

1 **First detection of *Anopheles stephensi* in Ghana using molecular surveillance**

2 Yaw A. Afrane¹, Anisa Abdulai¹, Abdul R. Mohammed¹, Yaw Akuamoah-Boateng¹, Christopher
3 Mfum Owusu-Asenso¹, Isaac K. Sraku¹, Stephina A. Yanney¹, Keziah Malm² & Neil F. Lobo³.

4

5 **Affiliations**

6 ¹University of Ghana, Accra, Ghana

7 ²Ghana Health Service, Accra, Ghana

8 ³University of Notre Dame, Notre Dame, IN, USA

9

10 **Abstract**

11 The invasive *Anopheles stephensi* mosquito has been rapidly expanding in range in Africa over
12 the last decade, spreading from the Indian sub-continent to several East African countries
13 (Djibouti, Ethiopia, Sudan, Somalia and Kenya) and now in West Africa, Nigeria. The rapid
14 expansion of this invasive vector poses a major threat to current malaria control and elimination
15 efforts. In line with the WHO's strategy to stop the spread of this invasive species by enhancing
16 surveillance and control measures in Africa, we incorporated morphological and molecular
17 surveillance of *An. stephensi* into routine entomological surveillance of malaria vectors in the
18 city of Accra, Ghana. Here, we report on the first detection of *An. stephensi* in Ghana. *An.*
19 *stephensi* mosquitoes were confirmed using PCR and sequencing of the ITS2 regions. These
20 findings highlight the urgent need for increased surveillance and response strategies to mitigate
21 the spread of *An. stephensi* in Ghana.

22

23 **Background**

24 *Anopheles stephensi* is an invasive mosquito species originating from parts of Southeast
25 Asia and the Arabian Peninsula (1). The ability of this species to utilize artificial containers for
26 larval sites has made this vector capable of thriving in urban areas, setting them apart from other
27 major malaria vectors that primarily breed in rural areas (2). *An. stephensi* is capable of
28 transmitting both *P. falciparum* and *P. vivax* (1,3). Over the last decade, *An. stephensi* has been
29 expanding in range and has now been documented in several countries in Africa (4). It was first
30 detected in Djibouti, the Horn of Africa in 2012, where it was implicated in an urban malaria
31 outbreak (5). It was also detected in Ethiopia in 2016 and 2018, where it is well-established in
32 eastern Ethiopia (6,7). *An. stephensi* was subsequently detected in Sudan (2016), Somalia (2019),
33 Nigeria (2020) and Kenya (2023) (4,5,7–9).

34 The rapid expansion of *An. stephensi* in sub-Saharan Africa (SSA) which has the highest
35 burden of malaria globally, is a major public health concern. The spread of this invasive species
36 could lead to high malaria transmission in urban areas though malaria is typically a rural disease.
37 In Djibouti, *An. stephensi* mosquitoes are thought to be responsible for an increase in malaria
38 incidence, from 1 to 4 cases in 2013 to 49.8 cases/1,000 persons in 2019 (10). With over 40% of
39 the population in SSA living in urban areas, the spread of *An. stephensi* into these receptive areas
40 will currently put about 126 million people at risk of malaria (2,4). Also, this invasive vector has
41 been found to be resistant to insecticides further increasing the risk of malaria transmission in
42 combination with limiting intervention efficacy (11–13). *An. stephensi* mosquitoes from Somalia
43 were found to be resistant to several insecticide classes, especially pyrethroids (13).

44 The World Health Organization issued an initiative in 2022 aimed at strengthening
45 surveillance, increasing collaborations and prioritizing research to help stop the spread of *An.*
46 *stephensi* in SSA and find strategies to combat or eliminate the vector in areas that have been
47 invaded (4). Morphological and molecular surveillance of *An. stephensi* were incorporated into
48 routine entomological surveillance of malaria vectors in the city of Accra, Ghana, following the
49 WHO initiative, that seeks to take coordinated action to limit the spread of this invasive species
50 by improving surveillance and control efforts in Africa (4). This study outlines the entomological
51 surveillance that documents the identification of this invasive species in Ghana.

52 **Methods**

53 **Study Sites**

54 Sampling was conducted in 8 sites within the city of Accra, Ghana, as part of routine
55 entomological surveillance from January 2022 to July 2022. These sites were categorized to
56 represent different environments and socio-economic status; irrigated urban farming (IUF) sites
57 (Tuba and Dzorwulu), lower socioeconomic (LS) sites (Nima and Chorkor), middle
58 socioeconomic (MS) sites (Dansoman and Teshie) and high socioeconomic (HS) sites (East
59 Legon and Cantonment). Tuba ($5^{\circ} 30' 47''\text{N}$ $0^{\circ} 23' 16''\text{W}$) and Dzorwulu
60 ($5^{\circ}36'53''\text{N}$ $0^{\circ}12'03''\text{W}$) are sites where irrigated farming is practised all year round leading to
61 the creation of mosquito breeding sites. Socio-economic sites were classified based on their
62 population, housing structures and the availability of proper drainage and sanitation systems.
63 Low socioeconomic sites, Nima ($5^{\circ} 35' 0''\text{N}$, $0^{\circ} 12' 0''\text{W}$) and Chorkor ($5^{\circ}31'39''\text{N}$ $0^{\circ}13'55''\text{W}$)
64 are densely populated slums with poor sanitation and inadequate drainage systems. Dansoman
65 ($5^{\circ} 33' 0''\text{N}$, $0^{\circ} 16' 0''\text{W}$) and Teshie ($5^{\circ} 35' 0''\text{N}$, $0^{\circ} 6' 0''\text{W}$) are middle socioeconomic sites
66 with more standard residential structures with well-designed drainage and sanitation systems but

67 poorly managed. High socioeconomic sites, Cantonment ($5^{\circ} 35' 10''$ N, $0^{\circ} 10' 35''$ W) and East
68 Legon ($5^{\circ} 38' 16.39''$ N, $0^{\circ} 9' 40.33''$ W) have proper housing structures with good sanitation and
69 drainage systems. Accra is the capital city of Ghana and it is the most populous. Accra lies in the
70 coastal savannah zone of Ghana, with an annual mean temperature of 26.5°C and an average
71 annual precipitation of 787 mm. Figure 1 shows a map of the routine surveillance sites.

72 **Figure 1:** Routine entomological surveillance sites in Accra, Ghana

73

74 **Larval Habitat Characterization**

75 Larval habitats identified in each site were grouped into two; natural habitats and man-
76 made habitats. The man-made habitats included ditches, footprints, tyres and tyre tracks while
77 natural habitats included swamps, furrows and natural ponds. The land-use type where the larval
78 habitats were found was recorded. The geographical coordinates of each larval habitat were
79 recorded using a GPS device (Garmin eTrex 10 Worldwide Handheld GPS Navigator).

80

81 **Larval mosquito sampling and densities**

82 Larval sampling was conducted for all potential breeding sites using the standard WHO
83 dippers and small ladles for smaller habitats (14). The total number of dips was recorded as
84 described by Hinne *et al.* (14). The number of larvae and pupae was recorded, and the larval
85 density was calculated as the ratio of the number of larvae collected per dip (14,15). Larval
86 sampling was done in every site monthly for the dry (February – March) and rainy (June – July)
87 seasons of 2022. Larval samples were transported to the insectary at the Department of Medical
88 Microbiology, University of Ghana Medical School, where they were raised into adults for
89 morphological identification.

90 **Morphological and molecular identification of mosquito samples**

91 Adults raised from larvae sampled were morphologically identified to species using their
92 palps, wings, abdomen and legs using the keys of Nagpal and Sharma (16) and Coetzee (17).
93 DNA was extracted from the mosquito legs using the alcohol precipitation method (18). PCR
94 amplifications were carried out to detect *An. stephensi* using primers targeting the ITS region
95 based on previously described protocols by Singh et al. (19). Members of the *An. gambiae* s.l
96 complex were further identified by PCR using the extracted DNA as the template. Four sets of
97 oligonucleotide primers (*An. gambiae*, *An. arabiensis*, *An. melas* and universal primer) were
98 used in the PCR for the identification of members of the *Anopheles gambiae* s.l species complex
99 (20). *Anopheles gambiae* s.s and *An. coluzzii* were distinguished by PCR-RFLP using previously
100 described protocols (21).

101

102 **Molecular Species Identification - Sequencing**

103 After PCR, mosquitoes that did not produce bands indicative of the *An. gambiae* complex
104 (n=11) were subjected to Sanger sequencing of the ITS2 regions and analysed based on
105 comparisons to the NCBI database (22).

106

107 **Results**

108 ***Anopheles* larval densities in different habitat types across different sites**

109 Ten (10) different habitat types were encountered during the larval sampling. The highest
110 larval density during the dry and wet seasons was observed in drainage ditches from Chorkor
111 (9.72 larvae/dip) and swamps in Teshie (20.3 larvae/dip) respectively. Drainage ditches were
112 consistently productive across almost all the sites in both seasons. The most productive habitat

113 type across all the sites was drainage ditches. However, habitat types such as footprints, swamps
114 and tyre tracks also recorded low to high larval densities in some of the sites (0.25 to 20.3
115 larvae/dip). In Tuba, Nima and Dansoman, where *An. stephensi* mosquitoes were found, and
116 some of the more productive habitats were drainage ditches (1.45 to 8.39 larvae/dip) and tyre
117 tracks (0.77 to 14.96 larvae/dip) (Table 1). Figure 2 shows habitats where *An. stephensi*
118 mosquitoes were found. *An. gambiae* s.l. larval density was significantly associated with season
119 ($t = 4.14$, $P = 0.00$).

120

121 **Table 1:** *Anopheles* larval density in the dry and rainy seasons

Habitat type	Sites/Seasons															
	Tuba		Dzorwulu		Nima		Chorkor		Dansoman		Teshie		East Legon		Cantonments	
	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
Man-made pond	5.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Car tyre	0	0	0	0	0	0	0	0	0	0	0	0	2.3	0	0	0
Drainage ditch	6.08	0	1.68	0.59	8.39	2.25	9.72	4.35	1.83	1.45	6.7	5.78	1.14	0.9	2.33	1.43
Footprint	0	1.6	0	3.53	0	1.97	0	6.44	0	4.52	0	5.67	0	0	0	0
Furrow	3.18	6.27	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Natural pond	0	0	6.15	0	0	0	0	0	0	0	0	0	0	0	0	0
Puddle	0	4.16	0	0	0	0	0	0	0	4	0	4.06	0	0	0	0
Swamp	0	0	5.75	1.27	0	2.67	0	0	0	2.31	0	20.3	0	1	0	2.85
Tyre track	12	14.96	0	0	0	2.69	0	3	0	3.16	0.77	8.95	0	1.52	0	1
Well	0.96	0	0	0	0	0	7.5	4	0	0	0	0	0	0.25	0	0

122 Values in bold represent habitat types where *An. stephensi* larvae were found.

123

124 **Figure 2:** Habitats where *An. stephensi* larvae were found. **a** Dug-out well (Tuba), **b** drainage
125 ditches (Dansoman), **c** swamp (Nima)

126

127 **Species distribution of *Anopheles* mosquitoes**

128 A total of 1169 mosquitoes obtained from the larval sampling were identified using
129 morphological keys and PCR methods for speciation. Out of this number, 551(47.13 %) were *An.*
130 *gambiae* s.s, 582 (49.79 %) *An. coluzzii* and 32 (2.74%) Hybrids. Four samples (0.34 %) were
131 identified as *An. stephensi* using a modified PCR-based method by Singh et al. (19) and
132 sequencing (22)(Table 2). Results from the NCBI blast showed that the *An. stephensi* samples
133 had 100% sequence similarity with *An. stephensi* voucher A268 5.8S ribosomal RNA gene and
134 internal transcribed spacer 2 (GenBank: MH650999.1) (Table 3).

135 **Table 2:** *Anopheles* larvae species distribution across different sites

Site	Site Category	Species, no. (%)				
		<i>An. gambiae</i>	<i>An. coluzzii</i>	Hybrids	<i>An. stephensi</i>	Total
Tuba	IUF	197 (61)	116 (35.9)	8 (2.5)	2 (0.6)	323 (100)
Dzorwulu		5 (31.3)	11 (68.7)	0	0	16 (100)
Nima	LS	67 (33.5)	120 (60)	12 (6)	1 (0.5)	200 (100)
Chorkor		17 (29.3)	41 (70.7)	0	0	58 (100)
Dansoman	MS	7 (7.1)	84 (85.7)	6 (6.1)	1(1.1)	98 (100)
Teshie		166 (46.62)	186 (52.2)	3 (1.2)	0	355 (100)
East Legon	HS	77 (77.7)	19 (19.3)	3 (3)	0	99 (100)
Cantonment		15 (75)	5 (25)	0	0	20 (100)
Total		551 (47.13)	582 (49.79)	32 (2.74)	4 (0.34)	1169 (100)

136

137 **Table 3:** Sequencing results of suspected *An. stephensi* samples

Sample ID	ITS2 Contig	NCBI blast result	GenBank accession number of best match	%Identity match	Final Species ID	GenBank accession numbers
DN 035	283	<i>An. stephensi</i> voucher	MH650999.1	100%	<i>An. stephensi</i>	OR711900
TP 002S	283	<i>An. stephensi</i> voucher	MH650999.1	100%	<i>An. stephensi</i>	OR711899

138

139

140

141 **Discussion**

142 The invasion of *An. stephensi* in sub-Saharan Africa, which bears the world's highest malaria
143 burden, represents a significant concern for public health. This is because of their ability to thrive
144 in urban areas and transmit both *P. falciparum* and *P. vivax*. Here we report the first detection of
145 *An. stephensi* in Ghana using molecular surveillance. *An. stephensi* was found in larval mosquito
146 samples from urban areas of Accra, Ghana, specifically Tuba, Dansoman and Nima.

147 While the vector's spread could have occurred through land borders, air travel, or
148 seaports, it is noteworthy that in Ghana, it was discovered at considerable distances from these
149 points of entry, suggesting possible introduction via long-distance migration (Atieli et al 2023),
150 local transportation, and/or human activities. Similar studies in Eastern Ethiopia have reported
151 the collection of *An. stephensi* samples far inland along transportation routes that are not
152 proximate to any seaport entry, underscoring the role of long-distance migration, local
153 transportation, and human activities in driving the dispersal of this invasive species (23). This
154 highlights the need to expand surveillance efforts to determine the distribution and spread of *An.*
155 *stephensi* in Ghana. It is likely that this invasive species may have spread to other parts of Accra
156 as well as other regions of Ghana.

157 *Anopheles stephensi* is known to breed in various types of larval habitats, including man-
158 made water containers such as plastic tanks, cisterns, barrels, discarded tires, and plastic
159 receptacles, as well as freshwater pools such as stream margins and irrigation ditches.
160 Remarkably, in this study, *An. stephensi* was found breeding in habitats distinct from the typical
161 ones observed in Asia and East Africa (10,24). In Ghana, this vector was identified in dug-out

162 wells within irrigated vegetable farms and roadside ditches. Additionally, it was observed to
163 breed alongside *An. gambiae* s.s and *An. coluzzii*, whereas it is commonly associated with *Aedes*
164 mosquitoes.

165 Expanding surveillance efforts for *An. stephensi* in both urban and rural areas should be a
166 primary focus of Ghana's National Malaria Elimination Program. Such efforts are crucial to
167 curbing the dissemination of this invasive species within Ghana, which could potentially elevate
168 malaria prevalence in Accra, traditionally considered a low malaria transmission zone within
169 Ghana(25). The rapid expansion of *An. stephensi* also raises the risk of its colonization in rural
170 regions of Ghana, where malaria prevalence is already high, resulting in intensified malaria
171 transmission, disease morbidity, and mortality. Incorporating molecular-based detection tools
172 into surveillance systems is paramount for the early detection of invasive malaria vectors,
173 preventing their adaptation and local establishment(8).

174

175 Conclusion

176 The first report of the invasion of *An. stephensi* in Accra, Ghana, represents a major
177 public health concern, given the heightened risk of urban malaria outbreaks. It is imperative to
178 reinforce surveillance and response strategies in both rural and urban settings across Ghana, with
179 specific attention directed towards *Anopheles stephensi*, to mitigate the spread of this invasive
180 species.

181

182 Acknowledgement

183 This study was supported by grants from the National Institute of Health (NIH: R01
184 A1123074 and D43 TW 011513).

185 YAA, KM and NFL were responsible for the study design, supervised the data collection
186 and contributed to the writing of the manuscript. AA, ARM, YAB, CMO-A, SAY and IS
187 performed the data collection, laboratory work and analysis. AA, YAA and NFL drafted the
188 manuscript. All the authors read and approved the final manuscript.

189

190 **Biography**

191 Yaw A. Afrane is a Professor of Vector Biology at University of Ghana, Accra, Ghana. His
192 research focus on vector and parasite biology and epidemiology with over 15 years of research
193 experience in vector-borne diseases.

194 **Address for Correspondence**

195 Yaw A. Afrane,

196 Email: yafrane@ug.edu.gh (YAA)

197 Phone No: +233542286113

198

199 **References**

- 200 1. Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, et al.
201 The dominant *Anopheles* vectors of human malaria in the Asia-Pacific region: occurrence
202 data, distribution maps and bionomic précis. *Parasit Vectors*. 2011;4(1):1–46.
- 203 2. Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, et al. A new
204 malaria vector in Africa: Predicting the expansion range of *Anopheles stephensi* and
205 identifying the urban populations at risk. *Proc Natl Acad Sci* [Internet]. 2020 Oct
206 6;117(40):24900–8. Available from: <https://doi.org/10.1073/pnas.2003976117>

207 3. Thomas S, Ravishankaran S, Justin NA, Asokan A, Mathai MT, Valecha N, et al. Resting
208 and feeding preferences of *Anopheles stephensi* in an urban setting, perennials for malaria.
209 Malar J. 2017;16(1):1–7.

210 4. World Health Organization. WHO initiative to stop the spread of *Anopheles stephensi* in
211 Africa. 2022;4. Available from: <https://www.who.int/publications/i/item/WHO-UCN-GMP-2022.06>

213 5. Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector *Anopheles*
214 *stephensi* and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.
215 Acta Trop. 2014;139:39–43.

216 6. Balkew M, Mumba P, Dengela D, Yohannes G, Getachew D, Yared S, et al. Geographical
217 distribution of *Anopheles stephensi* in eastern Ethiopia. Parasit Vectors. 2020;13(1):1–8.

218 7. Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First
219 detection of *Anopheles stephensi* Liston, 1901 (Diptera: culicidae) in Ethiopia using
220 molecular and morphological approaches. Acta Trop. 2018;188:180–6.

221 8. Ahmed A, Khogali R, Elnour M-AB, Nakao R, Salim B. Emergence of the invasive
222 malaria vector *Anopheles stephensi* in Khartoum State, Central Sudan. Parasit Vectors
223 [Internet]. 2021;14(1):511. Available from: <https://doi.org/10.1186/s13071-021-05026-4>

224 9. Ochomo EO, Milanoi S. Molecular surveillance leads to the first detection of *Anopheles*
225 *stephensi* in Kenya. Research square. [Preprint]. 2023 [cited 2023 Sep 9]. Available from:
226 <https://www.researchsquare.com/article/rs-2498485/v1>

227 10. Pommier de Santi V, Khaireh BA, Chiniard T, Pradines B, Taudon N, Larréché S, et al.

228 Role of *Anopheles stephensi* Mosquitoes in Malaria Outbreak, Djibouti, 2019.

229 Emerg Infect Dis J [Internet]. 2021;27(6):1697. Available from:
230 https://wwwnc.cdc.gov/eid/article/27/6/20-4557_article

231 11. Acford-Palmer H, Phelan JE, Tadesse FG, Kristan M, Collins E, Spadar A, et al.
232 Identification of two insecticide resistance markers in Ethiopian *Anopheles stephensi*
233 mosquitoes using a multiplex amplicon sequencing assay. Sci Rep [Internet].
234 2023;13(1):5612. Available from: <https://doi.org/10.1038/s41598-023-32336-7>

235 12. Enayati A, Hanafi-Bojd AA, Sedaghat MM, Zaim M, Hemingway J. Evolution of
236 insecticide resistance and its mechanisms in *Anopheles stephensi* in the WHO Eastern
237 Mediterranean Region. Malar J [Internet]. 2020;19(1):258. Available from:
238 <https://doi.org/10.1186/s12936-020-03335-0>

239 13. Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, et al. Insecticide
240 resistance in *Anopheles stephensi* in Somali Region, eastern Ethiopia. Malar J [Internet].
241 2020;19(1):180. Available from: <https://doi.org/10.1186/s12936-020-03252-2>

242 14. Hinne IA, Attah SK, Mensah BA, Forson AO, Afrane YA. Larval habitat diversity and
243 Anopheles mosquito species distribution in different ecological zones in Ghana. Parasit
244 Vectors [Internet]. 2021;14(1):193. Available from: <https://doi.org/10.1186/s13071-021-04701-w>

246 15. Kweka EJ, Munga S, Himeidan Y, Githeko AK, Yan G. Assessment of mosquito larval
247 productivity among different land use types for targeted malaria vector control in the
248 western Kenya highlands. Parasit Vectors [Internet]. 2015;8(1):356. Available from:
249 <https://doi.org/10.1186/s13071-015-0968-1>

250 16. Nagpal, B. N, Sharma V. Indian Anophelines [Internet]. Oxford and IBH publishing co.
251 pvt.ltd; 1995. 426 p. Available from:
252 https://nimr.org.in/images/pdf/Indian_Anophelines_compressed.pdf

253 17. Coetzee M. Key to the females of Afrotropical *Anopheles* mosquitoes (Diptera:
254 Culicidae). Malar J [Internet]. 2020;19(1):70. Available from:
255 <https://doi.org/10.1186/s12936-020-3144-9>

256 18. Machani MG, Ochomo E, Zhong D, Zhou G, Wang X, Githeko AK, et al. Phenotypic,
257 genotypic and biochemical changes during pyrethroid resistance selection in *Anopheles*
258 *gambiae* mosquitoes. Sci Rep [Internet]. 2020;10(1):19063. Available from:
259 <https://doi.org/10.1038/s41598-020-75865-1>

260 19. Singh OP, Kaur T, Sharma G, Kona MP, Mishra S, Kapoor N, et al. Molecular Tools for
261 Early Detection of Invasive Malaria Vector *Anopheles stephensi* Mosquitoes. Emerg
262 Infect Dis. 2023;29(1):36–44.

263 20. Scott JA, Brogdon WG, Collins FH. Identification of Single Specimens of the *Anopheles*
264 *Gambiae* Complex by the Polymerase Chain Reaction. Am J Trop Med Hyg.
265 1993;49(4):520–9.

266 21. Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, et al. Distribution of
267 knock-down resistance mutations in *Anopheles gambiae* molecular forms in west and
268 west-central Africa. Malar J. 2008;7(1):74.

269 22. St. Laurent B, Cooke M, Krishnankutty SM, Asih P, Mueller JD, Kahindi S, et al.
270 Molecular Characterization Reveals Diverse and Unknown Malaria Vectors in the
271 Western Kenyan Highlands. Am Soc Trop Med Hyg [Internet]. 2016;94(2):327–35.

272 Available from: <https://www.ajtmh.org/view/journals/tpmd/94/2/article-p327.xml>

273 23. Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, et al. An update on the
274 distribution, bionomics, and insecticide susceptibility of *Anopheles stephensi* in Ethiopia,
275 2018–2020. *Malar J*. 2021;20(1):1–13.

276 24. Thomas S, Ravishankaran S, Justin JA, Asokan A, Mathai MT, Valecha N, et al.
277 Overhead tank is the potential breeding habitat of *Anopheles stephensi* in an urban
278 transmission setting of Chennai, India. *Malar J* [Internet]. 2016;15(1):274. Available from:
279 <https://doi.org/10.1186/s12936-016-1321-7>

280 25. NMCP. 2021 Annual Report: National Malaria Control Program. 2022;

281

282

283

KEY

- Sahel savannah
- Forest zone
- Coastal savannah
- Collection sites
- An. stephensi* sites

a

bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.01.569589>; this version posted December 1, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

b**c**