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summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and
regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application
are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic
application of EVs in future clinical studies are addressed.
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ifferent organisms and cell types have the capa-
Dcity to release a wide variety of membrane-

enclosed vesicles (e.g. exosomes, microvesicles,
apoptotic bodies), ranging from approximately 40 nm to
a few um in size, into their extracellular environment.
These secreted vesicles are collectively designated extra-
cellular vesicles (EVs). EVs transmit information between
cells, organs and even between organisms, and have been
detected in body fluids, such as blood, urine, cerebrosp-
inal liquid, breast milk and saliva (1-3). Exosomes and
microvesicles comprise the most prominently described
classes of EVs; they are surrounded by a phospholipid
membrane and contain cell-type-specific combinations of
proteins, including enzymes, growth factors, receptors and
cytokines as well as lipids, coding and non-coding RNAs
and metabolites (1-3). Exosomes are defined as 70—150 nm
sized derivatives of the endosomal compartment.
During endosome maturation, parts of the endosomal
outer membrane, the limiting membrane, bud as intra-
luminal vesicles into the interior of the maturating endo-
somes to create multivesicular bodies (MVBs). Upon
the fusion of MVBs with the plasma membrane, the
intraluminal vesicles are released as exosomes into the
extracellular environment (4-6). With average sizes of
100-1,000 nm, microvesicles represent a class of larger
EVs that are formed by the outward budding of the
plasma membrane (7). Although the origin of exosomes
and microvesicles has been defined precisely, current
technology does not allow the experimental separation
or even discrimination of different EV types of similar
sizes (8). Thus, regardless of whether cited findings claim
the EVs to be exosomes, microvesicles, etc., we have
elected the collective term EV in this article. It is impor-
tant, however, to keep in mind that, depending on the
isolation method, different EV subtypes might be en-
riched and, even when derived from the same cell types,
may differ in their functional properties.

Already in the 1960s, the physiological functions of
EVs were unveiled; for example, bone matrix vesicles play
a role in bone mineralization (9). The discovery that B
cell-derived EVs carry functional MHC-peptide com-
plexes on their surface and exhibit T cell stimulatory
capacity led to a revival of the EV field in the mid-90s
(10). Furthermore, the field was massively boosted by
the findings of the functional transfer of mRNA and
microRNA between cells via EVs (11-13). Nowadays, it
has become increasingly evident that EVs play a central
role in many physiological and pathophysiological con-
ditions, which have recently been comprehensively sum-
marized (2). EVs of various cell types have been shown to
transfer a range of biologically active macromolecules
that can effectively alter the biological properties of target
cells. Due to these properties, they are considered novel
agents in different therapeutic applications. The review
of the main research areas addressing the therapeutic

ISEV position 2015 on EV-based therapies

potential of EVs is followed by an overview of the current
regulatory issues associated with using EVs as therapeutics.
Finally, we provide a draft that should help to translate
EVs into the clinic.

EVs as novel therapeutics: current state of
the art

EVs in anti-tumour immunotherapy

The idea to use EVs as anti-tumour vaccines arose from
work published almost two decades ago. Here, EVs desig-
nated as exosomes with diameters of around 100 nm, as
assessed by transmission electron microscopy, were har-
vested by the ultracentrifugation of the supernatant of
antigen-presenting cells pulsed with antigenic peptides.
These EVs contained MHC-peptide complexes capable
of activating CD4 and CD8 T cells (10,14). EVs from
dendritic cells (DCs), pulsed with tumour cell peptides,
induced the rejection of a growing tumour in immune
competent mice. The rejection involved the activation of
tumour-specific cytotoxic T cells (14). This discovery led
to a phase I anti-melanoma clinical trial conducted in
France and a phase I anti-non-small cell lung cancer
clinical trial in the United States (15,16) (Table I). Both
clinical trials used Good Manufacturing Practice (GMP)-
compatible protocols to recover EVs from a medium
conditioned by the patients’ monocyte-derived DCs (17)
that had been pulsed with antigenic peptides known to
be expressed by the patients’ tumours. A small number of
patients benefitted from the therapies of these clinical
trials, mainly demonstrating the feasibility and safety
of the EV administration. As a consequence, a phase 11
clinical trial (NCT01159288) was conducted in France,
between 2012 and 2014, to treat non-small cell lung
cancer patients (18). EVs from mature DCs were used in
this phase II clinical trial because murine models showed
that the EVs of immature DCs exerted tolerogenic effects
and only EVs co-injected with immune-stimulatory ad-
juvants or EVs from mature DCs efficiently promoted
naive T cell priming, respectively (19,20). In addition,
patients received low-dose cyclophosphamide to inhibit
regulatory immune responses and to further promote
the induction of effector T cell responses (21). Possibly
due to their late metastatic stage, the administered EVs
did not induce detectable CD4 or CDS8 adaptive T cell
responses in the treated patients. However, in some patients,
a positive effect on natural killer (NK) cell activity was
observed (22). Recent results obtained in preclinical
studies might help to further improve future clinical
trials (23). For instance, NK T cell (NKT) activating
agents have improved the anti-tumour effects of DC-
derived EVs (24). In addition, EVs obtained from DCs
pulsed with a full tumour antigen, instead of MHC class
I- or class II-binding peptides, induced the activation of B
cells and efficiently promoted tumour rejection in the
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Tuble I. Current and past NIH registered clinical trials investigating EV-based therapeutics

Disease
Number of patients
clinical trial (CT) phase

Source cell-type/application route

Isolation/
purification

Modified/unmodified
vesicle type

Results

Reference

Melanoma

Stage Ill/IV, metastatic
n=15

CT Phase |, open label

Non-Small Cell Lung Cancer

Stage Illb, n =4

Stage IV, n=9

CT Phase |, open label
Colon Cancer

Stage Ill or IV

n=40

CT Phase |, open label

Colon Cancer

n =35 (estimated enrolment)

CT Phase |, open label
Type | Diabetes

n =20 (estimated enrolment)

CT Phase |, open label

Non-small cell lung cancer

n=22
CT Phase II, open label

Malignant Pleural Effusion
n =30 (estimated enrolment)

CT Phase Il, open label

Autologous monocyte-derived
dendritic cell EVs.
s.C. inj.

Autologous monocyte-derived
dendritic cell EVs.
s.c. and intradermal inj.

Autologous ascites-derived EVs
(Aex)
s.C. inj.

Plant nanovesicles
not mentioned in NCT registry:
route of application

Umbilical cord blood (allogeneic)
MSC-EVs

not mentioned in NCT registry:
route of application

Autologous IFN-y matured
monocyte-derived dendritic cell
EVs

intradermal inj.

Tumour cell-derived
microparticles used as vectors for
chemotherapeutic drugs

pleural or peritoneal cavity.

Ultrafiltration/UC
sucrose cushion

Filtration/UC
sucrose cushion

UC sucrose
cushion

Not mentioned

Not mentioned

Ultrafiltration/UC
sucrose cushion

Not mentioned

MAGES loaded
DC-EVs

Peptide loaded

Unmodified +
GM-CSF

Curcumin, exogenous
loading

Unmodified

Peptide loaded

Chemotherapeutic

drugs, exogenous

loading

Proof of Feasibility & Safety; Toxicity <Grade Il
Maximum tolerated dose not reached,1 partial,
1 minor, 1 mixed response and 2 stable disease

Feasibility & Safety; Toxicity <Grade I-ll, 9/13
completed therapy, DTH against MAGE peptides
in 3/9, specific T cell response in 1/3, NK lytic
activity increased in 2/4

Feasibility & Safety, Toxicity Grade I-ll, TU-specific
Cytotoxic T Cell Response in Aex+ GM-CSF
group (n=2)

One patient exhibited a grade 3 hepatotoxicity.
Seven patients (32%) experienced stabilization of
>4 months: the primary endpoint ( >50% patients
>4months) was not reached. No induction of

T cell responses, but an increase in NKp30-
dependent NK cell functions were evidenced in a
fraction of these NSCLC patients presenting with
defective NKp30 expression.

Escudier et al. (15)

Morse et al. (16)

Dai et al. (30)

NCT01294072

NCT02138331

NCT01159288
Besse et al. (22)

NCT01854866

Aex, Ascites-derived exosomes; CT, clinical trials; DTH, delayed type hypersensitivity; DC, dendritic cells; GM-CSF, granulocyte-macrophage colony-stimulating factor; NIH, National
Institute of Health; NK, natural killer; MAGE, melanoma antigen; s.c.inj, subcutaneous injection; TU, tumour.
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absence of adjuvant (25). Consequently, tumour-derived
EVs have been considered for DC pulsing in vitro.
Indeed, initial studies showed that EVs secreted by
tumours constitute a source of tumour antigen that in-
duced anti-tumour immune responses in mice (26,27).
However, numerous subsequent studies describing the
immune-suppressive effects of tumour EVs on various
immune effector cells suggested caution in the use of
native tumour EVs for DC pulsing (28). Upon combining
tumour EVs with appropriate, immune-stimulatory ad-
juvants the immune-inhibitory effect of tumour EVs might
be successfully suppressed, thus enabling them to promote
an anti-tumour response (29). Taking this approach, a
phase I clinical trial in China investigated tumour-derived
EVs for anti-tumour immunotherapy (30) (Table I). Here,
EVs from the ascites fluid of colorectal cancer patients
were combined with the granulocyte-macrophage colony-
stimulating factor (GM-CSF) to stimulate anti-tumour
DC activity. Feasibility and safety were demonstrated
with a few patients benefitting from combined EVs
and GM-CSF, but not from the EV alone treatment. To
our knowledge, these are currently the only published
studies involving EVs in immunotherapeutic anti-tumour
trials.

In addition to DC-EVs, human NK cell-derived EVs
have been shown to exert immune stimulation. NK cell-
derived EVs, purified from either cell culture super-
natants or plasma of healthy volunteers, have been shown
to lyse target human tumour cells in vitro (31).

An alternative EV-inspired vaccination approach is
based on plasmids encoding EV-associated antigens. In
preclinical models, upon transfection in vivo, affected
tissues were found to release EVs presenting such antigens.
Plasmids encoding fusion proteins of a viral antigen with
viral gag or viral envelope protein, thus leading to the
secretion of the antigen in virus-like particles, were suc-
cessfully used in mouse models of leukaemia virus and
hepatitis C infection, as well as in human papilloma virus-
induced and non-virus-induced cancer (32-35). In addition,
plasmid DNA as well as recombinant viruses encoding anti-
gens fused to the coding region of the phosphatidylserine-
binding domain of the milk fat globule epidermal growth
factor-factor VIII protein (MFGES, also known as lact-
adherin), which promotes the binding of corresponding
fusion proteins to EVs, have been used as anti-tumour
vaccines in mouse models (35-38). Despite the fact that
such DNA-based vaccines may represent a cost-efficient
alternative to the ex vivo production of antigen-carrying
EVs, testing of these approaches in clinical trials has, to
our knowledge, not been described so far.

Depending on their origin and context, EVs can stimulate
immune responses and promote anti-tumour responses and
thus may provide important tools for novel anti-tumour
therapies.

ISEV position 2015 on EV-based therapies

EVs as therapeutic agents against infectious
diseases

Pathogens, like helminths (flat- and round-worms), fungi,
bacteria as well as parasitic protozoa, including species
of Plasmodium, Toxoplasma, Trypanosoma, Leishmania
and Trichomonas, also secrete EVs. Both gram-positive
and gram-negative bacteria can release EVs; the latter
are commonly called outer membrane vesicles (OMVs)
(39-43). Furthermore, pathogen-infected cells can release
EVs containing pathogen-specific antigens. EVs carrying
pathogen-specific antigens, for example, have been iso-
lated from macrophages that have been infected with
Mycobacterium tuberculosis, Mycobacterium bovis BCG,
Salmonella typhimurium or Toxoplasma gondii, as well as
from murine reticulocytes infected with Plasmodium
yoelii (39,44-50). Similarly, as in the anti-tumour trials,
such EVs have been studied as vaccines in numerous
preclinical mouse models.

Mainly, two different strategies are under investigation
that will just briefly be mentioned in this paragraph: (a)
EVs from in vitro pulsed DCs and (b) EVs released by the
pathogen or infected cells. The regulatory concerns for
such vaccination studies differ from those for the other
therapeutic EV applications. Consequently, an indepen-
dent ISEV position paper will be prepared that will give a
more comprehensive overview of EVs in infectious diseases,
and a discussion of the underlying regulatory issues.

Proof-of-principle studies to pulse DCs in vitro with
antigens of the obligate intracellular parasite Toxoplasma
gondii showed that — similar to tumour biology — EVs
released by these DCs could induce an immune response
conferring protection against subsequent infections (51-53).
Alternatively, EVs released from pathogens or infected
cells, respectively, have been directly used as vaccines in
numerous preclinical mouse models (44,47-50,54-62).
Notably, Novartis generated a vaccine named Bexsero
that consists of OMVs derived from Neisseria meningitidis.
This is used as a vaccine against serogroup B meningo-
coccal diseases in children (63,64). Nanovesicles derived
from bacterial protoplasts devoid of bacterial outer
membrane components have also been tested as a vaccine
in preclinical models. These were found to induce pro-
tection against bacterial sepsis in mice (65).

This plethora of studies highlights the potential of
EVs as vaccines against infectious diseases. Apart from
qualifying EVs as vaccines for humans, efforts to use EV-
based vaccines in animal health are exploited. For animal
farming, new vaccination strategies are highly desired
and are of great economic interest. So far, most of the
vaccine approaches currently used in animal health rely
on modifications of the original pathogen, either by
attenuation, inactivation or as subunit vaccines (66). The
potential use of EVs as novel therapeutic agents in ani-
mal health was recently shown for the PRRSV virus,
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as in vitro infections were partially inhibited by EV-
delivered artificial microRNAs (67).

The pros of using EVs rather than whole cells as
carriers of MHC-peptides complexes for vaccination
(both for immunotherapy and infectious diseases), is
that EVs are more stable upon freezing and thawing than
cells, which always undergo a degree of mortality.
Furthermore, EVs bear a defined repertoire of preformed
MHC-peptide complexes, not prone to the alteration that
has been observed in living cells that, after thawing, can
generate new MHC-peptide complexes in the absence of
relevant antigenic peptides. The cons of the approach
using peptide-pulsed secreting cells or EVs is that the
repertoire of MHC-peptide complexes presented is lim-
ited, and thus may not be enough to generate a
neutralizing immune response against a complex tumour
or pathogen. This caveat may be overcome by using EVs
produced by cells pulsed with full-length antigens or
extracts of tumour or infected cells (25). Since EVs can-
not multiply, they should provide a safer source of
tumour- or infected cell-derived antigens than whole
cells. However, tumour-derived EV fractions have been
shown to contain and transfer oncogenic molecules to
non-tumoural cells (68), and it is often difficult to sep-
arate EVs from certain pathogens, for example, retro-
viruses which display similar biophysical properties (69).
Consequently, EVs may not be as safe as more inert
antigen-sources, such as cell lysates. The balance between
advantages (the more efficient capture of EVs rather than
the soluble molecules of antigen-presenting cells (36)) and
inconveniences (the potential transfer of oncogenic or
viral activity by EVs but not by the soluble or extracted
cell-derived molecules) needs to be carefully evaluated,
for each vaccination approach.

EVs carrying pathogen-specific antigens may pro-
vide useful vehicles for the development of new vaccina-
tion strategies against infectious diseases in human and
animals.

Unmodified EVs in immune-modulatory and
regenerative therapies

Increasing evidence suggests that EVs are important
players in mediating the therapeutic effects of cells being
used as therapeutics, such as mesenchymal stem/stromal
cells (MSCs) or endothelial cells. Before highlighting the
therapeutic potential of such EVs, some background infor-
mation about such EV-releasing cells and their therapeu-
tic impact will be provided.

Originally, MSCs were described as a subpopulation
of stromal bone marrow cells with osteogenic potential
(70,71). Following the description of such cells as holding
multi-lineage potential (72), MSCs emerged as one of
the most intensively studied non-haematopoietic adult
stem cell entities (73,74). MSCs can be isolated from dif-
ferent tissues, including bone marrow, adipose tissue and

umbilical cord blood (75-78), and some MSC-subtypes
were originally considered to contain pluripotent devel-
opmental capabilities (79,80). In addition, MSCs exert
strong immune-modulating activities. In 2002, it was
initially reported that they are able to suppress the pro-
liferation of mitogen-stimulated T cells (81). Meanwhile,
MSCs have been found to inhibit DC maturation and
activation, modulate B cell and NK cell functions, pro-
mote regulatory T cell formation and regulate the polariza-
tion of M1-like (classically activated) pro-inflammatory
to M2-like (alternatively activated) anti-inflammatory
macrophages (82-88).

A number of clinical trials have been initiated to assess
the therapeutic value of MSCs in various diseases (89).
Up to now, more than 500 such studies have been regi-
stered in the www.ClinicalTrials.gov database. Many of
these studies were designed as cell replacement strategies,
based on the hypothesis that MSCs home to and become
integrated into affected tissues to replace lost cell types
and thus restore tissue and organ functions (90). Other
studies focused on MSCs as immune-modulating cells,
for example, to treat immunological disorders, such as
graft-versus-host disease (GvHD), Crohn’s disease and
rheumatoid arthritis (91-95). Although many of these
studies have reported beneficial effects, engrafted MSCs
were rarely found in corresponding tissues. These ob-
servations led to the assumption that, instead of direct
cellular effects, secreted factors induce the MSC pro-
regenerative and/or immune-modulatory functions (96).
Indeed, some recent data suggest that the delivery of
viable MSCs to damaged tissues is not required to exert
the MSC therapeutic effects (97-102).

Initial evidence that EVs are responsible for the
therapeutic MSC effects was presented by the groups of
G. Camussi and S.K. Lim and D. de Kleijn in experi-
mental models of acute kidney failure or myocardial
infarction, respectively (99,103). By exerting anti-apoptotic
activities, human MSC-EVs were as effective as their
parental cells in promoting kidney regeneration in severe
combined immunodeficiency (SCID) mice with glycerol-
induced acute kidney injury (103). Subsequent work
confirmed the protective properties of MSC-derived
EVs in both acute and chronic renal damage (104—110).
With respect to myocardial infarction, supernatants of
in vitro expanded MSCs had been successfully used to
reduce the myocardial infarction size in mice (100-102).
The pro-regenerative activity of supernatants was identi-
fied to be enriched in the EV fraction, rather than in the
EV-depleted soluble fraction (99). It was confirmed that
MSC-EVs exert immune-suppressive effects, by enforc-
ing M2 macrophage polarization and indirectly driving
regulatory T cell induction (111). MSC-EVs have also
been shown to suppress the activation of NK cells and
other peripheral blood leukocytes of healthy donors as
well as those of a GvVHD patient (112). Based on this
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therapeutic potential, the first documented clinical MSC-
EV administration was performed in 2011. MSC-EVs
were administered in escalating doses to a steroid-refractory
GvHD patient. MSC-EVs were infused intravenously at
intervals of 2 or 3 days during a period of 2 weeks. The
MSC-EV administration was well tolerated, and no side
effects were observed. Remarkably, during and following
MSC-EV therapy, the GvHD-symptoms declined signifi-
cantly and the patient was stable for more than 4 months
following MSC-EV treatment (112).

Many preclinical models have shown the beneficial
effects of MSC-EVs. After demonstrating that human
liver stem cell-derived EVs accelerated hepatic regenera-
tion in hepatectomized rats (113), MSC-EVs were success-
fully tested for their capability to alleviate drug-induced
liver injury (114,115). Furthermore, MSC-EVs mediated
cytoprotective effects on hypoxia-induced pulmonary hy-
pertension reduced Escherichia coli endotoxin-induced
acute lung injury and accelerated muscle regeneration in
mice (116-118). In rat models, MSC-EVs significantly
improved perfusion in hind limb ischaemia, accelerated re-
epithelialization following skin burn and enhanced survi-
val of allogeneic skin grafts (111,119,120).

MSC therapies have additionally emerged as promising
approach to treat stroke patients (121-123) and possibly
brain injury in newborn infants, for example, following
perinatal asphyxia (124,125). In stroke animal models,
intravenously transplanted human MSCs, obtained from
different sources, promote neuroprotection and periph-
eral immunomodulation, reducing the central nervous
system (CNS) ischaemic levels and ameliorating the stroke-
associated neurological deficits (126,127). In an in vitro
model for stroke, similar to the myocardial infarction
model, MSCs were found to exert therapeutic activity in
a paracrine manner by releasing neuroprotective factors
which enhanced neurogenesis and angiogenesis, rather
than by direct cellular interactions (128). In line with
these results, MSC-EV administration has been shown to
promote functional recovery and neovascularization fol-
lowing ischaemic occlusion in a rat stroke model (129)
and to enhance sciatic nerve regeneration (130). In a
murine stroke model, a direct side-by-side comparison of
the therapeutic impacts of MSCs and MSC-EVs revealed
no detectable difference in the functional outcome mea-
sured in three independent behaviour tests at different
time points, post experimental stroke induction. In com-
parison to untreated controls, both treatment strategies
significantly improved the functional outcome after
stroke induction in a very similar way (131).

In the immature brain, hypoxic-ischaemic encephalo-
pathy (HIE) following birth asphyxia and premature
birth represent major problems affecting development at
an early age with lifelong personal consequences. Term
newborn babies suffering from asphyxia are treated with
hypothermia, which improves the outcome in mild to
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moderate cases of asphyxia but not in severe cases (132).
Hypothermia is, however, not available for preterm babies.
Thus, additional and regenerative treatment strategies
for both patient groups are urgently needed. In addition
to pharmacological approaches, such as sildenafil, xenon
and erythropoietin treatment (133), new cell-based or
cell-derived therapeutic strategies are tested to treat
human preterm and term neonates with the develop-
mental brain injuries that frequently result in serious
long-term deficiencies (125). In both mouse and sheep
models of neonatal ischaemic brain injury, MSC admin-
istration was shown to provide a powerful therapeutic
option to promote brain regeneration leading to im-
proved neuro-behavioural and neurological outcome
(124,134,135). In the sheep model, improvements of
hypoxic damages have also been observed following
systemic MSC-EV administration (136).

A variety of additional applications of MSC-EV therapy
appear to be feasible, such as in multiple sclerosis (MS)
and Alzheimer’s disease (AD). MS is an autoimmune
demyelinating disease of the CNS. Several studies have
shown that MSCs promote neuroprotection, immuno-
modulation and, eventually, remyelination in different
in vitro and in vivo experimental approaches for MS (137).
Moreover, this therapeutic activity is mainly mediated by
MSC-secreted factors, suggesting the possible involve-
ment of MSC-EVs and their potential use for the treat-
ment of MS. In AD, adipose tissue-derived MSCs were
shown to secrete EVs with enzymatically active neprily-
sin, which is the rate-limiting enzyme of intra-cerebral
amyloid beta peptides, the causative molecules for AD
(138). Considering the potential of EVs to deliver their
contents to targeted organs, including the brain (139-142),
it might be possible to efficiently deliver functional nep-
rilysin to the brain using EVs derived from autologous
MSCs.

Thus, MSC-EVs seem to mediate beneficial therapeu-
tic effects in a variety of different diseases. Apart from
immune modulation, several studies have shown a direct
positive effect of the MSC-EVs on angiogenesis (143—146).
Although pro- and anti-tumourigenic effects of MSC-
EVs have been observed (147-151), no side effects have
been reported so far. However, future studies are needed
to confirm their clinical safety and potential in this
regard. Furthermore, and as discussed in more detail at
the end of this section, heterogeneity among independent
MSCs and MSC-EV preparations, as well as the EV
heterogeneity in obtained MSC-EV samples, need to be
addressed.

Other cell sources under investigation for regenerative
medicine are endothelial cells and endothelial colony—
forming cells (ECFCs), including human umbilical vein
endothelial cells (HUVEC) and late outgrowth endothe-
lial cells (OECs) (152—157). ECFCs are non-haematopoietic
cells that can be readily expanded ex vivo and have been
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shown to functionally integrate into newly formed vessels.
In addition, haematopoietic progenitors that are capable
of differentiating into myeloid and lymphoid cells may
exert pro-angiogenic functions (153,158—161). Although
their derivatives are often found to reside in close contact
to newly formed vessels, they do not integrate into the
endothelial network (162—165). It became evident that
pro-angiogenic processes are supported either directly via
homing and integrating into sites of endothelial damage
and tumours, or indirectly by the release of cytokines,
growth factors and EVs (166—-168). EVs released from
ECFCs stimulated neo-angiogenesis in vitro and in vivo
and have been shown to enhance recovery in a murine
hind limb ischaemia model by promoting revascularization
and protecting the kidneys from ischaemia-reperfusion
injury (169—171). Furthermore, such EVs have been found
to suppress monocyte activation (172). EVs mediating
immune-suppressive function have also been harvested
from regulatory T cells (Treg) (173—175). In a rat model,
it has been shown that Treg-EVs promote prolonged
kidney allograft survival (176).

Neural stem cells (NSCs) have been used in the
preclinical models of a variety of neurologic and neuro-
inflammatory disorders such as MS, spinal cord injury
and stroke (177-184). It was initially assumed that trans-
planted NSCs home to affected sites and, upon expan-
sion and differentiation, directly replace the lost cell
types and tissues (185). It became evident, however, that
analogously to MSCs also NSCs exert their therapeutic
effects in a paracrine and systemic manner rather than by
intercalating into sites of lesion (184,186). In this context,
NSC-derived EVs are considered to interact with the
host’s immune system to mediate neuroprotection and
immunomodulation (186,187). Neuroprotection and re-
generation can also be mediated by EVs released by the
resident glia cells of the nervous system. For example,
oligodendrocyte-derived EVs enhance the tolerance of
target neurons to various forms of cellular stress and
activated pro-survival signalling pathways (188,189). In
demyelinating diseases, in which axons degenerate due to
lack of glial support, such EVs might be of therapeutic
value. Furthermore, Schwann cells secrete EVs which
enhance axonal regeneration in the peripheral nervous
system by substantially increasing neurite outgrowth and
axonal elongation in vitro and in vivo (190,191). It will be
interesting to evaluate whether Schwann-cell EVs or EVs
from other cell sources such as MSCs or NSCs also
promote CNS axon regeneration. In general, it should be
considered that CNS therapies might be complicated by
the fact that the blood brain barrier (BBB) isolates the
brain tissue from the periphery. However, several studies
indicate that EVs cross the BBB and enter neural cells,
at least under certain conditions, such as inflammation
(192). Targeting the CNS might be achieved through the

systemic or even the intranasal administration of EVs,
giving them a potential advantage over many drugs.

Another source of EVs with immunomodulatory mole-
cules is represented by parasitic helminths like trematodes
(193,194). In this context, recent studies have shown that the
administration of EVs from the nematode Heligmosomoides
polygyrus suppresses type 2 innate responses and eosino-
philia in a rodent model of allergy (195).

Finally, very recent studies describe the isolation of
EVs from induced pluripotent stem cells (iPSCs), their
ability to transfer RNAs and proteins into heart cells
(196), and their healing abilities in vivo in ischaemic
myocardia (197). In addition, iPSCs might be used as a
source to raise somatic stem cells in a scaled manner for
the large scale EV-production or to obtain cells as an EV
source which can hardly be obtained from primary donor
material, such as human NSCs. In this context, EVs from
iPSC-derived MSCs have already been shown to attenu-
ate limb ischaemia (198). It is tempting to speculate that
the combination of iPSC and EV technologies will
provide novel therapeutic options in the future.

Although the previous discussion suggests that a
variety of cells release EVs with pro-regenerative and
immunosuppressive capabilities, all of these EV-releasing
cell types represent heterogeneous populations rather
than well-defined cell types. Due to this heterogeneity, it
must be kept in mind that even apparently homogenous
cell types release different EV subtypes. Furthermore,
donor-related variability may be responsible for thera-
peutic differences among comparable EV fractions.

Regarding MSCs themselves, increasing evidence sug-
gests that independent MSC preparations indeed differ
in their therapeutic potentials. Accordingly, attempts
have been made to identify surrogate markers and es-
tablish potency assays for discriminating such subtypes
(199-202). Similar to the heterogeneity of MSCs, inde-
pendent MSC-EV preparations show different immune-
modulatory capabilities (112). Thus, it has to be considered
that therapeutic potentials vary among EV preparations
harvested from independent preparations of the same
cell types. In addition, the functionality of harvested EV
fractions might largely depend on the method used to
enrich EVs. To our knowledge, no investigation has ex-
plored whether co-purified non-EV associated molecules
affect the activity of obtained samples. Co-purified mole-
cules might be functional neutral, act synergistically or
antagonistically. Furthermore, only a proportion of EVs
within given supernatants might mediate the desired
therapeutic effect, whereas others might be neutral or
act in an antagonistic manner. Since the EVs’ therapeutic
potential might depend on their quantity, heterogeneity
and quality, methods must be validated to enable the
appropriate quantification of EVs in given fractions as
well as to analyse their function in suitable potency assays.
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Despite the advantages of using EVs instead of cells for the
therapeutic application, it has to be considered that
purified EV fractions may be less therapeutically active
than corresponding cell products; certain paracrine effectors
might get lost or altered during the purification of the
EVs or, as a result of their short half-life, EVs might not
remain continuously and sufficiently present in EV-treated
patients, than they probably would in patients following
cellular treatment.

In the future, it will be interesting to compare the
immune-suppressive potential of the different EV types
and unravel both common and EV-cell type specific mech-
anisms to promote regeneration or inhibit inflammation,
respectively. Furthermore, we need to understand whether
the different EV types discussed here act synergistically
or, rather, redundantly.

We are at the very beginning of gathering knowledge of
the mechanisms mediating the EVs’ therapeutic effects,
the so called mode of action. However, a few molecules
have been identified that seem to mediate some of these
effects. There is increasing evidence that miRNAs are
essentially involved in mediating the EVs’ therapeutic
activities (203). For example, miRNA-133b seems to be
responsible for the MSC-EV mediated functional recov-
ery following ischaemic stroke in a rat model (204) and
miR-22 for the MSC-EV mediated anti-apoptotic effects
on cardiomyocytes in ischaemic heart diseases (205). In
addition, several proteins have been described to control
intrinsic versus reactive immune-stimulating features of
EVs, for example, CD86, CD40, MHC-I and -II as well
as Toll-like receptors (TLRs) (206-209). Compelling
evidence also exists that EVs of certain cell types can
modulate the purinergic signalling known to control in-
flammatory processes (210,211): As a consequence of
pathologic conditions such as inflammation or ischaemia,
multiple cell types release nucleotides including ATP and
ADP into their extracellular environment. Extracellular
ATP predominantly functions as a signalling molecule to
activate purinergic P2 (P2X/P2Y) receptors. Upon acti-
vation, purinergic P2 (P2X/P2Y) receptors trigger in-
flammatory processes, which can be suppressed by the
inhibition of the purinergic signalling pathway (212,213).
The molecules ectonucleoside triphosphate diphosphohy-
drolase 1 (CD39) and ecto-5'-nucleotidase (CD73) are
required to metabolize extracellular ATP and ADP into
adenosine that, in contrast to ATP and ADP, exerts
immune-suppressive effects (214,215). Following MSC
transplantation in a mouse GvHD model, elevated levels
of CD73 expressing EVs were observed. Like CD39 and
CD73 expressing tumour-derived EVs, these EVs were
found to metabolize extracellular ATP into adenosine
and, coupled to this, to inhibit T cell effector functions
(210,211,216). Since CD73 is a well-known cell surface
antigen on MSCs (217), the pyrogenic pathway might
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essentially contribute to the therapeutic activity mediated
by MSC-EVs.

Unmodified EVs from MSCs, endothelial progenitors,
Tregs, DCs, and NSCs, as well as of many other cell types,
hold promising therapeutic potential in regenerative medi-
cine and immune therapy. As in many of the described
studies, human EVs proved effective in different animal
models, and the therapeutic capability of at least some EV
entities seem to be conserved across species.

Modified EVs for targeted drug delivery
EVs are being increasingly explored as systems for thera-
peutic delivery of different drug types. Recent reviews high-
light the most relevant features of using EVs in targeted
drug delivery such as their circulation time, bio-distribution,
cellular interactions and the different methods for thera-
peutic cargo loading and administration (218-220).
Potential advantages of EV-based drug delivery over the
existing synthetic delivery systems (such as liposomes)
include decreased immunogenicity and toxicity, increased
stability in circulation and tissue, and intrinsic homing
abilities (221). Drugs that could particularly benefit from
delivery by EVs are small RNA therapeutics, including
miRNAs and siRNAs, and anti-inflammatory agents as
well as anti-cancer drugs (219). Small RNAs can trigger
the inhibition of virtually any gene expression via RNA
interference, giving them enormous therapeutic potential.
However, cellular entry for such large, hydrophilic and
charged molecules is restricted by the plasma membrane.
Thus, shuttle carriers are required. Viral and cationic carriers
are potentially unsafe because of the uncontrolled integ-
ration of viral material or toxicity, respectively (222).
EVs are natural carriers of RNA molecules and the
delivery of their content can lead to functional changes
in recipient cells (11-13,192,223-225). Initially described
for their ability to transfer mRNA, an increasing number
of studies have affirmed their ability to transfer miRNA
into cells. These findings suggest that EVs utilize native
mechanisms for cellular internalization and trafficking,
and a potential role for EVs for small RNA delivery
(226). In order to load EVs with therapeutic small RNA
molecules, two encapsulation approaches have been ex-
plored: (a) post-loading, that is, after EV isolation (also
known as exogenous method), or (b) pre-loading, that is,
during EV formation (also called endogenous method)
(218,219,227). Several recent reports have shown func-
tional siRNA delivery into recipient cells using EVs
loaded by electroporation (139,141,228). However, the
efficacy of this exogenous method has not been fully
demonstrated, and the initially reported loading effici-
encies may have been overestimated due to the possible
aggregation of siRNAs in the electroporation buffer (229).
Other teams have reported that they were unsuccessful
in using electroporation to load EVs with miRNA (140).
The fact that various sources of EVs have different
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molecular composition could influence the susceptibility
of particular EVs to electroporation (3,230). Therefore,
further studies are needed to confirm the feasibility and
efficiency of this method for EVs loading.

The endogenous approach exploits the cellular machin-
ery for small RNA loading into EVs after overexpression
or the direct transfection of the RNAs of interest into the
cells from which the EVs are subsequently derived (12).
This method has been successfully used for the packaging
of both siRNA and miRNA in EVs. Functional delivery
into recipient cells has been shown in several reports
(140,231-234). The feasibility of this method, however,
likely varies depending on the siRNA or miRNA species,
as cells seem to have selective sorting mechanisms for
the incorporation of small RNAs into EVs (235,236).
Furthermore, as a result of the overexpression or the
direct transfection of a particular small RNA in the EV
donor cells, other changes to the EV content may occur.
Finally, when transfection reagents are being used, con-
sideration should be given as to whether or not any
residual or co-released reagents are co-purified during EV
isolation. Such impurities could affect the EV behaviour,
induce false-positive effects and/or cause toxicity.

The observation that EVs released by tumour cells,
in vivo and in vitro, can transport cytotoxic drugs, such
as cisplatin in its native form, demonstrated that EVs
can transport drugs from one cellular compartment to
another (237). Accordingly, EVs are considered promis-
ing anti-tumour drug delivery vehicles. They may help to
circumvent the mechanisms mediating chemo-resistance
following conventional drug application. For instance,
tumour acidity represents a very efficient, though non-
specific cause of chemo-resistance, inducing the protona-
tion of the drug and consequent neutralization in the
extracellular environment (237,238). Drugs transported
via EVs may be protected within such acidified micro-
environments and, thus, might facilitate the efficient
delivery of active drugs into tumour cells in an acidic
microenvironment. Notably, microenvironmental acidity
has been shown to increase both EV-targeting to the
tumour sites and EV-uptake by tumour cells (237,239).

Anti-inflammatory drugs such as curcumin or che-
motherapeutic agents (paclitaxel, PTX and doxorubicin,
Dox) are under investigation for their suitability for EV-
mediated transport. PTX-loaded EVs, released from
PTX-treated MSCs in vitro, have been shown to inhibit
the proliferation of cultured tumour cells (240). EVs from
immature mouse DCs, engineered to express a fusion of
lamp2b with alpha-5 integrin-specific peptide for tumour
targeting and loaded with Dox by electroporation, were
efficiently incorporated in breast cancer cells in vitro. In vivo,
they were specifically delivered to implanted breast
tumour tissues and suppressed the tumour growth with-
out causing any toxicity (241). A phase II clinical trial has

been registered to test the safety and efficacy of tumour
cell-derived EVs to treat malignant ascites and pleural
effusion (NCT01854866, Table I). 100—1,000-nm-sized EVs
were harvested from methotrexate (MTX), Dox, cisplatin
or hydroxyl camptothecin-loaded tumour cells follow-
ing apoptosis induction by ultraviolet light irradiation.
In vitro, the drug-loaded EVs were found to be cytotoxic
to tumour cells and more effective than direct treatment
with the same drug on a dose-per-dose basis (242).
Furthermore, MTX-encapsulating EVs were shown to
inhibit ascites hepatocarcinoma growth following intrave-
nous or intraperitoneal administration into mice, while
cisplatin-loaded as well as cisplatin and PTX co-loaded
EVs inhibited ovarian cancer growth without producing
strong adverse effects (242).

Curcumin-loaded EVs have already made their way
into the clinic. Curcumin is a natural polyphenol with
anti-inflammatory properties which, as a hydrophobic
substance, interacts with lipid membranes and is poorly
soluble in aqueous solutions (243). Upon mixing curcu-
min with EVs, curcumin was found to bind in quantita-
tive amounts to the EVs released by different cell types.
At the therapeutic level, in contrast to their native forms,
curcumin-loaded liposomes and free curcumin, curcumin-
loaded EVs were found to protect mice from LPS-
induced sepsis (244). Upon administration to the brain
through intranasal routes, curcumin-loaded EVs pro-
tected mice from LPS-induced brain inflammation and
from the progression of myelin oligodendrocyte glyco-
protein peptide—induced experimental autoimmune en-
cephalomyelitis (245). Furthermore, curcumin-loaded
EVs delayed brain tumour growth in the GL26 tumour
model (245). Curcumin-loaded EVs were shown to
specifically suppress the activation of myeloid cells and
to be taken up by the microglial cells, which subsequently
become apoptotic (244,245). As curcumin has strong inhi-
bitory effects on the progression of many tumour types,
including colorectal carcinoma (243), a phase I clinical
trial using curcumin-loaded vesicles (deciphered as plant
exosomes) has been registered (NCT01294072, Table I).
This study investigates the ability of nanosized plant
vesicles (nanovesicles) to deliver curcumin to normal
colon tissue and colon tumour cells in patients under-
going surgery for newly diagnosed colon cancer. It is
aimed at studying the immune modulation, cellular meta-
bolism and phospholipid profile of normal and malig-
nant colon cells.

Although it has not been demonstrated that nanove-
sicles harvested from the freshly prepared juice of edible
plants are of extracellular origin, obtained nanovesicles
provide promising potentials as drug delivery. Nanove-
sicles harvested from grapefruit juice have been shown
recently to deliver short interfering RNAs, DNA expres-
sion vectors, proteins and chemotherapeutic agents in
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different types of cells and animal models (246). Another
study explored the effect of unmodified and modified
grape-juice-derived nanovesicles on different stem cells
and showed that they protected mice intestine from
dextran sulphate sodium-induced colitis (247). In addition
to the phase 1 clinical trial NCT01294072, there is
another ongoing study (NCTO01668849), which will
evaluate the ability of grape-derived nanovesicles to
reduce the incidence of oral mucositis during irradiation
and chemotherapy treatment for head and neck tumours.

Similar to plant nanovesicles, non-human EVs are
currently tested for their ability to serve as effective drug
carrier systems. Animal milk-derived EVs have been shown
to act as an effective drug carrier (248). Like plant nano-
vesicles, bovine milk provides a scalable source for
isolating large quantities of EVs and provides a cost-
effective and biocompatible material.

Although it is beyond the scope of this position paper,
it should be noted that technologies have been developed
that allow for the production of ex vivo artificially gen-
erated nanovesicles obtained from broken cells, which
mimic the structure and physical features of EVs. Such
vesicles have been called exosome-mimetic nanovesicles
and, depending on the preparation method, can either be
enriched for intracellular or for plasma membrane
vesicles (249,250).

EVs can be loaded with a range of molecules and serve
as drug delivery vesicles, which provide new options in anti-
tumour and immune therapy for targeted drug delivery.

EV-based therapeutics: regulatory aspects of
pharmaceutical development including
categories, safety and manufacturing
requirements

Early pharmaceutical development is strongly dependent
on results derived from the observations and data gen-
erated by basic researchers. If novel approaches proceed
towards the translational phases, the strategy of how to
address questions and regularly acquire data has to
change considerably, in order to focus strongly on the
validation and certification of the applied technologies.
Upon developing novel therapeutics for humans, issues
related to pharmaceutical categorization become essen-
tial. The regulatory aspects of manufacturing and appli-
cation of new therapeutics have to be implemented.
Safety aspects must be highlighted from various perspec-
tives (e.g. donor, recipient, product, manufacturing,
clinical application, biovigilance). Thus, it may appear
that the same information has to be provided repeatedly.
In the following section, we summarize the most relevant
issues to be addressed at the various levels of the
developmental processes to translate EV-based therapeu-
tics into the clinic.

ISEV position 2015 on EV-based therapies

Pharmaceutical category of EV preparations

The definition of biological medicine is relevant for
EV-based therapies

The development of human EV-based therapeutics is
subject to the regulatory frameworks concerning biolo-
gical medicinal products in the European Union (EU),
United States of America, Australia and Japan (see Fig. 1).
“A biological medicine is a medicine that contains one
or more active substances made by or derived from a
biological cell. Some of them may be already present in
the human body and examples include proteins such as
insulin, growth hormone and erythropoietin. The active
substances of biological medicines are larger and more
complex than those of non-biological medicines. Only
living organisms are able to reproduce such complexity.
Their complexity as well as the way they are produced
may result in a degree of variability in molecules of the
same active substance, ...” (251). Synonyms for the term
“biological medicine” are ‘“biologic drugs, biologicals
or biopharmaceuticals” and are differentially used in
regulatory documents depending on regional practice
(252-254).

In the EU, detailed guidance on the preclinical
development, quality aspects, non-clinical safety require-
ments and the clinical testing of novel biological medic-
inal products is provided. As EVs will be considered
biological medicinal products, it is anticipated that new
rules explicitly regulating EV-based therapies are not
needed. Existing European guidance on biological active
substances covers the manufacturing and clinical evalua-
tion of novel EV-based therapeutics, in large part (255-262).
However, for now, an open question remains about
whether special guidelines targeting EV-based therapeu-
tics may be needed. In Australia, the Therapeutic Goods
Administration (TGA) office of the government provides
rules and guidelines relating to the manufacture and use
of therapeutics that are frequently adopted from EU
rules. In the United States, EV-based therapies for human
use would be also considered biological products, and
would be regulated by the Center for Biologics Evalua-
tion and Research (CBER) within the Food and Drug
Administration (FDA). Depending on the type of EV-
based therapy, pre-existing regulatory guidance may be
applicable. For example, EVs used in anti-tumour vacci-
nation may be regulated as therapeutic cancer vaccines
for which specific guidance has been issued (263). In all
cases, the EVs can be classified as biological medicine
(254). Figure 1 depicts the suggested pharmaceutical
categorization of EVs, based on the anticipated active
substance(s).

In summary, EV-based therapeutics can be defined as
biological medicine and belong to the pharmaceutical
class of biologicals. Regulatory frameworks for manu-
facturing and clinical trials exist in Europe, Australia and
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Heart Valves, etc.
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- native EVs from genetically non-manipulated cells
(category i, in “The active substance in EV-based
therapeutics determines their pharmaceutical
classification”)

Somatic Cell
Therapy Products

Gene Therapy
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- native EVs from genetically modified cells without
trans-gene-products (category ii, in “The active
substance in EV-based therapeutics determines

l

e.g. Mesenchymal
Stem/Stromal Cells
(MSC), Dendritic Cells
(DC), etc.

Tissue-Engineered
Products

their pharmaceutical classification”)

- EVs as drug delivery systems (DDS) loaded with
synthesized chemicals or defined recombinant
molecules (category iv, in “The active substance in
EV-based therapeutics determines their

e.g. skin, cartilage, etc.

pharmaceutical classification”)

native EVs from genetically modified cells with trans-gene-
products (category iii, in “The active substance in EV-based
therapeutics determines their pharmaceutical classification”)

Fig. 1. Pharmaceutical categories and a suggested classification of EV-based therapeutics. Chart depicts the Categories of Medicinal
Products with respect to their origin (chemical, biological, herbal). Medicinal Products (according to DIRECTIVE 2001/83/EC) include
any substance or combination of substances for treating or preventing disease in humans. Any substance or combination of substances
which may be administered to humans with a view to making a medical diagnosis or to restoring, correcting or modifying physiological
functions in humans is likewise considered a medicinal product. The suggested classification of EV-based therapeutics within the class
of biological medicinal products is provided (grey fields). Bold indicates categories from which existing legislation is recommended to be
considered for preclinical and clinical development of EV-therapeutics.

United States, but special guidelines targeting EV-based
therapeutics may be needed.

The active substance in EV-based therapeutics
determines their pharmaceutical classification

The regulatory classification of any drug and most bio-
logical medicinal products depends on a pharmaceuti-
cally active substance, which is not necessarily a defined
molecule but in terms of cellular therapeutics can be
the cells themselves (254,264). Manufacturers are asked
to identify, quantify and characterize the main “sub-
stance(s)” of a drug causing a certain pharmacological,
immunological or metabolic action being responsible for
its biologic effect (i.e. “mode or mechanism of action,”
“MoA”). In addition, non-active components needed in
the final formulation of a drug (“excipients’) have to be
characterized. Whether the MoA of EVs depends on the
content of vesicles, the vesicle membranes or a combina-
tion of both is currently not known, but these issues have
to be addressed during development. It may turn out
that, for many therapeutic applications of EV-based
therapeutics the specific MoA might not be definable,
even if they are confirmed to be effective. Nevertheless,

defining or, in early-stage clinical development, anticipating
the active substance(s) responsible for the MoA will
determine the pharmaceutical control strategy. This
includes a panel of quality and potency tests that are
linked to a hypothesized MoA. During further clinical
development (from clinical trials phase I to III), the goal
is to unravel and subsequently verify the MoA in a more
detailed manner. As knowledge on the therapeutic sub-
stance and the MoA increases, control strategies have to
be continuously adapted and refined. These requirements
are outlined in the Guidelines on “. .. the requirements to
the chemical and pharmaceutical quality documentation
concerning investigational medicinal products in cli-
nical trials” (265) and “... on strategies to identify and
mitigate risk for first-in-human clinical trials with in-
vestigational medicinal products’ (266) and (258). It is,
therefore, not required that the plethora of open ques-
tions associated with biological investigational medicinal
products are solved for first-in-man-clinical trials. How-
ever, the quality and safety of the investigational new drug
must be adequate. At the time of application for product
licensing, convincing data regarding the MoA, supported
by clinical efficacy and safety, must be provided.
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Nevertheless, the definition of the active substance(s)
will remain a key question in the preclinical development
of EV-based therapeutics. The proposed MoA should be
discussed upon registration for a phase I clinical trial in
the “Investigational Medicinal Product Dossier” (258).
“Details should be provided on the biological activity”
(i.e. the specific ability or capacity of a product to achieve
a defined biological effect) (258). Ideally, prior to the
initiation of phase I clinical studies, the biological activity
should be determined using a relevant, reliable and qua-
lified method. The lack of a potency assay (can be
tolerated but) should be justified. The rationale for
selection of the methods used for the characterization
of the therapeutic agent should be provided and their
suitability be confirmed. “Tests for quantity, identity and
purity are mandatory. A test for biological activity
(“potency assay”) should be included unless otherwise
justified. Upper limits, taking safety considerations into
account, should be set for the impurities.”

Although the specifics will have to be discussed with
regulators during the approval process on a case-by-case
basis, ISEV suggests categorizing EV-based therapeutics.
Specifically, in terms of active substances, at least four
different scenarios can be anticipated for EV-based
therapeutics (Fig. 1):

i) EV-based therapeutics may be derived from unmo-
dified cells containing native EVs. Then, they are
categorized as biological medicine.

il) EV-based therapeutics may be derived from geneti-

cally manipulated cells, but the released EVs do not
contain trans-gene products; thus, they are categor-
ized as biological medicine.
In these two scenarios, the EVs can be regarded as
the active substance which is, due to its overall
composition, capable of entering recipient cells and
altering them by influencing downstream pathways.
Since the EVs’ MoA is defined by the composition of
their membranes together with their cargo molecules,
it will be challenging — and, indeed, may turn out to
be not essential — to decipher these functions from
each other.

iii) EV-based therapeutics may be derived from genetically
manipulated cells and contain trans-gene products.
These are categorized as gene therapy products
(GTPs) that belong to an independent sub-category
of biologicals (i.e. advanced therapy medicinal pro-
ducts, ATMPs), depending on whether the therapeutic
effect is explicitly ascribed to the trans-gene-product
or rather to the EVs themselves.

iv) Native EVs may be used as drug-delivery systems
for chemical drugs (category: combined biological
AND chemical therapeutic, being regarded as
biological medicine) or for other molecular compo-
nents, such as miRNAs or siRNAs (categorized as
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biological medicine). It would have to be determined
whether or not the EVs themselves mediate parts of
the therapeutic effects, at least, and therefore, whether
they are or are not part of the active substance.

If the whole therapeutic effect could be ascribed to the
loaded molecules and not to the EVs, the EVs would be
regarded as “excipients.” The regulatory consequences
of this distinction are that characterization requirements
for the EVs would be reduced. This means that only the
safety profile, but not characterization of the MOoA,
would be required because, as per definition, excipients
do not exert a therapeutic action.

Searching for the MoA of EV-based therapeutics is
essential and will proceed as an iterative process during
clinical translation. The dissection between “active sub-
stances” and “excipients” (‘“‘claim of action”) is important
for the characterization and definition of appropriate
strategies to control the quality of EV-based therapeutics.
Phase I clinical trials may be permitted, if safety and quality
standards are adequately met and a plausible hypothesized
MoA is provided.

The importance of legislation on “tissues and cells” and
“advanced therapy medicinal products” (ATMPs) for
EV-based therapies

EVs derive from complex tissues or cells and may have
much in common with their source material with re-
spect to complexity, composition and biological action.
Accordingly, the development of EV-based therapeutics
will be closely related to tissue- and cell-based products.
These products (e.g. haematopoietic stem cell or cornea
transplants) are harvested from donors and transplanted
without any excessive alterations to fulfil their original
function in the graft receiving patients. In the EU, tissue-
and cell-based products are regulated by the DIREC-
TIVE 2004/23/EC (267) and in the DIRECTIVE 2006/
17/EC (268). Unlike biological medicinal products, these
directives do not demand a definition of the active sub-
stance but regulate safety aspects regarding the donation,
procurement, testing, traceability, processing, preser-
vation, storage and distribution of the human material
to guarantee health protection of both donors and
recipients.

Because the biological medicinal products cover a
broad range of different pharmaceuticals, a regulatory
category termed advanced therapy medicinal products
(ATMPs) was introduced in 2007 (Fig. 1). This category
covers a subgroup that differs from conventional biolo-
gical medicinal products with regard to physicochemical,
immuno-chemical and biological properties. It includes
gene therapy medicinal products, somatic cell therapy medici-
nal products and tissue-engineered products (254,269-272).
Simply put, a prerequisite to call a biological medicinal pro-
duct an ATMP is that the product has been extensively
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manipulated (including cell expansion in vitro) or is
intended to exert functions that are different from its
original functions (e.g. the usage of haematopoietic stem
cell transplants for the treatment of myocardial infarc-
tion), and contains nucleated, viable cells. If products
contain therapeutically active trans-gene constructs de-
rived from genetically engineered cells, they are consid-
ered as ATMPs, independent of the presence of any
nucleated, viable cell. For the development of EV-based
therapeutics ATMP, scientific guidance (273) may be
relevant because EVs are produced, in many cases, from
human material by a manufacturing process comparable
to ATMP production. The medicinal product framework
addresses the safety standards for inadvertent microbial
and viral contamination and demands GxP standards
(GxP =Good Manufacturing/Good Laboratory/Good
Distribution/Good Clinical/Good Scientific Practice or
GMP/GLP/GDP/GCP/GSP) for the production and qua-
lity control of corresponding therapeutics. Furthermore,
it regulates the conduct of clinical trials (142).

The conventional pharmacokinetic, non-clinical phar-
macology and toxicology studies required for most
medicinal products (274) may not be appropriate or
meaningful for the development of EV-based therapeutics.
Then, in a manner comparable to that for cell-based
products, product-specific approaches would have to be
applied. In this context, preclinical safety testing and the
transition from preclinical to clinical development may
use a risk analysis approach, such as is applied to human
cell-based products (267) and takes into account their
heterogeneity (264).

In the United States, human cells, tissues and cellular
and tissue-based products (HCT/Ps) are defined as
therapeutics containing or consisting of human cells or
tissues that are intended for implantation, transplanta-
tion, infusion, or transfer into a human recipient. Like
ATMPs, HCT/Ps are considered distinct from conven-
tional pharmaceuticals and regulated by CBER (or, in
some cases, by the Center for Devices and Radiological
Health) as biologics. In general, secreted or extracted
human products other than semen are not considered as
HCT/P. This would include cellular factors such as EVs.
However, considerations relevant to the use of human
cells, such as the transmission of communicable diseases,
would be important for the approval of EV-based
therapies derived from human cells.

Compliance with established frameworks is pivotal
from a legal point of view and will increase the confidence
of different stakeholders (patients, ethical review boards,
competent authorities, funding bodies, investors and
sponsors for clinical trials).

In addition to the existing guidance on the manufacture
of biological medicinal products (biologicals), it is con-
ceivable that safety and quality standards for the EV
manufacturing and related clinical trials will emerge as

extrapolations from legislation for tissue- or cell-based
products. Concerning the preclinical safety testing, a risk
analysis approach — as is applicable for ATMPs — may be a
helpful tool.

Safety and biological activity evaluation in advance of
clinical trials

The demonstration of the safety and efficacy of novel
drugs is a challenge for developers and clinical investiga-
tors, a difficulty that is not restricted to biopharmaceu-
ticals. Conventional approaches to toxicity testing are
usually not considered appropriate for biopharmaceuti-
cals due to unique structural and biological properties that
may include species specificity, immunogenicity and (un-
predicted) pleiotropic activities (275). These properties
apply to tissues and cells, as well as to ATMPs. According
to the legislation for tissues and cells, and ATMPs, a panel
of minimal criteria to characterize human cell-based
medicinal products needs to be considered before use in
clinical trials. It has to be addressed whether products
are (a) of autologous, allogeneic or xenogeneic origin;
(b) extensively or minimally manipulated in vitro and (c)
immunologically active or neutral. In addition, (d) the
proliferative capacity of cells and (e) the cell or tissue-like
organization as well as the dynamic interaction amongst
cells with structural components and (f) the intended use
have to be defined.

Because it is anticipated that requirements (a—d) and (f)
will be relevant for the characterization of sources used
to generate EV-based therapeutics, information should
be provided by EV-based therapeutic producing manu-
facturers (276). Of note, due to the facts that many
cell products are composed of a heterogeneous mixture
of cells, the identification of the cellular component(s)
responsible for a proposed biological activity is a big
challenge.

Similar issues will, undoubtedly, emerge during the
preclinical development of EVs. Nevertheless, the identity
and purity of the expected active substance(s) should be
shown, and impurities minimized as effectively as possible.
As for every biopharmaceutical, the non-active constitu-
ents must be characterized and considered for safety
evaluation. For the sake of patients’ safety, the therapeu-
tic effects expected should be predicted with standardized
potency assays, and the potential for unexpected adverse
effects should be explored and minimized during the pre-
clinical development. Three issues have to be considered
in advance of first-in-man-clinical trials: (a) Quality
aspects (characterization, determination of strength and
potency and comparability of material used in non-
clinical studies), (b) non-clinical requirements (pharma-
codynamics, pharmacokinetics, demonstration of the
relevance of animal models for the intended use (if possible),
safety pharmacology and toxicology issues and the cal-
culation of the treatment dose for first-in-man) and
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(c) clinical requirements (general aspects of clinical trial
design, such as study population, inclusion/exclusion
criteria, first dose, size of cohort, intervals between dosing
within same cohort, dose escalation, stopping rules, de-
fining responsibilities for decisions with respect to dosing,
route and rate of administration and long-term monitor-
ing of patients including biovigilance) (266). Due to
multidimensional complexity, these questions will not
be resolved by isolated scientific efforts. Interdisciplinary
activities and collaborations between academia and in-
dustry will certainly help to accelerate preclinical develop-
ment and the successful clinical translation. If preclinical
research is designed in the context of the subsequent
translation into the clinic, adherence to the existing
regulatory standards is highly recommended. Uncertain-
ties regarding the extent of the preclinical characteriza-
tion of EV-based therapeutics prior to clinical trials
may be solved with the help of institutional exchange
procedures. National agencies as well as the European
Medicines Agency (EMA) and the FDA, CBER in the
United States offer advice to investigators and clinical
trial sponsors at a national or international level, depend-
ing on the developmental stage of a new drug. Recently,
an EMA-FDA parallel scientific advice program was
initiated, which is highly relevant when advancing to
phase IIT multicentre multinational pivotal trials.

Safety standards for tissues and cells and, in special
cases, for ATMPs may serve as roadmaps for the char-
acterization of EV-based therapeutics in preclinical and cli-
nical development. Quality aspects, non-clinical and clinical
requirements should be considered in advance of phase I
clinical trials.

The importance of determining if EV-therapeutics
constitute “high risk medicinal products” for clinical
trials

Novel pharmaceuticals may pose risks to patients that are
considered “high”. A new MoA can result in a classifica-
tion as a “high risk medicinal product” with the
definition including: (a) that only particular knowledge
or uncertainties exist with regard to the MoA of the novel
substance(s), (b) that the nature of the target, which
makes a drug a potent substance, may be unclear and (c)
that the relevance of selected animal models for confirm-
ing an expected MoA is limited (266). Although all three
criteria appear to be currently appropriate for EV-based
therapeutics, it should be decided on a case-by-case basis,
whether or not EV-based therapeutics would fall under
the high-risk definition.

The high-risk definition would substantially augment
preclinical safety testing requirements in advance to
clinical trials. This may be adjusted by adducing a
number of justifications that might mitigate the high-
risk aspects of EV-based therapies. While acknowledging
that these criteria will need to be addressed on a case-
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by-case basis, the ISEV proposes: (a) Autologous EVs
naturally occur in the human body. (b) EVs are physio-
logically produced by all cell types, and their production
and uptake in target cells is a natural process. (c)
Substances contained within EVs are physiological body
constituents (unlike fusion proteins, synthetic agonists or
kinase inhibitors). (d) Increasing evidence indicates that
DCs and (autologous and allogeneic) MSCs show good
safety profiles in numerous patients that have previously
been treated; therefore, it is plausible that DC-EVs or
MSC-EVs will not cause more harm to patients than
their respective cells of origin. Finally, (e) despite the
huge number of daily transfusion of blood products,
there is little published and accessible evidence that
allogeneic EVs co-transfused with blood products cause
adverse events (277,278). Taken together, these arguments
support the assumption that EVs generated from a
human cellular source do not carry higher risks than
the risks that are carried from the EV-generating tissues
or cells and, thus, are not automatically classified as high-
risk medicinal products.

In summary, although uncertainties about the MoA, the
nature of the targets and the relevance of animal models
exist, a number of arguments support the assumption that
EV-based therapeutics derived from human tissues and
cells do not per se fall under the high-risk definition of
investigational new drugs.

Requirements for manufacturing of EV-based
pharmaceuticals

Approval of the technical requirements and quality risk
management

The manufacturing of EV-based therapeutics will involve
the use of living cell systems for the generation of EVs.
Minor changes in the tissue culture may have profound
impacts on the EV-production process, changing the EVs
biological properties and so, in turn, their characteris-
tics (physicochemical, immunochemical and biological).
Accordingly, the product characterization of all biological
medicines depends on a thorough characterization and
control of the manufacturing process (258). The transfer
of a therapeutic concept into an investigational product
depends on prerequisites such as adequate technical
equipment, an established pharmaceutical engineering
system with trained personnel and a quality management
system. The implementation and maintenance of reliable
quality standards according to internationally harmo-
nized proceedings are essential to achieve a required
manufacturing license. The production has to be per-
formed in compliance with GxP regulations. GXP stan-
dards are being harmonized between regions by “The
International Conference on Harmonisation of Technical
Requirements for Registration of Pharmaceuticals for
Human Use, ICH” (261). Since 2009, the ICH has been
commissioned to coordinate the pharmaceutical industry
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and regulatory authorities of EU, Japan and the United
States in tripartite discussions on the scientific and tech-
nical aspects of drug registration since 1990. In Europe,
the harmonized ICH guidelines are published on the
official EMA website. Regulatory agencies of ICH mem-
bers worldwide are continuously monitoring industrial
and academic manufacturers by periodical inspections to
assess their compliance with to GxP standards.

Donor safety, recipient safety and release criteria for
EV-based therapeutics

Physicians and the manufacturers in particular are
strictly obliged to comply with donor and recipient safety
issues. Donor safety and donor qualification require-
ments are laid down in blood safety legislation (279), the
tissue and cells quality and safety legislations (267) and
the DIRECTIVE 2006/17/EC (268). Recipient safety is
covered by guidelines from the ICH regarding product
safety, efficacy and quality that provide a comprehensive
guidance for the development and generation of novel
biological medicinal products (261,262). In particular, the
quality guideline, “Derivation and Characterization of
Cell Substrates used for Production of Biotechnological/
Biological Products” (259) and the safety guidelines,
“Safety Pharmacology studies for Human Pharmaceuti-
cals” and “Preclinical Safety Evaluation of Biotechnology-
Derived Pharmaceuticals” must be considered (260,274).
Biopharmaceuticals have to be characterized by a com-
bined approach of testing the active substances (safety
pharmacology, pharmacodynamics and toxicology test-
ing) and the final medicinal product, together with a
detailed assessment of the pharmaceutical production
processes and associated controls. Validated manufactur-
ing processes guarantee the consistent quality of the drug:
“The release specifications of the active substance and
finished product should be selected on the basis of
parameters defined during (non-clinical) characterization
studies”. Current studies revealing mechanistic insights
into EV biology will determine the future release criteria
of EV-based therapeutics. Well-defined release criteria
relevant for the respective therapeutic use of EVs should
be elaborated by the manufacturer, on the basis of data
generated during preclinical characterization (in vitro
and in vivo) and process validation. Release criteria will
include EV characterization (product definition consider-
ing identity/purity/impurities), hypothesized MoA, mi-
crobiological control of cell populations, growth media,
supplements and materials (such as disposables). Micro-
bial contamination has to be excluded from the final
product by testing according to pharmacopoeia (the
European Ph.EU and the United States pharmacopoeia,
USP). Specific release criteria for each type of modified
or unmodified, human allogeneic or autologous, or Xeno-
geneic EVs must be defined according to the intended
use of EV-based therapeutics. Due to a broad variety of

therapeutic approaches, specific release criteria to suit
each scenario are beyond the scope of this position
statement. Release criteria and control strategies will be
refined in the course of the clinical development.

The manufacturing of EV-based therapeutics requires
adequate and appropriate infrastructure and technology, a
quality management system and compliance with GxP
standards that take into account both donor and reci-
pient safety. Release criteria relevant for the investigational
product in its intended use will have to be defined on the
basis of preclinical characterization studies.

Requirements to be fulfilled for clinical trials
evaluating EV-based therapies

The use of novel drugs in early phase clinical trials re-
quires robust preclinical models indicative for the respec-
tive target disease to estimate in vivo response in humans.
Limitations in the availability of relevant animal models
may result in weak predictability and the resulting mis-
interpretation of pharmacokinetic results and reduced
chances of identifying toxic effects. The predictability of
in vivo responses and its easy translation to humans will
be reduced if a novel biopharmaceutical displays parti-
cular high species specificity. However, current observa-
tions that human EVs mediate effects in different animal
models suggest reduced species specificities. A low EV
species specificity may help to translate results from
animal models to humans and may justify the amount of
non-clinical safety data.

At least in autologous situations, the assumed immu-
nogenicity risk of EV-based therapies is excluded if the
manipulation does not raise additional risks by using
allogeneic or xenogeneic factors during EV production.
So far, the results of three phase I clinical studies have
demonstrated the feasibility and safety of autologous
EV-based therapeutics. Table I summarizes key informa-
tion about those studies, together with unpublished EV
studies registered at www.ClinicalTrials.gov. In addition
to the surveillance regarding the acute toxicity of an EV-
based therapeutic medicinal product, it will be necessary
to follow up long-term adverse effects such as tumour-
igenicity and immunogenicity via clinical trial registers
and vigilance systems. Table II lists potential issues to be
defined by each manufacturer of EV-based therapeutics,
together with the treating and examining physicians who
are designing and executing the intended clinical trials.

Representative animal models should be identified and
applied in advance of clinical studies investigating EV-based
therapeutics whenever possible. Safety, toxicity and im-
munogenicity need to be monitored in the course of early
phase clinical trials. Reliable information concerning effi-
cacy and long-term adverse effects of autologous or
allogeneic EVs will be obtained from later phase clinical
trials (phase III-1V).
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Tuble 1I. To be defined and established by investigators before
(or concomitant to) clinical application of EV-based therapeutics

- Source of the starting material
- Donor inclusion/exclusion, donor release criteria
- Autologous, allogeneic, xenogeneic, bacterial, pathogen
or plant EVs
- EV-source characterization (donors, donor cells/tissues/
fluids, culture reagents)
- EVisolation and storage
- Isolation techniques and standardization
- Purity and impurities
- Scalability of technology
- Storage conditions
- Adequate quality of reagents and materials
- In-process controls
- Quality control
Molecular and physical characterization

- Quantitative Analyses (counts and size)

- Qualitative Analyses (presence of EV marker(s), purity)

- Composition (surrogate marker)

- Contamination (viral, microbiological, endotoxins, toxins,

allergens)
In vitro biological characterization

- Complexity and heterogeneity

- Mode of Action

- Potency of EVs (in vitro bioassays)

- Quality release criteria
- In vivo analyses/EV application
Selection of relevant animal models (disease specificity?/
species specificity?)
Dose selection (single/multiple applications)
Route of application (local, systemic)
Pharmacokinetics/ADME: Absorption — Distribution —
Metabolism — Excretion

Toxicity

Immunogenicity, Immunotoxicity

- Tumourigenicity

Biodistribution

Potency of EVs (in vivo bioassays)

- Before clinical trial

Informed consent of donors and host
Study protocol

Investigational medicinal product dossier
Investigators brochure

Ethics committee approval

Register Entry (EMA, EudraCT or NIH,
www.ClinicalTrials.gov)

Issues to be considered for the production of
EV-based therapeutics

Based on the therapeutic potential of various EV pre-
parations and the relevant regulatory requirements dis-
cussed above, we propose to systematically consider the
following topics in the context of progression towards
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clinical trials: (a) Characterization of the EV source,
(b) EV isolation, characterization and storage strategies,
(c) Pharmaceutical quality control requirements, and (d) in
vivo analyses of EVs.

Characterization of the EV source

An important issue in characterizing EVs is the origin of
the EV producing tissue or cell source and the relation-
ship between donor and host (i.e. autologous, allogeneic,
xenogeneic, cross-kingdom relation). If human cells are
the source of the EVs, data on the collection procedure,
patient/donor eligibility criteria, health status and med-
ication must be documented. The informed consent of
donors and the approval of appropriate ethics com-
mittees are mandatory. The screening of the human
donors for signs of infection prior to tissue collection is
obligatory. For the allogeneic use of EVs, we propose that
similar donor inclusion and release criteria be used as for
allogeneic donors for blood products and haematopoietic
stem cell grafts, respectively (254,255,267-270,280). Clear
regulations and national and international guidelines
already exist (279,281). In autologous settings, a reduced
testing regime according to tissue and cell regulations
might be sufficient. Provided that cellular EV sources
intended to be “substantially manipulated,” ATMP
guidelines should be considered (280). This may include
a description of cellular characteristics, such as their cell
surface phenotype. Due to the release of apoptotic bodies
and subcellular compartments, dying cells may affect the
quality of obtained EV fractions. Thus, the viability of
cells releasing EVs in vitro should be documented.

It should be taken into account that a disease status
may affect cell and subsequent EV characteristics in
autologous EV-based therapeutics. A potential impact of
tissue compatibility (MHC class I and II class surface
antigens) has to be considered in the case of allogeneic
EV applications. If HLA-matching turns out to be
essential for the success of EV-based therapies, the extent
and resolution (low versus high, i.e. 2-digit versus 4-digit
resolution) of matching must be defined. Whether or not
the matching of classical HLA loci as determined prior to
organ transplantation would be sufficient (HLA-A/B/DR
or 6/6 matching) has to be clarified. Alternatively, it may
turn out to be important to aim for a 10/10 matching
(HLA-A/B/C/DR/DQ), as is frequently the practice in
haematopoietic stem cell transplantation centres (282).
Culture-expanded MSCs are commonly negative for
MHC class II, and thus they have been regarded to be
immune-privileged cells and have been transplanted
without HLA-matching in a number of allogeneic treat-
ments. However, upon stimulation with IFN-y or upon
differentiation, MSCs can severely change their immu-
nological properties and can express significantly more
MHC class I and II molecules (108,283,284). Coupled to
that evidence, it has been concluded that allogeneic
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MSCs may be rejected by the host’s immune system, and
a discussion has begun about the efficacy of allo-MSC
transplantation (285). Currently, knowledge is lacking
about the clinical implications of immune response mech-
anisms, which might be activated following allogeneic
MSC-EV administration.

Furthermore, donor-to-donor variabilities have to be
considered as comparable cell types generated from
varying donors may secrete EVs with different functional
properties (112). The variability in EV preparations might
be mitigated by using immortalized clonal cell lines that
have been stringently tested for stability in their genotype,
phenotype and EV production (286). The immortalization
of MSCs has been reported to maintain the proliferation
rate without compromising the quality or quantity of EVs
that they produce (287). In contrast to immortalized cells,
which are to our understanding unacceptable for the
treatment of patients, such cells might be acceptable for
the clinical grade production of human EVs as long as
corresponding EVs are free of products of the immortaliz-
ing trans-genes. However, since regulations vary from
nation to nation and since no directly applicable guidance
exists, we recommend discussing projects intending the use
of EVs from immortalized cell lines with national regula-
tors at early stages.

If EVs are harvested from cell culture supernatants,
culture conditions must be standardized and batch repro-
ducibility has to be ensured (288). It should be considered
that cellular densities may affect the amount and quality of
EVs (289) and that EVs harvested from early passage
supernatants may qualitatively differ from EVs harvested
from late passages. The oxygen concentration, the addi-
tion of supplementary molecules, for example, cytokines
or heparin, and the tissue culture ware or media formula-
tion may significantly affect EV quantity and quality
(108,120,290-296). Of note, growing cells in serum-free
media or EV-depleted media as compared to conventional
growth media can have profound impacts on the cells
themselves, as well as on the quantity and quality of
released EVs (289,297,298).

In addition to EV sources, all reagents used for the
EV production must be described regarding their origin.
According to the European guidance, protocols intended
to culture cells for the clinical application should, if
applicable, avoid using animal components such as foetal
bovine sera (FBS). Reagents derived from animals may con-
tain xenogeneic infectious agents and/or increase undesir-
able immunological responses in recipients. Furthermore,
in the presence of FBS human EV preparations are
contaminated with bovine EVs that could potentially
evoke unintended biologic effects (298). Use of FBS is
only accepted in compliance with respective stringent
USP/EP pharmacopoeia provisions. Non-animal derived
reagents of defined composition or human-based supple-
ments are recommended instead (276,299,300).

In terms of animal milk-derived EVs or plant-derived
nanovesicles, only nanovesicles isolated from edible plant
sources have been considered for therapeutic applica-
tion so far. As part of daily nutrition, clinical usage of
xenogeneic EVs or nanovesicles derived from the plant
kingdom or prokaryotes may raise different concerns
than human cell-based medicinal EV products. Of note,
some concerns regarding cell-to-cell transmission of the
plant toxin trichosanthin via EVs have been raised (301).
Consequently, potential risks of toxins and allergen
transfers via milk and plant EVs/nanovesicles should be
addressed before considering them for clinical studies
(302,303).

The characterization of EV-based therapeutics includes
the definition of the host-to-donor relationship and the
description, whether EVs derive from cultured or pri-
mary cells, tissues or fluids. Donor inclusion or exclusion
criteria must be defined and donor variability, manufactur-
ing process-related variability and the use of xenogeneic
reagents, such as bovine culture supplements, are expected
to influence EVs’ therapeutic activity.

EV isolation and storage

Currently, there is no state-of-the-art technology to
isolate EVs, for either therapeutic application or basic
research (304). A conventional method to enrich for EVs
is differential centrifugation, which is restricted by limited
rotor sizes to the processing of approximately 400 mL in
one run (305). Provided that large-scale production is
desired, other methods may be applied. So far, ultrafil-
tration to concentrate conditioned medium followed by
ultracentrifugation into a sucrose cushion (15-17,30), or
a polyethylene glycol (PEG) 6000 precipitation method
(112) have been used to purify EVs for clinical applica-
tion. Currently, ultrafiltration and size-exclusion liquid
chromatography—based methods appear very promising
for EV large-scale preparation (306,307). Regardless of
whether any of these methods will be used in the long
term, or whether new methods will be developed, the
processes need to be standardized with regard to the
reproducibility, purity, impurities, and maintenance of
EVs’ functional properties. For each desired application,
aspects regarding the EVs’ homogeneity or heterogeneity,
purity and recovery rate must be considered. Technolo-
gies should be evaluated in the context of their scalability
within confined processing times and the reproducibility
of the product characteristics.

It has been observed that the method used to purify
EVs can influence their integrity and impact on their
subsequent bio-distribution in vivo (220,306). Thus, EV
enrichment methods have to be carefully considered
for clinical applications. Methods yielding the highest
EV purity will not necessarily be optimal for recovering
the therapeutically most effective EV fractions. For
example, ultracentrifugation yields high EV purity but
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in some cases therapeutically ineffective fractions of EV
aggregates (S.K. Lim, unpublished data; A. Gorgens, M.
Bremer and B. Giebel, unpublished data).

With regard to the development of future strategies to
prepare clinical grade EVs, we can learn lessons from the
production of proteins and monoclonal antibodies for
therapeutic use. Monoclonal antibodies have been exten-
sively developed for research, diagnostics, and therapeu-
tic applications, and chromatographic purification based
on size, such as size-exclusion chromatography (SEC),
and charge, such as ion-exchange chromatography (IEC),
are the methods of choice. Biologically active and pure
samples with high yield often require a balance between
multiple chromatographic steps. Indeed, EVs purified
using a combination of SEC and IEC show a potent
functional activity (308). EVs can be fractionated by size
with 10-nm accuracy using flow field-flow fractionation
(FFFF), a one-phase chromatography method that frac-
tionates particles based on differences in their diffusion
properties without applying forces equally high to dif-
ferential centrifugation (309-311). FFFF combined with
multiple detectors is able to rapidly characterize and
separate EVs and has the potential to facilitate a greater
understanding of EV function by subtype, as well as
ultimately allow for the label-free isolation of large-scale
clinical EVs for the purpose of developing future EV-
based diagnostics and therapeutics (312).

Components attached to the EV surface or non-EV-
associated co-factors might be lost during purification.
Reliable biological read outs (i.e. potency assays) are
required to test for the biological activity of obtained
samples (see below “Quality control”).

Nowadays, standardized EV storage protocols are
being developed for biobanking in which EVs are stored
in their natural matrix, that is, body fluid or cell culture
supernatant, after minimal processing steps to remove
contents that may influence the EV-pool, for example,
cells (288). However for therapeutic application, there is
a need to store “pure” EVs. For storage of such “pure”
EVs, no standardized protocol is currently available.
Since EVs interact with their matrix, for example, via
electrostatic forces because of their negative zeta poten-
tial (negative surface charges) (313), the matrix might not
only influence EV isolation but also EV integrity and
storage. For example, acidic pH shifts may neutralize
fusion and aggregation inhibiting forces, which might
result in EV aggregation and fusion and, consequently, to
their loss of functionality. Hence, storage conditions may
affect the EVs’ stability and so must be standardized and
validated. A number of solvents and buffers are used
for EV storage; these ranging from water and sodium
chloride to PBS, TRIS-HCI, HEPES and glycerol.
Importantly, glycerol and DMSO have been shown to
fully or partially lyse EVs (314). To conserve the EVs
functional and physical properties, we recommend the
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storage of EVs in isotonic buffers to prevent pH shifts
during storage as well as during freezing and thawing
procedures. Although many groups use PBS, it has to be
considered that even small amounts of calcium ions,
probably included in obtained EV fractions, can be
sufficient to result in the formation of nano- and micro-
sized calcium phosphate aggregates in PBS or other
phosphate containing buffers, which can interfere with
EV quantification based on single particle detection (315).

Storage vials can also affect the quality of EVs obtained,
as EVs might unexpectedly and irreversibly bind to
certain materials. Thus, vials should be used that do
not affect the concentration or integrity of stored EVs.
Other critical parameters are the freezing and thawing
procedures, and the storage temperature. Apparently, EV
integrity is more stable at —80°C and —20°C than at
—190°C or at 4°C or higher temperatures (313,314,316).
Due to the lack of sufficient studies assessing EV
products after increased storing times, we recommend
validation of the assumed storage conditions by conduct-
ing stability studies, including functional analyses in
potency assays (314). The results of such analyses will
facilitate defining provisional shelf-life times of obtained
and stored EV products.

Upon setting up purification and storage conditions
for the clinical grade production of EVs, care should be
taken that all procedures, reagents and plastic and glass-
ware used during EV isolation and storage are certified
for the production of human therapeutics. Alternatively,
qualification efforts for non-certified material and pro-
cedures might be required. Adequate in-process controls
during EV production should be implemented. It is
recommended that these issues be discussed with national
regulatory officials at the earliest possible stages of
translational projects.

Currently, no standardized procedure is available for
the isolation as well as for the storage of EVs. The impact
of the EV matrix and applied technologies, reagents and
storage containers as well as of storage times must be
investigated for each intended of EV-based product. Tailor-
made protocols need to be developed.

Quality control

As an essential prerequisite for the release of EV pre-
parations for clinical application, quality release criteria
have to be defined, which should include physicochem-
ical, molecular and functional parameters. As required
for each pharmaceutical, the biological activity of EVs
used as therapeutics must be tested in qualified biological
assays, termed ‘“potency assays’’.

Molecular and physical EV characterization

Since there are currently no ‘“gold-standards” for EV
isolation, purification and analysis, ISEV recently defined
some minimal requirements to define EVs (304). Because
technologies to perform robust and reproducible single
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EV-based quantitative and qualitative analyses are very
scarce, currently, analyses of EV content are mostly based
on bulk analyses (e.g. the absence or presence of a certain
proteins and/or total protein concentration). Single EV-
based analysis platforms are used for semi-quantitative
concentration analyses and for determining average-size
distributions. Under the minimal requirements for the
definition of EVs, EV characteristics need to be approved
at the protein level, and analyses of additional cargo
molecules such as lipids, metabolites and RNAs might be
helpful (304).

Established technologies to determine (average) EV
sizes and concentrations are electron microscopy (EM),
dynamic light scattering (DLS) (317), nanoparticle track-
ing analysis (NTA) (313,318), resistive pulse sensing (319)
and fluorescence correlation spectroscopy (306). Although
NTA is most frequently used, all these technologies
have their specific pitfalls (320). Currently, a number of
other technical platforms are developed or optimized for
EV analyses. A special focus is directed towards flow
cytometry, which enables the multiparameter analysis of
single particles. For now, conventional flow cytometers
used in daily routine analysis fail to analyse individual
particles smaller than 300-500 nm. In contrast, groups
that have optimized the set-up of configurable flow
cytometers for the measurement of nanosized particles
were already able to analyse viruses and EVs at a single
particle resolution (321-323). It can be expected that
novel generations of optimized flow cytometers will
appear on the market, which in the near future will allow
multiparameter EV analyses at the single particle level in
a daily routine set-up.

In terms of molecular markers, the presence of at least
three different marker proteins or lipids that are specifi-
cally enriched in EV fractions should be analysed in a
semi-quantitative manner. Apart from the common EV
markers, such as the tetraspanins CD9, CD63 and CD81,
and components of the late endosomal machinery, for
example, Tsgl01 and Alix, the ganglioside GM1 has been
described as a marker of endosome-derived EVs, that is,
exosomes (324). Notably, in the two phase I and the
phase II tumour vaccination trials, the concentration
of MHC II molecules per millilitre EV suspension was
used for defining the applied DC-EV treatment doses
(15,16,18). In addition to qualified EV markers, markers
indicative of impurities need to be defined and analysed,
for example, mitochondria and the Golgi apparatus
marker for intracellular residuals, and serum albumin
for the remaining extracellular components. Minimal
criteria, which might include specific proteins, lipids or
RNAs, depending on the intended therapeutic use,
should be defined and tested with regard to the proposed
function of given EV fractions (304). Western blotting is
currently the most commonly used method to analyse the
presence of EV marker proteins. However, other technologies

are feasible such as mass spectroscopy that, if desired,
would allow for a more complex and comparative char-
acterization of EVs’ constituents including proteins,
lipids and metabolites (325).

In addition to basic physical and molecular character-
ization, sterile EV preparations for pharmaceutical use
must be tested for the absence of detectable viral and
microbiological contaminants, including Mycoplasma, and
must not contain endotoxins above defined levels (326).
Quality control procedures are laid down in the regula-
tions for blood products (269) as well as for ATMPs (280)
and relevant pharmacopoeia chapters (EP 2.6.1, EP
2.6.14, EP 2.6.27).

If plant nanovesicles (which might represent EVs) or
non-human milk EVs are used, the above molecular
quality criteria are not applicable. In fact, to date, limited
information is available regarding the RNA and protein
contents of plant-derived nanovesicles. Although some
EV-associated mammalian proteins contain homologues
in plants, their association with plant nanovesicles must
be demonstrated. Although a good selection of antibo-
dies directed against various Arabidopsis proteins is
available, the study of other plant species may suffer
from the lack of specific membrane markers and asso-
ciated antibodies. However, the lack of molecular mar-
kers might be of negligible consequence, because most
plant nanovesicles that have been considered for the
therapeutic application, so far, have been exclusively iso-
lated from edible plant sources. As these are part of our
daily nutrition, we speculate that their clinical use may
raise concerns different from those regarding the clinical
application of human EVs. We recommend using the
same tools and methods to analyse plant nanovesicles’ or
animal milk EVs’ size distribution and quantity.

A conclusive enumeration of quality release criteria for
plant or non-human nanovesicles/EVs is beyond the scope of
this article. In any of the nanovesicle/EV characterization
approaches, special attention has to be paid to standardiza-
tion of pre-analytical conditions (288).

In vitro potency assays for biological EV characterization
Due to a current lack of practical technologies to ana-
lyse EVs at the single vesicle level, the heterogeneity
of EV fractions cannot be comprehensively addressed,
even if they are harvested from apparently homogeneous
cell sources. In attempts to unravel their biological func-
tions, including their MoA, many studies focus on EV-
associated small RNAs, such as miRNAs, and are
neglecting the potential roles of proteins and lipids.
Efforts to link EVs’ therapeutic effects largely to indivi-
dual small RNAs may result in overlooking promising
findings in different models, in which immediate ther-
apeutic responses are more likely to be mediated by
proteins or lipids than by RNAs (327), or in which
protein and/or lipids potentiate the biological activity of
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(small) RNAs. Due to the multiplicity of the active
constituents, EVs are understood to act in a complex
manner. Thus, it will take a considerable time to unravel
the MoA of specific EVs. As therapeutic activities cannot
be proposed solely by molecular profiling for pharma-
ceutical characterization, biologic assays need to be
defined that allow the prediction of EVs’ functional
properties, at best in a quantifiable manner. After their
qualification, such assays can be used as potency assays
that should reflect aspects of the proposed/hypothesized
MoA of EV fractions being tested. For example, based on
the assumption that MSC-EVs exert immune-suppressive
functions in vivo, T cell proliferation assays can be applied
to assess the EVs’ immune modulatory properties ex vivo
(108,112,314). Functional end-points which qualify pro-
duct release criteria need to be defined together with
molecular and physical quality control data. These
criteria have to be met by all manufactured products
for therapeutic use. Efficacy and potency end-points will
need to be evaluated during both preclinical and clinical
testing and tailored for each individual EV therapy. Each
type of therapeutic application may require its own
specific potency assay.

Gold standards for EV quantification, and molecular
and physical EV characterization are still lacking. Quali-
fied in vitro potency assays are required to predict the
intended therapeutic potential of EV fractions aimed to be
used as EV-based therapeutics.

In vivo analyses of EVs

Provided relevant animal models are available for an
intended use of EVs, they will help answer a variety of
different questions before starting a clinical trial. EV dose-
escalation studies should be performed in such models,
together with toxicity assays. It has to be determined
whether or not administered EVs cause side effects, for
example, general toxicity, immunogenicity, immunotoxi-
city or tumourigenicity. In addition to safety issues, the
route of administration must be defined by answering the
following questions: Are the EV fractions intended to be
applied systemically or topically into affected tissues, and
will they be administered once or repetitively? Does the
route of injection affect the relative distribution (220)
and the amount of EVs detected systemically? Is topical
administration more effective than systemic administra-
tion? Even if a clear local distribution can be observed, it
must be considered that the observed distribution does
not necessarily directly correlate with therapeutic effect;
effects might be indirect. Provided that labelled EVs
will be used to study their bio-distribution, it must be
considered that labelling, either by dyes or by genetic
engineering, may affect the function of resulting EV
fractions. Coupled to biodistribution experiments, half-
life times and the degradation of administered EVs might
be studied (220,328). For all animal models, the size of the

ISEV position 2015 on EV-based therapies

groups should be sufficiently large to allow meaningful
scientific interpretation of the resulting data; appropriate
controls should be included. Any exclusion of controls
should be justified. If in vivo potency assays are utilized to
demonstrate specific therapeutic effects for an intended
use of EVs, the relevance of the selected animal model
must be discussed. For the translation of EVs into clinic, it
will be supportive to generate convincing data in appro-
priate animal models mimicking clinically relevant disease
conditions, whenever available.

In summary, identifying appropriate preclinical in vivo
models to study the potential of EV-based therapeutics
might be challenging. Nevertheless, definitive data from
in vivo safety and potency assays will support the transla-
tion process for EV-based therapeutics into the clinic.

Conclusion

Although EVs were administered to humans already in
the early 2000s for the treatment of cancer patients and
then, more recently, for a GvHD patient, no recom-
mended standard techniques have been established for the
clinical grade production and quality control of EV-based
therapeutics so far. Coupled with the fact that several
manufacturing and safety considerations need to be
addressed and appropriate quality controls have to be
implemented and validated, it remains a challenge to set
up platforms for the EVs’ clinical grade production that
fulfils all necessary criteria for the successful approval of
subsequent EV-based clinical trials. However, as a con-
sequence of the substantial progress made in the EV
research field, improved and standardized protocols for
EVs isolation and storage, as well as improved methods,
techniques and criteria for quality analyses of EV-based
therapeutics, should be available soon. We hope that this
position article and the various critical points highlighted
for their importance to be considered for the translation
of EVs into the clinic, will help to successfully advance, in
a timely manner, from the preclinical setting towards
clinical evaluation of EV-based therapeutics.
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