bioRxiv preprint doi: https://doi.org/10.1101/2023.12.02.569652; this version posted December 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Paracrine effects of the senescence-associated secretory phenotype decrease cancer
cell adhesion

Aidan R. Cole', Raquel Buj', Amal Taher Elhaw?3, Apoorva Uboveja’, Naveen Tangudu', Steffi
Oesterreich', Wayne Stallaert*, Nadine Hempel?, and Katherine M. Aird"?"

Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, Univer-
sity of Pittsburgh School of Medicine, Pittsburgh, PA

2Division of Hematology/Oncology, Department of Medicine, and UPMC Hillman Cancer Center,
University of Pittsburgh School of Medicine, Pittsburgh, PA

3Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey,
PA, USA.

4Department of Computational and Systems Biology and UPMC Hillman Cancer Center, Univer-
sity of Pittsburgh School of Medicine, Pittsburgh, PA

*Corresponding Author

Correspondence:

Katherine M. Aird

Associate Professor

UPMC Hillman Cancer Center

Department of Pharmacology & Chemical Biology
University of Pittsburgh School of Medicine
5051 Centre Ave.

Office: 2041; Lab: 2050

Pittsburgh, PA 15213

412-648-4823

katherine.aird@pitt.edu

Keywords: spheroids, adhesion, detachment, dissemination, senescence, secretion


https://doi.org/10.1101/2023.12.02.569652
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.02.569652; this version posted December 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

High grade serous ovarian cancer (HGSOC) is the most lethal gynecological cancer. Platinum-
based therapies such as cisplatin are standard-of-care for HGSOC patients; however, the ma-
jority of HGSOC:s initially treated with cisplatin will recur with widespread disseminated disease.
Cisplatin induces cellular senescence, a stable cell cycle arrest. Although they are non-prolifer-
ative, senescent cells secrete a complex mix of cytokines and small molecules, named the se-
nescence associated secretory phenotype (SASP), that have been shown to have pro-tumor-
igenic effects. To investigate how the SASP contributes to HGSOC progression, we used condi-
tioned media from cisplatin therapy-induced senescent cells to culture naive HGSOC spheroids.
We report that while the SASP does not affect spheroid formation, the adhesion of cells within
spheroids is altered, leading to cell detachment from spheroids. Interestingly, our data indicate
that this occurs in an MMP-independent manner. Analysis of RNA-Seq samples indicates many
adhesion-related genes and adhesion factors are transcriptionally downregulated by the SASP,
particularly fibronectin and integrins, which was validated by immunofluorescence in spheroids.
These data reveal that senescent cells contribute to a transcriptional program in nearby cancer
cells in a paracrine fashion that decreases their adhesion, which may contribute to tumor dis-

semination.
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INTRODUCTION

High grade serous ovarian cancer (HGSOC) is the most lethal gynecological cancer (Torre et al.
2018). ~90% of HGSOC deaths result from disease that recurs after treatment, and these pa-
tients all have disseminated disease (Amate et al. 2013). This dissemination occurs most fre-
quently through the transcoelomic route, defined as shedding into the peritoneal cavity (Tan,
Agarwal, and Kaye 2006; Lengyel 2010). While the initial dissociation step of this dissemination
route is considered passive, it has been associated with the loss of E-cadherin and alpha-
catenin, along with changes in other cell-cell adhesion factors (Sawada et al. 2008; Lau, So, and
Leung 2013; Myong 2012; Lee et al. 2008; Comamala et al. 2011; Fujimoto et al. 1997). Inter-
estingly, metastasis still occurs through transcoelomic dissemination from peritoneal tumor nod-
ules in recurrence in debulked patients (McPherson et al. 2016) and may be aggravated by
chemotherapy (Davidson et al. 2006). Analysis of malignant cells from the peritoneal cavity has
identified increased tumorigenesis and cancer stem cell-like characteristics in chemoresistant
compared to chemonaive patients (Latifi et al. 2012). However, little is understood about the role

of chemotherapy in promoting metastatic recurrence.

For HGSOC to disseminate, tumor cells must detach and survive in the intraperitoneal space, a
non-adherent environment, until they attach to and invade the mesothelium. This coincides with
the presence of ascites fluid buildup, which helps carry ovarian cancer cells in multicellular ag-
gregates and spheroids to organs within the peritoneal cavity (Kipps, Tan, and Kaye 2013). The
passive dissemination results in peritoneal carcinomatosis (Coccolini et al. 2013). To recapitu-
late the early stages of HGSOC dissemination, spheroid culture using poly(2-hydroxyethyl meth-
acrylate) [poly-HEMA] ultralow attachment (ULA) plates is often utilized (Yee et al. 2022; Ritch

et al. 2022). Flat bottom ULA plates have been used to recapitulate the cell states and
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chemoresistance associated with malignant ascites formation (Casagrande et al. 2021). Round
bottom ULA plates have been used to model the early adhesion of HGSOC spheroids (Boylan
et al. 2020) and as a tool to pre-form spheroids for drug development and to study ovarian cancer
cell detachment (Singh et al. 2020; Al Habyan et al. 2018). In this study, we used these in vitro

systems to assess the adhesion and detachment properties of HGSOC spheroids.

Current standard-of-care therapies for HGSOC are platinum-based therapies (such as cispla-
tin/carboplatin, which is combined with taxane) or poly (ADP-ribose) polymerase inhibitors
(PARPI) (Della Pepa et al. 2015). While these therapies decrease tumor burden, they also in-
duce cellular senescence (Fleury et al. 2019; Paffenholz et al. 2022; Demaria et al. 2017), which
can be a double-edged sword in cancer. Cellular senescence is defined as a stable cell cycle
arrest, and therefore senescence was initially thought to be a beneficial therapeutic response
(Kalathur, Di Mitri, and Alimonti 2015; Perez-Mancera, Young, and Narita 2014; Acosta and Gil
2012). Recent evidence has demonstrated that suppression of senescence inhibits tumorigen-
esis and chemoresistance (Demaria et al. 2017; Alimirah et al. 2020). This is due in part to the
unique secretome of senescent cells, termed the senescence associated secretory phenotype
(SASP), that is composed of a variety of pro-inflammatory and pro-tumorigenic factors (Ritschka
et al. 2017; Sparmann and Bar-Sagi 2004; Kuilman et al. 2008; Wiley et al. 2016). There is
growing evidence that senescence and the SASP in ovarian cancer can promote dissemination
(Veenstra, Bittencourt, and Aird 2022). Studies have shown that cytokines IL-6 and IL-8 are both
known to enhance ovarian cancer dissemination through JAK/STATS3 signaling and through in-
duction of anoikis resistance (Wen et al. 2014; Mehner et al. 2020; Lane et al. 2011), though
these studies were independent of senescence induction. Senescence has been explored in the

context of cancer and has been shown to lead to a number of deleterious cancer phenotypes,
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specifically metastasis (Acosta and Gil 2012; Coppe et al. 2010; Rodier and Goldstein 2008;
Krtolica et al. 2001; Parrinello et al. 2005; Tsai et al. 2005), though often studied in the context
of direct remodeling of the extracellular matrix through the increased expression of matrix met-
alloproteinases (MMPs) in the SASP (Parrinello et al. 2005; Liu and Hornsby 2007; Tsai et al.
2005; Camphausen et al. 2001; Qian et al. 2002). Whether and how the SASP affects ovarian

cancer dissemination has not been fully uncovered.

Here we used in vitro spheroid models to investigate how the SASP from cisplatin-induced se-
nescent HGSOC cells impacts adhesion and detachment in a paracrine fashion. Analysis of
spheroids cultured in senescent conditioned media (SCM) demonstrated an increase in the num-
ber of spontaneously formed spheroids without overall changes in viability. This was not due to
MMPs as similar results were observed in heat inactivated media, which denatures and inacti-
vates MMPs. Timelapse imaging revealed that SCM induced cellular detachment from the main
spheroid body. Finally, HGSOC cells cultured in SCM showed transcriptional downregulation of
genes related to cell-cell and cell-ECM adhesion, which was confirmed in spheroids by IF. To-
gether, our data show that the SASP from cisplatin-induced senescent cells contributes to cell-

intrinsic changes in adhesion and detachment, which has implications in HGSOC dissemination.
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RESULTS

The SASP decreases adhesion in spheroids

We aimed to determine the paracrine effects of therapy-induced senescent cells on naive

HGSOC cells. Towards this goal, we induced senescence in Ovcar8 HGSOC cells using cispla-

tin, which was confirmed with senescence-associated -galactosidase activity (SA-B-gal), de-

creased Lamin B1 expression, increased DNA damage foci (Fig. 1A-D). We also confirmed in-

creased senescence-associated secretory phenotype (SASP) cytokine gene expression and se-

cretion (Fig. 1E-F). Consistent with the idea that much of the SASP is transcriptionally regulated,

Gene Set Enrichment Analysis (GSEA) of cisplatin-treated RNA-Seq samples demonstrated
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Figure 1. Cisplatin induces senescence and the senescence-associated secretory phenotype (SASP)
in Ovcar8 HGSOC cells. Ovcar8 cells treated with 1 uM cisplatin for 48 hours, washed out, and then used
to condition media for 48 hours. A) Crystal violet proliferation assay and quantification. One of 3 independent
experiments is shown. B) Senescence-associated-beta-galactosidase (SA-B-Gal) activity and quantification.
One of 3 experiments is shown. C) Western blot of Lamin B1. Vinculin was used as a loading control. One
of three independent experiments is shown. D) Immunofluorescence and quantification of 53BP1 and yH2AX
foci. One of three independent experiments is shown. F) Secretion of cytokines by cytokine array. One inde-
pendent experiment in technical duplicates. G) GSEA analysis enriched pathways of RNA-Seq data. Path-
ways highlighted in red are related pathways associated with the SASP. T-test, ***p < 0.001, ****p < 0.0001.
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many of the top upregulated signatures were related to the SASP, including inflammation, wound
healing, angiogenesis, and epithelial to mesenchymal transition (Fig. 1G and Table S1). To-
gether, these data show that cisplatin induces senescence in Ovcar8 HGSOC cells and results

in robust upregulation and secretion of SASP-associated factors.

Interaction with the ECM and adhesion is important for HGSOC dissemination (Valmiki et al.
2021). Tumor cells detach and survive in the intraperitoneal space, a non-adherent environment,
before attaching to and invading the mesothelium (Tan, Agarwal, and Kaye 2006). To investigate
the role of the cisplatin-induced SASP in non-adherent conditions, we used ultra-low attachment
(ULA) plates, in which HGSOC cells form spontaneous spheroids (Yee et al. 2022; Ritch et al.
2022). We cultured naive HGSOC cells in spheroids in proliferative conditioned media (PCM) or
senescent conditioned media (SCM) (Fig. 2A). Culturing HGSOC cells in SCM led to an in-
creased number of spheroids formed when compared to PCM (Fig. 2C-B). Spheroids in SCM
were also smaller compared to the spheroids formed in PCM, and more single cells or small
multicellular aggregates were present (Fig. 2D). However, the overall viability of cells in sphe-
roids was unchanged by conditioned media (Fig. S1), suggesting the SASP does not promote
anoikis resistance in this context. Matrix metalloproteinases (MMPs) are a known part of the
SASP (Coppe et al. 2010). Although many of the MMPs are not expressed in Ovcar8s, and we
did not observe major differences in MMP gene expression in cisplatin-induced senescence
HGSOC cells (Table S2), we controlled for potential increased MMP secretion through heat in-
activated CM by boiling for 20 minutes at temperatures above MMPs melting points (Meraz-Cruz
et al. 2020). Interestingly, we observed similar phenotypes in heat inactivated SCM (Fig. 2B-D),
suggesting that the SASP confers additional changes in adhesion beyond ECM degradation. To
determine if the observed changes in adhesion impact spheroid formation, we used round bot-

tom ULA plates to force non-adherent cells to interact in a small area (Fig. 2E). The formation
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and compaction of spheroids in round bottom ULA plates were not dependent on the presence
of the SASP (Fig. 2F). Together, these data show that while formation of spheroids is not affected

by the SASP, the adhesion of cells in the spheroid may be altered.
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Figure 2. The SASP decreases adhesion of HGSOC spheroids but does not inhibit spheroid for-
mation. A) Schematic of conditioned media formation, collection, and treatment from cisplatin-induced se-
nescent cells (SCM) or control proliferative cells (PCM). B) Representative images of spheroids spontane-
ously formed in flat bottom ULA plates stained with calcein AM (green, live cell stain) and ethidium homodi-
mer (red, dead cell stain) to determine viability. C-D) Quantification of live spheroid quantity (C) and average
size (D) per well in B. One of 5 independent experiments in Ovcar8 and 3 independent experiments in
Kuramochi is shown. E) Representative live cell imaging of spheroid formation and compaction in round
bottom ULA plates. F) Quantification of spheroid area from E. One of 3 independent experiments in Ovcar8
and 2 independent experiments in Kuramochi is shown. One-way ANOVA, ns = not significant, *p < 0.05,
**p < 0.01, ***p < 0.001.
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The SASP increases detachment in spheroids

Since our data indicate that the SASP does not affect spheroid formation (Fig. 2), we investi-
gated its role in detachment. Towards this goal, spheroids of equivalent cell number and size
were formed in round bottom ULA wells before being transferred to flat bottom ULA wells, after
which we performed timelapse imaging (Fig. 3A). We observed an increase in the total number
of live detachment events when cells were grown in SCM and in heat inactivated SCM (Fig. 3B-
C and Video S1). These data indicate that cell intrinsic changes induced by the SASP weaken

adhesion within spheroids and drive cellular detachment.
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Figure 3. The SASP increases spontaneous cellular detachment from spheroids. A) Schematic of
experimental protocol to measure detachment events. B) Representative timelapse images of a cell de-
taching from a spheroid (Ovcar8 cells). C) Quantification of detachment events in B. One of 2 independent
experiments is shown. One-way ANOVA, **p < 0.01, ***p < 0.001.

The SASP decreases ECM and adhesion factors

Our data indicate that the SASP induces cells to detach from spheroids (Fig. 3). To gain a more
global understanding of the transcriptional signatures associated with these changes, we per-
formed RNA-Seq on HGSOC cells cultured in SCM and PCM and assessed signatures related

to ECM and adhesion. Indeed, we uncovered significant negative enrichment of both the KEGG


https://doi.org/10.1101/2023.12.02.569652
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.02.569652; this version posted December 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ECM receptor interaction and KEGG focal adhesion gene sets in cells cultured in SCM compared
to PCM (Fig. 4A and Table S3). Interestingly, leading edge genes from these signatures were
associated with fibronectin, integrins, collagens, and laminins (Fig. 4B-C). To further investigate

the ECM and adhesion factors in spheroids generated in conditioned media, we performed
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Figure 4. SASP decreases expression of adhesion factors. A) Enrichment plots from GSEA of RNA-
Seq data from spheroids cultured in SCM vs. PCM. B-C) mRNA expression of genes in the negatively
enriched pathways in A. D-F) Representative images and quantification from immunofluorescence on sphe-
roids for fibronectin (E), integrin B4 (E), and integrin AV (F). One independent experiment of each. G)
Quantification of spheroid size after immunofluorescence processing. One of 4 independent experiments
is shown. One-way ANOVA. ns = not significant, *p < 0.05, ***p < 0.001, ****p < 0.0001.
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immunofluorescence. We observed decreased levels fibronectin and both integrins B4 and AV
(Fig. 4D-F). Heat inactivated SCM did not differ from whole SCM, indicating this decrease is not
due to MMP-induced remodeling and that SASP induces cell intrinsic decrease in adhesion and
spheroid structure. Interestingly, although the spheroids compact to the same size, regardless
of conditioned media composition (Fig. 2E-F), spheroids cultured in SCM expanded during the
immunofluorescence processing and were on average larger than control PCM-cultured sphe-
roids (Fig. 4G). This is consistent with the observation that spheroids cultured in SCM are more
loosely attached than those cultured in PCM. These data support the conclusion that the SASP
decreases adhesion factor expression in spheroids, which is likely independent of MMP degra-

dation.
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DISCUSSION

HGSOC is aggressive in nature with a high metastatic potential. The phenomenon of senes-
cence has gained increasing attention in cancer research due to its complex role influencing the
tumor microenvironment through the SASP. In this study, we investigated the impact of senes-
cent cells and their SASP on HGSOC to better understand the effects of chemotherapy on ad-
hesion and detachment using spheroids as an in vitro model system. Our results indicate that
the SASP decreases spheroid attachment and increases detachment events, which correlates
with cellular detachment and downregulation of ECM and adhesion factors. These studies may

have significant implications for HGSOC progression.

Components of the SASP have been linked to metastasis in various cell and cancer types
(Coppe et al. 2010). In pancreatic cancer, hepatocyte growth factor drives cancer dissemination
(Ohuchida et al. 2004). Similarly, IL-6 and IL-8 in the SASP of senescent fibroblasts enhance
breast cancer cell invasion (Rodier and Goldstein 2008). In ovarian cancer, a number SASP
effectors have been linked to ovarian cancer dissemination, although these studies are not spe-
cifically related to senescence (Veenstra, Bittencourt, and Aird 2022). IL-6 further enriches ovar-
ian cancer stem cells, which are known to promote dissemination (Zong and Nephew 2019). IL-
8 expression is associated with ovarian cancer dissemination (Wen et al. 2020) and is higher in
the ascites of late stage (stage Ill/IV) ovarian cancer patients (Zhang et al. 2019). The malignant
ascites from late stage ovarian cancer patients, containing various cytokines often expressed in
the SASP (Matte et al. 2012), can promote adhesion and migration through the mesothelium
(Mikuta-Pietrasik et al. 2016). Our data support the conclusion that cisplatin-induced senescence
induction in ovarian cancer directly affects adhesion and detachment in spheroids, which may
help promote metastasis. Studies using SCM in vivo are required to fully assess the contribution

of the SASP in dissemination of HGSOC.
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Our data suggest that the enhanced cellular detachment from spheroids can be induced by the
SASP in an MMP-independent mechanism. MMPs are well-known contributors to cancer cell
invasion and metastasis (Gonzalez-Avila et al. 2019), and MMP1, 3, 10, 12, 13, and 14 are
associated with SASP (Coppe et al. 2010). In ovarian cancer, MMP3 is associated with late stage
disease (Wang et al. 2019), and both MMP1 and MMP3 promote ovarian cancer dissemination
(Agarwal et al. 2008). We did not observe marked differences in the expression of MMPs (Table
S2). Moreover, heat inactivation of SCM to denature MMPs did not rescue the changes in sphe-
roid adhesion (Fig. 2B-D) or cellular detachment (Fig. 3B-C), indicating cell-intrinsic changes in
the ECM and adhesion factor expression also contribute to HGSOC dissemination. This is con-
sistent with findings in other models that the SASP can lead to remodeling of the ECM and
alterations in cell-cell and cell-ECM interactions (Ghosh et al. 2020; Mavrogonatou et al. 2023).
Such changes can affect cellular adhesion and motility, key events in the metastatic cascade.
Further experiments are warranted to uncover the precise components of the SASP driving these

molecular changes and the underlying mechanism of subsequent cell detachment.

It is interesting to speculate whether these changes in adhesion and detachment observed in
cells cultured in SCM could be therapeutically targeted. One such therapeutic route is the use
of senolytics, a class of drugs designed to selectively target and eliminate senescent cells
(Kirkland and Tchkonia 2020). In the context of cancer, selective killing of senescent cells has
exhibited anti-tumor effects, including suppressing metastasis (Demaria et al. 2017). While the
application of senolytics in ovarian cancer remains largely unexplored, the potential benefits are
underscored by their success in other cancer types. In breast cancer, GL-V9 has been shown to
preferentially kill both senescent breast cancer cells and replication-induced senescent fibro-

blasts (Yang et al. 2021), and its use has been shown to decrease invasion and metastasis (Li
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et al. 2011). Similarly, the senolytic Digitonin has been shown to be an effective complement to
chemotherapy in breast cancer treatment (Triana-Martinez et al. 2019). Several senolytic agents
are undergoing clinical trials, demonstrating the growing interest in their therapeutic potential
(Zhang et al. 2023). The translation of these findings to ovarian cancer could represent a novel
therapeutic strategy to specifically target senescent cells and mitigate the metastatic potential

induced by the SASP.

In summary, this study sheds light on a previously unexplored facet of ovarian cancer by reveal-
ing how the SASP of senescent cells contributes to HGSOC phenotypes. The SASP-induced
changes in cellular detachment from spheroids, along with cell-intrinsic alterations in ECM and
adhesion factor expression, provide a novel perspective on the complex interplay between se-
nescence and cancer progression. These findings underscore the importance of understanding
the SASP and its multifaceted impact on the tumor microenvironment, offering potential thera-

peutic targets for mitigating ovarian cancer metastasis.
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Materials and Methods

Cell Lines

Ovcar8 cells were a gift from Dr. Benjamin Bitler (University of Colorado). Kuramochi cells were
a gift from Dr. Rugang Zhang (The Wistar Institute). All cells were cultured in RPMI 1640 (Fisher
Scientific cat#) supplemented with 5% Fetal Bovine Serum (BioWest, cat# S1620) and 1% Pen-
icillin/Streptomycin (Fisher Scientific, cat#15-140-122) unless otherwise noted. All cell lines were

tested monthly for mycoplasma as described in (Uphoff and Drexler 2005).

Senescence induction and conditioned media generation

Cells were treated with 1 uM cisplatin (Selleck Chemicals, cat#S1166) or vehicle for 48 hours,
after which the cisplatin treated cells were washed with PBS and cultured in fresh media. Vehicle
treated cells were split into fresh media. After 24 hours, the media was changed and allowed to

condition for 48 hours. Conditioned media was collected and filtered with a 0.22 um sterile vac-

uum filter (Fisher Scientific, cat#FB12566506) and stored at -80° C.

Proliferation assays

An equal number of cells were seeded in multiwell plates and cultured for 4-5 days. Proliferation
was assessed by fixing the plates for 5 min with 1% paraformaldehyde after which they were
stained with 0.05% crystal violet. Wells were destained using 10% acetic acid. Absorbance

(590nm) was measured using a spectrophotometer (BioTek Epoch Microplate reader).

Senescence Associated-B-Galactosidase assay

SA-B-Gal staining was performed as previously described (Dimri et al. 1995). Cells were fixed in
2% formaldehyde/0.2% glutaraldehyde in PBS (5 min) and stained (40 mM NaxHPO4, 150 mM

NaCl, 2 mM MgClz, 5 mM KsFe(CN)s, 5 mM K4Fe(CN)s, and 1 mg/ml X-gal) overnight at 37°C
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in a non-CO2 incubator. Images were acquired at room temperature using an inverted micro-
scope (Nikon Eclipse Ts2) with a 20X/0.40 objective (Nikon LWD) equipped with a camera (Ni-
kon DS-Fi3). Each sample was assessed in triplicate and at least 100 cells per well were counted

(> 300 cells per experiment).

RNA isolation, Sequencing, and Analysis

Total RNA was extracted from cells with Trizol (Ambion, cat#15596018) and DNase treated,
cleaned, and concentrated using Zymo columns (Zymo Research, cat#R1013) following manu-
facturer’s instructions. RNA integrity number (RIN) was measured using BioAnalyzer (Agilent
Technologies) RNA 6000 Nano Kit to confirm RIN above 7 for each sample. The cDNA libraries,
next generation sequencing, and bioinformatics analysis was performed by Novogene. Raw and

processed RNA-Seq data can be found on GEO (GSE248979 and GSE248930).

RT-gPCR

RNA was retrotranscribed with High-Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, cat#4368814) and 20ng of cDNA amplified using the CFX Connect Real-time PCR system
(Bio-Rad) and the PowerUp™ SYBR™ Green Master Mix (Applied Biosystems, cat#A25742)
following manufacturer’s instructions. Primers were designed using the Integrated DNA Tech-
nologies (IDT) web tool (IL1A: 5 GGTTGAGTTTAAGCCAATCCA, 3 TGCTGACCTAGGCTT-
GATGA; IL1B: 5 CTGTCCTGCGTGTTGAAAGA, 3 TTGGGTAATTTTTGGGATCTACA; IL6: 5
AAAAGTCCTGATCCAGTTCCTG, 3 TGAGTTGTCATGTCCTGCAG; CXCL8: 5 GAGAG-
TGATTGAGAGTGGACCAC, 3 CACAACCCTCTGCACCCAGTTT). Conditions for amplification
were: 5 min at 95° C, 40 cycles of 10 sec at 95° C and 7 sec at 62° C. The assay ended with a
melting curve program: 15 sec at 95° C, 1 min at 70° C, then ramping to 95° C while continuously

monitoring fluorescence. Each sample was assessed in triplicate. Relative quantification was
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determined to multiple reference genes (PSMC4 [5° TGTTGGCAAAGGCGGTGGCA, 3’
TCTCTTGGTGGCGATGGCAT], and MRPL9 [5° CAGTTTCTGGGGATTTGCAT, 3’ TATTCAG-

GAAGGGCATCTCQG]) to ensure reproducibility using the delta-delta CT method.

Cytokine array

The human cytokine antibody array C1000 (RayBio, cat# AAH-CYT-1000-2) was used to quan-
tify secreted factors as we have previously published (Leon et al. 2021). Conditioned medias
were obtained as described above. Membranes were visualized on film. Individual spot signal
densities were obtained using ImageJ software and normalized to cell number from which the

conditioned media were obtained.

Immunofluorescence imaging

For immunofluorescence of adherent cells, cells were seeded at an equal density on coverslips
and fixed with 4% paraformaldehyde. Cells were washed four times with 1x PBS and permea-
bilized with 0.2% Triton X-100 in PBS for 5 min and then postfixed with 1% paraformaldehyde
and 0.01% Tween 20 for 30 min. Cells were blocked for 5 min with 3% BSA/PBS followed by
incubation of corresponding primary antibody in 3% BSA/PBS for 1 h at room temperature. Prior
to incubation with secondary antibody in 3% BSA/PBS for 1 h at room temperature, cells were
washed three times with 1% Triton X-100 in PBS. Cells were then incubated with 0.15 pg/ml
DAPIin 1x PBS for 1 min, washed three times with 1x PBS, mounted with fluorescence mounting
medium (9 ml of glycerol [BP229-1; Fisher Scientific], 1 ml of 1x PBS, and 10 mg of p-phe-
nylenediamine [PX0730; EMD Chemicals]; pH was adjusted to 8.0-9.0 using carbonate-bicar-
bonate buffer [0.2 M anhydrous sodium carbonate, 0.2 M sodium bicarbonate]) and sealed. At
least 200 cells per coverslip were counted. Images were obtained at room temperature using a

Nikon ECLIPSE Ti2 microscope with a 20%/0.17 objective (Nikon DIC N2 Plan Apo) equipped
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with a camera (ORCA-Fusion C14440). Images were acquired using NIS-Elements AR software

and processed using ImageJ.

For immunofluorescence on nonadherent cells, spheroids formed in round bottom ULA were
fixed in 4% paraformaldehyde and permeabilized with 0.5% Triton-X 100 in TBS for 30 minutes
rotating at room temperature. Spheroids were blocked for 1 hour in 5% normal donkey serum,
2% BSA, 0.1% Triton X-100 in TBS rotating at room temperature. Primary antibody was added
and incubated rotating at 4° C for 18 hours. Prior to incubation with secondary antibody in 1 hour
in 5% normal donkey serum, 2% BSA, 0.1% Triton X-100 in TBS for 3 hours at room tempera-
ture, cells were washed three times with 0.1% Triton X-100 in TBS. Spheroids were then incu-
bated with 300nM DAPI in 0.1% Triton X-100 in TBS for 15 minutes, washed three times with
0.1% Triton X-100 in TBS, mounted with fluorescence mounting medium (9 ml of glycerol [Fisher
Scientific cat#BP229-1], 1 ml of 1x PBS, and 10 mg of p-phenylenediamine [EMD Chemicals,
cat# PX0730]; pH was adjusted to 8.0-9.0 using carbonate-bicarbonate buffer [0.2 M anhydrous
sodium carbonate, 0.2 M sodium bicarbonate]) and sealed. Z-stacked images were taken with
a Leica Thunder Imager and Nikon AXR point scanning confocal microscope with a 20x objective
and processed using Imaged. Fluorescence intensity was determined using a manual fixed
threshold for all images with the exception of Integrin AV, where automated thresholding was

used.

Non-adherent culture and imaging

Non-adherent cell culture and imaging was performed as previously described (Shonibare et al.
2022). Briefly, cells were seeded 1,000 (96 well round bottom ULA, Corning cat#), 10,000 (96

well flat bottom ULA, Corning cat#), or 300,000 (6 well flat bottom ULA, Corning cat#) cells per

well in a 1:1 ratio of fresh to conditioned media. To assess viability, cells were treated with 1 uM
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ethidium homodimer (Sigma Aldrich, cat# 46043) and 0.5 uM calcein AM (Invitrogen,
cat#C1430) for 30 minutes and images were acquired using a Leica Thunder Imager. Timelapse
imaging to assess spheroid formation in round bottom ULA plates was performed using IncuCyte
S3 imaging system (Sartorius). Cells were seeded in 96 well ULA plates and images every 3
hours for 48 hours. Timelapse imaging of spheroids to assess detachment was performed using
a Leica Thunder Imager with a Okolab incubation chamber. Spheroids formed in round bottom
ULA culture in the presence of conditioned media were transferred to a flat bottom ULA plate,
treated with 0.5 uM calcein AM, and Z-stacked images were acquired every 15 minutes for 12

hours.

Quantification and Statistical Analysis

GraphPad Prism (version 10.0) was used to perform statistical analysis. Point estimates with
standard deviations or standard errors were reported, as indicated, and the appropriate statisti-
cal test was performed using all observed experimental data. All statistical tests performed were
two-sided and p-values < 0.05 were considered statistically significant. When necessary, outliers

were identified and excluded by the ROUT method (Q = 0.1%).
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SUPPLEMENTAL FIGURE
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Figure S1. Anoikis resistance is not conferred
by the SASP in HGSOC cells. Percentage of live
cell area over total area determined by fluorescent
staining with calcein AM live cell fluorescence stain
and ethidium homodimer dead cell fluorescent
stain (representative images in Fig. 2B). One of 5
independent experiments in Ovcar8 and 3 inde-
pendent experiments in Kuramochi is shown. One-
way ANOVA. ns = not significant. *p<0.05
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