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Abstract

Recent advancements of sequencing-based spatial transcriptomics (sST) have cat-
alyzed significant advancements by facilitating transcriptome-scale spatial gene
expression measurement. Despite this progress, efforts to comprehensively bench-
mark different platforms are currently lacking. The extant variability across
technologies and datasets poses challenges in formulating standardized evalua-
tion metrics. In this study, we established a collection of reference tissues and
regions characterized by well-defined histological architectures, and used them
to generate data to compare six sST methods. We highlighted molecular diffu-
sion as a variable parameter across different methods and tissues, significantly
impacting the effective resolutions. Furthermore, we observed that spatial tran-
scriptomic data demonstrate unique attributes beyond merely adding a spatial
axis to single-cell data, including an enhanced ability to capture patterned rare
cell states along with specific markers, albeit being influenced by multiple fac-
tors including sequencing depth and resolution. Our study assists biologists in
sST platform selection, and helps foster a consensus on evaluation standards and
establish a framework for future benchmarking efforts that can be used as a
gold standard for the development and benchmarking of computational tools for
spatial transcriptomic analysis.

., 1 Main

> The advent of high-throughput sequencing technologies has revolutionized transcrip-
s tomics, providing unparalleled insights into the complexities of gene expression.
+ Single-cell RNA sequencing (scRNA-seq) has been instrumental in dissecting cellular
s heterogeneity but falls short in capturing the spatial context essential for understand-
s ing tissue architecture, cellular interactions, and functional state [1, 2]. To address this
7 limitation, sequencing-based spatial transcriptomics (sST) has emerged as a pivotal
s approach, enabling comprehensive transcriptomic profiling while preserving spatial
o information within tissues [3, 4].

10 Despite the rapid advancements in sST technologies, the field is still in its very
un early stages. The imaging-based spatial transcriptomics has a longer history and a
1 collaborative benchmarking effort has been initiated with the SpaceTX consortium [5].
13 However, a systematic benchmarking study has not been done for sST. Prior studies
1 have established frameworks for comparing single-cell transcriptomic and epigenomic
15 methods, underscoring the necessity for standardized evaluation criteria and reference
16 tissues for technology validation [6-9], since simulated single-cell and spatial data
v may not be reliable [10]. While sST technologies share common features, such as the
18 use of spatial DNA barcodes analogous to cell barcodes in scRNA-seq, the methods
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10 diverge significantly in aspects like spatial resolution and the preparation of spatially
2 barcoded oligo arrays [11]. This variability introduces challenges in method selection
a2 and complicates the establishment of universal evaluation standards.

2 In the present study, we address this critical gap by conducting a systematic com-
23 parison of six sST methods. Using a set of reference tissues, including mouse embryonic
2 eyes and hippocampal regions of the mouse brain, we generated cross-platform data for
»  sequencing-based ST benchmarking, referred to as cadasSTre. This dataset enables us
% to evaluate the performance of each technology in terms of spatial resolution, capture
x efficiency, and molecular diffusion. We updated scPipe [12] to enable preprocessing and
s downsampling of sST data, to further minimize variability and facilitate the incorpo-
2 ration of future technologies. Our analyses reveal that data generated from different
s sST technologies exhibit varying capabilities in downstream applications, such as clus-
s tering, region annotation, and cell-cell communication. Notably, we also highlighted
2 gene detection biases in sST data.

33 Our study serves multiple purposes: it (i) guides researchers in the selection of
u appropriate sST methods for their specific biological questions, (ii) establishes a frame-
s work for future benchmarking endeavors, and (iii) contributes to the standardization
3% of evaluation criteria in this rapidly evolving field. Furthermore, our work aims to
s provide a foundation for the assessment of computational tools designed for spatial
33 transcriptomic data analysis.

» 2 Results

» 2.1 Benchmarking reference tissues and experimental design

a We systematically benchmarked spatial transcriptomics (sST) methods based on dis-
« tinct spatial indexing strategies, encompassing microarray (10X Genomics Visium
s [13]), bead-based approaches (HDST [14], BMKMANU S1000, Slide-seq [15]), polony-
s or nanoball-based technologies (Stereo-seq [16], PIXEL-seq [17]), and microfluidics
s (DBiT-seq [18]). Details of each sST method are listed in Supplementary Table 1.

%6 We selected the adult mouse brain, E12.5 mouse embryo, and adult mouse olfac-
« tory bulb (OB) as reference tissues due to their relatively well-defined morphological
«s characteristics. Adult mouse hippocampus, for instance, exhibits consistent thickness
s and comprises regions such as Cornu Ammonis (CA)1, CA2, CA3, and Dentate Gyrus
o (DG), each with distinct expression profiles. E12.5 mouse eyes in embryo exhibit a
51 known structure with a lens surrounded by neuronal retina cells, while mouse olfactory
2 bulbs (OB) feature clear layer separation with various neuron types. These tissues,
53 with their known morphological patterns and heterogeneous expression profile, serve as
s« ideal reference samples for our sST benchmark studies. The use of diverse tissue types
s allowed us to assess how tissue type influences method performance, and each sample
ss included a technical replicate for variability assessment (Figure la). A summary of
57 the datasets in cadasSTre is given in Supplementary Table 2. Detailed protocols for
s obtaining regions of interest have been established and are available in the Methods
so section, facilitating reproducibility by other researchers. In total, we systematically
o evaluated 6 sST methods across 22 experiments from 3 tissue types.
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Fig. 1 Overview of experimental design and data processing pipeline. a) The experimental design
involved the use of reference tissues, namely, adult mouse hippocampus, E12.5 mouse eye, and
adult mouse olfactory bulb. We performed sST on these reference tissues using diverse technologies
categorized by their distinct spatial indexing strategies. These techniques encompassed microarray-
based methods (e.g., 10X Genomics Visium), bead-based approaches (such as HDST, BMKMANU
S1000 (abbreviation: BMK S1000), and Slide-seq), polonies or nanoballs techniques (Stereo-seq and
PIXEL-Seq), and microfluidic-based methodologies like DBiT-seq. Additionally, the reference tis-
sues were subjected to single-nuclei RNA-sequencing (snRNA-seq) using the 10X platform. The
cadasSTre datasets underwent a series of processing steps. Initially, spatial barcodes, their correspond-
ing locations, and expression profiles were generated. Subsequently, reads within regions with known
morphology were selectively retained, and downsampling was performed to mitigate the impact of
sequencing depth variations. Count matrices were then generated for sensitivity and diffusion cal-
culations. This was followed by cell state annotation and a comprehensive analysis of cell-to-cell
communication. b) The visualization of total counts across the spatial dimension for datasets gener-
ated using each platform for reference tissues is shown. The distances from center to center, used in
creating the plot, are presented alongside the name of each sST method. The length of the black bar
in the visualization corresponds to a distance of 500 microns.

4

500um



https://doi.org/10.1101/2023.12.03.569744
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.03.569744; this version posted December 4, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

61 As outlined in the summary pipeline (Figure la right-hand panel), we next built
e a standard benchmarking pipeline to enable homogeneous data processing for sST
es  methods and comparison in a fair way. Initially, spatial barcodes and their correspond-
e ing locations, together with expression profiles per spatial location were generated.
e Figure 1b provides an overview of total counts per spot for each sST method across
6 various tissue types. Clear tissue patterns were observed across the samples. The sum-
e mary of total counts is presented with varying spot sizes and the distances between
6 spot centers. These differences are clearly depicted in Supplementary Figure 1a. They
e exhibit clear differences, as depicted in Supplementary Figure la. In Figure 1b, we
7 have labeled the distances between spot centers, as we believe this metric better rep-
n  resents the platform’s physical resolution, as opposed to using spot sizes. Stereo-seq
2 and BMKMANU S1000 have distances between spot centers smaller than 10um and
7z spots in them are binned into a 10um-sized spots for visualization.

74 We observed that Stereo-seq, Visium, and BMKMANU S1000 managed to capture
7 nearly the entire right brain and the whole E12.5 embryo. In contrast, Slide-seq V2
7 could capture only a portion of the tissue due to its limited capture size (Supplemen-
7 tary Figure 1b,c). With DBiT-seq, the capture size varies depending on the width of
7 the microfluidic channel, while also posing the risk of contamination across columns
7 and rows in channels. We observed highly consistent tissue morphology among differ-
s ent methods in the H&E image shown in supplementary figure 2-4, which validates
a1 that our standard tissue handling and sectioning protocol could generate consistent
&2 results in different experiments.

83 Subsequently, we selectively retained reads within regions with known morphology,
s including the hippocampus in the mouse brain, and eyes in the E12.5 embryo. We then
s performed downsampling to address sequencing depth and sequencing cost variations.
s The purpose of downsampling is to normalize different methods to the same total
s number of sequencing reads to achieve equivalence in sequencing cost. Count matrices
e with downsampled data and full data were both then generated for sensitivity and
s diffusion calculations, followed by cell state annotation, maker gene detection, and
o0 analysis of cell-to-cell communication.

o 2.2 Molecule-capture efficiency

oo We obtained hippocampus and eye tissues from the adult mouse brain and E12.5 mouse
o3 embryo, as illustrated in Figure 2a. This was accomplished by manually delineating
o boundaries based on tissue patterns indicated by the spatial distribution of total counts
s and morphological information provided by H&E images. By selecting the same region,
o we ensure that our comparisons of sST sample performance were not influenced by
o7 varying locations within the tissues, as the number of counts from different parts of
os  the tissue may exhibit variations.

99 Molecule capture efficiency was assessed in two ways. In selected regions, we either
wo 1) used all the reads from that region, or 2) downsampled the data so that different
1w samples had the same number of sequenced reads, which we refer to as “downsampled
102 data” in the subsequent results.

103 Based on the downsampling results (Figure 2b,c), none of the sequencing runs,
e that ranged from 300 million reads (Visium) to 4 billion reads (Stereo-seq), reached
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Fig. 2 Comparison of the sensitivity of data generated by different platforms. a) Schematic plot
illustrating the extraction of regions with known morphology from fully processed samples of the adult
mouse hippocampus and E12.5 mouse eye. Total UMI counts are presented as a function of stepwise
downsampled sequencing depths for each platform. The data originates from b) mouse hippocampus
and c¢) E12.5 mouse eye regions. A vertical dashed black line marks the read count used for generating
the subsequent downsampled data. d) Total unique molecular identifier (UMI) counts were computed
for selected regions using all reads and downsampled data for the mouse hippocampus. e) Total UMI
counts for selected regions using all reads and downsampled data for the E12.5 mouse eye. f) The
summed UMI counts for marker genes across five individual 100pmx100pum regions in the mouse
hippocampus, along with mean and standard deviation. g) The summed UMI counts for marker genes
across five individual 100pumx 100um regions in the E12.5 mouse eye, along with mean and standard
deviation. h) Total UMI counts of detected genes are compared between Visium (x-axis) and Stereo-
seq (y-axis). Each dot represents a gene, shown in black. Genes that display expression at the 90th
percentile with Stereo-seq but are at the 10th percentile in Visium are highlighted in red and labeled
with their gene symbols. i) A heatmap displays the log,y-transformed expression of genes that are
specifically not captured by Visium but are captured by Stereo-seq for E12.5 mouse eyes.
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s saturation. This observation suggests that sST data requires considerably more reads
s for optimal performance, with the potential for increased sensitivity.

107 Next, we compared the sensitivity of each sST method by summing the total
s counts within the selected regions. Stereo-seq had many more sequencing reads for the
109 same region compared to other platforms, resulting in higher total counts when all
uo reads are used (Figure 2d and e, left panel). However, when the effect of sequencing
m  depth is controlled, Slide-seq V2 data consistently demonstrated higher sensitivity
12 than other platforms, in both the eye and hippocampus. This observation aligns with
us  the saturation plot results (Figure 2b,c), where the total counts from Slide-seq V2 data
na  exhibited a greater increase with increasing read number. In contrast, DBiT-seq data
us consistently showed the lowest sensitivity (Figure 2d and e, right panel). Additionally,
ue the impact on the relationship between the number of counts and features per spot
w7 is more pronounced in Stereo-seq data when comparing downsampled results to the
us results obtained using all reads (Supplementary Figure 5).

119 To provide a more detailed assessment of the differences in sensitivity among
10 selected sST methods, we proceeded to measure the RNA content of marker genes
11 known to be expressed in specific regions using downsampled data. In CA3 of the
122 hippocampus, we compared the sum of counts for Prdm8, Prox1, and Slc17a7 within
123 100pumx 100pm regions (selected based on the largest physical resolution value among
¢ the sST methods applied). Our findings revealed that the expression patterns of these
125 marker genes mirrored the total count results, with Slide-seq exhibiting the highest
s sensitivity and DBiT-seq displaying the lowest (Figure 2f). In the case of E12.5 mouse
w7 eyes, we compared the sum of counts for Vit, Crybb3 (lens), and Aldhlal (neuron
s retina) within 100pmx100pm regions. Similarly, Slide-seq demonstrated the highest
129 sensitivity, while Visium did not generate as many counts for marker genes in regions
10 where their expression was expected (Figure 2g). Furthermore, through pairwise com-
1w parisons, we identified genes consistently expressed in the lens across all sST methods,
132 except for data generated by Visium (Figure 2h, Supplementary Figure 6a), includ-
s ing Crybb3 and Cryaa (Figure 2i). Importantly, this inconsistency did not appear
1 to be attributed to the preprocessing pipeline and gene annotations (Supplementary
s Figure 6b), indicating a systematic gene-specific bias of Visium towards the lens. In
136 an attempt to correlate this bias with various gene attributes, including gene bio-
1w types, length, and GC content percentage, we discovered that these biased genes,
s which exhibit low expression in Visium, are predominantly protein-coding. Moreover,
10 no significant bias was detected in terms of GC content or gene length (Supplementary
w Figure 7).

141 In our investigation of the mouse OB, after annotation, we assessed the sensitivity
12 of selected sST methods, considering layers with varying densities of total counts.
13 Notably, PIXEL-seq exhibited the highest sensitivity, while HDST demonstrated the
1 lowest sensitivity at a 10pum physical resolution (Supplementary Figure 8).

ws 2.3 Molecule-lateral diffusion

us In addition to molecule capture sensitivity per unit area, another crucial quality
w  parameter is the spatial accuracy of mRNA detection. To assess such accuracy, we
us employed two analysis methods to measure molecule lateral diffusion: 1) Plotting the
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1o intensity profile of a specific gene across the selected region. 2) Quantifying the dis-
150 tance between the left width at half-maximum (LWHM) of intensity in the chosen
1 region [19], focusing on histological structures where the expression of the selected
12 gene should exhibit a significant difference—showing high expression in one part of
13 the region and minimal to no expression in the rest. These analyses were conducted
1« using count data generated from all reads.

155 In our evaluation of the OB, we selected Slc17a7 as the marker gene due to its
15 expected expression specifically in Mitral and Tufted (M/T) cells, which form distinct
w7 layers [20] and in glutamatergic neurons located at the base of the glomerular layer
s (GL) [21]. We confirmed Slc17a7s expression at these locations via in situ hybridiza-
e tion (ISH) from the Allen Brain Atlas [22]. In this analysis, our focus was on Slc17a7's
1o expression in M/T cells. As illustrated by the expression plots of Slc17a7 in each
e sST dataset (Figure 3a, left panel, Supplementary Figure 9), we specifically selected
12 regions (N=6) where Slc17a7 was expressed in the middle. Our observations, based
163 on intensity plots and LWHM measurements, revealed significant lateral diffusion by
s Stereo-seq V1 of Slc17a7in the OB. Notably, Slide-seq V1.5 and PIXEL-seq exhibited
s relatively better control over this diffusion (Figure 3b-d left panel).

166 In our analysis of the brain, we selected Ptgds as the marker gene, as it has been
17 confirmed by ISH to be specifically expressed in a particular location within vascular
s cells [23] (Supplementary Figure 10a,b). By examining the expression plots of Ptgds
10 and its intensity plots along with LWHM measurements, we noted severe lateral dif-
o fusion in the Stereo-seq dataset. In contrast, Slide-seq V2, followed by BMKMANU
51000, exhibited better control over such lateral diffusion issues (Figure 3a-d mid-
w2 dle panel, Supplementary Figure 10c). We further validated these observations by
3 conducting a diffusion analysis on downsampled Stereo-seq data, confirming that the
s challenge of lateral diffusion persisted despite a lower sequencing depth compared to
ws other sST datasets. (Supplementary Figure 10d-f) This suggests that downsampling
we could not resolve the lateral diffusion issue for Stereo-seq data.

177 For our examination of eye tissue, we selected Pmel as the marker gene due to its
s specific expression in melanocytes, which encircle the lens and form a circular pat-
wo  tern [24]. Interestingly, in this context, Stereo-seq demonstrated the best control over
10 lateral diffusion, followed by Slide-seq V2. (Figure 3a-d right panel, Supplementary
w1 Figure 11) This observation contrasts with our findings in the other two tissue types,
12 indicating that tissue type exerts a considerable influence on the diffusion process.
183 Diffusion is greatly impacted by permeabilization time. We have showed in our perme-
1 abilization optimization experiment (Supplementary Figure 2B,3B,4B) that different
185 permeabilization time significant impact the diffusions.

w 2.4 Clustering and cell annotation across technologies

17 We next applied selected sST methods to gain insight into biological questions where
188 higher capture sensitivity and well-controlled diffusion are important.

189 We selected E12.5 mice eyes, known for their distinctive structure featuring the
10 lens, surrounded by the retina, and then melanocytes [25-27].
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Fig. 3 Comparison of diffusion of data generated by different platforms. a) Expression patterns of
selected marker genes known to be highly expressed in specific regions. These markers include Slc17a7
in the mouse olfactory bulb (left panel), Ptgds in the mouse brain (middle panel), and Pmel in the
E12.5 eye (right panel). The plots are based on raw count values. Black boxes indicate the selected
regions used for diffusion calculation. b) Expression levels of the aforementioned marker genes (from
panel a) are aggregated for every 10pm along 50um in the olfactory bulb, 500um in the brain, and
300um in the eyes, as shown in a). UMI counts are averaged across modalities, normalized for each
platform, and presented in a density plot with the area under the curve set to 1 (details in Methods).
c) Expression level of the marker genes as mentioned above (from panel a) within selected modalities
are provided, with black dashed lines delineating the boundaries used for diffusion calculations. d)
The left half-width half maximum (LWHM) of the profile was then calculated for each gene (from
panel a) in each modality and displayed in boxplots. Each dot represents the LWHM for a given
modality. Modalities for which LWHM could not be calculated were removed.
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1 2.4.1 Annotating regions by clustering results

12 With the basic knowledge of general cell states within the eye area, our next objective
13 was to annotate the spots captured by selected sST platforms using various clustering
e methods. We aimed to determine whether we could consistently identify more detailed
15 and coherent cell subsets across all samples.

196 Such resulting annotations of cell subsets not only served as a benchmark for
17 evaluating the methods employed in this study but also provided valuable insights
18 into the intricacies of cell states within the developing eye of E12.5 mice.

109 Before delving into our comparative analyses, Figure 4a showcases our findings
20 about the cell subsets that we expected to observe within an E12.5 mouse eye. In
20 this tissue, the anticipated morphological structure unfolds from the innermost space,
22 housing the lens and lens vesicle, which are enveloped by neuronal retina cells form-
203 ing distinct subsets in specific locations. The neuronal retina cells are encircled by
2a  melanocytes, with the rostral side hosting corneal mesenchyme, while the caudal side
205 is composed of epithelial cells. These annotations provided us with a foundation for
206 our subsequent evaluations and comparative assessments.

207 2.4.2 Comparison between clustering results

28 In our comparative analysis of clustering results, we conducted evaluations from two
200 perspectives:

210 1) Clustering Methods: We systematically employed three distinct clustering meth-
au ods: Seurat [28], which exclusively considers transcriptomic profiles, and DR.SC [29]
22 and PRECAST [30], which incorporate spatial information alongside gene expres-
a3 sion data. Recent benchmark studies have reported that methods leveraging spatial
2 location information demonstrate promising clustering results in specific datasets.
25 However, they do not consistently surpass or exhibit greater robustness compared to
zns  methods that solely rely on gene expression data [31]. Our observations align with
a7 this conclusion, with Seurat consistently demonstrating robust and stable performance
28 compared to the other 2 methods in detecting expected cell subsets as shown in Figure
a9 4a, left panel, and Supplementary Figure 12.

220 2) sST Methods: In our comparisons between sST platforms, we focused primarily
21 on the results generated by Seurat. We annotated spots for each sST method indi-
2 vidually (Figure 4a and Supplementary Figure 13). Our analyses unveiled variations
23 in the ability of different methods to consistently identify the expected cell subsets.
24 Notably, Slide-seq V2 and Stereo-seq data delivered a nice separation of spots for
25 comprehensive subset annotations, successfully capturing all anticipated subsets. Con-
26 versely, BMKMANU S1000 data faced challenges in cell state detection, particularly
27 in identifying melanocytes. This difficulty may stem from the pronounced lateral dif-
»s fusion observed in BMKMANU S1000 data (as depicted in Figure 3c,d right panel),
29 making it difficult for clustering methods relying solely on expression profiles to retain
20 this specific cell type. On the other hand, Visium data faced certain limitations in
an  detecting the anticipated cell subsets. These challenges were primarily attributed to
22 the relatively low physical resolution and hence a restricted number of spots available
23 in the eye area (approximately 75 spots in total for each sample). Within each of these
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Fig. 4 Comparison on downstream performance. a) Expression profiles generated by each platform
were processed to obtain clustering results. Known cell types and states are colored in the left-most
panel. Additionally, a schematic plot represents the expected cell states, arranged from outer space
to inner space and from top to bottom. On the right-hand side, clustering results are presented, with
spots color-coded by annotated cell states depicting the identifiable cell states. CM represents corneal
mesenchyme; pNR represents presumptive neural retina; LV represents lens vesicle. b) Clustering
was conducted on downsampled eye data from each platform, with an equal total read count across
platforms in the eye area. The correspondence between annotations obtained from clustering based
on all reads and clustering based on downsampled data is visualized in a heatmap. The number of
spots in this correspondence is presented after log; transformation without scaling. c¢) With Stereo-
seq data as an example, spatial expression profiles of Aldhlal and Aldhla3, which are expressed in
pNR2 and pNR3 are shown at 10 pum resolution. The number of spots with the expression of Aldhlal
above 0 is 1,329, and of Aldhla3 above 0 is 217. d) Expression profiles of Aldhlal and Aldhla3 in
snRNA-seq data are presented, The number of cells having an expression of Aldhlal above 0 is 93,
and of Aldhla3 above 0 is 161. €) An overview of cell states compared in the marker gene detection
analysis, with pNR4 and pNR1 highlighted in the top panel, and lens and melanocytes highlighted in
the bottom panel. f) Number of marker genes detected with different numbers of reads used for each
sST method in the comparison between pNR4 aild pNR1 (top panel). The same analysis is applied
to the lens and melanocytes in the bottom panel. g) In the top panel, an Upset plot displays the
intersection of marker genes obtained by different sST methods using all reads for the pNR4 and
pNR1 comparison. Genes shared among all three platforms are denoted in blue, those shared between
two platforms are in purple, and uniquely obtained genes are represented in pink. The bottom panel
presents a similar analysis for lens and melanocytes.
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24 100pmx100pm spots, cells were mixed, making identifying intricate cell subsets more
25 challenging (Figure 4a, right panel).

s 2.4.3 Influence of downsampling on clustering results

2w We observed that sequencing depth influences the total counts of spatial transcrip-
23 tomic data (Figure 2b-e). In light of this, we set out to investigate how sequencing
29 depth impacts clustering results. Our exploration of clustering results on downsam-
20 pled data involved two key aspects: 1) We assessed the correspondence between the
o1 downsampled data and the full data. 2) We calculated entropy measures for cluster
22 purity (ECP) and accuracy (ECA) based on the clustering results obtained with the
23 full data as a reference for downsampled data generated at various proportions as
24 shown in Figure 4b. Remarkably, we discovered that the downsampled data was capa-
25 ble of detecting nearly all of the cell subsets identified by the full data (Figure 4b,
26 Supplementary Figure 14). However, when evaluating ECP and ECA across differ-
27 ent proportion values, we observed relatively high values, signifying a notable degree
us  of inconsistency. This inconsistency could be attributed to the fact that while the
29 majority of cell subsets effectively formed distinct clusters, a portion of cells grouped
0 into different clusters, notably between cells from different subsets of neuronal retina
1 cells. This effect was particularly pronounced in subsets between populations such as
2 lens and lens vesicles; 4 neuron retina subsets (Figure 4b), which are more similar in
3 expression profiles.

s 2.4.4 Comparison between sST data and snRNA-seq data

s We consistently observed well-patterned expression of Pmel, Crybb3, Atoh7, Enfa5,
6 Aldhlal, and Aldhla8 across all sST datasets. These genes were selected as they serve
»s7  as markers for specific cell types, such as melanocytes, lens, presumptive neural retina
»s  (pNR)2, and pNR3 (Figure 4c, Supplementary Figure 15). Although the absolute
0 position for some of the region is not exactly the same but their relative position
%0 remains consistent, such as Aldhla3 located in rostral ragion of the retina layer while
21 Aldhlal patterned towards caudal region (Supplementary Figure 16).

262 In addition, we obtained snRNA-seq data with eye region sectioned as input. How-
%3 ever, a limited number of cells were found to express the aforementioned genes, and
26 these cells were primarily clustered in the lower corner of the UMAP plot (Figure
s 4d, Supplementary Figure 15¢). Unfortunately, we were unable to further categorize
»6 this small subset into more detailed subgroups, as was the case with the sST data.
%7 Interestingly, we also noted that Crybb3’s expression values in the snRNA-seq data
s were relatively lower than expected. This is in line with our earlier observation that
%0 Crybb3 was not found to be expressed in the eye area captured by Visium, indicating
a0 a potential capture bias associated with 10X technology.

o While snRNA-seq data may not capture as many cells in the eye area as sST
a2 methods do, it serves as a useful reference dataset for annotating the sST data. As
o3 illustrated in Supplementary Figure 17, the integration of snRNA-seq data with sST
oa data using Seurat aided the annotation of sST data. For instance, it improved the
;s annotation of epithelium cells in Stereo-seq data, which had been relatively challenging
o due to an unknown cluster of cells with mixed expression profiles. This cluster was
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o better resolved using the projection of snRNA-seq epithelium cells (Supplementary
xs  Figure 17a). Additionally, the projection facilitated the separation of melanocytes and
29 epithelium cells in BMKMANU S1000 data (Supplementary Figure 17b).

280 Another issue that deserves mention is the susceptibility of sST technologies to
»s1 blood contamination, which is often introduced during the tissue preparation and sec-
22 tioning process and is difficult to avoid. In contrast, snRNA-seq can mitigate this
23 effect using microfluidic techniques. We used the Hba-al gene as an example to evalu-
24 ate the influence of blood contamination in these sST methods. Our findings revealed
25 that Visium, followed by BMKMANU S1000, were significantly impacted by blood
6 contamination, with all Visium spots and 70% of BMKMANU S1000 spots express-
27 ing Hba-al. In contrast, Stereo-seq data exhibited a relatively similar level of blood
28 contamination compared to snRNA-seq, and Slide-seq V2 had the lowest amount of
20 blood contamination (Supplementary Figure 18).

» 2.5 Marker gene detection across technologies

2 Prior studies have underlined the effectiveness and robustness of using a Wilcoxon
22 rank-sum test when identifying marker genes [32]. We employed this test within
203 Seurat to find marker genes between clusters. Analysis of top marker genes reveals
24 technology-specific biases in the selection of these markers. For instance, Paz6, a
25 transcription factor known as a master regulator of neural lineages, particularly in
26 the retina [33], exhibited variations in representation among different technologies.
207 Specifically, Stereo-seq data highlighted Paz6 exclusively in the pNR3 cluster, whereas
28 Slide-seq V2 and BMKMANU S1000 data depicted Pax6 expression across the entire
20 neural retina (pNR1-4) (Supplementary Table 3), consistent with existing literature.
s0  This observation underscores the influence of technology choice on the identification
sn  of top markers for specific cell types or clusters. Similarly, disparities were observed
s in the expression of Hes genes in progenitors of the neural retina and Soz2 in pNR1
w3 and pNR2 (Supplementary Table 3).

304 The analysis of clustering results on downsampled data has shown that general cell
;s subsets can still be adequately retained even with fewer sequencing reads. However, it
s appears that a few subsets, particularly those sharing similar expression profiles are a
s7  challenge to be clearly separated. To further investigate the effects of downsampling,
;s we compared the marker genes identified in downsampled data with those in the full
w0 dataset. We selected 2 pairs of cell subsets to compare the detection performance for
a0 cell subsets with relatively similar expression profiles and those that are more distinct.
su  We employed conducted the marker gene detection in two scenarios: 1) pNR4 and
sz pNRI1, which exhibit higher similarity, and 2) lens and melanocytes, which have lower
a3 similarity, to identify marker genes (Figure 4e).

314 Our observations revealed that the number of marker genes increased as the num-
a5 ber of reads increased in both pairs of comparisons. Notably, the increase in marker
36 genes was more pronounced with deeper sequencing, as illustrated in Figure 4f and
sz Supplementary Figure 19. The ranking of marker gene detection performance across
s1s sST methods aligns with the results depicted in Figure 2d in the comparison between
a9 cell subsets with relatively distinct expression profiles. In particular, Slide-seq V2
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s20 exhibits higher sensitivity (Figure 4f, bottom panel). Furthermore, our analysis iden-
s tified a set of genes consistently identified as marker genes across different platforms
3 in each of the comparison pairs. However, each platform exhibited a great number of
323 unique marker genes as well (Figure 4g).

324 Cell-to-cell communication was applied afterward, but no consistent results could
w25 be found across the communication methods applied including CellChat [34] and
26 CellPhoneDB v/ [35] and sST methods (Supplementary Figure 20).

» 3 Discussion

»s Evaluating spatial transcriptomic methods is more challenging than evaluating
29 ScCRNA-seq methods. First, it is harder to design a reference tissue for spatial transcrip-
30 tomics. For scRNA-seq, one could use cell line mixtures/PBMC samples [8, 36, 37],
s or even purified and diluted mRNA to obtain consistent inputs for different technolo-
s gies [36]. For spatial transcriptomics, if we use genuine tissues with clear cell type
sz and gene expression patterns, the position and ground truth are then less obvious and
s limited by our understanding of reference tissues. Second, the measurements are not
15 performed on the same unit. For methods like Visium, the diameter of a spot is larger
16 than 50 microns resembling a mini-bulk RNA-seq. For methods such as Stereo-seq,
s the spot size is sub-micron, which is much smaller than a single cell.

Gene detection ~ Gene detection

(all reads) (downsampled) Diffusion Downstream Affordability [Spot Typical amay size |Commer- Availability
., —— |[dstance cialized
¢ o (micron) Set-Up
o e Complexity | multiomics
Stereo-seq ¢ ® o Y ® . 05 1emx1em Yes hard No
max
13.2cmx13.2¢m)
customizable Ves )
SideseqV2 @ @® @ [ ] { 10 S s medium | vYes
(max: 5mm)
BMKS1000 ® @ ° ® e ® o ® |48 |ossemxossem | Yes | hard | No
B &) unlimited size No medium | No
PIXEL-seq L (OB: 2cm x 0.9 cm)
Visum® @ @ e @ [ ] [ ] 100 0.65 cm x 0.65 cm Yes hard No
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DBiT-seq * . g 3 20/401100| 0.2 em x 0.2 em No ey Yes
HDST s 2 057cmx 024 cm No hard No
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Fig. 5 Summary of results and characteristics of sST methods. The sST methods have been ranked
based on their performance in the specified categories, with the highest-performing methods posi-
tioned at the top. In the left panel, each ranking is represented by color and spot size. In the right
panel, essential characteristics of the sST methods examined are outlined. Set-up complexity repre-
sent how difficult it is to build the method from scratch.

338 We carefully designed our benchmarking study to address these challenges. For
10 the first problem, we selected a set of reference tissues with the following criteria: 1)
s0  the tissue should be from the widely used model organism, accessible at most research
s institutes; 2) the tissue should have stable cell-type patterns and specific marker gene
s expression; and 3) the reference region should have clear morphology that is easy
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w3 to find in sectioning. Together with the reference tissue, we developed a sectioning
us protocol to help people reproduce and generate comparable data in the future. For
us  the second challenge, we employed multiple benchmarking metrics and workflows to
us compare different methods on the same tissue region. We used both all-reads and
a7 downsampled data in our comparisons. Downsampling was implemented to mitigate
us the impact of variations in sequencing depth and cost, however as this may not bring all
ue  methods to the same standard as the required number of reads to achieve satisfactory
0 results may differ, we also used all reads in the analysis as complementary results.

351 In this study, we generated cadasSTre, a cross-platform dataset for sequencing-
2 based ST benchmarking that allowed systematic evaluation of 6 sST methods across
3 22 experiments. We compared various aspects of data from basic metrics to down-
s stream analysis, ranging from sensitivity, and diffusion to clusterability and marker
35 gene detection (Figure 5). Our results suggest spatial transcriptomics requires more
36 sequencing to reach saturation and data generated in this study are well below the
7 saturation level. Technologies such as Stereo-seq require much more sequencing cost
s to generate high-quality data. Stereo-seq shows the best capture efficiency with raw
0 sequencing depth while Slide-seq v2 gives the best capture efficiency with normal-
w0 ized sequencing depth. Interestingly, we found unexpected gene capturing bias on the
s Visium platform, with marker genes consistently captured by other technologies not
2 showing up in the Visium data. Considering Visium is the most widely used com-
%3 mercial platform, it is important to further verify its gene-capturing bias on other
¢ tissues.

365 The spot size has become an important metric as a surrogate of the resolution
w6 for each method. However, in this study, we highlighted diffusion as a key factor that
7 affects the actual resolution. We found different technologies show distinct diffusion
s profiles on different tissues. For example, Stereo-seq gives excellent diffusion control
% on mouse embryo tissue but has much stronger diffusion-induced artifacts in mouse
s brains. Permeabilization time has a great impact on the molecule diffusion of sam-
sn ples and the tissue-to-tissue variations in diffusion could be a result of it. Although
sz some technologies have sub-micron spot sizes, their real resolution would never reach
sz the same level due to limited sensitivity and high diffusion. Further development of
s ST would benefit from increased diffusion control and improved assay to determine
a5 the permeabilization condition and time, which is a key factors in sST technology
s development.

377 Overall, our study generated the first systematic benchmarking scheme of sST
s methods. Although we strive to make the most of this study, there remain several areas
;o that could be further improved. Also, our understanding of mouse eye development
s is still limited, making it hard to construct a ground truth in mouse embryo data.
s The benchmarking dataset generated in this study could be used to further compare
s computational tools, but it is important to use diverse tissue and data to develop more
3 generalized spatial tools. Although the goal of this study is not to comprehensively
s benchmark computational tools, we found that clustering tools designed for spatial
s data may not give better performance than clustering methods for single cells, which
6 agrees with a comparison study [31]. We also found that cell annotations derived from
7 single-cell references may not yield detailed cell states and that clustering derived from
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38 spatial data could give complementary results that were sometimes better at resolving
0 rare cell states with spatial patterns. It is important to consider both analyses with
0 and without single-cell references in annotating spatial data.

301 The sST field is rapidly evolving and the performance of each technology is likely
s to change with time as they are further optimized. Continuing evaluation is required
.3 to keep pace with this fast-moving field. Spatial multi-omics methods are still in
s their early stages of development [38-41], and new technologies need to be estab-
ss  lished. Therefore, we believe a community-driven spatial benchmarking league would
s be beneficial to the future of spatial multi-omics. Our benchmarking efforts highlight
s7  the benefits and current issues in the sST field, set up standards for comparing sST
s methods, and take the first step towards benchmarking spatial multi-omics technology.

0w 4 Methods

w 4.1 Sample preparation
« 4.1.1 Reference sample

w2 All relevant procedures involving animal experiments presented in this study are com-
w03 pliant with ethical regulations regarding animal research and were conducted under the
ws approval of the Animal Care and Use Committee of Westlake University (license num-
ws  ber AP#23-111-LXD). Animals were group housed with a 12-hour light-dark schedule
w6 and allowed to acclimate to their housing environment for two weeks post arrival.
wr Mouse embryos were collected from pregnant C57BL/6J female mice at embryonic
we day 12.5 (E12.5). Mouse brain was dissected from 8-week-old C57BL/6J male mice.

w 4.1.2 Sample preparation, embedding, sectioning, and histological
410 testing

a1 Mouse embryo

a2 1) E12.5 pregnant female mice were anesthetized with carbon dioxide, and the whole
a3 uterus was collected and washed 3 times in ice-cold DPBS; 2) The uterus was separated
as under a stereo microscope, and each embryo was numbered and photographed with
a5 a Motorized Fluorescence Stereo Zoom microscope (ZEISS, Axio Zoom V16); 3) A
a6 yolk sac was collected to extract DNA for genotyping (identification of sex); 4) Using
a7 dust-free paper to gently wipe the liquid on the surface of the embryo, the embryo
as was rinsed with ice-cold Tissue-Tek OCT (Sakura, 4583), and then moved to the
ao  encapsulation box with ice-cold OCT; 5) Air bubbles were carefully removed with
w20 the syringe, and the embryo was placed in sagittal position with tweezers; 6) The
a1 location of the embryonic eye was circled and marked the orientation of the embryo,
w2 then tissues were transferred to a -80°C freezer, snap-frozen, and stored; 7) Embryos
w3 of average size and normal phenotype were selected for subsequent cryosectioning and
w24 sequencing (note: the embryos used in our benchmarking analysis came from a litter
w5 of mice); 8) Before sectioning, the tissue block was removed from the -80°C freezer
«6 and placed in a cryostat (Leica, CM1950) to balance for at least 30 min; 9) The tissue
27 block was smoothly glued to the sample head so that the embryo was sectioned in a
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w8 sagittal position. If necessary, the angle can be fine-tuned so that the blade section is
mo  strictly parallel to the cross-section of the tissue block; 10) Cryosections were cut at a
a0 thickness of 10 pm, both the left eye and right eye can be collected; 11) The structure

a1 of the sequenced cryosections is shown in the following image:
iy

432 SIS ! ; o Tl
433 12) H&E staining procedure: cryosections were balanced at room temperature for
ss 30 min, and then fixed with 4% PFA for 3 min. Then, the sections were washed
s with ddH2O for 2 min, stained with hematoxylin for 6 min, washed with ddH»O,
a6 stained with eosin for 2 min, washed with ddHO. After that, sections were gradient
s dehydrated (75% ethyl alcohol for 1 s, 85% ethyl alcohol for 1 s, 95% ethyl alcohol
as for 1 s, 100% ethyl alcohol for 1 s; 100% ethyl alcohol for 1 min), cleared (xylene
a0 for twice), and sealed with Permount TM Mounting Medium after airing. Finally, the
wo  figure was scanned using a Motorized Fluorescence Microscope (Nikon, Ni-E).

w1 Mouse brain

a2 1) 8-week-old male mice were anesthetized with carbon dioxide and decapitated; 2)
w3 The whole brain was rapidly dissected, numbered, and photographed with a Motor-
s ized Fluorescence Stereo Zoom microscope; 3) Using dust-free paper to gently wipe the
ws  liquid on the surface of the brain, the brain was rinsed with ice-cold Tissue-Tek OCT
ws  (Sakura, 4583), and then moved to an encapsulation box with ice-cold OCT; 4) Air
w7 bubbles were carefully removed with the syringe, and the brain was placed properly
ws  with tweezers; 5) The location of the hippocampus was circled and marked the orien-
wo  tation of the brain, then tissues were transferred to a -80°C freezer for snap-frozen and
0 storage; 6) Brains of average size and normal phenotype were selected for subsequent
1 cryosection and sequencing; 7) Before sectioning, the tissue block was taken out from
52 -80°C freezer and placed in a cryostat (Leica, CM1950) to balance for at least 1 h; 8)
ss3 The tissue block was smoothly glued to the sample head, and the cerebellum was ori-
s ented towards the experimenter so that the brain was sectioned in a coronal position.
»ss  If necessary, the angle can be fine-tuned so that the blade section is strictly parallel
s6  to the cross-section of the tissue block; 9) Cryosections were cut at a thickness of 10
s pm; 10) The structure of the sequenced cryosections is shown in the following image:
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500 ym

458
459 11) H&E staining procedure: cryosections were balanced at room temperature for
w30 min, and then fixed with 4% PFA for 3 min. Then, the sections were washed
w1 with ddH2O for 2 min, stained with hematoxylin for 6 min, washed with ddH5O,
w2 stained with eosin for 1 min, washed with ddH50O. After that, sections were gradient
w3 dehydrated (75% ethyl alcohol for 1 s, 85% ethyl alcohol for 1s, 95% ethyl alcohol for 1
w8, 100% ethyl alcohol for 1 s, 100% ethyl alcohol for 1 min), cleared (xylene for twice),
w5 and sealed after airing. Finally, the figure was scanned using a Motorized Fluorescence
w6 Microscope (Nikon, Ni-E).

w  4.1.3 In-situ imaging with padlock probes

ws To validate the expression of marker genes, we performed in-situ hybridization and
w0 imaging following a simplified version of targeted ExSeq [42]. More specifically. we used
w4 fixed barcode regions for distinct fluorescent probes (FAM6, CY3, TXRED, CY5)
an 0 we could detect at most 4 genes at the same time without performing muli-round
w2 imaging for in-situ sequencing. The tissue was sectioned on Leica CM1950 Cryostats,
sz with 10-micron sections placed on the CITOTEST adhesion microscope slides. The
s section was then fixed with 4% formalin for 15 minutes at room temperature and
a5 washed two times with PBS. Permeabilization of tissue was done with ice-cold 70%
ws  EtOH overnight at -20°C. RNase inhibitor (Lucigen) was added at 0.4 U/ul throughout
w7 the incubation until the rolling cycle amplification (RCA) was done. The padlock probe
ws  was diluted at a final concentration of 5nM per probe, in wash buffers with 2XSSC
a9 and 20% formamide. Hybridization was done overnight at 37°C, then washed with the
s same wash buffer (2XSSC and 20% formamide) 3 times for 15 minutes each, followed
w1 by washing with PBS for 15 minutes at 37°C. SplintR ligase (NEB, M0375) was used
w2 for probe ligation at 37°C for 2.5 hours. RCA was performed at 30°C overnight using
w3 Phi29 enzyme mix (NEB, M0269L). fluorescent probes hybridization was done at 2X
s SCC and 10% formamide buffer mix, diluting the probes at 100 uM and incubate at
w5 37°C for 1 hour. Imaging was performed with a NIKON A1 confocal microscope with
a5 10X objectives and 2x2 image stitching.
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s 4.1.4 Protocols used in different ST methods
s See Tablel.

w 4.2 Data processing
w0 4.2.1 Preprocessing

w1 We preprocessed fastq files from multiple platforms using their respective preprocess-
w2 ing pipeline (where provided) and updated scPipe to allow sample processing with
w3 unified functions for data from different sST technologies starting from fastq files.

404 Mouse GRCm39 was used as a reference for alignment in each of the pipelines for
w5 locally generated data.

296 Visium data were processed with spaceranger (v2.1.0), and aligned with STAR
w7 2.7.10b.

208 BMKMANU S1000 is a technology developed by BMKGENE
w9 (https://www.bmkgene.com/). Similar to HDST, it uses barcoded beads deposited
s0 on patterned array. Data were processed with BSTMatrix (v2.3.j), and aligned with
so STAR 2.7.10b.

502 Slide-seqV2 generated bam files of pucks of mouse eyes (Puck-190926_03) and
ss  hippocampus (Puck-191204_01 and Puck_200115.08) were downloaded [15].

504 Stereo-seq data were processed with SAW (v6.1).

505 DBiT-seq data underwent initial filtering using a predefined barcode list, and
ss  subsequently, fastq file 1 was restructured to adopt the format of spatial barcodes
sor  followed by UMIs. The processed data were further analyzed using scPipe (v2.0.0) to
s generate spot-by-gene count matrices.

s0 4.2.2 Selection of region of interest and downsampling

s After acquiring count matrices and associated location data for the datasets generated
su by the aforementioned sST platforms, we aimed to mitigate the impact of variable
sz sequencing depths and costs. To achieve this, we extracted spots located within con-
513 sensus regions in reference tissues, specifically the hippocampus in the brain and the
su eye in mouse embryos, for comparative analysis.

515 Spot selection was guided by histological images (H&E images), feature plots of
si6 total counts, and marker genes (Pmel for the eye and Slc17a7 for the brain). These
si7 - boundaries were meticulously delineated manually.

518 Subsequently, spots falling within the predefined boundaries for each sample were
si0 isolated and used for downsampling. An equal number of reads were chosen within
s0  selected spots for both eye and hippocampus data, based on the readID of the selected
s reads. These selected reads were then isolated from the BAM files generated in the
s aforementioned pipelines.

523 The BAM files were further processed to demultiplex based on spatial barcodes and
s quantified into matrices using UMIs and aligned gene information, using new functions
55 introduced in scPipe. In addition to generating count matrices with an equivalent
s number of reads across platforms, we also processed reads from each platform in
so7 - specific proportions using scPipe.

19


https://doi.org/10.1101/2023.12.03.569744
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.03.569744; this version posted December 4, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Stereo-seq BMKMANU S1000 10X Genomics DBiT-seq
Visium
1 Tissue Fixation 1 Tissue Fixation 1 Tissue Fixation
None 2 Tissue HE Stain- 2 Tissue HE Stain-
ing ing
None 3 Tissue brightfield 3 Tissue brightfield
imaging imaging
Tissue  Optimization 2 Permeabilization 4 Permeabilization 4 Permeabilization
(Pre-Experiment) Time Course Time Course Time Course
3 TRITC cDNA 5 Cy3 ¢cDNA Syn- 5 TRITC c¢cDNA None
Synthesis thesis Synthesis
4 Tissue Removal 6 Tissue Removal 6 Tissue Removal
5 Chip TRITC 7 Slide Cy3 Imag- 7 Slide TRITC
Imaging ing Imaging
Permeabilization Time  Brain: 12 min Brain: 15 min Brain: 12 min
Embryo: 18 min Embryo: 6 min Embryo: 6 min
1 Cryosection on 1 Cryosection on 1 Cryosectionon 1 Cryosec-
the Stereo Chip the S1000 Gene the Visium Gene tion on

Spatial

Expres-

2 Fixation:
Methanol for 30
min

3 Tissue ssDNA
Staining
4 Tissue FITC
Imaging

5 Tissue Permeabi-

sion(Formal-Experiment) lization

6 Reverse Tran-
scription

7 cDNA Release

8 cDNA Amplifica-
tion

9 c¢cDNA Cleanup
and cDNA QC

HE: Adjacent
Tissue Section

Expression Slide

2 Fixation:
Methanol for 30
min

3 Tissue HE Stain-
ing

4 Tissue brightfield
Imaging

5 Tissue Permeabi-
lization

6 Reverse Tran-
scription
7 Second Strand
Synthesis

8 cDNA Amplifica-
tion

9 c¢cDNA Cleanup
and cDNA QC

HE: The Same
Tissue Section

Expression Slide

2 Fixation:
Methanol for 30
min

3 Tissue HE Stain-
ing

4 Tissue brightfield
Imaging

5 Tissue Permeabi-
lization

6 Reverse Tran-
scription
7 Second Strand
Synthesis

8 cDNA Amplifica-
tion

9 c¢cDNA Cleanup
and cDNA QC

HE: The Same
Tissue Section

poly-L-lysine
coated glass
slide

2 Fixation:
formalde-
hyde 20 min
3 Incubations
with ADT's

4 RT with Bar-
code A Oligo-
dT

5 Ligation with
Barcode B

6 Tissue Lysis

7 Template
Switch

8 cDNA Ampli-
fication

9 cDNA
Cleanup  and
cDNA QC
HE: Adja-
cent Tissue
Section

Library Construction

cDNA was frag-
mented and
amplified. Then

the products were
filtered
(0.6X+0.2X)

twice

To construct the sequencing library, cDNA was frag-
mented, end-repaired, and A-tailed. Then the adaptor was
ligated so that dual index PCR could amplify and dis-
tinguish these samples by different index sequences. The
distribution of the main peak was between 200 to 600bp
and the libraries were sequenced in the same sequencing

run.

Table 1 Protocols used in different ST methods.
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s 4.2.3 Sensitivity and diffusion of marker genes

s20  For each sample, we calculated the sum of total counts within selected regions using
s  both the full set of reads and downsampled reads. To assess marker gene sensitivity, we
sn  considered specific genes known to be expressed in the dorsal anterior (DA) region of
52 the hippocampus in adult mice (Prdm8, Prozl, and Slc17a7), as well as genes known
s to be expressed in the lens of the eyes (Vit and Crybb3) and a subset of neural retina
s cells in the eyes of E12.5 mice (Aldhlal). In each sample, we selected five regions
s measuring 50um by 50um in the eyes and five regions measuring 100pum by 100um
s in the hippocampus, where these genes were known to be expressed. We individually
sy summed the total number of UMIs in these selected regions within downsampled count
s matrices to ensure the number of reads was consistent across platforms.

530 We then performed pairwise comparisons of UMI counts for detected genes across
s platforms. For eye samples, genes expressed in any one of the platforms with total
sa - counts above the 99th percentile but below the 10th percentile in any other platforms
sz were selected for heatmap plotting using a log; 0 scale.

543 To investigate the gene bias observed in Visium, as demonstrated in the afore-
s mentioned pairwise comparisons between platforms, we focused on genes meeting a
ses  specific criterion: those expressed across all other platforms with total counts exceed-
se  ing the 90th percentile and 80th percentile, yet exhibiting number of counts below
se7 1 with Visium. Our exploration of these genes encompassed an analysis of their
ss  attributes, including GC content percentage and gene length, using ANOVA analysis.
se0  Additionally, we examined the biotypes of these biased genes.

550 To assess the spatial distribution of marker genes known to be expressed in specific
ss1 regions of the reference tissues, we used Pmel for eye data, Ptgds for brain data, and
ss2 Slcl7a7 for OB data. This analysis used count matrices generated from all reads. We
53 selected regions with expression of these genes roughly in the middle of the chosen
s« regions (6 modalities of 300um by 50pm in the OB, 6 modalities of 500pum by 50um in
5 the brain, and 3 modalities of 300um by 50um in the eyes). We summed the expression
ss6  of the aforementioned marker genes for every 10pum along 50pm within 300um in OB,
ss7 - b00um in the brain, and 300um in the eyes. The UMI counts of these marker genes
sss were then aligned based on the location of peak expression and averaged. Modalities
sso  with insufficient counts for the selected marker genes were filtered out before plotting.
560 After the computation of averaged summed values across modalities, these values
s1  were subsequently normalized for each platform and depicted in a density plot with
ss2  the area under the curve standardized to 1. Subsequently, the left half-width half
53 maximum (LWHM) of the profile was computed within each modality, using non-
ses  normalized expression values across platforms. It is worth noting that we employed
ss  LWHM as an evaluation metric, drawing inspiration from the full-width half maximum
s6  (FWHM) method [19]. In the chosen region, only the left half-width half maximum
s was used, as there could be an expression of selected genes, such as Slc17a7 in OB,
ss  on the right side of the section that is biologically expected but not caused by lateral
seo  diffusion. Modalities that could not be computed with LWHM were excluded from the
s plotting process. For diffusion analysis, it is important to note that the DBiT-seq data
sn pertained to E10 embryonic eyes, whereas the other datasets were associated with
s K12.5 embryonic eyes.
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573 To address the significant diffusion in data generated by Stereo-seq in the mouse
s brain, we conducted diffusion analysis on its downsampled data, consisting of 14% of
sis  all the reads.

s 4.2.4 Cell type annotation

s7  Low-quality spots with total counts below 30% of the first quantile of total counts
sis  are filtered out before normalization, which was carried out using the median num-
sto ber of total counts from each platform as the scaling factor. Subsequently, the top
ss0 2,000 highly variable genes were identified using the FindVariableFeatures function
ss1  and used to scale the data through the ScaleData function. A total of 20 principal
22 components (PCs) were then calculated using RunPCA. To categorize spots in each eye
s sample, we employed 3 distinct methods, including Seurat (v4.3.0), DR.SC (v3.3), and
ssa PRECAST (V1.6.2).

585 Seurat initially identified neighbors based on 20 PCs, with a k-value of 5 chosen for
sss  the k-nearest neighbor algorithm in FindNeighbors. FindClusters was subsequently
ss7  applied with various physical resolutions to group known cell-type spots.

588 DR.SC was applied by setting K (the number of clusters) as 10.

589 PRECAST was applied with the number of clusters specified as 10 and using the
s0  SelectModel function to reorganize the fitting results within PRECASTObj.

s1  4.2.5 Integration of sST and scRNA-seq data

s2  We followed the instructions in Seurat with parameters reduction =‘cca’, k.filter
ss = NA, and normalization.method = ‘SCT’ in FindTransferAnchors. Dims were set
soa  as 30 with PCA used as weight.reduction in TransferData.

s 4.2.6 Evaluation of clustering on downsampled data

s ' The downsampled data were subjected to the same pipeline as described above, lever-
sov  aging Seurat to generate clustering results. These obtained clustering results were
ss subsequently compared to clustering outcomes obtained through the processing of
so9 count matrices generated from the entire set of reads. To visualize this comparison,
so we created a heatmap with a logarithmic scale, illustrating the corresponding number
s1 of spots in each of the downsampled clustering and the overall clustering results. The
ez entropy of accuracy and purity were then calculated. ECA and ECP are defined as
603 follows:

iy St plas) loa(p(z;)) X
i M

604 where M denotes the number of clusters generated from a method (the clustering
s solution to be evaluated), N; denotes the number of elements in the ith cluster based
ws on the ground truth (here the provided labels) and

Sy S p(xy) log(p(a;))
- .

ECA =—

ECP = — (2)
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o 4.2.7 Marker genes detection

es FindMarkers in Seurat was applied to find marker genes between two pairs of cell
oo subsets: 1) lens and melanocytes; 2) pNR4 and pNR1. Genes that exhibited higher
s10  expression in the lens and pNR4, with expression levels exceeding 5% of the specific
en  spots, the log-fold-change greater than 0.25, and an adjusted p-value provided by
ez Seurat less than 0.01, were considered as marker genes.

as 4.2.8 Cell communication analysis

s1a  Cell communication analysis was then performed on spots with distinct annotated cell
a5 types, using methods including Celichat (v1.6.1), CellPhoneDB (v4).

616 Cellchat used the CellChatDB database of the mouse, creating cellchat objects
ez based on annotation information, and employed the default ‘Trimean’ statistical
e method.

619 CellPhoneDB was applied by transforming mouse genes into their human
e0 homologs using the biomaRt package. Using the CellPhoneDB database for cellphone
¢ analysis, we conducted using 1,000 random permutations in the analysis follow-
2 ing the tutorial https://github.com/ventolab/CellphoneDB/blob/master /notebooks/
63 TO1_Method2.ipynb. The minimum cell percentage threshold required to consider a
64 gene as expressed in the analysis was set to 0.1, and significance was determined with
e a p-value threshold of less than 0.05.

Data availability

Raw count matrices are available at the National Genome Data Center (https://www.
cncb.ac.cn/) under BioProject accession code PRJCA020621. A summary of individual
accession numbers is given in Supplementary Table 2. The cadasSTre data collections
are continually updated on our website genographix.com. The standard sectioning pro-
tocol is deposited in protocols.io: dx.doi.org/10.17504/protocols.io.5qpvo379dv4o/v1.

Code availability

Scripts used to process the data are available at https://github.com/YOU-k/
cadasSTre.
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