

# Eco-Taxonomic Study of Family Poaceae (Gramineae)

Muhammad Nauman Khan<sup>1,2,\*</sup>, Sajjad Ali<sup>1</sup>, Tabassum Yaseen<sup>1</sup>, Sami Ullah<sup>2</sup>, Akhtar Zaman<sup>2</sup>, Majid Iqbal<sup>3</sup>,  
Sikandar Shah<sup>2</sup>

<sup>1</sup>Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan

<sup>2</sup>Department of Botany, University of Peshawar, Peshawar, KP, Pakistan

<sup>3</sup>Plant Ecology and Conservation Laboratory, Department of Plant Sciences, Quaid-e-Azam University, Islamabad, Pakistan

## ABSTRACT

**Background:** The study of species diversity, its conservations and extinction can be done by using systematics in plant biodiversity. Poaceae is a very diverse grass family with great economic importance as it contains crops like rice, maize, oats, wheat, etc.

**Objectives:** The current study was undertaken in district Charsadda during 2017-18 in flowering season to collect different grass species from the area.

**Methodology:** Grass specimens were gathered, preserved, mounted and then identified from the available literature/native flora (Flora of Pakistan). Ecological parameters like habitat, class, life cycle and biological spectra were determined. A total of 51 taxa comprised of 34 genera, 5 subfamilies and 11 tribes of grasses were collected from the District Charsadda. The subfamily Panicoideae was the leading family with highest number of genera, taxa and tribes, followed by Pooideae.

**Results:** The biological spectrum showed that in the life-form class, Therophyte had the highest number of species 32 (62.74%), followed by Hemicryptophyte having 13 species (25.49%). In the Leaf size class, microphylls were dominant with 24 species (47.05%) followed by nanophylls having 14 species (27.45%). The adaptational survival of plants showed that 32 species (62.74%) were terrestrial and 19 species (37.25%) were amphibious in our study. The Life-cycle class depicted that 33 species (64.70%) were annual, 17 species (33.33%) were perennial and 1 species (1.960%) was annual or perennial. The Palatability class showed that 35 species (68.62%) were highly palatable, followed by less-palatable 11 species (21.56%), non-palatable 2 species (3.921%) and moderately palatable 3 species (5.882%). The Abundant class were determined through species rating scale in ecology ACFOR (Abundant Common Frequent Occasional Rare) scale to describe species abundance in a given area; 26 species (50.98%) were occasional, 12 species (23.52%) were frequent, 7 species (13.72%) were rare, 5 species (9.803%) were common and only 1 species *Cynodon dactylon* (1.960%) was abundant in the whole area and present everywhere in the research area in every season.

**Conclusion:** It has been concluded from the study that unwise collection, over-grazing, over-exploitation, over-consumption and overutilization are major biotic factors, which affect the diversity of the grasses in the area and affect the populations' sustainability on the earth crust. Therefore, the study aims to document and explore wild grasses from the area, which might help in future researches. This survey will be helpful in identifying plant wealth and status for their exploitation on systematic approaches and scientific basis.

### Keywords

Grasses, Systematic, Biological Spectra, Tribes, Abundant Class, Charsadda.

### \*Address of Correspondence

khannauman41@gmail.com

### Article info.

Received: January 29, 2019

Accepted: October 25, 2019

**Cite this article:** Khan MN, Ali S, Yaseen T, Ullah S, Zaman A, Iqbal M, et al. Eco-Taxonomic Study of Family Poaceae (Gramineae). *RADS J Biol Res Appl Sci.* 2019; 10(2):63-75.

**Funding Source:** Nil

**Conflict of Interest:** Nil

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## INTRODUCTION

Systematics in plant biodiversity is very important to know about the study of species diversity and its conservation, extinction and evolution, threats to biodiversity and biogeographic regions, exploration and other ecological services<sup>1</sup>. Diversity basically means total number of

species within specific geographic areas, whether alien or native, which is the identity and source of vegetation and plant natural resources. Agriculture, deforestation, over-grazing, over-browsing, natural disasters and anthropogenic interaction are mainly affected by the plant

resources<sup>2</sup>. The family Poaceae (Grass family) is the 4<sup>th</sup> spermatophyte family having 11000 species and 800 genera worldwide. However, in Pakistan, a total of 158 genera and 492 species are available<sup>3</sup>. Arundinoideae, Oryzoideae, Bambusoideae, Eragrostoideae and Panicoideae are important subfamilies of Gramineae<sup>4</sup>. Grasses can survive well to exposed, peripheral and commonly disturbed habitats, and it exist everywhere. Grass is characterized by the presence of its grain or caryopsis, and inflorescence having spikelet with a palea and lemma<sup>5</sup>. Overgrazing, over-browsing, water-logging, soil erosion, over-hunting and non-manageable agrarian methods have turned out to be significant dangers to biodiversity. The over-grazing of these fields has brought about harm to suitable grass and pea species. Due to continuous and heavy grazing, the pastures and forest-areas have deteriorated. The interaction of natural grassland population and its structure with regards to its well-known ecological aspects have not been identified yet<sup>6</sup>. Living organisms on the planet mostly depend on grains like maize, rice, oats, sugarcane, wheat and rye for their substantial need as energy crops. In addition, domesticated ruminants depend on these grasses. Moreover, those weeds growing on the agronomic land are also belong to the family Poaceae. This floristic survey provides a baseline to taxonomists to work on different aspects of plant wealth and status for their exploitation on systematic approaches and scientific basis.

A large number of livestock depends on natural vegetation through over-grazing and over-browsing, for fodder. Moreover, fuel, tubers and other edible parts are received from the forest in addition to the cultivation of some seasonal agricultural crops like maize and wheat in small areas<sup>7</sup>. Grasses are among the most adaptable life forms<sup>8</sup>. The flower of grasses suggests that they are tri-staminate, bi-stigmatic and Iodiculated in which stamens exist in two different cycles-two lateral from inner whorl and single outer frontal whorl<sup>9</sup>. The information with regards to species configuration of a region is considered to be an incentive for any phyto-geographical, environmental, ecological, and managing events. The floristic structure reveals the variety of natural resources which are affected by different abiotic and biotic stresses viz. over-grazing, over-browsing, deforestation, soil

texture, soil corrosion and improper collection of these grasses in the area<sup>10</sup>. Different authors have studied grasses time to time. In Pakistan most of the study on grasses was done by Chaudhari *et al.*,<sup>11</sup> who studied ethnobotany of grasses from Thal desert, Pakistan, while Mehmood *et al.*,<sup>7</sup> documented floristic list of grasses from Tor Ghar, Pakistan in which 73 species with 54 genera and 6 subfamilies were included. Samreen *et al.*,<sup>12</sup> also conducted the similar study on grasses from district Bannu, Pakistan.

### Objectives of the Research

The main focus of our study was the documentation and exploration of wild grasses from the area, which might help in future researches.

A floristic survey was conducted helpful in identifying plant wealth and status for their exploitation on systematic approaches and scientific basis.

## MATERIALS AND METHODS

### Site Details and Duration of the Study

The current survey was carried out in the District Charsadda in the blooming and flowering season during 2017-18 to assemble diverse grass species from the selected area. District Charsadda lies between 34° 03' to 34° 28' North latitude and 71° 28' to 71° 33' East longitude. Charsadda being the geographic center lies about 282m above sea level, covers an area of 996 square.km<sup>2</sup>. The annual precipitation rate is 460.0mm, whereas the hottest month is June (44°C), the coldest month is January (5°C-10°C) and the wettest month is February. Charsadda is surrounded by four districts and one tribal area, on the East is district Mardan, on the North is Malakand, on the South is Peshawar and Nowshera districts and Mohmand Agency on the West<sup>13</sup>.

### Dominant Flora of the Area

District Charsadda has a unique type of flora which includes a lot of green land vegetation. This District has different types of vegetation comprising herbs, trees, lianas, shrubs and climbers. Among the trees, diverse floral plant species exist, which belong to different genera and families. In selected areas, *Morus alba*, *Dilbergia sissoo*, *Acacia modesta*, *Morus nigra*, *Morus laevigata*, *Populus ciliata*, *Acacia nilotica*, *Melia azedarach*,

*Eucalyptus lanceolata*, *Bombax ceiba*, *Ficus carica*, *Citrus medica*, *Ficus elastica*, *Prunus domestica*, *Ailanthus altissima* and *Ziziphus jujuba* are used as fuel, food, medicine and for making furniture etc.

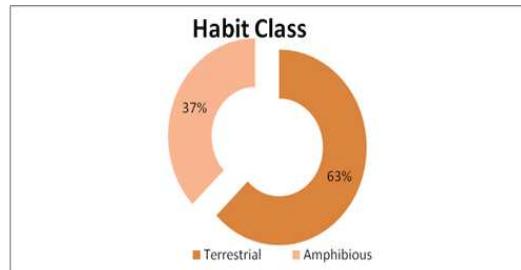
### Field Methodology:

#### Collection, Preservation and Identification of Sample Grasses

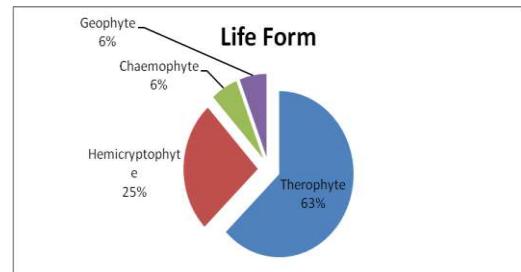
Grass specimens were collected, dried in the shade for two weeks, preserved, mounted and then identified with the assistance of Pakistans' flora (Nasir & Ali<sup>14</sup>; Stewart<sup>15</sup>; Ali & Nasir<sup>16</sup>; Ali & Qaiser<sup>17</sup>) and other literature (Raunkiaer<sup>18</sup>; Hussain<sup>19</sup>). Habitat class and life cycle of each specimen were examined. Abundant classes were determined through ACFOR scale to describe species abundance in a given area. Quantitative ecological techniques were applied to determine various ecological attributes. In biological spectrum, each ecological parameter was categorized as followed by Raunkiaer<sup>18</sup>; Hussain<sup>19</sup>.

## RESULTS AND DISCUSSION

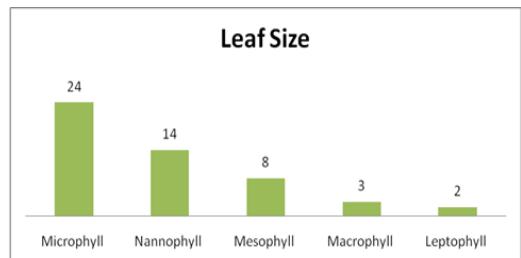
Poaceae is an important grass family with great economic importance as it contains crops like *Oryza sativa*, *Triticum aestivum*, *Zea maize*, *Hordeum vulgare*, *Avena sativa* and *Pennisetum typhoides*. It is one of the leading families of Angiospermic plants growing in every part of the earth's crust. The current work presents a total of 51 taxa with 34 genera, 5 subfamilies and 11 tribes were collected from the District Charsadda (Table 1, 3 & 4). Among them, 3 species belonged to the genus *Eragrostis* (8.823%), *Saccharum* (8.823%) and *Setaria* (8.823%) respectively. Genera *Avena*, *Brachiaria*, *Bromus*, *Cymbopogon*, *Digitaria*, *Echinochloa*, *Hordeum*, *Phragmites*, *Poa*, *Polypogon* and *Sorghum* had 2 species (5.882%) each. While the remaining genera *Alepecurus*, *Apluda*, *Arundo*, *Acrachna*, *Cenchrus*, *Cynodon*, *Dactyloctenium*, *Desmostachya*, *Dichantium*, *Eleusine*, *Imperata*, *Leptochloa*, *Oryza*, *Paspalum*, *Pennesetum*, *Phalaris*, *Rostraria*, *Stipa*, *Triticum* and *Zea* had 1 species (2.941%) each. The dominant genera were *Eragrostis*, *Saccharum* and *Setaria* 3 taxa followed by *Avena*, *Brachiaria* and *Bromus* 2 taxa followed by *Alepecurus*, *Apluda* and *Arundo* had only one taxa. The subfamily *Arundinoideae* had only 1 tribe and 3 taxa, *Chloridoideae* had 2 tribes


*Cynodonteae* and *Eragrosteae*, the tribe *Cynodonteae* had 1 taxa, while the tribe *Eragrosteae* had 7 taxa, the subfamily *Oryzoideae* had 1 tribe and 1 taxa, the subfamily *Panicoideae* had 2 tribes *Andropogoneae* and *Paniceae*, the tribe *Andropogoneae* had 11 taxa, while the tribe *Paniceae* had 12 taxa, the subfamily *Pooideae* had 5 tribes viz. *Avenae*, *Bromeae*, *Poeae*, *Stipeae* and *Triticeae*. The tribe was first documented by Barthélemy Charles Joseph Dumortier from Belgian in 1823 who named it *Triticeae*<sup>20</sup>. The Tribe *Poeae* had 5 taxa, the tribe *Avenae* had 4 taxa, the tribe *Triticeae* had 3 taxa, the tribe *Bromeae* had 2 taxa and the tribe *Stipeae* had only 1 taxa. The dominant subfamily was *Pooideae* having 5 tribes followed by *Chloridoideae* and *Panicoideae* having 2 tribes each, followed by *Arundinoideae* and *Oryzoideae* having only 1 tribe each. Various scientists also conducted the same study from different regions of Pakistan (Ahmad et al.,<sup>21</sup>, Mehmood et al.,<sup>7</sup>, Rafay et al.,<sup>22</sup>, Ahmad et al.,<sup>23</sup> and Ullah et al.,<sup>24</sup>). The biological spectrum is the climatic indicator of an area and can be considered as a symbolic representation of deep and shallow or soft and harsh climate of an area. Therefore, it plays an important role in vegetation description<sup>25</sup>.

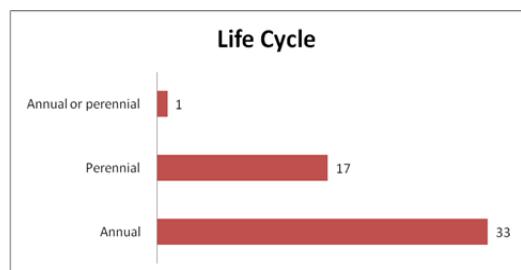
Biological spectrum (Table 1 & 2-A) showed that in the Life form class, *Therophyte* was the leading life form class with 32 species (62.74%), followed by *Hemicryptophyte* having 13 species (25.49%), further followed by *Chaemophyte* and *Geophyte* with 3 species (5.882%) each (Figure 1).


In the Leaf size class, *microphyll* had the largest number of species i.e., 24 (47.05%) followed by *nanophyll* having 14 species (27.45%), *mesophyll* with 8 species (15.68%), followed by *macrophyll* 3 species (5.882%) and *leptophyll* 2 species (3.921%), respectively (Table 1 & 2-B, Figure 2). The Therophytic life form can survive with adverse environmental conditions and penetrating anthropogenic disturbance, whereas another affecting factor includes high grazing pressure. Climatic and anthropogenic disturbance in a specific area represents variation in both the Leaf size class and Life form class<sup>25</sup>. *Therophytes* and *microphylls* dominancy indicates the harshness, warmth and climatic environment of the area and the duration of the winter period. Only the cone-bearing and sclerophyllous plants sustain their life span is an

evergreen area and remain vigorous during the winter season<sup>26</sup>. Our findings are in line with that of Ali *et al.*,<sup>27</sup> Khan and Shah<sup>28</sup> and Sher *et al.*,<sup>29</sup> who also proved the dominancy of the therophytic and microphyllus class in his study. Badshah *et al.*,<sup>2</sup> stated that species composition is an ecological expression that not only reveals the proper description of semiarid regions, but also gives a lot of quantitative exploration of the vegetation resources that must be needed. Thus, species composition is a basic parameter of plant phenology and conservation of plants in any specific area. The ecological studies of plants bio-spectrum, habit, habitat, flowering season, phenology and its ethnoecological amplitude are to be worked out. The richness of the number of species of Asteraceae and Poaceae is due to their extensive conservation in a geographical area. The Habitat class (Table 1 & 2-C, Figure 3) showed that 32 species (62.74%) were terrestrial and 19 species (37.25%) were amphibious in our study. The Life cycle class (Table 1 & 2-D, Figure 4) depicted that 33 species (64.70%) were annual, 17 species (33.33%) were perennial and 1 species (1.960%) was annual or perennial. The Abundant class was determined by the ACFOR scale used to describe species abundance in a given area; 26 species (50.98%) were occasional, 12 species (23.52%) were frequent, 7 species (13.72%) were rare, 5 species (9.803%) were common and only 1 species *Cynodon dactylon* (1.960%) was abundant in whole area and present everywhere in research area in every season (Table 1 & 2-E, Figure 5). The Palatability class (Table 2-F & 5, Figure 6) showed that 35 species (68.62%) were highly palatable followed by less-palatable 11 species (21.56%), non-palatable 2 species (3.921%) and moderately palatable 3 species (5.882%) (Table 5). Khan and Shah<sup>28</sup> also gave the statement of palatability from the district Mardan. Thus, the taxonomic study of Poaceae suggested that it is very homogenous taxon and field recognized family, the stem is usually rounded, hollow internodes are present, 2-ranked leaves, open or sometimes closed sheath, ligule present, floret (flower) containing two bracts palea and lemma, 0-3 lodicules in perianth, the stamens usually 3 in number and the fruit is grain or caryopsis<sup>30</sup>. Zereen *et al.*,<sup>31</sup> studied the uses of grasses from central Punjab. A total of 51 species and 46 genera of grasses were reported from the area. Our findings also agree with that


of Perveen and Qaiser<sup>30</sup>, Osman *et al.*,<sup>32</sup> Yen and Yang<sup>20</sup>, who also reported grass species from various parts of the country. As it is clear that no prior work has been done on the grasses in the Charsadda district, hence the current study is a benchmark for future researches.




**Figure 1.** Percentage of Habitat Class of the Flora.



**Figure 2.** Percentage of Life Form Class.



**Figure 3.** Graph Showing the Proportions of Leaf Size Spectrum.



**Figure 4.** Bar-Graph Showing the Proportions of Life Span.

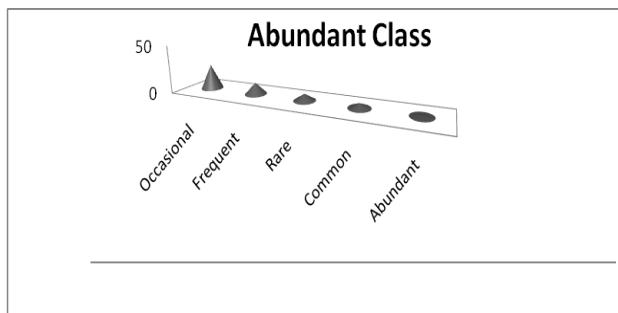



Figure 5. Showing the Proportions Abundant Class.

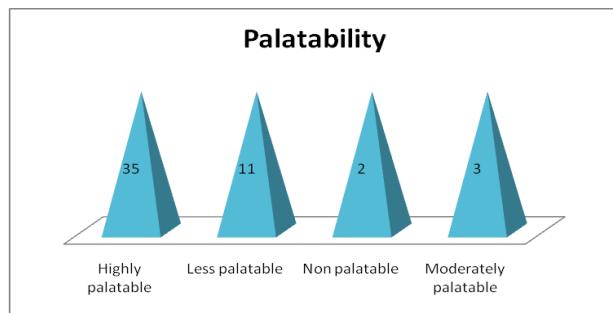



Figure 6. Graph Showing Palatability Status of Plants.

Table 1. Biological Spectrum of Some Palatable Grasses of District Charsadda.

| S. No. | Botanical Name                                       | English Name             | Habitat     | Life Cycle | Abundance Class | Life Form | Leaf Size |
|--------|------------------------------------------------------|--------------------------|-------------|------------|-----------------|-----------|-----------|
| 1.     | <i>Alopecurus myosuroides</i> Hudson.                | Slender Foxtail          | Amphibious  | Annual     | Frequent        | Th        | Mes       |
| 2.     | <i>Apluda mutica</i> L.                              | Mauritian grass          | Terrestrial | Perennial  | Frequent        | Th        | Mic       |
| 3.     | <i>Arundo donax</i> L.                               | Giant reed               | Amphibious  | Perennial  | Frequent        | Geo       | Mes       |
| 4.     | <i>Acrachna racemosa</i> Heyne ex Roem. Schult       | Goose grass.             | Terrestrial | Annual     | Rare            | H         | Mic       |
| 5.     | <i>Avena fatua</i> L.                                | Oat                      | Amphibious  | Annual     | Frequent        | Th        | Mic       |
| 6.     | <i>Avena sativa</i> L.                               | Wild oat                 | Amphibious  | Annual     | Occasional      | Th        | Na        |
| 7.     | <i>Brachiaria ramosa</i> (Linn.) Stapf               | Browntop Millet          | Terrestrial | Annual     | Occasional      | Th        | Mic       |
| 8.     | <i>Brachiaria reptans</i> (Linn.) Gardner & Hubbard. | Running Grass            | Amphibious  | Annual     | Frequent        | Th        | Mic       |
| 9.     | <i>Bromus catharticus</i> Vahl.                      | Rescue grass             | Terrestrial | Perennial  | Occasional      | Th        | Mic       |
| 10.    | <i>Bromus pectinatus</i> Thunb.                      | Brome grass              | Terrestrial | Annual     | Occasional      | Th        | Mes       |
| 11.    | <i>Cenchrus ciliaris</i> L.                          | Buffel grass, kolukkatai | Terrestrial | Perennial  | Occasional      | Th        | Mes       |
| 12.    | <i>Cymbopogon citratus</i> (DC.) Stapf.              | Lemon grass or oil grass | Terrestrial | Perennial  | Rare            | H         | Mes       |
| 13.    | <i>Cymbopogon jwarancusa</i> (Jones) Schult          | Oil grass                | Terrestrial | Perennial  | Frequent        | H         | Na        |
| 14.    | <i>Cynodon dactylon</i> (L.) Pers                    | Bermuda grass            | Terrestrial | Perennial  | Abundant        | H         | Lep       |
| 15.    | <i>Dactyloctenium aegyptium</i> (L.) Willd           | crow foot grass          | Amphibious  | Annual     | Occasional      | Th        | Mic       |
| 16.    | <i>Desmostachya bipinnata</i> (L.) Stapf.            | Salt reed-grass          | Amphibious  | Perennial  | Common          | H         | Na        |
| 17.    | <i>Dichanthium annulatum</i> (Forssk.) Stapf         | Hindi grass, Sheda grass | Amphibious  | Perennial  | Common          | H         | Na        |
| 18.    | <i>Digitaria ciliaris</i> (Retz.) Koeler.            | Crab grass               | Amphibious  | Annual     | Occasional      | H         | Mic       |
| 19.    | <i>Digitaria sanguinalis</i> Edgew. ex Aitch.        | Hairy crabgrass,         | Amphibious  | Annual     | Rare            | H         | Mic       |
| 20.    | <i>Echinochloa colona</i> (L.) Link                  | Jungle rice              | Amphibious  | Annual     | Occasional      | Th        | Na        |
| 21.    | <i>Echinochloa crus-galli</i> (L.) Beauv             |                          | Terrestrial | Annual     | Occasional      | Th        | Na        |
| 22.    | <i>Eleusine indica</i> (L.) Garetn.                  | Indian goose grass       | Amphibious  | Annual     | Occasional      | Th        | Mes       |

|     |                                                  |                          |             |                     |            |     |     |
|-----|--------------------------------------------------|--------------------------|-------------|---------------------|------------|-----|-----|
| 23  | <i>Eragrostis nigra</i> Nees. Ex. S              | Love grass               | Amphibious  | Annual or perennial | Occasional | Th  | Mic |
| 24. | <i>Eragrostis ciliaris</i> (All.) Lut.           | Love grass               | Terrestrial | Annual              | Rare       | H   | Na  |
| 25. | <i>Eragrostis minor</i> Host.                    | Pungent meadow grass     | Amphibious  | Annual              | Occasional | Th  | Na  |
| 26. | <i>Hordeum murinum</i> L.                        | False barley             | Terrestrial | Annual              | Occasional | Th  | Na  |
| 27. | <i>Hordeum vulgare</i> L.                        | Barley, barley corn      | Terrestrial | Annual              | Frequent   | Th  | Mic |
| 28. | <i>Imperata cylindrica</i> (L.) P. Beauv.        | Cogon grass              | Amphibious  | Perennial           | Occasional | Geo | Lep |
| 29. | <i>Leptochloa panicea</i> Retz.                  | Mucronate Sprangletop    | Terrestrial | Annual              | Occasional | Th  | Mic |
| 30. | <i>Oryza sativa</i> L.                           | Asian Rice, weedy rice   | Amphibious  | Annual              | Frequent   | Th  | Mic |
| 31. | <i>Paspalum paspalodes</i> (Michx.) scribner.    | Water couch, Knotgrass   | Terrestrial | Perennial           | Frequent   | H   | Mic |
| 32. | <i>Pennisetum typhoides</i> (Burm.f.) Stapf.     | Pearl millet             | Terrestrial | Annual              | Occasional | Th  | Mic |
| 33. | <i>Phalaris minor</i> Retz.                      | Canary grass             | Terrestrial | Annual              | Frequent   | Th  | Na  |
| 34. | <i>Phragmites australis</i> (Cav.) Trin.         | Common reed              | Amphibious  | Perennial           | Occasional | Geo | Mac |
| 35. | <i>Phragmites karka</i> (Retz.) Trin. ex. Steud. | Nodding reed             | Amphibious  | Perennial           | Occasional | Ch  | Mes |
| 36. | <i>Poa annua</i> L.                              | Annual blue grass        | Terrestrial | Annual              | Occasional | Th  | Na  |
| 37. | <i>Poa infirma</i> H. B. K.                      | Early meadow-grass       | Terrestrial | Annual              | Occasional | Th  | Na  |
| 38. | <i>Polypogon fugax</i> Ness.ex.Steud.            | Asia Minor Blue grass    | Terrestrial | Annual              | Frequent   | H   | Mic |
| 39. | <i>Polypogon monspeliensis</i> (L.) Desf         | Rabbit foot grass        | Terrestrial | Annual              | Frequent   | Th  | Mic |
| 40. | <i>Rostraria cristata</i> (L.) Tzvelev           | Mediterranean hair grass | Terrestrial | Annual              | Occasional | Th  | Mic |
| 41. | <i>Saccharum griffithii</i> Munro ex Boiss       | Broom sedge              | Terrestrial | Perennial           | Rare       | H   | Mac |
| 42. | <i>Saccharum officinarum</i> L.                  | Sugar cane               | Terrestrial | Perennial           | Common     | Ch  | Mic |
| 43. | <i>Saccharum spontaneum</i> L.                   | Wild sugarcane           | Terrestrial | Perennial           | Occasional | Ch  | Mac |
| 44. | <i>Setaria pumila</i> (Poir.) Roem. &Schult.     | Yellow foxtail grass     | Terrestrial | Annual              | Occasional | Th  | Mic |
| 45. | <i>Setaria verticillata</i> (L.) P. Beauv        | Fox tail                 | Terrestrial | Annual              | Rare       | Th  | Na  |
| 46. | <i>Setaria viridis</i> (L.) P. Beauv             | Green bristle grass      | Amphibious  | Annual              | Occasional | Th  | Na  |
| 47. | <i>Sorghum bicolor</i> (L.) Moench.              | Grain sorghum            | Terrestrial | Annual              | Occasional | Th  | Mic |
| 48. | <i>Sorghum halepense</i> (L.) Pers.              | Johnson grass            | Terrestrial | Perennial           | Occasional | H   | Mic |
| 49. | <i>Stipa capensis</i> Thunb.                     | Cape rice grass          | Terrestrial | Annual              | Rare       | Th  | Mic |
| 50. | <i>Triticum aestivum</i> L.                      | Common wheat             | Terrestrial | Annual              | Common     | Th  | Mic |
| 51. | <i>Zea mays</i> L.                               | Corn                     | Terrestrial | Annual              | Common     | Th  | Mes |

**Keys:**

A. **Life form:** Th-Therophyte, H-Hemicryptophyte, Ch-Chaemophyte, G-Geophyte.  
 B. **Leaf size:** Lep-Leptophyll, Na-Nanophyll, Mic-Microphyll, Mac-Macrophyll, Mes-Mesophyll

**Table 2. Ecological Physiognomies of Palatable Grasses of District Charsadda, Pakistan.**

| S. No.    | Parameters                      | No. of Taxa | Percentages  |
|-----------|---------------------------------|-------------|--------------|
| <b>A.</b> | <b>Life form</b>                |             |              |
| 1.        | Therophyte                      | 32          | 62.74        |
| 2.        | Hemicryptophyte                 | 13          | 25.49        |
| 3.        | Chamaephyte                     | 3           | 5.882        |
| 4.        | Geophyte                        | 3           | 5.882        |
|           | <b>Total</b>                    | <b>51</b>   | <b>99.99</b> |
| <b>B.</b> | <b>Leaf size</b>                |             |              |
| 1.        | Microphyll                      | 24          | 47.05        |
| 2.        | Nanophyll                       | 14          | 27.45        |
| 3.        | Mesophyll                       | 8           | 15.68        |
| 4.        | Macrophyll                      | 3           | 5.882        |
| 5.        | Leptophyll                      | 2           | 3.921        |
|           | <b>Total</b>                    | <b>51</b>   | <b>99.99</b> |
| <b>C.</b> | <b>Habitat class/Adaptation</b> |             |              |
| 1.        | Terrestrial                     | 32          | 62.74        |
| 2.        | Amphibious                      | 19          | 37.25        |
|           | <b>Total</b>                    | <b>51</b>   | <b>99.99</b> |
| <b>D.</b> | <b>Life cycle</b>               |             |              |
| 1.        | Annual                          | 33          | 64.70        |
| 2.        | Perennial                       | 17          | 33.33        |
| 3.        | Annual or perennial             | 1           | 1.960        |
|           | <b>Total</b>                    | <b>51</b>   | <b>99.99</b> |
| <b>E.</b> | <b>Abundant class</b>           |             |              |
| 1.        | Occasional                      | 26          | 50.98        |
| 2.        | Frequent                        | 12          | 23.52        |
| 3.        | Rare                            | 7           | 13.72        |
| 4.        | Common                          | 5           | 9.803        |
| 5.        | Abundant                        | 1           | 1.960        |
|           | <b>Total</b>                    | <b>51</b>   | <b>99.99</b> |
| <b>F.</b> | <b>Palatability</b>             |             |              |
| 1.        | Highly palatable                | 35          | 68.62        |
| 2.        | Less palatable                  | 11          | 21.56        |
| 3.        | Non palatable                   | 2           | 3.921        |
| 4.        | Moderately palatable            | 3           | 5.882        |
|           | <b>Total</b>                    | <b>51</b>   | <b>99.99</b> |

**Table 3. List of Genera and its Percentage.**

| S. No.       | Genera                | No. of Taxa | Percentages   |
|--------------|-----------------------|-------------|---------------|
| 1.           | <i>Eragrostis</i>     | 3           | 8.823%        |
| 2.           | <i>Saccharum</i>      | 3           | 8.823%        |
| 3.           | <i>Setaria</i>        | 3           | 8.823%        |
| 4.           | <i>Avena</i>          | 2           | 5.882%        |
| 5.           | <i>Brachiaria</i>     | 2           | 5.882%        |
| 6.           | <i>Bromus</i>         | 2           | 5.882%        |
| 7.           | <i>Cymbopogon</i>     | 2           | 5.882%        |
| 8.           | <i>Digitaria</i>      | 2           | 5.882%        |
| 9.           | <i>Echinochloa</i>    | 2           | 5.882%        |
| 10.          | <i>Hordeum</i>        | 2           | 5.882%        |
| 11.          | <i>Phragmites</i>     | 2           | 5.882%        |
| 12.          | <i>Poa</i>            | 2           | 5.882%        |
| 13.          | <i>Polypogon</i>      | 2           | 5.882%        |
| 14.          | <i>Sorghum</i>        | 2           | 5.882%        |
| 15.          | <i>Apluda</i>         | 1           | 2.941%        |
| 16.          | <i>Alopecurus</i>     | 1           | 2.941%        |
| 17.          | <i>Arundo</i>         | 1           | 2.941%        |
| 18.          | <i>Acrachne</i>       | 1           | 2.941%        |
| 19.          | <i>Cenchrus</i>       | 1           | 2.941%        |
| 20.          | <i>Cynodon</i>        | 1           | 2.941%        |
| 21.          | <i>Desmostachya</i>   | 1           | 2.941%        |
| 22.          | <i>Dactyloctenium</i> | 1           | 2.941%        |
| 23.          | <i>Dichanthium</i>    | 1           | 2.941%        |
| 24.          | <i>Eleusine</i>       | 1           | 2.941%        |
| 25.          | <i>Imperata</i>       | 1           | 2.941%        |
| 26.          | <i>Leptochloa</i>     | 1           | 2.941%        |
| 27.          | <i>Oryza</i>          | 1           | 2.941%        |
| 28.          | <i>Paspalum</i>       | 1           | 2.941%        |
| 29.          | <i>Pennesetum</i>     | 1           | 2.941%        |
| 30.          | <i>Phalaris</i>       | 1           | 2.941%        |
| 31.          | <i>Rostraria</i>      | 1           | 2.941%        |
| 32.          | <i>Stipa</i>          | 1           | 2.941%        |
| 33.          | <i>Triticum</i>       | 1           | 2.941%        |
| 34.          | <i>Zea</i>            | 1           | 2.941%        |
| <b>Total</b> | <b>34</b>             | <b>51</b>   | <b>99.99%</b> |

**Table 4. Distribution of Sub Families, Tribes and Taxa.**

| S. No. | Sub Family    | Tribe         | Taxa                                                     |
|--------|---------------|---------------|----------------------------------------------------------|
| 1.     | Arundinoideae | Arundineae    | <i>Arundo donax</i> L.                                   |
|        |               |               | <i>Phragmites australis</i> (Cav.) Trin. ex Steud        |
|        |               | Cynodonteae   | <i>Phragmites karka</i> (Retz.) Trin. ex. Steud          |
| 2.     | Chloridoideae | Eragrostae    | <i>Cynodon dactylon</i> (L.) Pers.                       |
|        |               |               | <i>Acrachne racemosa</i> (B.Heyne ex Roth) Ohwi.         |
|        |               |               | <i>Dactyloctenium aegyptium</i> (L.) Willd               |
|        |               |               | <i>Desmostachya bipinnata</i> (L.) Stapf.                |
|        |               |               | <i>Eleusine indica</i> (L.) Garetn.                      |
|        |               |               | <i>Eragrostis nigra</i> Nees. Ex. Steud                  |
|        |               |               | <i>Eragrostis ciliaris</i> (All.) Lut.                   |
| 3.     | Oryzoideae    | Oryzeae       | <i>Eragrostis minor</i> Host.                            |
|        |               |               | <i>Leptochloa panicea</i> Retz.                          |
|        |               |               | <i>Oryza sativa</i> L.                                   |
|        |               |               | <i>Apluda mutica</i> L.                                  |
|        |               |               | <i>Cymbopogon citratus</i> (DC.) Stapf.                  |
|        |               |               | <i>Cymbopogon jwarancusa</i> (Jones) Schult.             |
|        |               |               | <i>Dichanthium annulatum</i> (Forssk.) Stapf.            |
|        |               |               | <i>Imperata cylindrica</i> (L.) P. Beauv                 |
|        |               |               | <i>Saccharum griffithi</i> Munro ex Boiss.               |
|        |               |               | <i>Saccharum officinarum</i> L.                          |
| 4.     | Panicoideae   | Andropogoneae | <i>Saccharum spontaneum</i> L.                           |
|        |               |               | <i>Sorghum bicolor</i> (L.) Moench                       |
|        |               |               | <i>Sorghum halepense</i> (L.) Pers                       |
|        |               |               | <i>Zea mays</i> L.                                       |
|        |               |               | <i>Brachiaria ramosa</i> L.                              |
|        |               |               | <i>Brachiaria reptans</i> (L.) Gardner & Hubbard         |
|        |               |               | <i>Cenchrus ciliaris</i> L.                              |
|        |               |               | <i>Digitaria ciliaris</i> (Retz.) Koeler.                |
|        |               |               | <i>Digitaria sanguinalenta</i> Edgew. ex Aitch.          |
|        |               |               | <i>Echinochloa colona</i> (L.) Link                      |
|        |               |               | <i>Echinochloa crus-galli</i> (L.) Beauv                 |
|        |               |               | <i>Paspalum paspalodes</i> (Michx.) scribner             |
|        |               |               | <i>Pennisetum typhoides</i> (Burm.f.) Stapf & C.E. Hubb. |
|        |               |               | <i>Setaria pumila</i> (Poir.) Roem. & Schult.            |
|        |               |               | <i>Setaria verticillata</i> (L.) P. Beauv                |
|        |               |               | <i>Setaria viridis</i> (L.) P. Beauv                     |
| 5.     | Pooideae      | Avenae        | <i>Avena fatua</i> L.                                    |
|        |               |               | <i>Avena sativa</i> L.                                   |
|        |               |               | <i>Polypogon fugax</i> Ness.ex.Steud                     |
|        |               |               | <i>Polypogon monspeliensis</i> (L.) Desf                 |
|        |               | Bromeae       | <i>Bromus catharticus</i> Vahl.                          |
|        |               |               | <i>Bromus pectinatus</i> Thunb.                          |
|        |               | Poeae         | <i>Alopecurus myosuroides</i> Hudson.                    |
|        |               |               | <i>Phalaris minor</i> Retz.                              |
|        |               |               | <i>Poa annua</i> L.                                      |
|        |               |               | <i>Poa infirma</i> H. B. K.                              |
|        |               | Stipeae       | <i>Rostraria cristata</i> (L.) Tzvelev                   |
|        |               |               | <i>Stipa capensis</i> Thunb.                             |
|        |               | Triticeae     | <i>Hordeum murinum</i> L.                                |
|        |               |               | <i>Hordeum vulgare</i> L.                                |
|        |               |               | <i>Triticum aestivum</i> L.                              |

Source: Gould & Shaw<sup>33</sup>, (1983)

**Table 5. Botanical Taxa and its Common Names, Palatability and Distribution Pattern of Weedy Grasses in Pakistan and in the World.**

| S. No. | TAXON                                                | COMMON NAME              | PALATABILITY     | DISTRIBUTION PATTERN IN PAKISTAN                          | DISTRIBUTION PATTERN IN WORLD                                                                                                                                             |
|--------|------------------------------------------------------|--------------------------|------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | <i>Alopecurus myosuroides</i> Hudson                 | Slender Foxtail          | Highly palatable | Baluchistan, Khyber Pakhtunkhwa & Kashmir                 | Europe, Asia, North America and other temperate regions of the world                                                                                                      |
| 2.     | <i>Apluda mutica</i> L.                              | Mauritian grass          | Highly palatable | Sind, Punjab, Khyber Pakhtunkhwa & Kashmir                | Tropical Asia, new Caledonia, Oman, new Guinea and throughout Australia                                                                                                   |
| 3.     | <i>Arundo donax</i> L.                               | Giant reed               | Less palatable   | Baluchistan, Punjab, Khyber Pakhtunkhwa & Kashmir         | Eastwards to Burma; Mediterranean regions and North Africa and introduced into new World                                                                                  |
| 4.     | <i>Acrachna racemosa</i> Heyne ex Roem. & Schult     | Goose grass              | Highly palatable | Punjab, Khyber Pakhtunkhwa & Kashmir                      | Tropical part of Australia, southeast Asia and Africa                                                                                                                     |
| 5.     | <i>Avena fatua</i> L.                                | Oat                      | Highly palatable | Khyber Pakhtunkhwa and Northern Punjab                    | Central Asia, Europe, USA, Mississippi, Tennessee and Australia                                                                                                           |
| 6.     | <i>Avena sativa</i> L.                               | Wild oat                 | Highly palatable | Khyber Pakhtunkhwa and Punjab                             | Throughout Europe, Asia and northwest Africa                                                                                                                              |
| 7.     | <i>Brachiaria ramosa</i> (Linn.) Stapf               | Browntop Millet          | Highly palatable | Kashmir, Punjab, Baluchistan, Sind, Khyber Pakhtunkhwa    | Tropical Asia, South Africa, Senegal, Yemen, Rhodesia and Malawi                                                                                                          |
| 8.     | <i>Brachiaria reptans</i> (Linn.) Gardner & Hubbard. | Running Grass            | Highly palatable | Khyber Pakhtunkhwa, Sind, Baluchistan & Punjab            | Tropical Asia and throughout the tropics                                                                                                                                  |
| 9.     | <i>Bromus catharticus</i> Vahl.                      | Rescue grass             | Highly palatable | Punjab & Khyber Pakhtunkhwa                               | Native to South America, Europe, Australia and North America.                                                                                                             |
| 10.    | <i>Bromus pectinatus</i> Thunb.                      | Brome grass              | Highly palatable | Khyber Pakhtunkhwa, Baluchistan, Punjab, Gilgit & Kashmir | Through Ethiopia, Egypt and Sudan, Arabia and Sinai, South Africa, Afghanistan, Iran, eastwards through India to Europe and China.                                        |
| 11.    | <i>Cenchrus ciliaris</i> L.                          | Buffel grass, kolukkatai | Less palatable   | Khyber Pakhtunkhwa, Baluchistan, Sind & Punjab            | Distributed throughout Africa, extending through Middle East to Arabia and to India                                                                                       |
| 12.    | <i>Cymbopogon citratus</i> (DC.) Stapf.              | Lemon grass or oil grass | Non-palatable    | Khyber Pakhtunkhwa and Punjab                             | North and Central America, Sri Lanka, China, India, Pakistan, Indonesia, Nigeria, Thailand, Cameroon, Italy, Congo, Egypt, Argentina, Brazil, Venezuela and Papua Guinea. |
| 13.    | <i>Cymbopogon jwarancusa</i> (Jones) Schult.         | Oil grass                | Less palatable   | Khyber Pakhtunkhwa, Sind, Baluchistan, Punjab & Gilgit    | Westwards to Iraq and Socotra also in Nepal and Northwest India                                                                                                           |
| 14.    | <i>Cynodon dactylon</i> (L.) Pers                    | Bermuda grass            | Highly palatable | Sind, Khyber Pakhtunkhwa, Baluchistan, Punjab & Kashmir   | Warm temperate and Tropical regions; Cosmopolitan                                                                                                                         |
| 15.    | <i>Dactyloctenium aegyptium</i> (L.) Willd           | Crow foot Grass          | Highly palatable | Khyber Pakhtunkhwa, Sind, Punjab & Kashmir                | Commonly spread in warm temperate and tropical regions of the world.                                                                                                      |
| 16.    | <i>Desmostachya bipinnata</i> (L.) Stapf             | Salt reed-grass          | Less palatable   | Sind, Baluchistan, Punjab, Kashmir & Khyber Pakhtunkhwa   | Through-out the Middle east to Indo-China, tropical Africa and North America                                                                                              |

|     |                                                          |                                            |                         |                                                                                             |                                                                                                                              |
|-----|----------------------------------------------------------|--------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 17. | <i>Dichanthium annulatum</i> (Forssk.) Stapf.            | Hindi grass,<br>Sheda grass                | Highly<br>palatable     | Sind, Baluchistan, Punjab<br>Kashmir & Khyber<br>Pakhtunkhwa                                | Tropical America, Middle East,<br>Kenya, Tanzania, southern<br>Africa and Senegal, Indonesia<br>and introduced to Australia. |
| 18. | <i>Digitaria ciliaris</i> (Retz.) Koeler.                | Summer grass                               | Highly<br>palatable     | Sind, Punjab, Kashmir &<br>Khyber Pakhtunkhwa.                                              | Throughout the Tropics.                                                                                                      |
| 19. | <i>Digitaria sanguinalis</i> Edgew. Ex Aitch             | Hairy crabgrass,<br>Hairy finger<br>grass. | Highly<br>palatable     | Baluchistan, Khyber<br>Pakhtunkhwa, Punjab, Gilgit<br>& Kashmir                             | Tropical and temperate,<br>specifically into the tropics.                                                                    |
| 20. | <i>Echinochloa colona</i> (L.) Link.                     | Jungle rice                                | Highly<br>palatable     | Sind, Baluchistan, Punjab,<br>Khyber Pakhtunkhwa &<br>Kashmir                               | Distributed throughout tropics<br>and sub tropics                                                                            |
| 21. | <i>Echinochloa crus-galli</i> (L.) Beauv.                | Cockspur grass,<br>water grass             | Highly<br>palatable     | Sind, Baluchistan, Punjab,<br>Khyber Pakhtunkhwa, Gilgit &<br>Kashmir                       | Confined to the Subtropical and<br>temperate regions of the world                                                            |
| 22. | <i>Eleusine indica</i> (L.) Garetn.                      | Indian goose<br>grass                      | Highly<br>palatable     | Sind, Khyber Pakhtunkhwa &<br>Kashmir                                                       | Present in Subtropical and<br>Tropical zones of the world                                                                    |
| 23. | <i>Eragrostis nigra</i> Nees. Ex. Steud                  | Love grass                                 | Highly<br>palatable     | Sind, Baluchistan, Punjab,<br>Khyber Pakhtunkhwa                                            | Present in Subtropical and<br>Tropical zones of the world                                                                    |
| 24. | <i>Eragrostis cilianensis</i> (All.) Lut. Ex.F.T.        | Love grass                                 | Highly<br>palatable     | Sind, Baluchistan, Punjab,<br>Khyber Pakhtunkhwa &<br>Kashmir                               | Present in moist and Tropical<br>zones of the world                                                                          |
| 25. | <i>Eragrostis minor</i> Host.                            | Pungent meadow<br>grass                    | Highly<br>palatable     | Sind, Punjab, Gilgit,<br>Baluchistan, Khyber<br>Pakhtunkhwa & Kashmir                       | Subtropical and Warm temperate<br>regions of the world                                                                       |
| 26. | <i>Hordeum murinum</i> L.                                | False barley                               | Less<br>palatable       | Khyber Pakhtunkhwa &<br>Kashmir                                                             | Central Asia and Mediterranean<br>regions to China.                                                                          |
| 27. | <i>Hordeum vulgare</i> L.                                | Barley, barley<br>corn                     | Less<br>palatable       | Sind, Punjab, Khyber<br>Pakhtunkhwa & Kashmir                                               | Throughout most temperate<br>zones of the world                                                                              |
| 28. | <i>Imperata cylindrica</i> (L.) P. Beauv.                | Cogon grass                                | Moderately<br>palatable | Sind, Baluchistan, Punjab,<br>Khyber Pakhtunkhwa, Gilgit &<br>Kashmir                       | Mediterranean, Old World<br>tropics, Middle East and also in<br>Chile.                                                       |
| 29. | <i>Leptochloa panicea</i> Retz.                          | Mucronate<br>Sprangletop                   | Moderately<br>palatable | Sind, Punjab & Khyber<br>Pakhtunkhwa                                                        | Natal; Sudan to Transvaal;<br>Tropical Asia and West Africa                                                                  |
| 30. | <i>Oryza sativa</i> L.                                   | Asian Rice,<br>weedy rice                  | Less<br>palatable       | Sind, Punjab, Khyber<br>Pakhtunkhwa and the chief<br>crop is in Kashmir (Liddar<br>Valley). | Cultivated mostly in Central and<br>South America, southern<br>Europe, Africa, Asia and<br>Australia                         |
| 31. | <i>Paspalum paspalodes</i> (Michx.) scribner             | Water<br>couch,Knotgrass                   | Moderately<br>palatable | Sind, Punjab, Khyber<br>Pakhtunkhwa & Kashmir                                               | Tropics and sub-tropics<br>throughout the world.                                                                             |
| 32. | <i>Pennisetum typhoides</i> (Burm.f.) Stapf & C.E. Hubb. | Pearl millet                               | Highly<br>palatable     | Punjab, Sindh, Khyber<br>Pakhtunkhwa and Balochistan                                        | South Africa from West to East;<br>It was Alien to India and later to<br>Australia, America and Brazil.                      |
| 33. | <i>Phalaris minor</i> Retz.                              | Canary grass                               | Highly<br>palatable     | Baluchistan, Punjab, Khyber<br>Pakhtunkhwa & Kashmir                                        | Cosmopolitan                                                                                                                 |
| 34. | <i>Phragmites australis</i> (Cav.) Trin. exSteud.        | Common reed                                | Non<br>palatable        | Khyber Pakhtunkhwa, Punjab<br>& Kashmir.                                                    | Distributed throughout moderate<br>climate zones of New World and<br>Old World                                               |
| 35. | <i>Phragmites karka</i> (Retz.) Trin. ex. Steud.         | Nodding reed                               | Less<br>palatable       | Sind, Baluchistan, Punjab,<br>Khyber Pakhtunkhwa, Gilgit &<br>Kashmir                       | Throughout Polynesia, Tropical<br>Africa, tropical Asia and northern<br>Australia.                                           |
| 36. | <i>Poa annua</i> L.                                      | Annual blue<br>grass                       | Highly<br>palatable     | Baluchistan, Punjab, Khyber<br>Pakhtunkhwa & Kashmir                                        | Cosmopolitan                                                                                                                 |
| 37. | <i>Poa infirma</i> H. B. K.                              | Early meadow-<br>grass                     | Highly<br>palatable     | Punjab & Khyber<br>Pakhtunkhwa                                                              | Central Asia, Himalayas of South<br>America; South Europe                                                                    |
| 38. | <i>Polypogon fugax</i> Ness. ex. Steud.                  | Asia Minor Blue<br>grass                   | Highly<br>palatable     | Baluchistan, Punjab, Khyber<br>Pakhtunkhwa & Kashmir                                        | Mainly in Himalayas of Burma<br>and Iraq                                                                                     |

|     |                                               |                          |                  |                                                                    |                                                                                                                                                           |
|-----|-----------------------------------------------|--------------------------|------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39. | <i>Polypogon monspeliensis</i> (L.) Desf.     | Rabbit foot grass        | Highly palatable | Sind, Baluchistan, Punjab, Khyber Pakhtunkhwa, Gilgit & Kashmir    | Introduced and adopted in most warm temperate regions; Mediterranean northwards zones to British Isles; India and China; North-east parts of south Africa |
| 40. | <i>Rostraria cristata</i> (L.) Tzvelev.       | Mediterranean hair grass | Highly palatable | Baluchistan, Punjab, Khyber Pakhtunkhwa & Kashmir                  | Mediterranean region and Northwest India; introduced in North America and South Africa                                                                    |
| 41. | <i>Saccharum griffithii</i> Munro ex Boiss    | Broom sedge              | Less palatable   | Sind, Baluchistan, Punjab & Khyber Pakhtunkhwa                     | Asia-temperate; Asia-tropical; western Asia and Arabia; Afghanistan; India, Bangladesh; Iran; Pakistan; Oman; Yemen; Saudi Arabia and West Himalaya       |
| 42. | <i>Saccharum officinarum</i> L.               | Sugar cane               | Highly palatable | Sindh, Punjab and Khyber Pakhtunkhwa                               | Throughout the tropical regions while extending to temperate regions of the world.                                                                        |
| 43. | <i>Saccharum spontaneum</i> L.                | Wild sugarcane           | Less palatable   | Sind, Punjab, Khyber Pakhtunkhwa, Gilgit & Kashmir                 | Extensively scattered in the tropical region of the Old World.                                                                                            |
| 44. | <i>Setaria pumila</i> (Poir.) Roem. & Schult. | Yellow foxtail grass     | Highly palatable | Sind, Baluchistan, Punjab, Khyber Pakhtunkhwa, Gilgit & Kashmir    | Introduced into warm temperate and Tropical zones of the Old World and North America.                                                                     |
| 45. | <i>Setaria verticillata</i> (L.) P. Beauv.    | Fox tail                 | Highly palatable | Sind, Baluchistan, Punjab, Khyber Pakhtunkhwa & Kashmir            | Confined to the warm temperate, Tropical regions of the world.                                                                                            |
| 46. | <i>Setaria viridis</i> (L.) P. Beauv.         | Green bristle grass      | Highly palatable | Baluchistan, Punjab, Gilgit, Kashmir and Khyber Pakhtunkhwa.       | Introduced to New World while present also in cooler zones of the Old World                                                                               |
| 47. | <i>Sorghum bicolor</i> (L.) Moench.           | Grain sorghum            | Highly palatable | Sind, Baluchistan, Punjab, Khyber Pakhtunkhwa                      | Radiating center/hotspot in Africa, and is now widely cultivated in subtropical and tropical regions of the world.                                        |
| 48. | <i>Sorghum halepense</i> (L.) Pers.           | Johnson grass            | Highly palatable | Sind, Punjab, Baluchistan, Gilgit, Kashmir and Khyber Pakhtunkhwa. | Mediterranean zones of southwards to Madras and Kashmir                                                                                                   |
| 49. | <i>Stipa capensis</i> Thunb.                  | Cape rice grass          | Highly palatable | Baluchistan, Punjab, Kashmir and Khyber Pakhtunkhwa                | Mediterranean region eastwards to Northwest India; South Africa.                                                                                          |
| 50. | <i>Triticum aestivum</i> L.                   | Common wheat             | Less palatable   | Throughout Pakistan                                                | Widely cultivated all over the world.                                                                                                                     |
| 51. | <i>Zea mays</i> L.                            | Corn/ Makki              | Highly palatable | Sind, Punjab, Khyber Pakhtunkhwa, Kashmir, Gilgit and Balochistan  | Introduced to the Old World from tropical America.                                                                                                        |

## CONCLUSION

In the present study, we have reported 51 grass species belonging to 34 genera from 5 sub-families and 11 tribes for the first time from this area. The subfamily Panicoideae were more diverse sharing highest number of taxa, genera and tribes followed by subfamily Pooideae. Biological data represents that Therophyte was the dominant life form class, while the leaf size of Microphyll was dominant. Majority of our studied grasses were terrestrial with annual life span. The palatable grasses were documented due to its grazing in the area

while fewer numbers of grasses were observed occasional in the area. *Cynodon dactylon* were recorded abundant in the study area. Therefore, it was concluded that due to uncontrolled grazing, over-exploitation and over-consumption are the major biotic threats which affects the diversity of the grasses in the area and also affects the livestock's production in the area. These present botanical endeavors provide a base line in the field of Agrostology for further study.

## LIST OF ABBREVIATIONS

|       |                          |
|-------|--------------------------|
| ACFOR | Abundant Common Frequent |
|       | Occasional Rare          |

## REFERENCES

1. Scotland RW, Wortley AH. How many species of seed plants are there? *Taxon*. 2003; 52(1):101-4.
2. Badshah L, Hussain F, Sher Z. Floristic inventory, ecological characteristics and biological spectrum of rangeland of District Tank, Pakistan. *Pak J Bot*. 2013; 45(4):1159-68.
3. Nasir E, Ali SI, Cope TA. Poaceae: Flora of Pakistan (Eds.): 1982; 143:40-678.
4. Mabberley DJ. The Plant Book Cambridge. Univ Press, Cambridge, New York. 2008.
5. Peterson PM. Poaceae (Gramineae). ELS John Wiley & Sons, Ltd: Chichester. 2013.
6. Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VD, Blanco CC, et al. Brazil's neglected biome: The South Brazilian Campos. *Perspect Plant Ecol Syst*. 2007; 9(2):101-16.
7. Mehmood A, Shah AH, Khan SM, Rehman IU, Ahmad H. Floristic list and indigenous uses of Poaceae family in District Tor Ghar, Khyber Pakhtunkhwa, Pakistan. *J Appl Environ Biol Sci*. 2017; 7(6):169-77.
8. Piperno D, Sues HD. Dinosaurs dined on grass. *Science*. 2005; 310(5751):1126-8.
9. Cocucci AE, Anton AM. The grass flower: suggestions on its origin and evolution. *Flora*. 1988;181: 353-62.
10. Ali SI. The significance of flora with special reference to Pakistan. *Pak J Bot*. 2008; 40:967-71.
11. Chaudhri SK, Arshad M, Ahmed E, Mustafa G, Fatima S, Akhtar S, et al. Ethnobotanical evaluation of grasses from Thal Desert, Pakistan. *Arc Des Sci*. 2013; 66(5):248-55.
12. Samreen U, Ibrar M, Badshah L. Ethnobotanical usages of Poaceae family in district Bannu. *Curr Opin Agricult*. 2015;4(1):1-4.
13. Anonymous. District Census Report of Charsadda. PCO, Govt. of Pakistan. 1998.
14. Nasir Y, Ali SI. Flora of Pakistan. PARC, Islamabad, Pakistan. 1970-89.
15. Stewart RR. An annotated catalogue to the vascular plants of west Pakistan and Kashmir. Fakhri Printing Press, Karachi. 1972.
16. Ali SI, Nasir Y. Flora of Pakistan, Karachi and Islamabad, 191-193.
17. Ali SI, Qaiser M. Flora of Pakistan. Department of Botany, University of Karachi. 1993-2018.
18. Raunkiaer C. The life forms of plants and Statistical Plant Geography. Clarendon Press, Oxford. 1934.
19. Hussain F. Field and Laboratory Manual of Plant Ecology. University Grant Commission Islamabad, Pakistan. 1989.
20. Yen C, Yang JL. Historical review and prospect of taxonomy of tribe Triticeae Dumortier (Poaceae). *Breed Sci*. 2009; 59:513-8.
21. Ahmad F, Khan MA, Ahmad M, Zafar M, Nazir A, Marwat SK. Taxonomic studies of grasses and their indigenous uses in the salt range area of Pakistan. *Afr J Bio*. 2009; 8(2):231-49.
22. Rafay M, Khan RA, Yaqoob S, Ahmad M. Floristic composition of grass species in the degrading Rangelands of Cholistan Desert. *Pak J Agri Sci*. 2013; 50(4):599-603.
23. Ahmad F, Khan MA, Ahmad M, Zafar M, Mahmood T, Jabeen A, et al. Ethnomedicinal uses of grasses in Salt Range Region of Northern Pakistan. *J Med Plant Res*. 2010; 4(5):362-9.
24. Ullah Z, Khan MA, Ahmad M, Zafar M, Ullah K. Systematic implications of foliar epidermis in Andropogoneae (Poaceae) from Hindukush-Himalayas Pakistan. *J Med Plant Res*. 2011; 5(6):949-57.
25. Khan M, Hussain F, Musharaf S. Floristic Composition and Biological Characteristics of the Vegetation of Sheikh Maltoon Town District Mardan, Pakistan. *Annu Res Rev Biol*. 2013; 3(1):31-41.
26. Ilyas M, Qureshi R, Shinwari ZK, Arshad M, Mirza SN, Haq ZU. Some ethnoecological aspects of the plants of Qalagai Hills, Kabal Valley, Swat, Pakistan. *Int J Agric Biol*. 2013; 15(5):801-10.
27. Ali A, Badshah L, Hussain F, Shinwari ZK. Floristic composition and ecological characteristics of plants of Chail Valley, District Swat, Pakistan. *Pak J Bot*. 2016; 48(3):1013-26.
28. Khan NA, Shah M. Eco-taxonomic study of family Brassicaceae of District Mardan, Khyber Pukhtoon-Khwa, Pakistan PJLS. 2013; 1(1):28-35.
29. Sher Z, Hussain F, Badshah L, Wahab M. Floristic composition, communities and ecological characteristics of weeds of wheat fields of Lahore, District Swabi, Pakistan. *Pak J Bot*. 2011; 43(6):2817-20.
30. Perveen A, Qaiser M. Pollen flora of Pakistan-LXIX. Poaceae. *Pak J Bot*. 2012; 44(2):747-56.
31. Zereen A, Bokhari TZ, Khan ZUD. Ethnobotanical usages of grasses in central Punjab-Pakistan. *Int J Sci & Eng Res*. 2013; 4(9):452-61.
32. Osman A, Zaki Z, Hamed S, Hussein N. Numerical taxonomic study of some tribes of gramineae from Egypt. *Am J Plant Sci*. 2011; (2):1-14.
33. Gould FW, Shaw RB. "Grass systematics" Second edition Texas A & M University Press College Station the United States of America. 1983.