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Immunoglobulin G (IgG) autoantibodies reactive to fetal brain proteins in mothers of children with ASD have been described by several

groups. To understand their pathologic significance, we developed a mouse model of maternal autoantibody related ASD (MAR-ASD)

utilizing the peptide epitopes from human autoantibody reactivity patterns. Male and female offspring prenatally exposed to the salient

maternal autoantibodies displayed robust deficits in social interactions and increased repetitive self-grooming behaviors as juveniles

and adults. In the present study, neuroanatomical differences in adult MAR-ASD and control offspring were assessed via high-resolution

ex vivo magnetic resonance imaging (MRI) at 6 months of age. Of interest, MAR-ASD mice displayed significantly larger total brain

volume and of the 159 regions examined, 31 were found to differ significantly in absolute volume (mm3) at an FDR of <5%. Specifically,

the absolute volumes of several white matter tracts, cortical regions, and basal nuclei structures were significantly increased in MAR-

ASD animals. These phenomena were largely driven by female MAR-ASD offspring, as no significant differences were seen with either

absolute or relative regional volume in male MAR-ASD mice. However, structural covariance analysis suggests network-level

desynchronization in brain volume in both male and female MAR-ASD mice. Additionally, preliminary correlational analysis with

behavioral data relates that volumetric increases in numerous brain regions of MAR-ASD mice were correlated with social interaction

and repetitive self-grooming behaviors in a sex-specific manner. These results demonstrate significant sex-specific effects in brain size,

regional relationships, and behavior for offspring prenatally exposed to MAR-ASD autoantibodies relative to controls.

Molecular Psychiatry (2021) 26:7530–7537; https://doi.org/10.1038/s41380-021-01215-w

INTRODUCTION
Autism spectrum disorder (ASD) is a set of heterogeneous
neurodevelopmental disorders that are behaviorally classified by
socio-communicative impairments accompanied by the presence
of repetitive and restrictive interests and behaviors [1]. One
potential non-genetic contributor to ASD is immune dysregula-
tion, which has been described in individuals with ASD and their
family members [2]. Most notably, some mothers of children with
ASD have been reported to have circulating autoantibodies
reactive to fetal brain proteins [3, 4] (reviewed in [5]).
Our lab has identified eight protein antigens for maternal

autoantibody related (MAR) risk of ASD: lactate dehydrogenase A
and B, stress-induced phosphoprotein 1, collapsin response
mediator proteins 1 and 2, guanine deaminase, Y-box binding
protein 1 [6], and neuron-specific enolase [7]. In addition, we
mapped the antigenic epitope sequences for each of the proteins
recognized by these ASD-specific maternal autoantibodies [8].
Then we created an antigen-driven mouse model for MAR risk of
ASD in which autoantibodies reactive to the salient epitope

sequences are generated in female dams prior to breeding. In this
model, male and female offspring prenatally exposed to the
maternal autoantibodies had significant alterations in develop-
mental milestones, reduced social interactions during dyadic play,
and exhibited increases in repetitive self-grooming behaviors [9].
However, there remains a critical need to identify the underlying
biological mechanisms that lead to MAR-ASD.
In the current study, we examined the potential effects of brain-

reactive maternal autoantibodies on neuroanatomy through
cross-sectional analysis of offspring at 6 months of age. To
accomplish this we conducted high-resolution ex vivo magnetic
resonance imaging (MRI) on adult MAR-ASD and control offspring
that had undergone behavioral testing in our previously published
study [9]. In this manner, we were able to perform direct
correlational analysis between regional brain volume and
behavioral outcomes to provide a comprehensive readout of
potential pathology. Additionally, we used structural covariance
analysis to interpret network-level dysregulation of brain volume
in response to MAR-ASD autoantibody exposure.
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METHODS
Animals
MAR-ASD and control mice were previously created and studied in the Van
de Water Lab [9]. A total of n= 22 MAR-ASD mice (11 male, 11 female) and
n= 23 control mice (12 male, 11 female) aged approximately six months
were perfused for MRI imaging. Please see supplemental methods for
additional animal information.

Magnetic resonance imaging
A multi-channel 7.0 Tesla (7.0-T) MRI scanner (Agilent Inc., Palo Alto, CA)
was used to image the brains within the skulls. A custom-built solenoid coil
array was used to image 16 brains in parallel [10]. Parameters for the
ex vivo MRI scans were as follows: T2-weighted, 3-D fast spin-echo
sequence, with a cylindrical acquisition of k-space, and with a TR of 350ms,

and TEs of 12ms per echo for six echoes, field-of-view of 20 × 20 × 25mm3

and matrix size= 504 × 504 × 630 giving an image with 0.040mm isotropic
voxels. Total imaging time for the acquisition was 14 h [11]. For details on
registration and analysis please see Supplementary methods.

Structural covariance
To assess structural covariance by region within the dataset, the absolute
volumes of all 159 atlas-segmented regions were subjected to correlational
analysis using Pearson’s r as a readout. To reduce the number of
comparisons for subsequent statistical analyses correlational data were
then grouped into six clusters (Posterior Cortical, Hippocampal, Anterior
Cortical, Subcortical, Midbrain, and Brainstem, and Cerebellum) defined
previously by others using hierarchal clustering of structural covariance in
the mouse brain [12]. The identity of regions assigned to each cluster is

Fig. 1 Female MAR-ASD offspring exhibit increases in total and regional brain volume. a Differences in total brain volume between
treatment and sex. b A false discovery ratio (FDR) heatmap of significant regional differences between MAR-ASD and control animals, shown
combined between sexes (Full Group). Anything highlighted in red is significantly larger in MAR-ASD compared to control animals and
anything blue is significantly smaller at an FDR value of <5%. c Coronal and sagittal images of the mouse brain overlaid with colorimetric
classification of brain areas as defined by the Allen Mouse Brain Atlas. Headings under brain sections denote areas where significant regional
volumetric differences were seen in female MAR-ASD mice. d Average effect sizes among brain areas identified to exhibit
regional changes. Data are expressed as Cohen’s d values. e, f Volumetric differences in sexually dimorphic brain regions compared within
treatment conditions between sexes in the amygdala (e) and bed nucleus of stria terminalis (BNST) (f). Statistical analyses were
conducted using a one-way ANOVA. For data included in figures a and d–f: MAR (N= 11M, 11F), Ctrl (N= 12M, 11F). Error bars represent
mean ± SEM. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, ^ = 0.1 > p > 0.05, n.s.= non-significant.
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detailed in Supplementary Table 2. Following cluster assignment,
correlation values for each brain region within a cluster were then
averaged, similar to that described previously [13]. Mean correlation values
were then compared between treatment conditions and sex using Kruskal-
Wallis non-parametric testing, with corrections for multiple comparisons
using a two-stage step-up FDR method at a level of 5%. All data analysis for
these methods was performed using Prism 8 with visualization
conducted in R.

Behavioral correlations
To identify potential relationships between offspring behavior and
absolute regional brain volume, an exploratory analysis was performed
to correlate behavioral data with MRI-based neuroanatomical findings. In
particular, volumes were correlated with the following behaviors
previously collected by our group [9]: juvenile reciprocal social
interactions (JRSI), self-grooming in an empty cage, and male-female
social interaction (MFSI) behaviors. Neuroanatomical regions correlated
with behavioral findings were limited to areas identified passing 5% FDR
correction in the Full and female-only groups. Relationships were
assessed via Pearson’s correlation. Pearson’s correlations were per-
formed using SPSS software (SPSS Version 25.0; IBM Corp., Armonk,
NY); p values < 0.05 for two-tailed tests were considered to be
statistically significant. As these correlations were exploratory, no
corrections for multiple comparisons were made. Data visualization
and clustering were conducted using the online tool ClustVis (https://
biit.cs.ut.ee/clustvis/).

RESULTS
MAR-ASD offspring display sex-specific increases in brain
volume
Analysis of ex-vivo structural MRI data revealed MAR-ASD
treatment-induced differences in total and regional brain volume
at 6 months of age. Overall, female MAR-ASD mice exhibited
significantly larger total brain volume (TBV) relative to both male
and female control animals (male, p < 0.01; female p < 0.05), with a
trending difference in TBV noted between sexes in MAR-ASD mice
(Fig. 1a). No differences were observed in male MAR-ASD animals
compared to controls. To evaluate differences by brain region,
volumetric analysis of 159 separate regions was conducted.
Analysis revealed that 20% (31/159) of regions examined were
found to differ significantly in absolute volume (mm3) when
comparing the MAR-ASD Full Group, including both sexes, to
controls at an FDR of less than 5% (Fig. 1b; Supplementary
Table 1). Assessment of regional volumetric differences in MAR-
ASD mice split by sex revealed that 12% (20/159) of brain regions
examined displayed significant increases in absolute volume in
females, at an FDR of <5%. No statistically significant differences
were observed in males (Supplementary Table 1). Additionally, no
differences were observed in relative regional volumes for MAR-
ASD mice compared to control animals for either sex. Collectively,
these data suggest that female MAR-ASD mice were primarily
driving the neuroanatomical phenotype seen in the Full Group
comparison.
Manual annotation of the 20 regions displaying significant (5%

FDR) increases in female MAR-ASD mice, using data from the Allen
Mouse Brain Atlas, revealed that volumetric increases in female
MAR-ASD mice were predominately seen in 4 brain areas: the
cerebral nuclei, cerebral cortex, white matter, and the cerebellum.
Specific regions affected are listed under each respective area
(Fig. 1c) and included with more detail in the supplementary data
(Supplementary Table 1). To investigate the magnitude of these
volumetric changes, regional effect sizes were calculated across
the MAR-ASD Full Group, and both sexes independently using
Cohen’s d as a metric. Effect size averaging among regions
within the affected brain areas revealed white matter regions to
be the most prominently affected (Fig. 1d). While analysis by
region showed that the largest volumetric differences were
observed in the anterior commissure, medial orbital cortex
(mOFC), and nucleus accumbens (NAc) in female MAR-ASD mice

(Supplementary Fig. 1a). Using data provided by the Allen Mouse
Brain Connectivity Atlas (http://connectivity.brain-map.org/), an
exploration of projections from the mOFC revealed that main
efferent projections pass through the caudoputamen and NAc,
centered around the anterior commissure pars anterior (Supple-
mentary Fig. 1b). These findings suggest that MAR-ASD exposure
results in sex-specific regional volumetric differences within the
brains of offspring that may involve altered cortico-striatal
connectivity.

MAR autoantibody exposure results in masculinization of
sexually-dimorphic brain areas in female mice
Given that the volumetric increases in regional brain size of MAR-
ASD animals were driven primarily by females, and the fact that
multiple sexually dimorphic regions in the brain were among
those found to be significantly enlarged in response to MAR-ASD
exposure, (specifically, the amygdala and bed nucleus of stria
terminalis (BNST) (Female q values= 0.04)), we investigated the
possibility that MAR-ASD treatment may result in changes in the
sexual dimorphism of these regions. To examine this, we
compared the volume of specific brain regions, the amygdala,
BNST, and the hypothalamus between MAR-ASD and control mice.
These were selected a priori based on evidence in the literature
confirming sexual dimorphism and association with ASD [14, 15].
As expected, analysis of regional brain volume within these areas
in control mice corroborated the sex differences reported in the
literature, with female control animals displaying significantly
lower amygdala (p < 0.01; Fig. 1e) and BNST (p < 0.001; Fig. 1f)
volume compared to male controls. The size of the hypothalamus
also appeared lower in female control animals compared to males,
but differences did not reach statistical significance (p= 0.09;
Supplementary Fig. 2a). However, when assessing sex differences
in these same regions in MAR-ASD mice, brain size in females was
no different than that of males across each of the sexually
dimorphic regions examined (Fig. 1e, f; Supplementary Fig. 2a).
Together these findings relate a loss of sexual dimorphism in
amygdala and BNST volume in response to gestational MAR-ASD
exposure in mice, representing “masculinization” of these regions
in females.

Structural covariance analysis reveals desynchronized
regional development in MAR-ASD offspring
Interestingly, while regional MRI analysis uncovered female-
specific increases in brain size in MAR-ASD offspring, prior data
collected on these same animals related that treatment-induced
behavioral abnormalities affected male and female mice similarly
[9]. A plausible explanation for this could be that MAR-ASD
treatment results in network level changes in the brain volumes
that are not apparent when assessing regions individually.
Previous work has found that the volume of distinct neuroana-
tomical systems is tightly correlated, forming structural covariance
networks in the brain in both humans and rodents [12, 16]. In
addition, recent data suggest that these networks may be
sensitive to immune challenge during neurodevelopment [17].
Therefore, we used structural covariance analysis to examine
correlations between clusters of brain regions to provide a
broader picture of neuroanatomical changes in response to
MAR-ASD autoantibody exposure.
Analysis of structural covariance in MAR-ASD and control

animals, across the 159 segmented brain regions, revealed
significant regional correlational differences in brain volumes by
treatment and sex (Fig. 2a; Supplementary Fig. 3). To examine the
nature of these changes, brain regions were first assigned to one
of six anatomical clusters defined previously using unbiased
hierarchical clustering of brain regions in mice [12] (Supplemen-
tary Table 2). Following assignment, correlation values within a
cluster were then averaged and compared between groups using
nonparametric testing. To focus on the most salient effects while
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considering the large number of regions within a given cluster,
only those differences exhibiting a large effect size (Kruskal-Wallis
eta squared >0.14) are described as significant here. However, all
comparisons and relevant statistics are included as a table in
the Supplementary material (Supplementary Table 5). Interest-
ingly, when evaluating structural covariance between clusters
across all conditions, male MAR-ASD mice displayed differences
that were not apparent in female MAR-ASD offspring. Specifically,

male MAR-ASD mice exhibited reduced structural covariance
within the posterior cortex, and between the posterior and
anterior cortices. Similarly, differences were also seen in intra-
hippocampal connectivity, with MAR-ASD male mice displaying
reduced correlations between hippocampal regions, compared to
control animals of either sex as well as MAR-ASD female mice
(Fig. 2b). Furthermore, structural covariance analysis revealed a
number of MAR-ASD treatment-induced differences that affected

Fig. 2 Analysis of regional structural covariance in the brains of MAR-ASD and control mice. a Heatmap-based visualization of regional
correlation values organized into clusters based on anatomical location. Data represented as mean Pearson’s r values with results split by
treatment and sex. b Plots displaying averaged correlation values across brain region clusters determined to be different in male MAR-ASD
mice only. c Plots displaying regional differences as a result of treatment. Data for bar plots correspond to mean Pearson’s r values derived
from correlational cluster analysis of animals within a treatment group (MAR (N= 11M, 11F), Ctrl (N= 12M, 11F)). Final N’s for statistical analysis
reflect multiplication between regions within respective clusters (posterior cortical (N= 19), hippocampal (N= 13), anterior cortical (N= 24),
subcortical (N= 40), midbrain (N= 9), brainstem & cerebellum (N= 51) (e.g., Posterior Cortex vs Posterior Cortex, N= 19 × 19), a list of regions
is provided as a supplemental table. *=significant treatment effects, #=significant effects within MAR-ASD animals by sex. Effects were only
reported here if they passed criteria for large effect size (Kruskal Wallis eta squared >0.14). Error bars represent the mean with 95% confidence
interval.
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male and female animals similarly. Specifically, the posterior
cortex, anterior cortex, and midbrain exhibited treatment-specific
reductions in their correlation to brainstem and cerebellar
structures in both male and female MAR-ASD mice compared to
controls (Fig. 2c). These data suggest a MAR-ASD-specific
phenotype in covariance networks involving the hindbrain,
irrespective of sex. Interestingly, nearly all MAR-ASD treatment-
induced effects of inter- and intra-cluster correlations represented
movement toward weaker or negative correlation values; suggest-
ing desynchronized development of these regions. Cumulatively,
these data propose that while regional volumetric effects were not
found in male MAR-ASD mice, network-level desynchronization of
structural brain volume extends to both sexes in response to MAR-
ASD autoantibody exposure; providing a scaffolding for similar
behavioral outcomes.

Brain-behavior correlations reveal inverse relationships in
males and females
To investigate the relationship between neuroanatomical out-
comes and behavioral findings, we conducted an exploratory
correlational analysis between previous behavioral findings and
those brain regions determined by structural MRI to be statistically
different in the same MAR-ASD mice. Bivariate correlation analysis
revealed distinct sex-specific differences in both the magnitude
and direction of brain-behavior correlations in respect to both JRSI
(Supplementary Table 3), as well as self-grooming behaviors
(Supplementary Table 4).

To further investigate the sex-specific correlational findings
observed in MAR-ASD mice, we conducted clustering analysis to
explore the relationship between JRSI behavior, where the
majority of correlational findings were seen, and those brain
regions displaying volumetric differences with an FDR < 5%.
Heatmap-based visualization of clustering analysis reinforced the
separation by sex in regional volumetric outcomes observed in
MAR-ASD animals (Fig. 3a). While female MAR-ASD mice
predominately displayed positive correlations between a given
brain region and associated behavior, male MAR-ASD animals
displayed either a negative correlation, or the absence of an effect
across the majority of comparisons. The most striking of these sex-
specific differences were seen in the relation of basal nuclei
volume with nose-to-anogenital sniffing (NAg) behavior. When
assessing male MAR-ASD animals, statistically significant negative
correlations (here meaning correlations with a p value < 0.05, as
no corrections for multiple comparisons were made) were seen in
the BNST (p < 0.05, r=−0.614) (Fig. 3b) and basal forebrain (BF) (p
< 0.05, r=−0.629) (Fig. 3c). While female MAR-ASD mice exhibited
an opposing, positive relationship between NAg and regional
volume in the BNST (p < 0.01, r= 0.762) and nucleus accumbens
(NAc; p < 0.05, r= 0.694) (Fig. 3d). These effects appeared to be
restricted to MAR-ASD animals as no statistically significant
correlations were observed in control mice for either sex in
regard to regional brain volume and relation to NAg (Supple-
mentary Fig. 2b–d). In addition, visual inspection and clustering
analysis of the correlational data revealed significant effects within

Fig. 3 Correlational analysis between brain regions and behavior in MAR-ASD mice. a Clustering analysis of correlational data shown in
heatmap form. Sex and behavior are displayed on the x-axis with brain region annotation on the y-axis. Clustering was conducted using
Euclidean distance and average linkage analysis via the online data visualization tool ClustVis. Heatmap color for individual cells corresponds
to the Pearson’s r-value, between 1 and −1, for the relationship between a given brain region and behavior in the juvenile reciprocal social
interaction (JRSI) task. Correlational analysis for all data was conducted using SPSS software. b–d Scatterplot representation of correlational
analysis between the number of nose-to-anogenital (NAg) bouts and volume of the BNST (MAR (N= 11M, 11F), Ctrl (N= 11M, 11F)). b Basal
forebrain (BF) c and nucleus accumbens (NAc) d split by sex in MAR-ASD mice. e Graph displaying the relationship between the number of
grooming bouts and volume of the dorsolateral orbital cortex (DLOC) in male MAR-ASD and control mice (MAR (N= 11M), Ctrl (N= 10M)).
Trendlines and Pearson’s r-value displayed along with scatterplot values for each graph. * = p < 0.05, ** = p < 0.01, ^ = 0.05 < p < 0.1.
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certain brain regions with deficits spanning multiple behavioral
tasks in females. Statistically significant positive correlations were
observed between the volumes of the stratum granulosum of the
hippocampus, caudomedial entorhinal cortex, and paraflocculus
with NAg, following, and push-crawl behaviors in the JRSI tasks
(Fig. 3a, Supplementary Table 3). Cumulatively these results
suggest that juvenile social behavioral deficits in MAR-ASD mice
appear to correlate with adult regional brain size in a sex-
dependent manner. Specifically that better behavioral outcomes
were associated with larger regional brain size in female MAR-ASD
mice, with the opposite finding observed in male MAR-ASD
offspring. However, it is important to keep in mind that these
comparisons were preliminary. Future studies including additional
animals or more stringent statistical analysis may be needed to
validate findings.
Evaluation of additional behavioral tasks reported previously to

be significantly different in mice in response to MAR-ASD
exposure, such as MFSI and repetitive self-grooming behaviors,
showed interesting but limited effects. As only males were tested
during the MFSI task, correlations with brain volumes were
conducted only with experimental male mice. In assessing MAR-
ASD treatment-induced differences in male behavior during the
MFSI task, one noteworthy finding included the relationship
between dorsolateral orbital cortex (DLOC) volume and self-
grooming behavior. Specifically, a statistically significant positive
correlation was observed between the volume of the DLOC and
the number of grooming bouts in male MAR-ASD mice as
measured during the MFSI task (p < 0.05, r= 0.631) but not in male
control mice (Fig. 3e). In addition, positive correlations were also
seen between DLOC volume and total time spent grooming for
male MAR-ASD mice in the MFSI task (Supplementary Fig. 2e) as
well as in a separate empty-cage grooming task (Supplementary
Fig. 2f). However, these last relationships did not pass statistical
significance testing. Taken together, these data detail a male-
specific relationship between the DLOC and repetitive self-
grooming behavior in adulthood in response to MAR-ASD
autoantibody exposure.

DISCUSSION
Abnormal brain enlargement, measured by MRI, is well docu-
mented in the ASD literature with early studies on the topic
suggesting that children with ASD exhibit premature overgrowth
of brain regions during early life that is followed by a period of
abnormally slow growth compared to typically developing
children [18–21]. However, many of these seminal reports studied
mainly male children and few if any females. Later studies
revealed that female children with ASD actually display a more
pronounced abnormal growth profile across a greater number of
brain regions than male ASD children [20, 22]. This is relevant to
our findings as we observed absolute volumetric differences in
white matter tracts, cerebral nuclei, cerebellum, and cerebral
cortex in adult female MAR-ASD animals that were not present in
males at the same time point. Therefore, it may be possible that
male and female offspring experienced an accelerated neurode-
velopmental trajectory during early life, which was then normal-
ized over time in males but persisted in female MAR-ASD animals.
In support of this view, increased head size was observed in both
male and female MAR-ASD mice as pre-weanlings [9]. Alterna-
tively, female-specific brain volumetric differences could reflect
masculinization of the female brain in response to MAR-ASD
exposure. The concept of brain masculinization in ASD has been
an active theory for nearly two decades(reviewed in [23]).
However, recent work suggests that sex-specific differences in
brain volume in ASD may not represent extreme male skewing,
but simply dysregulation of normal sexual differentiation of the
brain [24]. This theory is supported by work suggesting that
although females show masculinization of certain brain regions,

males do not display hypermasculinization [25]. Our data appear
to mirror these findings as MAR-ASD female mice show apparent
masculinization of regional volumes, but the brains of male MAR-
ASD mice do not appear overtly affected.
Structural covariance represents a technique to assess relation-

ships between brain regions based on anatomical properties.
Previous work has shown that this measure is related to both
structural and transcriptomic similarity among regions [26],
underscoring its utility. Studies using structural covariance to
determine network dysfunction in ASD have evidenced altered
local connectivity [27, 28], and correlations between subcortical
structures that are predictive of behavioral outcomes [29].
Assessment of network connectivity using structural covariance
in this study revealed reduced local covariance within the cortex
and hippocampus of male MAR-ASD mice but not in females.
Suggesting that while differences in discrete regional brain
volume were absent in male MAR-ASD mice in this cross-
sectional study, local network desynchronization may partly
account for altered behavioral outcomes. Support for this exists
in the literature, as cortical underconnectivity is an active
hypothesis in ASD [30, 31], with several studies observing
relationships between reduced functional connectivity in the
cortex and worsened behavioral outcomes in affected individuals
[32–34]. Furthermore, our study revealed a treatment-specific
phenotype in MAR-ASD mice, irrespective of sex, noting a
reduction in the covariance between cortical and midbrain
regions to brainstem and cerebellar structures. Disrupted
cortico-cerebellar connectivity is noted in both the clinical
literature and in animal models of ASD [35, 36]. In addition, a
recent study using MRI and structural covariance to examine
sensory networks in individuals with ASD found evidence of
decreased covariation between the cerebellum and sensory
cortices [27].
Together these studies provide corroboration for the transla-

tional capacity of the MAR-ASD rodent model and reinforce the
findings of this study. However, limitations exist in the cross-
sectional design and the fact that the neuroimaging was
conducted ex vivo. Longitudinal in vivo MRI studies will be
necessary to understand the timeline and development of
neuroanatomical pathology in response to MAR-ASD aAb
exposure.
Structural MRI results were additionally correlated with previous

behavioral findings to identify differences in neuroanatomy
associated with ASD-relevant behaviors. Analysis revealed sex-
specific differences in the magnitude and direction of brain-
behavior correlations. Specifically, opposing relationships were
observed between BF structures and social behavior in male and
female MAR-ASD mice; with females displaying positive correla-
tions while those in males were negative. Previous research has
shown that inhibition of signaling in the lateral septum, a region
involved in social behavior with direct inputs to the BNST, can lead
to sex-dependent behavioral outcomes. Specifically, lateral
septum inhibition increased juvenile social play behavior in males
but decreased the same behavior in females [37]. Applying this
logic to our findings, it is plausible that a volumetric increase in
the BF, and a concomitant increase in local signaling, may
contextualize sex differences in correlational findings between BF
volume and social behavior in MAR-ASD mice. Worthy of note,
lateral septal volume was larger in female MAR-ASD mice
compared to control animals but did not survive FDR-correction
(q= 0.08). While there were no statistically significant global or
regional differences in brain volume seen in male MAR-ASD mice,
a relationship was observed between male grooming behavior
and the volume of the DLOC. This is relevant as the DLOC has
been previously implicated in self-grooming behaviors using
optogenetic studies in mice [38, 39]. Furthermore, the human
correlate to the mouse DLOC, the dorsolateral prefrontal cortex, is
thought to be involved in mediating repetitive or stereotyped
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behavior in clinical subjects [40, 41]. It is important to note,
however, that correlational findings between regional brain
volume and behavior were exploratory in nature and reflect data
that were not corrected for multiple comparisons.
Speculation regarding mechanisms by which MAR-ASD auto-

antibodies mediate pathology may include altered developmental
neuroimmune signaling. Previous work has suggested that
hormones, inflammatory mediators, and the presence or absence
of specific immune cells contribute to neuroanatomical sex
differences in rodents. For example, neuroimaging data from T
cell receptor (TCR)-deficient mice revealed that T cells were
necessary for sexual dimorphism in several brain regions,
including the cerebellum and BNST [42]. In addition, testosterone,
endocannabinoids [43], and inflammatory molecules, such as
prostaglandin E2 [44, 45], have all been implicated in brain sexual
differentiation through glia-dependent signaling mechanisms.
Interestingly, the window for maternal antibody transfer capable
of reaching the fetal brain is defined to be between E12.5–E16.5
[46]. Neurodevelopmental events during this period include
microglia colonization as well as early neurogenesis [47]. While
we have not seen clear alterations to microglia in early studies of
MAR-ASD embryos, we have observed autoantibody binding to
radial glial cells and enhanced neurogenesis [48]. These data,
alongside ongoing studies, lead us to hypothesize that MAR-ASD
autoantibodies influence neuroanatomy through brain deposition
and potential engagement of neuroimmune signaling pathways.
Overall, our findings suggest that MAR-ASD aAb exposure

results in sex-specific changes in regional brain volume, network-
level covariance among brain areas, and relationships between
regional volume and ASD-relevant behaviors in a mouse model.
Future studies will be necessary to establish the cellular and
molecular mechanisms of MAR-ASD-induced changes in brain
structure.
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