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Abstract 
Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence reveals that 

pancreatic intraepithelial neoplasms (PanINs), the microscopic precursor lesions in the 

pancreatic ducts that can give rise to invasive pancreatic cancer, are significantly larger and 

more prevalent than previously believed. Better understanding of the growth law dynamics of 

PanINs may improve our ability to understand how a miniscule fraction of these lesions makes 

the transition to invasive cancer. Here, using artificial intelligence (AI)-based three-dimensional 

(3D) tissue mapping method, we measured the volumes of >1,000 PanIN and found that lesion 

size is distributed according to a power law with a fitted exponent of -1.7 over > 3 orders of 

magnitude. Our data also suggest that PanIN growth is not very sensitive to the pancreatic 

microenvironment or an individual9s age, family history, and lifestyle, and is rather shaped by 
general growth behavior. We analyze several models of PanIN growth and fit the predicted size 

distributions to the observed data. The best fitting models suggest that both intraductal spread 

of PanIN lesions and fusing of multiple lesions into large, highly branched structures drive PanIN 

growth patterns. This work lays the groundwork for future mathematical modeling efforts 

integrating PanIN incidence, morphology, genomic, and transcriptomic features to understand 

pancreas tumorigenesis, and demonstrates the utility of combining experimental measurement 

of human tissues with dynamic modeling for understanding cancer tumorigenesis. 
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Introduction 
Pancreatic ductal adenocarcinoma (PDAC), though rare, is predicted to be the second leading 

cause of cancer-related deaths in the United States by 2030.1-3 A major hurdle in confronting 

this aggressive disease is that there is no effective screening test for PDAC or its precursor 

lesions.4 As such, PDAC is often diagnosed late when distant metastases are present and few 

clinical options remain. Only 15% of patients present with localized disease at the time of 

diagnosis.1 Improved understanding of the early development of pancreatic cancer is a 

necessary first step to developing effective screening tools. The majority of PDACs are believed 

to develop from microscopic precursor lesions called pancreatic intraepithelial neoplasia 

(PanIN, Fig 1).5 Study of PanIN is uniquely complicated due to their small size: PanIN lesions 

cannot be seen through noninvasive diagnostic imaging such as computed tomography (CT), 

magnetic resonance imaging (MRI), and endoscopic ultrasound (EUS). PanINs can be studied in 

surgically resected tissues, and novel techniques for three-dimensional (3D) mapping of dense 

tissues at cellular resolution enable quantitative assessment of PanINs and the pancreatic 

microenvironment in histological images.6-11 Recent works utilizing a large cohort of 3D 

reconstructed human pancreata revealed that the pancreata of some individuals contain 

hundreds of PanIN lesions.12,13 This number contrasts with the relative rarity of PDAC and 

suggests that most PanIN lesions will never progress to cancer in a person9s lifetime. The 

mechanism governing this extensive PanIN initiation and growth in human tissues is poorly 

understood. 

 

The gold standard for understanding the true incidence and morphology of biological structures 

is direct measurement of 3D structure in human tissues. However, this approach has some 

limitations. Unlike a mouse model, where researchers maintain direct control over disease 

progression to pair structural metrics with temporal information, such control does not exist in 

study of human disease. Thus, while we can construct large cohorts containing structural 

information from hundreds of PanIN lesions, we do not know the 8age9 of these precursors or 
possess information about the interrelation of adjacent lesions. Here, we utilize a cohort 

containing metrics from >1,000 PanIN lesions mapped in pancreatic tissues resected from 48 

individuals to present potential growth dynamics of PanINs. Some of these samples contain 

spatially resolved DNA sequencing data describing the somatic mutations of spatially separate 

PanINs, providing additional information about their history.  

 

Since PanIN growth cannot be observed directly, we use dynamic modeling to predict suitable 

growth laws by comparing the predicted size distributions to our experimental volumetric 

data.14,15 This approach allows us to identify fundamental processes contributing to growth. In 

particular, the spatially resolved genomics information suggests that intraductal spread of 

PanIN lesions, as well as multiple PanIN lesions fusing together to create large, highly branched 

structures might be important.12 In the following, we first analyze the experimental data in 

detail and then build successively more complex models to explain the data. 
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Methods 

Experiments 

 

Generation of 3D human pancreas tissue cohort 

The 3D pancreas maps used here were previously described in a work mapping the prevalence 

and spatially resolved genomic properties of pancreatic cancer precursor lesions.12 Briefly, thick 

slabs of grossly normal human pancreas tissue were collected from 48 individuals who 

underwent surgical resection at the Johns Hopkins Hospital for pancreatic abnormalities 

including PDAC, well-differentiated pancreatic neuroendocrine tumors, metastatic disease of 

non-pancreatic origin, and non-malignant pathologies. Tissue was formalin-fixed, paraffin-

embedded (FFPE), and serially sectioned at a thickness of 4µm. Every third section was stained 

with hematoxylin and eosin (H&E) and digitized at 20x magnification, for a lateral (xy) 

resolution of 0.5µm/pixel, and an axial (z) resolution of 12µm. CODA (Fig 2), a recently 

developed tool for 3D reconstruction of serially sectioned tissues,16 was used to register the 

serial images and segment nine pancreatic microanatomical structures on the serial H&E 

images at a reduced resolution of 2µm: PanIN, normal pancreatic ducts, pancreatic acini, islets 

of Langerhans, vasculature, nerves, fat, lymph nodes, and stroma to an accuracy of 96.6%.12 

Resulting models were fully visualizable and quantifiable. Spatially distinct PanIN identified 

using CODA were validated through inspection of corresponding histology, and parameters 

including number of PanIN lesions per cm3 pancreas tissue, lesion size, cellularity, and aspect 

ratio were obtained. 

Power-law growth model 

The power-law growth model given by Eq. (1) in the Results section with initial condition �(� = 0) = �ÿÿĀ results in the growth curve �(�) = �ÿÿĀ[1 + ā�(1 2 ÿ)] 112ÿ 

for ÿ b 1, and �(�) = �ÿÿĀ�āā for ÿ = 1. The maximal PanIN size in a sample of age Ā is thus �ÿÿ� = �(Ā), which is achieved when the PanIN is initiated at � = 0. Assuming a constant rate Ā of PanIN initiation, the distribution of PanIN sizes can be expressed by the complementary 

cumulative distribution function (CCDF) after duration Ā, which reads 

ÿ(�) = 1 2 (�ÿÿ�� )ÿ21
1 2 (�ÿÿ��ÿÿĀ)ÿ21 

for ÿ b 1, and ÿ(�) = ĂĄ(�ÿÿ� /�)/ĂĄ(�ÿÿ� /�ÿÿĀ  ) for ÿ = 1. These expressions do not 

depend on the initiation rate Ā since the distribution is normalized, ÿ(�ÿÿĀ) = 1. Moreover, 

inverting the growth curve �(�) allows us to determine the duration it takes for a PanIN to 

grow to the observed volume �, so we can predict when a PanIN must have been initiated for 

given ā and ÿ. Choosing the minimal plausible value for ā (such that PanINs must have 

originated after � = 0) as well as pooling observed data by years and weighing them with the 

inverse sample volume, we predict the number þÿ of PanINs that were initiated in year ÿ per 
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unit volume of the sample. This discretized data is smoothed with a Gaussian filter of width 5 � 

to generate Fig. 4F. 

Simulating extended models 

We simulate the seeding model by explicitly propagating forward in time a collection of PanIN 

sizes {�ÿ}. For each step, we first use Eq. (2) (Results section) to determine the average waiting 

time �� until a new PanIN is initiated, and then grow all PanINs for this duration according to 

the power-law growth curve given above. We quantify the resulting distribution ÿĂÿþý(�) from 

the final volumes after time Ā. 

 

In contrast, we simulate the merging model using a fixed time step �� = 0.01 �. During each 

step, we first grow all PanINs according to the power-law growth given by Eq. (1), then 

randomly choose ý of the þĂÿÿÿĀ = þ(þ 2 1)/2 possible PanIN pairs for an attempted merge, 

and finally initiate new PanIN with the constant initiation rate Ā0. The merge is performed 

stochastically, i.e., when �ÿĀ > �, where �ÿĀ = �� ⋅ þĂÿÿÿĀ �(�ÿ, �Ā)/ý with �(�1, �2) given by 

Eq. (3), and � is a random number chosen uniformly between 0 and 1. Here, ý is a control 

parameter, which is chosen minimally while still obeying �ÿĀ < 1. While initiation is still 

implemented deterministically, merging is done stochastically, so we obtain the respective 

distribution ÿĂÿþý(�) from an average of 8 independent runs. In all cases, we run simulations 

for Ā = 65 �, the median age of the patients analyzed. The volume �� of the model sample 

does not affect results and we chose �� = 100 āă3 to get adequate statistics. 

 

To fit the predictions of these models to the observed data ÿāĀĀ(�), we minimize the 

logarithmically scaled mean squared deviation  �2 = ∑ [ĂĄ ÿÿāĀĀÿÿĂÿþý ]264
ÿ=1  

where the CCDFs ÿ(�) are evaluated in 64 logarithmically distributed intervals between �ÿÿĀ 

and the maximally observed volume, so ÿÿ = �(� > �ÿ) gives the fraction of PanIN with a 

volume above �ÿ. We minimize �2 by adapting the model parameters using the Differential 

evolution algorithm17 over 8 independent repetitions, each with 2048 steps. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569633doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.01.569633
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

PanIN sizes exhibit a broad distribution 

 

The CODA methodology was successfully used to map PanIN lesions in human pancreas tissues 

(Fig 2). From each sample, we compiled patient demographic information along with number 

and size of PanIN lesions per 3D reconstructed surgically resected pancreas sample. Using these 

data, a range of PanIN sizes and morphologies was found (Fig 3A). A total of 48 thick slabs of 

human pancreas tissue were assessed (Fig 3B). The mean sample volume was 1.83 cm3 

(median: 1.87 cm3, range: 0.31 – 3.62 cm3). Samples contained an average 21.8 spatially 

separate PanIN lesions (median: 18.5, range: 4 – 92). PanIN volumes were highly variable within 

this cohort. The smallest PanIN was 9 x 10-5 mm3, occupying part of a small, intercalated duct, 

and the largest PanIN was 24.7 mm3, occupying most of the pancreatic ductal system of the 

sampled region. The average PanIN volume was 0.27 mm3 (median 0.01 mm3). PanIN structure 

was similarly highly variable, with small PanIN lesions occupying short regions of single duct 

branches, and the larger PanIN lesions appearing highly branched, with extension in the 

pancreatic ducts and into surrounding acinar lobules. Figure 3C displays PanIN densities per 

sample, calculated as number of PanIN per cm3 of tissue. Finally, we compared PanIN density 

across three demographic factors to show that no significant difference in PanIN content exists 

as a function of patient age, sex, or location of surgical resection within this cohort (Fig 3D). 

 

The variability of PanIN size is visualized in the histogram shown in Fig. 3E. This representation 

of the data suggest that PanIN size is distributed according to a power law with a fitted 

exponent of -1.7 (correlation coefficient 0.96, with 95% confidence intervals 0.89 and 0.98), 

which implies that PanINs are overwhelmingly small. However, this power law cannot explain 

the occurrence of the largest PanIN (blue disks in lower right of Fig. 3E). A precise quantification 

of very large PanIN is challenging due to the limited number sampled, and this information is 

further concealed because histograms generally rely on binning of the data. To circumvent this 

problem, we instead represent the data using a complementary cumulative distribution 

function (CCDF), ÿ(�), which gives the fraction of observed PanINs with a volume larger than � 

(see Fig. 3F). The precise shape of ÿ(�) carries more information about the distribution of 

PanIN size than the histogram, since it does not require binning. For instance, it reveals that 

PanINs below  �ÿÿĀ = 0.001 ăă3 are rarely detected, so we disregarded data below this size 

in our analysis. The CCDF has a characteristic shape, which contains information about the 

history of the sample, i.e., when PanINs are initiated and how they grow. In the following, we 

test various growth models to try to explain this data. 

A power-law growth law explains size distribution qualitatively 

PanIN growth is a complex, poorly understood process, which is likely affected by the 

pancreatic microenvironment (interactions of epithelial cells harboring somatic mutations, with 

stromal cells and pancreatic digestive enzymes), and an individual9s age, family history, and 
lifestyle. However, the comparative analysis shown in Fig. 3D suggests that age, portion of the 

pancreas involved (head vs tail), and sex do not significantly affect PanINs. It is thus plausible 

that the overall features of PanIN size distribution are less sensitive to such details and are 
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rather shaped by general growth behavior. For instance, PanINs could grow according to their 

present size, proportionally to their surface area, or only along the inner lining of the pancreatic 

ducts in which they are, by definition, contained. These three proposed growth behaviors 

correspond to PanIN growth rates proportional to their volume, their surface area, and a 

constant, respectively. All these alternatives can be summarized by a single power-law,  �ā� = ā�ÿÿĀ ( ��ÿÿĀ)ÿ  , 
 (1) 

which quantifies how the PanIN volume � changes as a function of time �. Here, �ÿÿĀ is the 

cutoff volume, ā quantifies the growth rate, and ÿ denotes the growth exponent distinguishing 

different modes of growth; ÿ = 1, ⅔, 0 correspond to the three alternative modes discussed 

above, but in principle all values of ÿ are permissible. Figs. 4A and 4B visualize the strong 

influence of the exponent ÿ on PanIN volume as a function of time.  

 

To explore suitable growth exponents ÿ, we start by analyzing the simplest scenario where 

PanINs are initiated at a constant rate Ā, and each PanIN grows independently according to Eq. 

(1). The size distribution of PanIN volumes � after a finite time Ā predicted by this model 

retains the strong dependence on ÿ; see Figs. 4C and 4D. We next compare the predictions of 

the power-law growth model to the observed distribution ÿ(�). Fig. 4E shows two fits of this 

model involving either the entire range of data (green line) or only small PanINs (blue line). This 

shows that the power-law growth model explains the distribution of smaller PanIN lesions 

reasonably well, but cannot account for the entire size distribution. This might be expected, 

since larger PanINs may not simply grow, but may also merge with other PanINs, which is not 

reflected in the current model. Nevertheless, the fit of the model to smaller PanINs suggests 

that PanINs grow proportionally to their volume or ever more rapidly since the model with ÿ >1 best explains the data. In contrast, the deviation of the distributions for large volumes can 

essentially be caused because (i) there are many more small PanINs than our simple model 

predicts, or (ii) there are more exceedingly large PanINs than our model predicts. Consequently, 

variability in PanIN initiation, but also seeding of new PanIN and merging of older PanIN lesions 

could explain these deviations. We will show that these scenarios are all plausible, but lead to 

very different dynamics, which could be discriminated experimentally. 

Growth law predicts PanIN initiation times 

A core assumption of the first analysis above was that the PanIN initiation rate Ā was constant 

in time, whereas it is generally accepted that PanINs are more common in older individuals and 

that the somatic genetic events that give rise to PanINs accumulate as we age.13,18,19 To address 

this, we use Eq. (1) to predict when a PanIN measured at volume � must have been initiated 

(with a volume �ÿÿĀ) relative to the age Ā of the sample. For simplicity, we use the same 

growth rate ā for all PanINs, chosen minimally such that no PanINs are older than the age of the 

patient at the time of pancreatic resection. Taken together, this allows us to predict the 

initiation rate density Ā (the number of PanINs initiated in a given year per cm3 of pancreas 

tissue) as a function of time. Fig. 4F shows that a fairly constant initiation rate density requires 

super-exponential growth (green data), consistent with our result above. In contrast, 

exponential (teal data) or sub-exponential (violet data) growth requires strongly increasing 
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initiation rates, e.g., new PanINs must appear more frequently in older samples. To get deeper 

insight into the connection between initiation rate Ā and the growth exponent ÿ, we next 

discuss two concrete realizations that can cause these different behaviors. 

PanIN seeding could explain increasing initiation rates 

Increased PanIN initiation rates could potentially be explained by seeding, where some 

neoplastic cells detach from a PanIN lesion, travel within the lumen of the duct, and initiate a 

new PanIN that is physically separate from the parent PanIN lesion; see Fig. 5A. Experimental 

evidence confirms the possibility of intraductal spread, as DNA sequencing has shown that 

adjacent, spatially separate PanIN sometimes harbor a similar profile of somatic mutations.12 To 

see whether this explanation is feasible, we extend the power-law growth model given by Eq. 

(1) to include seeding. For simplicity, we assume that the volume of a PanIN does not change 

when it seeds a new one, essentially assuming � ≫ �ÿÿĀ. Seeding can then be captured by the 

modified initiation rate Ā(�) = Ā0 + ÿ�S ∑ [�ÿ(�)�ÿÿĀ ]ā�(ā)
ÿ=1  , 

 (2) 

where Ā0 is a constant de novo initiation rate in the sample of volume �S, ÿ quantifies the 

strength of seeding from each of the þ existing PanINs of volumes {�ÿ}, and ā is an exponent 

describing how the seeding depends on the size of the parent PanIN: a constant rate 

corresponds to ā = 0, whereas ā = 1 implies seeding proportional to the volume of the PanIN, 

and fractional values describe scenarios between these two extremes. Note that Ā0 should scale 

with the sample volume, whereas ÿ is a rate per existing PanIN, causing an autocatalytic 

increase in the number of PanIN, similar to how metastasis can themselves metastasize, 

drastically increase the number of metastatic foci. 

 

We simulate a population of PanINs for various choices of the five parameters (ā, ÿ, Ā0, ÿ, ā) of 

the PanIN seeding model to compare the resulting size distribution to the measured data. Note 

that two of the five parameters, namely ÿ and ā, distinguish qualitatively different scenarios, 

whereas the other three parameters determine the quantitative behavior. To capture this, we 

analyze the model for various pairs (ÿ, ā) and determine the remaining parameters using a fit 

to the experimental data. Using �2 to quantify the goodness of fit, we can then judge which 

pair (ÿ, ā) provides the best description of the experimental data. Fig. 5B shows that the 

seeding exponent ā influences �2 only weakly, whereas the growth exponent ÿ is strongly 

constrained by the data. Interestingly, this analysis now suggests that PanINs grow sub-

exponentially (0.6 < ÿ < 0.9) in contrast to the simpler model without seeding. In any case, 

the direct comparison of the theoretical prediction with experimental measurements shown in 

Fig. 5C indicates that seeding can account for the observed data quantitatively. In essence, 

seeding from existing PanINs leads to an exponentially increasing initiation rate Ā (see Fig. 5D), 

which is consistent with Fig. 4E and accounts for the many observed small PanIN lesions. 
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PanIN merging could explain frequent large PanINs 

A second alternative for a process that affects the size distribution are merging events where 

two PanINs grow so large that they touch and merge with each other within the effected duct; 

see Fig. 5E. Experimental evidence supports the existence of polyclonal PanIN lesions, as DNA 

sequencing has shown that large, highly branched PanIN lesions can contain multiple, localized 

containing different somatic mutations.12 Instead of capturing the intricate details of spatial 

PanIN growth, we also capture this behavior by extending of the power-law growth model 

given by Eq. (1). The main idea is that the probability that two PanINs meet and merge is 

roughly inversely proportional to sample volume �� and might also depend on their individual 

volumes �1 and �2. We thus merge two PanINs stochastically with rate �(�1, �2), which we 

model as a power-law �(�1, �2) = Ā�� (�1�2�ÿÿĀ2 )Ā , 
 (3) 

where Ā determines the merging rate, whereas Ā encodes the size-dependence: For Ā = 0, the 

merging rate is independent of PanIN size, whereas for instance Ā = 2/3 implies a rate that 

scales with the surface area of both PanINs. This merging model is similar to Smoluchowski9s 
coagulation model, which describes merging clusters like liquid droplets.20,21 For simplicity, we 

consider a constant rate Ā0 of de novo formation of PanINs. The model is inherently stochastic, 

so we simulate multiple samples and collect all PanIN volumes at the final time to compare 

their distribution to the experimentally measured one. Since we replace two merging PanINs by 

a single one with the total volume �1 + �2, this model leads to fewer but larger PanINs over 

time, which could explain the higher-than-expected portion of large PanINs that we observe. 

 

The PanIN merging model has five parameters (ā, ÿ, Ā0, �, Ā), where again ÿ and Ā distinguish 

qualitatively different growth scenarios, whereas ā, Ā0, and � set quantitative rates. We thus 

again fit the rates by minimizing �2 as a function of the parameter pair (ÿ, Ā). Fig. 5F indicates 

that there is again an optimal region for these two parameters, although it is less sharply 

defined than in the seeding model. The best fit occurs for super-exponential growth (ÿ j 1.2) 

and a merging rate that is roughly constant (Ā j 0.1), although larger merging exponents are 

also plausible. Fig. 5G shows that the best fit can indeed explain the observed size distribution, 

but there is appreciable uncertainty, particularly for the larger PanINs with worse statistics. In 

any case, merging of PanINs happens predominately for larger volumes, leading to even larger 

PanINs, implying that PanIN count decreases with time (see Fig. 5H) and the size distribution 

becomes skewed toward larger sizes. 

Seeding and merging model predict different PanIN counts over time 

The seeding and the merging model can both explain the experimentally observed PanIN size 

distribution. However, the reasons are fundamentally different: The seeding model exhibits a 

strongly increasing initiation rate, resulting in more small PanINs than the simple power-law 

growth model predicts. Conversely, the merging model leads to an excess of large PanINs even 

for a constant initiation rate. Crucially, both models account for the deviation between the 

power-law growth model and the observed data that we identified in Fig. 4E. Clearly, the 
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combination of both models could also explain the observed experimental data of PanIN sizes. 

However, both models make distinct predictions for the number þ of PanINs as a function of 

time: The seeding model yields exponentially increasing þ (Fig. 5D), due to the exponential 

increase in the initiation rate, whereas the merging model predicts even fewer PanINs than in 

the basic growth model due to merger events (Fig. 5H). This difference also explains why the 

seeding model predicts a lower growth exponent (ÿ j 0.75) then the merger model (ÿ j 1.2), 

which is consistent with our observations in Fig. 4D that smaller ÿ coincides with strongly 

increasing initiation rates. Taken together, the two models could thus be distinguished, and 

their relative contribution quantified, if PanINs were identified in much younger samples. 

  

Discussion 
In this work, we show that simple growth models can describe experimentally observed size 

distributions in human pancreatic precancer incidence and volume. We demonstrate that there 

are two general models of lesion growth that can lead to the experimentally measured size 

distribution: (1) sub-exponential lesion growth with exponentially increasing initiation rate; e.g. 

due to intraductal spread, and (2) exponential lesion growth with significant merging of larger 

lesions; e.g. fused polyclonal PanIN lesions. Both regimes fit experimentally collected genomic 

data – likely, a combination of the two models is true (this is studied in related fields as 

coagulation-fragmentation processes22). 

 

Although both mechanisms lead to the same measured PanIN size distribution at their 

endpoints, the early dynamics of the two are very different. This is apparent in the predicted de 

novo initiation rates Ā0, which differ by more than two orders of magnitude (Fig. 5C and 5G), the 

number of lesions as a function of time (Fig. 5D and 5H), and in the lesions size distribution as a 

function of time (Supporting Fig. S1). The PanIN seeding model exhibits sub-exponential growth 

of individual PanIN lesions, but the number of PanINs grow exponentially since more PanINs 

can, in turn, seed more PanINs. Conversely, the PanIN merging model requires super-

exponential growth of individual PanIN lesions, but the number of PanIN actually decreases 

over time as multiple PanIN combine into one. Since we do not observe significant differences 

in PanIN counts between two age groups (Fig. 3D), the merging model might explain real PanIN 

growth more accurately. However, reality might be best described by a combination of seeding, 

merging, and a time-dependent de novo initiation rate. More detailed data, particularly from 

samples from younger individuals, is needed to quantify the relative contributions of these 

different processes. 

 

We note several limitations of our study. As we analyze all PanINs from all 3D samples 

reconstructed, our PanIN volumetric data was biased by non-fully contained lesions (PanIN that 

were cut at the boundaries and should thus be larger than we measure). If we were to analyze 

only the fully contained PanIN, we would lose all the largest lesions, shifting our distribution 

significantly. In the future, larger sample volumes could circumvent this problem. Because of 

these challenges, the numbers obtained from the model should be interpreted carefully. 

However, the general relations between initiation, merging, and the growth exponent would 

still hold. Additionally, as the volumetric PanIN data generated by CODA was limited by the 
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resolution of the histological staining schema thickness (4 µm thick serial sections with every 

third section stained H&E),12 the resolution of the experimental data analyzed here was 12 x 12 

x 12 µm3, which may have limited our ability to accurately measure the smallest PanIN lesions. 

Finally, as the pancreas samples analyzed here were collected during surgical resections for 

pancreatic abnormalities, the incidence and size of lesions reported here may not fully 

represent the general population (as most of our samples came from older individuals, and 

there is an association between age, pancreatic cancer, and PanIN incidence). Future work 

modelling the growth properties of PanIN as measured from organ donor samples and samples 

from younger individuals is important for correcting this bias. 

 

Our model gives a general overview for how precancerous lesions could evolve. More detailed 

experimental data, e.g., based on genetic fingerprinting, would be valuable to measure seeding 

and merging rates directly. Similarly, more data on PanIN sizes and shapes from samples of 

various ages could be used to directly test different growth models of individual PanIN, e.g., 

whether they grow along pancreatic ducts or expand their volume in all directions (pressing 

outwards into the acinar lobules and inwards into the ductal luminal space), which will likely 

also depend on PanIN size. If such data becomes available, our model can serve as a basis for 

developing more detailed models which describe PanIN in the actual physical space provided by 

the pancreatic ducts. Moreover, our generic approach to describing lesion growth is likely 

transferable to other lesions types, including other common cancer precursors in the fallopian 

tubes or esophagus. Differences and similarities between different pre-cancerous lesions could 

then unveil universal principles of how cancers originate. 
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Figures & Captions 
 

 
Figure 1. Pancreatic tumorigenesis as visualized in histological sections. Pancreatic ductal 

adenocarcinoma (PDAC) develops from histologically recognizable precursor lesions called 

pancreatic intraepithelial neoplasms (PanINs). Shown here are histological examples of (left) a 

histologically normal duct, (center) PanIN, and (right) invasive cancer. Scalebar = 0.5 mm. 
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Figure 2. CODA 3D reconstruction of pancreatic microanatomy. (a) CODA starts with serial 

histological sectioning of formalin-fixed, paraffin embedded human pancreas samples. All, or a 

subset, of sections are stained with hematoxylin and eosin (H&E) and digitized. (b) A deep 

learning semantic segmentation algorithm was used to segment nine tissue components in the 

H&E images. (c) A nonlinear image registration algorithm was used to align the serial images 

into a digital volume. (d) Registered, segmented images were used to create visual and 

quantifiable maps of the pancreas microanatomy. Scalebars: black = 1 cm; gray = 2 mm. 
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Figure 3. Observed PanIN sizes exhibit a broad distribution. (a) PanIN were found in a range of 

volumes, with a minimum PanIN volume of 9 x 10-3 mm3 and a maximum PanIN volume of 24.7 

mm3. (b) Tables displaying total number of pancreas samples reconstructed, number of PanIN 

found, patient demographics, and detailed 3D sample information. (c) Bar graph displaying 

number of PanIN identified per cm3 of pancreas tissue for 48 grossly normal slabs of human 

tissue. Minimum of 1.4 PanIN per cm3 tissue and maximum of 31.1 PanIN per cm3 of tissue. (d) 

Bar graphs displaying number of Panin identified per cm3 of pancreas tissue compared across 

age, location of surgical resection, and sex. All nonsignificant (>0.05). (e) Histogram of PanIN 

volumes, plotted at logarithmic scale. (f) complementary cumulative distribution function of 

PanIN volumes, plotted at logarithmic scale. 
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Figure 4. Simple growth PanIN growth model explains size distribution qualitatively. (A) PanIN 

volume � as a function of time � predicted by the power-law growth model given by Eq. (1) for 

various growth exponents ÿ and identical growth rate ā. (B) �(�) reaching the same volume at � = Ā for various ÿ. (C) Complementary cumulative distribution function ÿ(�) of PanIN 

volumes predicted by power-law growth model for a given growth rate ā and various ÿ (D) ÿ(�) with identical maximal volume �ÿÿ� = 100 ăă3 for various ÿ. (E) Comparison of 

observed (black line; same data as Fig. 3F) and predicted (green and blue lines) size 

distributions ÿ(�). Parameters ÿ and �ÿÿ� of the power-law growth model were obtained by 

fitting over all volumes (green data, �2 = 0.054) or over the indicated range (blue data, �2 =0.018). (F) Smoothed PanIN initiation rate density Ā as a function of age inferred using the 

power-law growth model and the observed PanIN sizes for various ÿ. Shaded area indicates 

confidence interval of width Ā/√þ, where þ is the number of PanINs for that year. The samples 

ages are summarized by the gray histogram. (A-F) Additional parameters: �ÿÿĀ = 0.001 ăă3 
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Figure 5. Seeding and merging models can explain observed size distribution quantitatively. 

These models combine the simple growth described by Eq. (1) with spontaneous seeding of 

daughters from older PanIN (A–D) or merging of two PanIN (E–H). (B) Mean squared deviation �2 as a function of the growth exponent ÿ and seeding exponent ā indicates that seeding 

model with ÿ j 0.75 can explain the observed data. (C) Comparison of the PanIN size 

distribution ÿ(�) of the seeding model (blue line; ÿ = 0.75, ā = 0.83) to the observed data 

(black line). The parameters in the inset refer to a sample of volume �� = 100 āă3 simulated 

for Ā = 65 �. (D) Predicted PanIN count þ as a function of age �. Inset shows the number of 

seeded PanINs as a function of � indicating an exponential increase. (F) �2 as a function of ÿ 

and the merging exponent Ā indicates that the merging model with ÿ j 1.2 and Ā j 0.1 can 

explain the observed data. (G) Comparison of ÿ(�) of the merging model (blue line; ÿ = 1.2, Ā = 0.1; Shaded area indicates STD for Ą = 32 repetitions) to the observed data (black line). 

(H) Predicted þ as a function of � suggests þ ∼ �. Inset shows the number of merged PanINs as 

a function of age �.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569633doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.01.569633
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
1 Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J 

Clin 73, 17-48 (2023). https://doi.org:10.3322/caac.21763 

2 Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden 

of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74, 2913-2921 

(2014). https://doi.org:10.1158/0008-5472.CAN-14-0155 

3 Rahib, L., Wehner, M. R., Matrisian, L. M. & Nead, K. T. Estimated Projection of US 

Cancer Incidence and Death to 2040. JAMA Netw Open 4, e214708 (2021). 

https://doi.org:10.1001/jamanetworkopen.2021.4708 

4 Mazer, B. L. et al. Screening for pancreatic cancer has the potential to save lives, but is it 

practical? Expert Rev Gastroenterol Hepatol 17, 555-574 (2023). 

https://doi.org:10.1080/17474124.2023.2217354 

5 Basturk, O. et al. in The American journal of surgical pathology Vol. 39   1730 (NIH Public 

Access, 2015). 

6 Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interaction in 

colorectal cancer. Cell 186, 363-381 e319 (2023). 

https://doi.org:10.1016/j.cell.2022.12.028 

7 Kiemen, A. L. D., A. I.; Braxton, A.M.; He, J.; Laheru, D.; Fishman, E.K.; Chames, P.; 

Almagro-Perez, C.; Wu, P.W.; Wirtz, D.; Wood, L. D.; Hruban, R. H. Tissue clearing and 3D 

reconstruction of digitized, serially sectioned slides provide novel insights into 

pancreatic cancer. Med (2023).  

8 Liu, J. T. C. et al. in Nature Biomedical Engineering 2021 5:3 Vol. 5   203-218 (Nature 

Publishing Group, 2021). 

9 Richardson, D. S. & Lichtman, J. W. in Cell Vol. 162   246-257 (Cell Press, 2015). 

10 Kiemen, A. L. et al. Intraparenchymal metastases as a cause for local recurrence of 

pancreatic cancer. Histopathology (2022). https://doi.org:10.1111/his.14839 

11 Kiemen, A. L. et al. MRI-based Assessment of Pancreatic Fat Strongly Correlates with 

Histology-Based Assessment of Pancreas Composition. In press, Pancreas (2023).  

12 Braxton, A.M.; Kiemen, A. L. et al. Three-dimensional genomic mapping of human 

pancreatic tissue reveals striking multifocality and genetic heterogeneity in 

precancerous lesions. biorxiv, under review (2023).  

13 Carpenter, E. S. et al. Analysis of Donor Pancreata Defines the Transcriptomic Signature 

and Microenvironment of Early Neoplastic Lesions. Cancer Discov 13, 1324-1345 (2023). 

https://doi.org:10.1158/2159-8290.CD-23-0013 

14 Fletcher, A. G., Osborne, J. M., Maini, P. K. & Gavaghan, D. J. Implementing vertex 

dynamics models of cell populations in biology within a consistent computational 

framework. Prog Biophys Mol Bio 113, 299-326 (2013). 

https://doi.org:10.1016/j.pbiomolbio.2013.09.003 

15 Iwata, K., Kawasaki, K. & Shigesada, N. A dynamical model for the growth and size 

distribution of multiple metastatic tumors. J Theor Biol 203, 177-186 (2000). 

https://doi.org:DOI 10.1006/jtbi.2000.1075 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569633doi: bioRxiv preprint 

https://doi.org:10.3322/caac.21763
https://doi.org:10.1158/0008-5472.CAN-14-0155
https://doi.org:10.1001/jamanetworkopen.2021.4708
https://doi.org:10.1080/17474124.2023.2217354
https://doi.org:10.1016/j.cell.2022.12.028
https://doi.org:10.1111/his.14839
https://doi.org:10.1158/2159-8290.CD-23-0013
https://doi.org:10.1016/j.pbiomolbio.2013.09.003
https://doi.org:DOI
https://doi.org/10.1101/2023.12.01.569633
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular 

resolution. Nat Methods 19, 1490-1499 (2022). https://doi.org:10.1038/s41592-022-

01650-9 

17 Storn, R. & Price, K. Differential evolution - A simple and efficient heuristic for global 

optimization over continuous spaces. J Global Optim 11, 341-359 (1997). 

https://doi.org:Doi 10.1023/A:1008202821328 

18 Milholland, B., Auton, A., Suh, Y. & Vijg, J. Age-related somatic mutations in the cancer 

genome. Oncotarget 6, 24627-24635 (2015). https://doi.org:10.18632/oncotarget.5685 

19 Risques, R. A. & Kennedy, S. R. Aging and the rise of somatic cancer-associated 

mutations in normal tissues. PLoS Genet 14, e1007108 (2018). 

https://doi.org:10.1371/journal.pgen.1007108 

20 Cueille, S. & Sire, C. Droplet nucleation and Smoluchowski's equation with growth and 

injection of particles. Phys Rev E 57, 881-900 (1998). https://doi.org:DOI 

10.1103/PhysRevE.57.881 

21 von Smoluchowski, M. Three presentations on diffusion, molecular movement according 

to Brown and coagulation of colloid particles. Phys Z 17, 557-571 (1916).  

22 Sorensen, C. M., Zhang, H. X. & Taylor, T. W. Cluster-size evolution in a coagulation-

fragmentation system. Phys Rev Lett 59, 363-366 (1987). 

https://doi.org:10.1103/PhysRevLett.59.363 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.01.569633doi: bioRxiv preprint 

https://doi.org:10.1038/s41592-022-01650-9
https://doi.org:10.1038/s41592-022-01650-9
https://doi.org:Doi
https://doi.org:10.18632/oncotarget.5685
https://doi.org:10.1371/journal.pgen.1007108
https://doi.org:DOI
https://doi.org:10.1103/PhysRevLett.59.363
https://doi.org/10.1101/2023.12.01.569633
http://creativecommons.org/licenses/by-nc-nd/4.0/

