcription during latency in neurons.
1100 *PLoS Pathog* 8:e1002852.

1101 83. Maroui MA, Callé A, Cohen C, Streichenberger N, Texier P, Takissian J, Rousseau A,
1102 Poccardi N, Welsch J, Corpet A, Schaeffer L, Labetoulle M, Lomonte P. 2016. Latency
1103 Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the
1104 Nuclear Environment. *PLoS Pathog* 12:e1005834.

1105 84. Dunn KW, Kamocka MM, McDonald JH. 2011. A practical guide to evaluating colocalization
1106 in biological microscopy. *Am J Physiol Cell Physiol* 300:C723-42.

1107 85. Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, Macnevin CJ, Liu F, Gao C, Huang X-
1108 P, Kuznetsova E, Rougie M, Jiang A, Pattenden SG, Norris JL, James LI, Roth BL, Brown
1109 PJ, Frye SV, Arrowsmith CH, Hahn KM, Wang GG, Vedadi M, Jin J. 2013. An orally
1110 bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. *ACS Chem*
1111 *Biol* 8:1324–1334.

1112 86. Kruidenier L, Chung C-W, Cheng Z, Liddle J, Che K, Joberty G, Bantscheff M, Bountra C,
1113 Bridges A, Diallo H, Eberhard D, Hutchinson S, Jones E, Katso R, Leveridge M, Mander
1114 PK, Mosley J, Ramirez-Molina C, Rowland P, Schofield CJ, Sheppard RJ, Smith JE,

1115 Swales C, Tanner R, Thomas P, Tumber A, Drewes G, Oppermann U, Patel DJ, Lee K,

1116 Wilson DM. 2012. A selective jumonji H3K27 demethylase inhibitor modulates the

1117 proinflammatory macrophage response. *Nature* 488:404–408.

1118 87. Arbuckle JH, Gardina PJ, Gordon DN, Hickman HD, Yewdell JW, Pierson TC, Myers TG,

1119 Kristie TM. 2017. Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent

1120 Antiviral State and Suppress Infection by Diverse Viral Pathogens. *MBio* 8:e01141-17.

1121 88. Højfeldt JW, Laugesen A, Willumsen BM, Damhofer H, Hedehus L, Tvardovskiy A,

1122 Mohammad F, Jensen ON, Helin K. 2018. Accurate H3K27 methylation can be established

1123 de novo by SUZ12-directed PRC2. *Nat Struct Mol Biol* 25:225–232.

1124 89. Hernández-Romero IA, Valdes VJ. 2022. De Novo Polycomb Recruitment and Repressive

1125 Domain Formation. *Epigenomes* 6:25.

1126 90. Lee H-G, Kahn TG, Simcox A, Schwartz YB, Pirrotta V. 2015. Genome-wide activities of

1127 Polycomb complexes control pervasive transcription. *Genome Res* 25:1170–1181.

1128 91. Kaneko S, Son J, Bonasio R, Shen SS, Reinberg D. 2014. Nascent RNA interaction keeps

1129 PRC2 activity poised and in check. *Genes Dev* 28:1983–1988.

1130 92. Blackledge NP, Klose RJ. 2021. The molecular principles of gene regulation by Polycomb

1131 repressive complexes. *Nat Rev Mol Cell Biol* 22:815–833.

1132 93. Tal-Singer R, Pichyangkura R, Chung E, Lasner TM, Randazzo BP, Trojanowski JQ,

1133 Fraser NW, Triezenberg SJ. 1999. The transcriptional activation domain of VP16 is

1134 required for efficient infection and establishment of latency by HSV-1 in the murine

1135 peripheral and central nervous systems. *Virology* 259:20–33.

1136 94. Meers MP, Bryson TD, Henikoff JG, Henikoff S. 2019. Improved CUT&RUN chromatin

1137 profiling tools. *Elife* 8:e46314.

1138 95. Cohen EM, Kobiler O. 2016. Gene expression correlates with the number of herpes viral
1139 genomes initiating infection in single cells. *PLoS Pathog* 12:e1006082.

1140 96. Renner DW, Szpara ML. 2018. Impacts of genome-wide analyses on our understanding of
1141 human Herpesvirus diversity and evolution. *J Virol* 92.

1142 97. Schmidt N, Hennig T, Serwa RA, Marchetti M, O'Hare P. 2015. Remote activation of host
1143 cell DNA synthesis in uninfected cells signaled by infected cells in advance of virus
1144 transmission. *J Virol* 89:11107–11115.

1145 98. Song B, Sheng X, Justice JL, Lum KK, Metzger PJ, Cook KC, Kostas JC, Cristea IM. 2023.
1146 Intercellular communication within the virus microenvironment affects the susceptibility of
1147 cells to secondary viral infections. *Sci Adv* 9:eadg3433.

1148 99. Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwasian J, Sack R, Hess D,
1149 Li L, Zhou S, Bunker RD, Wirth U, Bouwmeester T, Bauer A, Ly-Hartig N, Zhao K, Chan H,
1150 Gu J, Gut H, Fischle W, Müller J, Thomä NH. 2011. Histone methylation by PRC2 is
1151 inhibited by active chromatin marks. *Mol Cell* 42:330–341.

1152 100. Wang X, Paucek RD, Gooding AR, Brown ZZ, Ge EJ, Muir TW, Cech TR. 2017.
1153 Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. *Nat
1154 Struct Mol Biol* 24:1028–1038.

1155 101. Zhang Q, McKenzie NJ, Warneford-Thomson R, Gail EH, Flanigan SF, Owen BM,
1156 Lauman R, Levina V, Garcia BA, Schittenhelm RB, Bonasio R, Davidovich C. 2019. RNA
1157 exploits an exposed regulatory site to inhibit the enzymatic activity of PRC2. *Nat Struct Mol
1158 Biol* 26:237–247.

1159 102. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP, De Marco
1160 V, Elderkin S, Koseki H, Klose R, Heger A, Brockdorff N. 2014. Targeting polycomb to
1161 pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2
1162 recruitment. *Cell Rep* 7:1456–1470.

1163 103. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, Ito S,
1164 Cooper S, Kondo K, Koseki Y, Ishikura T, Long HK, Sheahan TW, Brockdorff N, Kessler
1165 BM, Koseki H, Klose RJ. 2014. Variant PRC1 complex-dependent H2A ubiquitylation drives
1166 PRC2 recruitment and polycomb domain formation. *Cell* 157:1445–1459.

1167 104. Al-Raawi D, Jones R, Wijesinghe S, Halsall J, Petric M, Roberts S, Hotchin NA, Kanhere
1168 A. 2019. A novel form of JARID2 is required for differentiation in lineage-committed cells.
1169 *EMBO J* 38.

1170 105. Song R, Koyuncu OO, Greco TM, Diner BA, Cristea IM, Enquist LW. 2016. Two Modes
1171 of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion. *MBio* 7:e02145-
1172 15.

1173 106. Salazar S, Luong KTY, Nua T, Koyuncu OO. 2023. Interferon-λ Activates a Differential
1174 Response in Peripheral Neurons That Is Effective against Alpha Herpesvirus Infections.
1175 *Pathogens* 12.

1176 107. Dembowski JA, DeLuca NA. 2015. Selective recruitment of nuclear factors to
1177 productively replicating herpes simplex virus genomes. *PLoS Pathog* 11:e1004939.

1178 108. Hayer A, Shao L, Chung M, Joubert L-M, Yang HW, Tsai F-C, Bisaria A, Betzig E, Meyer
1179 T. 2016. Engulfed cadherin fingers are polarized junctional structures between collectively
1180 migrating endothelial cells. *Nat Cell Biol* 18:1311–1323.

1181 109. Mangeot PE, Risson V, Fusil F, Marnef A, Laurent E, Blin J, Mournetas V, Massouridès

1182 E, Sohier TJM, Corbin A, Aubé F, Teixeira M, Pinset C, Schaeffer L, Legube G, Cosset F-L,
1183 Verhoeven E, Ohlmann T, Ricci EP. 2019. Genome editing in primary cells and in vivo
1184 using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. *Nat Commun*
1185 10:45.

1186 110. Girard-Gagnepain A, Amirache F, Costa C, Lévy C, Frecha C, Fusil F, Nègre D,
1187 Lavillette D, Cosset F-L, Verhoeven E. 2014. Baboon envelope pseudotyped LVs
1188 outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs.
1189 *Blood* 124:1221–1231.

1190 111. Lee S, Ives AM, Bertke AS. 2015. Herpes Simplex Virus 1 Reactivates from Autonomic
1191 Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular
1192 Disease. *J Virol* 89:8383–8391.

1193 112. Rothbart SB, Krajewski K, Strahl BD, Fuchs SM. 2012. Peptide microarrays to
1194 interrogate the “histone code.” *Methods Enzymol* 512:107–135.

1195 113. Fuchs SM, Krajewski K, Baker RW, Miller VL, Strahl BD. 2011. Influence of
1196 combinatorial histone modifications on antibody and effector protein recognition. *Curr Biol*
1197 21:53–58.

1198 114. Cornett EM, Dickson BM, Rothbart SB. 2017. Analysis of histone antibody specificity
1199 with peptide microarrays. *J Vis Exp* <https://doi.org/10.3791/55912>.

1200 115. Dickson BM, Cornett EM, Ramjan Z, Rothbart SB. 2016. ArrayNinja: An open source
1201 platform for unified planning and analysis of microarray experiments. *Methods Enzymol*
1202 574:53–77.

1203 116. Zheng Y, Ahmad K, Henikoff S. 2020. CUT&Tag data processing and analysis tutorial
1204 v1.

1206 Figure 1. CUT&RUN during early infection shows little H3K27me3 enrichment on lytic
1207 HSV-1 chromatin.

1208 HFFs were infected at MOI 3 PFU/cell untreated or treated with 10 μ M GSK-J4. Cells
1209 were processed for CUT&RUN, and fragments sequenced and aligned to both human
1210 and viral genomes. The sum of coverage at defined promoter regions was used to
1211 calculate fold enrichment of H3K27me3 over IgG. The geometric mean of the fold
1212 enrichment is plotted as a heat map scaled to host gene *Myt1* (N=2).

1213

1214 Figure 2. Image analysis using NucSpotA to quantify co-localization between viral
1215 genomes and an immunostained target.

1216 (A) The workflow used for a batch of images of individual infected nuclei using
1217 NucSpotA. An RGB image is thresholded to define the nucleus (blue channel), then viral
1218 genomes (red channel) and positive immunostain signal (green channel) within the
1219 nucleus. Representative images show a histone immunostain (H3K27me3). Mean
1220 intensity of the immunostain at each viral genome and across the nucleus is measured,
1221 and used to calculate an intensity ratio. (B) Rotation of the red channel relative to blue
1222 and green channels is used to generate pairs of original and rotated images. Rotation
1223 functions as random placement of viral genomes within the nucleus. Image pairs are
1224 processed in parallel.

1225

1226 Figure 3. Incoming HSV-1 genomes do not co-localize with H3K27me3 during early lytic
1227 infection.

1228 HFFs were infected at an MOI of 3 PFU/cell with HSV^{EdC}, fixed at different times post-
1229 infection and processed for click chemistry and immunostaining against H3K27me3. (A)
1230 Representative images of HFF nuclei 1, 2 and 4 hours post-infection, and zoomed
1231 image of individual viral genomes. NucSpotA intensity ratios are superimposed on each
1232 viral genome's single channel image, with arrows for reference in the same spot in each
1233 channel. (B) NucSpotA quantification of image sets represented in A. Significance
1234 shown is based on the Kruskal-Wallis test. Each data point represents one viral
1235 genome. (C) Rotation analysis of co-localization with H3 at each time point as outlined
1236 in Figure 2. Paired analysis was performed for each genome (Wilcoxon test). (D)
1237 Rotation analysis for H3K27me3 intensity compared to those expected by chance
1238 (paired Wilcoxon test). Data shown in C and D were generated from the same original
1239 images quantified in B. (E) A representative image showing the nucleus of a latently
1240 infected neuron, within which a viral genome is co-localized with H3K27me3. (F)
1241 Rotation analysis of H3K27me3 co-localization with latent HSV genomes in neurons
1242 (paired Wilcoxon test). Percentages indicate the proportion of genomes with NucSpotA
1243 intensity ratios above the denoted co-localization threshold (dashed line). Adjusted p-
1244 values: **=<0.002, ****=<0.0001. N≥3.

1245

1246 Figure 4. Inhibition of H3K27me3 dynamics does not impact H3K27me3 co-localization
1247 with lytic genomes.

1248 HFFs were infected with HSV^{EdC} following pre-treatment with inhibitor or vehicle control,
1249 maintaining treatment the throughout infection. (A) Colocalization of viral genomes with
1250 H3K27me3 at 2 hpi, treated with vehicle control or UNC1999. (B) Co-localization of viral

1251 genomes with H3K27me3 by 4 hpi, treated with vehicle control or GSK-J4 (10 μ M).

1252 Percentages represent genomes with co-localization above the threshold of 1.5.

1253 Kolmogorov-Smirnov tests, N \geq 3.

1254

1255 Figure 5. Inhibition of H3K27 demethylase activity restricts lytic gene expression, but
1256 inhibition of H3K27 methylation does not impact lytic gene transcription.

1257 HFFs pre-treated with inhibitor or vehicle control were infected at MOI 3 PFU/cell,

1258 maintaining treatment throughout infection. RNA lysate was harvested, cDNA

1259 synthesized and transcript levels determined by RT-qPCR. Fold expression change is

1260 relative to cellular g-actin transcript levels. (A) Relative levels of IE transcript ICP27, (B)

1261 and E transcript ICP8, in cells treated with vehicle control or UNC1999 (1.8 μ M). (C)

1262 Transcription of all three lytic gene classes (immediate early (IE), early (E) and late (L),

1263 as indicated) 2 hpi, vehicle control-treated or treated with GSK-J4 (10 μ M). (D)

1264 Transcription representative viral lytic genes 5 hpi. N N \geq 3; biological repetitions shown.

1265 Mann-Whitney test, adjusted p-values: * $=<0.05$, *** $=<0.0005$.

1266

1267 Figure 6. A sub-population of viral genomes co-localizes with H3K27me2 when H3K27
1268 demethylation is inhibited.

1269 A) Representative images of HFF nuclei infected with HSV^{EdC} at 1, 2 and 4 hpi (Active

1270 Motif 39245 antibody). Intensity ratios are superimposed on each viral genome's single

1271 channel image. (B) H3K27me2 compared to H3 co-localization with lytic genomes. (C)

1272 Rotation analysis for H3K27me2 images to compare actual co-localization to that

1273 expected by chance 1, 2 and 4 hpi. (D) Representative images of H3K27me2 co-

1274 localization with viral genomes in cells pre-treated and continuously treated with
1275 demethylase inhibitor GSK-J4 (10 μ M). (E) H3K27me2 co-localization with lytic genomes
1276 2 hpi with vehicle control or UNC1999 treatment (1.8 μ M). (F) H3K27me2 co-localization
1277 with lytic genomes 4 hpi with vehicle control or GSK-J4 treatment (10 μ M). (G) Individual
1278 experimental replicates for GSK-J4 treated and vehicle control cells, including data
1279 included in F and two more data points with a different H3K27me2 antibody (Active
1280 motif 61435).

1281

1282 Figure 7. Bulk-level analysis of viral chromatin by CUT&RUN shows modest H3K27me2
1283 enrichment at viral promoters, and less across gene bodies, during lytic infection. HFFs
1284 infected at MOI 3 PFU/cell, untreated or treated with 10 μ M GSK-J4, 2 and 4 hpi. The
1285 sum of coverage at defined promoter regions was used to calculate fold enrichment of
1286 H3K27me2 over IgG. (A) The geometric mean of two replicates' fold enrichment is
1287 plotted as a heat map scaled to host gene *SERPINA1*. (B) The geometric mean of two
1288 replicates' fold enrichment at viral promoters and gene bodies, scaled to viral
1289 enrichment only. CUT&RUN and downstream processing was carried out in parallel for
1290 two independent infections (N=2).

1291

1292 Figure 8 . Transcriptionally repressed viral genome association with H3K27me2 is
1293 favored in the absence of PML expression.
1294 A) HFFs were infected at an MOI of 3 PFU/cell with either VP16 activation domain
1295 mutant RP5, or its rescue RP5R. Relative *ICP27* mRNA expression for RP5 infected
1296 cells, in comparison with RP5R-infected cells 2 and 5 hpi (multiple Mann-Whitney tests).

1297 Data are from 3 independent infections of 2-3 wells in parallel. (B) A representative
1298 image showing EdC-labeled RP5 genomes in an HFF nucleus 2 hpi. (C) H3K27me2 co-
1299 localization with RP5 genomes 2 hpi as determined using image rotation analysis
1300 (paired Wilcoxon test). (D) Confirmation of nanoblade-mediated PML knock-out,
1301 comparing wild-type and knock-out HFF-Ts immunostained for PML. Cells were clonally
1302 selected following nanoblade treatment. Panels in grayscale are zoomed in views of
1303 individual nuclei outlined in the left image. (E) H3K9me3 and H3K27me2 co-localization
1304 with RP5 genomes 2 hpi in the absence of PML, co-localization in PML-expressing cells
1305 compared with PML knock-out cells (Kolmogorov-Smirnov tests). Percentages indicate
1306 the proportion of genomes with NucSpotA intensity ratios above the denoted co-
1307 localization threshold (dashed line) in C and E. Data are from 3+ independent infections.
1308 Active Motif 39245 antibody was used for H3K27me2 immunostaining. Adjusted p-
1309 values: *=<0.05, ***=<0.0005., ****=<0.0001.

1310

1311 Figure 9. H3K27me2 reader PHF20L1 co-localizes with a sub-population of lytic
1312 genomes, including transcriptionally repressed genomes in the absence of PML
1313 expression.

1314 A) Representative images of HFFs infected with HSV^{EdC} immunostained for PHF20L1 in
1315 both control and GSK-J4 (10µM) treated conditions 4 hpi. Cells were pre-treated for 2
1316 hours before infection at an MOI of 3 PFU/cell, and treatment maintained throughout
1317 infection. (B) Quantification of images represented in A, showing NucSpotA intensity
1318 ratios for PHF20L1 co-localization (Kolmogorov-Smirnov test) in vehicle control or GSK-
1319 J4-treated (10µM) cells. (C) Representative images showing PHF20L1 co-localization

1320 with transcriptionally inactive RP5 genomes in the absence of PML expression 4 hpi.
1321 PML knock-out HFF-Ts were infected with EdC-labeled RP5 to approximately 3
1322 genomes per nucleus. (D) Quantification of RP5 co-localization with PHF20L1 in PML
1323 knock-out HFF-Ts 4 hpi. Intensity ratios are superimposed on each viral genome's
1324 single channel image in A and C. Percentages indicate the proportion of genomes with
1325 NucSpotA intensity ratios above the denoted co-localization threshold (dashed line).

1326

1327

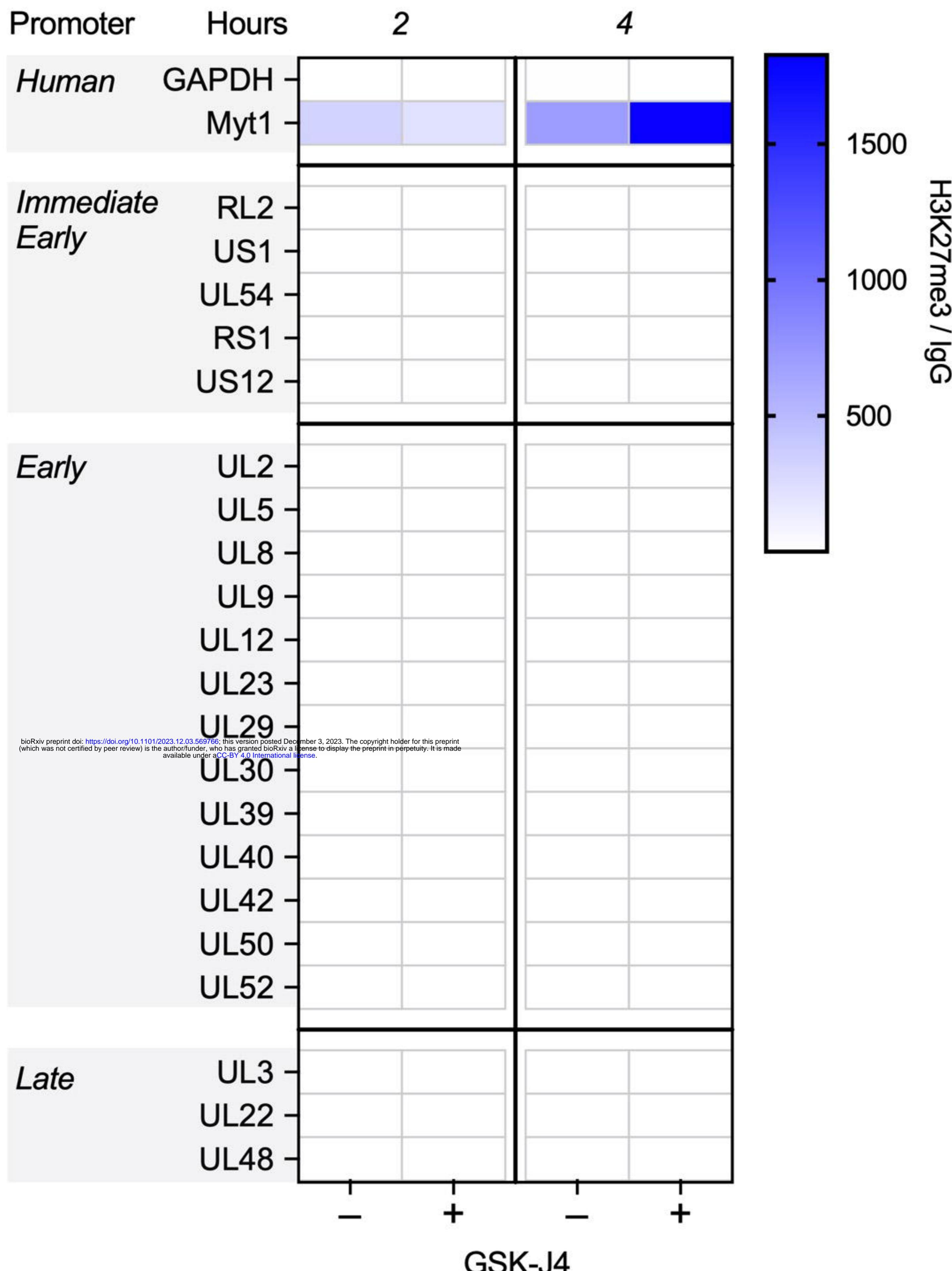
1328 Figure S1 Histone peptide binding arrays for H3K27me3 and H3K27me2 antibodies
1329 show variable target specificity and non-specific binding affinities. Scatter plots of two
1330 binding array data sets from the same antibody sample, one dataset on each axis.
1331 Labels are bolded where the target residue is included. Other notable non-specific
1332 binding partners are also labeled.

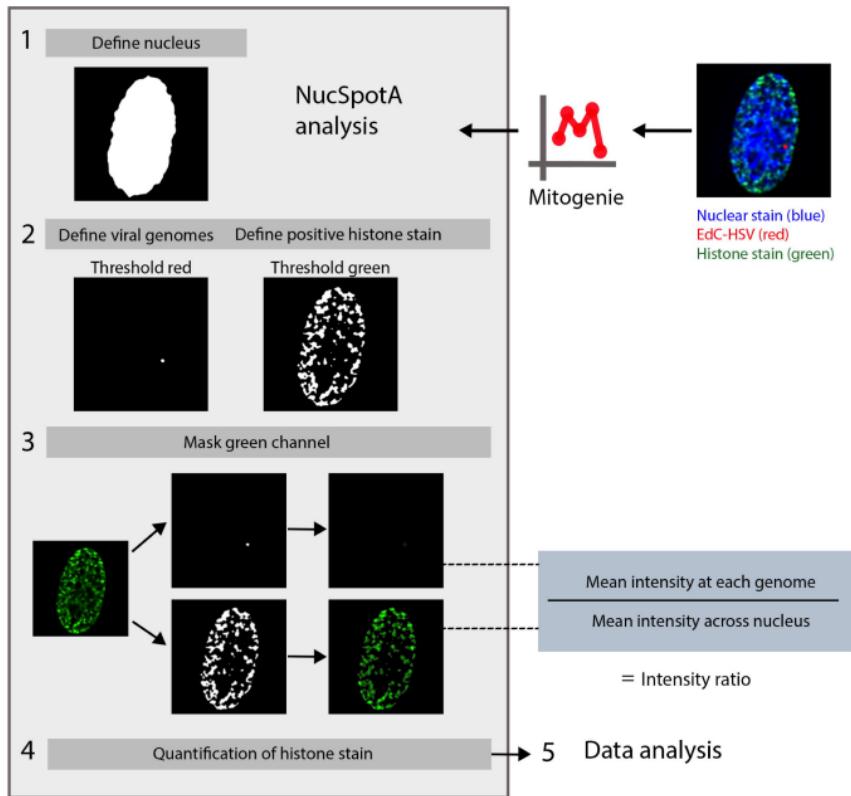
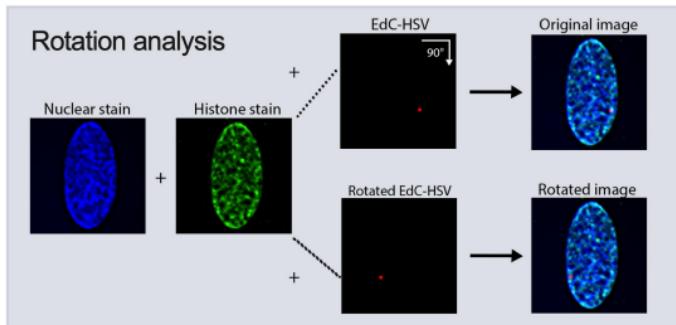
1333

1334 Figure S2 Validation of inhibitor activity and lack of interferon stimulated gene induction.
1335 (A) HFFs were treated with UNC1999 at indicated concentrations for 4 days, with fresh
1336 inhibitor added once on day 2. The cumulative effect of UNC1999 on cellular chromatin
1337 was assessed from histone extracts blotted for H3K27me3. Li-Cor band quantification is
1338 normalized to total H3 bands, relative to untreated cells. (B) Cumulative effects of
1339 treatment with GSK-J4 for four days on cellular chromatin, assessed by blotting histone
1340 extracts for both H3K27me3 and H3K9me3. Li-Cor band quantification in A and B was
1341 normalized to total H3 bands, relative to untreated cells. (C) IL-6 expression measured

1342 by RT-qPCR of cDNA made from HFFs treated with indicated concentrations of
1343 UNC1999 for 5 hours.

1344


1345 Figure S3 The H3K27me2 antibody initially used in our experiments shows evidence of
1346 non-specific binding to the viral genome. (A) Comparison of co-localization with
1347 H3K27me2 immunostained with two different antibodies at 4 hpi (Kolmogorov-Smirnov
1348 test.) Adjusted p-value *=<0.05. (B) 17Syn+ genome coverage from HFFs 1 hpi, from a
1349 single replicate of CUT&RUN with control IgG and H3K27me2 antibodies (Diagenode
1350 C15410046-10).



1351

1352

1353

H3K27me3 Enrichment at Human and Viral Promoters

A**B****Figure 2**

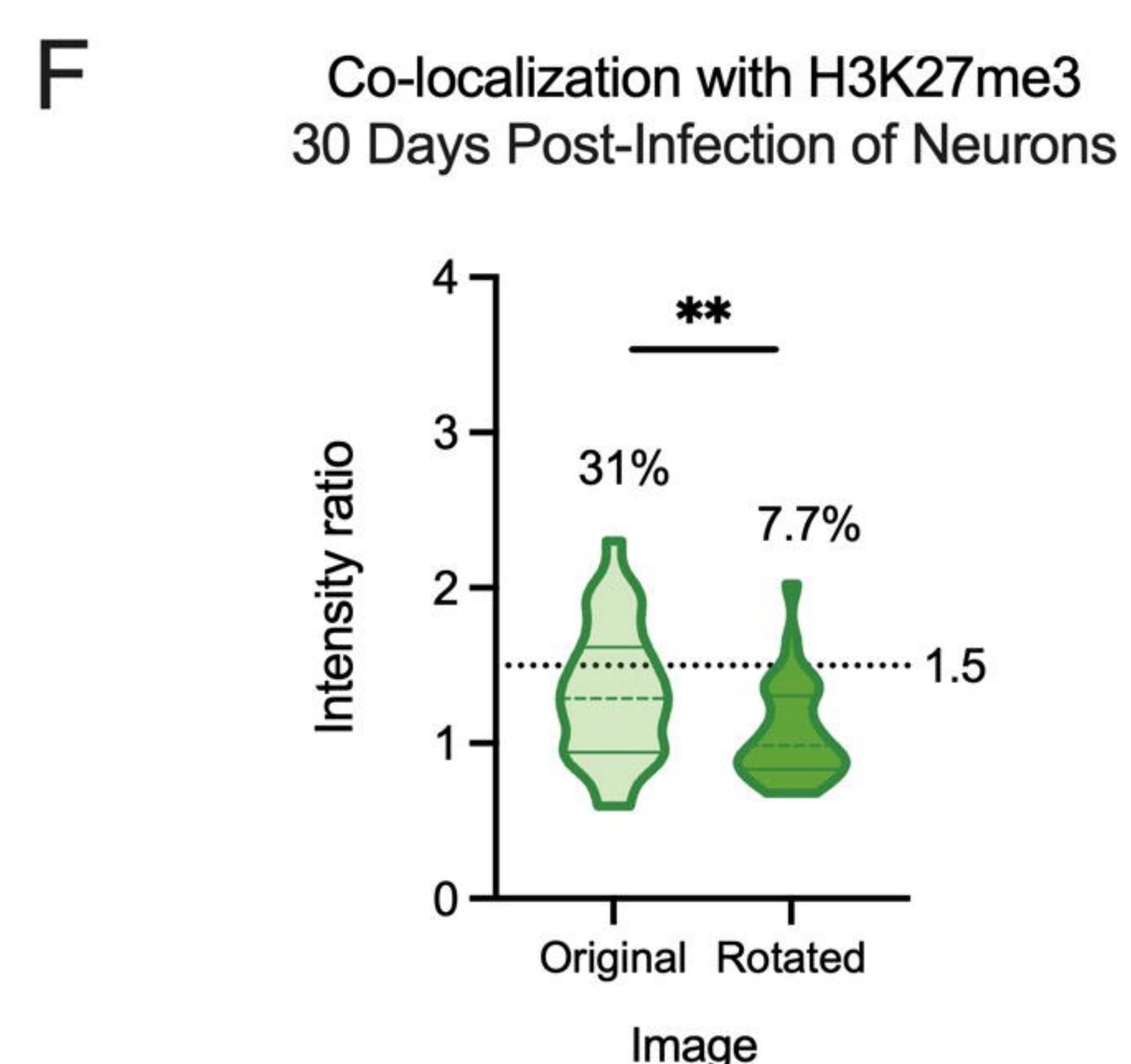
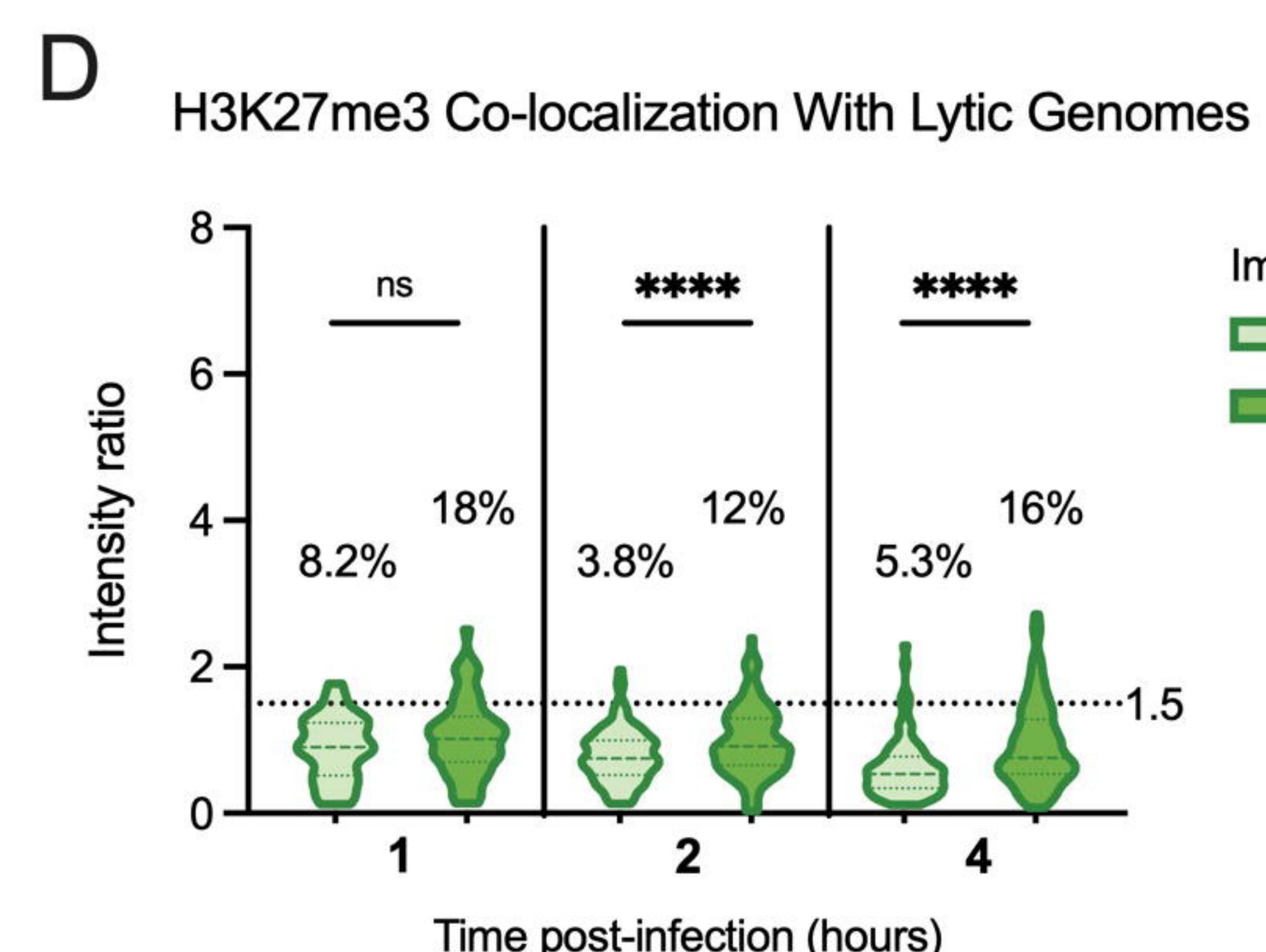
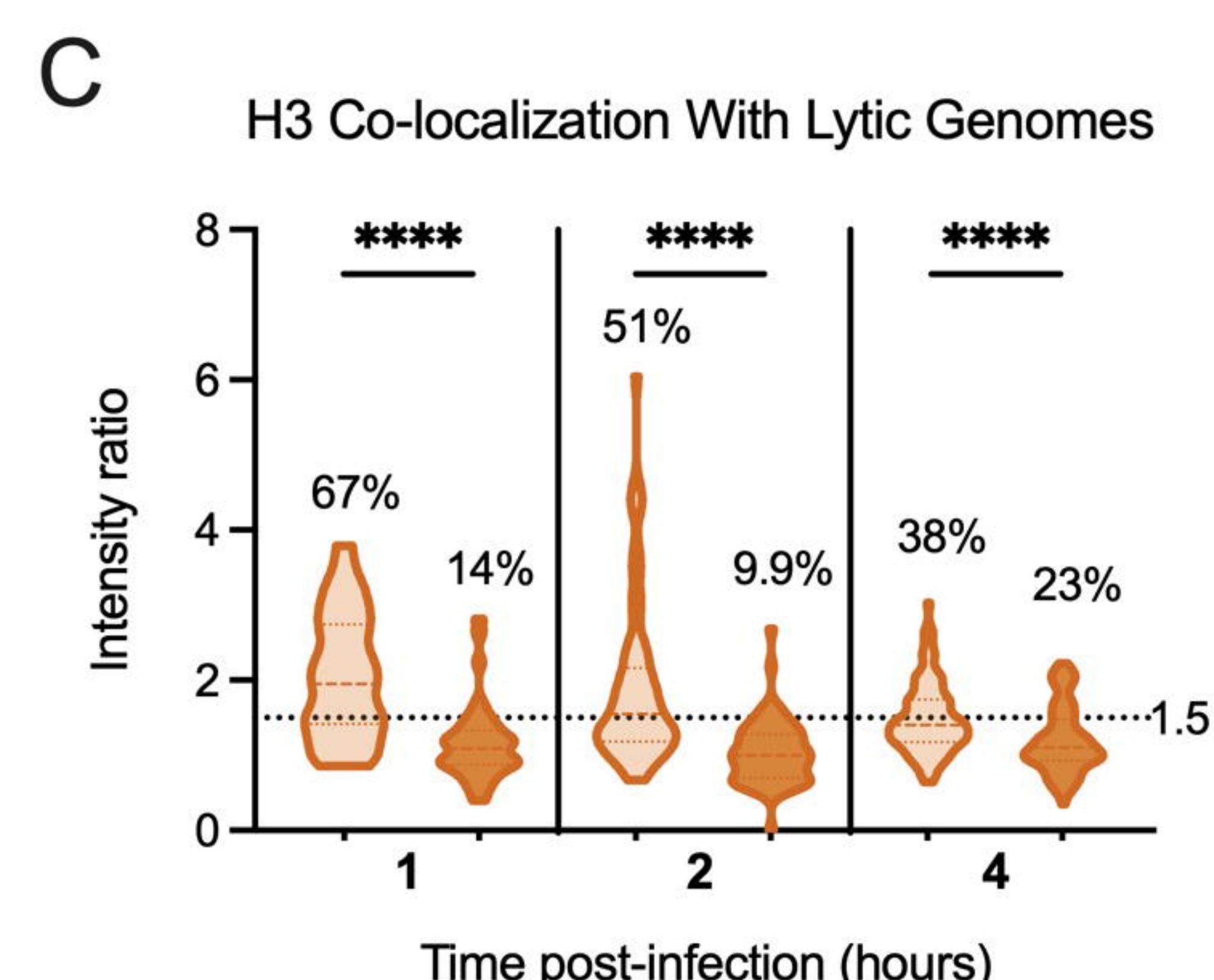
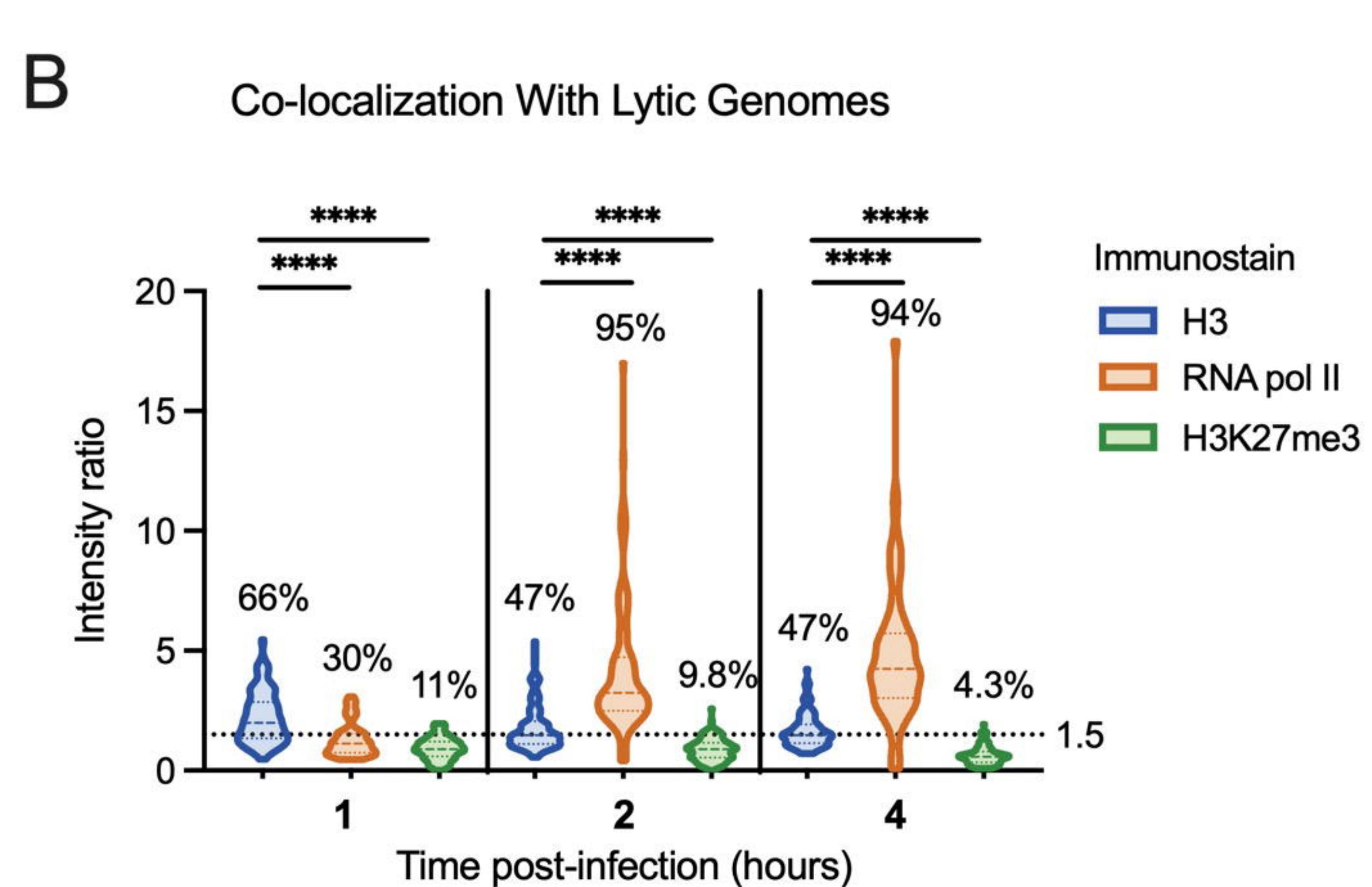
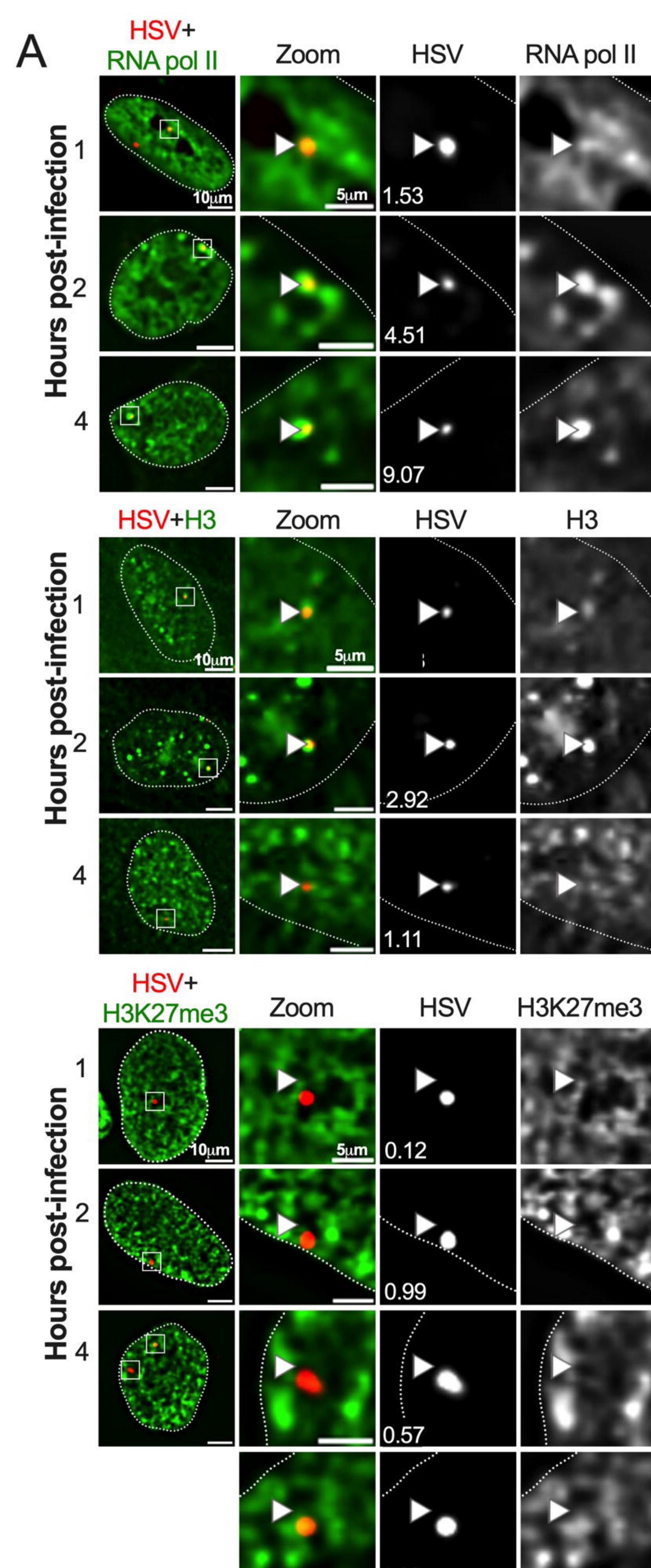






Figure 3

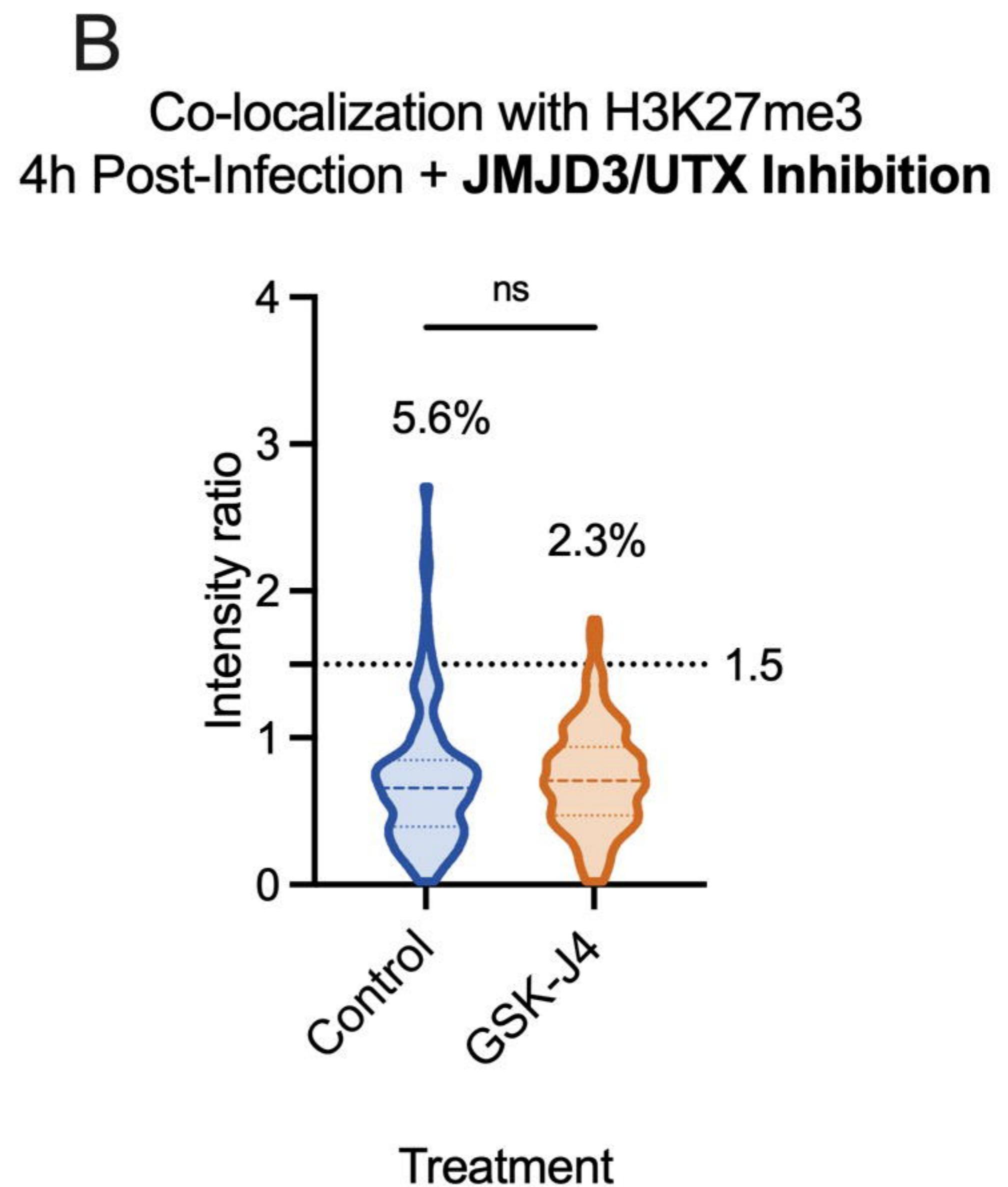
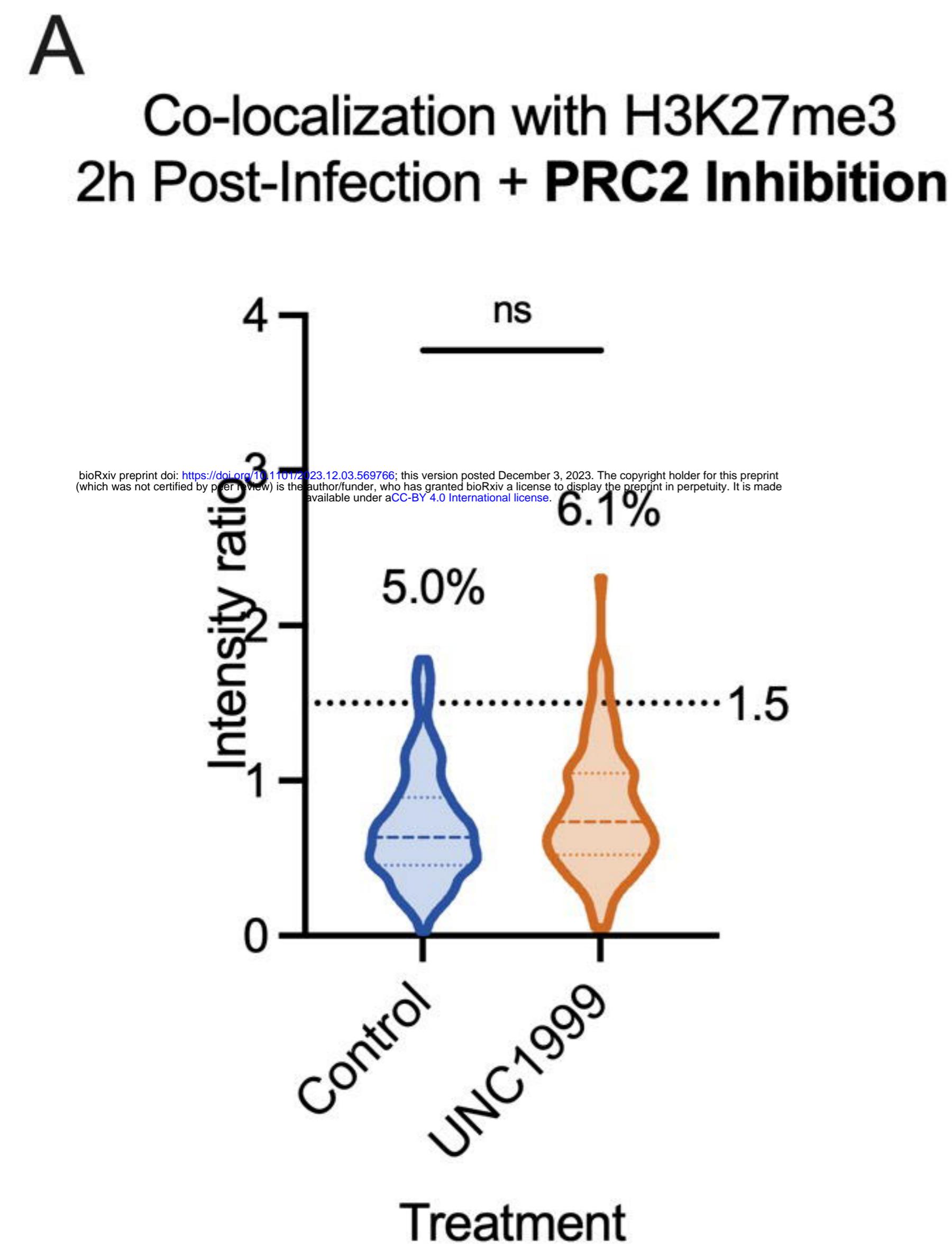
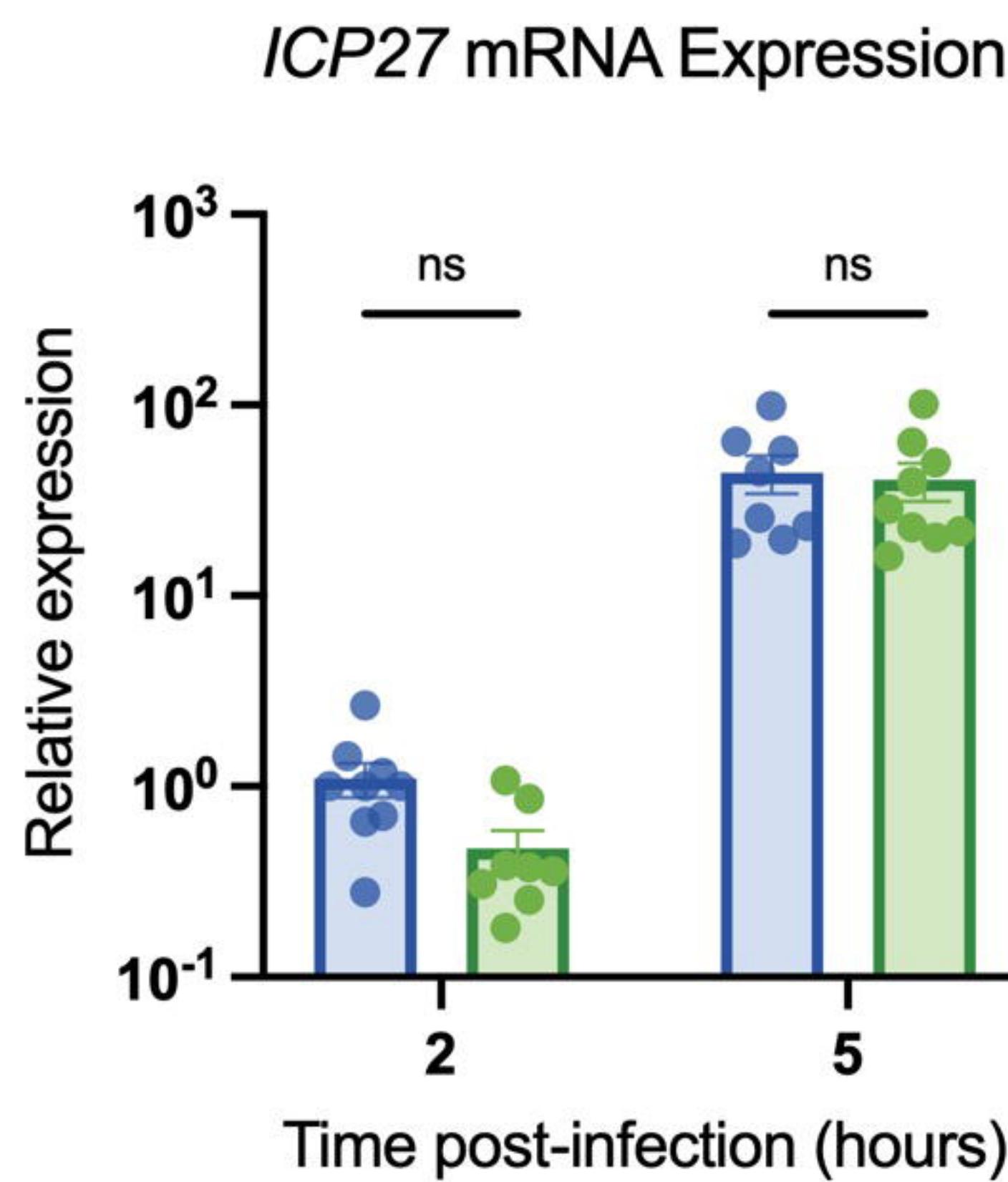
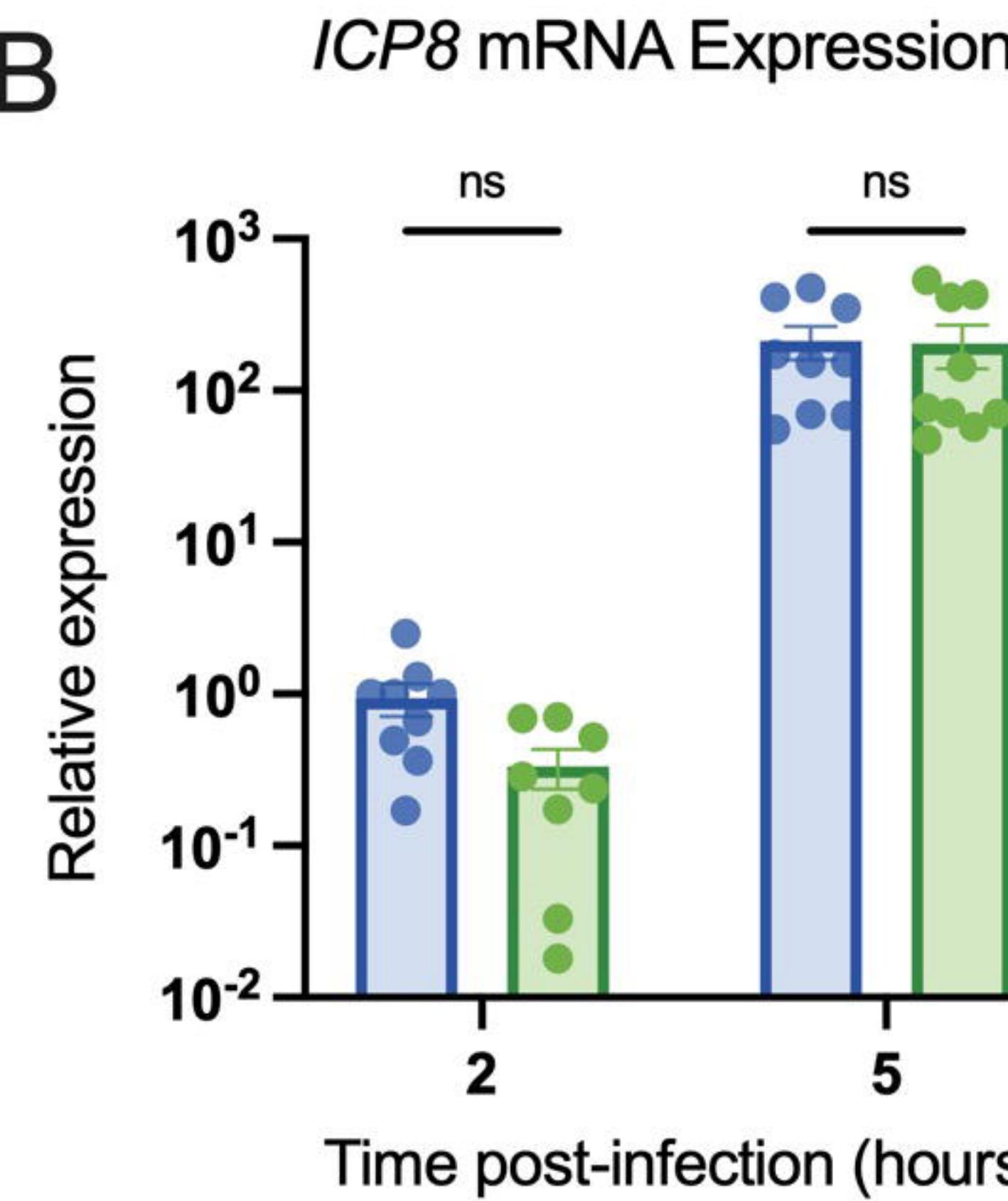
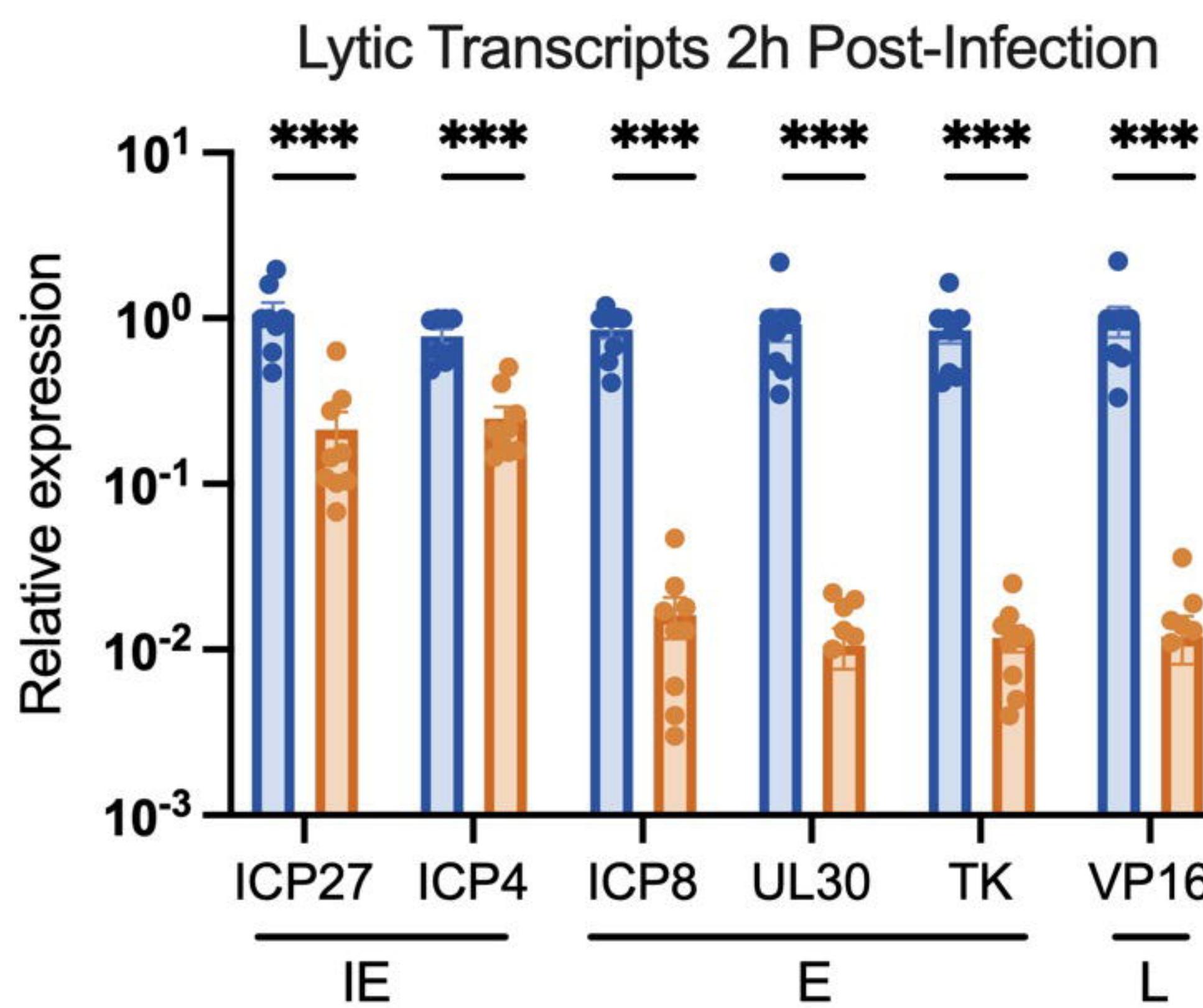





Figure 4

A



B

C

bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.03.569766>; this version posted December 3, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

D

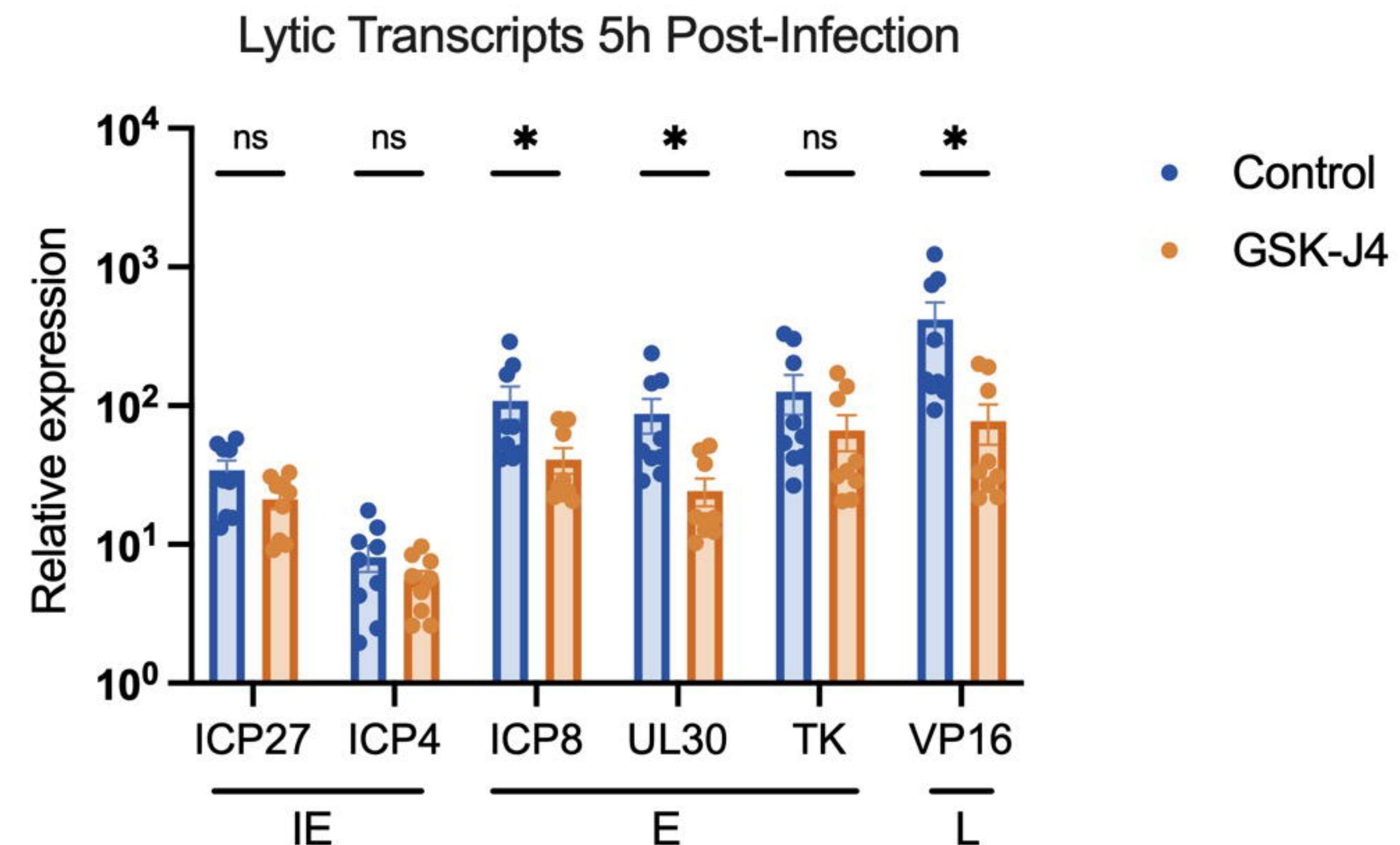


Figure 5

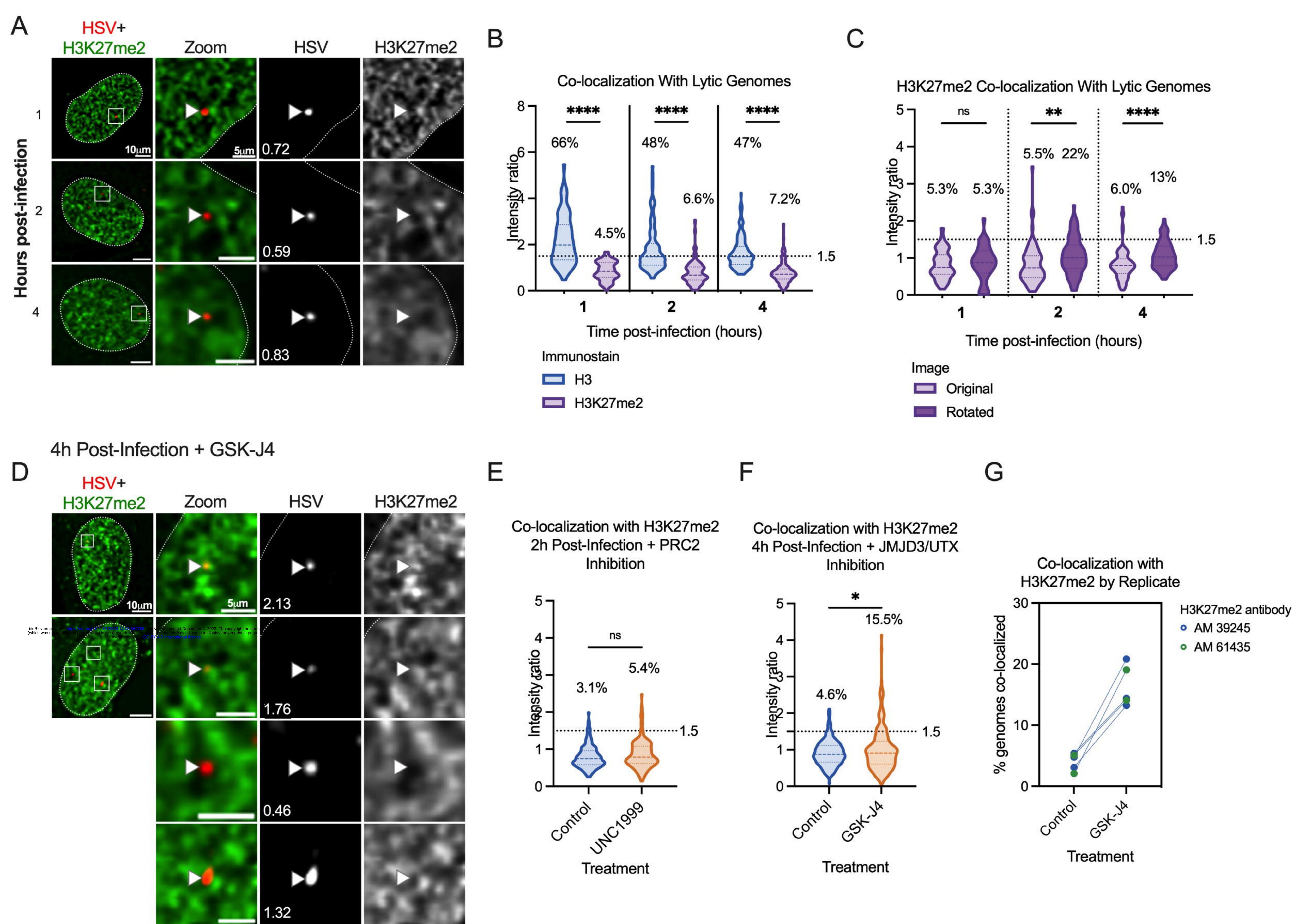
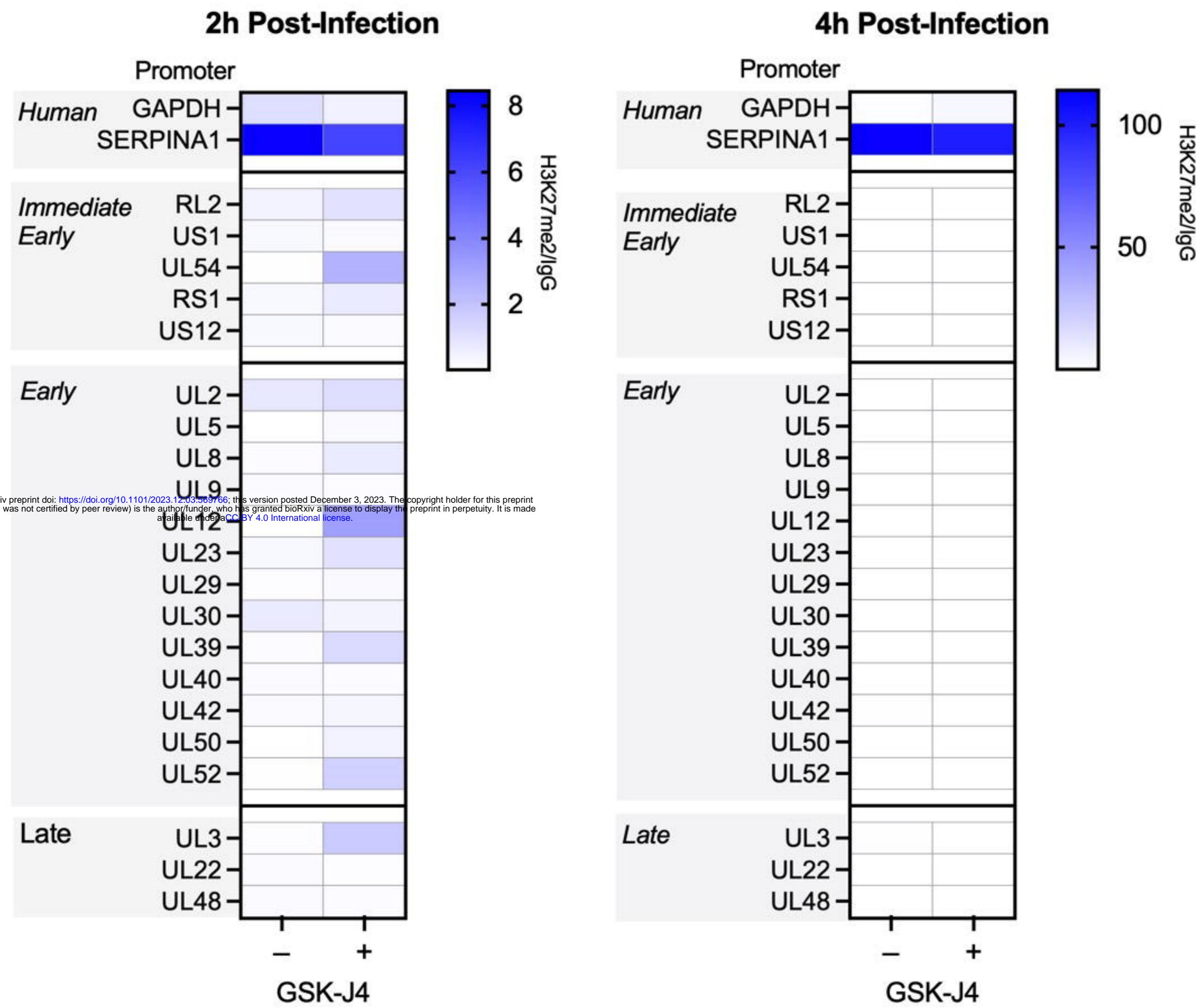
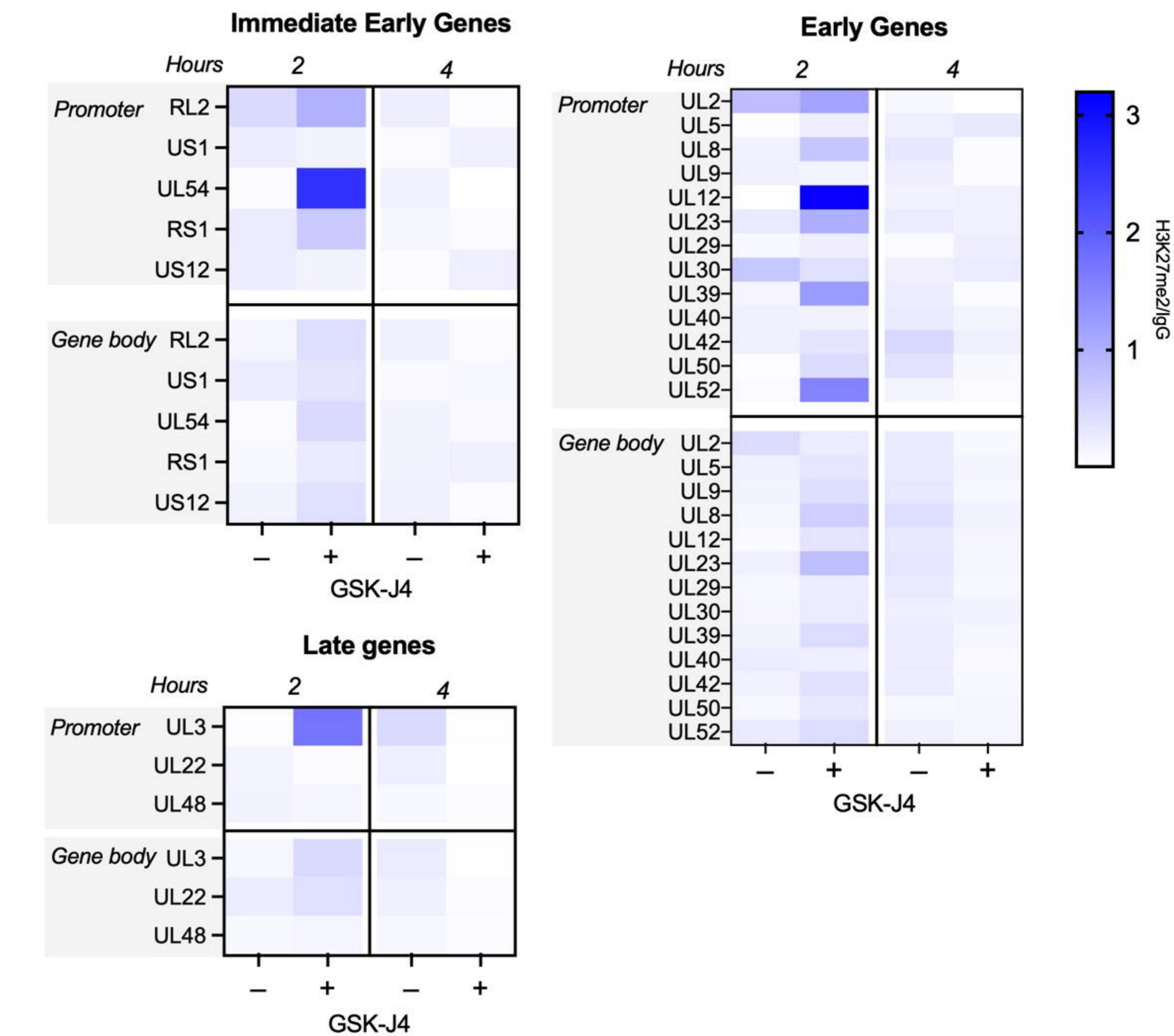
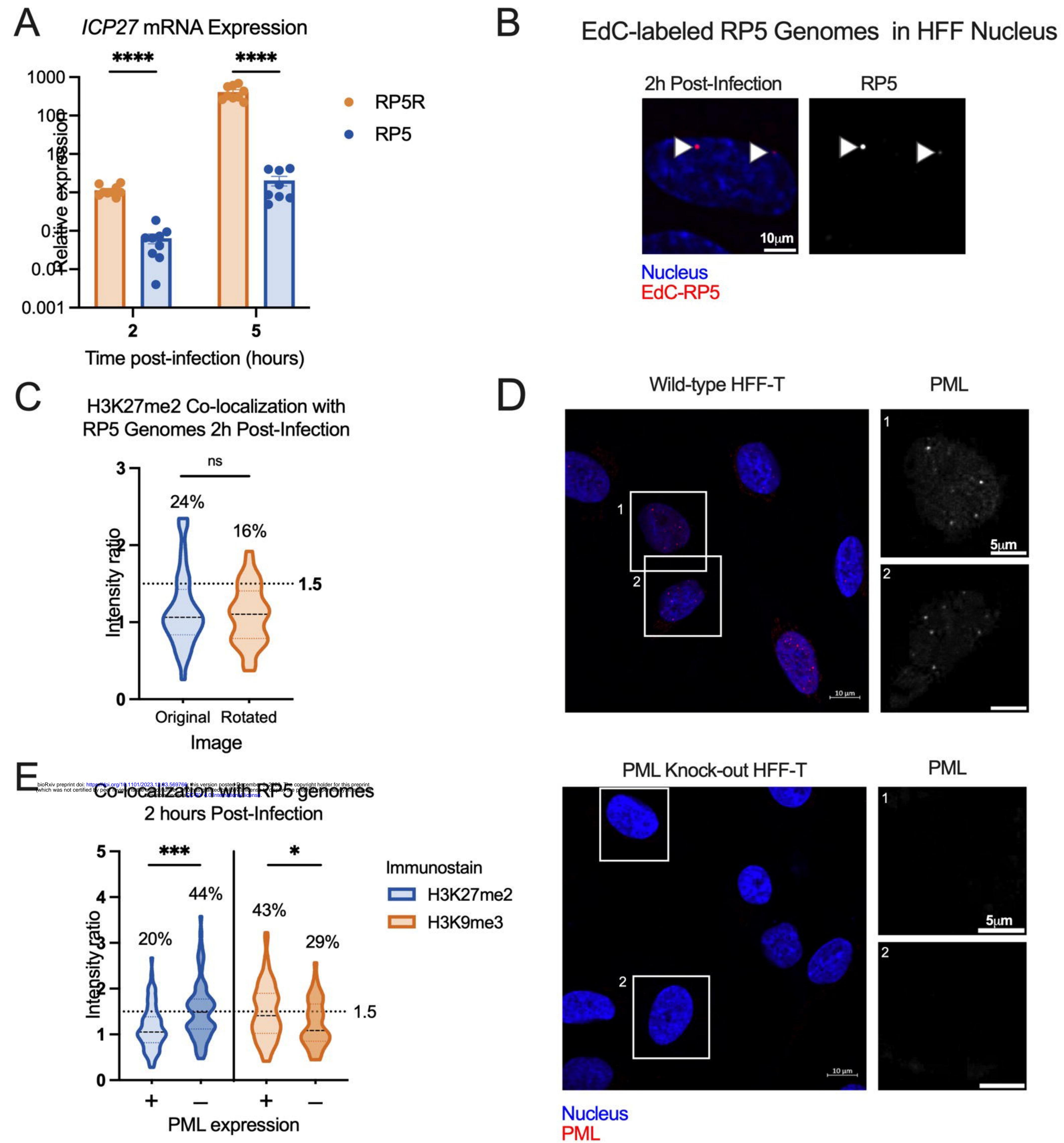
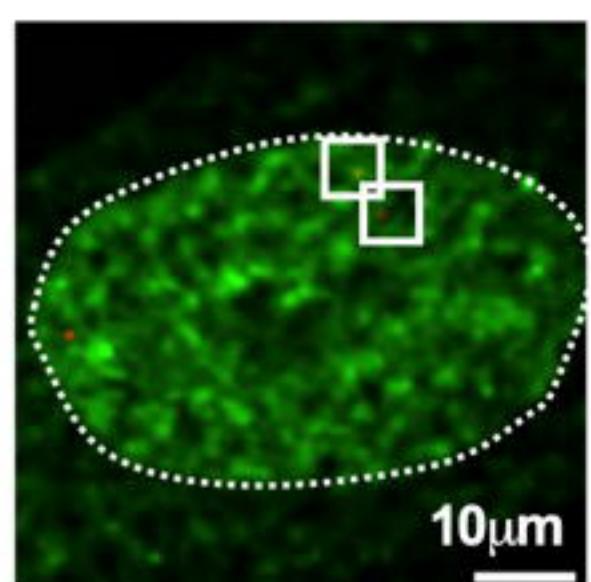
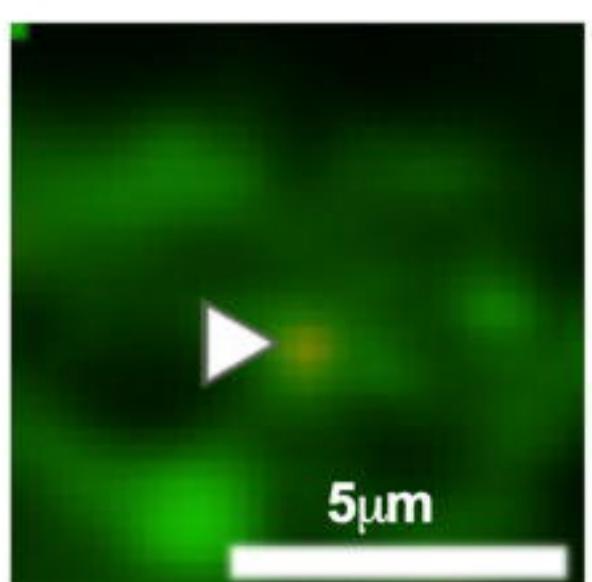
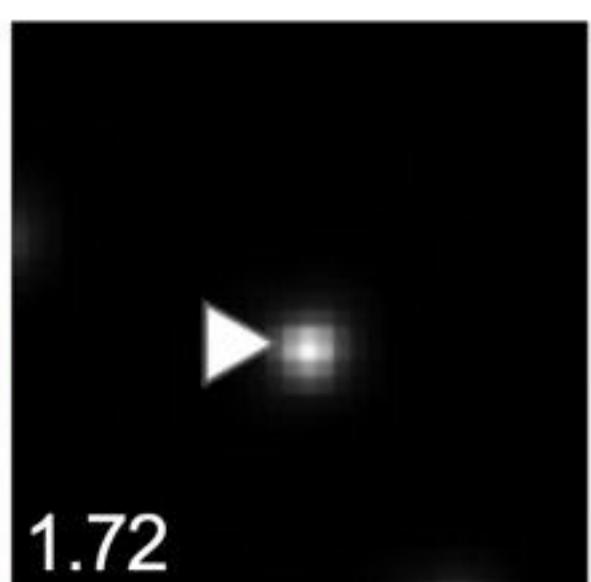
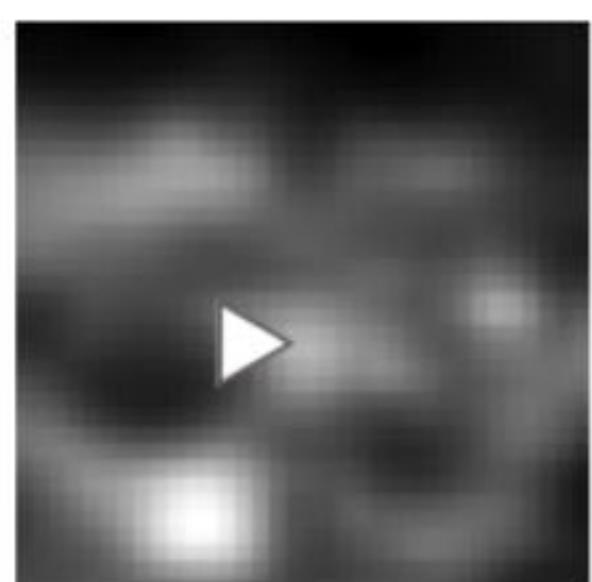
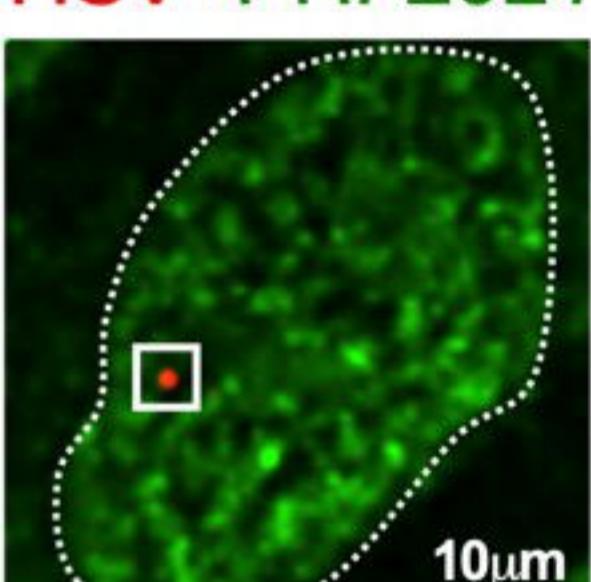
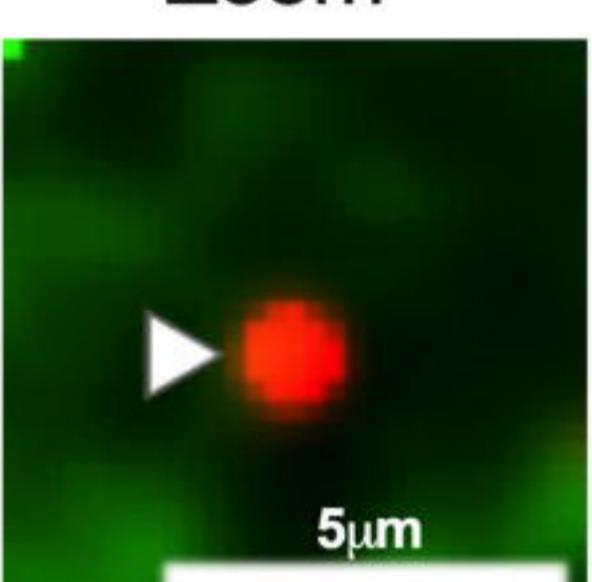
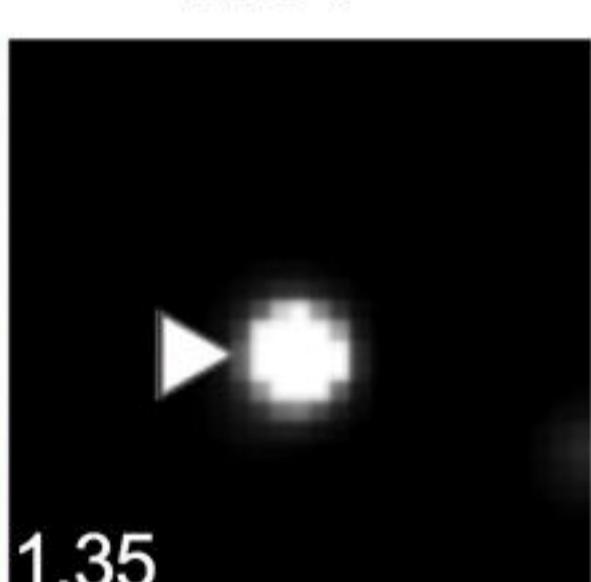
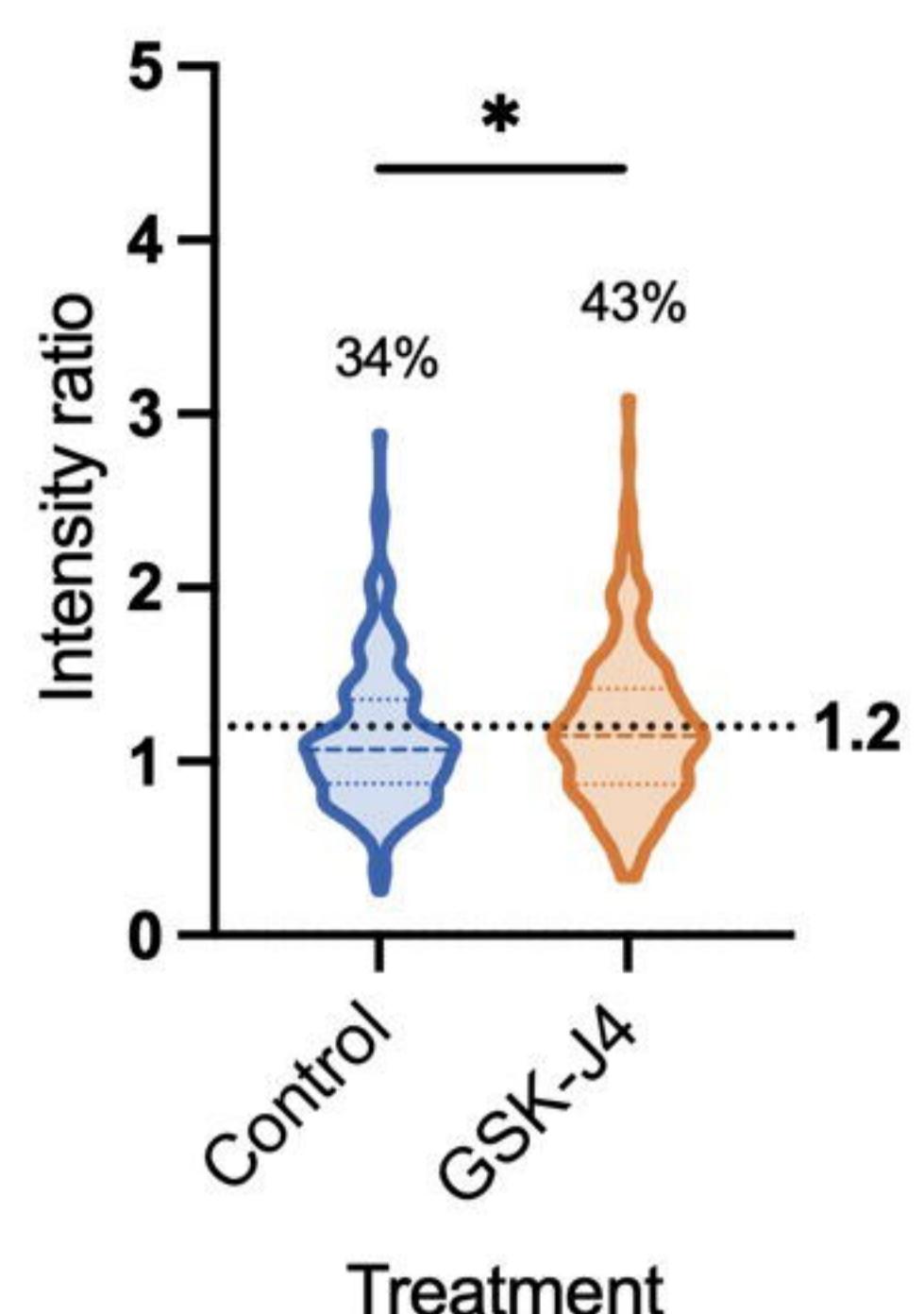
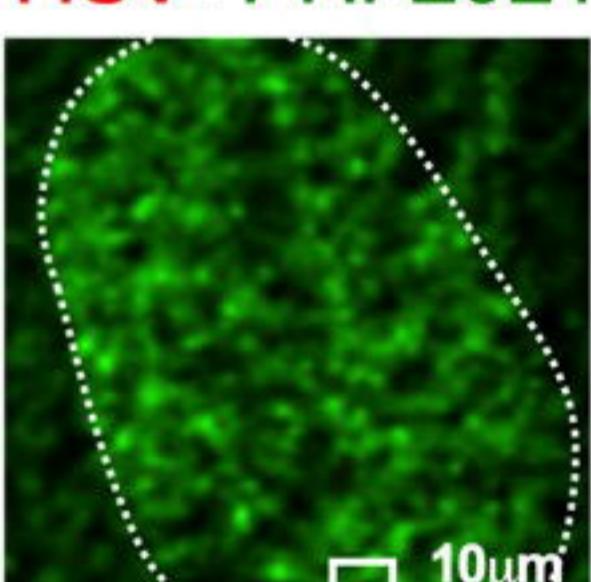
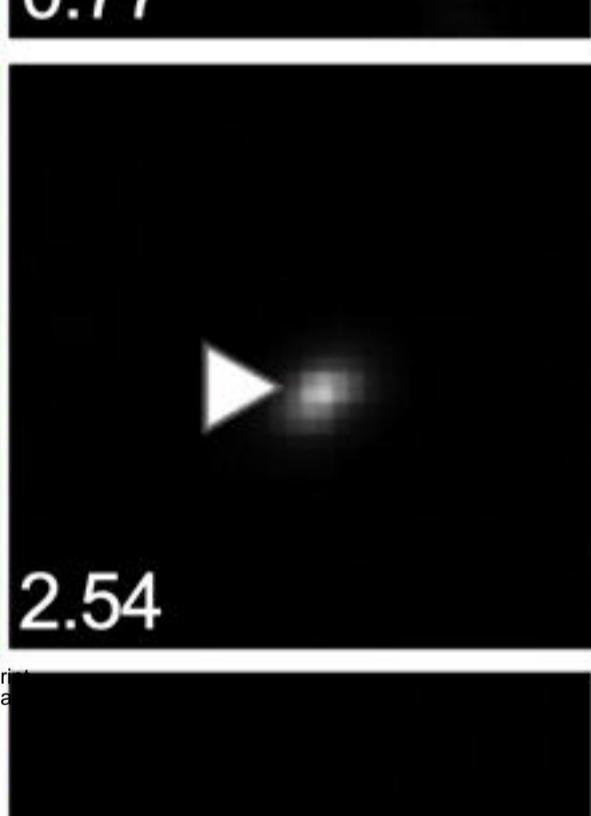
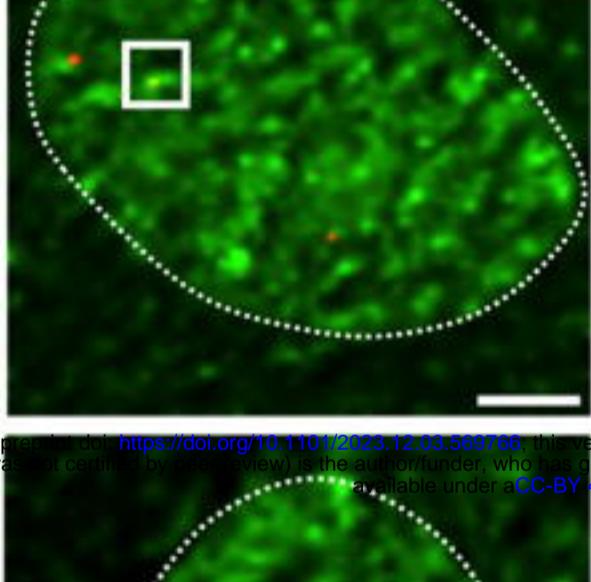
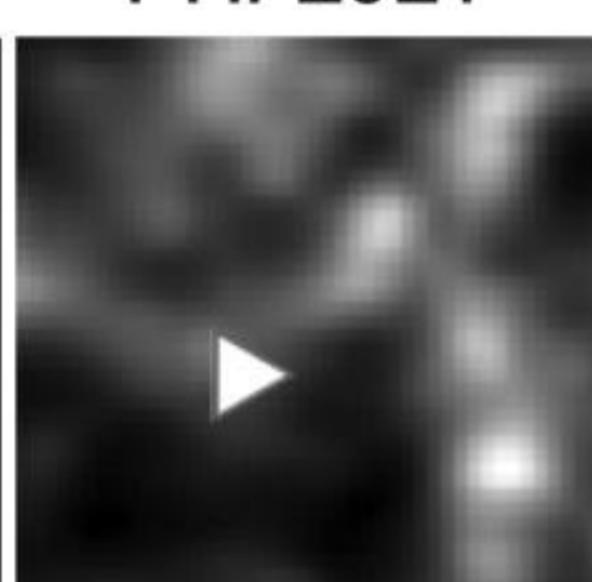
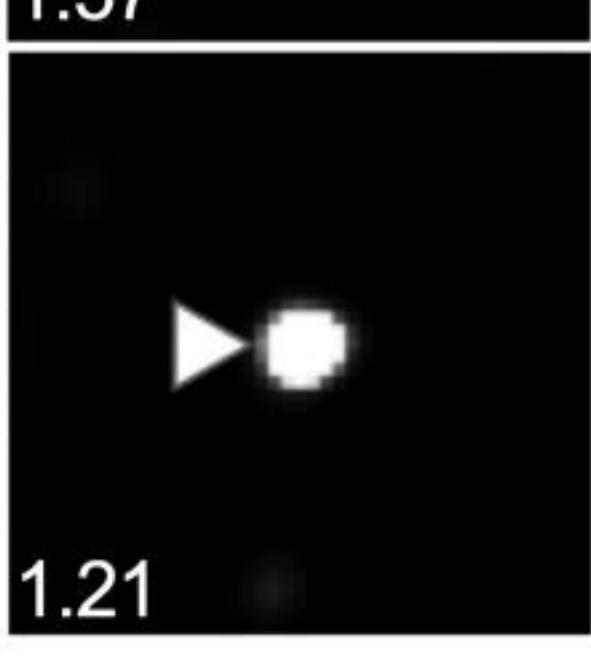
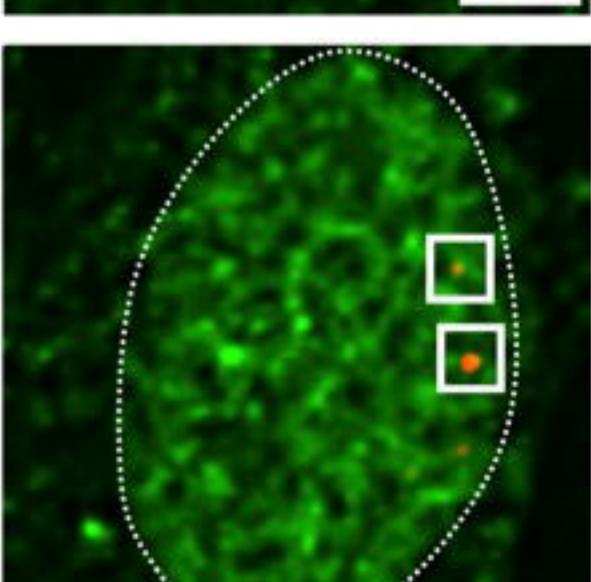
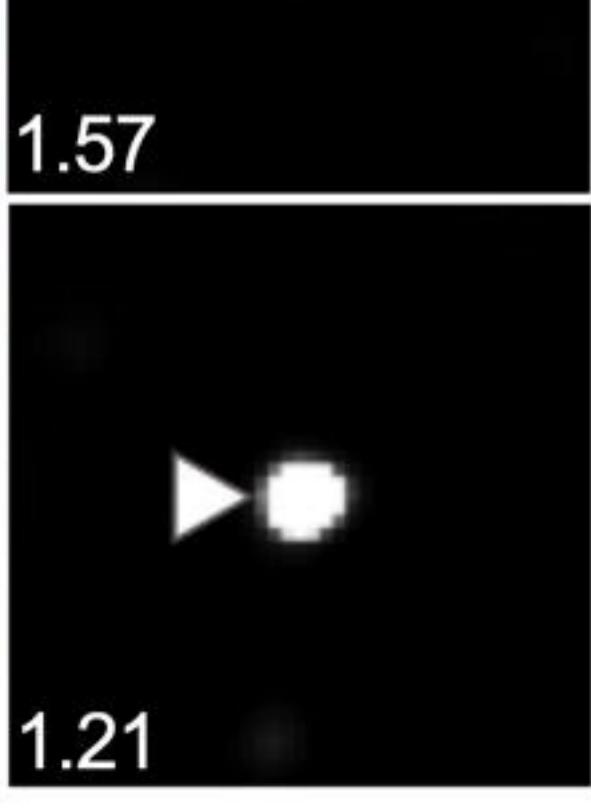




Figure 6

A**H3K27me2 Enrichment at Human and Viral Promoters****B****H3K27me2 Enrichment at Lytic Promoters and Gene Bodies****Figure 7**

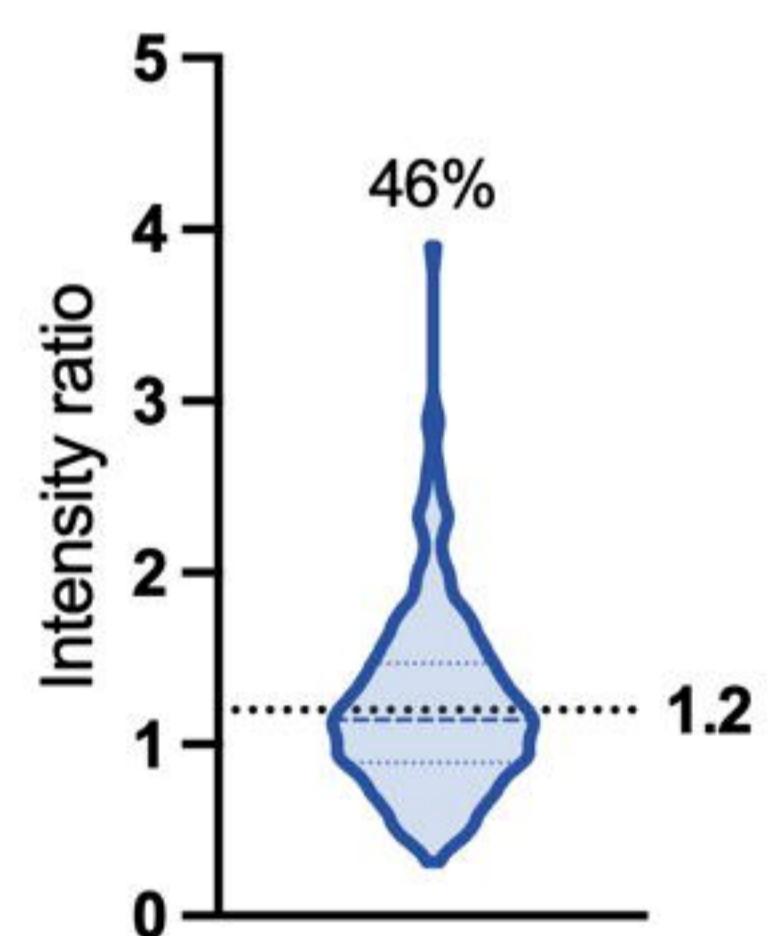


Figure 8

A**Control****HSV+PHF20L1****Zoom****HSV****PHF20L1****+ GSK-J4****HSV+PHF20L1****Zoom****HSV****PHF20L1****B****PHF20L1 Co-localization with Lytic Genomes****Treatment****C****HSV+PHF20L1****Zoom****HSV****PHF20L1****Zoom****D****PHF20L1 Co-Localization with RP5 Genomes****Figure 9**