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Abstract

Recent advancements of sequencing-based spatial transcriptomics (sST) have cat-
alyzed significant advancements by facilitating transcriptome-scale spatial gene
expression measurement. Despite this progress, efforts to comprehensively bench-
mark different platforms are currently lacking. The extant variability across
technologies and datasets poses challenges in formulating standardized evalua-
tion metrics. In this study, we established a collection of reference tissues and
regions characterized by well-defined histological architectures, and used them
to generate data to compare six sST methods. We highlighted molecular diffu-
sion as a variable parameter across different methods and tissues, significantly
impacting the effective resolutions. Furthermore, we observed that spatial tran-
scriptomic data demonstrate unique attributes beyond merely adding a spatial
axis to single-cell data, including an enhanced ability to capture patterned rare
cell states along with specific markers, albeit being influenced by multiple fac-
tors including sequencing depth and resolution. Our study assists biologists in
sST platform selection, and helps foster a consensus on evaluation standards and
establish a framework for future benchmarking efforts that can be used as a
gold standard for the development and benchmarking of computational tools for
spatial transcriptomic analysis.

1 Main1

The advent of high-throughput sequencing technologies has revolutionized transcrip-2

tomics, providing unparalleled insights into the complexities of gene expression.3

Single-cell RNA sequencing (scRNA-seq) has been instrumental in dissecting cellular4

heterogeneity but falls short in capturing the spatial context essential for understand-5

ing tissue architecture, cellular interactions, and functional state [1, 2]. To address this6

limitation, sequencing-based spatial transcriptomics (sST) has emerged as a pivotal7

approach, enabling comprehensive transcriptomic profiling while preserving spatial8

information within tissues [3, 4].9

Despite the rapid advancements in sST technologies, the field is still in its very10

early stages. The imaging-based spatial transcriptomics has a longer history and a11

collaborative benchmarking effort has been initiated with the SpaceTX consortium [5].12

However, a systematic benchmarking study has not been done for sST. Prior studies13

have established frameworks for comparing single-cell transcriptomic and epigenomic14

methods, underscoring the necessity for standardized evaluation criteria and reference15

tissues for technology validation [6–9], since simulated single-cell and spatial data16

may not be reliable [10]. While sST technologies share common features, such as the17

use of spatial DNA barcodes analogous to cell barcodes in scRNA-seq, the methods18
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diverge significantly in aspects like spatial resolution and the preparation of spatially19

barcoded oligo arrays [11]. This variability introduces challenges in method selection20

and complicates the establishment of universal evaluation standards.21

In the present study, we address this critical gap by conducting a systematic com-22

parison of six sST methods. Using a set of reference tissues, including mouse embryonic23

eyes and hippocampal regions of the mouse brain, we generated cross-platform data for24

sequencing-based ST benchmarking, referred to as cadasSTre. This dataset enables us25

to evaluate the performance of each technology in terms of spatial resolution, capture26

efficiency, and molecular diffusion. We updated scPipe [12] to enable preprocessing and27

downsampling of sST data, to further minimize variability and facilitate the incorpo-28

ration of future technologies. Our analyses reveal that data generated from different29

sST technologies exhibit varying capabilities in downstream applications, such as clus-30

tering, region annotation, and cell-cell communication. Notably, we also highlighted31

gene detection biases in sST data.32

Our study serves multiple purposes: it (i) guides researchers in the selection of33

appropriate sST methods for their specific biological questions, (ii) establishes a frame-34

work for future benchmarking endeavors, and (iii) contributes to the standardization35

of evaluation criteria in this rapidly evolving field. Furthermore, our work aims to36

provide a foundation for the assessment of computational tools designed for spatial37

transcriptomic data analysis.38

2 Results39

2.1 Benchmarking reference tissues and experimental design40

We systematically benchmarked spatial transcriptomics (sST) methods based on dis-41

tinct spatial indexing strategies, encompassing microarray (10X Genomics Visium42

[13]), bead-based approaches (HDST [14], BMKMANU S1000, Slide-seq [15]), polony-43

or nanoball-based technologies (Stereo-seq [16], PIXEL-seq [17]), and microfluidics44

(DBiT-seq [18]). Details of each sST method are listed in Supplementary Table 1.45

We selected the adult mouse brain, E12.5 mouse embryo, and adult mouse olfac-46

tory bulb (OB) as reference tissues due to their relatively well-defined morphological47

characteristics. Adult mouse hippocampus, for instance, exhibits consistent thickness48

and comprises regions such as Cornu Ammonis (CA)1, CA2, CA3, and Dentate Gyrus49

(DG), each with distinct expression profiles. E12.5 mouse eyes in embryo exhibit a50

known structure with a lens surrounded by neuronal retina cells, while mouse olfactory51

bulbs (OB) feature clear layer separation with various neuron types. These tissues,52

with their known morphological patterns and heterogeneous expression profile, serve as53

ideal reference samples for our sST benchmark studies. The use of diverse tissue types54

allowed us to assess how tissue type influences method performance, and each sample55

included a technical replicate for variability assessment (Figure 1a). A summary of56

the datasets in cadasSTre is given in Supplementary Table 2. Detailed protocols for57

obtaining regions of interest have been established and are available in the Methods58

section, facilitating reproducibility by other researchers. In total, we systematically59

evaluated 6 sST methods across 22 experiments from 3 tissue types.60
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Fig. 1 Overview of experimental design and data processing pipeline. a) The experimental design
involved the use of reference tissues, namely, adult mouse hippocampus, E12.5 mouse eye, and
adult mouse olfactory bulb. We performed sST on these reference tissues using diverse technologies
categorized by their distinct spatial indexing strategies. These techniques encompassed microarray-
based methods (e.g., 10X Genomics Visium), bead-based approaches (such as HDST, BMKMANU
S1000 (abbreviation: BMK S1000), and Slide-seq), polonies or nanoballs techniques (Stereo-seq and
PIXEL-Seq), and microfluidic-based methodologies like DBiT-seq. Additionally, the reference tis-
sues were subjected to single-nuclei RNA-sequencing (snRNA-seq) using the 10X platform. The
cadasSTre datasets underwent a series of processing steps. Initially, spatial barcodes, their correspond-
ing locations, and expression profiles were generated. Subsequently, reads within regions with known
morphology were selectively retained, and downsampling was performed to mitigate the impact of
sequencing depth variations. Count matrices were then generated for sensitivity and diffusion cal-
culations. This was followed by cell state annotation and a comprehensive analysis of cell-to-cell
communication. b) The visualization of total counts across the spatial dimension for datasets gener-
ated using each platform for reference tissues is shown. The distances from center to center, used in
creating the plot, are presented alongside the name of each sST method. The length of the black bar
in the visualization corresponds to a distance of 500 microns.
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As outlined in the summary pipeline (Figure 1a right-hand panel), we next built61

a standard benchmarking pipeline to enable homogeneous data processing for sST62

methods and comparison in a fair way. Initially, spatial barcodes and their correspond-63

ing locations, together with expression profiles per spatial location were generated.64

Figure 1b provides an overview of total counts per spot for each sST method across65

various tissue types. Clear tissue patterns were observed across the samples. The sum-66

mary of total counts is presented with varying spot sizes and the distances between67

spot centers. These differences are clearly depicted in Supplementary Figure 1a. They68

exhibit clear differences, as depicted in Supplementary Figure 1a. In Figure 1b, we69

have labeled the distances between spot centers, as we believe this metric better rep-70

resents the platform’s physical resolution, as opposed to using spot sizes. Stereo-seq71

and BMKMANU S1000 have distances between spot centers smaller than 10µm and72

spots in them are binned into a 10µm-sized spots for visualization.73

We observed that Stereo-seq, Visium, and BMKMANU S1000 managed to capture74

nearly the entire right brain and the whole E12.5 embryo. In contrast, Slide-seq V275

could capture only a portion of the tissue due to its limited capture size (Supplemen-76

tary Figure 1b,c). With DBiT-seq, the capture size varies depending on the width of77

the microfluidic channel, while also posing the risk of contamination across columns78

and rows in channels. We observed highly consistent tissue morphology among differ-79

ent methods in the H&E image shown in supplementary figure 2-4, which validates80

that our standard tissue handling and sectioning protocol could generate consistent81

results in different experiments.82

Subsequently, we selectively retained reads within regions with known morphology,83

including the hippocampus in the mouse brain, and eyes in the E12.5 embryo. We then84

performed downsampling to address sequencing depth and sequencing cost variations.85

The purpose of downsampling is to normalize different methods to the same total86

number of sequencing reads to achieve equivalence in sequencing cost. Count matrices87

with downsampled data and full data were both then generated for sensitivity and88

diffusion calculations, followed by cell state annotation, maker gene detection, and89

analysis of cell-to-cell communication.90

2.2 Molecule-capture efficiency91

We obtained hippocampus and eye tissues from the adult mouse brain and E12.5 mouse92

embryo, as illustrated in Figure 2a. This was accomplished by manually delineating93

boundaries based on tissue patterns indicated by the spatial distribution of total counts94

and morphological information provided by H&E images. By selecting the same region,95

we ensure that our comparisons of sST sample performance were not influenced by96

varying locations within the tissues, as the number of counts from different parts of97

the tissue may exhibit variations.98

Molecule capture efficiency was assessed in two ways. In selected regions, we either99

1) used all the reads from that region, or 2) downsampled the data so that different100

samples had the same number of sequenced reads, which we refer to as ”downsampled101

data” in the subsequent results.102

Based on the downsampling results (Figure 2b,c), none of the sequencing runs,103

that ranged from 300 million reads (Visium) to 4 billion reads (Stereo-seq), reached104
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Fig. 2 Comparison of the sensitivity of data generated by different platforms. a) Schematic plot
illustrating the extraction of regions with known morphology from fully processed samples of the adult
mouse hippocampus and E12.5 mouse eye. Total UMI counts are presented as a function of stepwise
downsampled sequencing depths for each platform. The data originates from b) mouse hippocampus
and c) E12.5 mouse eye regions. A vertical dashed black line marks the read count used for generating
the subsequent downsampled data. d) Total unique molecular identifier (UMI) counts were computed
for selected regions using all reads and downsampled data for the mouse hippocampus. e) Total UMI
counts for selected regions using all reads and downsampled data for the E12.5 mouse eye. f) The
summed UMI counts for marker genes across five individual 100µm×100µm regions in the mouse
hippocampus, along with mean and standard deviation. g) The summed UMI counts for marker genes
across five individual 100µm×100µm regions in the E12.5 mouse eye, along with mean and standard
deviation. h) Total UMI counts of detected genes are compared between Visium (x-axis) and Stereo-
seq (y-axis). Each dot represents a gene, shown in black. Genes that display expression at the 90th
percentile with Stereo-seq but are at the 10th percentile in Visium are highlighted in red and labeled
with their gene symbols. i) A heatmap displays the log10-transformed expression of genes that are
specifically not captured by Visium but are captured by Stereo-seq for E12.5 mouse eyes.
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saturation. This observation suggests that sST data requires considerably more reads105

for optimal performance, with the potential for increased sensitivity.106

Next, we compared the sensitivity of each sST method by summing the total107

counts within the selected regions. Stereo-seq had many more sequencing reads for the108

same region compared to other platforms, resulting in higher total counts when all109

reads are used (Figure 2d and e, left panel). However, when the effect of sequencing110

depth is controlled, Slide-seq V2 data consistently demonstrated higher sensitivity111

than other platforms, in both the eye and hippocampus. This observation aligns with112

the saturation plot results (Figure 2b,c), where the total counts from Slide-seq V2 data113

exhibited a greater increase with increasing read number. In contrast, DBiT-seq data114

consistently showed the lowest sensitivity (Figure 2d and e, right panel). Additionally,115

the impact on the relationship between the number of counts and features per spot116

is more pronounced in Stereo-seq data when comparing downsampled results to the117

results obtained using all reads (Supplementary Figure 5).118

To provide a more detailed assessment of the differences in sensitivity among119

selected sST methods, we proceeded to measure the RNA content of marker genes120

known to be expressed in specific regions using downsampled data. In CA3 of the121

hippocampus, we compared the sum of counts for Prdm8, Prox1, and Slc17a7 within122

100µm×100µm regions (selected based on the largest physical resolution value among123

the sST methods applied). Our findings revealed that the expression patterns of these124

marker genes mirrored the total count results, with Slide-seq exhibiting the highest125

sensitivity and DBiT-seq displaying the lowest (Figure 2f). In the case of E12.5 mouse126

eyes, we compared the sum of counts for Vit, Crybb3 (lens), and Aldh1a1 (neuron127

retina) within 100µm×100µm regions. Similarly, Slide-seq demonstrated the highest128

sensitivity, while Visium did not generate as many counts for marker genes in regions129

where their expression was expected (Figure 2g). Furthermore, through pairwise com-130

parisons, we identified genes consistently expressed in the lens across all sST methods,131

except for data generated by Visium (Figure 2h, Supplementary Figure 6a), includ-132

ing Crybb3 and Cryaa (Figure 2i). Importantly, this inconsistency did not appear133

to be attributed to the preprocessing pipeline and gene annotations (Supplementary134

Figure 6b), indicating a systematic gene-specific bias of Visium towards the lens. In135

an attempt to correlate this bias with various gene attributes, including gene bio-136

types, length, and GC content percentage, we discovered that these biased genes,137

which exhibit low expression in Visium, are predominantly protein-coding. Moreover,138

no significant bias was detected in terms of GC content or gene length (Supplementary139

Figure 7).140

In our investigation of the mouse OB, after annotation, we assessed the sensitivity141

of selected sST methods, considering layers with varying densities of total counts.142

Notably, PIXEL-seq exhibited the highest sensitivity, while HDST demonstrated the143

lowest sensitivity at a 10µm physical resolution (Supplementary Figure 8).144

2.3 Molecule-lateral diffusion145

In addition to molecule capture sensitivity per unit area, another crucial quality146

parameter is the spatial accuracy of mRNA detection. To assess such accuracy, we147

employed two analysis methods to measure molecule lateral diffusion: 1) Plotting the148
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intensity profile of a specific gene across the selected region. 2) Quantifying the dis-149

tance between the left width at half-maximum (LWHM) of intensity in the chosen150

region [19], focusing on histological structures where the expression of the selected151

gene should exhibit a significant difference—showing high expression in one part of152

the region and minimal to no expression in the rest. These analyses were conducted153

using count data generated from all reads.154

In our evaluation of the OB, we selected Slc17a7 as the marker gene due to its155

expected expression specifically in Mitral and Tufted (M/T) cells, which form distinct156

layers [20] and in glutamatergic neurons located at the base of the glomerular layer157

(GL) [21]. We confirmed Slc17a7’s expression at these locations via in situ hybridiza-158

tion (ISH) from the Allen Brain Atlas [22]. In this analysis, our focus was on Slc17a7’s159

expression in M/T cells. As illustrated by the expression plots of Slc17a7 in each160

sST dataset (Figure 3a, left panel, Supplementary Figure 9), we specifically selected161

regions (N=6) where Slc17a7 was expressed in the middle. Our observations, based162

on intensity plots and LWHM measurements, revealed significant lateral diffusion by163

Stereo-seq V1 of Slc17a7 in the OB. Notably, Slide-seq V1.5 and PIXEL-seq exhibited164

relatively better control over this diffusion (Figure 3b-d left panel).165

In our analysis of the brain, we selected Ptgds as the marker gene, as it has been166

confirmed by ISH to be specifically expressed in a particular location within vascular167

cells [23] (Supplementary Figure 10a,b). By examining the expression plots of Ptgds168

and its intensity plots along with LWHM measurements, we noted severe lateral dif-169

fusion in the Stereo-seq dataset. In contrast, Slide-seq V2, followed by BMKMANU170

S1000, exhibited better control over such lateral diffusion issues (Figure 3a-d mid-171

dle panel, Supplementary Figure 10c). We further validated these observations by172

conducting a diffusion analysis on downsampled Stereo-seq data, confirming that the173

challenge of lateral diffusion persisted despite a lower sequencing depth compared to174

other sST datasets. (Supplementary Figure 10d-f) This suggests that downsampling175

could not resolve the lateral diffusion issue for Stereo-seq data.176

For our examination of eye tissue, we selected Pmel as the marker gene due to its177

specific expression in melanocytes, which encircle the lens and form a circular pat-178

tern [24]. Interestingly, in this context, Stereo-seq demonstrated the best control over179

lateral diffusion, followed by Slide-seq V2. (Figure 3a-d right panel, Supplementary180

Figure 11) This observation contrasts with our findings in the other two tissue types,181

indicating that tissue type exerts a considerable influence on the diffusion process.182

Diffusion is greatly impacted by permeabilization time. We have showed in our perme-183

abilization optimization experiment (Supplementary Figure 2B,3B,4B) that different184

permeabilization time significant impact the diffusions.185

2.4 Clustering and cell annotation across technologies186

We next applied selected sST methods to gain insight into biological questions where187

higher capture sensitivity and well-controlled diffusion are important.188

We selected E12.5 mice eyes, known for their distinctive structure featuring the189

lens, surrounded by the retina, and then melanocytes [25–27].190
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Fig. 3 Comparison of diffusion of data generated by different platforms. a) Expression patterns of
selected marker genes known to be highly expressed in specific regions. These markers include Slc17a7
in the mouse olfactory bulb (left panel), Ptgds in the mouse brain (middle panel), and Pmel in the
E12.5 eye (right panel). The plots are based on raw count values. Black boxes indicate the selected
regions used for diffusion calculation. b) Expression levels of the aforementioned marker genes (from
panel a) are aggregated for every 10µm along 50µm in the olfactory bulb, 500µm in the brain, and
300µm in the eyes, as shown in a). UMI counts are averaged across modalities, normalized for each
platform, and presented in a density plot with the area under the curve set to 1 (details in Methods).
c) Expression level of the marker genes as mentioned above (from panel a) within selected modalities
are provided, with black dashed lines delineating the boundaries used for diffusion calculations. d)
The left half-width half maximum (LWHM) of the profile was then calculated for each gene (from
panel a) in each modality and displayed in boxplots. Each dot represents the LWHM for a given
modality. Modalities for which LWHM could not be calculated were removed.
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2.4.1 Annotating regions by clustering results191

With the basic knowledge of general cell states within the eye area, our next objective192

was to annotate the spots captured by selected sST platforms using various clustering193

methods. We aimed to determine whether we could consistently identify more detailed194

and coherent cell subsets across all samples.195

Such resulting annotations of cell subsets not only served as a benchmark for196

evaluating the methods employed in this study but also provided valuable insights197

into the intricacies of cell states within the developing eye of E12.5 mice.198

Before delving into our comparative analyses, Figure 4a showcases our findings199

about the cell subsets that we expected to observe within an E12.5 mouse eye. In200

this tissue, the anticipated morphological structure unfolds from the innermost space,201

housing the lens and lens vesicle, which are enveloped by neuronal retina cells form-202

ing distinct subsets in specific locations. The neuronal retina cells are encircled by203

melanocytes, with the rostral side hosting corneal mesenchyme, while the caudal side204

is composed of epithelial cells. These annotations provided us with a foundation for205

our subsequent evaluations and comparative assessments.206

2.4.2 Comparison between clustering results207

In our comparative analysis of clustering results, we conducted evaluations from two208

perspectives:209

1) Clustering Methods: We systematically employed three distinct clustering meth-210

ods: Seurat [28], which exclusively considers transcriptomic profiles, and DR.SC [29]211

and PRECAST [30], which incorporate spatial information alongside gene expres-212

sion data. Recent benchmark studies have reported that methods leveraging spatial213

location information demonstrate promising clustering results in specific datasets.214

However, they do not consistently surpass or exhibit greater robustness compared to215

methods that solely rely on gene expression data [31]. Our observations align with216

this conclusion, with Seurat consistently demonstrating robust and stable performance217

compared to the other 2 methods in detecting expected cell subsets as shown in Figure218

4a, left panel, and Supplementary Figure 12.219

2) sST Methods: In our comparisons between sST platforms, we focused primarily220

on the results generated by Seurat. We annotated spots for each sST method indi-221

vidually (Figure 4a and Supplementary Figure 13). Our analyses unveiled variations222

in the ability of different methods to consistently identify the expected cell subsets.223

Notably, Slide-seq V2 and Stereo-seq data delivered a nice separation of spots for224

comprehensive subset annotations, successfully capturing all anticipated subsets. Con-225

versely, BMKMANU S1000 data faced challenges in cell state detection, particularly226

in identifying melanocytes. This difficulty may stem from the pronounced lateral dif-227

fusion observed in BMKMANU S1000 data (as depicted in Figure 3c,d right panel),228

making it difficult for clustering methods relying solely on expression profiles to retain229

this specific cell type. On the other hand, Visium data faced certain limitations in230

detecting the anticipated cell subsets. These challenges were primarily attributed to231

the relatively low physical resolution and hence a restricted number of spots available232

in the eye area (approximately 75 spots in total for each sample). Within each of these233
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Fig. 4 Comparison on downstream performance. a) Expression profiles generated by each platform
were processed to obtain clustering results. Known cell types and states are colored in the left-most
panel. Additionally, a schematic plot represents the expected cell states, arranged from outer space
to inner space and from top to bottom. On the right-hand side, clustering results are presented, with
spots color-coded by annotated cell states depicting the identifiable cell states. CM represents corneal
mesenchyme; pNR represents presumptive neural retina; LV represents lens vesicle. b) Clustering
was conducted on downsampled eye data from each platform, with an equal total read count across
platforms in the eye area. The correspondence between annotations obtained from clustering based
on all reads and clustering based on downsampled data is visualized in a heatmap. The number of
spots in this correspondence is presented after log10 transformation without scaling. c) With Stereo-
seq data as an example, spatial expression profiles of Aldh1a1 and Aldh1a3, which are expressed in
pNR2 and pNR3 are shown at 10 µm resolution. The number of spots with the expression of Aldh1a1

above 0 is 1,329, and of Aldh1a3 above 0 is 217. d) Expression profiles of Aldh1a1 and Aldh1a3 in
snRNA-seq data are presented, The number of cells having an expression of Aldh1a1 above 0 is 93,
and of Aldh1a3 above 0 is 161. e) An overview of cell states compared in the marker gene detection
analysis, with pNR4 and pNR1 highlighted in the top panel, and lens and melanocytes highlighted in
the bottom panel. f) Number of marker genes detected with different numbers of reads used for each
sST method in the comparison between pNR4 and pNR1 (top panel). The same analysis is applied
to the lens and melanocytes in the bottom panel. g) In the top panel, an Upset plot displays the
intersection of marker genes obtained by different sST methods using all reads for the pNR4 and
pNR1 comparison. Genes shared among all three platforms are denoted in blue, those shared between
two platforms are in purple, and uniquely obtained genes are represented in pink. The bottom panel
presents a similar analysis for lens and melanocytes.
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100µm×100µm spots, cells were mixed, making identifying intricate cell subsets more234

challenging (Figure 4a, right panel).235

2.4.3 Influence of downsampling on clustering results236

We observed that sequencing depth influences the total counts of spatial transcrip-237

tomic data (Figure 2b-e). In light of this, we set out to investigate how sequencing238

depth impacts clustering results. Our exploration of clustering results on downsam-239

pled data involved two key aspects: 1) We assessed the correspondence between the240

downsampled data and the full data. 2) We calculated entropy measures for cluster241

purity (ECP) and accuracy (ECA) based on the clustering results obtained with the242

full data as a reference for downsampled data generated at various proportions as243

shown in Figure 4b. Remarkably, we discovered that the downsampled data was capa-244

ble of detecting nearly all of the cell subsets identified by the full data (Figure 4b,245

Supplementary Figure 14). However, when evaluating ECP and ECA across differ-246

ent proportion values, we observed relatively high values, signifying a notable degree247

of inconsistency. This inconsistency could be attributed to the fact that while the248

majority of cell subsets effectively formed distinct clusters, a portion of cells grouped249

into different clusters, notably between cells from different subsets of neuronal retina250

cells. This effect was particularly pronounced in subsets between populations such as251

lens and lens vesicles; 4 neuron retina subsets (Figure 4b), which are more similar in252

expression profiles.253

2.4.4 Comparison between sST data and snRNA-seq data254

We consistently observed well-patterned expression of Pmel, Crybb3, Atoh7, Enfa5,255

Aldh1a1, and Aldh1a3 across all sST datasets. These genes were selected as they serve256

as markers for specific cell types, such as melanocytes, lens, presumptive neural retina257

(pNR)2, and pNR3 (Figure 4c, Supplementary Figure 15). Although the absolute258

position for some of the region is not exactly the same but their relative position259

remains consistent, such as Aldh1a3 located in rostral ragion of the retina layer while260

Aldh1a1 patterned towards caudal region (Supplementary Figure 16).261

In addition, we obtained snRNA-seq data with eye region sectioned as input. How-262

ever, a limited number of cells were found to express the aforementioned genes, and263

these cells were primarily clustered in the lower corner of the UMAP plot (Figure264

4d, Supplementary Figure 15e). Unfortunately, we were unable to further categorize265

this small subset into more detailed subgroups, as was the case with the sST data.266

Interestingly, we also noted that Crybb3’s expression values in the snRNA-seq data267

were relatively lower than expected. This is in line with our earlier observation that268

Crybb3 was not found to be expressed in the eye area captured by Visium, indicating269

a potential capture bias associated with 10X technology.270

While snRNA-seq data may not capture as many cells in the eye area as sST271

methods do, it serves as a useful reference dataset for annotating the sST data. As272

illustrated in Supplementary Figure 17, the integration of snRNA-seq data with sST273

data using Seurat aided the annotation of sST data. For instance, it improved the274

annotation of epithelium cells in Stereo-seq data, which had been relatively challenging275

due to an unknown cluster of cells with mixed expression profiles. This cluster was276
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better resolved using the projection of snRNA-seq epithelium cells (Supplementary277

Figure 17a). Additionally, the projection facilitated the separation of melanocytes and278

epithelium cells in BMKMANU S1000 data (Supplementary Figure 17b).279

Another issue that deserves mention is the susceptibility of sST technologies to280

blood contamination, which is often introduced during the tissue preparation and sec-281

tioning process and is difficult to avoid. In contrast, snRNA-seq can mitigate this282

effect using microfluidic techniques. We used the Hba-a1 gene as an example to evalu-283

ate the influence of blood contamination in these sST methods. Our findings revealed284

that Visium, followed by BMKMANU S1000, were significantly impacted by blood285

contamination, with all Visium spots and 70% of BMKMANU S1000 spots express-286

ing Hba-a1. In contrast, Stereo-seq data exhibited a relatively similar level of blood287

contamination compared to snRNA-seq, and Slide-seq V2 had the lowest amount of288

blood contamination (Supplementary Figure 18).289

2.5 Marker gene detection across technologies290

Prior studies have underlined the effectiveness and robustness of using a Wilcoxon291

rank-sum test when identifying marker genes [32]. We employed this test within292

Seurat to find marker genes between clusters. Analysis of top marker genes reveals293

technology-specific biases in the selection of these markers. For instance, Pax6, a294

transcription factor known as a master regulator of neural lineages, particularly in295

the retina [33], exhibited variations in representation among different technologies.296

Specifically, Stereo-seq data highlighted Pax6 exclusively in the pNR3 cluster, whereas297

Slide-seq V2 and BMKMANU S1000 data depicted Pax6 expression across the entire298

neural retina (pNR1-4) (Supplementary Table 3), consistent with existing literature.299

This observation underscores the influence of technology choice on the identification300

of top markers for specific cell types or clusters. Similarly, disparities were observed301

in the expression of Hes genes in progenitors of the neural retina and Sox2 in pNR1302

and pNR2 (Supplementary Table 3).303

The analysis of clustering results on downsampled data has shown that general cell304

subsets can still be adequately retained even with fewer sequencing reads. However, it305

appears that a few subsets, particularly those sharing similar expression profiles are a306

challenge to be clearly separated. To further investigate the effects of downsampling,307

we compared the marker genes identified in downsampled data with those in the full308

dataset. We selected 2 pairs of cell subsets to compare the detection performance for309

cell subsets with relatively similar expression profiles and those that are more distinct.310

We employed conducted the marker gene detection in two scenarios: 1) pNR4 and311

pNR1, which exhibit higher similarity, and 2) lens and melanocytes, which have lower312

similarity, to identify marker genes (Figure 4e).313

Our observations revealed that the number of marker genes increased as the num-314

ber of reads increased in both pairs of comparisons. Notably, the increase in marker315

genes was more pronounced with deeper sequencing, as illustrated in Figure 4f and316

Supplementary Figure 19. The ranking of marker gene detection performance across317

sST methods aligns with the results depicted in Figure 2d in the comparison between318

cell subsets with relatively distinct expression profiles. In particular, Slide-seq V2319
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exhibits higher sensitivity (Figure 4f, bottom panel). Furthermore, our analysis iden-320

tified a set of genes consistently identified as marker genes across different platforms321

in each of the comparison pairs. However, each platform exhibited a great number of322

unique marker genes as well (Figure 4g).323

Cell-to-cell communication was applied afterward, but no consistent results could324

be found across the communication methods applied including CellChat [34] and325

CellPhoneDB v4 [35] and sST methods (Supplementary Figure 20).326

3 Discussion327

Evaluating spatial transcriptomic methods is more challenging than evaluating328

scRNA-seq methods. First, it is harder to design a reference tissue for spatial transcrip-329

tomics. For scRNA-seq, one could use cell line mixtures/PBMC samples [8, 36, 37],330

or even purified and diluted mRNA to obtain consistent inputs for different technolo-331

gies [36]. For spatial transcriptomics, if we use genuine tissues with clear cell type332

and gene expression patterns, the position and ground truth are then less obvious and333

limited by our understanding of reference tissues. Second, the measurements are not334

performed on the same unit. For methods like Visium, the diameter of a spot is larger335

than 50 microns resembling a mini-bulk RNA-seq. For methods such as Stereo-seq,336

the spot size is sub-micron, which is much smaller than a single cell.337

Fig. 5 Summary of results and characteristics of sST methods. The sST methods have been ranked
based on their performance in the specified categories, with the highest-performing methods posi-
tioned at the top. In the left panel, each ranking is represented by color and spot size. In the right
panel, essential characteristics of the sST methods examined are outlined. Set-up complexity repre-
sent how difficult it is to build the method from scratch.

We carefully designed our benchmarking study to address these challenges. For338

the first problem, we selected a set of reference tissues with the following criteria: 1)339

the tissue should be from the widely used model organism, accessible at most research340

institutes; 2) the tissue should have stable cell-type patterns and specific marker gene341

expression; and 3) the reference region should have clear morphology that is easy342
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to find in sectioning. Together with the reference tissue, we developed a sectioning343

protocol to help people reproduce and generate comparable data in the future. For344

the second challenge, we employed multiple benchmarking metrics and workflows to345

compare different methods on the same tissue region. We used both all-reads and346

downsampled data in our comparisons. Downsampling was implemented to mitigate347

the impact of variations in sequencing depth and cost, however as this may not bring all348

methods to the same standard as the required number of reads to achieve satisfactory349

results may differ, we also used all reads in the analysis as complementary results.350

In this study, we generated cadasSTre, a cross-platform dataset for sequencing-351

based ST benchmarking that allowed systematic evaluation of 6 sST methods across352

22 experiments. We compared various aspects of data from basic metrics to down-353

stream analysis, ranging from sensitivity, and diffusion to clusterability and marker354

gene detection (Figure 5). Our results suggest spatial transcriptomics requires more355

sequencing to reach saturation and data generated in this study are well below the356

saturation level. Technologies such as Stereo-seq require much more sequencing cost357

to generate high-quality data. Stereo-seq shows the best capture efficiency with raw358

sequencing depth while Slide-seq v2 gives the best capture efficiency with normal-359

ized sequencing depth. Interestingly, we found unexpected gene capturing bias on the360

Visium platform, with marker genes consistently captured by other technologies not361

showing up in the Visium data. Considering Visium is the most widely used com-362

mercial platform, it is important to further verify its gene-capturing bias on other363

tissues.364

The spot size has become an important metric as a surrogate of the resolution365

for each method. However, in this study, we highlighted diffusion as a key factor that366

affects the actual resolution. We found different technologies show distinct diffusion367

profiles on different tissues. For example, Stereo-seq gives excellent diffusion control368

on mouse embryo tissue but has much stronger diffusion-induced artifacts in mouse369

brains. Permeabilization time has a great impact on the molecule diffusion of sam-370

ples and the tissue-to-tissue variations in diffusion could be a result of it. Although371

some technologies have sub-micron spot sizes, their real resolution would never reach372

the same level due to limited sensitivity and high diffusion. Further development of373

sST would benefit from increased diffusion control and improved assay to determine374

the permeabilization condition and time, which is a key factors in sST technology375

development.376

Overall, our study generated the first systematic benchmarking scheme of sST377

methods. Although we strive to make the most of this study, there remain several areas378

that could be further improved. Also, our understanding of mouse eye development379

is still limited, making it hard to construct a ground truth in mouse embryo data.380

The benchmarking dataset generated in this study could be used to further compare381

computational tools, but it is important to use diverse tissue and data to develop more382

generalized spatial tools. Although the goal of this study is not to comprehensively383

benchmark computational tools, we found that clustering tools designed for spatial384

data may not give better performance than clustering methods for single cells, which385

agrees with a comparison study [31]. We also found that cell annotations derived from386

single-cell references may not yield detailed cell states and that clustering derived from387
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spatial data could give complementary results that were sometimes better at resolving388

rare cell states with spatial patterns. It is important to consider both analyses with389

and without single-cell references in annotating spatial data.390

The sST field is rapidly evolving and the performance of each technology is likely391

to change with time as they are further optimized. Continuing evaluation is required392

to keep pace with this fast-moving field. Spatial multi-omics methods are still in393

their early stages of development [38–41], and new technologies need to be estab-394

lished. Therefore, we believe a community-driven spatial benchmarking league would395

be beneficial to the future of spatial multi-omics. Our benchmarking efforts highlight396

the benefits and current issues in the sST field, set up standards for comparing sST397

methods, and take the first step towards benchmarking spatial multi-omics technology.398

4 Methods399

4.1 Sample preparation400

4.1.1 Reference sample401

All relevant procedures involving animal experiments presented in this study are com-402

pliant with ethical regulations regarding animal research and were conducted under the403

approval of the Animal Care and Use Committee of Westlake University (license num-404

ber AP#23-111-LXD). Animals were group housed with a 12-hour light-dark schedule405

and allowed to acclimate to their housing environment for two weeks post arrival.406

Mouse embryos were collected from pregnant C57BL/6J female mice at embryonic407

day 12.5 (E12.5). Mouse brain was dissected from 8-week-old C57BL/6J male mice.408

4.1.2 Sample preparation, embedding, sectioning, and histological409

testing410

Mouse embryo411

1) E12.5 pregnant female mice were anesthetized with carbon dioxide, and the whole412

uterus was collected and washed 3 times in ice-cold DPBS; 2) The uterus was separated413

under a stereo microscope, and each embryo was numbered and photographed with414

a Motorized Fluorescence Stereo Zoom microscope (ZEISS, Axio Zoom V16); 3) A415

yolk sac was collected to extract DNA for genotyping (identification of sex); 4) Using416

dust-free paper to gently wipe the liquid on the surface of the embryo, the embryo417

was rinsed with ice-cold Tissue-Tek OCT (Sakura, 4583), and then moved to the418

encapsulation box with ice-cold OCT; 5) Air bubbles were carefully removed with419

the syringe, and the embryo was placed in sagittal position with tweezers; 6) The420

location of the embryonic eye was circled and marked the orientation of the embryo,421

then tissues were transferred to a -80℃ freezer, snap-frozen, and stored; 7) Embryos422

of average size and normal phenotype were selected for subsequent cryosectioning and423

sequencing (note: the embryos used in our benchmarking analysis came from a litter424

of mice); 8) Before sectioning, the tissue block was removed from the -80℃ freezer425

and placed in a cryostat (Leica, CM1950) to balance for at least 30 min; 9) The tissue426

block was smoothly glued to the sample head so that the embryo was sectioned in a427
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sagittal position. If necessary, the angle can be fine-tuned so that the blade section is428

strictly parallel to the cross-section of the tissue block; 10) Cryosections were cut at a429

thickness of 10 µm, both the left eye and right eye can be collected; 11) The structure430

of the sequenced cryosections is shown in the following image:431

432

12) H&E staining procedure: cryosections were balanced at room temperature for433

30 min, and then fixed with 4% PFA for 3 min. Then, the sections were washed434

with ddH2O for 2 min, stained with hematoxylin for 6 min, washed with ddH2O,435

stained with eosin for 2 min, washed with ddH2O. After that, sections were gradient436

dehydrated (75% ethyl alcohol for 1 s, 85% ethyl alcohol for 1 s, 95% ethyl alcohol437

for 1 s, 100% ethyl alcohol for 1 s, 100% ethyl alcohol for 1 min), cleared (xylene438

for twice), and sealed with Permount TM Mounting Medium after airing. Finally, the439

figure was scanned using a Motorized Fluorescence Microscope (Nikon, Ni-E).440

Mouse brain441

1) 8-week-old male mice were anesthetized with carbon dioxide and decapitated; 2)442

The whole brain was rapidly dissected, numbered, and photographed with a Motor-443

ized Fluorescence Stereo Zoom microscope; 3) Using dust-free paper to gently wipe the444

liquid on the surface of the brain, the brain was rinsed with ice-cold Tissue-Tek OCT445

(Sakura, 4583), and then moved to an encapsulation box with ice-cold OCT; 4) Air446

bubbles were carefully removed with the syringe, and the brain was placed properly447

with tweezers; 5) The location of the hippocampus was circled and marked the orien-448

tation of the brain, then tissues were transferred to a -80℃ freezer for snap-frozen and449

storage; 6) Brains of average size and normal phenotype were selected for subsequent450

cryosection and sequencing; 7) Before sectioning, the tissue block was taken out from451

-80℃ freezer and placed in a cryostat (Leica, CM1950) to balance for at least 1 h; 8)452

The tissue block was smoothly glued to the sample head, and the cerebellum was ori-453

ented towards the experimenter so that the brain was sectioned in a coronal position.454

If necessary, the angle can be fine-tuned so that the blade section is strictly parallel455

to the cross-section of the tissue block; 9) Cryosections were cut at a thickness of 10456

µm; 10) The structure of the sequenced cryosections is shown in the following image:457
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458

11) H&E staining procedure: cryosections were balanced at room temperature for459

30 min, and then fixed with 4% PFA for 3 min. Then, the sections were washed460

with ddH2O for 2 min, stained with hematoxylin for 6 min, washed with ddH2O,461

stained with eosin for 1 min, washed with ddH2O. After that, sections were gradient462

dehydrated (75% ethyl alcohol for 1 s, 85% ethyl alcohol for 1s, 95% ethyl alcohol for 1463

s, 100% ethyl alcohol for 1 s, 100% ethyl alcohol for 1 min), cleared (xylene for twice),464

and sealed after airing. Finally, the figure was scanned using a Motorized Fluorescence465

Microscope (Nikon, Ni-E).466

4.1.3 In-situ imaging with padlock probes467

To validate the expression of marker genes, we performed in-situ hybridization and468

imaging following a simplified version of targeted ExSeq [42]. More specifically. we used469

4 fixed barcode regions for distinct fluorescent probes (FAM6, CY3, TXRED, CY5)470

so we could detect at most 4 genes at the same time without performing muli-round471

imaging for in-situ sequencing. The tissue was sectioned on Leica CM1950 Cryostats,472

with 10-micron sections placed on the CITOTEST adhesion microscope slides. The473

section was then fixed with 4% formalin for 15 minutes at room temperature and474

washed two times with PBS. Permeabilization of tissue was done with ice-cold 70%475

EtOH overnight at -20℃. RNase inhibitor (Lucigen) was added at 0.4 U/µl throughout476

the incubation until the rolling cycle amplification (RCA) was done. The padlock probe477

was diluted at a final concentration of 5nM per probe, in wash buffers with 2XSSC478

and 20% formamide. Hybridization was done overnight at 37℃, then washed with the479

same wash buffer (2XSSC and 20% formamide) 3 times for 15 minutes each, followed480

by washing with PBS for 15 minutes at 37℃. SplintR ligase (NEB, M0375) was used481

for probe ligation at 37℃ for 2.5 hours. RCA was performed at 30℃ overnight using482

Phi29 enzyme mix (NEB, M0269L). fluorescent probes hybridization was done at 2X483

SCC and 10% formamide buffer mix, diluting the probes at 100 µM and incubate at484

37℃ for 1 hour. Imaging was performed with a NIKON A1 confocal microscope with485

10X objectives and 2×2 image stitching.486
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4.1.4 Protocols used in different ST methods487

See Table1.488

4.2 Data processing489

4.2.1 Preprocessing490

We preprocessed fastq files from multiple platforms using their respective preprocess-491

ing pipeline (where provided) and updated scPipe to allow sample processing with492

unified functions for data from different sST technologies starting from fastq files.493

Mouse GRCm39 was used as a reference for alignment in each of the pipelines for494

locally generated data.495

Visium data were processed with spaceranger (v2.1.0), and aligned with STAR496

2.7.10b.497

BMKMANU S1000 is a technology developed by BMKGENE498

(https://www.bmkgene.com/). Similar to HDST, it uses barcoded beads deposited499

on patterned array. Data were processed with BSTMatrix (v2.3.j), and aligned with500

STAR 2.7.10b.501

Slide-seqV2 generated bam files of pucks of mouse eyes (Puck 190926 03) and502

hippocampus (Puck 191204 01 and Puck 200115 08) were downloaded [15].503

Stereo-seq data were processed with SAW (v6.1).504

DBiT-seq data underwent initial filtering using a predefined barcode list, and505

subsequently, fastq file 1 was restructured to adopt the format of spatial barcodes506

followed by UMIs. The processed data were further analyzed using scPipe (v2.0.0) to507

generate spot-by-gene count matrices.508

4.2.2 Selection of region of interest and downsampling509

After acquiring count matrices and associated location data for the datasets generated510

by the aforementioned sST platforms, we aimed to mitigate the impact of variable511

sequencing depths and costs. To achieve this, we extracted spots located within con-512

sensus regions in reference tissues, specifically the hippocampus in the brain and the513

eye in mouse embryos, for comparative analysis.514

Spot selection was guided by histological images (H&E images), feature plots of515

total counts, and marker genes (Pmel for the eye and Slc17a7 for the brain). These516

boundaries were meticulously delineated manually.517

Subsequently, spots falling within the predefined boundaries for each sample were518

isolated and used for downsampling. An equal number of reads were chosen within519

selected spots for both eye and hippocampus data, based on the readID of the selected520

reads. These selected reads were then isolated from the BAM files generated in the521

aforementioned pipelines.522

The BAM files were further processed to demultiplex based on spatial barcodes and523

quantified into matrices using UMIs and aligned gene information, using new functions524

introduced in scPipe. In addition to generating count matrices with an equivalent525

number of reads across platforms, we also processed reads from each platform in526

specific proportions using scPipe.527
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Stereo-seq BMKMANU S1000 10X Genomics
Visium

DBiT-seq

1 Tissue Fixation 1 Tissue Fixation 1 Tissue Fixation
None 2 Tissue HE Stain-

ing
2 Tissue HE Stain-
ing

None 3 Tissue brightfield
imaging

3 Tissue brightfield
imaging

Tissue Optimization
(Pre-Experiment)

2 Permeabilization
Time Course

4 Permeabilization
Time Course

4 Permeabilization
Time Course

3 TRITC cDNA
Synthesis

5 Cy3 cDNA Syn-
thesis

5 TRITC cDNA
Synthesis

None

4 Tissue Removal 6 Tissue Removal 6 Tissue Removal
5 Chip TRITC
Imaging

7 Slide Cy3 Imag-
ing

7 Slide TRITC
Imaging

Permeabilization Time Brain: 12 min Brain: 15 min Brain: 12 min
Embryo: 18 min Embryo: 6 min Embryo: 6 min
1 Cryosection on
the Stereo Chip

1 Cryosection on
the S1000 Gene
Expression Slide

1 Cryosection on
the Visium Gene
Expression Slide

1 Cryosec-
tion on
poly-L-lysine
coated glass
slide

2 Fixation:
Methanol for 30
min

2 Fixation:
Methanol for 30
min

2 Fixation:
Methanol for 30
min

2 Fixation:
formalde-
hyde 20 min

3 Tissue ssDNA
Staining

3 Tissue HE Stain-
ing

3 Tissue HE Stain-
ing

3 Incubations
with ADTs

4 Tissue FITC
Imaging

4 Tissue brightfield
Imaging

4 Tissue brightfield
Imaging

4 RT with Bar-
code A Oligo-
dT

Spatial Expres-
sion(Formal–Experiment)

5 Tissue Permeabi-
lization

5 Tissue Permeabi-
lization

5 Tissue Permeabi-
lization

5 Ligation with
Barcode B

6 Reverse Tran-
scription

6 Reverse Tran-
scription

6 Reverse Tran-
scription

6 Tissue Lysis

7 cDNA Release 7 Second Strand
Synthesis

7 Second Strand
Synthesis

7 Template
Switch

8 cDNA Amplifica-
tion

8 cDNA Amplifica-
tion

8 cDNA Amplifica-
tion

8 cDNA Ampli-
fication

9 cDNA Cleanup
and cDNA QC

9 cDNA Cleanup
and cDNA QC

9 cDNA Cleanup
and cDNA QC

9 cDNA
Cleanup and
cDNA QC

HE: Adjacent
Tissue Section

HE: The Same
Tissue Section

HE: The Same
Tissue Section

HE: Adja-
cent Tissue
Section

Library Construction cDNA was frag-
mented and
amplified. Then
the products were
filtered twice
(0.6X+0.2X)

To construct the sequencing library, cDNA was frag-
mented, end-repaired, and A-tailed. Then the adaptor was
ligated so that dual index PCR could amplify and dis-
tinguish these samples by different index sequences. The
distribution of the main peak was between 200 to 600bp
and the libraries were sequenced in the same sequencing
run.

Table 1 Protocols used in different ST methods.
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4.2.3 Sensitivity and diffusion of marker genes528

For each sample, we calculated the sum of total counts within selected regions using529

both the full set of reads and downsampled reads. To assess marker gene sensitivity, we530

considered specific genes known to be expressed in the dorsal anterior (DA) region of531

the hippocampus in adult mice (Prdm8, Prox1, and Slc17a7), as well as genes known532

to be expressed in the lens of the eyes (Vit and Crybb3) and a subset of neural retina533

cells in the eyes of E12.5 mice (Aldh1a1). In each sample, we selected five regions534

measuring 50µm by 50µm in the eyes and five regions measuring 100µm by 100µm535

in the hippocampus, where these genes were known to be expressed. We individually536

summed the total number of UMIs in these selected regions within downsampled count537

matrices to ensure the number of reads was consistent across platforms.538

We then performed pairwise comparisons of UMI counts for detected genes across539

platforms. For eye samples, genes expressed in any one of the platforms with total540

counts above the 99th percentile but below the 10th percentile in any other platforms541

were selected for heatmap plotting using a log
1
0 scale.542

To investigate the gene bias observed in Visium, as demonstrated in the afore-543

mentioned pairwise comparisons between platforms, we focused on genes meeting a544

specific criterion: those expressed across all other platforms with total counts exceed-545

ing the 90th percentile and 80th percentile, yet exhibiting number of counts below546

1 with Visium. Our exploration of these genes encompassed an analysis of their547

attributes, including GC content percentage and gene length, using ANOVA analysis.548

Additionally, we examined the biotypes of these biased genes.549

To assess the spatial distribution of marker genes known to be expressed in specific550

regions of the reference tissues, we used Pmel for eye data, Ptgds for brain data, and551

Slc17a7 for OB data. This analysis used count matrices generated from all reads. We552

selected regions with expression of these genes roughly in the middle of the chosen553

regions (6 modalities of 300µm by 50µm in the OB, 6 modalities of 500µm by 50µm in554

the brain, and 3 modalities of 300µm by 50µm in the eyes). We summed the expression555

of the aforementioned marker genes for every 10µm along 50µm within 300µm in OB,556

500µm in the brain, and 300µm in the eyes. The UMI counts of these marker genes557

were then aligned based on the location of peak expression and averaged. Modalities558

with insufficient counts for the selected marker genes were filtered out before plotting.559

After the computation of averaged summed values across modalities, these values560

were subsequently normalized for each platform and depicted in a density plot with561

the area under the curve standardized to 1. Subsequently, the left half-width half562

maximum (LWHM) of the profile was computed within each modality, using non-563

normalized expression values across platforms. It is worth noting that we employed564

LWHM as an evaluation metric, drawing inspiration from the full-width half maximum565

(FWHM) method [19]. In the chosen region, only the left half-width half maximum566

was used, as there could be an expression of selected genes, such as Slc17a7 in OB,567

on the right side of the section that is biologically expected but not caused by lateral568

diffusion. Modalities that could not be computed with LWHM were excluded from the569

plotting process. For diffusion analysis, it is important to note that the DBiT-seq data570

pertained to E10 embryonic eyes, whereas the other datasets were associated with571

E12.5 embryonic eyes.572
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To address the significant diffusion in data generated by Stereo-seq in the mouse573

brain, we conducted diffusion analysis on its downsampled data, consisting of 14% of574

all the reads.575

4.2.4 Cell type annotation576

Low-quality spots with total counts below 30% of the first quantile of total counts577

are filtered out before normalization, which was carried out using the median num-578

ber of total counts from each platform as the scaling factor. Subsequently, the top579

2,000 highly variable genes were identified using the FindVariableFeatures function580

and used to scale the data through the ScaleData function. A total of 20 principal581

components (PCs) were then calculated using RunPCA. To categorize spots in each eye582

sample, we employed 3 distinct methods, including Seurat (v4.3.0), DR.SC (v3.3), and583

PRECAST (v1.6.2).584

Seurat initially identified neighbors based on 20 PCs, with a k-value of 5 chosen for585

the k-nearest neighbor algorithm in FindNeighbors. FindClusters was subsequently586

applied with various physical resolutions to group known cell-type spots.587

DR.SC was applied by setting K (the number of clusters) as 10.588

PRECAST was applied with the number of clusters specified as 10 and using the589

SelectModel function to reorganize the fitting results within PRECASTObj.590

4.2.5 Integration of sST and scRNA-seq data591

We followed the instructions in Seurat with parameters reduction =‘cca’, k.filter592

= NA, and normalization.method = ‘SCT’ in FindTransferAnchors. Dims were set593

as 30 with PCA used as weight.reduction in TransferData.594

4.2.6 Evaluation of clustering on downsampled data595

The downsampled data were subjected to the same pipeline as described above, lever-596

aging Seurat to generate clustering results. These obtained clustering results were597

subsequently compared to clustering outcomes obtained through the processing of598

count matrices generated from the entire set of reads. To visualize this comparison,599

we created a heatmap with a logarithmic scale, illustrating the corresponding number600

of spots in each of the downsampled clustering and the overall clustering results. The601

entropy of accuracy and purity were then calculated. ECA and ECP are defined as602

follows:603

ECA = −

∑M

i=1

∑Ni

j=1
p(xj) log(p(xj))

M
(1)

where M denotes the number of clusters generated from a method (the clustering604

solution to be evaluated), Ni denotes the number of elements in the ith cluster based605

on the ground truth (here the provided labels) and606

ECP = −

∑N

i=1

∑Mi

j=1
p(xj) log(p(xj))

N
. (2)
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4.2.7 Marker genes detection607

FindMarkers in Seurat was applied to find marker genes between two pairs of cell608

subsets: 1) lens and melanocytes; 2) pNR4 and pNR1. Genes that exhibited higher609

expression in the lens and pNR4, with expression levels exceeding 5% of the specific610

spots, the log-fold-change greater than 0.25, and an adjusted p-value provided by611

Seurat less than 0.01, were considered as marker genes.612

4.2.8 Cell communication analysis613

Cell communication analysis was then performed on spots with distinct annotated cell614

types, using methods including Cellchat (v1.6.1), CellPhoneDB (v4).615

Cellchat used the CellChatDB database of the mouse, creating cellchat objects616

based on annotation information, and employed the default ‘Trimean’ statistical617

method.618

CellPhoneDB was applied by transforming mouse genes into their human619

homologs using the biomaRt package. Using the CellPhoneDB database for cellphone620

analysis, we conducted using 1,000 random permutations in the analysis follow-621

ing the tutorial https://github.com/ventolab/CellphoneDB/blob/master/notebooks/622

T01 Method2.ipynb. The minimum cell percentage threshold required to consider a623

gene as expressed in the analysis was set to 0.1, and significance was determined with624

a p-value threshold of less than 0.05.625

Data availability

Raw count matrices are available at the National Genome Data Center (https://www.
cncb.ac.cn/) under BioProject accession code PRJCA020621. A summary of individual
accession numbers is given in Supplementary Table 2. The cadasSTre data collections
are continually updated on our website genographix.com. The standard sectioning pro-
tocol is deposited in protocols.io: dx.doi.org/10.17504/protocols.io.5qpvo379dv4o/v1.

Code availability

Scripts used to process the data are available at https://github.com/YOU-k/
cadasSTre.
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Der Zwan, J., Häring, M., Braun, E., Borm, L.E., La Manno, G., et al.: Molecular
architecture of the mouse nervous system. Cell 174(4), 999–1014 (2018)

[24] Watt, B., Niel, G., Raposo, G., Marks, M.S.: Pmel: a pigment cell-specific model
for functional amyloid formation. Pigment cell & melanoma research 26(3), 300–
315 (2013)

[25] Larina, I.V., Syed, S.H., Sudheendran, N., Overbeek, P.A., Dickinson, M.E.,
Larin, K.V.: Optical coherence tomography for live phenotypic analysis of embry-
onic ocular structures in mouse models. Journal of biomedical optics 17(8),
081410–081410 (2012)

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.03.569744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569744
http://creativecommons.org/licenses/by-nc-nd/4.0/


[26] Heavner, W., Pevny, L.: Eye development and retinogenesis. Cold Spring Harbor
perspectives in biology 4(12), 008391 (2012)

[27] Zhang, R., Huang, H., Cao, P., Wang, Z., Chen, Y., Pan, Y.: Sma-and mad-
related protein 7 (smad7) is required for embryonic eye development in the mouse.
Journal of Biological Chemistry 288(15), 10275–10285 (2013)

[28] Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M.,
Hao, Y., Stoeckius, M., Smibert, P., Satija, R.: Comprehensive integration of
single-cell data. Cell 177(7), 1888–1902 (2019)

[29] Liu, W., Liao, X., Yang, Y., Lin, H., Yeong, J., Zhou, X., Shi, X., Liu, J.: Joint
dimension reduction and clustering analysis of single-cell rna-seq and spatial
transcriptomics data. Nucleic acids research 50(12), 72–72 (2022)

[30] Liu, W., Liao, X., Luo, Z., Yang, Y., Lau, M.C., Jiao, Y., Shi, X., Zhai, W.,
Ji, H., Yeong, J., et al.: Probabilistic embedding, clustering, and alignment for
integrating spatial transcriptomics data with precast. Nature communications
14(1), 296 (2023)

[31] Cheng, A., Hu, G., Li, W.V.: Benchmarking cell-type clustering methods for
spatially resolved transcriptomics data. Briefings in Bioinformatics 24(1), 475
(2023)

[32] Pullin, J.M., McCarthy, D.J.: A comparison of marker gene selection methods for
single-cell rna sequencing data. bioRxiv, 2022–05 (2022)

[33] Quinn, J.C., West, J.D., Hill, R.E.: Multiple functions for pax6 in mouse eye and
nasal development. Genes & development 10(4), 435–446 (1996)

[34] Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H.,
Myung, P., Plikus, M.V., Nie, Q.: Inference and analysis of cell-cell communica-
tion using cellchat. Nature communications 12(1), 1088 (2021)

[35] Garcia-Alonso, L., Lorenzi, V., Mazzeo, C.I., Alves-Lopes, J.P., Roberts, K.,
Sancho-Serra, C., Engelbert, J., Marečková, M., Gruhn, W.H., Botting, R.A.,
et al.: Single-cell roadmap of human gonadal development. Nature 607(7919),
540–547 (2022)
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