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ABSTRACT

Epigenetic aging clocks have been widely used to validate rejuvenation effects during cellular
reprogramming. However, these predictions are unfalsifiable, since the true biological age of repro-
grammed cells remains inaccessible. We present a multifaceted analytical framework to consider
rejuvenation predictions from the uncertainty perspective. We discover that DNA methylation profiles
of reprogramming are not represented in the aging data used for clock training, which introduces high
epistemic uncertainty in aging predictions. Moreover, predictions of different published clocks are
poorly consistent with each other and suggest even zero or negative rejuvenation. We show that the
high prediction uncertainty challenges the reliability of rejuvenation effects observed during in vitro
reprogramming prior to pluripotency and throughout embryogenesis. Conversely, our method also
reveals a significant age increase after in vivo reprogramming. We propose to include uncertainty
estimation in future aging clocks to avoid the risk of misinterpreting the results of biological age
prediction.

Keywords Rejuvenation · cell reprogramming · epistemic uncertainty · epigenetic aging clocks · dataset shift · DNA
methylation

Introduction

Reprogramming aged somatic cells into pluripotency or other progenitor states was repeatedly shown to ameliorate
various aging-associated features, either by applying different transcription factors (TFs) or by introducing small
molecules [1, 2, 3, 4, 5]. To quantify the effect of age reversal, researchers employ various methods, including the
so-called “epigenetic aging clock” models built from DNA methylation (DNAm) data using diverse machine learning
(ML) approaches. These approaches are employed most widely to compare the “biological age” of reprogrammed cells
to that of control cells [6] (Fig. 1a,b). These clocks are easy to use and can assess aging from the organismal to cellular
levels, which is especially helpful in cases when large-scale parameters of organismal aging cannot be measured, such
as in vitro cellular reprogramming. A similar line of thought has recently been used to demonstrate rejuvenation in the
course of embryonic development [7, 8, 9].

The primary assumption of aging clocks is that the deviation ∆ of predicted age from the chronological age C represents
an accelerated or decelerated aging, that is, an increase or decrease in the biological age B [10, 11]. One can express
it as B = C + ∆. Since biological age cannot be measured directly (i.e., it has no ground truth), the epigenetic
age estimated by the clocks is therefore considered a proxy measure of the biological age [12]. Because of that, and
also because the DNAm patterns are some of the best indicators of past influences and future health outcomes, the
epigenetic age is proposed to serve as a biomarker for measuring the effects of pro-longevity interventions in clinical
trials [13, 14, 10].
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The obstacle is that before the aging clocks could be adopted by clinicians, these models should provide an estimate of
uncertainty for their own predictions. Uncertainty manifests itself in three ways [15, 16]: (i) model choice uncertainty
(part of uncertainty from a broader category, called epistemic uncertainty) reflects how well a proposed model (its
architecture, parameters, metrics, etc.) reflects the real underlying process (Fig. 1c); (ii) out-of-distribution (OOD)
uncertainty (another type of epistemic uncertainty) arises when the testing data do not represent the training data
distribution leading to a high risk of model prediction failure (Fig. 1d); (iii) aleatoric uncertainty originates from data
variations that cannot be reduced to zero by the model (e.g., when the same DNA methylation level corresponds to
different ages) (Fig. 1e).

Dataset shift [17] is a term for describing the case of OOD sampling, where the testing population is under-represented
in the training distribution. Dataset shift could be decomposed into a covariate shift (e.g., differently distributed DNAm
values) and a response shift (e.g., different age ranges). The batch effect is one notorious example of dataset shift in the
field of omics data analysis [18].

From the clinical standpoint, epistemic uncertainty must be estimated to make safe conclusions about whether to trust a
model or not [15]. Specifically, epistemic uncertainty resulting from a dataset shift should be scrutinized, given the
batch effects are so common in biological data [18, 19]. However, most popular DNAm aging clocks cannot satisfy this
criterion (Fig. 1f), because they are typically built using algorithms from the penalized multivariate linear regression
(MLR) family [20] (e.g., ElasticNet). Such algorithms do not yield information on any of the uncertainties, except for
the error between the chronological and the predicted ages in the training data (e.g., mean or median absolute errors,
MAE or MedAE).

In this work, we question the applicability of existing aging clock methodology to measuring rejuvenation by taking a
closer look at prediction uncertainty (Fig. 1). We reanalyzed published data of putative rejuvenation in the extreme
cases of anticipated dataset shift, such as cellular reprogramming and embryonic development.

Because biological age measurements cannot be verified explicitly, we introduce four different indirect approaches to
this problem: (i) Is there a covariate shift in DNAm values between the datasets of aging and rejuvenation? (ii) Do
different aging clocks agree with each other in predicting rejuvenation? (iii) Can the rejuvenation datasets be employed
reciprocally to predict normal aging? And, (iv) Given an aging clock capable of estimating its own uncertainty (Fig.
1g), would it demonstrate a significant age reversal in the putative rejuvenation experiments?

We propose a framework for answering these questions. By leveraging this framework, we expect to elucidate the most
critical drawbacks of applying aging clock models to rejuvenation studies, which should be solved in order to drive a
wider adoption of these models among the longevity community.

Results

Covariate shift can lead to biologically meaningless predictions

To introduce the concept of covariate shift in the field of aging clocks, we began by exploring a simple, low-dimensional
example. We used two parameters (biomarkers) to construct an elementary aging clock for predicting chronological age
in humans: weight and height (Fig. 2a; see Methods). These two biomarkers strongly correlate with age during the first
twenty years of human life [21], therefore they can legitimately be used for age prediction. We analyzed the data of
body measurements performed for male humans ranging from 1 to 25 years old (an approximate end of body growth),
among which there were both healthy controls [21] and individuals with the achondroplasia disorder [22, 23] typically
characterized by a shorter length of arms and legs [24].

Following the common framework of aging clocks construction established in earlier works [25, 26, 27], we trained
a multivariate linear regression (MLR) model using body measurements of a cohort of healthy individuals to predict
their chronological age, which yielded good performance on the training data (MAE = 2.3 years, R2 = 0.84).
For the achondroplasia cohort, these clocks predicted consistently lower ages (Fig. 2b), which would be viewed as
decelerated aging in the context of other aging clocks. However, this interpretation has no biological support because
the average lifespan of people with achondroplasia is around 10 years shorter than that of control individuals due
to early-life mortality [24]. We assume that this underestimation of ages in the achondroplasia cohort is caused by
a covariate shift in the analyzed data, leading to a huge OOD uncertainty, which is not taken into account by the
model. Indeed, the distributions of covariates (weight and height) differ between the training and testing data (Fig.
2a, Kolmogorov-Smirnov (KS) test for distribution equality yields P -value < 0.0003). In general, any significant
differences between the observed distributions in training and testing samples should caution us against applying ML
models uncritically.
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Figure 1: Prediction uncertainty is an essential component for clinically relevant aging clocks. a, A common
pipeline for testing rejuvenation effect using epigenetic aging clocks. b, Current aging clocks estimate biological age
during the reprogramming process; however, they lack epistemic uncertainty quantification. c, By selecting a model to
make predictions from data, a researcher implicitly introduces model uncertainty. d, Out-of-distribution uncertainty
arises when the testing data samples are not represented in the training distribution. e, Aleatoric uncertainty comes
from the intrinsic variability in data, e.g. when the same level of a feature corresponds to different ages. f, None of
the existing aging clocks estimate epistemic uncertainty. g, We propose to use aging clocks capable of predicting
uncertainty, which could mitigate the potentially erroneous effects of clock predictions on clinical decision-making.

Moving beyond this simplistic case, we proceed with a deeper exploration of possible covariate shifts in the context of
epigenetic aging clocks.

Datasets of reprogramming and embryogenesis exhibit significant covariate shifts relative to aging datasets

DNA methylation in mammals is generally observed in a CpG context (i.e., at the cytosines followed by a guanine
nucleotide) [28]. As most popular DNAm profiling methods such as bead microarrays and reduced-representation
bisulfite sequencing (RRBS) also deliver information regarding mainly CpG methylation [29], we will further refer to
DNAm sites as CpG sites (CpGs).

Covariate shift can arise from various intrinsic and technical factors, including differences in sampling sources and
locations, tissue cell content, sample handling techniques, instrumental effects, etc. [18]. Given that aging clock models
are built to include only a handful of CpGs, it is reasonable to focus on these specific sites for covariate shift detection
(see Methods). Clearly, different datasets may harbor different subsets of sites, and aging clocks have been shown to
perform at least slightly better when being trained and tested on the same tissue types [30], so, for instance, comparing
CpGs from an aging skin dataset with CpGs profiled during fibroblast reprogramming is advised. In addition, the
success of multi-tissue epigenetic clock predictions in different conditions was already evaluated elsewhere [31], so we
focused exclusively on the single-tissue predictions.

To estimate the extent of covariate shift in DNAm studies, we analyze four representative scenarios in the order of
increasing expected difference between the distributions of DNAm patterns: (i) One aging dataset split into two subsets;
(ii) Two independent aging datasets; (iii) Aging vs. cellular reprogramming in vitro and in vivo; and (iv) Aging vs.
early embryogenesis, for which epigenetic rejuvenation was also demonstrated [7]. For every scenario, we performed
the principal component analysis (PCA) to demonstrate if there are separate clusters between the datasets, and the
Kolmogorov-Smirnov (KS) test to explicitly calculate the percentage of CpGs that have statistically similar distributions
in both datasets in question.

First, we examine a DNAm dataset of aging human skin [32] split randomly into the training and testing subsets. As
anticipated, we detect no discernible covariate shift: the subsets are indistinguishable by the PCA (Fig. 2c), DNAm
value distributions of at least top-4 age-correlated CpGs from both subsets perfectly overlay each other (Fig. 2d), and
the KS test for the distribution similarity further confirms the lack of covariate shift (Fig. 2e).
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Figure 2: Identification of covariate shift and its impact on aging clock models. a, An example of weight and
height covariate shift between the control and achondroplasia cohorts. b, Ages predicted by a model trained on the
weight and height measurements of the control cohort. The predictions are significantly biased for the achondroplasia
cohort, which is a purely technical phenomenon caused by shifted covariates. c,f,i, Principal component analysis (PCA)
of DNAm samples shows no covariate shift between the training and testing splits of the same aging skin dataset [32]
(c), a moderate covariate shift between the different aging skin datasets [32, 33] (f), and a strong covariate shift between
the aging skin dataset [32] and the in vitro fibroblast reprogramming dataset [36] (i). d,g,j, Histograms of beta values
for individual DNAm sites demonstrating no shifts between the two subsets of data (d), moderate shifts between aging
skin datasets from different studies (g), and strong shifts between the aging skin and reprogramming datasets (j). e,h,i,
Histograms of −log10(adj.P−values) demonstrating no DNAm sites rejected by the KS two-sample test at the 0.01
significance level (see Methods) confirming the absence of covariate shift (e), 81% of DNAm sites rejected by the KS
test confirming the presence of moderate covariate shift (h), 86% of DNAm sites rejected by the KS test confirming the
presence of strong covariate shift (k). Percentages on axes of c, f, i demonstrate the amount of variance explained by
the corresponding principal components. Representative sites for histograms d, g, j were chosen from the top-four sites
ordered by their correlation with chronological age.
Second, for two independent datasets of aging human skin [32, 33], moderate covariate shift is evident from similar
analysis (Fig. 2f,g), with the KS test indicating substantial differences in individual distributions (Fig. 2h): 81% of sites
are rejected by the test (i.e., have different distributions). On the other hand, a joint analysis of two aging mouse liver
datasets [34, 35] displays minimal covariate shift (1% of rejected CpGs,Extended Data Fig. 1d-f).

Third, a comparison of the aging human skin dataset [32] with two datasets of in vitro human fibroblast reprogramming
[36, 4] reveals strong covariate shifts: at early stages, fibroblasts closely resemble aging skin samples in their principal
component (PC) coordinates (Fig. 2i; Extended Data Fig. 1a), but, as the reprogramming progresses through the
maturation phase, a notable departure from the skin samples can be observed (86% and 69% of rejected CpGs,
respectively; Fig. 2j,k; Extended Data Fig. 1b,c). Such behavior of samples during the in vitro reprogramming might
suggest that reprogrammed cells acquire some phenotype unobservable in vivo.

To shed more light on this hypothesis, we further compare a dataset of in vivo reprogramming in mouse liver [3] with
merged aging mouse liver samples from [34, 35], as these two studies demonstrated no significant difference in the
previous analysis. As a result, we detect a moderate covariate shift according to PCA and the KS test (32% of rejected
CpGs, Extended Data Fig. 1g-i), which might imply that the in vivo conditions are better at preserving the normal
phenotypic characteristics.

Fourth, to address the “ground zero” hypothesis of epigenetic rejuvenation during embryogenesis [37], we compare
mouse embryos [38] with blood aging samples [34], as both of them were used previously to demonstrate this
phenomenon [7]. The first stages of embryogenesis strongly diverge from the aging samples, while later stages align
closer to the aging cluster on PCA, with the KS test detecting moderate covariate shift (15% of rejected CpGs, Extended
Data Fig. 1j-l).

These results collectively suggest that the DNAm covariates can be significantly shifted relative to each other dataset,
thereby implicitly increasing the risk of failed clock predictions. Given these risks, we advocate for the routine checks
of covariate shifts between datasets using the aforementioned methods or other techniques reviewed elsewhere [17]
before applying aging clocks.

Aging clocks are inconsistent in their predictions for reprogramming-induced rejuvenation

When choosing a specific machine learning model to construct an aging clock, a researcher inevitably introduces model
uncertainty (Fig. 3a). The chosen model family (e.g., Linear Regression) is an assumption about how the true process
of epigenetic aging, which is not accessible a priori, works. Therefore, by training different aging clocks on different
data or using different models, one can expect to obtain poorly consistent predictions [39].

To demonstrate how model uncertainty manifests itself, we leverage nine aging clocks trained on different CpG sets and
tissue types [26, 27, 40, 41, 42, 43, 44, 45] and apply them to two in vitro reprogramming datasets (see Methods). As
expected, all clocks vary greatly in their dynamics and amplitudes of predicted ages across the reprogramming timeline
(Fig. 3b, Extended Data Fig. 2a). We further focused on the period of the first three weeks of reprogramming (from
initiation to maturation), as the end of the third week (approximately day 20) marks the loss of somatic identity and
increasing risk of teratoma formation [1]. A comparison of absolute differences of ages estimated by the models at the
beginning and at the last available time point before the end of this period (day 15 for Ohnuki et al. and day 17 for Gill
et al.) exhibits evident inconsistencies for both datasets, ranging from the Horvath clock [26] predicting age reversal by
40 years to the Hannum clock [27] predicting age increase by 13 years (Fig. 3c, Extended Data Fig. 2a,b).
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To test the hypothesis that these discrepancies might have arisen from the differences in training datasets rather than
from the clock models themselves (most of which are based on ElasticNet regression), we trained different ML models
on the same dataset of aging human skin [32] and discovered that their predictions of rejuvenation demonstrate a
considerable instability (Fig. 3d, Extended Data Fig. 2c). Despite these inconsistencies, most models indicated positive
rejuvenation. Therefore, the clocks could potentially serve as qualitative (or binary) predictors of rejuvenation for the in
vivo studies.

To explore this possibility, we developed our aging clocks anew by fitting a Lasso regression over the combined
dataset of aging mouse liver [34, 35] (see Methods) and applied these clocks to the in vivo reprogramming dataset
[3]. We had to develop clocks de novo, since this dataset contained almost no CpGs from the existing clock models
mentioned before. Although these new clocks performed quite robustly for the testing subset (Fig. 3e), they failed
to register any rejuvenation between the old control mice and old mice treated with the OSKM factors (two-sided
Mann-Whitney-Wilcoxon (MWW) test, P -value=0.11, Fig. 3f). Notably, all models consistently predicted higher ages
for all control liver samples, suggesting a response shift (i.e., Ptrain(Y ) ̸= Ptest(Y )) between the training and testing
datasets [17], which might result from the differences in DNAm patterns between the training and testing mouse strains
(inbred C57BL/6 and transgenic i4F-B, respectively).

Taken together, our findings highlight a considerable instability of predictions with regard both to the different datasets
utilized for training and to the choice of a model family employed for prediction. This lack of agreement between aging
clocks could supposedly result from the covariate and response shift discovered previously in this research, as well as
from the manifestation of model uncertainty, leading to divergent rejuvenation dynamics.

Reprogramming data cannot be used to predict normal aging

We further examine the accuracy of aging clocks applied to predict reprogramming by employing a mathematically
rigorous approach. When the regression models are trained, they need to satisfy a certain degree of correlation,
expressed, for example, as the R2 score or mean absolute error (MAE). Supposedly, in an ideal case, when a clock
predicts age with absolute accuracy (R2 = 1.0, MAE = 0), its predicted ages can be used interchangeably with the
true chronological ages (because they are equal) to train another model on the testing data, and to predict ages in
the original training dataset with the same absolute accuracy. In reality, this ideal case is never observed due to the
technical and biological variations in the training and testing samples and sampling techniques, and due to model under-
or overfitting, but we hypothesize that if these effects are small (i.e., if there is little epistemic uncertainty), then the
reciprocal prediction of training data by the ages predicted for testing data should still be possible, albeit with some
degree of error.

To evaluate this mutual interchangeability (i.e., commutativity) of datasets from the perspective of model training, we
developed an Inverse Train-Test Procedure (ITTP, see Methods for details, Fig. 4a,b). Considering the availability of
ground truth measurements, we divided the ITTP use cases into two categories. In case 1, true ages are available for the
testing dataset Xte, Yte (Fig. 4a), which corresponds to comparing two datasets of aging. First, we train model 1 (e.g.,
linear regression) on the training set Xtr, Ytr to predict the ages of test samples Ŷte, where the hat symbolˆdenotes
predicted values. Second, model 2 is trained using the testing features Xte and the ages predicted by the model 1 Ŷte. If
the datasets are indeed interchangeable, similarly good performance metrics are expected for the predictions made by
model 2 for the original training samples (Fig. 4a, Case 1 panel).

In case 2, we do not know the true ages for the testing dataset, which corresponds to leveraging an aging DNAm dataset
{Xtr, Ytr} and a reprogramming dataset {Xrep} (Fig. 4b), since we do not expect the biological age of reprogrammed
cells to stay approximately the same as their chronological age, as would be the case for a dataset of normal aging. As
before, we train model 1 on the training data and predict the ages of reprogramming samples Ŷrep. In this scenario,
we cannot validate our predictions due to the lack of ground truth values of biological age for reprogrammed cells, so
we can only assume that the predictions are correct and use them to train model 2. If, as a result, we observe good
performance metrics between model 2 predictions and the ages of the original training dataset, then we can still assume
interchangeability, regardless of the intermediary predictions of model 1. On the other hand, if we obtain poor prediction
accuracy for model 2, then we infer that these datasets are not interchangeable, and that such prediction failure was
supposedly caused by a large epistemic uncertainty, presumably caused by a substantial dataset shift. In summary, the
ITTP approach contributes to our multifaceted estimation of uncertainty of predictions in aging and reprogramming.

We further apply this procedure for the pairs of datasets described previously (Fig. 2; Extended Data Fig. 1) and use
the Lasso regression model family as models 1 and 2 (see Methods). Models performe well for the aging human skin
dataset [32] (Case 1, Fig. 2c,d), both when applying model 1 to predict testing data ages (r = 0.934, MAE = 2.8
years) and when applying model 2 to predict ages of the original training data (r = 0.831, MAE = 4.4 years) using
Ŷte instead of Yte to fit model 2. Therefore, we infer that the training and testing datasets are interchangeable and
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Figure 3: Inconsistency between the estimations of reprogramming-induced rejuvenation provided by the aging
clocks. a, A schematic representation of model uncertainty stemming from the choice of a particular model. b,
Published aging clocks (most of which are ElasticNet-based) trained on different DNAm datasets predict different
trajectories of rejuvenation, as cellular reprogramming progresses. Dashed line represents zero epigenetic age. c,
Aging clocks showing differences in the rejuvenation effect accumulated between reprogramming days 0 and 15, bar
colors match line colors from a and represent different published clocks. The dashed line represents lack of changes in
epigenetic age. d, Inconsistency of predictions holds for the clocks built using different ML model types and trained on
the same dataset. Bar colors represent different models. The dashed line represents lack of changes in epigenetic age. e,
Performance scatter plot of the de novo Lasso clock model on the testing subset (see Methods). Pearson’s correlation
coefficient (r), the associated P-value (Pval), R2 score (R2), and mean absolute error (MAE) are displayed. The dashed
line corresponds to the points of equality between predicted and chronological ages. Dots represent individual samples.
f, Epigenetic ages predicted by the de novo Lasso clock for the in vivo liver reprogramming dataset [3] containing
samples from the young (n=5) and old (n=5) control mice, and old reprogrammed mice (n=5). Samples from transiently
reprogrammed mice exhibit insignificantly increased (P -value = 0.11, two-sided MW test) epigenetic age in comparison
to the control group. Dashed lines represent chronological ages for the respective cohorts. Blue icons indicate the
training dataset and orange icons indicate the testing dataset. A detailed description of the datasets is presented in
Supplementary Tables 1 and 2. 7
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can be used reciprocally to predict each other, which is expected for a dataset of aging split randomly into two parts.
Similarly, we obtain good reciprocal predictions for the mouse blood samples subsets [34] (Extended Data Fig. 3e)

In accordance to the already demonstrated evidence that the datasets of aging mouse liver [34, 35] exhibit no significant
covariate shift (Extended Data Fig. 1d), we observe that they both pass the ITTP relatively well (Extended Data Fig.
3b,c) for the initial model training. A slightly lower accuracy of predicting Meer ages with clocks trained on Thompson
data (r = 0.737, MAE = 6.14 months) might be explained by the presence of a number of outliers in the Meer
dataset (Extended Data Fig. 1d). At the second step, however, we obtained high performance metrics (r = 0.975,
MAE = 1.49 months), which is another evidence of absence of a significant covariate shift between these datasets.

For the case 2 applications of ITTP, the results were more diverse. Both the Ohnuki et al. (4e) and the Gill et al.
(Extended Data Fig. 3a) datasets of in vitro fibroblast reprogramming yielded bad predictions for the aging human skin
data (r = 0.235, MAE = 52.7 years and r = 0.239, MAE = 34.3 years for the second-step models trained on the
Ohnuki et al. and Gill et al. datasets, respectively), from which we concluded that the reprogramming datasets cannot
be used to predict normal aging skin data, provided that we consider age predictions for the reprogramming data to be
accurate.

The dataset of in vivo reprogramming in mouse liver [3], on the other hand, passed the second step of ITTP with
remarkable success, demonstrating performance metrics of r = 0.968 and MAE = 2.21 months (Extended Data Fig.
??d). It is worth mentioning that the predictions at step 1 were shifted upward, while the aging trend was still captured
well (r = 0.826). Finally, by applying ITTP to the datasets of aging mouse blood [34] and mouse embryogenesis [38],
we obtained prediction failure similar to that of in vitro reprogramming (Extended Data Fig. 3f).

To summarize, the ITTP method highlights the concerns of applying aging clocks to the reprogramming data (or to any
other OOD scenario). As an empirical test to discover dataset shift, it helps assess the risk of prediction failure. The
results presented above unambiguously showed that normal aging cannot be predicted using the reprogramming data,
which immediately prompts to inquire, whether, in return, the ages in reprogramming can be correctly predicted using
data on normal aging.

Uncertainty-aware clocks reveal insignificance of age reversal

In clinical settings, where decision-making often relies on the level of uncertainty, an ML model is required to estimate
not only the desired outcome, but also the uncertainty of its predictions [15]. A robust model should ideally warn of
extreme uncertainty when making predictions on shifted datasets. Most aging clock papers, following Horvath [26] and
Hannum et al. [27], adopted the ElasticNet model that lacks inherent uncertainty estimation. Consequently, to address
this gap, we trained a Gaussian Process Regressor (GPR) model [46, 47], a variant of which was recently employed in
aging clocks as well [48].

To exemplify the principle of GPR, we trained and tested it on a single CpG site (Fig. 5a,b). A Gaussian process (GP)
can be viewed as a probability distribution over all possible functions that can be fitted over the training observations
[46]. Therefore, for every input methylation value, a fitted GPR model provides an estimation of the most probable age,
as well as the probability distribution around this estimation with a finite variance that represents a credible interval for
the prediction. Credible interval is grounded in Bayesian statistics and is calculated for every individual prediction
relying on the training data and prior model assumptions, so it should not be confused with a confidence interval, which
describes only the distribution of multiple predictions.

When the GPR fits the training data well, it computes a finite error produced by the variations of age points related
to the same methylation value (i.e., aleatoric uncertainty). The further methylation values depart outside the training
distribution, the higher epistemic uncertainty is assigned by the model, and, hence, the wider a credible interval becomes,
reflecting that the model is unfamiliar with this kind of data (Fig. 5b).

GPR thus provides an estimation of total prediction uncertainty, comprising both its aleatoric and epistemic components,
and presenting it as a credible interval of several standard deviations for every individual prediction. It is important to
acknowledge that GPR predictions are significantly influenced by the selected prior distributions over functions, so the
results may slightly vary depending on the choice of these assumptions.

In accordance with the previous sections, we employed GPR models trained on the aging datasets to predict rejuvenation
trajectories in the respective reprogramming scenarios, and to determine the corresponding credible intervals (see
Methods). For the Ohnuki et al. dataset of in vitro reprogramming, a skin-trained GPR (Extended Data Fig. 4a)
predicted a notable age decline from day 11 through day 28 (Fig. 5c), which aligned well with our previous observations
obtained with ElasticNet (Fig. 3a). However, the accompanying credible interval of two standard deviations revealed
how extremely uncertain the model was about these predictions, especially in the case of the late reprogramming phase.
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Figure 4: Inverse Train-Test Procedure (ITTP) demonstrates the impossibility of predicting aging data with
reprogramming data. a, ITTP case 1 demonstrates the procedure with both datasets having true values of age
(falsifiable case). Two datasets are interchangeable if similar prediction performance metrics are obtained on both
steps of the procedure. b, ITTP case 2 demonstrates the procedure with only one dataset having true values of age and
another doesn’t (unfalsifiable case). In this case, only the second-step performance metric is computable. A hypothetical
reprogramming dataset fails to pass the ITTP if the second-step performance metrics are naught. c,d, Application
of ITTP to human aging skin dataset [32] split into training and testing subsets as 90% to 10% correspondingly (see
Methods). The performance metrics computed both at step 1 c, and step 2 d are high, thus, the pair of datasets are
interchangeable. e, Application of ITTP to human aging skin dataset [32] for training and human reprogramming
fibroblasts dataset [36] for test. Poor performance metrics at the second step qualify datasets as interchangeable — the
reprogramming dataset can not be used for the prediction of aging data. Blue icons indicate the training dataset and
orange icons indicate the testing dataset. A red icon indicates the reprogramming dataset. A detailed description of the
datasets is presented in Supplementary Tables 1 and 2.
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This uncertainty cast doubt on the significance of any rejuvenation effect until the 20-th day of reprogramming, where
complete erasure of somatic identity was observed in the respective paper [36].

Assessing the Gill et al. [4] in vitro dataset with GPR yielded similar results, with two notable differences (Fig. 5d).
Firstly, the credible interval at reprogramming day 0 was slightly narrower, suggesting that these samples were more
similar to the training set. Secondly, the model indicated a significant rejuvenation effect between days 0 and 17 (with
the rejuvenation coefficient P-value of 0.014), hinting that rejuvenation might indeed occur towards the end of the
maturation phase. However, the sizeable credible interval at day 17 (spanning from 0 to approximately 70 years)
precludes making confident statements.

We revisited the in vivo reprogramming dataset using a mouse liver-trained GPR (Extended Data Fig. 4b) and observed
a significant negative rejuvenation effect between the control and OSKM-treated old mice, with a P-value of 0.018 (Fig.
5e). This outcome underscores the importance of incorporating individual prediction uncertainties to resolve differences
between groups that are otherwise undistinguishable by simpler methods such as Lasso regression. On the other hand,
as in the case of Lasso-based predictions, we found that the GPR had a systematic bias in its estimations. This bias did
not seem to affect credible intervals as strongly though, which might suggest that GPR underestimates credible intervals
in the event of dataset shift, resulting, in our case, from the comparison of two different mouse strains.

As predicted by the mouse blood-trained GPR (Extended Data Fig. 4c), the dynamics of epigenetic age during mouse
embryogenesis [38] displayed a local minimum on embryonic day 8.5 (Fig. 5f), in alignment with the findings reported
by Kerepesi et al. [7]. However, the large credible intervals accompanying these predictions prevent us from designating
day 8.5 as the “ground zero” of epigenetic age, as indicated by the P-value of 0.54 for the age decline between days 3.5
and 8.5, and the P-value of 0.37 for the subsequent age increase between days 8.5 and 10.5. It is worth noting, that the
credible intervals narrowed in the course of embryonic development, supporting our earlier observation of a larger shift
between the early days of embryogenesis and aging (Extended Data Fig. 1j).

Our findings indicate that a GPR model capable of assessing its prediction uncertainty can effectively detect covariate
shift in a test dataset, assigning elevated uncertainty to samples not represented in the training data. Given these insights,
we propose that the future aging clock models should incorporate the capability to quantify their prediction uncertainty.
Such feature would dramatically enhance the reliability of these models, allowing for improved control and mitigation
of potential prediction failures.

Discussion

Epigenetic clocks have been widely used to demonstrate age acceleration and deceleration in a variety of research
contexts [12]. However, there is still a reluctance to include clock measurements as endpoints in the clinical longevity
intervention trials [49]. In addition to the fact that the existing clocks fail to capture some aging-associated conditions
[20], we also point out that they cannot be easily validated and relied upon, as they lack the ability to estimate the
degree of uncertainty in their predictions.

In this study, we present a computational framework for validating the rejuvenation effects predicted by epigenetic
aging clocks. Epigenetic age reversal is unfalsifiable, because we cannot access the ground truth values of biological
age. Hence, we have to rely on the indirect evidence. For that, we included four approaches in our framework: covariate
shift estimation, comparison of different clock models, the Inverse Train-Test Procedure (ITTP), and the prediction
uncertainty estimation using a Gaussian Process Regression (GPR) model.

In a simplified case of covariate shift, clocks trained on the weight and height of normal individuals predicted lower ages
for the achondroplasia individuals, in contradiction to the demographic data on their lifespans. Thus, we demonstrate
how the presence of covariate shift can distort model performance. Next, we show that the DNA methylation (DNAm)
data of reprogramming-induced rejuvenation (RIR) exhibits strong covariate shift, which might also lead to a systematic
error in its age prediction.

By applying nine different published aging clocks [26, 27, 40, 41, 42, 43, 44, 45] to the in vitro reprogramming data,
we illustrate that the magnitude of rejuvenation effect achieved by the end of the maturation phase of reprogramming
highly depends on the clock model type and data we use for training and prediction. For different models, the age
reversal effect can span two orders of magnitude, including null and even negative rejuvenation.

We developed the ITTP approach to assess the interchangeability of the training and testing datasets. This procedure
revealed that the in vitro reprogramming datasets cannot predict normal aging, which challenged the premise that
normal aging can accurately predict reprogramming.

A GPR-based aging clock can estimate uncertainty of its own age predictions in the form of standard deviations (that
are used for credible interval calculation), even for the samples out of its training distribution. This clock demonstrates
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Figure 5: Estimation of epistemic uncertainty for rejuvenation datasets with Gaussian Process regression (GPR)
model. a, A simplified case of a GPR model trained to predict chronological age from a single methylation site (see
Methods). b, Demonstration of increasing of prediction uncertainty (expressed as two standard deviations credible
interval) as points move away from the training distribution. c, Predicted rejuvenation trajectory and prediction
uncertainty (expressed as two standard deviations credible interval) for human fibroblasts in vitro reprogramming
dataset [36]. No significant rejuvenation event is detected before day 20 of reprogramming. d, Predicted rejuvenation
trajectory and prediction uncertainty (expressed as two standard deviations credible interval) for human fibroblasts
in vitro reprogramming dataset [?]. No significant rejuvenation event is detected before day 17 of reprogramming.
e, Predicted epigenetic age and individual prediction uncertainties (expressed as two standard deviations credible
interval) for murine in vivo reprogramming dataset [3]. f, Predicted epigenetic age trajectory and prediction uncertainty
(expressed as two standard deviations credible interval) for murine embryogenesis dataset [38].
no statistically significant difference between days 0 and 15 of in vitro reprogramming, and some significance between
days 0 and 17 in another dataset. Nevertheless, the accompanying credible interval at day 17 spans around 70 years,
which prevents us from drawing definitive conclusions of observed rejuvenation.

The in vivo liver reprogramming data exhibit a covariate distribution closer to that of normal aging. Moreover, it
manages to pass the ITTP test, suggesting that the in vivo reprogramming might preserve the organismal states better
than the in vitro procedure. However, we show that both the Lasso and the GPR clock models surprisingly predict
old reprogrammed samples to be either of the same age or even significantly older than the old controls. This finding
prompts further inquiries into the nature of processes accompanying the in vivo reprogramming, especially in light of a
recent study describing impaired liver function and premature death of mice with continued OSKM induction [50].

To exemplify our approach to the “ground zero” of epigenetic age in embryonic development [37], we leveraged a
dataset spanning days 3.5 through 10.5 post-conception [38]. The mid-embryogenesis stages cluster well with the aging
data on PCA, and their GPR-predicted credible intervals are narrower than those of the earlier stages. However, it
appears insufficient, because the dataset as a whole shows significant covariate shift, fails at the ITTP, and features too
wide credible intervals to demonstrate any significance between the stages of highest (day 3.5) and lowest (day 8.5)
predicted age.

We hypothesize that the GPR model assigns such large credible intervals both to the in vitro reprogramming and
embryogenesis, because the totipotent and pluripotent states are too unfamiliar to a model trained purely on differentiated
somatic cells. Thus, we have shown that an aging clock model performing well within aging datasets will likely fail to
reliably predict rejuvenation events not represented in the training dataset. Including progenitor cells in the training
samples could be beneficial to decrease this uncertainty.

We did not aim to comprehensively cover all available datasets of putative rejuvenation, be it reprogramming, embryo-
genesis, or other interventions. Importantly, our work should also not be viewed as an attempt to prove or disprove
whether rejuvenation actually occurs. Limiting ourselves to the most vivid examples, we illustrate that the existing
aging clocks cannot serve as reliable biomarkers of any rejuvenation. Moreover, aging clocks that are trained to predict
chronological age, so-called first generation clocks [41], bear other drawbacks as well. They often rely on overly
optimistic assumptions [11] and may be subject to the biomarker paradox, formulated as: “A hypothetical biomarker that
approaches perfect correlation with chronological age could be replaced by chronological age and would be insensitive
to differences in aging among individuals.” [51]. Notably, the most accurate epigenetic aging clocks, while precise
in age prediction, fail to predict mortality or onset of age-related diseases [45]. Although semi-supervised [51] and
unsupervised [52] models are not subject to this paradox, they still face the challenge of outperforming chronological
age in mortality prediction, and it is not obvious which model assumptions should be used to satisfy this criterion. The
more promising direction is the second-generation aging clocks [41, 53] that are trained to predict mortality rather
than chronological age. However, they require accumulating both the biomarker data and individual death times
post-collection, posing significant practical and ethical challenges, and they are also hardly applicable to the in vitro
experiments and embryonic development.

Nevertheless, the aforementioned issues do not refute the necessity of developing a reliable surrogate health measure
[54] that is still crucial for evaluating longevity drugs and other interventions in clinical trials of geroprotectors [55].
There are already a handful of criteria for the potential biomarkers of aging: the association with mortality, the
responsiveness to longevity interventions, and the minimally invasive procedure to obtain data [56]. We propose that
in order to become approved by a wider longevity community, single-point age clock predictions should at least be
supplemented with the uncertainty estimation aimed at identifying the out-of-distribution samples [15], acknowledging
that this estimation could itself be flawed. Additionally, we recommend assessing potential covariate shift between the
datasets before applying any aging clock models, relying on the methods discussed in this work.
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We believe that a clinically relevant and reliable aging clock should have a well-defined training target, such as mortality,
and the capability to estimate prediction uncertainties, alerting researchers to possible misinterpretations of their trial
results. These new criteria may complicate the development of aging clocks, but they should also advance the field and
bring clocks closer to becoming the true health estimator.

Methods

Data and code availability

All datasets of DNA methylation (DNAm) in this study were obtained from the Gene Expression Omnibus (GEO) under
the corresponding accession numbers (GSE IDs). Dataset details are available in Supplementary Table 1. We processed
these datasets and made them accessible via our repository at https://github.com/ComputationalAgingLab/
reprogramming_ood, which also includes the code for replicating our original analysis and the detailed installation
instructions.

Height and weight datasets

We sourced data for our toy example of dataset shift from the WHO [21] for the control cohort and from Hoover et
al. [23] for the achondroplasia cohort. The datasets included height and weight means and standard deviations across
various ages: 60–228 months for the control and 0–240+ months for the achondroplasia cohort. We interpolated the
control dataset using the methodology by Andres et al. [57] to align age ranges (0–240+ months). Assuming a normal
joint distribution for height and weight [22], we sampled points with corresponding means and covariance matrices.
Age was uniformly sampled from 0 to 276 months. 1000 samples were generated for each cohort.

Using 1000 samples from the control cohort, we constructed a bivariate linear regression model with the Python
scikit-learn package [58]. Post-training, this model was utilized for age prediction in the achondroplasia cohort.

Principles of CpG selection

The selection of CpG sites for aging clocks is a nuanced challenge, with various authors suggesting distinct, minimally
overlapping subsets [39]. To tackle this, we utilized CpG sites from established clocks most relevant to each dataset
pair. For instance, in analyzing covariate shift between the aging skin and fibroblast reprogramming datasets, Horvath’s
skin clocks [40] were employed. While any accurate age-predicting CpG subset could suffice, we predominantly used
known subsets for methodological simplicity where possible. The detailed description of dataset pairs, clock models,
and the amount of clock sites observed in the datasets is specified in Supplementary Table 2.

Principal component analysis for covariate shift visualization.

Principal component analysis (PCA), depicted in Fig. 2c,f,i and Extended Data Fig. 1a,d,g,j, was conducted on merged
datasets to select CpG sites for the covariate shift analysis (refer to previous sections). This analysis used the Python
scikit-learn library [58].

Kolmogorov-Smirnov test for a shift of individual covariates.

We employed a two-tailed Kolmogorov-Smirnov (KS) test on selected CpG sites (refer to site selection principles above)
to detect covariate shifts between dataset pairs. This test assessed the null hypothesis that beta value distributions for a
specific site are identical across pairs of datasets. We applied the Benjamini-Hochberg correction to the computed P
values, considering a corrected P value below 0.01 as indicative of a significant distributional shift. The KS statistics
and P values were calculated using scipy [59], and the multiple testing correction was performed with statsmodels [60]
in Python.

Testing in vitro reprogramming datasets with different published epigenetic aging clocks

We evaluated the consistency of predictions across nine aging clock models using the methylclock package in R, which
predicts epigenetic age from input matrices of methylation site beta values. The predictions generated by methylclock
are available in our code repository.
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Testing in vitro reprogramming datasets with different models of aging clocks trained on the same dataset

To evaluate prediction consistency across different aging clock model families, we utilized five machine learning models
from the scikit-learn package: k-neighbors regressor, random forest regressor, support vector regressor, Bayesian ridge
regressor, and histogram-based gradient boosting regressor. These models were trained on the aging skin blood dataset
[32] using 5-fold cross-validation and hyperparameter optimization via grid-search, assessing the performance with
mean squared error metric. Performance metrics for both training and test subsets, including those for optimally tuned
models, are presented in Table 1.

Model r Train r Test R2 Train R2 Test MAE Train MAE Test
KNeighborsRegressor 0.844 0.654 0.699 0.402 3.915 6.037
RandomForestRegressor 0.980 0.847 0.934 0.650 1.793 4.585
SVR 0.963 0.933 0.921 0.854 1.603 2.923
BayesianRidge 0.986 0.932 0.971 0.863 1.235 2.750
HistGradientBoostingRegressor 0.999 0.883 0.998 0.752 0.237 3.729

Table 1: Comparison of Model Performance

Lasso fit for in vivo reprogramming testing

We observed that the in vivo reprogramming dataset [3] exhibited limited overlap with three established mouse aging
clocks (Thompson [34] - 7/582 sites, Meer [35] - 3/90 sites, Petkovich [61] - 16/436 sites), potentially impairing clock
predictions. Consequently, we developed a new clock using a Lasso penalized regression model, trained on combined
liver samples from Thompson [34] and Meer [35]. Utilizing the LassoCV class from scikit-learn [58], we identified the
optimal regularization hyperparameter α through 5-fold cross-validation. The final model, selecting 22 of 16849 CpG
sites, exhibited strong test performance (MAE = 2.2 months, R2 = 0.866), as detailed in Fig. 3E. This model was
then applied to predict epigenetic age in the in vivo reprogramming dataset [3].

Inverse Train-Test procedure with Lasso regression model

ITTP procedure can applied in principle to any pair of datasets to test their interchangeability. However, in practice, the
outcome of the procedure will depend on the generalizing abilities of the chosen model. Thus, it is crucial to use models
from the same family (e.g. linear model) at step 1 and step 2 of the ITTP. We decided to choose a linear regression
model with Lasso penalization as a base model (i.e. model 1 and model 2 according to the scheme in Fig. 4A) for ITTP
because it has generalization properties equivalent to ElasticNet (most often used for aging clocks), but is simpler in
terms of the training process (optimizing one hyperparameter instead of two). Below we provide a detailed algorithm
for the ITTP procedure for both cases discussed in this study presuming that the Lasso model is used as the base model.

ITTP case 1

ITTP case 1 (also referred to as the falsifiable case) considers a pair of datasets having ground truth values: train dataset
{Xtr, Ytr} and test dataset {Xte, Yte}. Let two different initializations of the Lasso regression model be m0

1 and m0
2,

where superscript 0 denotes the model state before training and superscript ∗ will denote the model after training. Then,
ITTP case 1 can performed by the following algorithm:

Step 1

1. Train model m0
1 on {Xtr, Ytr}. Select the optimal regularization parameter, α, for Lasso regression employing

cross-validation to evaluate the model performance across a range of alpha values [αmin, αmax]. For that split
the dataset {Xtr, Ytr} into multiple training and validation sets (we used 5-fold splitting), train the model
on each, and assess performance using a mean squared error metric. The α value yielding the best average
performance across all folds is chosen as the optimal.

2. Apply the trained model m∗
1 to test dataset Xte predicting Ŷte.

3. Compute performance metrics for the model m∗
1 predictions. We propose to compute widely used regression

metrics as R2, mean absolute error (MAE), and Pearson correlation coefficient (r), i.e. metrics should be
computed for the pair Ŷte and Yte.

Step 2
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1. Train model m0
2 on {Xte, Ŷte}. Select the optimal regularization parameter, α, as in Step 1.

2. Apply the trained model m∗
2 to train dataset Xtr predicting Ŷtr.

3. Compute performance metrics for the model m∗
2 predictions (R2, MAE, r), i.e. metrics should be computed

for the pair Ŷtr and Ytr.

Compare the obtained performance metrics on steps 1 and 2 of ITTP. If metrics are satisfactory and comparable then
the datasets are interchangeable.

Within the study, we used a threshold R2 > 0.25 to state that the model is performing satisfactorily. If satisfactory
metrics are obtained only in step 2 then we state that datasets are not fully interchangeable, but the test dataset still
contains the information for train dataset prediction.

ITTP case 2

ITTP case 2 (also referred to as the unfalsifiable case) considers a pair of datasets where only ground truth values
are accessible for only train dataset: train dataset {Xtr, Ytr} and test dataset {Xrep} (we denoted test dataset Xrep

emphasizing that reprogramming datasets do not have ground truth values of biological age). The algorithm for this
case is similar to ITTP case 1 with distinctions in step 1:

Step 1

1. Train model m0
1 on {Xtr, Ytr}. Select the optimal regularization parameter, α, as was described in step 1 of

ITTP case 1.

2. Apply the trained model m∗
1 to test dataset Xrep predicting Ŷrep.

Step 2

1. Train model m0
2 on {Xrep, Ŷrep}. Select the optimal regularization parameter, α, as was described in step 1 of

ITTP case 1.

2. Apply the trained model m∗
2 to train dataset Xtr predicting Ŷtr.

3. Compute performance metrics for the model m∗
2 predictions (R2, MAE, r), i.e. metrics should be computed

for the pair Ŷtr and Ytr.

In the second case of ITTP, we rely only on the performance metrics computed in step 2. If metrics are satisfactory the
datasets are "probably" interchangeable. Otherwise, datasets cannot be used for prediction of each other according to
the chosen linear model assumption.

For the training Lasso models during ITTP steps, we used LassoCV class from scikit-learn library [58] which conducts
a simultaneous search for the optimal Lasso regularization hyperparameter α with cross-validation over the training
subset.

Inference prediction uncertainty with Gaussian Process regression model

A Gaussian Process regression (GPR) model was developed to predict the age of samples given their methylome. GPR
is a flexible non-parametric Bayesian approach for regression. In our model, the used inputs are the same CpG sites
used for covariate shift analysis from published and Lasso newly constructed (see the section about Lasso training)
aging clocks (Supplementary Table 2), and the outputs are the ages of sample donors. The model was trained using the
python scikit-learn package with the default hyper-parameters adjustments.

Since aging clocks based on GPR have been described in detail elsewhere [?] (we use an equivalent methodology),
here we will focus only on the part of the prediction uncertainty derivation that is essential for our study. A Gaussian
Process (GP) is a probability distribution over possible functions that fit a set of points. Formally, it is a collection
of random variables, any finite number of which have a joint Gaussian distribution [46]. Given train samples set
X = {x1, . . . , xn} ∈ Rd, a mean function m : Rd → R and a covariance function k : Rd × Rd → R, a GP can be
written as f(x) ∼ GP (m(x), k(x, x′)) if the outputs f = (f(x1), . . . , f(xn))

T have a Gaussian distribution described
by f ∼ N(µ,Σ), where µ = m(x1, . . . , xn) and Σi,j = k(xi, xj). The mean function is usually assumed to be the
zero function, and the covariance function is a kernel function chosen based on assumptions about the function to be
modeled. We tried different kernel functions and found the sum of the Radial Basis Function (RBF) and the white noise
kernels the best in terms of prediction performance metrics. Interestingly, this kernel was also used by authors of the
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previous GPR aging clocks [?]. The RBF kernel is defined as:

k(xi, xj) = s2exp

(
−||xi − xj ||2

2l2

)
(1)

where s2 is the variance hyper-parameter, and l is the length-scale hyper-parameter (iteratively optimizing during
training procedure) which controls the smoothness of the modeled function, or how fast it can vary. Since GP assumes
the output variable includes additive Gaussian noise part ε ∼ N(0, σ2), i.e. yi = f(xi) + ε, the vector of outputs are
viewed as y ∼ N(0,Σ + σ2I). The term σ2I reflects the white noise kernel added to the model to account noise of
observations, which corresponds to the aleatoric part of prediction uncertainty.

Given a test point x∗, its output distribution is defined by f∗|x∗, X, y which is a conditional Gaussian distribution
having the following form:

f∗|x∗, X, y ∼ N(µ∗, (σ∗)2) = N
(
(k∗)T (Σ + σ2I)−1y, k(x∗, x∗)− (k∗)T (Σ + σ2I)−1(k∗)

)
(2)

where k∗ = (k(x1, x
∗), . . . , k(xn, x

∗))T .

Thus, given the training data, the distribution of predictions of a new point is given by a closed analytical form of
Gaussian distribution. In our model, the inputs are DNAm methylation vectors, and the outputs are the ages of donors.
The mean of the distribution µ∗ can be used as the final prediction of the regression model (corresponds to the prediction
of ElasticNet or other models). At the same time, the variance of the distribution (σ∗)2 expresses the level of total
prediction uncertainty — one of the most important aspects of our research. One can see that the magnitude of the
uncertainty depends on the vector of covariates k∗ of the new sample x∗ with the training set samples X . Since the RBF
kernel relies on the quadratic distance between samples, the total prediction uncertainty for an OOD sample will increase,
as the sample moves away from the training distribution, until it reaches the limiting value (σ∗)2 ≈ k(x∗, x∗) = s2

determining the upper bound of prediction uncertainty the model can estimate for OOD sample.

Testing rejuvenation effect with meta-regression approach

The Gaussian process model, yielding uncertainty levels in individual sample predictions as Gaussian distribution
variances, enables statistical comparison of two predictions via, for example, the z-test (if two variances are assumed
to be equal). For comparing prediction groups, each with unique variances, we employed advanced meta-analysis
techniques. Utilizing meta_regression function from pymare library for Python, we accounted for individual age
prediction variances in two in vitro reprogramming groups (e.g., days 0 and 15). This function, which incorporates
average ages, variances, and a binary group indicator in the design matrix, uses a restricted maximum likelihood
approach to optimize meta-regression coefficients, providing coefficient estimates and their P values.
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