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Abstract 
Cognitive deficits in Alzheimer’s disease (AD) and frontotemporal dementia (FTD) result 
from atrophy and altered functional connectivity. However, it is unclear how atrophy and 
functional connectivity disruptions relate across dementia subtypes and stages. We 
addressed this question using structural and functional MRI from 221 patients with AD 
(n=82), behavioral variant FTD (n=41), corticobasal syndrome (n=27), nonfluent (n=34) 
and semantic (n=37) variant primary progressive aphasia, and 100 cognitively normal 
individuals. Using partial least squares regression, we identified three principal 
structure-function components. The first component showed cumulative atrophy 
correlating with primary cortical hypo-connectivity and subcortical/fronto-parietal 
association cortical hyper-connectivity. The second and third components linked focal 
syndrome-specific atrophy patterns to peri-lesional hypo-connectivity and distal hyper-
connectivity. Structural and functional component scores collectively predicted global 
and domain-specific cognitive deficits. Anatomically, functional connectivity decreases 
and increases reflected alterations in specific brain activity gradients. Eigenmode 
analysis identified temporal phase and amplitude disruptions as a potential explanation 
for atrophy-driven functional connectivity changes. 
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Introduction 
Cognitive deficits in Alzheimer-type dementia (AD) and frontotemporal dementia 

(FTD) result from tissue degeneration in specific brain regions 1–11. Brain functional 
connectivity alterations are also common, involving both decreases and increases in 
connectivity when compared to cognitively unimpaired individuals 12–18. A major 
challenge in clinical neuroscience is to understand the relationship between structural 
and functional alterations and what overlapping or unique contributions they make to 
cognitive impairment 19–23. Progress on this question requires datasets and methods 
that can unravel the subtypes and stages of atrophy 24 and map these to distinct 
patterns of functional hypo and hyper-connectivity 25. 
 Recent advances in functional brain activity modeling may help explain structure-
function relationships in neurodegenerative disease. Canonical functional networks 
appear to be embedded in a small number of spatial gradients that can be identified 
with dimensionality reduction techniques 26,27. These gradients represent intrinsic 
systems that collectively form a low-dimensional basis for different activity and 
connectivity states 28–30. In the current study, our goal was to develop a model linking 
focal atrophy patterns, brain-wide functional connectivity alterations, and associated 
gradient disruptions. This required addressing two key findings. First, patients with AD 
and behavioral variant FTD (bvFTD) exhibit opposing patterns of hypo and hyper-
connectivity in. AD involves posterior-predominant atrophy and functional connectivity 
reductions in the default mode network 14. By contrast, bvFTD involves fronto-insular 
atrophy and connectivity reductions in the salience network 12. In both syndromes, 
specific functional networks that are anti-correlated with the atrophy epicenter tend to 
show stronger functional connectivity. The second key finding is that patients with 
Parkinson's disease or AD have weaker functional connectivity in primary sensory 
networks – regions that are remote from the primary sites of pathology and 
neurodegeneration – and stronger connectivity in subcortical and/or association 
networks 31,32. Thus, at least two processes seem to influence connectivity alteration: 1) 
hypo-connectivity near the lesion and hyper-connectivity remote from it; 2) convergent 
hypo or hyper-connectivity in specific networks regardless of atrophy site. Intriguingly, 
anti-correlated networks are unified as opposing poles of individual gradients, raising 
the possibility that different atrophy patterns may disrupt distinct gradients and cause 
hypo and hyperconnectivity as two sides of the same coin. 

Here we studied structure-function relationships using a rich dataset of structural 
and functional MRI scans from 221 patients with Alzheimer’s disease amnestic 
dementia, behavioral variant FTD, corticobasal syndrome (CBS), nonfluent and 
semantic variants of primary progressive aphasia (nfvPPA/svPPA), and 100 age-
matched cognitively normal (CN) controls subjects. We identified three principal 
structure-function components linking different atrophy patterns to specific brain-wide 
functional connectivity alterations. These structural and functional components made 
independent contributions to cognitive deficits. Our analysis revealed that functional 
connectivity decreases and increases were linked to alterations in a small set of intrinsic 
functional gradients. Specifically, we found evidence that atrophy associates with 
reductions in gradient amplitude and changes in between-gradient phase coupling. 
These two processes reflect both the common and distinct patterns of connectivity 
alteration across patients with different atrophy subtypes and stages.  
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Results 
Functional connectivity decreases and increases across the atrophy spectrum 

We assessed structure-function relationships in 221 patients across the FTD-AD 
spectrum and 100 age, sex, scanner, and fMRI head motion-matched cognitively 
normal controls, comprising the study’s primary cohort (Table 1). We measured gray 
matter atrophy in 246 cortical and subcortical regions using regional W-scores 
(Methods). Task-free functional connectivity (FC) was measured between region pairs. 
97% of regions had significant gray matter atrophy (W > 1.5) in at least five subjects, 
showing that these clinical syndromes collectively involve the entire brain. We used 
partial least squares regression (PLSR) to identify the primary structure-function 
components. The first three structure components had high reproducibility (Methods 
and Supplementary Figure 1) and were made the focus of this study. 
 
 
Diagnosis n Age Sex 

(F/M) 
Educ
ation 

CDR CDR-SB MMSE Scanner 
(Trio/Pri
sma) 

AD 82 66.6 ± 
9.7 

50/32 16.0 ± 
3.3 

0.8 ± 
0.3 

5.1 ± 2.4 20.9 ± 
5.7 

29/53 

bvFTD 41 61.4 ± 
10.4 

17/24 16.1 ± 
2.3 

1.1 ± 
0.5 

8.2 ± 3.1 24.6 ± 
3.1 

19/22 

CBS 27 66.3 ± 
9.5 

14/13 16.5 ± 
2.9 

0.5 ± 
0.3 

4.2 ± 2.4 25.8 ± 
3.4 

17/10 

nfvPPA 34 70.8 ± 
6.3 

23/11 16.7 ± 
3.5 

0.4 ± 
0.7 

3.7 ± 3.8 25.9 ± 
4.5 

25/9 

svPPA 37 64.9 ± 
6.9 

19/18 17.1 ± 
2.7 

0.7 ± 
0.3 

5.4 ± 2.7 25.5 ± 
3.3 

30/7 

CN 10
0 

66.5 ± 
9.1 

56/44 17.6 ± 
2.0 

0.0 ± 
0.0 

0.0 ± 0.0 29.2 ± 
1.3 

53/47 

Table 1. Patient demographic and clinical information. CDR/CDR-SB: clinical 
dementia rating/sum of boxes; MMSE: mini-mental status examination. 
 
 

The first structure-function component (SF1) accounted for 51.2% of the brain 
atrophy variance and captured the relationship between overall mean atrophy and a 
distributed pattern of FC decreases and increases. For each component, each subject 
received structure and function scores. This component’s structure scores correlated 
perfectly with subject overall mean atrophy (r=0.994). The SF1 structure-function score 
correlation was r=0.56, p < 0.001 (Figure 1A, left). The FC pattern associated included 
more negative FC between primary visual, somatomotor, and auditory regions (Figure 
1B, left). There was more positive subcortical-cortical FC, most strongly between the 
striatum, thalamus, and motor regions, along with more subtly increased fronto-parietal 
association cortex connectivity to widespread cortical and subcortical regions. This 
pattern captured statistically significant differences in FC edge strength between 
subjects with low/medium/high scores on structure component 1 (Supplementary 
Figure 2). 
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Figure 1. The first three structure-function components across the AD-FTD 
spectrum. A. The correlation between atrophy and functional connectivity (FC) scores 
for partial least squares regression components 1-3. Beneath each correlation plot are 
the associated atrophy patterns associated with a negative or positive atrophy 
component score. For component 1, three example patients are shown with different 
atrophy patterns but equivalent overall mean atrophy. B. Matrices showing the partial 
least squares FC weights for each component, along with the network membership for 
each brain region. Negative and positive weights indicate decrease or increase in FC 
with an increase in the atrophy component score (and vice versa). Matrices show 14 
brain FC networks for reference. The top row of brain surfaces shows the 14 networks. 
The bottom row of brain surfaces shows the FC PLSR region sums. VIS: visual; SM: 
sensory-motor; DA: dorsal attention network; AUD: auditory; HIP: hippocampal; PHC: 
parahippocampal; AMY: amygdala; CO: cingulo-opercular; SAL: salience; AT: anterior 
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temporal; FPl: left fronto-parietal; DMN: default mode network; FPr: right fronto-parietal; 
SUB: subcortical. 
 
 

The second and third components captured syndrome-specific atrophy patterns 
that explained 9.1% and 6.5% of the atrophy variance. The structure-function correlation 
on Component 2 was r=0.49, p < 0.001; (Figure 1A, middle). Patients on the positive 
end of the Component 2 spectrum had svPPA-like atrophy in the left anterior temporal 
lobe. This accompanied weakened functional connectivity (lower than controls) from 
anterior and medial temporal regions, both locally and globally (Figure 1B, middle). 
These patients showed heightened functional connectivity involving the dorsal attention, 
visual, and fronto-parietal networks. In contrast, patients at the negative end of the 
Component 2 spectrum had AD or CBS diagnoses and had the opposite pattern of 
atrophy and functional connectivity: atrophy in the right dorsal parietal cortex, sensory-
motor cortex, and thalamic areas; peri-atrophy connectivity deficits; and elevated FC in 
the left anterior temporal lobe. Cognitively normal control subjects appeared in the 
middle of the spectrum, with minimal brain atrophy and balanced FC in anterior 
temporal and dorsal parietal-anchored networks. The Component 3 structure-function 
correlation was r=0.68, p < 0.001 (Figure 1A, right). Subjects with low/medium/high 
scores on atrophy components 2 and 3 also had progressive differences in overall FC 
edge strength (Supplementary Figure 2). 

We used the three structural components to assess syndrome differences in 
atrophy and functional connectivity. First, we reduced the three atrophy components to 
two dimensions using multidimensional scaling to visualize the AD-FTD atrophy 
spectrum (Figure 2). We then identified the subset of patients for each syndrome 
expressing the “typical” atrophy pattern and the corresponding functional connectivity 
alterations. AD patients showed atrophy in the posterior temporal and parietal lobe; 
bvFTD in the insula, rostral/orbital frontal lobe, and anterior cingulate; CBS in the 
primary sensory/motor cortex and superior frontal lobe; nfvPPA in the inferior frontal 
lobe, insula, and premotor cortex; and svPPA in the anterior temporal lobe. The 
associated functional connectivity alterations are shown in Figure 2. We then tested 
how well those FC patterns could be explained in terms of the three functional 
components. For each syndrome, the best match to the true FC difference matrix 
(Figure 2, upper triangles) was the corresponding reconstructed FC matrix (Figure 2, 
lower triangles) (AD, actual versus reconstructed r=0.81; bvFTD r=0.82; CBS r=0.41; 
nfvPPA r=0.50; svPPA r=0.82). This confirmed that three structure-function components  
captured the predominant syndrome-associated patterns. 
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Figure 2. Atrophy and functional connectivity patterns for each syndrome. Central 
scatter plot depicts individual subjects’ atrophy similarity in two dimensions based on 
multidimensional scaling of structure components 1-3. Large dots show the mean 
position for each clinical syndrome. For each syndrome, the mean atrophy pattern and 
functional connectivity matrix are shown for the set of “typical” patients that were 
accurately classified with that syndrome. The mean functional connectivity difference 
matrix is shown for the typical patients for each syndrome versus cognitively normal 
subjects (upper triangles), along with the reconstructed matrix based on function 
components 1-3. 
 
 
 We confirmed the structure-function relationship reliability in two ways. First, we 
used ridge regression with four-fold cross-validation (Methods). We found that the three 
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primary components each had significant structure-function correlation in the left-out 
fold (SF1: median r=0.49, median p < 0.001; SF2: r=0.32, p=0.003; SF3: r=0.39, p < 
0.001; Supplementary Figure 3A). Importantly, the FC edge weights associated with 
each atrophy component in cross-validated subsamples strongly matched the FC edge 
weights for the corresponding component from the full sample (Supplementary Figure 
3B). Second, we assessed these structure-function components in a separate 
replication dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI3) 
sample, comprised of 421 cognitively normal subjects and 56 subjects with Alzheimer’s 
disease from 35 scanning sites. Structure and function scores for each component were 
significantly correlated (SF1: partial r=0.25, t=4.94, p < 0.001; SF2: partial r=0.15, 
t=3.81, p < 0.001; SF3: partial r=0.08, t=2.42, p=0.015; Supplementary Figure 4). 
Collectively, the three main structure-function components in AD and FTD captured 
specific atrophy patterns and associated hypo/hyper-FC profiles that replicated in 
different individuals, syndromes, and MRI scanners. 
 
 
Neuropsychological correlations with structural and functional components 

We next examined the relationship between the brain structure-function 
components and cognitive performance. We first focused on two tests of global 
functioning, the CDR®+NACC-FTLD sum of boxes (Miyagawa et al., 2020; henceforth 
referred to as CDR-SB) and MMSE. A generalized additive model was used to estimate 
cognitive scores based on the first three structure and function scores, either as linear 
or non-linear terms, and covariates (Methods). The model for CDR-SB explained 50% 
of the variance. The strongest predictors were S1 (F=22.88, p < 0.001; Figure 3A/B), 
F1 (F=17.16, p < 0.001), and S3 (F=10.74, p < 0.001). This indicated that patients with 
the most severe clinical impairment had high overall mean atrophy (S1), most 
pronounced in the frontal lobe (S3), along with subcortical hyperconnectivity and 
primary sensory cortical hypoconnectivity (F1). For MMSE, the model explained 40% of 
the variance with the strongest predictions from S1 (F=22.31, p < 0.001), F3 (F=13.94, p 
< 0.001), and S3 (F=7.22, p=0.001). S3 had significant nonlinearity (Figure 3B), such 
that subjects with either frontal or temporal atrophy had equivalently poor MMSE 
scores. Subjects with worse MMSE scores also had anterior connectivity deficits and 
posterior connectivity enhancements. Thus, CDR-SB and MMSE scores significantly 
correlated with the overall amount of atrophy, specific atrophy patterns, and distinct 
functional connectivity alterations. 
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Figure 3. Neuropsychological correlates of brain structure-function components. 
A. Cognitive test score estimates based on a generalized additive model with brain 
structure-function component scores and covariates. The F-statistic for the structure 
and function terms in each model are shown when significant (p < 0.05, FDR-corrected) 
or trending (p < 0.05, uncorrected). The overall variance explained for each cognitive 
test is also shown. Brains show the weight of each region for structure components and 
the sum of region FC edge weights for function components. B. Correlation between 
actual and estimated test scores for clinical dementia severity (CDR-SB), global 
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cognition (MMSE), executive functioning (Stroop Interference), and episodic memory 
(California Verbal Learning Test, CVLT total). Test scores are presented with higher 
values representing worse performance, and converted to Z-scores for Stroop and 
CVLT. Partial effect plots are shown for three predictors of interest for each test. 
Positive relationships indicate a correlation between the positive structure/function 
pattern and the neuropsychological score. Shaded bands show ± 2 x standard errors of 
the fit (95% confidence interval). BNT: Boston Naming Test; PPVT: Peabody Picture 
Vocabulary Test; VOSP: Visual Object and Space Perception. 
 
 
 We then assessed the relationship between brain structure-function component 
scores and neuropsychological test scores for episodic memory, working memory, 
processing speed, executive function, visuospatial processing, speech, and language. 
Across domains, the models explained an average of 34% of the variance (Figure 3A; 
mean r2=0.34±0.09; range=0.17-0.50). The brain-behavior relationships clustered into 
two groups. The first group represented dysfunctions in clinical/global functioning, 
language, and episodic memory, most strongly influenced by S1, F1, and S3. This 
pattern was most strongly exhibited by patients with AD or svPPA, with high mean 
atrophy, most prominent in the temporal lobe, along with sensory hypo-connectivity and 
subcortical/association hyper-connectivity. The second group included dysfunctions in 
executive function, processing speed, language production, and visuospatial 
processing, driven by S1 and S2. The patients most strongly represented in this group 
had CBS, nfvPPA, or AD, also with high mean atrophy but focused in the parietal lobe. 
Overall, brain-behavior relationships were strongest for structural components, though 
key functional relationships predicted global cognition and memory performance. 
 We evaluated the reliability of the structure-function-cognition relationship in two 
ways. First, we estimated CDR-SB scores in the ADNI replication dataset using 774 
scans with associated cognitive test scores. This model explained 33.2% of the CDR-
SB variance with the strongest predictions from S1 (F=57.99, p < 0.001), F1 (F=12.13, p 
< 0.001), F3 (F=21.33, p < 0.001), and S2 (F=16.63, p < 0.001). This indicated that the 
same structure-function patterns were present in different patients with dementia and 
had a largely similar impact on cognitive impairment. Second, we evaluated the 
longitudinal relationship between S1, F1, and CDR-SB using baseline and follow-up 
data from a subset of 47 patients and 6 cognitively normal subjects from the main 
dataset (mean visit interval=1.1±0.5 years, range=0.4-2.6 years). We found that within-
subject CDR-SB change significantly correlated with F1 change (t=2.05, p=0.04; 
Supplementary Figure 5) and S1 change (t=2.15, p=0.04). Between-subject CDR-SB 
mean was significantly related to S1 mean (F=6.06, p=0.02) and F1 mean (F=3.34, 
p=0.03) as expected from the cross-sectional model. A brain-only model showed that 
overall F1 correlated with both S1 mean (F=21.42, p < 0.001) and S1 change (F=6.21, 
p=0.02). Thus within-subject changes in structure and function component 1 were 
related, and both tracked a patient’s change in clinical dementia severity. 
 
 
Low-dimensional functional connectivity changes associate with different 
atrophy components 
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All three primary structure-function components involved hypo and hyper-FC. We 
hypothesized that specific alterations in low-dimensional brain activity underlie the 
hypo/hyper-FC patterns for each functional component. This was tested by performing 
PCA dimensionality reduction on the fMRI timeseries data to derive spatial components, 
henceforth referred to as gradients (Figure 4A), and their associated temporal 
fluctuations (Methods). Specifically, we derived the PCA space from an independent 
cohort of age-matched cognitively normal subjects (n=321) and projected all primary 
cohort patient and control fMRI data into this space. This approach assumed spatial 
gradient patterns are stable regardless of disease, and that atrophy perturbs gradient 
temporal dynamics. The spatial patterns captured known gradients including unipolar 
sensory-to-association (Gradient 1), sensory-to-cognitive (Gradient 2), visual-to-
sensorimotor (Gradient 3), task-negative-to-task-positive (Gradient 4), and left-right 
asymmetric (Gradient 6) 26,30. We confirmed that the gradient spatial maps derived from 
the independent cohort were highly similar to those obtained from the primary cohort 
(Supplementary Figure 6).  

We then assessed how functional connectivity component F1-F3 scores related 
to specific across-subject differences in the gradient temporal variance and covariance. 
Henceforth when describing gradient timeseries, we use the terms “variance” and 
“amplitude” interchangeably, as well as “covariance” and “phase”. We found that all 
three function components had strong and specific relationships with the six primary 
gradients, explaining most of the across-subject FC variance. For F1, the first six 
gradients explained 82.0% of the functional connectivity variance, with the biggest 
contributions from Gradient 1 variance (26.4% of F1 variance, t=-17.08; p < 0.001 for all 
reported terms; Figure 4B/C), Gradient 1/4 covariance (15.1% of F1 variance, 
t=+10.32; Figure 4B/D), and Gradient 1/5 covariance (10.8% of F1 variance, t=+10.11). 
Subjects with higher overall mean atrophy had lower Gradient 1 variance, which 
because of its unipolar nature (with all regions having positive weights), reflected lower 
global BOLD signal amplitude. The correlation of Gradient 1 variance and global signal 
amplitude was r=0.91 (p < 0.001). This explained the weakened global functional 
connectivity, most extremely in sensory-motor regions with the largest Gradient 1 
weights. Subjects with high overall mean atrophy also had stronger Gradient 1-4 
covariance than low atrophy subjects. This resulted in more positive functional 
connectivity between regions with positive weights on Gradient 4 (dorsal attention, 
cingulo-opercular) and positive weights on Gradient 1 (all regions). In contrast, regions 
with negative weights on Gradient 4 (default mode) had negative correlation with 
Gradient 1 and therefore with the whole brain. Thus, atrophy-driven changes in coupling 
of Gradient 1 with other gradients was mathematically equivalent to specific networks 
increasing or decreasing their integration with the rest of the brain. 
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Figure 4. Low-dimensional gradient activity relationship with structure-function 
components. A. Gradient spatial weight maps based on PCA of fMRI timeseries data 
from the independent cognitively normal cohort (n=321). Weights represent PCA 
loadings. B. Variance explained in each PLSR functional component by individual 
gradient variances (e.g. 1-1, 2-2) and gradient pair covariances (e.g. 1-2, 2-3). Insets 
show PLSR component functional connectivity (FC) edge weight matrices. C-F. Select 
gradient timeseries and associated FC differences. C and D. Gradient 1 variance, 
Gradient 1-4 covariance, and FC differences for two subjects with low or high overall 
mean atrophy. E. Gradient 1-2 covariance and FC differences for two subjects with right 
parietal or left anterior temporal atrophy. F. Gradient 2 variance and FC differences for 
two subjects with posterior temporal or frontal atrophy.  
 
 

Function components 2 and 3 also had strong relationships with gradient activity. 
Gradient activity explained 86.2% of the F2 variance, with the strongest influence by 
Gradient 1 variance (58.3% of variance, t=+31.02), Gradient 1/2 covariance (10.8% of 
variance, t=+10.82; Figure 4B/E), and Gradient 1/6 covariance (5.3% of variance, t=-
8.93). F3 had 55.2% of its variance explained by Gradient 1/2 covariance (14.0% of 
variance, t=-8.20; Figure 4B/F), Gradient 2 variance (10.2% of variance, t=-6.97), and 
Gradient 2/3 covariance (6.8% of variance, t=-5.21). Here, subjects with greater frontal 
atrophy had lower Gradient 2 variance, reflecting reduced within-network FC for regions 
on either pole of the gradient, and also less anticorrelation (i.e. stronger FC) between 
regions at opposite gradient poles. Overall, the majority of the atrophy-associated FC 
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variance was explained by six gradients and their interactions, indicating a low-
dimensional basis for the observed FC alterations. 
 
 
Gradient phase and amplitude changes reflect hypo and hyperconnectivity 
patterns  

The observation that atrophy and FC were associated with gradient activity 
prompted a question: can we simulate these altered FC patterns with a generative 
model and if so, what can that model tell us about how atrophy disrupts brain activity 
dynamics? We modeled gradient interactions as a system of linear coupled harmonic 
oscillators (Methods), based on our previous work showing that different FC patterns 
can be generated by spatial gradients interacting via specific coupling parameters 30. 
Eigendecomposition of a coupled oscillator model yields a set of eigenmodes that 
capture the system dynamics and are useful for analyzing perturbations (Figure 5A). 
Each eigenmode represents one spatio-temporal component of the system, oscillating 
at a single fixed frequency. On a given eigenmode, each gradient has a specific phase 
angle and amplitude. Overall brain activity at each timepoint can then be represented by 
the summed activity of the gradients across eigenmodes. Here, we computed the 
gradient coupling parameters for each subject and derived eigenmodes. We validated 
the accuracy of this modeling approach by simulating gradient timeseries based on 
subject-specific eigenmodes and comparing simulated to actual FC patterns. We found 
that each subject's simulated and actual FC was significantly more similar than to 
simulated FC from the other subjects (self-actual vs. self-simulated, median r=0.96; self-
actual vs. other-simulated, median r=0.72; t=31.46, p < 0.001; Supplementary Figure 
7). This supported our use of eigenmode analysis for quantifying individual differences 
in gradient coupling that gave rise to FC differences. 
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Figure 5. Eigenmode derivation and properties in low and high atrophy subjects. 
A. Procedure for deriving gradient coupling parameters and eigenmodes. B. The six 
eigenmodes for two example subgroups (n=5) with the lowest or highest total atrophy. 
Eigenmodes are ordered from lowest to highest frequency. Circle plots show the phase 
angle and amplitude of each gradient on each eigenmode. Timeseries plots show the 
resultant gradient oscillations, occurring at the eigenmode-specific frequency. C. 
Eigenmode-based FC matrices for low and high atrophy subjects and the FC difference 
matrix. 
 
 

As an illustration of how the eigenmodes captured different FC patterns, we 
computed the eigenmodes for two groups of subjects (n=5) with the lowest or highest 
overall mean atrophy as measured by structure-function component 1 (Figure 5B). We 
used these group-specific eigenmodes to simulate gradient timeseries and compute FC 
matrices (Figure 5C). The simulated FC differences between low and high atrophy 
subjects revealed the same pattern of atrophy-associated FC changes represented on 
SF1 – reduced primary sensory FC, elevated subcortical-cortical FC, and elevated 
fronto-parietal association FC. This indicated that the eigenmodes contained sufficient 
information to explain the observed hypo/hyper-FC patterns. 

Based on the demonstrated relationship between eigenmodes and atrophy-
associated FC patterns, we hypothesized that two eigenmode-derived quantities would 
capture the atrophy-associated FC alterations: 1) the net amplitude of each gradient 
across all six eigenmodes and 2) the average phase angle between each pair of 
gradients across all modes. We statistically evaluated this by measuring the correlation 
between eigenmode gradient amplitude/angle and gradient variance/covariance. These 
quantities were strongly related (Supplementary Figure 8; corresponding: median 
absolute r=0.77, p=6.21x10-65; non-corresponding: median r=0.07, p=0.19). This 
demonstrated that atrophy-related shifts in brain-wide FC corresponded to decreasing 
gradient amplitudes and alterations in the typical phase angle between pairs of 
gradients.  

We further examined the gradient amplitude and phase angle properties for four 
gradient relationships most strongly associated with the structure-function components. 
Subjects with lower Gradient 1 variance had either higher overall mean atrophy (SF1) or 
right parietal atrophy (SF2), which significantly correlated with Gradient 1 amplitude 
(r=0.66, p < 0.001; Figure 6A). This reduced amplitude resulted in globally reduced 
functional connectivity strength because of Gradient 1's unipolarity. Subjects with high 
overall mean atrophy also had increased Gradient 1-4 covariance, which negatively 
correlated with Gradient 1-4 phase angle (r=-0.80, p < 0.001; Figure 6B). The phase 
angle progressively decreased from 93° for subjects in the 20th percentile to 64° for 
subjects in the 80th percentile. This smaller angle reflected more positive temporal 
correlation between the Gradient 1 and 4 timeseries, resulting in hyperconnectivity of 
regions with the same sign on each gradient (+/+ or -/-) and hypoconnectivity of regions  
with opposite signs (+/-). We interpreted a shift away from 90° as a "collapse", given 
that the gradients were identified as temporally orthogonal (i.e. uncorrelated) 
components in cognitively normal control subjects. For Gradients 1 and 2, there was 
again a negative correlation between covariance and phase angle (r=-0.80, p < 0.001; 
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Figure 6C). In this case, the collapse away from 90° was in one of two directions, 
depending on the atrophy pattern. Subjects with posterior temporal atrophy (SF3) or 
anterior temporal atrophy (SF2) showed an increase to 109° (10th percentile) while 
subjects with frontal or right parietal atrophy showed a decrease to 57° (90th percentile). 
This bi-directional collapse resulted in opposite patterns of hypo and hyperconnectivity, 
resulting from regions with positive or negative weights on Gradient 1 and 2 coming into 
phase or going out of phase. Finally, Gradient 2 variance significantly correlated with 
amplitude (r=0.74, p < 0.001; Figure 6D). Subjects with posterior temporal atrophy 
(SF3) had greater Gradient 2 amplitude than those with frontal atrophy. This reflected 
more extreme correlated fluctuations for regions with the same sign on Gradient 2 (+/+, 
-/-) and anticorrelated fluctuations for regions with opposite signs (+/-). Overall, 
eigenmode analysis revealed that each atrophy-associated hypo/hyperconnectivity 
pattern was linked to specific gradient amplitude and phase angle alterations. 
 
 
 

 
Figure 6. Gradient eigenmode relationships with different structure-function 
components. A-D. Left to right: the correlation between each subject's gradient 
variance/covariance and gradient amplitude/angle; the atrophy components associated 
with higher or lower gradient amplitude/angle; illustration of the gradient amplitude/angle 
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differences and the resultant simulated timeseries; and the gradient spatial maps. A. 
Gradient 1 amplitude associated with atrophy component 1. Gradient amplitudes and 
timeseries are shown for subjects in the 20th and 80th percentile of atrophy component 
1. B. Gradient 1-4 angle associated with atrophy component 1. Gradient phase angles 
and timeseries are shown for subjects in the 20th and 80th percentile of atrophy 
component 1. R-values show correlation between the simulated gradient timeseries. C. 
Gradient 1-2 angle associated with atrophy components 3 and 2. Gradient phase angles 
and timeseries are shown for subjects in the 10th and 90th percentile. D. Gradient 2 
amplitude associated with atrophy component 3. Gradient amplitudes and timeseries 
are shown for subjects in the 20th and 80th percentile of atrophy component 3. 
 
 
 
 
 
Discussion 
 Here we analyzed structural and task-free functional MRI scans from patients 
across the AD-FTD spectrum to identify relationships between gray matter atrophy and 
functional connectivity. We discovered three reproducible structure-function 
components. The primary component represented a relationship between overall mean 
atrophy, regardless of spatial location, hypo-connectivity in primary cortical regions, and 
hyper-connectivity in subcortical and fronto-parietal association cortex regions. The 
second and third components linked focal syndrome-specific atrophy patterns to peri-
lesional hypo-connectivity and distal hyper-connectivity. These structural and functional 
alterations collectively contributed to impairments in global and domain-specific 
cognition. Each functional component could be accounted for by variance in six intrinsic 
activity gradients, suggesting that the disease-related functional alteration patterns are 
constrained by the brain’s intrinsic functional architecture. Eigenmode analysis of the 
gradient temporal dynamics revealed reduced amplitude of specific gradients and 
collapsed phase angles between gradients, offering a possible explanation for the 
observed patterns of hypo and hyperconnectivity. 

Three brain atrophy components explained two-thirds of the variance in atrophy 
across this diverse set of AD and FTD syndromes that collectively involved nearly all 
cortical and subcortical regions. The first atrophy component captured mean overall 
mean atrophy and served as a proxy for disease stage. The second and third 
components described opposing focal atrophy patterns in the left-predominant temporal 
pole versus right-predominant dorsal parietal cortex (component 2) and left-predominant 
temporal-occipital areas versus prefrontal-insula-cingulate areas (component 3). These 
components stratified patients with different syndromes, separating atrophy patterns 
along ventral-dorsal, anterior-posterior, and left-right axes. Atrophy subtypes have been 
well-characterized in different AD and FTD syndromes 34,35,5,36–40. We used partial least 
squares regression to derive atrophy components and continuous scores so that we 
could link progressive atrophy patterns across stages to corresponding functional 
connectivity alterations. It may not always be appropriate to represent patients with AD 
and FTD along such a continuum, as these syndromes are often caused by distinct 
neuropathological diseases that involve specific cell populations, subcortical nuclei, or 
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cortical layers 41–44. Future work may assess structure-function relationships in distinct 
categorical groups such as those with homogenous underlying pathological substrates. 
 Distinct functional hypo/hyper-connectivity patterns were associated with each 
atrophy component. We did not anticipate finding structure-function component 1’s 
convergent pattern of FC alteration in patients with different syndromes and 
heterogenous atrophy patterns. However, recent fMRI studies in Parkinson’s disease 
and Alzheimer’s disease have reported similar patterns of primary sensory connectivity 
decrease and subcortical and/or association network connectivity enhancements 31,45,32, 
regions that are remote from the primary sites of pathology and neurodegeneration. 
There are several ways connectivity can be altered in regions without structural 
damage. Classical diaschisis involves a focal lesion causing depressed function in a 
structurally intact target region 46, while connectomal diaschisis includes network-wide 
alterations 47. Here we assessed widespread FC alterations by deriving summary 
scores capturing different FC patterns and then linked these scores to underlying low-
dimensional gradient activity levels. We found that the principal FC pattern was based 
on reduced Gradient 1 variance and increased Gradient 1-4 coupling. A critical question 
is how atrophy in disparate locations can cause identical convergent alterations in these 
functional systems. Previous studies have reported widespread FC decreases and 
increases following focal stroke lesions 48, with weak spatial correspondence between 
structural and functional alterations 49. This suggests that focal structural damage can 
cause non-local disruptions of large-scale network dynamics. Given the evidence that 
brain activity dynamics occur in a low-dimensional functional state space 29,20,30, it may 
be expected that disparate lesions will converge on a limited range of FC perturbations. 
In the healthy brain, the optimal set point for each gradient may be temporal 
orthogonality, maximizing the spatiotemporal segregation of different networks 50. 
Structural damage may cause specific gradients to collapse away from orthogonality, 
resulting in hypo- and hypersynchrony between different networks as two sides of the 
same coin. This may occur in a convergent or divergent fashion, as we found here with 
SF1 and SF2/3, respectively. The linkage between functional connectivity, activity 
gradients, and eigenmodes raises a question about whether any of these processes are 
epiphenomenal. Gradients represent standing waves that combine by superposition to 
create activity flow patterns described by eigenmodes 51,52. Future studies may consider 
how atrophy perturbs activity flow and whether damaged structural connections play a 
key role. 
 The structure-function components explained 25-50% of the variance in cognitive 
deficits. These deficits clustered into two groups: clinical/global functioning, language, 
and episodic memory, most strongly influenced by S1, F1, and S3; and executive 
function, processing speed, language production, and visuospatial processing, driven by 
S1 and S2. This clustering is consistent with the emerging recognition that diverse brain 
lesions cause convergent low-dimensional behavioral deficits 53. The structural 
components tended to be stronger predictors of cognitive deficits than functional 
components, which is perhaps unsurprising given that the syndrome diagnostic criteria 
include structural neuroimaging features. Nonetheless, functional components did 
explain significant variance in cognitive deficits. Most strikingly, F1 was a significant 
predictor of CDR-SB over and above the amount of overall mean atrophy (S1 score). F1 
may represent a neural substrate for cognitive reserve that can compensate for 
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structural degeneration 54. A consistent finding across dementia syndromes is that 
functional connectivity can compensate for atrophy or molecular pathology to preserve 
cognitive functioning in FTD and AD 21,55,56. Future work may examine whether subjects 
with worse-than-expected function for their amount of atrophy, as measured by the 
residuals from the structure-function regression line, may have more reserve and 
greater potential response to treatment. Our assessment of structure-function across 
disease stages had several important limitations. We did not consider staggered 
relationships between biomarker measures 57. We did not include patients with mild 
cognitive impairment or presymptomatic disease and did not assess potential biphasic 
relationships between atrophy and FC 58,59. We also did not attempt to identify structure-
function components related with typical aging 60,61. Finally, this study only considered 
task-free fMRI, leaving open how task-engaged brain activity is disrupted by these 
atrophy patterns. 

Function component 1 (F1) correlated with clinical impairment equally well in 
FTD and AD. F1 has several desirable biomarker properties 62 including: 1) surrogacy 
with CDR, the standard primary endpoint in dementia clinical trials 63; 2) longitudinal 
within-subject correlation with clinical worsening and progressive atrophy; and 3) 
reproducible relationships with brain structure and clinical severity scores across 37 
different sites combining the UCSF and ADNI datasets. While molecular and anatomical 
neuroimaging biomarkers are more widely applied in late-stage dementia trials 64, fMRI 
biomarkers have the potential to measure cognition-supporting brain activity with high 
anatomical precision prior to widespread neurodegeneration. In this study, structural 
and functional components explained independent variance in CDR. This suggests 
patients might benefit from treatments that slow neurodegeneration, restore function, or 
both, and monitoring both structural and functional biomarkers could add value to 
clinical trials. While the current observational study in a diverse cohort was well suited 
for biomarker discovery, a key next step is analytical and clinical biomarker validation. 
This effort should focus on specified contexts of use, including as a predictive biomarker 
for identifying individuals more likely to respond to treatment, or as a monitoring 
biomarker for detecting treatment response 65. This will ideally include an fMRI 
acquisition protocol that optimizes within-subject reliability 66,67. It will also be prudent to 
consider the effect of symptomatic therapies on activity imbalance, given that activity 
gradients reflect neurotransmitter receptor distributions 29,68,30 and may be modulated by 
acetylcholinesterase inhibitors or selective serotonin reuptake inhibitors commonly used 
in dementia treatment. 
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Methods 
Subject selection 

Patients with dementia and cognitively normal control subjects were recruited 
through ongoing studies at the University of California San Francisco (UCSF) Memory 
and Aging Center. All subjects or their surrogates provided informed consent according 
to the Declaration of Helsinki and the procedures were approved by the UCSF 
Institutional Review Board. All subjects underwent a clinical history, physical 
examination, neuroimaging, and neuropsychological assessment within 90 days of 
scanning. Cognitively normal control subjects were recruited from the Hillblom Healthy 
Aging Study with ages between 45-85, minor or no memory problems, a clinical 
dementia rating score of 0, and no diagnosis of a neurodegenerative disease or other 
major health condition. Subjects were excluded if they had significant history of other 
neurological diseases or structural brain abnormalities inconsistent with their primary 
clinical syndrome. Subjects were included whether or not they took medication for 
symptoms of Alzheimer’s disease or Frontotemporal dementia.  

A large initial control dataset (n=568) was subsequently divided for multiple 
purposes. The initial patient group consisted of patients (n=309) who received a primary 
clinical diagnosis of either Alzheimer’s disease 69, behavioral variant frontotemporal 
dementia 70, semantic variant or nonfluent variant primary progressive aphasia 71, or 
corticobasal syndrome 72. All diagnoses were made within 90 days of the patients’ MRI 
scan. We assigned each patient to a high, intermediate, or low confidence diagnosis 
group. High confidence subjects had a single clinical diagnosis of one of the five 
syndromes of interest at one or more clinical visits. Intermediate confidence subjects 
had a best estimate clinical diagnosis of the syndrome of interest, but additionally either: 
1) an alternative possible diagnosis including AD, bvFTD, CBS, nfvPPA, svPPA, 
progressive supranuclear palsy (PSP), amyotrophic lateral sclerosis (ALS), posterior 
cortical atrophy (PCA), or logopenic variant PPA (lvPPA) or 2) a best estimate clinical 
diagnosis that was stable for multiple visits before shifting away from the syndrome of 
interest in a later visit. These subjects were assigned to the intermediate confidence 
group if they had three or more clinic visits with a stable primary diagnosis of the 
syndrome of interest. Low confidence subjects had multiple diagnoses as best 
estimates, including the syndrome of interest, or a diagnosis for the syndrome of 
interest that shifted away at the next visit. Our primary analysis focused on 221 high and 
intermediate confidence patients with dementia, excluding low confidence patients and 
MRI quality control failures (see below). 100 cognitively normal subjects were selected 
who passed image quality control and were matched to the overall patient group for 
age, sex, MRI scanner distribution, and fMRI head motion. The number of subjects with 
each diagnosis are shown in Table 1. The self-reported race/ethnicity for the 321 
subjects included 25 Asian, 5 Black, 5 Hispanic, 263 White, and 23 unreported. 
 
Neuroimaging acquisition 

All subjects were scanned at the UCSF Neuroscience Imaging Center, on either 
Siemens Trio or Siemens Prisma Fit 3T MRI scanners. Subjects were scanned between 
one and eight times over the course of their clinic visits. Our main analysis focused on 
the baseline scan for each subject. The number of patients with each diagnosis 
scanned on either the Trio or Prisma are shown in Table 1. Subjects received T1-
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weighted magnetization-prepared rapid gradient echo structural MRI (MPRAGE) scans 
with similar acquisition parameters on the Trio or Prisma: acquisition time: 8:53; sagittal 
slice orientation; thickness: 1.0 mm; field of view: 160x240x256 mm; isotropic voxel 
resolution: 1mm3; TR: 2300 ms; TE: 2.98 ms for Trio, 2.9 ms for Prisma; TI: 900 ms, flip 
angle: 9°. 

Task-free fMRI scans were run using a T2*-weighted echoplanar scan with 
subjects instructed to remain awake with their eyes closed. The parameters on the Trio 
were: acquisition time: 8:06; axial orientation with interleaved ordering; field of view: 
230x230x129 mm; matrix size: 92x92, effective voxel resolution: 2.5x2.5x3.0 mm; TR: 
2000 ms, for a total of 240 volumes; TE: 27 ms. For the Prisma, the fMRI parameters 
were: acquisition time: 8:05; axial orientation with interleaved multi-slice mode and 
multiband acceleration=6; field of view: 211x211x145 mm; matrix size: 92x92, effective 
voxel resolution: 2.2x2.2x2.2 mm; TR: 850 ms, for a total of 560 volumes; TE: 33 ms. 
 
Structural image processing 

MPRAGE scans were visually assessed by trained technicians and scans with 
excessive motion artifact (ringing or blurring) were excluded. MPRAGE scans for all 
time points for a given subject that passed visual inspection were registered using the 
serial longitudinal registration in SPM12 73. Default parameters were used for warping 
regularization and bias regularization. Jacobian determinant and divergence maps were 
produced that represent the amount of longitudinal brain contraction and expansion. We 
then applied unified normalization/ segmentation to register the midpoint average T1 
images to the MNI152NLin6Asym standard space 74 with light regularization, a 60 mm 
bias FWHM cutoff, and Gaussians per tissue type of [2,2,2,3,4,2]. The gray matter 
tissue segmentation for the midpoint average was multiplied by the deformation fields 
for each time point to obtain time point-specific gray matter maps. These images were 
then warped to standard space using the deformation fields from the unified 
normalization/segmentation procedure. The resulting normalized gray matter maps 
were smoothed with an 8 mm FWHM Gaussian kernel. 

We derived voxelwise gray matter tissue probability maps from an independent 
set of cognitively normal control subjects (n=397) using the same structural image 
processing methods. These subjects had the following characteristics: mean 
age=69.3±8.8; 239 female/158 male; 345 right-handed/43 left-handed; 1.5T/3T Trio/3T 
Prisma/4T=58/144/140/52). We ran multiple regression for each voxel to estimate gray 
matter volume as a function of age, sex, handedness, total intracranial volume, and MRI 
scanner identity. For the 321 subjects in the primary analysis, we entered their 
demographic values into this regression model to estimate their gray matter volume in 
each voxel. The voxel W-score was calculated as the difference between actual gray 
matter volume and the estimated gray matter volume, divided by the standard deviation 
of the model fit in the reference control sample (LaJoie et al., 2012). W-scores were 
used as the measurement of gray matter atrophy throughout the study. 
 
Functional image processing 

Functional MRI scans were processed using fMRIPrep (Esteban et al., 2019) 
(RRID:SCR_016216). For anatomical image processing, the MPRAGE images were 
corrected for intensity non-uniformity with N4BiasFieldCorrection in ANTs (Avants et al., 
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2008) (RRID:SCR_004757), and used as the T1-weighted (T1w) reference throughout 
the workflow. The T1w reference was skull-stripped with a Nipype 76 
(RRID:SCR_002502) implementation of the antsBrainExtraction.sh workflow using 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 
T1w using FSL fast (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; RRID:SCR_002823). Volume-
based spatial normalization to the MNI152NLin6Asym standard space was performed 
through nonlinear registration with antsRegistration, using brain-extracted versions of 
both T1w reference and the T1w template. 

For functional image processing, the first five volumes were removed to allow for 
scanner stabilization. A reference volume and its skull-stripped version were generated 
by fMRIPrep. The BOLD reference was then co-registered to the T1w reference using 
FSL flirt with 6-degrees-of-freedom affine registration. Co-registration was configured 
with nine degrees of freedom to account for distortions remaining in the BOLD 
reference. Head-motion parameters with respect to the BOLD reference (transformation 
matrices, and six corresponding rotation and translation parameters) were estimated 
using FSL mcflirt and were used to compute the framewise displacement (FD). BOLD 
runs were slice-time corrected using AFNI 3dTshift (https://afni.nimh.nih.gov/; 
RRID:SCR_005927). The BOLD images were realigned from native to 
MNI152NLin6Asym standard space using antsApplyTransforms, configured with 
Lanczos interpolation, with a single interpolation step by composing transformations for 
head-motion and co-registrations to anatomical and output spaces. Images were 
spatially smoothed with a 6mm FWHM (full-width half-maximum) kernel using FSL 
susan. Confounding CSF and WM timeseries were calculated based on the 
preprocessed BOLD images, deriving average signals using the subject-specific 
anatomically derived tissue masks after erosion. The confound timeseries for head 
motion estimates, CSF, and WM were expanded to include the temporal derivatives and 
quadratic terms 77. Bandpass filtering in the frequency range 0.008-0.08 Hz was 
performed on the confound timeseries and BOLD images using fslmaths and AFNI 
3dBandpass respectively. We did not perform global signal regression and instead 
assessed global signal variance as a disease-relevant variable of interest. The global 
signal was computed as the mean BOLD signal across the 246 regions (see below) at 
each timepoint. Confound timeseries were then regressed out of the BOLD images 
using fslglm. Scans were standardized voxelwise to have mean=0 and standard 
deviation=1 across time. Subjects with greater than 0.55 mm mean FD were excluded 
from subsequent analysis 78. From the pool of all fMRI scans for all available control and 
patient subjects (n=1591), this resulted in the exclusion of 194 scans (12.2%). We 
performed a subsequent data-driven denoising procedure using PCA to remove scans 
with implausible functional connectivity patterns likely due to noise from the scanner 
hardware (field instabilities) and the subject (head motion, heartbeat, respiration). PCA 
has previously been applied for outlier detection in fMRI data 79. Here, all subject's 
functional connectivity matrices (see below) were flattened and combined into one 
single matrix ([1591 scans x 30135 edges]). PCA was run on this matrix and subjects 
with an outlying score on the first component (> 1 standard deviation above the mean) 
were flagged. This excluded 288 scans and left an available pool of 1108 scans. 
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Scanner harmonization 
 Structural and functional MRI data from the two different MRI scanners was 
harmonized using ComBat 80. Gray matter mean W-score values were estimated for 
246 regions of interest (210 cortical, 36 subcortical including the caudate, putatmen, 
globus pallidus, and thalamus) from the Brainnetome atlas 81. A design matrix was 
constructed including MRI scanner as the main batch variable and covariates for 
patient/control status, age, and sex. ComBat was then used to harmonize the W-score 
values for each region. For functional MRI, mean BOLD timeseries for each scan were 
obtained for each region and entered into a temporal PCA (see next section). Using the 
246 temporal component timeseries, we computed the covariance matrix. The upper 
triangle from each [246 x 246] covariance matrix was extracted, including the diagonal, 
flattened into a [30381 x 1] vector, and stacked for all subjects. The [321 x 30381] 
matrix was run through ComBat with the same design matrix. The harmonized 
covariance values were then used to derive harmonized FC matrices. 
 
Gradient derivation and functional connectivity analysis 

We studied the low-dimensional basis of functional connectivity patterns by 
performing dimensionality reduction on fMRI BOLD timeseries data. Specifically, we 
derived activity gradient spatial maps and temporal activity timeseries based on 
methods described in our previous work 30. Here we obtained an independent cohort of 
cognitively normal subjects (n=321) that were age, sex, and scanner-matched to our 
primary cohort of 221 patients and 100 cognitively normal subjects. The 246 regional 
mean BOLD timeseries for the independent cohort subjects were temporally 
concatenated into a [122795 x 246] matrix and PCA was performed. This yielded a 
brain activity latent space in which brain region component loadings (eigenvectors 
scaled by their corresponding eigenvalues) represented each region’s weight on that 
component. We refer to the spatial maps for each component as gradients and the 
component scores as the gradient timeseries. Our main analysis focused on the first six 
dimensions with additional consideration of 12 dimensions. The fMRI ROI timeseries 
matrix for the primary cohort ([119915 x 246]) was projected into this latent space to 
obtain the gradient timeseries. For each subject, we computed the [246 x 246] gradient 
covariance matrix. We used these matrices to derive functional connectivity matrices by 
obtaining each region's variance (summing on-diagonal values across all components), 
each region pair's covariance (summing off-diagonal values across all component 
pairs), and using these quantities to compute the region pairwise Pearson correlation 
coefficients. An independent PCA was run on the primary cohort [119915 x 246] ROI 
timeseries matrix to validate the spatial gradient pattern reliability. 
 
Brain structure-function statistical analysis 
 The relationship between atrophy and brain-wide functional connectivity was 
assessed in two stages. In the first stage, we vectorized each subject’s FC matrix upper 
triangle into a [30135 x 1] vector and stacked these to obtain the ([321 subject x 30135 
edge] group FC matrix. We performed partial least squares regression on the brain 
atrophy W-scores ([321 subjects x 246 regions]) and the functional connectivity ([321 
subject x 30135 edges]). PLSR is asymmetric, designed to decompose the ‘X’ variable 
into components that maximally covary with ‘Y’ variable 82. We chose to use atrophy as 
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the ‘X’, i.e. the “grounding” variable, based on two factors: 1) our stronger hypothesis 
about the spatial patterns of the atrophy components, and 2) lower variability in 
structural MRI than functional MRI. We ran PLSR to derive five components and used 
split-half analysis to determine which components had sufficient reliability. Here we 
focused on the structural component reliability and describe our procedure for functional 
component reliability in the next section. We generated 1000 random splits of the 321 
subjects into two equally sized groups, each time balancing the number of subjects with 
each clinical syndrome. We ran 1000 trials of independent PLSR on the first and second 
halves of the subjects. The structure component loadings were compared for each of 
the 1000 trials using correlation. Analysis revealed that the first three components had 
acceptable reliability. We obtained the atrophy and FC scores for each subject for these 
three components and computed the structure-function correlation from these scores to 
measure the strength of each independent structure-function relationship. 

We validated the reliability of the structure-function relationships by performing 
ridge regression with cross-validation. For this analysis, we could not use atrophy 
component scores from our PLSR model because these were derived based on their 
covariance with FC and would contaminate cross-validation. Instead, we derived 
atrophy component scores using PCA on the atrophy data alone. The spatial patterns of 
the first three PCA-derived atrophy components were essentially identical to the first 
three PLSR atrophy components (Component 1, r=0.999; Component 2, r=0.98, 
Component 3, r=0.97). Ridge regression was run using scikit-learn 83 (https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html). We estimated 
models of the relationship between each atrophy component (one score per subject per 
component) and brain-wide FC weights (30135 features per subject). Stratified cross-
validation was run to measure model out-of-sample accuracy with four folds with 240 
train subjects and 81 test subjects per fold, balanced for the number of subjects with 
each syndrome. We ran 1000 trials with an empirically selected alpha value of 1000, 
which produced optimal cross-validation accuracy. Ridge coefficients for each 
component were averaged across 1000 trials and 4 folds to obtain the average 
coefficients. Individual subject functional scores for each component were derived by 
taking each subject's score from their left-out fold for each trial and averaging across the 
1000 trials. Deriving these out-of-sample ridge FC scores also served to decorrelate 
structure and function scores sufficiently to use them as independent predictors of 
neuropsychological scores. 
 We visualized structure-function relationships for each component as matrices of 
PLSR FC edge weights. The 246 regions were grouped into 14 previously defined 
functional connectivity modules 84, based on a modular partitioning of a group-averaged 
task-free functional connectivity matrix from 75 healthy older control subjects. These 
modules included in this partition are: visual, sensory-motor, dorsal attention network, 
auditory, hippocampal, parahippocampal, amygdala, cingulo-opercular, salience, 
anterior temporal, left fronto-parietal, default mode network, right fronto-parietal, and 
subcortical. We created spatial maps summarizing the most prominent FC patterns for 
each component by computing region-wise sums of the PLSR FC edge weight matrices. 
 Syndrome-associated atrophy and functional connectivity patterns were 
assessed by identifying the subset of patients expressing the typical pattern. We 
determined this by performing linear discriminant analysis on structure component 1-3 
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scores with syndrome label as the response variable. This resulted in 51/82 AD 
patients, 25/41 bvFTD, 10/27 CBS, 9/34 nfvPPA, 32/37 svPPA, and 76/100 CN. The 
mean atrophy map and FC matrix were computed for each group and (syndrome – 
cognitively normal) alterations were derived. The reconstructed FC matrix for each 
group was computed as the outer product of function component 1-3 scores and the 
corresponding loadings. Correlations were measured between the typical mean actual 
FC matrix for each syndrome and the reconstructed FC matrix. 
 
Dynamical systems modeling 
 We used dynamical systems modelling to analyze gradient dynamic activity in 
different groups of subjects 30. All these analyses used the first six gradients. For each 
gradient timeseries, the first and second derivatives were calculated by finite 
differencing using the ‘gradient’ function in MATLAB. We then ran linear regression for 
each gradient to estimate its second derivative timeseries (G'') as a function of all six 
gradients' timeseries (G) and first derivatives (G') along with an intercept. The 
parameter estimates (coupling parameters) for the 13 terms from each regression were 
then used to define a system of six coupled second-order ordinary differential 
equations: 
 
G1''= �1,0 + �G1,1G1 + �G1’,1G1' + �G2,1G2 + �G2’,1G2' + … + �G6,1G6 + �G6’,1G6' 
G2''= �2,0 + �G1,2G1 + �G1’,2G1' + �G2,2G2 + �G2’,2G2' + … + �G6,2G9 + �G6’,2G6' 
 … 
G6''= �6,0 + �G1,6G1 + �G1’,6G1' + �G2,6G2 + �G2’,6G2' + … + �G6,6G6 + �G6’,6G6' 
 
These equations modeled gradient interactions as a system of linear coupled harmonic 
oscillators with damping 85. 
 Eigendecomposition was used to analyze the governing dynamics of the 
harmonic oscillator system. We transformed each second order equation to a set of two 
first order equations using substitution. This linear system can be represented as: 

�Y
�� � AY 

where Y is the gradient timeseries and A is the coupling parameter matrix. 
Eigendecomposition of the coupling parameter matrix results in: 

AV � λV 
where λ and V are the eigenvalues and eigenvectors for the m eigenmodes. Each 
eigenmode describes a signal oscillating at a specific frequency. Eigendecomposition of 
a harmonic oscillator system with damping typically yields complex eigenvalues, with 
the real and imaginary parts (α+iβ) describing the damping (exponential growth or 
decay) and frequency of each eigenmode, respectively. The solution to the differential 
equation with complex eigenvalues is: 

	
�� � ���V 

	
�� � ��������V 

	
�� � 
��� cos �� � ���� sin ��� V 
Positive or negative values of α represent the damping of each eigenmode over time. 
β is the angular frequency (number of cycles per time unit) and is converted to hertz by 
β/2π/TR. The eigenvector components are also complex, with the real and imaginary 
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parts describing the amplitude and phase angle of each gradient on that eigenmode. 
When solving the equation for a given set of initial conditions, the real and imaginary 
parts of each eigenmode are each scaled by constants k to satisfy the initial conditions, 
e.g.: 

	
�� � �	 ����� sin ��
��� cos �� � � �
 ���� cos ��

��� sin ��� 

 
For a given gradient G, the overall solution for its timeseries on an eigenmode is: 

	�
�� � �	 ��a��� sin ��
b��� cos �� � � �
 �a��� cos ��

b��� sin ��� 

 
where a and b are the real and imaginary parts of the gradient's eigenvector component 
on eigenmode m. 
 The coupling parameter matrix was computed for each subject, from which 
eigenmodes were derived and gradient timeseries were simulated. These simulations 
were run using the gradient timeseries and first derivatives for each timepoint as the 
initial condition and running for the number of timepoints in that subject’s scan (235 or 
555 for Trio or Prisma). The [235/555 x 6] gradient timeseries were matrix multiplied by 
the [6 x 246] region gradient weights to obtain [246 x 235/555] region timeseries, from 
which [246 x 246] FC matrices were computed. These 235/555 matrices were averaged 
to produce the subject’s simulated FC matrix. For the actual data, the FC matrices were 
derived from the six gradients’ timeseries. Simulated and real FC matrices for each 
condition were statistically compared using Pearson correlation on the matrix upper 
triangle edge weights. 

We performed an illustrative eigenmode analysis on subjects with the lowest and 
highest function component 1 (F1) scores, associated with the lowest or highest overall 
mean atrophy. We sorted subjects based on F1 scores and grouped the five subjects 
with the lowest or highest scores, limited to only subjects with Siemens Trio scans. 
Gradient timeseries for the five subjects were concatenated into a [1175 x 6] matrix, 
from which we computed coupling parameters and derived the eigenmodes. The 
gradient timeseries were simulated for 1175 timepoints, of which the first 600 timepoints 
are displayed in Figure 5. The region timeseries and FC matrices were computed and 
compared for both subject groups. 

The eigenmodes for each subject were used to measure two across-eigenmode 
quantities: 1) each gradient’s cumulative amplitude 2) each gradient pair’s cumulative 
phase angle. A gradient's cumulative amplitude was computed as:  

� �
�a � b�
 � 
a � b�
 
�


�	

 

The phase angle difference between a pair of gradients on a given mode was calculated 
by subtracting the angles for a1+ib1 and a2+ib2. The cumulative phase angle difference 
between a pair of gradients across eigenmodes was then measured as the circular 
average of angle differences using the 'circ_mean' function in the 'circstat' MATLAB 
package 86, weighted by the product of the gradient amplitudes on the respective 
eigenmodes. Gradient amplitudes and gradient-pair angles (21 measurements per 
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subject) were then correlated across subjects with gradient variance and covariances 
(21 measurements per subject), resulting in a [21x21] correlation matrix. 
 
Neuropsychological testing 
 Each subject completed a neuropsychological battery. This included 
assessments for global cognition and function with the Clinical Dementia Rating 
CDR®+NACC-FTLD 33 and the Mini-mental status exam (MMSE) 87. The battery also 
tested the following domains: episodic memory with the short form California Verbal 
Learning Test (CVLT) 88 and the Benson figure delayed recall from the uniform data set 
89; working memory with the forward and backward digit span length tests;  processing 
speed with the trail making test (Trails A) and Stroop naming tests 90; executive function 
with the Stroop interference test, Delis–Kaplan Executive Function System (DKEFS) 
Design Fluency 91, and the modified trail making test (Trails B); visuospatial processing 
with the Benson figure copy test 92 and Number Location subtest of the Visual Object 
and Space Perception battery (VOSP) 93; and speech and language with the Boston 
Naming Test (BNT) 94, the Peabody Picture Vocabulary Test (PPVT) 95, the animal and 
vegetable naming tests, the D-letter naming test, syntax comprehension 96, and verbal 
articulatory agility 97. 
 
Brain-behavior statistical analysis 
 Brain-behavior relationships were estimated with generalized additive models 
using the ‘mgcv’ package 98 in R (https://www.r-project.org/). We selected only tests 
where 120 or more subjects had scores. For each test, we set up a model with 
predictors of atrophy scores for the first three atrophy components and functional scores 
associated with the first three atrophy components (from ridge regression). Each of 
these terms was restricted to have a maximal non-linear basis of 3 by setting k=3 in the 
model formula. We did not include explicit structure-by-function interaction terms 
because non-linear terms estimated by a GAM implicitly capture differences in slope 
across the range of each variable. Each model included linear covariates for age, sex, 
years of education, scanner type (Trio vs Prisma), and fMRI head motion (mean 
framewise displacement). Models were fit for 24 cognitive tests and predictors were 
deemed significant when their F-statistic associated p-values survived global FDR 
correction (24 tests x 6 brain-based predictors = 148 terms) with q=0.05. 

A targeted longitudinal model was used to estimate the relationship between F1, 
S1, and CDR. 53 subjects (47 patients, 6 cognitively normal subjects) had longitudinal 
data (mean visit interval=1.1±0.5 years, range=0.4-2.6 years) that passed all quality 
control tests. S1 and F1 scores were measured for follow-up scans using the linear 
weights from atrophy PLSR component S1 for structure and from ridge regression for 
function. We specified a mixed effects model using ‘mgcv’ with CDR-SB score from 
each scan-associated visit (106 total) as the outcome variable. The model estimated 
both between-subject and within-subject variation as in 59 by including S1 subject mean 
(averaged across timepoints; non-linear basis k=3 to match the cross-sectional model), 
S1 longitudinal change (difference from the subject's mean, varying within-subject 
across timepoints; k=1 to limit model degrees of freedom), F1 mean (k=3), F1 
longitudinal change (k=1), age, sex, years of education, and random intercepts for each 
subject. In a complementary model, F1 was estimated as a function of S1 baseline 
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(k=3), S1 change (k=3), age, sex, years of education, visit interval, and random 
intercepts for each subject. 

 
Replication analysis 
 A replication dataset was compiled from subjects in the ADNI3 study 99, obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(https://adni.loni.usc.edu/). The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 
information, see www.adni-info.org. We included subjects with a diagnosis of cognitively 
normal or Alzheimer’s disease dementia who received structural MRI and resting state 
functional MRI scans. A total of 966 visits from 573 subjects (CN n=500, AD n=73) at 68 
sites were obtained. We included the subset of scans that were from sites with 10 or 
more subjects, and that satisfied fMRI motion criteria (mean framewise displacement <= 
0.55 mm), resulting in 821 scans. These subjects had the following characteristics: 
diagnosis, CN n=421, AD n=56; mean age, CN=72.9±8.1 years, AD=75.6±8.1 years; 
277 female/200 male; 437 right-handed/40 left-handed; mean interscan 
interval=1.75±0.7 years). Scans were run on 3T scanners including Siemens (Prisma, 
n=441; Biograph, n=5; Skyra, n=12; Trio, n=48; Verio, n=91), Philips (Medicare Ingenia, 
n=54; Achieva, n=78), or GE (Medical Systems Discovery, n=209; Signa n=23). The 
typical sMRI acquisition parameters were acquisition time: 6:20; sagittal slice 
orientation; thickness: 1.0 mm; field of view: 208x240x256 mm; isotropic voxel 
resolution: 1mm3; TR: 2300 ms; TE: 3 ms; TI: 900 ms. The typical single-band tf-fMRI 
acquisition parameters were acquisition time: 10:00; axial orientation with interleaved 
ordering; field of view: 220x220x163 mm; matrix size: 92x92, effective voxel resolution: 
2.2x2.2x2.2 mm; TR: 3000 ms, for a total of 560 volumes; TE: 30 ms; with instructions 
to remain awake with eyes open. The typical multi-band tf-fMRI acquisition parameters 
were acquisition time: 10:00; axial orientation with interleaved multi-slice mode and 
multiband acceleration=8; field of view: 220x220x160 mm; matrix size: 92x92, effective 
voxel resolution: 2.5x2.5x2.5 mm; TR: 670 ms; TE: 30 ms. We included n=189 
multiband scans (TR=0.67/0.79ms, only from Siemens Prisma/Prisma Fit/Syra 
scanners) and n=777 single-band scans (TR=3/3.15s). CDR-SB scores were available 
for 774/821 scans. Images were processed with the same pipelines used for the main 
dataset. Atrophy W-maps and [246 x 1] region atrophy vectors were derived for each 
structural scan using the same W-score model with the default intercept. [246 x 246] FC 
matrices were obtained for each functional scan. We harmonized atrophy and FC data 
across sites by running ComBat on the atrophy/FC values for all scans, controlling for 
patient/control status, age, and sex. We then computed atrophy component scores for 
components 1-3 using the atrophy PCA loadings. Functional connectivity component 
scores were computed for components 1-3 using the average ridge regression 
coefficients. Structure-function relationships were estimated using a mixed effects linear 
model with functional component score as the response variable, fixed effects for the 
corresponding structural component score, mean age, sex, years of education, and 
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framewise displacement, and random intercepts for subject and site. CDR scores were 
estimated using a mixed effects GAM with CDR-SB as the response variable, non-linear 
fixed effects for S1-S3 and F1-F3 (all with a non-linear basis k=3), linear fixed effects for 
mean age, sex, years of education, and framewise displacement, and random 
intercepts for site. 
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Supplementary Information 

 
Supplementary Figure 1. Partial least squares regression structure component 
reliability using split-half analysis. 
 
Supplementary Results 1. 1000 trials of independent PLSR were run on the first and 
second halves of the subjects, randomly split with balanced syndrome classes for each 
trial. The structure component loading vectors were correlated between split halves for 
the 1000 trials for the first five PLSR components. The median correlations were S1: 
r=0.93±0.03, S2: r=0.88±0.14, S3: r=0.77±0.20, S4: r=0.34±0.23, S5: r=0.39±0.24. The 
most substantial drop in reliability was between components 3 and 4. 
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Supplementary Figure 2. FC edge weights for the bottom/top 1% of edges on each 
function component. Mean FC edge weights are shown for each component for groups 
of 30 subjects with the lowest/intermediate/highest atrophy scores. All boxplots show 
the median, lower and upper quartile range, and the non-outlier minimum/maximum. 
 
Supplementary Results 2. For the first three structure-function components, subjects 
were sorted based on their structural score for that component and binned into groups 
of 30. For a given component, FC edges were sorted based on their PLSR weight. The 
bottom/top 1% of edges (300 edges) were kept and the mean FC weight for these two 
sets were computed for each subject. These mean edge weights were statistically 
compared for the groups of 30 subjects with low/middle/high atrophy on that 
component, both for the bottom and top FC edges. The edge weights were always 
statistically significant between low and high subjects (all p < 0.001, see table) and were 
significant at a less stringent threshold (p < 0.01) in all other tests. This indicated that 
the partial FC variance captured by the FC scores was substantial enough to capture 
significant differences in overall FC edge weights between groups of subjects. 
 
 low vs. 

mid, t 
low vs. 
mid, p 

mid vs. 
high, t 

mid vs. 
high, p 

low vs. 
high, t 

low vs. high, p 

SF1, 
bottom 

2.86 0.005 3.22 0.002 5.77 < 0.001 

SF1, 
top 

-2.89 0.005 -3.74 < 0.001 -6.69 < 0.001 

SF2, 
bottom 

3.24 0.002 4.95 < 0.001 8.11 < 0.001 

SF2, 
top 

-2.51 0.01 -5.20 < 0.001 -6.87 < 0.001 

SF3, 
bottom 

3.32 0.002 5.52 < 0.001 8.44 < 0.001 

SF3, 
top 

-3.19 0.002 -2.80 0.006 -6.01 < 0.001 
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Supplementary Figure 3. A. Out-of-sample correlation coefficients between atrophy 
component scores and ridge regression-derived functional connectivity scores. Each dot 
represents a single fold out of four folds per 1000 trials. B. Correlation coefficients 
between ridge regression functional connectivity edge weights (a [30135 x 1] vector) 
derived separately for each cross-validation fold versus partial least square regression-
derived weights. The median correlations between corresponding ridge regression and 
PLSR components were 1-1: r=0.68, 2-2: r=0.75, 3-3: r=0.78. 
 
 

 
Supplementary Figure 4.  
Structure-function component score correlations for the ADNI replication dataset. The 
partial correlation coefficients were SF1: r=0.25, p < 0.001, SF2: r=0.15, p < 0.001, SF3: 
r=0.08, p=0.015. 
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Supplementary Figure 5. Longitudinal relationship effect plots showing the partial 
relationship of CDR-SB with structure component 1 (S1) mean (between-subject), 
function component 1 (F1) mean (between-subject), S1 change (within-subject), and F1 
change (within-subject). 
 
 

 
Supplementary Figure 6. Spatial correlations between the fMRI PCA spatial 
components (gradients; n=246 regions per component) derived from the independent 
cognitively normal cohort (n=321, rows) and the main combined patient and control 
cohort (n=321, columns). 
 
Supplementary Results 6. 
The spatial gradient patterns were highly consistent in the independent cognitively 
normal cohort and the primary cohort. The median spatial correlation was r=0.98 for 
gradients 1-6 (max=0.99, min=0.95) and r=0.97 for gradients 1-12 (max=0.99, 
min=0.83). 
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Supplementary Figure 7. Correlations between each subject's actual [246 x 246] FC 
matrix (rows) and simulated FC matrix (columns). 
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Supplementary Figure 8. Correlations between observed gradient variance/covariance 
and coupling parameter-derived gradient amplitude/angles. 
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