

1 **Neotelomeres and Telomere-Spanning Chromosomal Arm Fusions in Cancer 2 Genomes Revealed by Long-Read Sequencing**

3
4 Kar-Tong Tan^{1,2,3}, Michael K. Slevin^{1,4}, Mitchell L. Leibowitz^{1,2,3}, Max Garrity-Janger^{1,2,3},
5 Heng Li^{5,6,*}, Matthew Meyerson^{1,2,3,4,7,*}

6 ¹Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

7 ²Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

8 ³Department of Genetics, Harvard Medical School, Boston, MA 02215, USA

9 ⁴Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02215, USA

10 ⁵Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA

11 ⁶Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA

12 ⁷Lead contact

13
14 *Correspondence: hli@jimmy.harvard.edu (H.L.), matthew_meyerson@dfci.harvard.edu
15 (M.M.)

16 **Abstract**

17
18 Alterations in the structure and location of telomeres are key events in cancer genome
19 evolution. However, previous genomic approaches, unable to span long telomeric
20 repeat arrays, could not characterize the nature of these alterations. Here, we applied
21 both long-read and short-read genome sequencing to assess telomere repeat-
22 containing structures in cancers and cancer cell lines. Using long-read genome
23 sequences that span telomeric repeat arrays, we defined four types of telomere repeat
24 variations in cancer cells: neotelomeres where telomere addition heals chromosome
25 breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres,
26 and peri-centromeric fusions with adjoined telomere and centromere repeats. Analysis
27 of lung adenocarcinoma genome sequences identified somatic neotelomere and
28 telomere-spanning fusion alterations. These results provide a framework for systematic
29 study of telomeric repeat arrays in cancer genomes, that could serve as a model for
30 understanding the somatic evolution of other repetitive genomic elements.

31 **Keywords**

32 Telomere, long-read sequencing, neotelomeres, arm fusions, repetitive elements

42 **Introduction**

43

44 Cancer is driven by alterations to the genome. The continued invention and
45 application of new methods has enabled the characterization of genomic alterations in
46 cancer with much greater scale and resolution. The development of massively parallel
47 short-read sequencing over the past fifteen years has greatly accelerated our efforts to
48 characterize the cancer genome by enabling the detailed and rapid characterization of
49 somatic and germline variants in tens of thousands of samples¹⁻⁷, and led directly to the
50 discovery of many cancer driving genetic alterations that are now being targeted by
51 emerging therapeutics. The recent development and application of linked-read genome
52 sequencing of long molecules with barcoded short-reads then facilitated the
53 characterization of more complex structural variations, and of genomic alterations at the
54 haplotype-level in cancer⁸⁻¹².

55 Despite these advances in genome technology, the identification and
56 characterization of somatic alterations at repetitive elements, which constitute
57 approximately half the human genome¹³⁻¹⁵, still remain significant challenges. Repetitive
58 elements and duplicated sequences in the human genome are typically 100 to 8000 bp
59 in size¹⁵, although centromeres are much longer arrays of repetitive elements, and can
60 be broadly classified into three main classes. First, repetitive elements include tandem
61 repeats of specific DNA sequences^{15,16}, including short tandem repeats (1-6 bp repeat
62 unit) in the form of microsatellites, and longer repeat units forming minisatellites¹⁶.
63 Telomeres and centromeres, which are key structures in a chromosome, are largely
64 comprised of long tandem repeats¹⁵. Second, repetitive elements include interspersed
65 repeats, identical or nearly identical sequences spread out across the human genome¹⁵,
66 including short interspersed nuclear elements (SINEs; typically 100-300 bp in length)
67 such as Alu repeats, and long interspersed nuclear elements (LINEs, typically >300 bp
68 in length) such as L1 repeats¹⁵. Third, “low copy repeats”, or segmental duplicates, also
69 occur in the genome. These large repetitive sequences are blocks of DNA that are 1-
70 400 kilobases in size, occur as at least two copies, share high sequence similarity
71 (>90%)^{17,18}, and are potential hotspots of chromosomal rearrangements and
72 instability^{19,20}. Although sophisticated computational methods have been developed to
73 infer somatic alterations in repetitive regions using short-reads, comprehensive
74 characterization of somatic alterations in these regions still cannot be completely
75 achieved.

76 Telomeres are a salient example of highly repetitive structures of particular
77 importance in cancer that cannot yet be readily resolved by current sequencing
78 methodologies. Human telomeres, which act as protective caps on the ends of
79 chromosomes are composed of ~2-10 kb (TTAGGG)_n tandem repeats^{21,22}. Somatic
80 integration of telomeric sequences into non-telomeric DNA in tumor samples has also
81 been observed²³, though the origin and structures of these sequences remain unclear.
82 As the short-read sequencing that is typically performed, such as 2 x 150 bp paired
83 reads, is unable to fully span the 2 kb – 10 kb long highly repetitive telomeres, much
84 remains unknown about telomere structures in cancer.

85 The study of telomere structure is important in cancer genomics because
86 telomere maintenance is crucial in cancer pathogenesis. Cancer cell immortality
87 requires a mechanism to activate telomerase or otherwise maintain telomeres, and is a

88 key “hallmark of cancer”^{24,25}. Telomerase, the enzyme which adds telomeric repeats to
89 the ends of chromosomes, has been estimated to undergo reactivation in as many as
90 90% of human cancers and was shown experimentally to be critical for malignant
91 transformation^{26–31}. The reactivation of telomerase activity in cancer is driven in part by
92 promoter mutations, amplifications and translocations in the telomerase catalytic subunit
93 gene, *TERT*^{32–35}, and also by amplification of the RNA component of telomerase,
94 *TERC*, in cancer^{35,36}. In some cancer types, genetic inactivation of the *ATRX* and *DAXX*
95 genes are also associated with telomere elongation, independent of telomerase, by the
96 alternative lengthening of telomeres (ALT) pathway^{37,38}.

97 The emergence of long-read genome sequencing now makes it possible to
98 analyze somatic alterations in highly repetitive regions, such as telomeric repeats, with
99 greater precision and detail. Recently, the first telomere-to-telomere human genome
100 was assembled using long-reads that can span large, complex, or repetitive genomic
101 sequences, including telomeric repeats. This assembly relied upon PacBio high-fidelity
102 (HiFi) sequencing, which can generate long reads with an accuracy of 99.8% and an
103 average length of 13.5 kb³⁹, as well as ultra-long-read nanopore sequencing, which can
104 generate reads of over 100 kb⁴⁰. Using long reads, the repetitive telomeres can be
105 spanned and mapped uniquely to the human genome. However, long-read sequencing
106 is still significantly more expensive than short-read sequencing. Given that high-
107 coverage short-read genome sequences are now widely available, a cost-effective
108 strategy at this time is to leverage short-read sequencing datasets to identify samples
109 with potentially interesting telomeric alterations *in silico*, and to subject these samples to
110 more detailed analysis by long-read sequencing.

111 Here, we explored the structure of previously unresolved telomeric events in the
112 cancer genome. We used large databanks of short-read genome sequencing datasets
113 to identify candidate telomeric alterations in the genome of 326 cancer cell line and 95
114 primary lung adenocarcinoma samples using TelFuse, a computational method to
115 profile ectopic intra-chromosomal telomeric repeat sites. Then, using PacBio HiFi and
116 Nanopore long-read genome sequencing in three cell lines with high numbers of
117 putative telomeric variants, we resolved the structure of these alterations in combination
118 with spectral karyotyping, copy number and allelic ratio analysis. Long-read genome
119 sequencing of these samples led directly to the discoveries of neotelomeres, telomere-
120 spanning chromosomal arm fusion events, and complex telomeric alterations that were
121 not previously resolvable using short-read genome sequencing. These findings also
122 validate recent experimental observations on neotelomere formation⁴¹. Our study
123 creates a framework that can be applied to the examination of other highly repetitive
124 sequences that are likely to be of biological significance in disease, including
125 centromere arrays, transposable element insertions, and microsatellite repeats.

126
127

128 **Results**

129

130 Identification of ectopic telomeric repeat sequences

131

132 Telomeric repeat arrays within cancer genomes can be found at their original
133 position at chromosomal termini (**Figure 1A**), or at new positions within the genome
134 (**Figure 1B**). Telomeric repeats at new genomic locations may be in the same
135 orientation as the original telomeric repeat, with reference to the adjacent chromosomal
136 sequence (i.e. standard orientation), or in an inverted orientation (**Figure 1B**).
137 Significantly, telomeric repeats oriented in different directions may represent different
138 chromosome structures and may originate via highly distinct biological processes.

139 We developed the analytic method, TelFuse, to identify ectopic telomeric repeats
140 within the cancer genome, and to estimate telomere length of each chromosomal arm
141 with long-read sequencing respectively (**Figure S1A**). TelFuse identifies ectopic
142 telomeric repeat sequences (TTAGGG)_n or (CCCTAA)_n that are absent from the
143 germline and mapped to intrachromosomal regions (i.e. at least 500 kb from
144 chromosomal ends) (**Methods, Figure S1A-B**). TelFuse begins by identifying read pairs
145 that contain at least 2 perfect consecutive telomeric repeats (at least 12 base pairs of
146 telomere sequence) with adjacent sequences that map to intra-chromosomal sites.
147 Paired read sequences that are fully aligned to the reference genome are removed,
148 eliminating telomeric repeats in the reference, which include ancient chromosome
149 fusion events^{42,43}. To ensure the specificity of our calls, we also developed a series of
150 filters (**Figure S1A-B, Methods**) to remove spurious sites caused by artefacts induced
151 during the mapping process (**Figure S1A-B**), assessed by a variety of quality control
152 metrics (**Methods**). Those sites that pass all filters and are at least 500 kb from the
153 GRCh38 reference genome chromosome terminus, a sufficient distance to avoid sub-
154 telomere sequences⁴⁴⁻⁴⁶, are considered candidate sites of ectopic telomere sequence.

155

156 Frequency and genome-wide distribution of candidate ectopic telomere repeat
157 sequences in cancer cell lines inferred from short-read genome sequencing

158

159 To assess the landscape of ectopic telomere repeats in cancer, we began by
160 analysis of cancer cell line data, which allows assessment of multiple cancer types and
161 which provides high sequencing depth due to 100% cancer cell purity. We applied
162 TelFuse to whole genome sequencing datasets from 326 cancer cell line DNA
163 specimens from the Cancer Cell Line Encyclopedia (CCLE)⁷, and detected 240
164 candidate ectopic intra-chromosomal telomeric repeat sequence sites in 34% of cell
165 lines (112/326) (**Figure 1C-D and Table S1 and S2**). Analysis of the orientation of the
166 telomere repeats further defined these candidates as corresponding to 149 candidate
167 sites with telomeric repeat sequences in the standard orientation, and 91 candidate
168 sites with telomeric repeat sequences in the reverse orientation (**Figure 1C-D**). An
169 additional 42 candidate sites with telomeric repeat sequences within softclipped
170 sequences, but not on the first 12 base-pairs, were also detected (**Table S3**); these
171 were not analyzed in depth. These data indicate that genomic events involving telomeric
172 repeat sequences can be readily detected in cancer cell lines from short-read genome
173 sequencing using TelFuse.

174

175 Validation of putative ectopic telomeres by long-read sequencing

176

177 Although short-read sequencing (2 x 101bp for the CCLE dataset⁷) can detect
178 ectopic telomeric sequences, the length and repetitive nature of these sequences,
179 which can span 10 kb in length^{21,22}, renders their structures indecipherable based on
180 short-read data alone, and cannot distinguish between possible modes of generation of
181 these sites. Therefore, we decided to perform high-depth long-read sequencing of
182 selected cell line genomes.

183 We selected the U2-OS osteosarcoma cancer cell line, with 55 candidate
184 telomeric repeat sites from short read sequencing (46 in the standard orientation and 9
185 in the inverse orientation), the Hs-746T gastric carcinoma cell line with 6 candidate
186 events (1 standard and 5 inverse orientation), and the NCI-H1184 small cell lung cancer
187 cell line with 6 candidate events (5 standard and 1 inverted orientation) (**Figure S1C-E**),
188 together with its matched normal sample (NCI-BL1184). These samples were selected
189 due to the high frequencies of ectopic telomeric events (**Figure S1C-E**). Notably, the
190 U2-OS cell line was found to be highly rearranged, with ectopic telomeric sites found
191 near regions with changes in sequencing coverage and allelic ratios (**Figure S2**). We
192 then performed PacBio HiFi and Oxford Nanopore long-read genome sequencing
193 (**Figure 1E**). We achieved a median genomic coverage of 49x, 62x, 65x and 73x for the
194 U2OS, Hs-746T, NCI-BL1184 and NCI-H1184 cell lines respectively with Nanopore
195 long-read genome sequencing (**Figure S3, Table S4 and S5**). With PacBio HiFi
196 sequencing, we achieved a median genomic coverage of 19x, 20x, 19x, and 23x for the
197 same four cell lines using high quality PacBio HiFi reads, and a median coverage of
198 29x, 31x, 33x and 36x when all PacBio reads were considered (**Figure S3, Table S4**
199 **and S5**). Nanopore sequencing data had a median read length of 6-13 kb (N50: 18-21
200 kb), while the PacBio HiFi data had a median read length of 15-17 kb (N50: 16-19 kb)
201 (**Figure S3, Table S4 and S5**). In parallel, to assess chromosomal scale structures of
202 these events, we also performed spectral karyotyping.

203 Long-read sequencing of cancer cell line genomes revealed two major types of
204 structural alterations containing telomere repeat sequences that comprised either
205 telomeric repeat sequences of > 1 kb flanked on one end by chromosomal sequence
206 with no other flanking DNA (seen in 46 of 51 examples sequenced) or telomeric repeat
207 sequences of at least few hundred base-pairs flanked on both sides by chromosomal
208 sequence (seen in 12 of 15 candidate events sequenced). Telomeres flanked on only
209 one-end with chromosomal sequence are consistent with neotelomere structures, which
210 might be generated through telomerase activity⁴¹. Telomeres flanked on both sides with
211 chromosomal sequence are likely to be sites of chromosome fusion or other
212 translocation events.

213

214 Neotelomeres in cancer revealed by long-read genome sequencing

215

216 Long-read sequencing analyses demonstrated that the ectopic telomere repeat
217 sequences in the standard orientation were long and unbounded and therefore
218 consistent with neotelomere addition. For example, a candidate ectopic telomere repeat
219 sequence site adjacent to sequence from chrX:103,320,553 in the U2-OS

220 osteosarcoma cell line was observed to contain at least seven tandem (TTAGGG)_n
221 repeats in the short-read sequencing data (**Figure 2A**), and a reduction in sequencing
222 coverage, corresponding to the position of the telomeric repeats, at this chromosomal
223 position (**Figure 2B**). Upon analysis of this region in long-read sequencing data sets,
224 both PacBio HiFi and Oxford Nanopore, long telomeric repeats of ~3-10kb in the
225 standard orientation could be readily observed (**Figure 2C**), where the variation in
226 telomere length between reads might be explained by active telomere sequence loss or
227 telomere maintenance after DNA replication, in different cells across the population.
228 These data support a model where breakage of the chrXq arm was capped by
229 generation of novel telomeric sequence representing a neotelomere (**Figure 2D**).

230 Another example of a neotelomere is seen in the Hs-746T cell line, within
231 chromosome arm 21p at chr21:10,547,397 where an ectopic telomeric repeat site was
232 observed. Short-read sequencing showed at least six tandem (CCCTAA)_n repeats
233 (**Figure 2E**). At this location, fluctuation in both sequencing coverage and allelic ratios
234 could be observed (**Figure 2F**). Analysis of both PacBio HiFi and Nanopore long-read
235 genome sequencing data again revealed long telomeric repeats (~5-10 kb) in the
236 standard orientation with reference to the break point at this site (**Figure 2G**), lending
237 support to the existence of a neotelomere which had likely formed following breakage of
238 the chr21p arm (**Figure 2H**). Similar observations were made at other ectopic
239 neotelomeric sites, such as chr7:24,302,169 in the U2-OS cell line (**Figure S4A-D**), and
240 chr1:214,460,753 in the NCI-H1184 small cell lung carcinoma cell line (**Figure S4E-H**),
241 further supporting the idea that these ectopic telomeric sites in the standard orientation
242 detected by short-reads represent neotelomere addition events.

243 In all, among 51 sites predicted by TelFuse as containing standard orientation
244 telomere repeat sequences in these three cancer cell lines using short-read genome
245 sequencing data, 46 of these sites could be readily demonstrated to represent long
246 telomere repeats suggestive of neotelomeres, using the long-read genome sequencing
247 data (**Figure 2I, Table S6**). No telomeric long reads could be found at the other 5 sites.
248 Together, our results indicate that short telomeric repeats in the standard orientation,
249 observed with short-read sequencing data, represent neotelomeres with long telomeric
250 repeats as confirmed by long-read genome sequencing.

251 To assess the relationship between neotelomeres and chromosomal alterations,
252 and to support our neotelomere calls, we performed spectral karyotyping of the U2-OS
253 cancer cell line, with detailed karyotyping for ten randomly selected cells (representative
254 cell shown in **Figure S5A**). Integrative analysis of sequencing coverage, allelic ratios
255 and long-read data inferred two copies of chromosome X in U2-OS cells, one complete
256 copy and one truncated chromosome X. Concordant with a neotelomere detected by
257 long-read genome sequencing data (**Figure 2A-D**), a shorter chromosome X with q-arm
258 deletion was observed by spectral karyotyping in 7/10 cells assessed (**Figure 2J**),
259 together with a full-length chromosome X in 10/10 cells karyotyped. Thus, the spectral
260 karyotyping analysis confirms that neotelomeres identified by long-read sequencing can
261 be correlated with chromosomal truncations observed by cytogenetics.

262 We also observed a significant level of chromosomal heterogeneity (**Figure**
263 **S5B-C, Table S7**). Heterogeneities we observed included slight variations in
264 chromosome number between each cell (N=76-80) (**Table S7**) and heterogeneity in
265 translocation events between cells that were concordant with a prior study²⁷.

266 Specifically, while a t(4;22) translocation could be observed in 10/10 cells assessed
267 (**Figure S5C**), a t(15;19) translocation was only observed in 6/10 cells assessed. This
268 cellular heterogeneity might explain why long-read sequencing was unable to validate 5
269 of the 51 candidate sites that were detected in the population of cells sequenced by
270 CCLE. Therefore, heterogeneity in tumor cell populations remains a complication in
271 identifying ectopic telomeric events.

272
273 Telomere repeat-spanning chromosomal arm fusions in cancer resolved by long-read
274 genome sequencing

275
276 We next explored sites with ectopic telomeric repeat sequences found in the
277 inverted orientation with respect to the breakpoint; long-read sequencing revealed that
278 these sites largely represent chromosomal arm fusion events. At one candidate site at
279 position chr4:30,909,846, we observed eight inverted telomeric repeats (CCCTAA)_n
280 (~48 bp) using short-read sequencing data (**Figure 3A**). At this position, a significant
281 change in sequencing coverage and change in allelic ratio were also observed in
282 support of the fusion event (**Figure 3B**). Analyzing this region with both PacBio HiFi and
283 Nanopore long-read genome sequencing, we observed ~650bp of inverted (CCCTAA)_n
284 repeats after the breakpoint (**Figure 3C**), followed by 5-8 kb of sequences on chr22q
285 sub-telomeres (**Figure 3C**). Individual long-reads that cover the whole event suggest
286 that the inverted (CCCTAA)_n repeat sequences formed via the fusion of the chr22q arm
287 with its short telomere to an intra-chromosomal site (**Figure 3D**).

288 We also observed more complex fusion events, including evidence for the
289 formation of a neotelomere followed by a subsequent chromosomal fusion. At
290 chr11:84,769,636, five inverted ectopic telomeric repeats (CCCTAA)_n (~30 bp) were
291 detected at the breakpoint with short-read sequencing (**Figure 3E**). At this site, a drastic
292 change in allelic ratios was observed despite minimal changes in copy number
293 estimated from sequencing coverage (**Figure 3F**), suggesting changes to one of the
294 parental chromosomes despite no overall changes in chromosomal number. Using both
295 PacBio HiFi and Nanopore long-read sequencing data, we observed ~1750 bp of
296 inverted (CCCTAA)_n telomeric repeats at this site (**Figure 3G**). Surprisingly, we could
297 further observe >5kb of sequences corresponding to an intra-chromosomal site on the
298 chr11p arm, suggesting that the neotelomere was the consequence of multiple steps. It
299 may have first formed on the centromeric side of the chr11p breakpoint
300 (chr11p:43,002,345), which then subsequently fused to the breakpoint on chr11q at
301 position 84,769,636 (**Figure 3H**).

302 To assess if telomere-spanning chromosomal fusions could be detected in other
303 samples, we again examined long-read genome sequencing data of the Hs-746T
304 gastric adenocarcinoma and NCI-H1184 lung adenocarcinoma cell lines. Inverted
305 ectopic telomeric repeats that were identified using TelFuse were confirmed as sites of
306 chromosomal arm fusion events with long-read data in the Hs-746T sample (**Figure S6**)
307 at the sites chr11:79,325,679 and chr1:244,201,717, but not for the single candidate site
308 in the NCI-H1184 sample (**Table S6**). Again, the discrepancy between long- and short-
309 read data in our study could be caused by heterogeneity in the cancer cell lines.
310 Overall, across 15 inverted telomeric repeat sites predicted by TelFuse in these cell

311 lines, 12 of these events (80%) could be validated as chromosomal arm fusion events
312 using long-read genome sequencing (**Figure 3I, Table S6**).

313 We further investigated chromosomal arm fusion events for their concordance
314 with spectral karyotyping results of the U2-OS cells. Consistent with the t(4;22) fusion
315 seen in long-read sequencing (**Figure 3A-D**), a fusion between chromosome 22 and
316 chromosome 4 was observed by spectral karyotyping in 5/10 cells assessed (**Figure**
317 **3J**). As such, these results suggest that telomere-spanning chromosomal arm fusion
318 events detected by long-read sequencing are concordant with the chromosomal scale
319 observations.

320
321 Length distribution of neotelomeres matches that of normal telomeres
322

323 Because short telomeres lead to chromosomal fusion events, we hypothesized
324 that neotelomeres would have similar lengths to unaltered telomeres at chromosome
325 ends, whereas fusion events, which might have resulted from telomere attrition, would
326 be shorter. To assess telomere length, we developed an approach (TelSize) to estimate
327 the length of telomeric repeats in long read sequences (**Methods**) that accounts for
328 noise in telomeric long-reads which are interspersed with errors and/or *bona fide*
329 deviations from the standard “TTAGGG” repeat motif (**Figure S7A**).

330 Using TelSize, we can estimate the length of telomere repeat regions on single
331 chromosomes. We applied the TelSize approach to establish the length of telomeres
332 found at each of the chromosomal arms, and at intra-chromosomal telomeric sites. As
333 the sub-telomeric region of the GRCh38 reference genome has not been fully
334 assembled, we first assessed the reliability of assigning telomeric long reads to their
335 respective arms for the CHM13 cell line for which the genome has been fully assembled
336 (**Figure S7B**). TelSize was used to generate telomere length estimates for all of the cell
337 lines with long read sequencing data (**Figure S8**).

338 We then assessed the length of telomeres at each neotelomere, at each natural
339 telomere found on each chromosomal arm, and each chromosomal arm fusion event.
340 For example, in a site of neotelomere addition at position chrX:103,320,553 in DNA
341 from U2-OS cells that was described in an earlier (**Figure 2A-D**), TelSize predicts a
342 telomere length of at least 4988 bp from a single nanopore read (**Figure 4A**). In a site
343 of chromosome arm fusion between positions chr4:30,909,846 and the chr22 telomeric
344 end (**Figure 3A-D**) in DNA from U2-OS cells, TelSize predicts a telomere length of 632
345 bp from a single nanopore read (**Figure 4B**), with intra-chromosomal and sub-telomeric
346 sequences flanking these sites. Most neotelomeres identified were multi-kilobasepair
347 long with an average telomere length of ~5kb in both the U2-OS and the Hs-746T
348 cancer cell lines (**Figure 4C-D, Figure S9A-B**). In contrast to neotelomeres and normal
349 chromosomal arms, and consistent with our hypothesis, we see that telomeres at
350 chromosomal arm fusion events tend to be relatively short and were largely only a few
351 hundred base pairs long in U2-OS but longer in the small number of examples in Hs-
352 746T (**Figure 4E-F, Figure S9C-D**), suggesting that chromosomal arms with short
353 telomeres are more likely to undergo fusion events.

354 By composite analysis of data corresponding to each class of events, we see that
355 structurally unaltered normal chromosomal ends (p- and q-arms) have similar median
356 telomere length (~5kb) and similar length distribution to neotelomeres (**Figure 4G-H**,

357 **Figure S9E-F)** in both the U2-OS and Hs-746T cancer cell lines. Conversely, telomeric
358 repeats at chromosomal arm fusions are significantly shorter as compared to the other
359 classes of events (**Figure 4G-H, Figure S9E-F**). Together, these results indicate that
360 neotelomeres have similar telomere length as natural telomeres and are thus possibly
361 functional. Our results also suggest that chromosomal arms with short telomeres are
362 more likely to undergo telomere-spanning chromosomal arm fusion events
363

364 Somatically altered ectopic telomere repeat sequences in lung adenocarcinoma
365 genomes
366

367 Given the results of long read analysis that demonstrated both neotelomere
368 events, corresponding largely to the standard telomeric repeat orientation, and
369 telomere-spanning chromosome fusion events, corresponding largely to the inverted
370 telomeric repeat orientation, in cancer cell lines, we sought to determine whether similar
371 events could be observed as somatic genome alterations in primary human cancers.
372 We applied TelFuse to 95 pairs of lung adenocarcinoma tumor/normal genome
373 sequences from The Cancer Genome Atlas, or TCGA (TCGA-LUAD) (**Table S8**). This
374 analysis identified 34 sites with ectopic telomere sequences in the standard orientation,
375 and 46 sites with ectopic telomere sequences in the inverted orientation (**Tables S9**
376 and **S10**). Putative sites of ectopic telomeric repeat sequences could be seen across
377 the genome on almost all chromosome arms, without a particular distribution in the
378 genome at this resolution of sample number and events (**Figure 5A**). These ectopic
379 telomere sequences, in both the standard and inverted orientations, could be in either
380 the centromeric or counter-centromeric direction (**Figure 5A**).
381

382 Among the standard orientation ectopic telomere repeats in the TCGA-LUAD
383 sequence data, 32/34 sites were confirmed as somatic alterations and therefore as
384 putative somatically generated neotelomeres by comparing the lung adenocarcinoma
385 DNA sequence with the matched normal sequence. In addition, 44/46 of the inverted
386 orientation repeats were confirmed as somatic alterations that are likely to represent
387 telomere-spanning chromosomal arm fusions (**Figure 5B**). Together, among the set of
388 80 potential neotelomeres and chromosomal arm fusion events detected in the TCGA-
389 LUAD tumor samples, we found that 72/80 (90%) events were only detected in the
390 tumor sample (**Figure 5B, Table S9**), suggesting that a large majority of calls made in
391 tumor samples by TelFuse are somatic, even though no matched normal samples were
392 assessed in our initial analysis.

393 We then performed a deeper inspection of these somatic ectopic telomere repeat
394 sites that were detected in primary tumors. At the ectopic telomeric repeat site at
395 chr1:214,760,486 in the patient TCGA-44-4112, at least 10 TTAGGG repeats could be
396 observed in the primary tumor by short reads, coupled with a drop in sequencing
397 coverage (**Figure 5C**), which is consistent with the presence of a neotelomeric site. At
398 another site chr17:31,537,163 in the patient TCGA-49-4507, at least 6 inverted
399 telomeric repeats of TTAGGG could be seen in the primary tumor sample by short-
400 reads (**Figure 5D**), which may indicate the presence of a chromosomal arm fusion
401 event given our observations with long-read sequencing of cancer cell lines. Notably,
402 similar observations were also made at other sites with somatic ectopic telomeric repeat
sequences that are consistent with potential neotelomeric or chromosomal arm fusion

403 events (**Figure S10**) in primary lung adenocarcinoma samples. Together, this suggests
404 that ectopic telomeric repeats in both the standard and inverted orientation can be
405 readily observed in primary lung adenocarcinoma samples, and suggest that
406 neotelomeres and chromosomal arm fusion events are similarly present in primary
407 tumor samples.

408 All together, we observed ectopic telomeric repeats in the standard orientation
409 and inverted orientation in 26% and 31% of the TCGA-LUAD cohort respectively
410 (**Figure 5E**), which may point to the potential existence of neotelomeric events and
411 chromosomal arm fusions in these samples respectively. Of note, as many as 49% of
412 samples displayed either a neo-telomeric or chromosomal arm fusion signal, suggesting
413 that these events are relatively common in primary tumor samples. Although this
414 suggests an active mechanism for generation of telomeric events in cancers, we were
415 unable to ascertain strong sequence signatures suggestive of specific telomere
416 insertion mechanisms (**Figure S11**).

417

418 Germline variations leading to ectopic telomeric repeat insertions

419 Interestingly, we also observed 8 likely germline examples of ectopic telomere
420 repeat sequence alterations across 4 different individuals in the TCGA-LUAD cohort
421 (**Figure 5B, Table S9**). A deeper exploration of these events was performed to assess
422 the structure and features associated with these sites (**Figure S12**). Two ectopic
423 telomeric sites were found on the chr12q arm in both blood and tumor samples of
424 TCGA-44-6778 at the sites chr12:54,480,142 and chr12:54,494,011, and were noted to
425 contain a 14 kb deletion, coupled to an insertion of 6x CCCTAA repeat sequences
426 (**Figure S12A**). In both blood and tumor samples of the same individual at the sites
427 chr12:25,085,740 and chr12:25,085,754 on chr12p, an insertion of 7x CCCTAA repeats
428 was observed in tandem with duplication of a neighboring 14 bp region (**Figure S12B**).
429 A similar germline deletion event of 13 bp, coupled with the insertion of telomeric repeat
430 sequences, was found in TCGA-62-A470 at chr4:184,711,090 (**Figure S12C**), while a
431 duplication of 19 bp was coupled to a telomeric repeat insertion at chr6:170,186,789 in
432 TCGA-44-5643 (**Figure S12D**). Ectopic telomeric repeats could also be observed in
433 TCGA-55-6987 at low allelic frequencies in both tumor and the adjacent normal sample
434 (**Figure S12E**), which may point to contamination of the normal sample or to somatic
435 mosaicism. Together, these results indicate that ectopic telomeric repeats might be
436 frequent germline variants, perhaps as a result of DNA repair in the presence of active
437 telomerase⁴¹.

438

439 Neotelomeres and chromosomal arm fusion events disrupt protein coding genes and 440 are highly prevalent in cancer cell lines

441 In addition to allowing chromosome fusions to occur and capping truncated
442 chromosomes, insertion of telomeric DNA might also disrupt genes, including tumor
443 suppressors, leading to associated functional impact. To assess this possibility, we
444 evaluated ectopic telomere sites in this study for overlap with protein coding genes.
445 Among sites that we detected, 47% (112/240) and 47% (34/72) of sites were found to
446 colocalize to a protein coding gene in cancer cell lines and primary lung
447 adenocarcinomas respectively (**Table S2 and S9**).

448 Notable genes with insertion events include *PTPN2*, a gene related to
449 immunotherapy response⁴⁸, where a neotelomere was found within the first intron,
450 leading to a corresponding loss of the first exon and the promoter region (**Figure 6A**).
451 Chromosomal fusion events were also found to disrupt genes, including events that led
452 to the loss of more than half of the 5' region of the *KLF15* and *FOXN3* genes (**Figure**
453 **6B-C**). We also observed one complex event involving telomeric DNA wherein a short
454 neotelomere on chr1p within the *RUNX3* gene then fused to the centromere of
455 chr22/21/14. This event caused the loss of most of the gene (**Figure 6D**). Gene
456 disruption events were also observed by long-read genome sequencing in the *NRDC*
457 and *TENM4* genes in cancer cell lines (**Figure S13A-B**). Interestingly, the *PTPN2*,
458 *NRDC*, *FOXN3*, and *RUNX3* genes identified in our study have putative functional roles
459 in cancer, suggesting that the disruption of protein coding genes by neotelomeres and
460 chromosomal arm fusions may contribute to tumorigenesis. Thus, our results indicate
461 that neotelomeres and chromosomal arm fusion may represent an important but poorly
462 appreciated mechanism for gene disruption.

463 We next assessed if these gene disruption events from telomeric insertion can
464 also be observed in primary tumor samples. In the lung adenocarcinoma sample TCGA-
465 62-A46O, a putative neotelomere could be observed using short-read data within the
466 gene encoding the ETS family transcription factor, *ETV6* which is known to be
467 associated with leukemia and congenital fibrosarcoma^{47,49,50} (**Figure 6E**). Another
468 putative neotelomere event was observed within the gene encoding centromere protein
469 F, *CENPF* which is thought to play a role in chromosome segregation during mitosis⁵¹⁻⁵³
470 (**Figure 6F**). Putative neotelomeres and chromosomal arm fusion events were also
471 found within the protein arginine methyltransferase gene, *PRMT7*, and the forkhead box
472 transcription factor, *FOXP4*, genes respectively (**Figure S13C-D**). Of note, due to the
473 size and scale at which these neotelomeres and chromosomal arm fusion events occur,
474 they are likely to fully disrupt these genes. Therefore, our results indicate that the
475 formation of neotelomeres and telomere-spanning chromosomal arm fusions may
476 represent a mechanism for gene disruption, in addition to their roles in defining gross
477 chromosomal structure.

478
479
480
481
482

483 **Discussion**

484

485 While alterations in telomere sequences are key events in cancer genome
486 evolution, the precise nucleotide-level structure of these alterations has been hitherto
487 inaccessible because of the inability of short-read sequence data to resolve longer
488 repetitive sequences. Here, using long-read sequencing technologies, we delineated
489 four types of alterations in telomere repeat sequences. First, we provide evidence that
490 cancer cell line and primary cancer genomes contain long (several kilobase) additions
491 of telomere repeat sequences to intra-chromosomal sites, in the standard telomere
492 orientation (**Figure 7A**). Second, we identify telomeric repeat sequences of varying
493 length that bridge the end of one chromosome to an intra-chromosomal site on a
494 different chromosome (**Figure 7B**). These telomeric repeats are consistent with
495 karyotyping analyses that have observed the attachment of chromosomal fragments to
496 the ends of existing chromosomes⁵⁴⁻⁵⁹, which are key events in cancer genome
497 evolution. Third, we observe more complex alterations where the formation of a
498 neotelomere is followed by the fusion of the neotelomere to a second intra-
499 chromosomal location (**Figure 7C**). Fourth, we observe fusions that link centromeric to
500 telomeric sequence repeats (**Figure 7D**). The implications of several of these alterations
501 are described below.

502 A previous study, analyzing short-read genome sequencing of patients' cancer
503 samples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project, was able
504 to identify a number of intra-chromosomal telomeric repeat insertion sites²³. In
505 comparison to this previous study, our work shows that telomere length at these repeat
506 insertion sites can be estimated using long-read sequencing, and the underlying
507 sequence structure can be analyzed in the context of adjacent sequences compared to
508 free telomeric ends. This technical advance allowed us to differentiate intra-
509 chromosomal telomeric repeat sites based on the orientation of the telomeric repeat
510 sequences. By integrative analysis of long-read genome sequencing, spectral
511 karyotyping, coverage analysis, and short-read genome sequencing, we demonstrated
512 the existence of multi-kilo base-pair long neotelomeres at sites of putative chromosomal
513 arm breakages, corresponding to telomeric repeats in the standard orientation. We
514 further provided evidence for the presence of these standard orientation telomere
515 repeats representing neotelomeres in primary tumor sequence data of lung
516 adenocarcinoma (LUAD) from TCGA. Further, powered by long-read genome
517 sequencing, we were able to reliably show that sites with inverted telomeric repeat
518 sequences represent fusion of chromosomal arms spanning short telomere sequence
519 repeats, also found in TCGA LUAD data. Together, our study provides support for the
520 existence of neotelomeres and chromosomal arm fusion events in cancer genomes,
521 and also provides insights into the cause of their occurrence.

522 A recent experimental study generated double-strand breaks in cells over-
523 expressing telomerase, leading to the addition of neotelomeres at a subset of these
524 breaks⁴¹. Our study provides genomic evidence for a signature of neotelomere addition
525 in cancer cell lines and cancer genomes, complementary to this experimental evidence.
526 The location and the unbounded structure of these repeats suggest that they are likely
527 to be functional neotelomeres. Taken together, the cellular experiments and genomic

528 observations support a model where neotelomere addition by telomerase, nucleating at
529 sites of double strand breaks, can be a common step in tumorigenesis.

530 The generation of new chromosomes via chromosomal rearrangements is a key
531 element of cancer genome evolution and also occurs during the course of evolution and
532 speciation⁶⁰⁻⁶². Some of our findings using long-read sequencing of cancer genomes
533 mirror long-standing observations in genomes of many organisms. Interstitial telomeric
534 repeats have been identified in the genomes of many vertebrates, including primates
535 and the pygmy tree shrew⁶³⁻⁶⁵, akin to those found at sites of chromosomal arm fusions
536 in cancer cell lines (**Figure 7B**). Furthermore, interstitial telomeric sequences have been
537 observed close to centromeres in the genomes of diverse organisms including Chinese
538 hamster, Arabidopsis, and the European grayling⁶⁵⁻⁶⁷. These structures, termed
539 pericentromeric telomeric repeats, were similarly observed by long-read genome
540 sequencing in the U2-OS cancer cell line in our study (**Figure 7D**). Overall, the study of
541 telomere repeat alterations also provide an understanding into how new chromosomes
542 originate during the course of evolution and speciation, as well as during cancer
543 genome evolution.

544 Looking at the genome beyond telomeric repeats, repetitive elements constitute
545 approximately half the human genome¹³⁻¹⁵. However, we have not yet been able to
546 understand genome structure and alterations at a detailed level because of the
547 technical limitations of short-read sequencing, which is unable to span or completely
548 delineate the precise structure of these repeat elements. Here, using telomeres as a
549 salient example, we show how long-read genome sequencing can be used to drive
550 discoveries of functional importance in highly repetitive regions of the cancer genome,
551 and also inform the analysis of existing short-read data. As a bridge to a future where
552 universal long-read sequencing is technically and economically feasible, our study
553 provides a framework to assess short-read genome sequencing data for genome
554 alterations within highly repetitive regions, that can be followed by long-read sequencing
555 and complete analysis of selected samples. Significantly, given that >95% of repetitive
556 sequences in the genome are estimated to be <8 kb in length¹⁵, long-read sequencing
557 data that is typically generated at >10 kb in length (**Figure S3**) would enable the
558 majority of previously neglected alterations in the cancer genome to be completely
559 resolved. Thus, our study highlights the utility of long-read genome sequencing in the
560 study of chromosomal scale structures in cancer and beyond. This analysis may have
561 functional implications as we observed the disruption of protein coding genes by
562 neotelomeres and chromosomal arm fusions. More broadly, the identification of these
563 gene disruptions points to the potential role that other repetitive elements may play in
564 gene disruption as well as activation events and to the discovery opportunity provided
565 by long-read cancer genome sequencing.

566 There are a few limitations associated with our study. First, in contrast to a recent
567 yeast genomic study in which the end of each telomere was tagged⁶⁸, it is difficult to
568 assess if telomeric repeats containing long-reads analyzed in our study captured the
569 telomeres end-to-end. As such, telomere length estimates made in our study may
570 underestimate the true length of telomeres. Further, it is also known that the sub-
571 telomeres at normal chromosomal arms contain telomere-like sequences and short
572 internal telomeric repeats close to long stretches of perfect (TTAGGG)_n repeats^{44,69}.

573 However, it is unclear if these sequences should be included in the computation of
574 telomere length estimates performed in our study.

575 In summary, we have used long-read sequencing to demonstrate the generation
576 of neotelomeres, and of chromosome arm fusions that span telomere repeats, in human
577 cancer cell lines and then provided evidence for these alterations in primary human lung
578 adenocarcinoma genomes. This study provides detailed insight into the process of
579 telomere maintenance in human cancer. Further long-read sequencing studies of
580 cancer genomes could help to elucidate the potential role of somatic alterations in highly
581 repetitive regions of the human genome in cancer pathogenesis. More broadly, long-
582 read sequencing analyses may also provide insights into chromosomal rearrangements
583 that drive genetic diseases and evolution.

584
585

586 **Acknowledgements**

587 We thank all members of the Matthew Meyerson and Heng Li labs for helpful comments
588 and inputs on the work. We would also thank Jidong Shan (Albert Einstein College of
589 Medicine) for generating spectral karyotyping results, and for inputs on the analysis of
590 cytogenetics data. We further thank Jodi Hirschman for assistance with edits to our
591 manuscript.

592

593 **Funding**

594 K.T.T. was supported by a PhRMA Foundation Informatics Fellowship, and a NUS
595 Development Grant from the National University of Singapore. M.M. is supported by an
596 American Cancer Society Research Professorship. This work was supported by grants
597 from the National Cancer Institute (Grant No. R35 CA197568 to M.M.), and the National
598 Human Genome Research Institute (NHGRI) (Grant Nos. R01 HG010040, U01
599 HG010961, and U41 HG010972 to H.L.).

600

601 **Author contributions**

602 K.T.T. and M.M. initiated the study of telomeres in cancer with long-read genome
603 sequencing. K.T.T developed computational methods and designed computational
604 analyses with input from H.L. and M.M. K.T.T. performed most computational analyses
605 in this study. M.G.J. assisted with computational analysis of TCGA-LUAD dataset. M.S.
606 generated DNA samples of cancer cell lines used for long-read genome sequencing,
607 and performed an initial long-read sequencing run. K.T.T. wrote the initial draft of the
608 manuscript with input from M.M., M.L.L, and H.L. M.M. and H.L. jointly supervised the
609 work. All authors read, revised, and approved the submission of the manuscript.

610

611

612 **Declaration of interests**

613 M.M. is a consultant for DelveBio, Interline, Isabl, and Bayer; receives research support
614 from Bayer and Janssen; has patents for EGFR mutations for lung cancer diagnosis
615 issued, licensed, and with royalties paid from LabCorp and has issued patents and
616 patents pending licensed to Bayer; and was a founding advisor of, consultant to, and
617 equity holder in Foundation Medicine, shares of which were sold to Roche. H.L. is a
618 consultant of Integrated DNA Technologies and on the Scientific Advisory Boards of
619 Sentieon and Innozeen.

620

621 **Figure Legends**

622
623 **Figure 1 Classes of ectopic telomeric repeats found in cancer cell genomes.** (A)
624 Schematic of sequence and positions of normal telomeres at chromosomal termini. (B)
625 Schematic of ectopic telomeric repeats found at abnormal locations away from
626 chromosomal termini. Standard orientation: (TTAGGG)_n on the right side of a breakpoint
627 and (CCCTAA)_n on the left side of the breakpoint in the 5' to 3' direction (same as
628 normal telomere in Fig. 1A). Inverted orientation: (CCCTAA)_n on the right side of a
629 breakpoint and (TTAGGG)_n on the left side of the breakpoint in the 5' to 3' direction.
630 Note that faded chromosomal segment is not part of derivative chromosome. (C)
631 Genome-wide localization of ectopic telomeric repeats in cancer cell line genomes
632 (n=326) identified using short-read genome sequencing. Red: ectopic telomeric
633 sequences in the standard orientation. Blue: ectopic telomeric sequences in the inverted
634 orientation. Position of telomeric repeats relative to the breakpoint is indicated by arrows
635 oriented in different directions. (D) Percentage of cancer cell lines in the CCLE with
636 ectopic telomeric sequences in either orientation. Total sample number as indicated. (E)
637 Flow-chart of long-read genome sequencing and cytogenetic analyses in cancer cell
638 lines, with the indicated validation criteria.
639

640 **Figure 2 Neotelomeres in cancer genomes revealed by long-read genome**
641 **sequencing.** (A-H) Genomic analysis of telomere repeat alterations in the standard
642 orientation that were detected (A-D) in the U2-OS osteosarcoma cell line at
643 chrX:103,320,553, and (E-H) in the Hs-746T cell line at chr21:10,547,397. (A) IGV
644 screenshots of short-read genome sequencing data. Ectopic telomeric repeats
645 (TTAGGG)_n are shown in color. (B) Sequencing coverage and allelic ratios of
646 chromosome X. Orange semi-oval: site of the neotelomeric event. (C) IGV screenshots
647 depicting long telomeric repeat sequences (TTAGGG)_n with PacBio HiFi and Nanopore
648 long-read sequencing at the site shown in (A). (D) Schematic of neotelomere location
649 on chromosome Xq. (E) IGV screenshots of short-read genome sequencing data.
650 Ectopic telomeric repeats (CCCTAA)_n are shown in color. (F) Sequencing coverage and
651 allelic ratios of chromosome 21. Orange semi-oval: site of the neotelomeric event. (G)
652 IGV screenshots depicting long telomeric repeat sequences (CCCTAA)_n with PacBio
653 HiFi and Nanopore long-read sequencing at the site shown in (E). (H) Schematic of
654 neotelomere location on chromosome 21p. (I) Percentage of ectopic telomeric repeat
655 sites in the standard orientation, found by short-read genome sequencing using
656 TelFuse, that were validated by long-read genome sequencing. (J) Spectral karyogram
657 of chrX in ten U2-OS single cells assessed by spectral karyotyping with corresponding
658 karyotype labels. First label: total # of X chromosomes and their derivatives observed in
659 given cell. Second label: karyotypes of the aberrant X chromosomes or derivatives.
660 Asterisk (*): truncated X chromosome. See also Figure S4.

661
662 **Figure 3 Chromosomal arm fusions in cancer genomes revealed by long-read**
663 **genome sequencing.** (A-H) Genomic analysis of telomere repeat alterations in the
664 inverted orientation that were detected in the U2-OS osteosarcoma cell line (A-D) at the
665 site chr4:30,909,846, and (E-H) at the site chr11:84,769,636. (A) IGV screenshots of
666 short-read genome sequencing data. Ectopic telomeric repeats (CCCTAA)_n are shown

667 in color. **(B)** Sequencing coverage and allelic ratios of chromosome 4. Orange semi-
668 oval: site of the ectopic telomere repeat sequence. **(C)** IGV screenshots of PacBio HiFi
669 and Nanopore long-read sequencing data at the site shown in **(A)**. Ectopic telomeric
670 repeats in the inverted orientation contained ~650 bp of (CCCTAA)_n telomeric repeat
671 sequences followed by chr22q sub-telomeric sequences, indicative of a chromosomal
672 arm fusion event of chr22q to the site at chr4:30,909,846. **(D)** Schematic of telomere-
673 spanning fusion event between chromosomes 22q-ter and 4p. **(E)** IGV screenshots of
674 short-read genome sequencing data. Ectopic telomeric repeats (CCCTAA)_n are shown
675 in color. **(F)** Sequencing coverage and allelic ratios of chromosome 11. Orange semi-
676 oval: site of the ectopic telomere repeat sequence. **(G)** IGV screenshots of PacBio HiFi
677 and Nanopore long-read sequencing at the site shown in **(E)**. ~1750 bp of (CCCTAA)_n
678 telomeric repeat sequences are found sequences corresponding to chr11p
679 (chr11:43,002,345), suggestive of a complex event consistent with the formation of a
680 neotelomere on chr11p, followed by a chromosomal arm fusion event of this
681 neotelomere to the site on chr11q (chr11:84,769,636). **(H)** Schematic telomere-
682 spanning fusion event between chromosome arms 11q (with a predicted neotelomere)
683 and 11p. **(I)** Percentage of new telomeric sites in the inverted orientation that were
684 predicted by TelFuse from short-read genome sequencing, and then validated by long-
685 read genome sequencing as telomere-spanning chromosome arm fusion events. **(J)**
686 Spectral karyogram of chromosome 22 for which a chromosomal arm fusion was
687 detected with chromosome 4. Ten U2-OS single cells assessed are as indicated. The
688 fusion event between chromosome 22 (yellow) and chromosome 4 (blue) is indicated by
689 a red arrow. See also Figure S6.
690

691 **Figure 4 Neotelomeres have similar telomere length distribution as normal**
692 **telomeres, while telomeric repeats at sites with chromosomal arm fusions are**
693 **short. (A-B)** Telomeric repeat signal observed at a representative Nanopore read with
694 **(A)** a neotelomere in U2-OS DNA at chrX:103,320,553, and **(B)** a chromosomal arm
695 fusion event in U2-OS DNA at chr4:30,909,846. The length of telomeric repeats on each
696 long-read was estimated from these telomeric repeat signal profiles. Boxplots depicting
697 the distribution of telomere length found at each neotelomere assessed by Nanopore
698 sequencing for the **(C)** U2-OS and **(D)** Hs-746T cell lines. Boxplot depicting length of
699 telomeric repeats assessed using Nanopore sequencing for each chromosomal arm
700 fusion event in the **(E)** U2-OS and **(F)** Hs-746T cell lines. Note: telomere length for
701 neotelomeres and normal chromosomal arms were only estimated using long-reads
702 reads that start or end in telomeric repeats, while length of telomeric repeats at
703 chromosomal arm fusions were estimated using long-reads with telomeric repeats in the
704 middle of the read. Aggregated telomeric length of all long-reads at the normal
705 chromosomal arms (p- and q-arms), neotelomeres, and chromosomal arm fusion events
706 in the **(G)** U2-OS and **(H)** Hs-746T cell lines. P-values indicated in the plots were
707 calculated using the two-sided Wilcoxon Rank Sum test. See also Figure S9.
708

709
710 **Figure 5 Putative neotelomeres and chromosomal arm fusion events are detected**
711 **as somatic alterations in primary lung adenocarcinoma genomes. (A)** Genome-
712 wide distribution of putative neotelomeres and chromosomal arm fusion events in lung

713 adenocarcinoma patient samples from The Cancer Genome Atlas (TCGA) (n=95).
714 Neotelomeres were inferred from ectopic telomeric sequences in the standard
715 orientation, while chromosomal arm fusion events were inferred from ectopic telomeric
716 sequences in the inverted orientation, as described in Figure 1B, using short-read
717 genome sequencing data. **(B)** Proportion of telomeric alterations (neotelomeres/arm
718 fusions) that were found to be germline or somatic. **(C-D)** Examples of neotelomeres
719 and chromosomal arm fusion events detected in tumor samples from patients with lung
720 adenocarcinoma. **(C)** Neotelomere in tumor DNA from case TCGA-44-4112 at the site
721 chr1:214,760,486. **(D)** Chromosomal arm fusion in tumor DNA from case TCGA-49-
722 4507 at the site chr17:31,537,163. Top panels: sequencing coverage at the sites of
723 interest. Bottom panels: IGV screenshots corresponding to the neotelomere or
724 chromosomal arm fusion events in the normal and tumor samples. **(E)** Frequency of
725 neotelomeres and chromosomal arm fusion events in lung adenocarcinoma patient
726 tumor samples in TCGA.
727

728 **Figure 6 Neotelomeres and chromosomal arm fusion events disrupt protein**
729 **coding genes in cancer cell lines and patient samples. (A)** Disruption of the *PTPN2*
730 gene in the U2-OS osteosarcoma cell line at chr18:12,875,538 with addition of a
731 neotelomere. **(B)** Disruption of the *KLF15* gene in the Hs-746T gastric adenocarcinoma
732 cell line associated with a chromosomal arm fusion event at chr3:126,349,603. **(C)** A
733 chromosomal arm fusion event in the U2-OS cell line between a broken chromosome
734 14 and the telomere arm of chromosome 21q/22q/19q associated with disruption of the
735 *FOXN3* gene at chr14:89,300,563. **(D)** A neotelomere in the U2-OS cell line coupled to
736 fusion to a centromere leads to disruption of the *RUNX3* gene at chr1:24,906,321. **(E)** A
737 putative neotelomere associated with disruption of the *ETV6* gene in a lung
738 adenocarcinoma tumor sample derived from the patient TCGA-62-A46O at the site
739 chr12:11,696,012. **(F)** A putative neotelomere associated with disruption of the *CEPF*
740 gene in a lung adenocarcinoma tumor sample derived from the patient TCGA-53-7624
741 at the site chr1:214,609,478. See also Figure S13.
742

743 **Figure 7 Possible models that can account for the different types of telomeric**
744 **repeat sequences observed in this study. (A)** A neotelomere can form after a
745 chromosomal arm breakage event. This leads to the generation of a smaller
746 chromosome with a neotelomere, similar in repeat length to telomeres found on a
747 normal chromosomal arm. **(B)** Chromosome arm fusion where a broken chromosomal
748 arm can fuse to another chromosome with very short telomeres. This generates a larger
749 chromosome with interstitial telomeric repeat sequences in the middle of the
750 chromosome. **(C)** Complex alteration where neotelomere formation is followed by the
751 fusion of this neotelomere to another chromosomal fragment. This leads to the
752 observation of long-reads in our study which contains telomeric repeat sequences,
753 flanked on both sides by intra-chromosomal sequences. **(D)** A complex telomeric
754 alteration involving a chromosomal arm break at or very near to the centromere, which
755 is fused to another chromosomal arm with very short telomeres. The resultant new
756 chromosome has pericentromeric telomeric repeat sequences. Purple line: parts of the
757 model supported by long-read genome sequencing data.
758

759

760 **STAR Methods**

761

762 **Key resources table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, peptides, and recombinant proteins		
McCoy's 5A Modified Medium	American Type Culture Collection (ATCC)	Cat# 30-2007
ATCC-formulated RPMI-1640 Medium	American Type Culture Collection (ATCC)	Cat# 30-2001
ATCC-formulated Dulbecco's Modified Eagle's Medium	American Type Culture Collection (ATCC)	Cat# 30-2002
Critical commercial assays		
Monarch® Genomic DNA Purification Kit	New England Biolabs (NEB)	Cat# T3010S
Qubit™ HS dsDNA assay	ThermoFisher - Invitrogen	Cat# Q32851 and Q32854
ONT Genomic DNA Ligation kit	Oxford Nanopore Technologies (ONT)	Cat# SQK-LSK109
NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing	New England Biolabs (NEB)	Cat# E7180S
Agilent 4200 TapeStation (Genomic DNA ScreenTape)	Agilent	Cat# 5067-5366
Nanopore R9 MinION flow cell	Oxford Nanopore Technologies (ONT)	Cat# FLO-MIN106D
NEBnext FFPE DNA Repair Mix	New England Biolabs (NEB)	Cat# M6630S
NEBNext Ultra II End Repair/dA tailing Module	New England Biolabs (NEB)	Cat# E7442L
Nanopore PromethION R9.4.1 flow cell	Oxford Nanopore Technologies (ONT)	Cat# FLO-PRO002
PacBio SMRTbell Express Template Prep Kit 2.0	Pacific Biosciences (PacBio)	Cat# 100-938-900
SMRTbell Enzyme Clean Up Kit 2.0	Pacific Biosciences (PacBio)	Cat# 101-938-500
BluePippin™ Dye Free 0.75% Agarose Gel Cassettes	Sage Science	Cat# BHZ7510
Sequel II Binding Kit 2.2	Pacific Biosciences	Cat# 101-908-100

	(PacBio)	
Sequel IIe 8M SMRT Cells	Pacific Biosciences (PacBio)	Cat# 101-389-001
Sequel II Sequencing 2.0 Kit	Pacific Biosciences (PacBio)	Cat# 101-820-200
Agencourt® AMPure XP	Beckman Coulter	Cat# A63881
Commercial spectral karyotyping paint probes from Applied Spectral Imaging	Applied Spectral Imaging (5315 Avenida Encinas, Suite 150, Carlsbad, CA92008)	-
Deposited data		
Nanopore PromethION long-read sequencing datasets	This paper	To be uploaded to SRA database (pending accession number)
Nanopore MinION long-read sequencing dataset	This paper	To be uploaded to SRA database (pending accession number)
PacBio HiFi long-read sequencing datasets	This paper	To be uploaded to SRA database (pending accession number)
Illumina short-read sequencing datasets	This paper	To be uploaded to SRA database (pending accession number)
Whole genome short-read sequencing dataset from the Cancer Cell Line Encyclopedia	Ghandi et al ⁷	PRJNA523380
Whole genome short-read sequencing dataset of lung adenocarcinoma patients from The Cancer Genome Atlas	Carrot-Zhang et al and Campbell et al ^{70,71}	https://gdc.cancer.gov/about-data/publications/pancanatlas
dbSNP (build 151)	Sherry et al ⁷²	ftp://ftp.ncbi.nlm.nih.gov/snps/organisms/human_9606_b151_GRCh38p7/VCF/common_all_20180418.vcf.gz
GRCh38 reference genome	UCSC Genome Browser	https://hgdownload.soe.ucsc.edu/downloads.html
CHM13 reference genome	Nurk et al ⁷³	https://github.com/marbl/CHM13
Experimental models: Cell lines		
U2OS cells	American Type Culture Collection (ATCC)	Cat# HTB-96™
NCI-BL1184 cells	American Type Culture	Cat# CRL-5949™

NCI-H1184 cells	Collection (ATCC)	
	American Type Culture Collection (ATCC)	Cat# CRL-5858™
Hs-746T cells	American Type Culture Collection (ATCC)	Cat# HTB-135
Software and algorithms		
TelFuse	This paper	https://github.com/ktan8/tel_tools/
TelSize	This paper	https://github.com/ktan8/tel_tools/
Minimap2 v2.17-r941	Li ⁷⁴	https://github.com/lh3/minimap2
BWA-MEM v0.7.17-r1188	Li ⁷⁵	https://github.com/lh3/bwa
SAMtools v1.10	Li et al ⁷⁶	https://github.com/samtools/samtools
R v4.2.0	R Foundation for Statistical Computing ⁷⁷	https://www.r-project.org/
Python v3.7.4	Van Rossum et al ⁷⁸	https://www.python.org/
Perl v5.26.2	Wall et al ⁷⁹	http://www.perl.org/
Integrative Genomics Viewer (IGV)	Thorvaldsdóttir et al ⁸⁰	https://software.broadinstitute.org/software/igv/
Bonito v0.3.5	Oxford Nanopore Technologies (ONT)	https://github.com/nanoporetech/bonito
Bonito basecalling model for telomeric reads	Tan et al ⁸¹	https://github.com/ktan8/nanopore_telomere_basecall
Other		
Covaris® g-TUBE	Covaris®	Cat# 520079
Megaruptor 3 system	Diagenode	B06010003
PippinHT	Sage Science	Cat# HTP0001
Sequel IIe instrument	Pacific Biosciences (PacBio)	-

763

764

765 Resource availability

766

767 Lead contact

768 Further information and requests for resources should be directed to and will be fulfilled
769 by the lead contact, Matthew Meyerson (matthew_meyerson@dfci.harvard.edu).

770

771 Materials availability

772 This study did not generate new unique reagents.

773

774

775

776 **Methods details**

777

778 CCLE whole genome sequencing dataset

779 CCLE dataset⁷ was downloaded from the European Nucleotide Archive under the study
780 accession number (PRJNA523380). Specifically, only whole genome sequencing
781 (WGS) datasets from the study was obtained. A full list of accession numbers
782 corresponding to the CCLE WGS dataset used in this study is indicated in Table S1.

783

784 Lung adenocarcinoma whole genome sequencing dataset

785 Whole genome short-read sequencing dataset of lung adenocarcinoma patients^{70,71}
786 from The Cancer Genome Atlas were downloaded from the GDC Data Portal
787 (<https://portal.gdc.cancer.gov/>). The list of accession numbers corresponding to
788 samples analyzed for this study is indicated in Table S8.

789

790 Identification of candidate new telomeres and chromosomal arm fusion events from
791 short reads

792 Candidate short read pairs with at least two consecutive telomeric repeat sequences
793 (TTAGGG)₂ in either reads in the pair were first extracted to narrow down the number of
794 read pairs for subsequent analysis. Specifically, this was done by applying a custom
795 Python script in the TelFuse package to each whole genome sequencing dataset.

796

797 Candidate read pairs were then remapped to the reference genome (GRCh38) with
798 BWA-MEM (version 0.7.17-r1188)⁷⁵ with default parameters. A custom Python script in
799 the TelFuse package was then used to extract all sites with soft-clipped regions on the
800 mapped reads. Soft-clipped sequences from all reads at each unique genomic site was
801 then used to generate a consensus sequence. A corresponding average sequence
802 identity of the soft-clipped sequences to the consensus was also calculated.

803

804 To then filter this list of candidate sites for potential new telomeres and chromosomal
805 arm fusion events, a series of filters were applied. Specifically, we ensured that (i) each
806 site is supported by at least 3 reads, (ii) has an average sequence identity to the
807 consensus of $\geq 95\%$, (iii) average mapping quality ≥ 30 , (iv) found more than 500kb from
808 each end of the chromosome as defined by the reference genome, (v) is not found in
809 more than one sample in the “panel of normal” constructed from these samples, and (vi)
810 contains the circular permutations of (TTAGGG)₂ or (CCCTAA)₂ sequence in the soft-
811 clipped sequences immediately after the breakpoint.

812

813 The candidate sites were then further subdivided into sites with telomeric repeats in the
814 standard or inverted orientation, depending on the orientation of telomeric repeat
815 sequences with respect to the genomic loci of interest.

816

817 Cell culture

818 U2-OS cells (ATCC® HTB-96™) were cultured in McCoy’s 5A Medium Modified (ATCC
819 cat no. 30-2007) with 10% FBS. Cell lines NCI-BL1184 (ATCC cat no. CRL-5949™) and
820 NCI-H1184 (ATCC cat no. CRL-5858™) were cultured in ATCC-formulated RPMI-1640
821 Medium (ATCC cat no. 30-2001) supplemented with FBS at 10%. Hs-746T cells (ATCC

822 cat no. HTB-135) were cultured in ATCC-formulated Dulbecco's Modified Eagle's
823 Medium (ATCC cat no. 30-2002) supplemented with 10% FBS

824

825 High molecular weight DNA extraction

826 High molecular weight (HMW) DNA was isolated using a Monarch® Genomic DNA
827 Purification Kit (NEB, cat no. T3010S). DNA was quantified with a Qubit™ HS dsDNA
828 assay (ThermoFisher, cat no. Q32851) followed by verification of HMW DNA integrity by
829 electrophoresis on an Agilent 4200 TapeStation (Genomic DNA ScreenTape, cat no.
830 5067-5366).

831

832 MinION Library Preparation

833 Sequencing libraries were prepared for the Oxford Nanopore Technologies (ONT)
834 platform using the ONT Genomic DNA Ligation kit (ONT, cat no. SQK-LSK109).
835 Briefly, HMW U2OS DNA was fragmented to ~20 Kb using a Covaris® g-TUBE (cat no.
836 520079) followed by SPRI-cleanup (Agencourt® AMPure XP, Beckman Coulter, cat no.
837 A63881). Fragmented material was quantified with a Qubit™ dsDNA HS Assay Kit
838 (Invitrogen™, Catalog number: Q32851). One microgram of HMW U2OS DNA was end-
839 repaired and A-tailed (NEBNext® Companion Module for
840 Oxford Nanopore Technologies® Ligation Sequencing, cat no. E7180S) followed by
841 adapter ligation. For sequencing 100 fmols of library material was loaded on an R9 flow
842 cell (cat no. FLO-MIN106D).

843

844 PromethION Library Preparation

845 Sequencing libraries for PromethION sequencing was prepared using the Genomic
846 DNA by Ligation kit (SQK-LSK109) provided by Oxford Nanopore Technologies
847 according to the recommended protocol (Version GDE_9063_v109_revT_14Aug2019)
848 with slight modifications to the amount of input DNA used and the equipment used for
849 shearing of the DNA. Briefly, 2.5 ug of high molecular weight genomic DNA was
850 sheared to 20kb using a Megaruptor 3 system (Diagenode, cat no. B06010003). DNA
851 repair and end-prep was then performed using the NEBnext FFPE DNA Repair Mix and
852 NEBNext Ultra II End Repair/dA tailing Module reagents in accordance with the
853 manufacturer's instructions followed by cleanup with AMPure XP beads. Ligation of
854 adapters was then performed using the Ligation Sequencing kit (SQK-LSK109)
855 according to manufacter's instructions, followed by loading onto a PromethION R9.4.1
856 flowcell (Oxford Nanopore, cat no. FLO-PRO002).

857

858 PacBio HiFi Library Preparation

859 For CCS library preparation, ≥3 ug of high molecular weight genomic DNA (more than
860 50% of fragments ≥40 kb) was sheared to ~15 kb using the Megaruptor 3 (Diagenode
861 B06010003), followed by DNA repair and ligation of PacBio adapters using the PacBio
862 SMRTbell Express Template Prep Kit 2.0 (100-938-900) and removal of incomplete
863 ligation products with the SMRTbell Enzyme Clean Up Kit 2.0 (PacBio 101-938-500).
864 Libraries were then size-selected for 15 kb +/- 20% using the PippinHT with 0.75%
865 agarose cassettes (Sage Science). Following quantification with the Qubit dsDNA High
866 Sensitivity assay (Thermo Q32854), libraries were diluted to 60 pM per SMRT cell,
867 hybridized with PacBio V5 sequencing primer, and bound with SMRT seq polymerase

868 using Sequel II Binding Kit 2.2 (PacBio 101-908-100). CCS sequencing was performed
869 on the Sequel IIe instrument using 8M SMRT Cells (101-389-001) and Sequel II
870 Sequencing 2.0 Kit (101-820-200), utilizing PacBio's adaptive loading feature with a 2
871 hour pre-extension time and 30 hour movie time per SMRT cell. Initial quality filtering,
872 basecalling, adapter marking, and CCS error correction was done automatically on
873 board the Sequel IIe.

874

875 Base calling of Nanopore sequencing data

876 Base calling of Nanopore sequencing data in this study was performed using Bonito
877 (Version 0.3.5) with the default dna_r9.4.1 basecalling model. However, the default
878 Nanopore basecalling model leads to frequent strand-specific base calling errors at
879 telomeric repeats in our dataset, with $(TTAGGG)_n$ being miscalled as $(TTAAAA)_n$, and
880 $(CCCTAA)_n$ being miscalled as $(CTTCTT)_n$ and $(CCCTGG)_n$, akin to what we had
881 previously reported⁸¹. As such, telomeric reads were extracted using a pipeline that we
882 had previously developed, followed by re-basecalling using a basecalling model that
883 was previously tuned to correct these errors⁸¹.

884

885 Extraction of candidate telomeric long reads for detailed analysis by TelSize

886 Long reads containing telomeric repeats were extracted by first enumerating the
887 number of $(TTAGGG)_2$ and $(CCCTAA)_2$ motifs on each read using custom Perl scripts.
888 Long reads containing at least four of these motifs were then defined as candidate
889 telomeric repeats. Of note, a low cutoff was deliberately set here to more sensitively
890 identify long-reads with telomeric repeats for detailed analysis by TelSize.

891

892 Estimation of telomere length from noisy long reads

893 As the telomeric long reads generated by Nanopore sequencing was relatively noisy,
894 the length of telomeric repeats could not be readily inferred from the reads. To address
895 this, we scanned each telomeric long read for instances of the telomeric repeat
896 sequence (TTAGGG), or its reverse complement (CCCTAA). A vector representing
897 positions where each of these motifs were observed was then generated. We then
898 applied a moving average filter with window size 50 on this profile, followed by a moving
899 median filter with window size 501. A minimum telomeric repeat signal of ≥ 0.35 was
900 then applied to define a region as telomeric. The size of the telomeric repeat region was
901 then established to determine the length of telomeric repeats on the long read, the
902 localization of these sequences on the long-reads, and if $(CCCTAA)_n$ or $(TTAGGG)_n$
903 repeats were observed.

904

905 Specifically, long-reads were classified into five different classes: full telomeric – long-
906 reads that contains telomeric repeat sequences end-to-end, left telomeric – long-reads
907 that contains telomeric repeat sequences on the left edge of the long-read, right
908 telomeric – long-reads that contains telomeric repeat sequences on the right edge of the
909 long-read, intra-telomeric – long-reads that contains telomeric repeat sequences in the
910 middle of the single long-read, and non-telomeric – long-reads that do not contain
911 significant telomeric repeat signal throughout the long-read. These telomeric repeat
912 signal can also occur as either $(TTAGGG)_n$ or $(CCCTAA)_n$ repeats, and these
913 information are further reported.

914

915 This package for telomeric long read extraction and estimation (telSize) is available at
916 the following github repository (<https://github.com/ktan8/teltools/>).

917

918 Analysis of telomeric repeat length at neotelomeres and chromosomal arm fusion sites

919 To assess length of telomeric repeats at neotelomeres and chromosomal arm fusion
920 sites, only left telomeric, right telomeric, and intra-telomeric reads were considered.
921 Specifically, for neotelomeric events, only reads with telomeric repeat regions found at
922 the 5' or 3' end of the read (i.e. left telomeric and right telomeric reads) was considered
923 to ensure that these reads correspond to a terminal region of a genomic locus. In the
924 context of chromosomal arm fusion events, we require that the telomeric region be
925 situated within the long-read (i.e. intra-telomeric reads that are flanked by non-telomeric
926 repeats on both sides) to ensure that reads analyzed at these loci represent
927 chromosomal arm fusion events.

928

929 For these telomeric repeat containing reads, sequences corresponding to the telomeric
930 repeat region were trimmed off. The remaining non-telomeric sequences of each read
931 were then mapped to the GRCh38 reference genome with minimap2 (Version 2.17-
932 r941). Primary read mappings in the PAF format were then extracted and analyzed
933 using custom R scripts in order to assess mapping coordinates of these sequences. For
934 each site of interest that was identified using short-read data, telomeric repeat
935 containing long-reads that mapped to a ± 100 bp region of each site were extracted.
936 Telomere length estimates for long-reads at each neotelomeric and chromosomal arm
937 fusion sites were then reported as per Figure 4.

938

939 Analysis of telomeric repeat length at normal chromosomal arms

940 To assess length of telomeric repeats at normal chromosomal arms, only left telomeric
941 and right telomeric reads were considered, akin to the neotelomeric sites. Sequences
942 corresponding to the telomeric region were similar trimmed off. The remaining non-
943 telomeric repeat sequences were mapped to the CHM13 v2.0 reference genome using
944 minimap2 (Version 2.17-r941) as the sub-telomeric region of this reference genome is
945 complete in contrast to the GRCh38 reference genome. Reads that mapped to the
946 terminal 500kb region of each chromosomal arm were classified as telomeric reads
947 originating from normal chromosomal arms.

948

949 Copy number profiles

950 To generate copy number profiles of the cancer cell lines from the CCLE, the total
951 sequencing coverage of each 10 kb bin was calculated using the bedcov function
952 SAMtools (v1.10)⁷⁶ with default parameters. The coverage was then normalized to a
953 per-basepair level and is as depicted.

954

955 For lung adenocarcinoma samples which has a matched normal samples, the
956 normalized sample coverage across each chromosome was calculated as follows. The
957 sequencing coverage for each 10kb bin was calculated for both the tumor and matched
958 normal sample using the bedcov function in SAMtools (v1.10)⁷⁶. These values were

959 then normalized by the total read count of each dataset, and the ratio between the
960 tumor and normal sample calculated to obtain the normalized sample coverage.
961

962 Analysis of BAF

963 As no matched normal samples were sequenced for each of the cancer cell lines,
964 heterozygous germline variants cannot be directly assessed and used in the generation
965 of allelic ratio plots. Allelic ratios was thus assessed using a set of common germline
966 SNPs from the dbSNP database (GRCh38.p7 build 151)⁷²
967 (ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh38p7/VCf/common_all_20180418.vcf.gz). Specifically, the list of common SNPs are defined by the dbSNP
968 database as SNPs that are found with a minor allele frequency of at least 0.01 in the
969 1000 genomes project.
970

971 Custom Python scripts and SAMtools mpileup (v1.10) were then used to enumerate all
972 four possible bases at each SNP site (base quality ≥ 20). The allelic ratio was then
973 calculated as the ratio of the variant base (as defined by dbSNP) count versus the sum
974 of the reference and variant base count. Only sites with a coverage of at least 15x were
975 plotted.
976

977 Sequence signatures at sites with new telomeres and chromosomal arm fusion events.

978 The sequence signature at each new telomeric and chromosomal arm fusion site was
979 analyzed using the consensus soft-clipped sequences identified by TelTools, and the
980 sequence extracted from the reference genome at each site. The sequence signature at
981 each new telomere and chromosomal arm fusion was then analyzed by (i) identifying
982 the frequency of each telomeric 6-mer in each soft-clipped sequence, and by (ii)
983 assessing the sequence motif of the telomeric region and genomic region.
984

985 Spectral Karyotyping

986 DNA Spectral Karyotyping Hybridization was performed according to the protocol of
987 commercial spectral karyotyping paint probes from Applied Spectral Imaging (5315
988 Avenida Encinas, Suite 150, Carlsbad, CA92008). Briefly, the slides were dropped in
989 Thermotron and aged for 3-5 days in a 37°C oven. The slides were then checked under
990 the microscope before hybridization. A series of four steps were then performed on
991 these slides to generate the spectro karyotype of the cell lines: (1) Trypsin Treatment:
992 The slides were washed briefly in Earl's medium, and then treated with Trypsin/EDTA
993 solution. Washing was then performed in water and then dehydrated in ethanol series of
994 70%, 80% and 100% for 2 minutes each followed by air-dying of the slides. (2) Chromosome Denaturation: The slides were treated in 2XSSC buffer for 2 minutes and
995 then dehydrated in Ethanol series for 2 minutes each. Denaturation of the slides was
996 then performed at 72°C in denaturation solution for 1.5 minutes. This is followed
997 immediately by placing the slides in cold ethanol series to dehydrate the slides, and
998 then air drying. (3) Probe Denaturation and hybridization: The probe was denatured by
999 incubating the probe at 80°C in a water bath for 7 minutes. The denatured Spectral
1000 Karyotyping reagent was then applied to the denaturized chromosome preparation and
1001 incubated at 37°C for 5-6 days. (4) Detection, imaging and karyotyping: The slides were
1002 washed in 0.4XSSC at 72°C for 2 minutes and then dipped in 4XSSC/Tween-20 for 1
1003 minutes. Cy5 staining reagent was then applied and incubated at 37°C for 40 minutes.
1004

1005 The slides were then washed 3 times in washing solution, and then mounted with anti-
1006 fade DAPI. After which, the slides are ready for spectral imaging. Rearrangements were
1007 defined with nomenclature rules from international Committee in Standard Genetic
1008 Nomenclature for Human.

1009

1010

1011 **Data and code availability**

1012 TelFuse and TelSize developed for this study are available at
1013 <https://github.com/ktan8/teltools/>. Long-read genome sequencing data generated for
1014 this study would be deposited in the SRA database prior to the publication of the
1015 manuscript.

1016

1017

1018 **References**

1019 1. Bailey, M.H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D.,
1020 Weerasinghe, A., Colaprico, A., Wendl, M.C., Kim, J., Reardon, B., et al. (2018).
1021 Comprehensive Characterization of Cancer Driver Genes and Mutations. *Cell*.
1022 10.1016/j.cell.2018.02.060.

1023 2. Huang, K. lin, Mashl, R.J., Wu, Y., Ritter, D.I., Wang, J., Oh, C., Paczkowska, M.,
1024 Reynolds, S., Wyczalkowski, M.A., Oak, N., et al. (2018). Pathogenic Germline
1025 Variants in 10,389 Adult Cancers. *Cell* 173, 355-370.e14.
1026 10.1016/J.CELL.2018.03.039.

1027 3. Campbell, P.J., Getz, G., Korbel, J.O., Stuart, J.M., Jennings, J.L., Stein, L.D.,
1028 Perry, M.D., Nahal-Bose, H.K., Ouellette, B.F.F., Li, C.H., et al. (2020). Pan-
1029 cancer analysis of whole genomes. *Nat.* 2020 5787793 578, 82–93.
1030 10.1038/s41586-020-1969-6.

1031 4. Priestley, P., Baber, J., Lolkema, M.P., Steeghs, N., de Brujin, E., Shale, C.,
1032 Duyvesteyn, K., Haidari, S., van Hoeck, A., Onstenk, W., et al. (2019). Pan-
1033 cancer whole-genome analyses of metastatic solid tumours. *Nature* 575.
1034 10.1038/s41586-019-1689-y.

1035 5. Degasperi, A., Zou, X., Dias Amarante, T., Martinez-Martinez, A., Koh, G.C.C.,
1036 Dias, J.M.L., Heskin, L., Chmelova, L., Rinaldi, G., and Wang, V.Y.W. (2022).
1037 Substitution mutational signatures in whole-genome–sequenced cancers in the
1038 UK population. *Science* (80-). 376, abl9283.

1039 6. Imielinski, M., Berger, A.H., Hammerman, P.S., Hernandez, B., Pugh, T.J., Hodis,
1040 E., Cho, J., Suh, J., Capelletti, M., Sivachenko, A., et al. (2012). Mapping the
1041 hallmarks of lung adenocarcinoma with massively parallel sequencing. *Cell* 150,
1042 1107–1120. 10.1016/j.cell.2012.08.029.

1043 7. Ghandi, M., Huang, F.W., Jané-Valbuena, J., Kryukov, G. V., Lo, C.C., McDonald,
1044 E.R., Barretina, J., Gelfand, E.T., Bielski, C.M., Li, H., et al. (2019). Next-
1045 generation characterization of the Cancer Cell Line Encyclopedia. *Nature*.
1046 10.1038/s41586-019-1186-3.

1047 8. Zheng, G.X.Y., Lau, B.T., Schnall-Levin, M., Jarosz, M., Bell, J.M., Hindson, C.M.,
1048 Kyriazopoulou-Panagiotopoulou, S., Masquelier, D.A., Merrill, L., Terry, J.M., et
1049 al. (2016). Haplotyping germline and cancer genomes with high-throughput
1050 linked-read sequencing. *Nat. Biotechnol.* 10.1038/nbt.3432.

1051 9. Xia, L.C., Bell, J.M., Wood-Bouwens, C., Chen, J.J., Zhang, N.R., and Ji, H.P.
1052 (2018). Identification of large rearrangements in cancer genomes with barcode
1053 linked reads. *Nucleic Acids Res.* 46. 10.1093/NAR/GKX1193.

1054 10. Greer, S.U., Nadauld, L.D., Lau, B.T., Chen, J., Wood-Bouwens, C., Ford, J.M.,
1055 Kuo, C.J., and Ji, H.P. (2017). Linked read sequencing resolves complex genomic
1056 rearrangements in gastric cancer metastases. *Genome Med.* 9, 1–17.
1057 10.1186/S13073-017-0447-8/FIGURES/5.

1058 11. Viswanathan, S.R., Ha, G., Hoff, A.M., Wala, J.A., Carrot-Zhang, J., Whelan,
1059 C.W., Haradhvala, N.J., Freeman, S.S., Reed, S.C., Rhoades, J., et al. (2018).
1060 Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by
1061 Linked-Read Genome Sequencing. *Cell*. 10.1016/j.cell.2018.05.036.

1062 12. Tan, K.-T., Kim, H., Carrot-Zhang, J., Zhang, Y., Kim, W.J., Kugener, G., Wala,
1063 J.A., Howard, T.P., Chi, Y.-Y., Beroukhim, R., et al. (2021). Haplotype-resolved

1064 germline and somatic alterations in renal medullary carcinomas. *Genome Med.*
1065 Vol. 13.

1066 13. Schmid, C.W., and Deininger, P.L. (1975). Sequence organization of the human
1067 genome. *Cell* 6, 345–358. 10.1016/0092-8674(75)90184-1.

1068 14. Batzer, M.A., and Deininger, P.L. (2002). Alu repeats and human genomic
1069 diversity. *Nat. Rev. Genet.* 2002 35 3, 370–379. 10.1038/nrg798.

1070 15. Treangen, T.J., and Salzberg, S.L. (2011). Repetitive DNA and next-generation
1071 sequencing: computational challenges and solutions. *Nat. Rev. Genet.* 2011 131
1072 13, 36–46. 10.1038/nrg3117.

1073 16. Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution.
1074 *Nat. Rev. Genet.* 2004 56 5, 435–445. 10.1038/nrg1348.

1075 17. Eichler, E.E. (2001). Recent duplication, domain accretion and the dynamic
1076 mutation of the human genome. *Trends Genet.* 17, 661–669. 10.1016/S0168-
1077 9525(01)02492-1.

1078 18. Bailey, J.A., Yavor, A.M., Massa, H.F., Trask, B.J., and Eichler, E.E. (2001).
1079 Segmental Duplications: Organization and Impact Within the Current Human
1080 Genome Project Assembly. *Genome Res.* 11, 1005. 10.1101/GR.187101.

1081 19. Sharp, A.J., Locke, D.P., McGrath, S.D., Cheng, Z., Bailey, J.A., Vallente, R.U.,
1082 Pertz, L.M., Clark, R.A., Schwartz, S., Segraves, R., et al. (2005). Segmental
1083 Duplications and Copy-Number Variation in the Human Genome. *Am. J. Hum.
1084 Genet.* 77, 78. 10.1086/431652.

1085 20. Vollger, M.R., Guitart, X., Dishuck, P.C., Mercuri, L., Harvey, W.T., Gershman, A.,
1086 Diekhans, M., Sulovari, A., Munson, K.M., Lewis, A.P., et al. (2022). Segmental
1087 duplications and their variation in a complete human genome. *Science* (80-.).
1088 376.
1089 10.1126/SCIENCE.ABJ6965/SUPPL_FILE/SCIENCE.ABJ6965_MDAR_REPROD
1090 UCIBILITY_CHECKLIST.PDF.

1091 21. Factor-Litvak, P., Susser, E., Kezios, K., McKeague, I., Kark, J.D., Hoffman, M.,
1092 Kimura, M., Wapner, R., and Aviv, A. (2016). Leukocyte telomere length in
1093 newborns: Implications for the role of telomeres in human disease. *Pediatrics* 137.
1094 10.1542/PEDS.2015-3927/-DCSUPPLEMENTAL.

1095 22. Canela, A., Vera, E., Klatt, P., and Blasco, M.A. (2007). High-throughput telomere
1096 length quantification by FISH and its application to human population studies.
1097 *Proc. Natl. Acad. Sci. U. S. A.* 104, 5300–5305.
1098 10.1073/PNAS.0609367104/SUPPL_FILE/09367FIG5.JPG.

1099 23. Sieverling, L., Hong, C., Koser, S.D., Ginsbach, P., Kleinheinz, K., Hutter, B.,
1100 Braun, D.M., Cortés-Ciriano, I., Xi, R., Kabbe, R., et al. (2020). Genomic footprints
1101 of activated telomere maintenance mechanisms in cancer. *Nat. Commun.*
1102 10.1038/s41467-019-13824-9.

1103 24. Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: The next
1104 generation. *Cell* 144, 646–674.
1105 10.1016/J.CELL.2011.02.013/ATTACHMENT/3F528E16-8B3C-4D8D-8DE5-
1106 43E0C98D8475/MMC1.PDF.

1107 25. Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. *Cancer Discov.* 12,
1108 31–46. 10.1158/2159-8290.CD-21-1059.

1109 26. Li, Y., and Tergaonkar, V. (2014). Noncanonical functions of telomerase:

1110 implications in telomerase-targeted cancer therapies. *Cancer Res.* **74**, 1639–
1111 1644. 10.1158/0008-5472.CAN-13-3568.

1112 27. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L.C.,
1113 Coville, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W. (1994). Specific
1114 Association of Human Telomerase Activity with Immortal Cells and Cancer.
1115 *Science* (80-). **266**, 2011–2015. 10.1126/science.7605428.

1116 28. Meyerson, M., Counter, C.M., Eaton, E.N., Ellisen, L.W., Steiner, P., Caddle,
1117 S.D., Ziaugra, L., Beijersbergen, R.L., Davidoff, M.J., Liu, Q., et al. (1997).
1118 hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated
1119 in Tumor Cells and during Immortalization. *Cell* **90**, 785–795. 10.1016/S0092-
1120 8674(00)80538-3.

1121 29. Kolquist, K.A., Ellisen, L.W., Counter, C.M., Meyerson, M., Tan, L.K., Weinberg,
1122 R.A., Haber, D.A., and Gerald, W.L. (1998). Expression of TERT in early
1123 premalignant lesions and a subset of cells in normal tissues. *Nat. Genet.* **19**, 182–
1124 186. 10.1038/554.

1125 30. Li, Y., and Tergaonkar, V. (2016). Telomerase reactivation in cancers:
1126 Mechanisms that govern transcriptional activation of the wild-type vs. mutant
1127 *TERT* promoters. *Transcription* **7**, 44–49. 10.1080/21541264.2016.1160173.

1128 31. Yuan, X., Larsson, C., and Xu, D. (2019). Mechanisms underlying the activation of
1129 TERT transcription and telomerase activity in human cancer: old actors and new
1130 players. *Oncogene* **38**, 6172–6183. 10.1038/s41388-019-0872-9.

1131 32. Huang, F.W., Hodis, E., Xu, M.J., Kryukov, G. V., Chin, L., and Garraway, L.A.
1132 (2013). Highly recurrent TERT promoter mutations in human melanoma. *Science*
1133 **339**, 957–959. 10.1126/SCIENCE.1229259.

1134 33. Horn, S., Figl, A., Rachakonda, P.S., Fischer, C., Sucker, A., Gast, A., Kadel, S.,
1135 Moll, I., Nagore, E., Hemminki, K., et al. (2013). TERT promoter mutations in
1136 familial and sporadic melanoma. *Science* (80-). **339**, 959–961.
1137 10.1126/SCIENCE.1230062/SUPPL_FILE/HORN.SM.PDF.

1138 34. Killela, P.J., Reitman, Z.J., Jiao, Y., Bettegowda, C., Agrawal, N., and Diaz, L.A.
1139 (2013). TERT promoter mutations occur frequently in gliomas and a subset of
1140 tumors derived from cells with low rates of self-renewal. **110**, 6021–6026.
1141 10.1073/pnas.1303607110.

1142 35. Barthel, F.P., Wei, W., Tang, M., Martinez-Ledesma, E., Hu, X., Amin, S.B.,
1143 Akdemir, K.C., Seth, S., Song, X., Wang, Q., et al. (2017). Systematic analysis of
1144 telomere length and somatic alterations in 31 cancer types. *Nat. Genet.*
1145 10.1038/ng.3781.

1146 36. Cao, Y., Bryan, T.M., and Reddel, R.R. (2008). Increased copy number of the
1147 TERT and TERC telomerase subunit genes in cancer cells. *Cancer Sci.* **99**,
1148 1092–1099. 10.1111/J.1349-7006.2008.00815.X.

1149 37. Jiao, Y., Shi, C., Edil, B.H., De Wilde, R.F., Klimstra, D.S., Maitra, A., Schulick,
1150 R.D., Tang, L.H., Wolfgang, C.L., Choti, M.A., et al. (2011). DAXX/ATRX, MEN1,
1151 and mTOR pathway genes are frequently altered in pancreatic neuroendocrine
1152 tumors. *Science* (80-). **331**, 1199–1203.
1153 10.1126/SCIENCE.1200609/SUPPL_FILE/JIAO-SOM.PDF.

1154 38. Heaphy, C.M., De Wilde, R.F., Jiao, Y., Klein, A.P., Edil, B.H., Shi, C.,
1155 Bettegowda, C., Rodriguez, F.J., Eberhart, C.G., Hebbar, S., et al. (2011). Altered

1156 telomeres in tumors with ATRX and DAXX mutations. *Science* (80-). 333, 425.
 1157 10.1126/SCIENCE.1207313/SUPPL_FILE/HEAPHY.SOM.REV1.PDF.

1158 39. Wenger, A.M., Peluso, P., Rowell, W.J., Chang, P.-C., Hall, R.J., Concepcion,
 1159 G.T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N.D., et al. (2019).
 1160 Highly-accurate long-read sequencing improves variant detection and assembly
 1161 of a human genome. *bioRxiv*. 10.1101/519025.

1162 40. Jain, M., Koren, S., Miga, K.H., Quick, J., Rand, A.C., Sasani, T.A., Tyson, J.R.,
 1163 Beggs, A.D., Dilthey, A.T., Fiddes, I.T., et al. (2018). Nanopore sequencing and
 1164 assembly of a human genome with ultra-long reads. *Nat. Biotechnol.* 36, 338–
 1165 345. 10.1038/nbt.4060.

1166 41. Kinzig, C.G., Zakusilo, G., Takai, K.K., and de Lange, T. (2022). Neotelomere
 1167 formation by human telomerase. *bioRxiv*, 2022.10.31.514589.
 1168 10.1101/2022.10.31.514589.

1169 42. Ijdo, J.W., Baldini, A., Ward, D.C., Reeders, S.T., and Wells, R.A. (1991). Origin
 1170 of human chromosome 2: an ancestral telomere-telomere fusion. *Proc. Natl.
 1171 Acad. Sci. U. S. A.* 88, 9051. 10.1073/PNAS.88.20.9051.

1172 43. Fan, Y., Linardopoulou, E., Friedman, C., Williams, E., and Trask, B.J. (2002).
 1173 Genomic Structure and Evolution of the Ancestral Chromosome Fusion Site in
 1174 2q13–2q14.1 and Paralogous Regions on Other Human Chromosomes. *Genome
 1175 Res.* 12, 1651. 10.1101/GR.337602.

1176 44. Stong, N., Deng, Z., Gupta, R., Hu, S., Paul, S., Weiner, A.K., Eichler, E.E.,
 1177 Graves, T., Fronick, C.C., Courtney, L., et al. (2014). Subtelomeric CTCF and
 1178 cohesin binding site organization using improved subtelomere assemblies and a
 1179 novel annotation pipeline. *Genome Res.* 24, 1039–1050. 10.1101/gr.166983.113.

1180 45. Riethman, H., Ambrosini, A., Castaneda, C., Finklestein, J., Hu, X.L., Mudunuri,
 1181 U., Paul, S., and Wei, J. (2004). Mapping and initial analysis of human
 1182 subtelomeric sequence assemblies. *Genome Res.* 14, 18–28.
 1183 10.1101/GR.1245004.

1184 46. Ambrosini, A., Paul, S., Hu, S., and Riethman, H. (2007). Human subtelomeric
 1185 dupilon structure and organization. *Genome Biol.* 8, 1–13. 10.1186/GB-2007-8-
 1186 7-R151/TABLES/2.

1187 47. Hock, H., and Shimamura, A. (2017). ETV6 in Hematopoiesis and Leukemia
 1188 Predisposition. *Semin. Hematol.* 54, 98.
 1189 10.1053/J.SEMINHEMATOL.2017.04.005.

1190 48. Manguso, R.T., Pope, H.W., Zimmer, M.D., Brown, F.D., Yates, K.B., Miller, B.C.,
 1191 Collins, N.B., Bi, K., La Fleur, M.W., Juneja, V.R., et al. (2017). In vivo CRISPR
 1192 screening identifies Ptpn2 as a cancer immunotherapy target. *Nature* 547.
 1193 10.1038/nature23270.

1194 49. TR, G., GF, B., M, L., and DG, G. (1994). Fusion of PDGF receptor beta to a
 1195 novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12)
 1196 chromosomal translocation. *Cell* 77. 10.1016/0092-8674(94)90322-0.

1197 50. Knezevich, S.R., McFadden, D.E., Tao, W., Lim, J.F., and Sorensen, P.H.B.
 1198 (1998). A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. *Nat. Genet.*
 1199 18. 10.1038/ng0298-184.

1200 51. Liao, H., Winkfein, R.J., Mack, G., Rattner, J.B., and Yen, T.J. (1995). CENP-F is
 1201 a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is

1202 rapidly degraded after mitosis. *J. Cell Biol.* 130, 507. 10.1083/JCB.130.3.507.

1203 52. Zhu, X., Mancini, M.A., Chang, K.H., Liu, C.Y., Chen, C.F., Shan, B., Jones, D.,
1204 Yang-Feng, T.L., and Lee, W.H. (1995). Characterization of a novel 350-kilodalton
1205 nuclear phosphoprotein that is specifically involved in mitotic-phase progression.
1206 *Mol. Cell. Biol.* 15, 5017–5029. 10.1128/MCB.15.9.5017.

1207 53. Zhu, X., Chang, K.H., He, D., Mancini, M.A., Brinkley, W.R., and Lee, W.H.
1208 (1995). The C Terminus of Mitosin Is Essential for Its Nuclear Localization,
1209 Centromere/Kinetochore Targeting, and Dimerization. *J. Biol. Chem.* 270, 19545–
1210 19550. 10.1074/JBC.270.33.19545.

1211 54. Grigorova, M., Staines, J.M., Ozdag, H., Caldas, C., and Edwards, P.A.W. (2004).
1212 Possible causes of chromosome instability: Comparison of chromosomal
1213 abnormalities in cancer cell lines with mutations in BRCA1, BRCA2, CHK2 and
1214 BUB1. In *Cytogenetic and Genome Research* 10.1159/000077512.

1215 55. Davidson, J.M., Gorringe, K.L., Chin, S.F., Orsetti, B., Besret, C., Courtay-Cahen,
1216 C., Roberts, I., Theillet, C., Caldas, C., and Edwards, P.A.W. (2000). Molecular
1217 cytogenetic analysis of breast cancer cell lines. *Br. J. Cancer.* 10.1054/bjoc.2000.1458.

1218 56. Abdel-Rahman, W.M., Katsura, K., Rens, W., Gorman, P.A., Sheer, D., Bicknell,
1219 D., Bodmer, W.F., Arends, M.J., Wyllie, A.H., and Edwards, P.A.W. (2001).
1220 Spectral karyotyping suggests additional subsets of colorectal cancers
1221 characterized by pattern of chromosome rearrangement. *Proc. Natl. Acad. Sci. U.*
1222 *S. A.* 10.1073/pnas.041603298.

1223 57. Grigorova, M., Lyman, R.C., Caldas, C., and Edwards, P.A.W. (2005).
1224 Chromosome abnormalities in 10 lung cancer cell lines of the NCI-H series
1225 analyzed with spectral karyotyping. *Cancer Genet. Cytogenet.* 10.1016/j.cancergenryo.2005.03.007.

1226 58. Sirivatanauskorn, V., Sirivatanauskorn, Y., Gorman, P.A., Davidson, J.M., Sheer,
1227 D., Moore, P.S., Scarpa, A., Edwards, P.A.W., and Lemoine, N.R. (2001). Non-
1228 random chromosomal rearrangements in pancreatic cancer cell lines identified by
1229 spectral karyotyping. *Int. J. Cancer.* 10.1002/1097-
1230 0215(200002)9999:9999<::AID-IJC1049>3.3.CO;2-3.

1231 59. Edwards, P. SKY Karyotypes and FISH analysis of Epithelial Cancer Cell Lines.

1232 60. Livingstone, K., and Rieseberg, L. (2004). Chromosomal evolution and speciation:
1233 A recombination-based approach. *New Phytol.* 10.1046/j.1469-
1234 8137.2003.00942.x.

1235 61. Fischer, G., James, S.A., Roberts, I.N., Oliver, S.G., and Louis, E.J. (2000).
1236 Chromosomal evolution in *Saccharomyces*. *Nature.* 10.1038/35013058.

1237 62. Dutrillaux, B. (1979). Chromosomal evolution in Primates: Tentative phylogeny
1238 from *Microcebus murinus* (Prosimian) to man. *Hum. Genet.*
1239 10.1007/BF00272830.

1240 63. Mazzoleni, S., Schillaci, O., Sineo, L., and Dumas, F. (2017). Distribution of
1241 Interstitial Telomeric Sequences in Primates and the Pygmy Tree Shrew
1242 (Scandentia). *Cytogenet. Genome Res.* 10.1159/000467634.

1243 64. Lin, K.W., and Yan, J. (2008). Endings in the middle: Current knowledge of
1244 interstitial telomeric sequences. *Mutat. Res. - Rev. Mutat. Res.*
1245 10.1016/j.mrrev.2007.08.006.

1248 65. Meyne, J., Baker, R.J., Hobart, H.H., Hsu, T.C., Ryder, O.A., Ward, O.G., Wiley,
1249 J.E., Wurster-Hill, D.H., Yates, T.L., and Moyzis, R.K. (1990). Distribution of non-
1250 telomeric sites of the (TTAGGG)_n telomeric sequence in vertebrate
1251 chromosomes. *Chromosoma*. 10.1007/BF01737283.

1252 66. Ocalewicz, K., Furgala-Selezniow, G., Szmyt, M., Lisboa, R., Kucinski, M., Lejk,
1253 A.M., and Jankun, M. (2013). Pericentromeric location of the telomeric DNA
1254 sequences on the European grayling chromosomes. *Genetica*. 10.1007/s10709-
1255 013-9740-7.

1256 67. Faravelli, M., Moralli, D., Bertoni, L., Attolini, C., Chernova, O., Raimondi, E., and
1257 Giulotto, E. (1998). Two extended arrays of a satellite DNA sequence at the
1258 centromere and at the short-arm telomere of Chinese hamster chromosome 5.
1259 *Cytogenet. Cell Genet.* 10.1159/000015171.

1260 68. Sholes, S.L., Karimian, K., Gershman, A., Kelly, T.J., Timp, W., and Greider, C.W.
1261 (2022). Chromosome-specific telomere lengths and the minimal functional
1262 telomere revealed by nanopore sequencing. *Genome Res.* 32, 616–628.
1263 10.1101/GR.275868.121/-/DC1.

1264 69. Grigorev, K., Foox, J., Bezdan, D., Butler, D., Luxton, J.J., Reed, J., McKenna,
1265 M.J., Taylor, L., George, K.A., Meydan, C., et al. (2021). Haplotype diversity and
1266 sequence heterogeneity of human telomeres. *Genome Res.* 31, 1269–1279.
1267 10.1101/gr.274639.120.

1268 70. Carrot-Zhang, J., Yao, X., Devarakonda, S., Deshpande, A., Damrauer, J.S.,
1269 Silva, T.C., Wong, C.K., Choi, H.Y., Felau, I., Robertson, A.G., et al. (2021).
1270 Whole-genome characterization of lung adenocarcinomas lacking the
1271 RTK/RAS/RAF pathway. *Cell Rep.* 10.1016/j.celrep.2021.108707.

1272 71. Campbell, J.D., Alexandrov, A., Kim, J., Wala, J., Berger, A.H., Pedamallu, C.S.,
1273 Shukla, S.A., Guo, G., Brooks, A.N., Murray, B.A., et al. (2016). Distinct patterns
1274 of somatic genome alterations in lung adenocarcinomas and squamous cell
1275 carcinomas. *Nat. Genet.* 10.1038/ng.3564.

1276 72. Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigelski, E.M., and
1277 Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. *Nucleic Acids
1278 Res.* 29, 308–311.

1279 73. Nurk, S., Koren, S., Rhee, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A.,
1280 Vollger, M.R., Altemose, N., Uralsky, L., Gershman, A., et al. (2022). The
1281 complete sequence of a human genome. *Science* (80-). 376.
1282 10.1126/science.abj6987.

1283 74. Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences.
1284 *Bioinformatics* 34, 3094–3100. 10.1093/bioinformatics/bty191.

1285 75. Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs
1286 with BWA-MEM. *arXiv Prepr. arXiv*, 3997.

1287 76. Li, H. (2011). A statistical framework for SNP calling, mutation discovery,
1288 association mapping and population genetical parameter estimation from
1289 sequencing data. *Bioinformatics* 27, 2987–2993. 10.1093/bioinformatics/btr509.

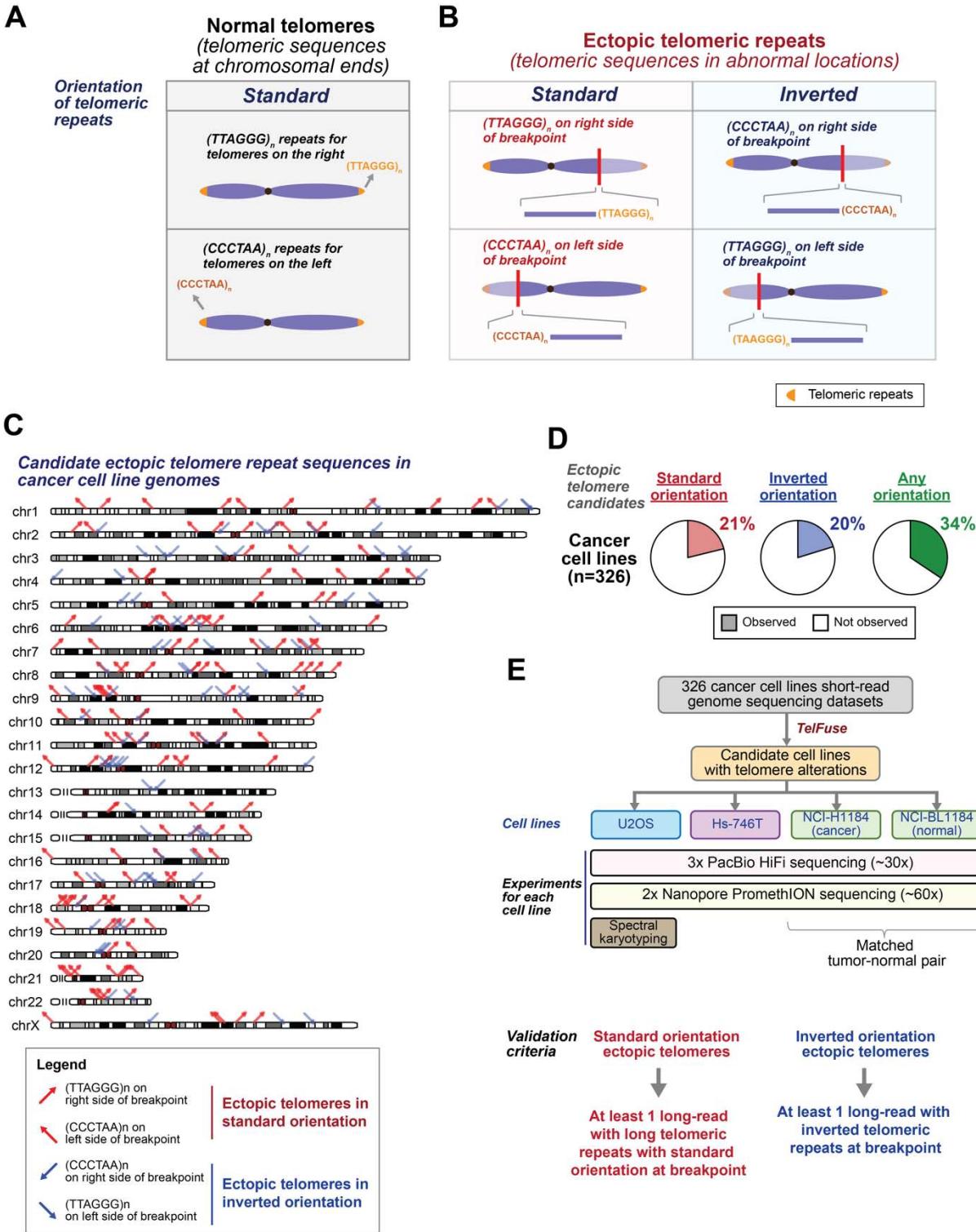
1290 77. Team, R.C. (2021). R: A Language and Environment for Statistical Computing. R
1291 Found. Stat. Comput.

1292 78. Van Rossum, G., and Drake, F.L. (2009). Python 3 Reference Manual;
1293 CreateSpace. Scotts Val. CA.

1294 79. Larry Wall (1994). The PERL Programming Language. Dr. Dobb's J. Softw. Tools
1295 19.

1296 80. Thorvaldsdóttir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative
1297 Genomics Viewer (IGV): High-performance genomics data visualization and
1298 exploration. *Brief. Bioinform.* 14. 10.1093/bib/bbs017.

1299 81. Tan, K.T., Slevin, M.K., Meyerson, M., and Li, H. (2022). Identifying and
1300 correcting repeat-calling errors in nanopore sequencing of telomeres. *Genome*
1301 *Biol.* 23, 1–16. 10.1186/S13059-022-02751-6/FIGURES/2.

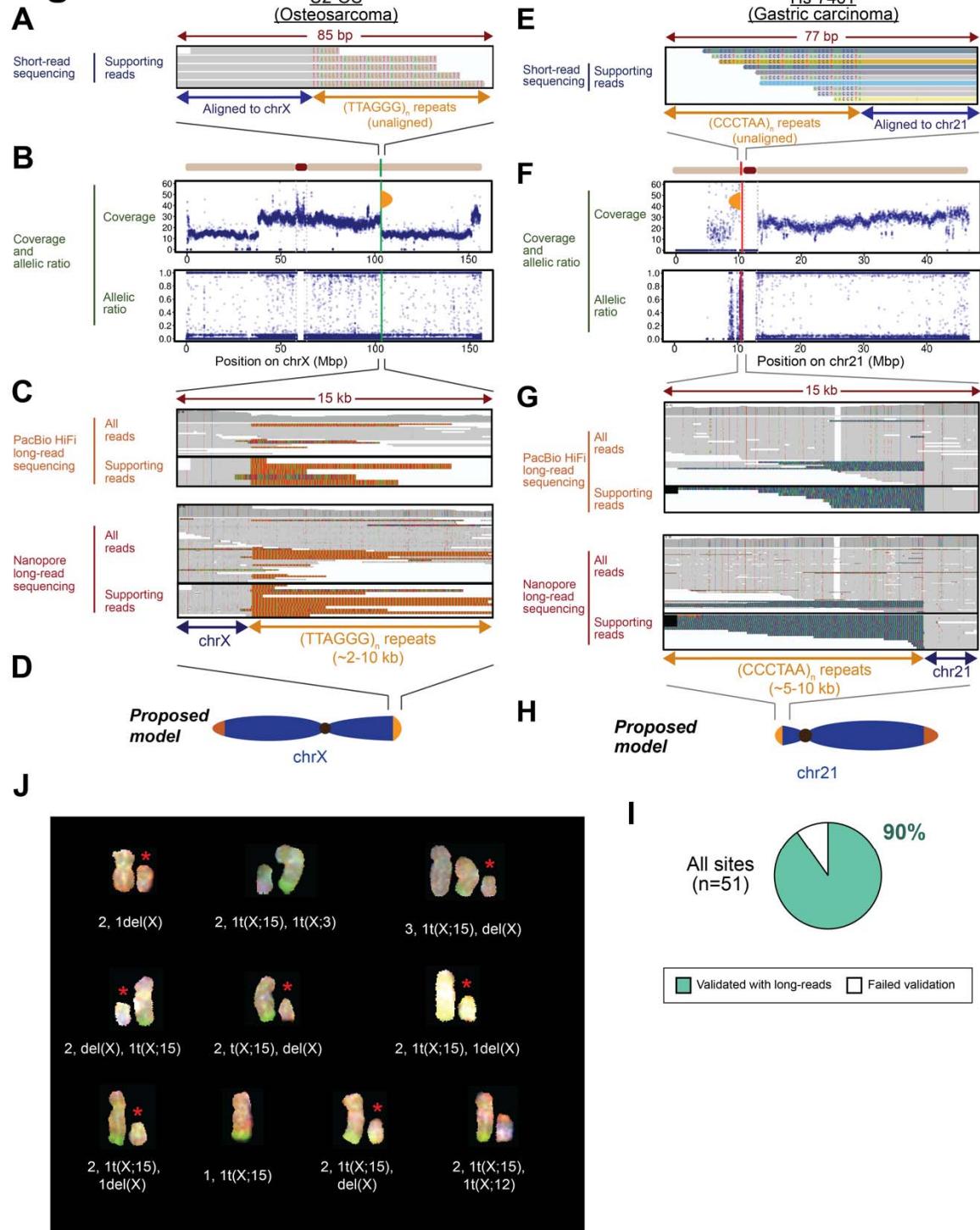

1302

1303

1304

1305

Figure 1

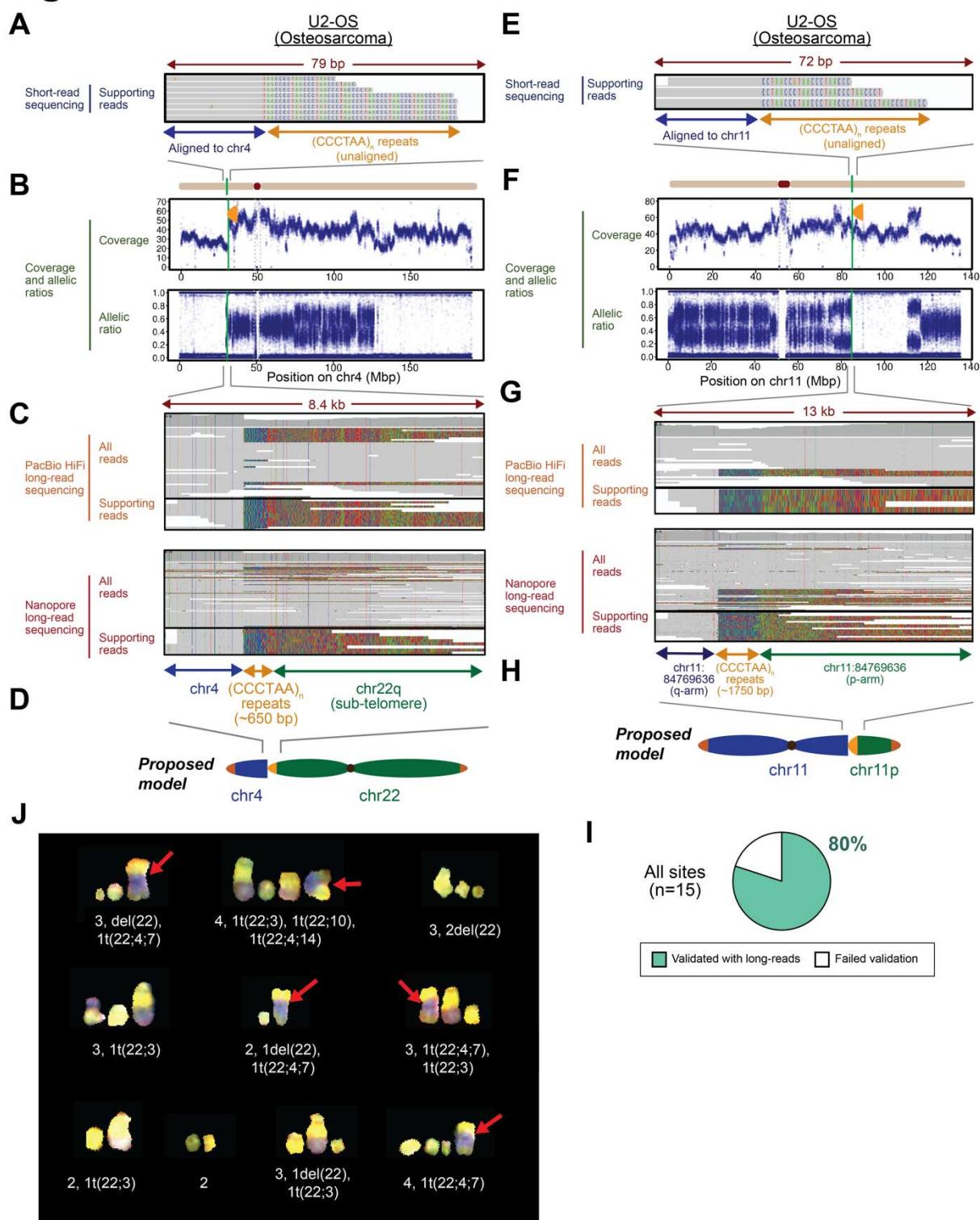


1308 **Figure 1 Classes of ectopic telomeric repeats found in cancer cell genomes. (A)**
1309 Schematic of sequence and positions of normal telomeres at chromosomal termini. **(B)**
1310 Schematic of ectopic telomeric repeats found at abnormal locations away from
1311 chromosomal termini. Standard orientation: (TTAGGG)_n on the right side of a breakpoint
1312 and (CCCTAA)_n on the left side of the breakpoint in the 5' to 3' direction (same as
1313 normal telomere in Fig. 1A). Inverted orientation: (CCCTAA)_n on the right side of a
1314 breakpoint and (TTAGGG)_n on the left side of the breakpoint in the 5' to 3' direction.
1315 Note that faded chromosomal segment is not part of derivative chromosome. **(C)**
1316 Genome-wide localization of ectopic telomeric repeats in cancer cell line genomes
1317 (n=326) identified using short-read genome sequencing. Red: ectopic telomeric
1318 sequences in the standard orientation. Blue: ectopic telomeric sequences in the inverted
1319 orientation. Position of telomeric repeats relative to the breakpoint is indicated by arrows
1320 oriented in different directions. **(D)** Percentage of cancer cell lines in the CCLE with
1321 ectopic telomeric sequences in either orientation. Total sample number as indicated. **(E)**
1322 Flow-chart of long-read genome sequencing and cytogenetic analyses in cancer cell
1323 lines, with the indicated validation criteria.

1324

1325

Figure 2



1328 **Figure 2 Neotelomeres in cancer genomes revealed by long-read genome**
1329 **sequencing. (A-H)** Genomic analysis of telomere repeat alterations in the standard
1330 orientation that were detected **(A-D)** in the U2-OS osteosarcoma cell line at
1331 chrX:103,320,553, and **(E-H)** in the Hs-746T cell line at chr21:10,547,397. **(A)** IGV
1332 screenshots of short-read genome sequencing data. Ectopic telomeric repeats
1333 (TTAGGG)_n are shown in color. **(B)** Sequencing coverage and allelic ratios of
1334 chromosome X. Orange semi-oval: site of the neotelomeric event. **(C)** IGV screenshots
1335 depicting long telomeric repeat sequences (TTAGGG)_n with PacBio HiFi and Nanopore
1336 long-read sequencing at the site shown in **(A)**. **(D)** Schematic of neotelomere location
1337 on chromosome Xq. **(E)** IGV screenshots of short-read genome sequencing data.
1338 Ectopic telomeric repeats (CCCTAA)_n are shown in color. **(F)** Sequencing coverage and
1339 allelic ratios of chromosome 21. Orange semi-oval: site of the neotelomeric event. **(G)**
1340 IGV screenshots depicting long telomeric repeat sequences (CCCTAA)_n with PacBio
1341 HiFi and Nanopore long-read sequencing at the site shown in **(E)**. **(H)** Schematic of
1342 neotelomere location on chromosome 21p. **(I)** Percentage of ectopic telomeric repeat
1343 sites in the standard orientation, found by short-read genome sequencing using
1344 TelFuse, that were validated by long-read genome sequencing. **(J)** Spectral karyogram
1345 of chrX in ten U2-OS single cells assessed by spectral karyotyping with corresponding
1346 karyotype labels. First label: total # of X chromosomes and their derivatives observed in
1347 given cell. Second label: karyotypes of the aberrant X chromosomes or derivatives.
1348 Asterisk (*): truncated X chromosome. See also Figure S4.

1349

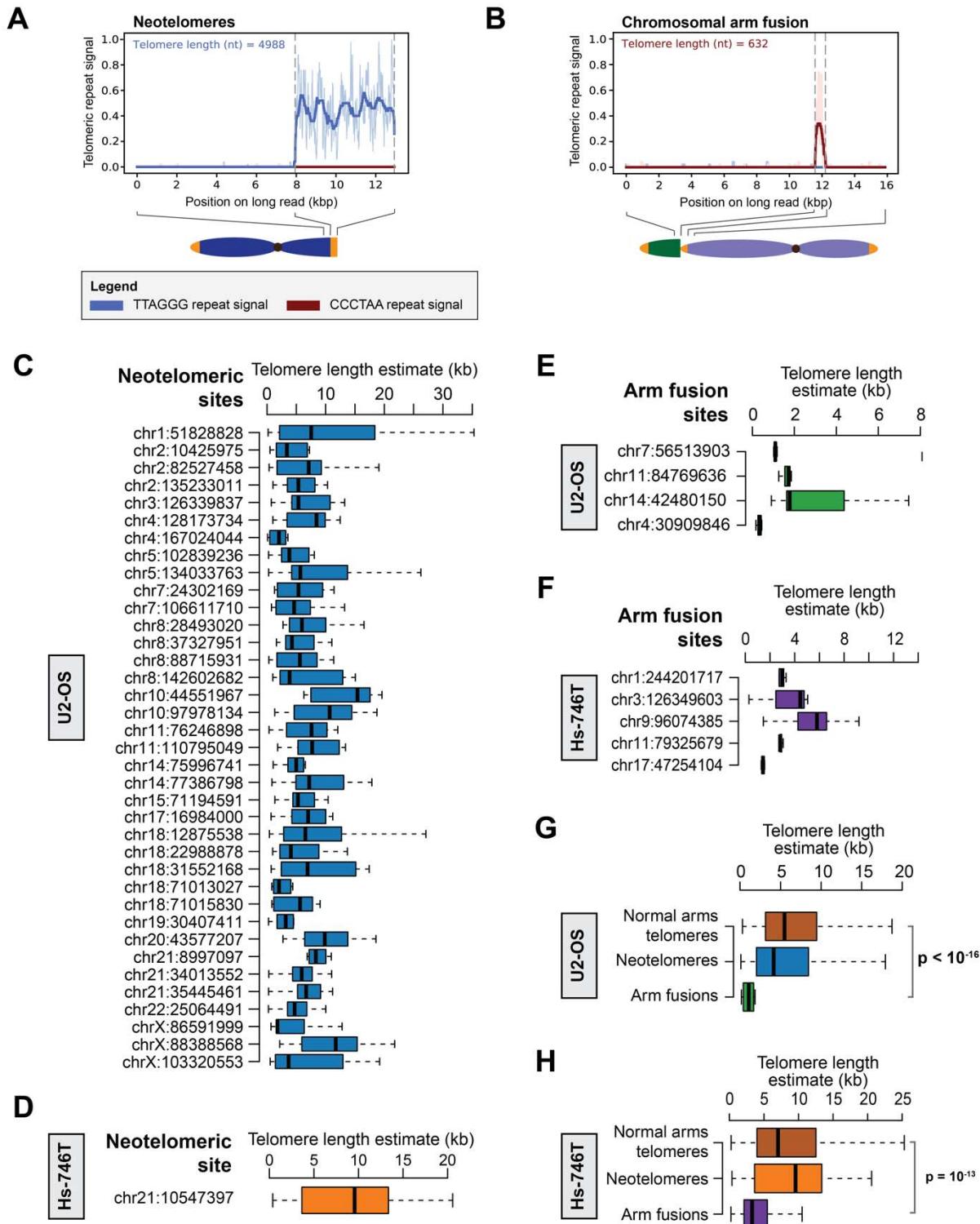

1350

Figure 3

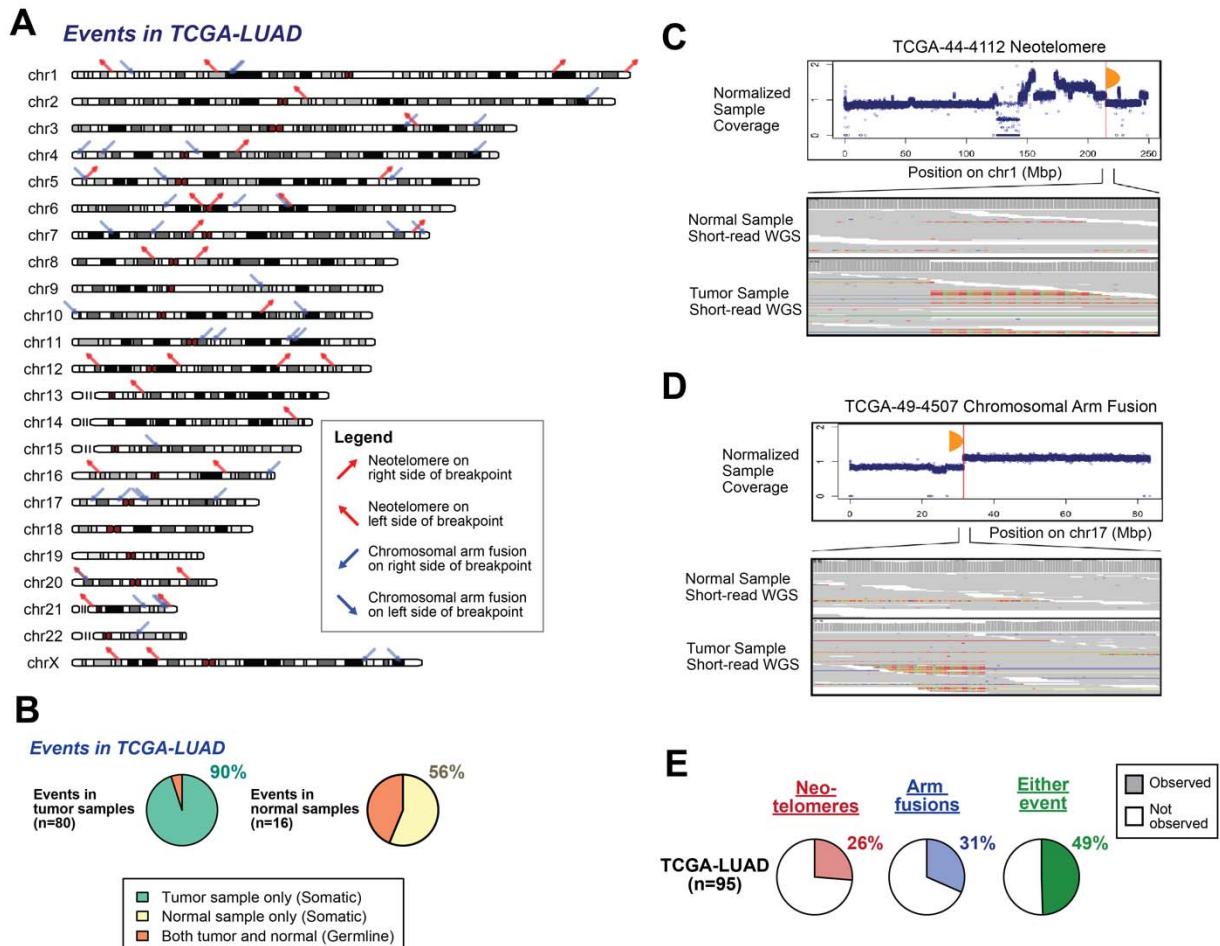
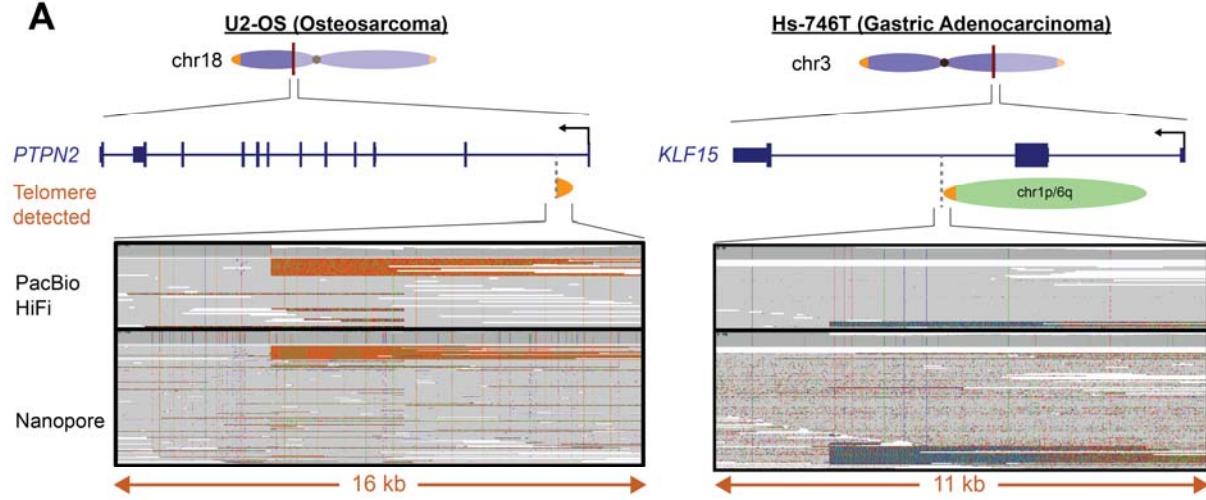

1353 **Figure 3 Chromosomal arm fusions in cancer genomes revealed by long-read**
1354 **genome sequencing. (A-H)** Genomic analysis of telomere repeat alterations in the
1355 inverted orientation that were detected in the U2-OS osteosarcoma cell line **(A-D)** at the
1356 site chr4:30,909,846, and **(E-H)** at the site chr11:84,769,636. **(A)** IGV screenshots of
1357 short-read genome sequencing data. Ectopic telomeric repeats (CCCTAA)_n are shown
1358 in color. **(B)** Sequencing coverage and allelic ratios of chromosome 4. Orange semi-
1359 oval: site of the ectopic telomere repeat sequence. **(C)** IGV screenshots of PacBio HiFi
1360 and Nanopore long-read sequencing data at the site shown in **(A)**. Ectopic telomeric
1361 repeats in the inverted orientation contained ~650 bp of (CCCTAA)_n telomeric repeat
1362 sequences followed by chr22q sub-telomeric sequences, indicative of a chromosomal
1363 arm fusion event of chr22q to the site at chr4:30,909,846. **(D)** Schematic of telomere-
1364 spanning fusion event between chromosomes 22q-ter and 4p. **(E)** IGV screenshots of
1365 short-read genome sequencing data. Ectopic telomeric repeats (CCCTAA)_n are shown
1366 in color. **(F)** Sequencing coverage and allelic ratios of chromosome 11. Orange semi-
1367 oval: site of the ectopic telomere repeat sequence. **(G)** IGV screenshots of PacBio HiFi
1368 and Nanopore long-read sequencing at the site shown in **(E)**. ~1750 bp of (CCCTAA)_n
1369 telomeric repeat sequences are found sequences corresponding to chr11p
1370 (chr11:43,002,345), suggestive of a complex event consistent with the formation of a
1371 neotelomere on chr11p, followed by a chromosomal arm fusion event of this
1372 neotelomere to the site on chr11q (chr11:84,769,636). **(H)** Schematic telomere-
1373 spanning fusion event between chromosome arms 11q (with a predicted neotelomere)
1374 and 11p. **(I)** Percentage of new telomeric sites in the inverted orientation that were
1375 predicted by TelFuse from short-read genome sequencing, and then validated by long-
1376 read genome sequencing as telomere-spanning chromosome arm fusion events. **(J)**
1377 Spectral karyogram of chromosome 22 for which a chromosomal arm fusion was
1378 detected with chromosome 4. Ten U2-OS single cells assessed are as indicated. The
1379 fusion event between chromosome 22 (yellow) and chromosome 4 (blue) is indicated by
1380 a red arrow. See also Figure S6.

Figure 4

1385 **Figure 4 Neotelomeres have similar telomere length distribution as normal**
1386 **telomeres, while telomeric repeats at sites with chromosomal arm fusions are**
1387 **short. (A-B)** Telomeric repeat signal observed at a representative Nanopore read with
1388 **(A)** a neotelomere in U2-OS DNA at chrX:103,320,553, and **(B)** a chromosomal arm
1389 fusion event in U2-OS DNA at chr4:30,909,846. The length of telomeric repeats on each
1390 long-read was estimated from these telomeric repeat signal profiles. Boxplots depicting
1391 the distribution of telomere length found at each neotelomere assessed by Nanopore
1392 sequencing for the **(C)** U2-OS and **(D)** Hs-746T cell lines. Boxplot depicting length of
1393 telomeric repeats assessed using Nanopore sequencing for each chromosomal arm
1394 fusion event in the **(E)** U2-OS and **(F)** Hs-746T cell lines. Note: telomere length for
1395 neotelomeres and normal chromosomal arms were only estimated using long-reads
1396 reads that start or end in telomeric repeats, while length of telomeric repeats at
1397 chromosomal arm fusions were estimated using long-reads with telomeric repeats in the
1398 middle of the read. Aggregated telomeric length of all long-reads at the normal
1399 chromosomal arms (p- and q-arms), neotelomeres, and chromosomal arm fusion events
1400 in the **(G)** U2-OS and **(H)** Hs-746T cell lines. P-values indicated in the plots were
1401 calculated using the two-sided Wilcoxon Rank Sum test. See also Figure S9.
1402
1403
1404

Figure 5


1407 **Figure 5 Putative neotelomeres and chromosomal arm fusion events are detected**
1408 **as somatic alterations in primary lung adenocarcinoma genomes. (A)** Genome-
1409 wide distribution of putative neotelomeres and chromosomal arm fusion events in lung
1410 adenocarcinoma patient samples from The Cancer Genome Atlas (TCGA) (n=95).
1411 Neotelomeres were inferred from ectopic telomeric sequences in the standard
1412 orientation, while chromosomal arm fusion events were inferred from ectopic telomeric
1413 sequences in the inverted orientation, as described in Figure 1B, using short-read
1414 genome sequencing data. **(B)** Proportion of telomeric alterations (neotelomeres/arm
1415 fusions) that were found to be germline or somatic. **(C-D)** Examples of neotelomeres
1416 and chromosomal arm fusion events detected in tumor samples from patients with lung
1417 adenocarcinoma. **(C)** Neotelomere in tumor DNA from case TCGA-44-4112 at the site
1418 chr1:214,760,486. **(D)** Chromosomal arm fusion in tumor DNA from case TCGA-49-
1419 4507 at the site chr17:31,537,163. Top panels: sequencing coverage at the sites of
1420 interest. Bottom panels: IGV screenshots corresponding to the neotelomere or
1421 chromosomal arm fusion events in the normal and tumor samples. **(E)** Frequency of
1422 neotelomeres and chromosomal arm fusion events in lung adenocarcinoma patient
1423 tumor samples in TCGA.

1424

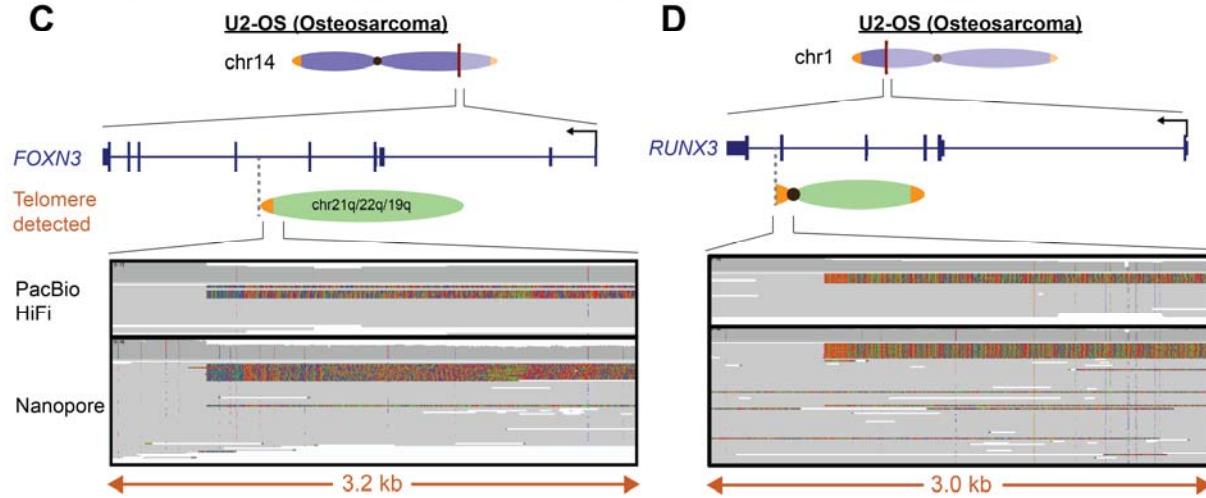
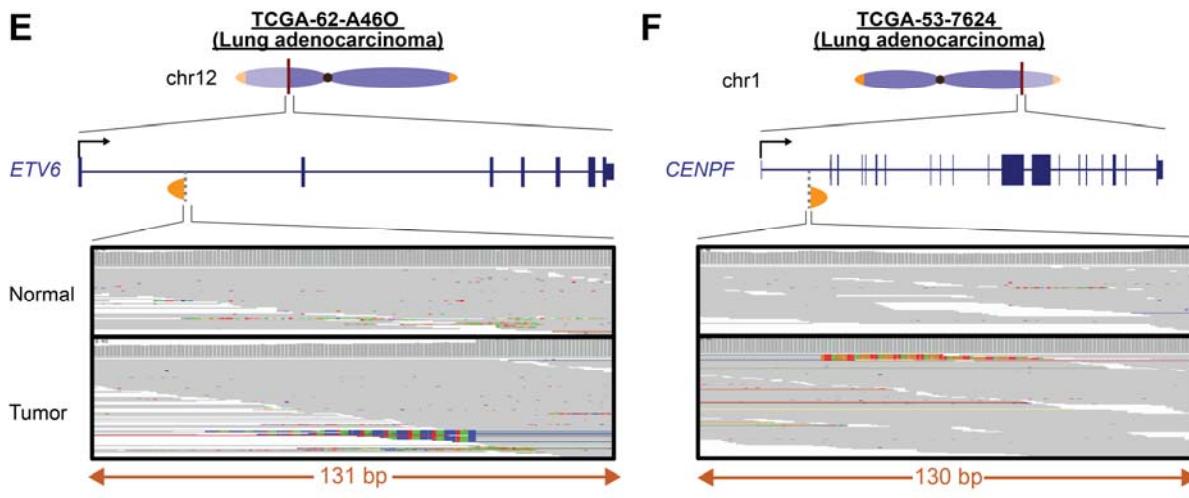
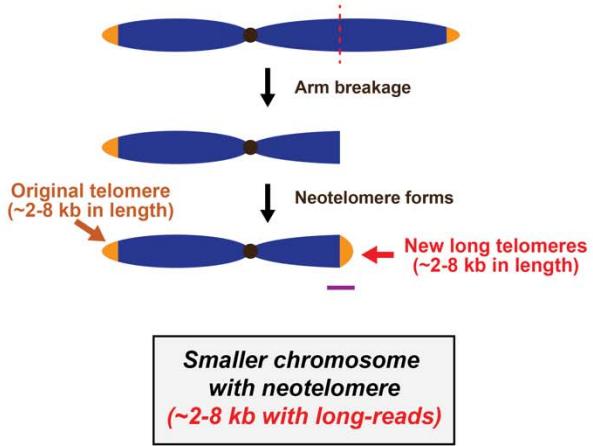

1425

Figure 6

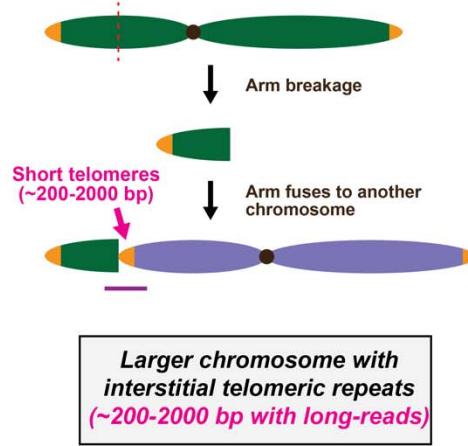

A

C

E

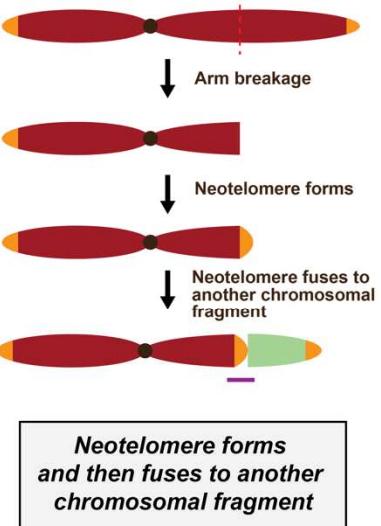


1428 **Figure 6 Neotelomeres and chromosomal arm fusion events disrupt protein**
1429 **coding genes in cancer cell lines and patient samples. (A)** Disruption of the *PTPN2*
1430 gene in the U2-OS osteosarcoma cell line at chr18:12,875,538 with addition of a
1431 neotelomere. **(B)** Disruption of the *KLF15* gene in the Hs-746T gastric adenocarcinoma
1432 cell line associated with a chromosomal arm fusion event at chr3:126,349,603. **(C)** A
1433 chromosomal arm fusion event in the U2-OS cell line between a broken chromosome
1434 14 and the telomere arm of chromosome 21q/22q/19q associated with disruption of the
1435 *FOXN3* gene at chr14:89,300,563. **(D)** A neotelomere in the U2-OS cell line coupled to
1436 fusion to a centromere leads to disruption of the *RUNX3* gene at chr1:24,906,321. **(E)** A
1437 putative neotelomere associated with disruption of the *ETV6* gene in a lung
1438 adenocarcinoma tumor sample derived from the patient TCGA-62-A46O at the site
1439 chr12:11,696,012. **(F)** A putative neotelomere associated with disruption of the *CEPF*
1440 gene in a lung adenocarcinoma tumor sample derived from the patient TCGA-53-7624
1441 at the site chr1:214,609,478. See also Figure S13.
1442
1443

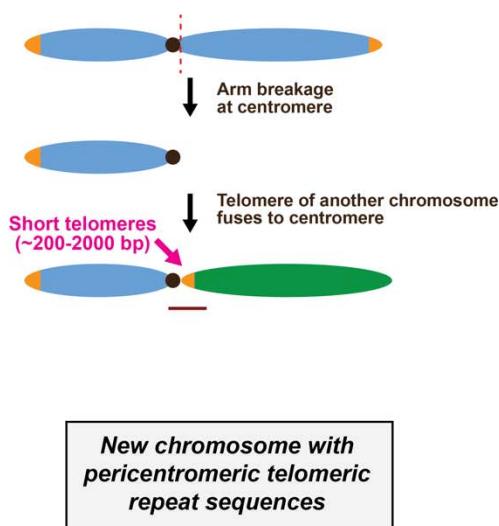

Figure 7

Simple events

A



B



Complex events

C

D

Legend

► Telomere ● Centromere | Breakage site — Long reads

1446 **Figure 7 Possible models that can account for the different types of telomeric
1447 repeat sequences observed in this study. (A)** A neotelomere can form after a
1448 chromosomal arm breakage event. This leads to the generation of a smaller
1449 chromosome with a neotelomere, similar in repeat length to telomeres found on a
1450 normal chromosomal arm. **(B)** Chromosome arm fusion where a broken chromosomal
1451 arm can fuse to another chromosome with very short telomeres. This generates a larger
1452 chromosome with interstitial telomeric repeat sequences in the middle of the
1453 chromosome. **(C)** Complex alteration where neotelomere formation is followed by the
1454 fusion of this neotelomere to another chromosomal fragment. This leads to the
1455 observation of long-reads in our study which contains telomeric repeat sequences,
1456 flanked on both sides by intra-chromosomal sequences. **(D)** A complex telomeric
1457 alteration involving a chromosomal arm break at or very near to the centromere, which
1458 is fused to another chromosomal arm with very short telomeres. The resultant new
1459 chromosome has pericentromeric telomeric repeat sequences. Purple line: parts of the
1460 model supported by long-read genome sequencing data.

1461

1462

1463 **Supplemental Information**

1464

1465 **Supplementary Figure Legends**

1466

1467 **Figure S1 Overview of the TelFuse methodology and the distribution of ectopic**
1468 **telomeric events in cancer cell line genomes. (A)** Overview of the TelFuse
1469 computational method to identify ectopic telomere repeat sequences with short-reads
1470 genome sequencing. Raw sites were first identified from partially mapped read-pairs
1471 which also contain telomeric repeats on unmapped portions of these reads. A stringent
1472 set of filters was then applied to ensure the specificity of these calls. These candidate
1473 sites were then classified by the orientation of telomeric repeats after the breakpoint.
1474 Specifically, sites with (TTAGGG)_n repeats after the breakpoint have telomeric repeats
1475 in the standard orientation, akin to a standard telomere. Conversely, sites containing
1476 (CCCTAA)_n telomeric repeats after the breakpoint have telomeric repeat sequences in
1477 the inverted orientation. **(B)** Detailed overview of method used for the identification of
1478 ectopic telomeric repeat sites. **(C-E)** Number of ectopic telomeric repeat sites found in
1479 the genome of each cancer cell line (n=326 cell lines) in **(C)** either orientation, in **(D)** the
1480 standard orientation, and in **(E)** the inverted orientation. The three cell lines (U2-OS, Hs-
1481 746T, and NCI-H1184) which have a high frequency of ectopic telomeric events, and
1482 which were selected for long-read genome sequencing are as indicated.

1483

1484 **Figure S2 Circos plot depicting locations of ectopic telomeric repeat sequences**
1485 **identified in the U2-OS cell line by TelFuse.** Locations of ectopic telomeric repeats in
1486 the standard orientation are labelled with red triangles, while those in the inverted
1487 orientation are labelled with green triangles. Triangles pointing in the anti-clockwise
1488 direction indicates that the ectopic telomeric repeat sequences are found on the anti-
1489 clockwise edge, while triangles pointing in the clockwise directions indicates that ectopic
1490 telomeric repeat sequences are on the clockwise edge. The allelic ratios are depicted in
1491 red, while the sequencing coverage is labelled in blue. The inner most circle depicts
1492 translocation events detected in the cell line.

1493

1494 **Figure S3 Sequencing quality of long-read genome sequencing datasets**
1495 **generated as part of this study.** Sequencing quality metrics for long-read genome
1496 sequencing data generated using the Nanopore PromethION platform (2x flow cells per
1497 cell line), and the PacBio platforms (3x SMRT flow cells per cell line) are as indicated.
1498 The PacBio dataset was further divided into the full dataset consisting of all reads, and
1499 the PacBio HiFi dataset consisting of reads with a read quality ≥ 0.9 . **(A)** Read length
1500 distribution of the Nanopore and PacBio long-read genome sequencing datasets
1501 generated in this study. Each sequencing run is indicated separately. The median read
1502 length for each run are also indicated in the legend for each plot. **(B)** The cumulative
1503 fraction of sequenced bases above a particular read length for each run is as indicated
1504 in the plots. The N50 (i.e. minimum read length at which half the bases were
1505 sequenced) for each run is also indicated in the legend of each plot. **(C)** Fraction of the
1506 genome sequenced above the stated sequencing depth for each sample is as indicated
1507 in the plots. The median sequencing coverage across the human genome is also
1508 indicated in the legend of each plot. **(D)** Distribution of sequence divergence of long-

1509 reads generated by each platform and for each platform is as indicated. Sequence
1510 divergence (i.e. how much each long-read differs from the reference genome)
1511 information for each long-read was extracted from long-reads aligned to the GRCh38
1512 reference genome using minimap2.

1513
1514 **Figure S4 Additional examples of neotelomeres discovered using long-read**
1515 **genome sequencing, related to Figure 2. (A-H)** Genomic analysis of telomere repeat
1516 alterations in the standard orientation that were detected **(A-D)** in the U2-OS
1517 osteosarcoma cell line at chr7:24,302,169, and **(E-H)** in the NCI-H1184 small cell lung
1518 carcinoma cell line at chr1:214,460,753, but not in the matched normal cell line (NCI-
1519 BL1184). **(A)** IGV screenshots of short-read genome sequencing data. Ectopic
1520 telomeric repeats (CCCTAA)_n are shown in gold. **(B)** Sequencing coverage and allelic
1521 ratios of chromosome 7. Orange semi-oval: site of the neotelomeric event. **(C)** IGV
1522 screenshots depicting long telomeric repeat sequences (TTAGGG)_n with PacBio HiFi
1523 (read quality ≥ 0.9) and Nanopore long-read sequencing at the site shown in **(A)**. **(D)**
1524 Schematic of neotelomere location on chromosome 7p. **(E)** IGV screenshots of short-
1525 read genome sequencing data. Ectopic telomeric repeats (TTAGGG)_n are shown in
1526 gold. **(F)** Sequencing coverage and allelic ratios of chromosome 1. Orange semi-oval:
1527 site of the neotelomeric event. **(G)** IGV screenshots depicting long telomeric repeat
1528 sequences (CCCTAA)_n with PacBio HiFi (read quality ≥ 0.9) and Nanopore long-read
1529 sequencing at the site shown in **(E)**. **(H)** Schematic of neotelomere location on
1530 chromosome 1q.

1531
1532 **Figure S5 Degree of chromosomal heterogeneity between cells is chromosome**
1533 **specific. (A)** Spectral karyogram of a representative U2-OS cell (Cell 01-01) analyzed
1534 in this study. Chromosomes observed were assigned to each of the 24 possible
1535 autosomes and sex chromosomes. Chromosomes that could not be assigned were
1536 labelled as marker chromosomes 'M'. Spectral karyogram of **(B)** chromosome 4 with
1537 low levels of chromosomal heterogeneity and **(C)** chromosome 15 with high levels of
1538 chromosomal heterogeneity in ten cells assessed. Red arrows in **(B)** highlights the
1539 chromosome with translocation between chromosome 4 and 22. Red arrows in **(C)**
1540 highlights the chromosome with translocation between chromosome 15 and 19.

1541
1542 **Figure S6 Additional examples of chromosomal arm fusion events revealed by**
1543 **long-read genome sequencing, related to Figure 3. (A-H)** Genomic analysis of
1544 telomere repeat alterations in the inverted orientation that were detected in the Hs-746T
1545 gastric carcinoma cell line **(A-D)** at the site chr11:79,325,679, and **(E-H)** at the site
1546 chr1:244,201,717. **(A)** IGV screenshots of short-read genome sequencing data. Ectopic
1547 telomeric repeats (TTAGGG)_n are shown in color. **(B)** Sequencing coverage and allelic
1548 ratios of chromosome 11. Orange semi-oval: site of the ectopic telomere repeat
1549 sequence. **(C)** IGV screenshots of PacBio HiFi (read quality ≥ 0.9) and Nanopore long-
1550 read sequencing data at the site shown in **(A)**. Ectopic telomeric repeats in the inverted
1551 orientation contained ~4.2 kb of (TTAGGG)_n telomeric repeat sequences followed by
1552 chr3q/19p sub-telomeric sequences, indicative of a chromosomal arm fusion event of
1553 chr3q/19p to the site at chr11:79,325,679. **(D)** Schematic of telomere-spanning fusion
1554 event between chromosomes 3q/19p-ter and 11q. **(E)** IGV screenshots of short-read

1555 genome sequencing data. Ectopic telomeric repeats (TTAGGG)_n are shown in color. **(F)**
1556 Sequencing coverage and allelic ratios of chromosome 1. Orange semi-oval: site of the
1557 ectopic telomere repeat sequence. **(G)** IGV screenshots of PacBio HiFi (read quality \geq
1558 0.9) and Nanopore long-read sequencing at the site shown in **(E)**. Ectopic telomeric
1559 repeats in the inverted orientation contained \sim 3.5 kb of (TTAGGG)_n telomeric repeat
1560 sequences followed by chr6q sub-telomeric sequences, indicative of a chromosomal
1561 arm fusion event of chr6q to the site at chr1:244,201,717. **(H)** Schematic of telomere-
1562 spanning fusion event between chromosomes 6q-ter and 1q.
1563

1564 **Figure S7 Estimation of telomere length from telomeric long-reads.** **(A)** Schematic
1565 depicting how the telomeric region from a single telomeric long-read is defined. The
1566 TTAGGG motif on a single telomeric long-read is highlighted in yellow on the left, and a
1567 concentration of telomeric repeats can be observed towards the end of the telomeric
1568 long-read. The telomeric region from the single long-read can then be defined to
1569 estimate telomere length on the single long-read. A zoomed-in view of the boundary
1570 between the sub-telomeric and telomeric region is provided on the right. **(B)** Telomere
1571 length estimate for each chromosomal arm in the CHM13 cell line determined using
1572 PacBio HiFi long-read genome sequencing.
1573

1574 **Figure S8 Telomere length estimates for the cell lines sequenced in this study**
1575 **using different sequencing platforms.** **(A)** Number of telomeric reads of each class in
1576 the long-read datasets generated in this study. Long-reads containing telomeric repeats
1577 were split into four different classes depending on where telomeric repeats were
1578 observed in the long-read. These four classes are: Full – Long-reads that contains
1579 telomeric repeat sequences end-to-end, Left – Long-reads that contains telomeric
1580 repeat sequences on the left edge of the long-read, Right – Long-reads that contains
1581 telomeric repeat sequences on the right edge of the long-read, and Intra – Long-reads
1582 that contains telomeric repeat sequences in the middle of the single long-read. The type
1583 of telomeric repeat sequences observed is also further indicated (i.e. if the reads
1584 contain (TTAGGG)_n or (CCCTAA)_n repeats). Results for the four cell lines sequenced in
1585 this study by Nanopore, PacBio (All reads), or PacBio HiFi (read quality \geq 0.9)
1586 sequencing are as indicated. **(D-F)** Telomere length estimates for the four classes of
1587 telomeric reads in the four cell lines sequenced. Results for each of the sequencing
1588 platforms: **(D)** Nanopore, **(E)** PacBio (All reads) and **(F)** PacBio HiFi (read quality \geq 0.9)
1589 are as indicated. **(G-I)** Telomere length estimates for telomeric reads derived from either
1590 the “forward” strand (i.e. containing (TTAGGG)_n repeats) or “reverse” strand (i.e.
1591 containing (CCCTAA)_n repeats) are as indicated. Results for each of the sequencing
1592 platforms: **(G)** Nanopore, **(H)** PacBio (All reads) and **(I)** PacBio HiFi (read quality \geq 0.9)
1593 are as indicated.
1594

1595 **Figure S9 Length of telomeric repeats at neotelomeres and chromosomal arm**
1596 **fusion events as estimated using PacBio HiFi sequencing, related to Figure 4.** The
1597 length of telomeric repeats on each long-read was estimated from these telomeric
1598 repeat signal profiles. Boxplots depicting the distribution of telomere length found at
1599 each neotelomere assessed by PacBio HiFi for the **(A)** U2-OS and **(B)** Hs-746T cell
1600 lines. Boxplot depicting length of telomeric repeats assessed using PacBio HiFi for each

1601 chromosomal arm fusion event in the **(C)** U2-OS and **(D)** Hs-746T cell lines. Note:
1602 telomere length for neotelomeres and normal chromosomal arms were only estimated
1603 using long-reads reads that start or end in telomeric repeats, while length of telomeric
1604 repeats at chromosomal arm fusions were estimated using long-reads with telomeric
1605 repeats in the middle of the read. Aggregated telomeric length of all long-reads at the
1606 normal chromosomal arms (p- and q-arms), neotelomeres, and chromosomal arm
1607 fusion events in the **(E)** U2-OS and **(F)** Hs-746T cell lines. P-values indicated in the
1608 plots were calculated using the two-sided Wilcoxon Rank Sum test.
1609

1610 **Figure S10 Representative examples of neotelomeres and chromosomal arm**
1611 **fusion events detected in patients with lung adenocarcinoma. (A-D)** Normalized
1612 tumor sequencing coverage of chromosomes with neotelomeres and chromosomal arm
1613 fusion events predicted by TelFuse analysis of short-read genome sequencing are as
1614 depicted. Sequencing coverage of the tumor was normalized to the matched normal
1615 sample (Methods). IGV screenshots of the tumor and matched normal samples with
1616 neotelomeres and chromosomal arm fusion events are also as indicated. The sites and
1617 samples represented in the plot are **(A)** the putative chromosomal arm fusion site
1618 chr22:49,418,106 in TCGA-75-7031, **(B)** the putative neotelomere site chr1:17,644,075
1619 in TCGA-44-5643, **(C)** the putative chromosomal arm fusion site chr11:96,570,712 in
1620 TCGA-86-8673, and **(D)** the putative neotelomere site chr12:11,696,012 in TCGA-62-
1621 A46O.
1622

1623 **Figure S11 Little to no sequence preference associated with neotelomeres and**
1624 **chromosomal arm fusion events. (A-B)** The first 6 base-pairs of each stretch of
1625 telomeric repeat sequence at each **(A)** neotelomere or **(B)** chromosomal arm fusion
1626 event was assessed and classified into one of six possible circular permutations
1627 representing the telomeric repeat sequence. **(A)** (top) Schematic illustrating the
1628 telomeric repeat sequences that are found directly after a breakpoint, and at a
1629 neotelomere. The first 6 base-pairs of the neotelomere after the breakpoint can occur in
1630 anyone of six possible circular permutations of the TTAGGG sequence. (bottom) Bar
1631 plots depicting the frequency of each six possible circular permutations observed on the
1632 first 6 base-pairs of the neotelomere in the CCLE and TCGA-LUAD cohorts. **(B)** (top)
1633 Schematic illustrating the telomeric repeat sequences that are found directly after a
1634 breakpoint, and at a chromosomal arm fusion site. The first 6 base-pairs of the
1635 chromosomal arm fusion after the breakpoint can occur in anyone of six possible
1636 circular permutations of the TTAGGG sequence. (bottom) Bar plots depict the frequency
1637 of each six possible circular permutations observed on the first 6 base-pairs of the
1638 chromosomal arm fusions observed in the CCLE and TCGA-LUAD cohorts. p-values in
1639 **(A)** and **(B)** were calculated using the chi-squared test under the assumption that all six
1640 circular permutations are expected to be observed at the same frequency. The
1641 expected frequencies are indicated by a grey dotted line, and the number of events
1642 assessed for each cohort is indicated in the header of each plot. **(C-D)** Sequence logo
1643 plot representing the frequencies of nucleotides observed near the breakpoints of
1644 neotelomere and chromosomal arm fusion events. **(C)** (top) Schematic of the
1645 neotelomere, and the three main regions (genomic region flanking the neotelomere,
1646 telomeric repeats corresponding to the neotelomeres, and genomic region of the broken

1647 chromosomal fragment that was detached from the neotelomere) associated with these
1648 events. (bottom) Logo plots representing frequencies of nucleotides in the three main
1649 regions around a neotelomeric event. **(D)** (top) Schematic of a chromosomal arm fusion
1650 event, and the four main regions around the breakpoint of the chromosomal arm fusion
1651 event (genomic region flanking the arm fusion event, telomeric repeats corresponding to
1652 the chromosomal arm that fused to this site, sub-telomeric region of the arm that
1653 underwent fusion, and the genomic region of the remaining chromosomal fragment that
1654 was detached following the chromosomal arm fusion event). (bottom) Frequency of
1655 nucleotides in the three regions around the breakpoint of a chromosomal arm fusion
1656 event. **(E-F)** Coverage profiles in the $\pm 200\text{kb}$ region surrounding a **(E)** neotelomere or
1657 **(F)** telomere fusion event in the CCLE cohort. The line depicts the median coverage
1658 observed across all sites, while the shaded area represents the interquartile range.
1659

1660 **Figure S12 Putative germline ectopic telomeric events observed in lung**
1661 **adenocarcinoma tumor samples from patients. (A)** Ectopic telomeric repeat
1662 sequences in the inverted orientation at the site chr12:54,480,142, and in the standard
1663 orientation at the site chr12:54,494,011 in both the normal (blood) and tumor (lung
1664 adenocarcinoma) sample for the patient TCGA-44-6778. IGV screenshots depicting
1665 these observations are as indicated. These observations point to a model where $\sim 6x$
1666 (CCCTAA)_n repeats have integrated into this locus at chr12q, coupled with a deletion of
1667 regions B and C indicated in the figure. **(B)** Ectopic telomeric repeat sequences in the
1668 standard orientation were found at the site chr12:25,085,740, and in the inverted
1669 orientation at the site chr12:25,085,754 in both the normal (blood) and tumor (lung
1670 adenocarcinoma) sample for the patient TCGA-44-6778. IGV screenshots depicting
1671 these observations are as indicated. These observations point to a model where $\sim 7x$
1672 (CCCTAA)_n repeats have integrated into this locus at chr12p, coupled with a duplication
1673 of region B for the event on the left. The event on the right represents the insertion of
1674 the telomeric repeats without duplication of region B. **(C)** Ectopic telomeric repeat
1675 sequences in the inverted orientation at the site chr4:184,711,090, and in the standard
1676 orientation at the site chr4:184,711,103 in both the normal (blood) and tumor (lung
1677 adenocarcinoma) sample for the patient TCGA-62-A470. IGV screenshots depicting
1678 these observations are as indicated. These observations point to a model where $\sim 3x$
1679 (CCCTAA)_n repeats have integrated into this locus at chr4q, coupled with a deletion of
1680 region B found on the reference genome. **(D)** Ectopic telomeric repeat sequences in the
1681 inverted orientation was found at the site chr6:170,186,789, and in the standard
1682 orientation at the site chr6:170,186,808 in both the normal (blood) and tumor (lung
1683 adenocarcinoma) sample for the patient TCGA-44-5643. IGV screenshots depicting
1684 these observations are as indicated. These observations point to a model where $>9x$
1685 (TTAGGG)_n repeats have integrated into this locus at chr6q, coupled with a duplication
1686 of region B in the reference genome. **(E)** Ectopic telomeric repeat sequences in the
1687 inverted orientation was found at the site chr2:192,206,320 in both the normal (adjacent
1688 lung tissue) and tumor (lung adenocarcinoma) sample for the patient TCGA-55-6987.
1689 IGV screenshots depicting these observations are as indicated. These observations
1690 point to a model where 4x (TTAGGG)_n repeats have integrated into this locus at chr2q,
1691 together with sub-telomeric sequences corresponding to either chr7q/9q/5q, suggesting
1692 that a chromosomal arm fusion event has potentially occurred here.

1693

1694 **Figure S13 Additional examples of neotelomeric and chromosomal arm fusion**
1695 **events which led to gene disruptions, related to Figure 6. (A-B)** Schematic and IGV
1696 screenshots depicting gene disrupting events caused by neotelomeres or chromosomal
1697 arm fusion events in cancer cell lines. These were observed in **(A)** the U2-OS
1698 osteosarcoma cell line where a neotelomere could be observed in the middle of the
1699 *NRDC* gene at the site chr1:51,828,828, and **(B)** the Hs-746T gastric adenocarcinoma
1700 cell line where a chromosomal arm fusion event could be observed within the *TENM4*
1701 gene at the site chr11:79,325,679. **(C-D)** Somatic neotelomere and chromosomal arm
1702 fusion events observed in primary lung adenocarcinoma tumor samples. These were
1703 observed in the tumor sample of **(C)** patient TCGA-55-A48Y in the middle of the *FOXP4*
1704 gene at the position chr6:41,573,027 where a putative chromosomal arm fusion is
1705 observed, and in **(D)** patient TCGA-55-A493 in the *PRMT7* gene at the position
1706 chr16:68,349,160, where a putative neotelomere could be observed.
1707

1708 **Supplementary Table Legends**

1709

1710 **Table S1 SRA accession numbers of short-read genome sequencing data for**
1711 **cancer cell lines analyzed in this study.**

1712

1713 **Table S2 Detailed information of ectopic telomeric sites identified in cancer cell**
1714 **lines analyzed in this study.** Sites indicated in this table has perfect telomeric repeat
1715 sequences on the first 12 base-pairs of the event.

1716

1717 **Table S3 Detailed information of ectopic telomeric sites identified in cancer cell**
1718 **lines analyzed in this study without perfect telomeric repeat sequences on the**
1719 **first 12 base-pairs.** Sites indicated in this table do not have perfect telomeric repeat
1720 sequences on the first 12 base-pairs of the event but contains at least 12 base-pairs of
1721 telomeric repeat sequences within the soft-clipped sequences.

1722

1723 **Table S4 Sequencing statistics of each long-read genome sequencing run**
1724 **generated for this study.**

1725

1726 **Table S5 Sequencing statistics for each sample analyzed by long-read genome**
1727 **sequencing for this study.** Multiple runs for the same sample were aggregated into a
1728 single dataset, and their corresponding sequencing metrics are as indicated.

1729

1730 **Table S6 Sites assessed, and validation status as determined by long-read**
1731 **genome sequencing.**

1732

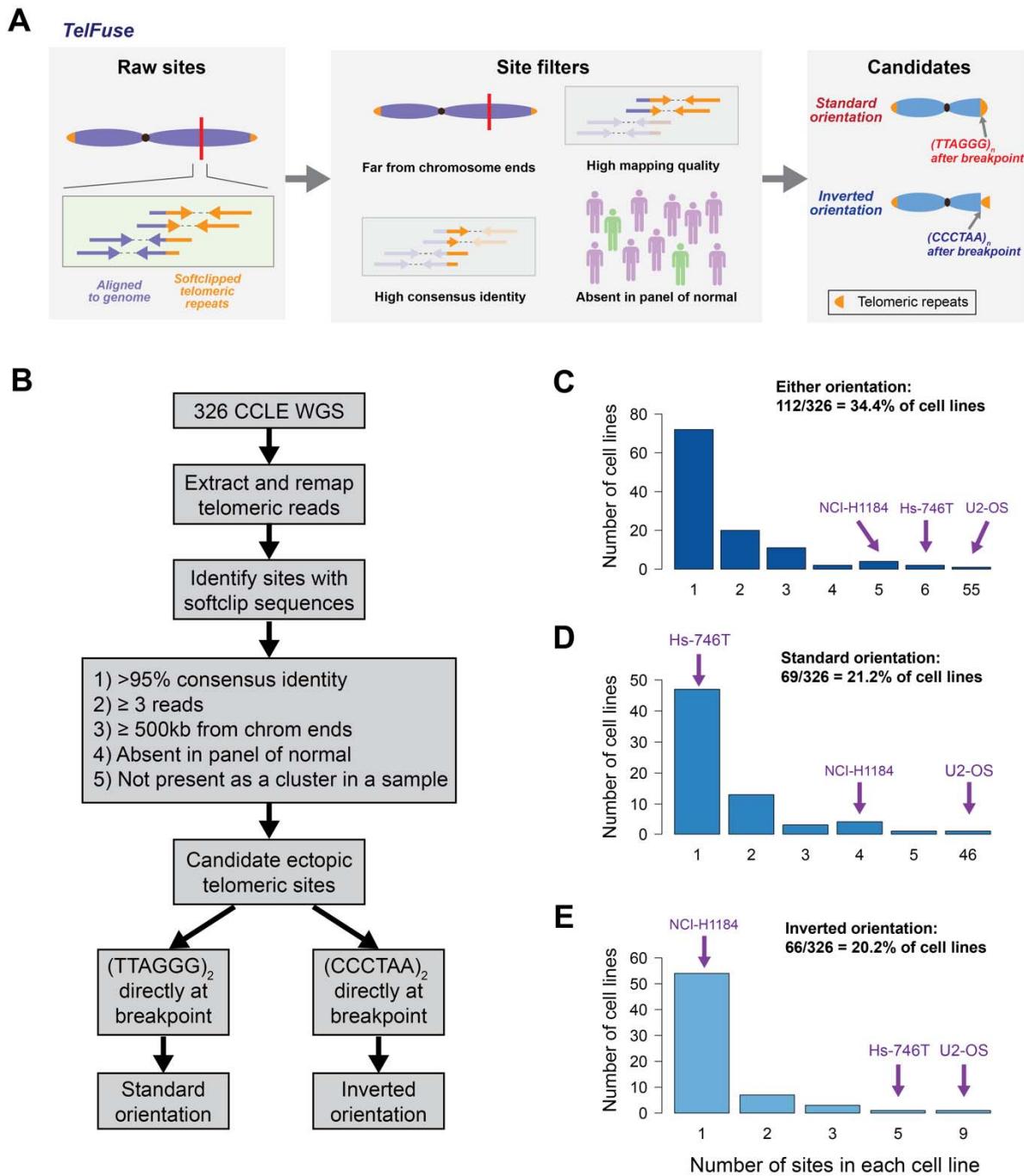
1733 **Table S7 Spectral karyotyping results of ten U2-OS cells.**

1734

1735 **Table S8 Genomic Data Commons accession numbers for TCGA Lung**
1736 **adenocarcinoma patient samples analyzed in this study.**

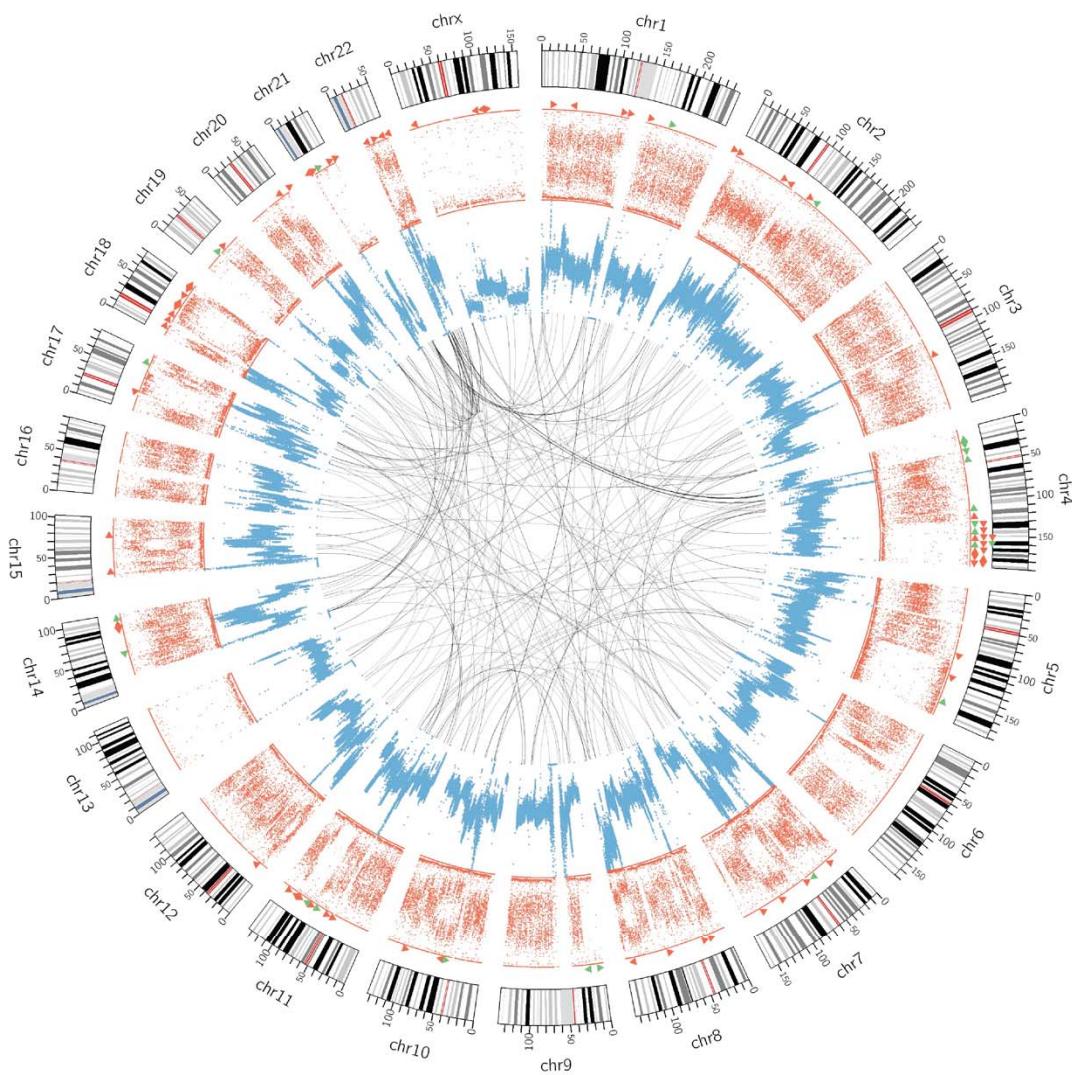
1737

1738 **Table S9 Detailed information of ectopic telomeric sites identified in tumor**
1739 **samples in the cohort of lung adenocarcinoma samples analyzed.**


1740

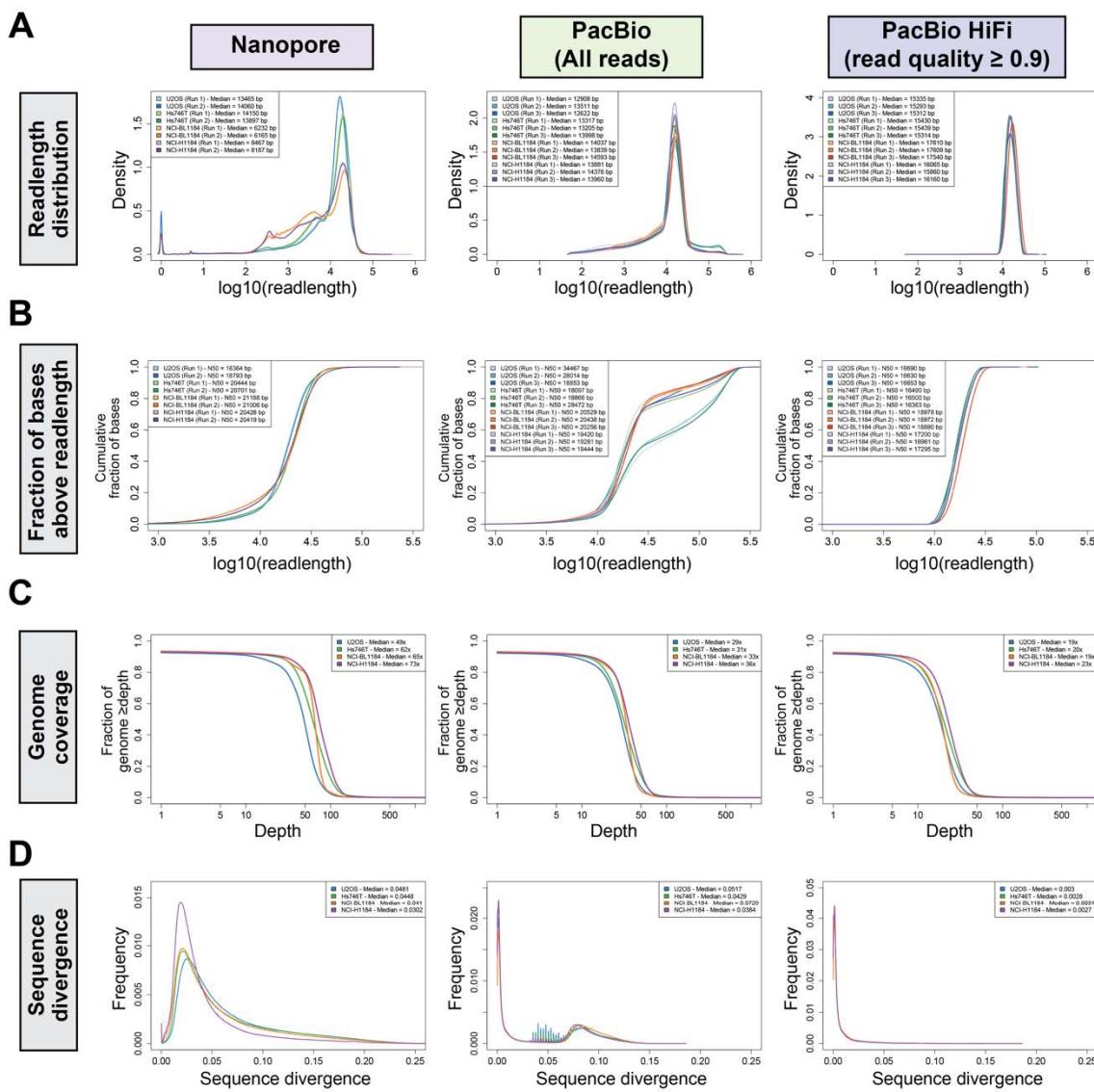
1741 **Table S10 Detailed information of ectopic telomeric sites identified in normal**
1742 **samples in the cohort of lung adenocarcinoma samples analyzed.**

1743

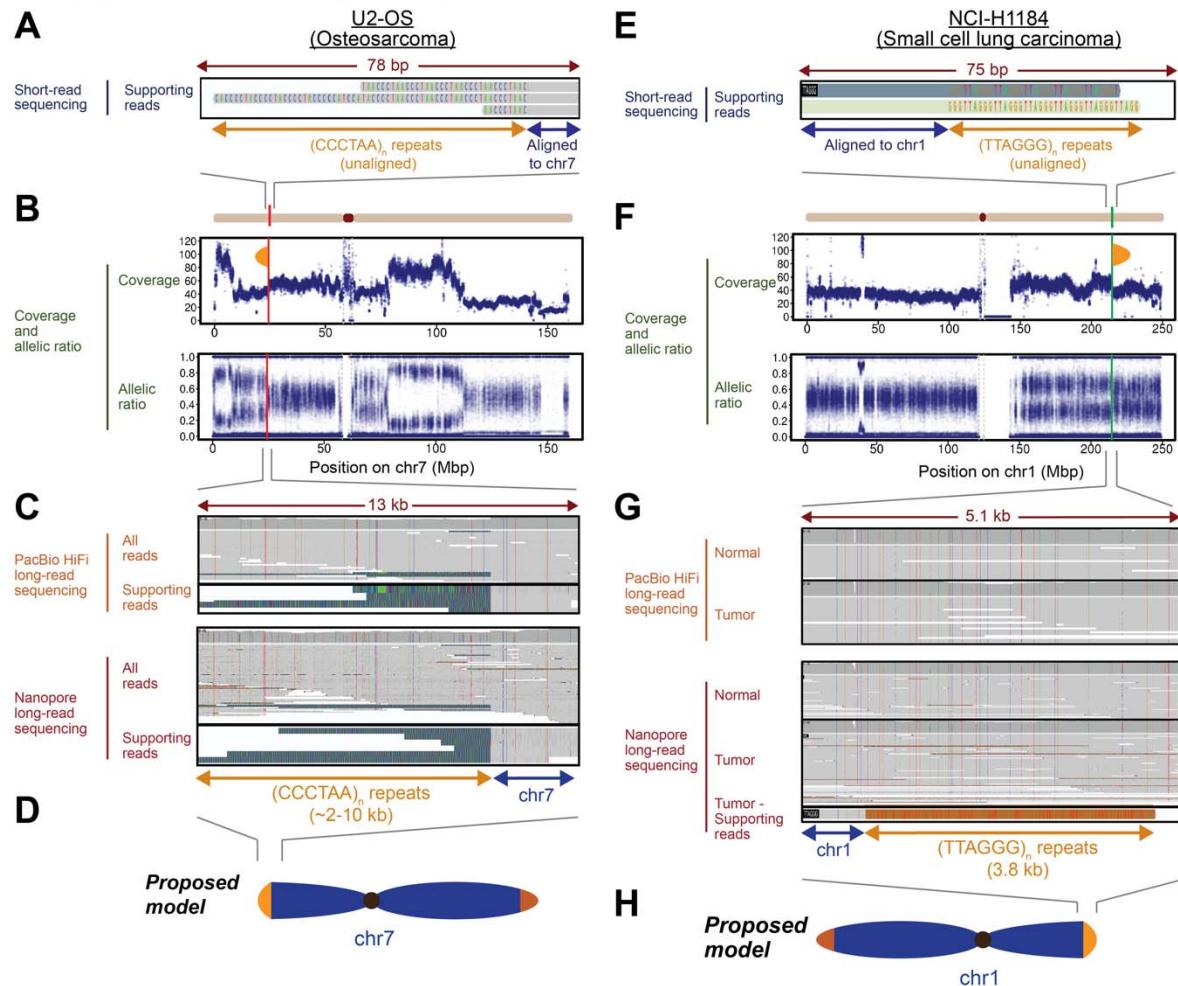

1744

Supplementary Figure S1

1746 **Figure S1 Overview of the TelFuse methodology and the distribution of ectopic**
1747 **telomeric events in cancer cell line genomes. (A)** Overview of the TelFuse
1748 computational method to identify ectopic telomere repeat sequences with short-reads
1749 genome sequencing. Raw sites were first identified from partially mapped read-pairs
1750 which also contain telomeric repeats on unmapped portions of these reads. A stringent
1751 set of filters was then applied to ensure the specificity of these calls. These candidate
1752 sites were then classified by the orientation of telomeric repeats after the breakpoint.
1753 Specifically, sites with (TTAGGG)_n repeats after the breakpoint have telomeric repeats
1754 in the standard orientation, akin to a standard telomere. Conversely, sites containing
1755 (CCCTAA)_n telomeric repeats after the breakpoint have telomeric repeat sequences in
1756 the inverted orientation. **(B)** Detailed overview of method used for the identification of
1757 ectopic telomeric repeat sites. **(C-E)** Number of ectopic telomeric repeat sites found in
1758 the genome of each cancer cell line (n=326 cell lines) in **(C)** either orientation, in **(D)** the
1759 standard orientation, and in **(E)** the inverted orientation. The three cell lines (U2-OS, Hs-
1760 746T, and NCI-H1184) which have a high frequency of ectopic telomeric events, and
1761 which were selected for long-read genome sequencing are as indicated.
1762
1763

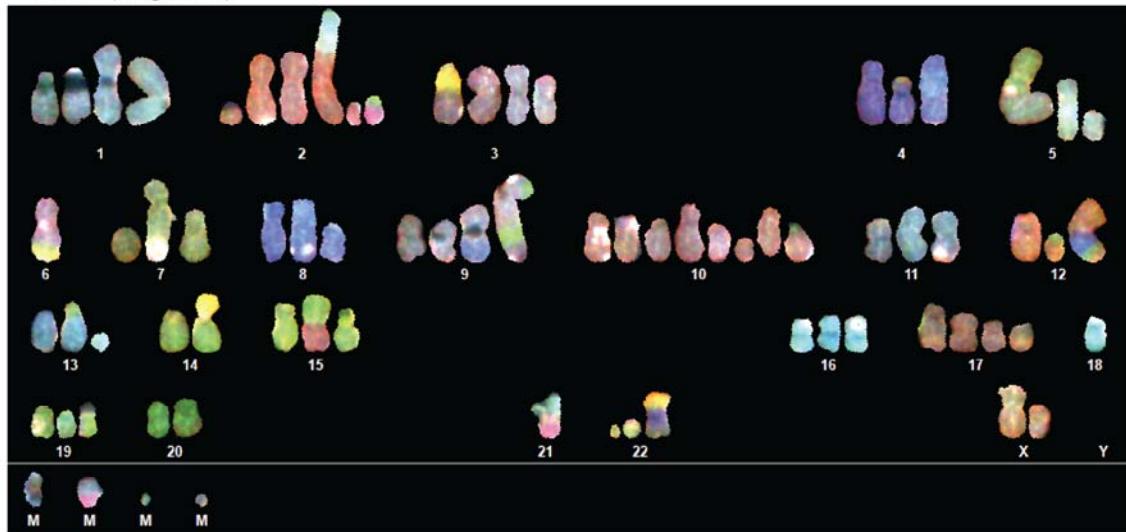

Supplementary Figure S2

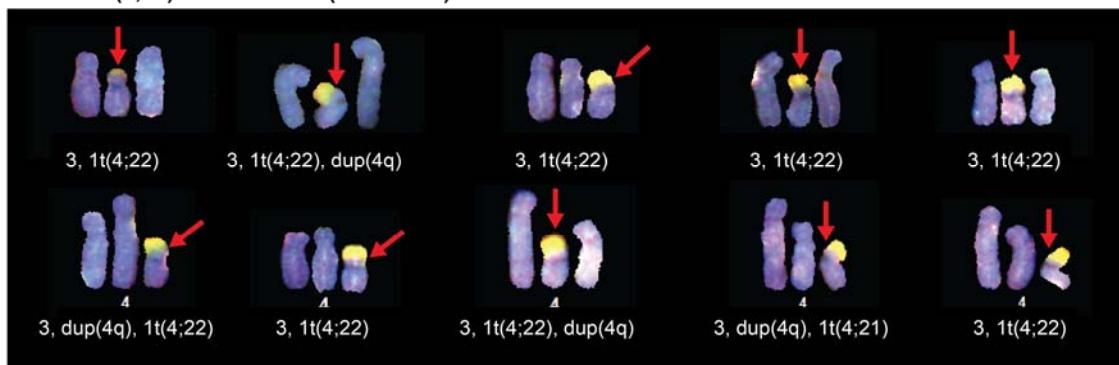
1764
1765


1766 **Figure S2 Circos plot depicting locations of ectopic telomeric repeat sequences**
1767 **identified in the U2-OS cell line by TelFuse.** Locations of ectopic telomeric repeats in
1768 the standard orientation are labelled with red triangles, while those in the inverted
1769 orientation are labelled with green triangles. Triangles pointing in the anti-clockwise
1770 direction indicates that the ectopic telomeric repeat sequences are found on the anti-
1771 clockwise edge, while triangles pointing in the clockwise directions indicates that ectopic
1772 telomeric repeat sequences are on the clockwise edge. The allelic ratios are depicted in
1773 red, while the sequencing coverage is labelled in blue. The inner most circle depicts
1774 translocation events detected in the cell line.
1775
1776

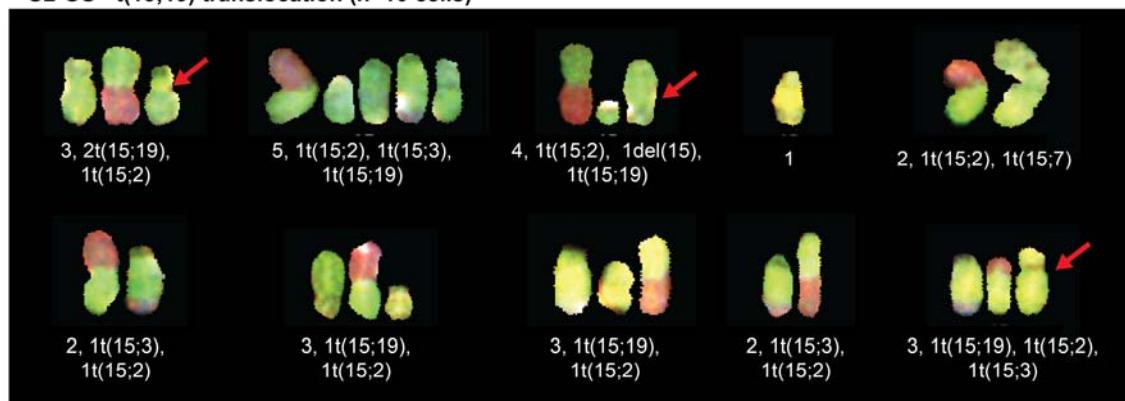
Supplementary Figure S3

1779 **Figure S3 Sequencing quality of long-read genome sequencing datasets**
1780 **generated as part of this study.** Sequencing quality metrics for long-read genome
1781 sequencing data generated using the Nanopore PromethION platform (2x flow cells per
1782 cell line), and the PacBio platforms (3x SMRT flow cells per cell line) are as indicated.
1783 The PacBio dataset was further divided into the full dataset consisting of all reads, and
1784 the PacBio HiFi dataset consisting of reads with a read quality ≥ 0.9 . **(A)** Read length
1785 distribution of the Nanopore and PacBio long-read genome sequencing datasets
1786 generated in this study. Each sequencing run is indicated separately. The median read
1787 length for each run are also indicated in the legend for each plot. **(B)** The cumulative
1788 fraction of sequenced bases above a particular read length for each run is as indicated
1789 in the plots. The N50 (i.e. minimum read length at which half the bases were
1790 sequenced) for each run is also indicated in the legend of each plot. **(C)** Fraction of the
1791 genome sequenced above the stated sequencing depth for each sample is as indicated
1792 in the plots. The median sequencing coverage across the human genome is also
1793 indicated in the legend of each plot. **(D)** Distribution of sequence divergence of long-
1794 reads generated by each platform and for each platform is as indicated. Sequence
1795 divergence (i.e. how much each long-read differs from the reference genome)
1796 information for each long-read was extracted from long-reads aligned to the GRCh38
1797 reference genome using minimap2.
1798
1799

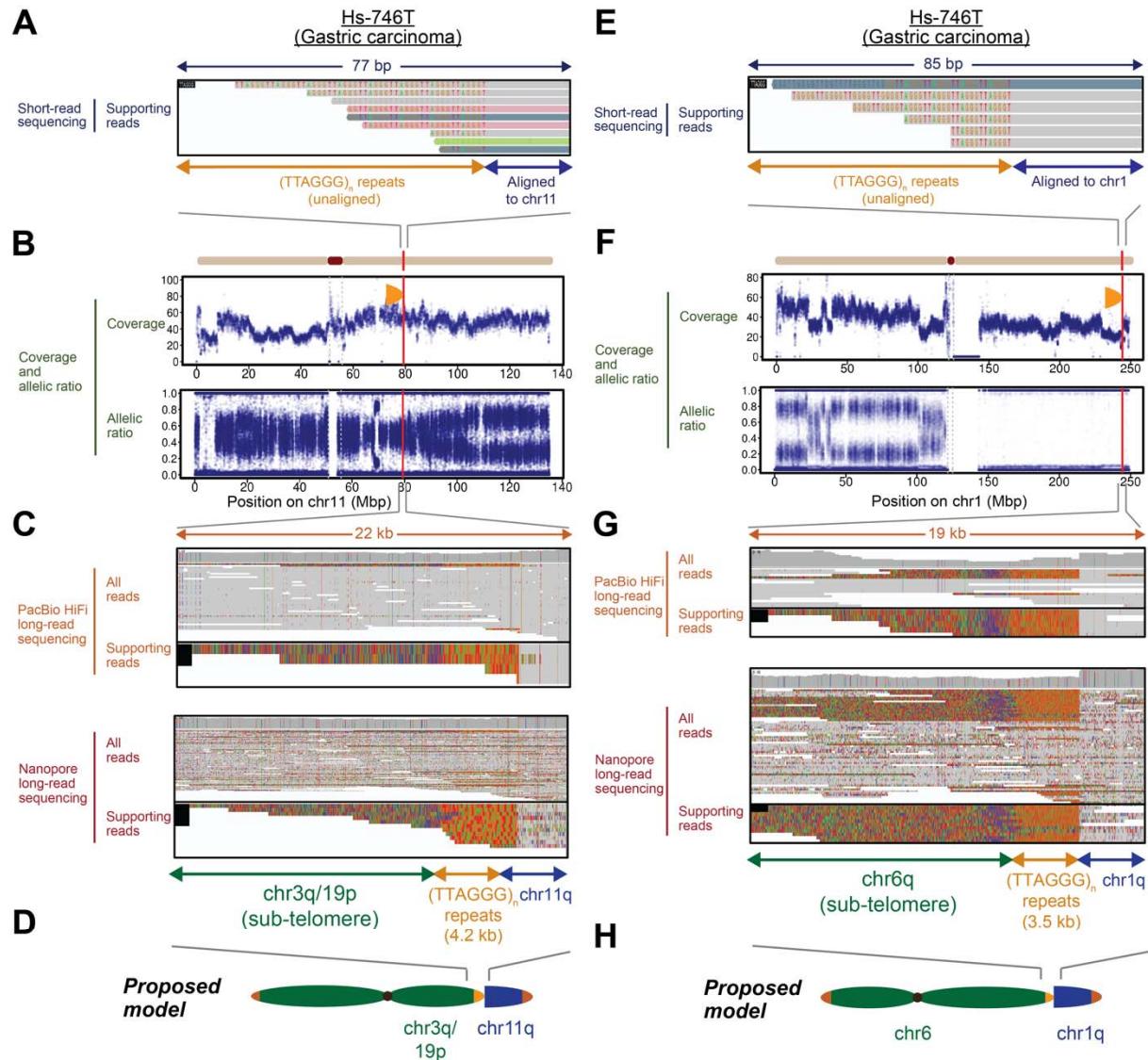

Supplementary Figure S4


1802 **Figure S4 Additional examples of neotelomeres discovered using long-read**
1803 **genome sequencing, related to Figure 2. (A-H)** Genomic analysis of telomere repeat
1804 alterations in the standard orientation that were detected **(A-D)** in the U2-OS
1805 osteosarcoma cell line at chr7:24,302,169, and **(E-H)** in the NCI-H1184 small cell lung
1806 carcinoma cell line at chr1:214,460,753, but not in the matched normal cell line (NCI-
1807 BL1184). **(A)** IGV screenshots of short-read genome sequencing data. Ectopic
1808 telomeric repeats (CCCTAA)_n are shown in gold. **(B)** Sequencing coverage and allelic
1809 ratios of chromosome 7. Orange semi-oval: site of the neotelomeric event. **(C)** IGV
1810 screenshots depicting long telomeric repeat sequences (TTAGGG)_n with PacBio HiFi
1811 (read quality ≥ 0.9) and Nanopore long-read sequencing at the site shown in **(A)**. **(D)**
1812 Schematic of neotelomere location on chromosome 7p. **(E)** IGV screenshots of short-
1813 read genome sequencing data. Ectopic telomeric repeats (TTAGGG)_n are shown in
1814 gold. **(F)** Sequencing coverage and allelic ratios of chromosome 1. Orange semi-oval:
1815 site of the neotelomeric event. **(G)** IGV screenshots depicting long telomeric repeat
1816 sequences (CCCTAA)_n with PacBio HiFi (read quality ≥ 0.9) and Nanopore long-read
1817 sequencing at the site shown in **(E)**. **(H)** Schematic of neotelomere location on
1818 chromosome 1q.
1819
1820

Supplementary Figure S5


A U2-OS (single cell)

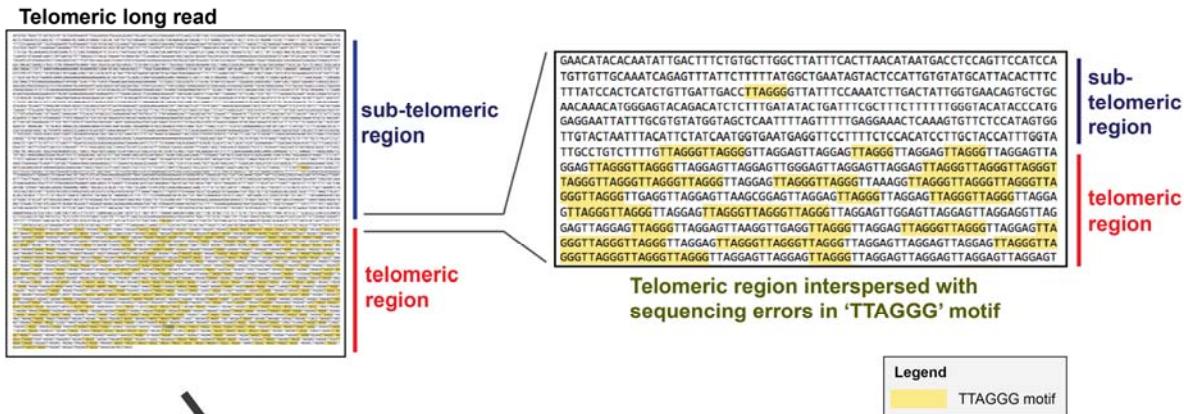
B U2-OS - t(4;22) translocation (n=10 cells)


C U2-OS - t(15;19) translocation (n=10 cells)

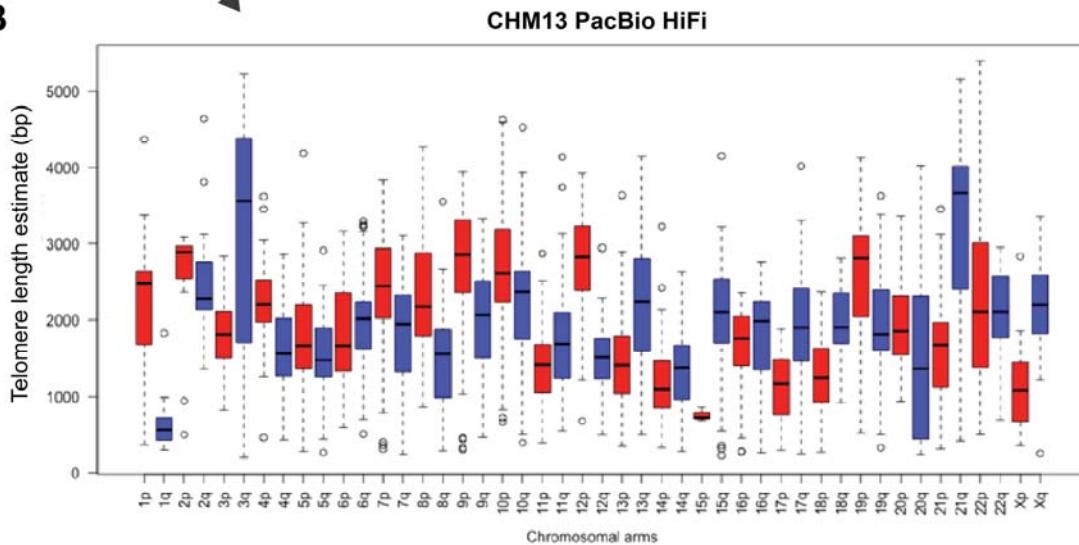
1821
1822

1823 **Figure S5 Degree of chromosomal heterogeneity between cells is chromosome**
1824 **specific. (A)** Spectral karyogram of a representative U2-OS cell (Cell 01-01) analyzed
1825 in this study. Chromosomes observed were assigned to each of the 24 possible
1826 autosomes and sex chromosomes. Chromosomes that could not be assigned were
1827 labelled as marker chromosomes 'M'. Spectral karyogram of **(B)** chromosome 4 with
1828 low levels of chromosomal heterogeneity and **(C)** chromosome 15 with high levels of
1829 chromosomal heterogeneity in ten cells assessed. Red arrows in **(B)** highlights the
1830 chromosome with translocation between chromosome 4 and 22. Red arrows in **(C)**
1831 highlights the chromosome with translocation between chromosome 15 and 19.
1832
1833

Supplementary Figure S6

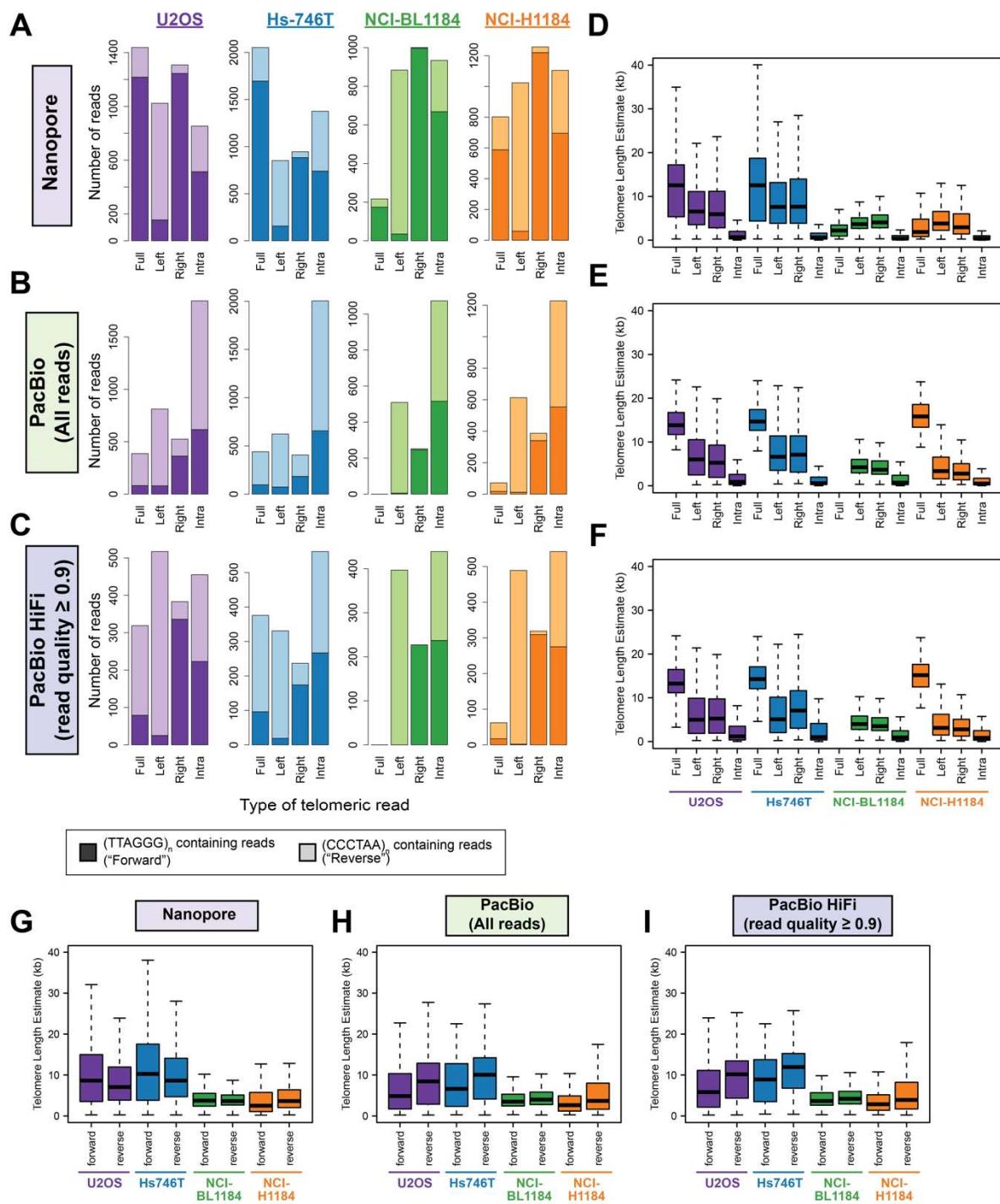

1836 **Figure S6 Additional examples of chromosomal arm fusion events revealed by**
1837 **long-read genome sequencing, related to Figure 3. (A-H)** Genomic analysis of
1838 telomere repeat alterations in the inverted orientation that were detected in the Hs-746T
1839 gastric carcinoma cell line **(A-D)** at the site chr11:79,325,679, and **(E-H)** at the site
1840 chr1:244,201,717. **(A)** IGV screenshots of short-read genome sequencing data. Ectopic
1841 telomeric repeats (TTAGGG)_n are shown in color. **(B)** Sequencing coverage and allelic
1842 ratios of chromosome 11. Orange semi-oval: site of the ectopic telomere repeat
1843 sequence. **(C)** IGV screenshots of PacBio HiFi (read quality ≥ 0.9) and Nanopore long-
1844 read sequencing data at the site shown in **(A)**. Ectopic telomeric repeats in the inverted
1845 orientation contained ~ 4.2 kb of (TTAGGG)_n telomeric repeat sequences followed by
1846 chr3q/19p sub-telomeric sequences, indicative of a chromosomal arm fusion event of
1847 chr3q/19p to the site at chr11:79,325,679. **(D)** Schematic of telomere-spanning fusion
1848 event between chromosomes 3q/19p-ter and 11q. **(E)** IGV screenshots of short-read
1849 genome sequencing data. Ectopic telomeric repeats (TTAGGG)_n are shown in color. **(F)**
1850 Sequencing coverage and allelic ratios of chromosome 1. Orange semi-oval: site of the
1851 ectopic telomere repeat sequence. **(G)** IGV screenshots of PacBio HiFi (read quality \geq
1852 0.9) and Nanopore long-read sequencing at the site shown in **(E)**. Ectopic telomeric
1853 repeats in the inverted orientation contained ~ 3.5 kb of (TTAGGG)_n telomeric repeat
1854 sequences followed by chr6q sub-telomeric sequences, indicative of a chromosomal
1855 arm fusion event of chr6q to the site at chr1:244,201,717. **(H)** Schematic of telomere-
1856 spanning fusion event between chromosomes 6q-ter and 1q.

1857


1858

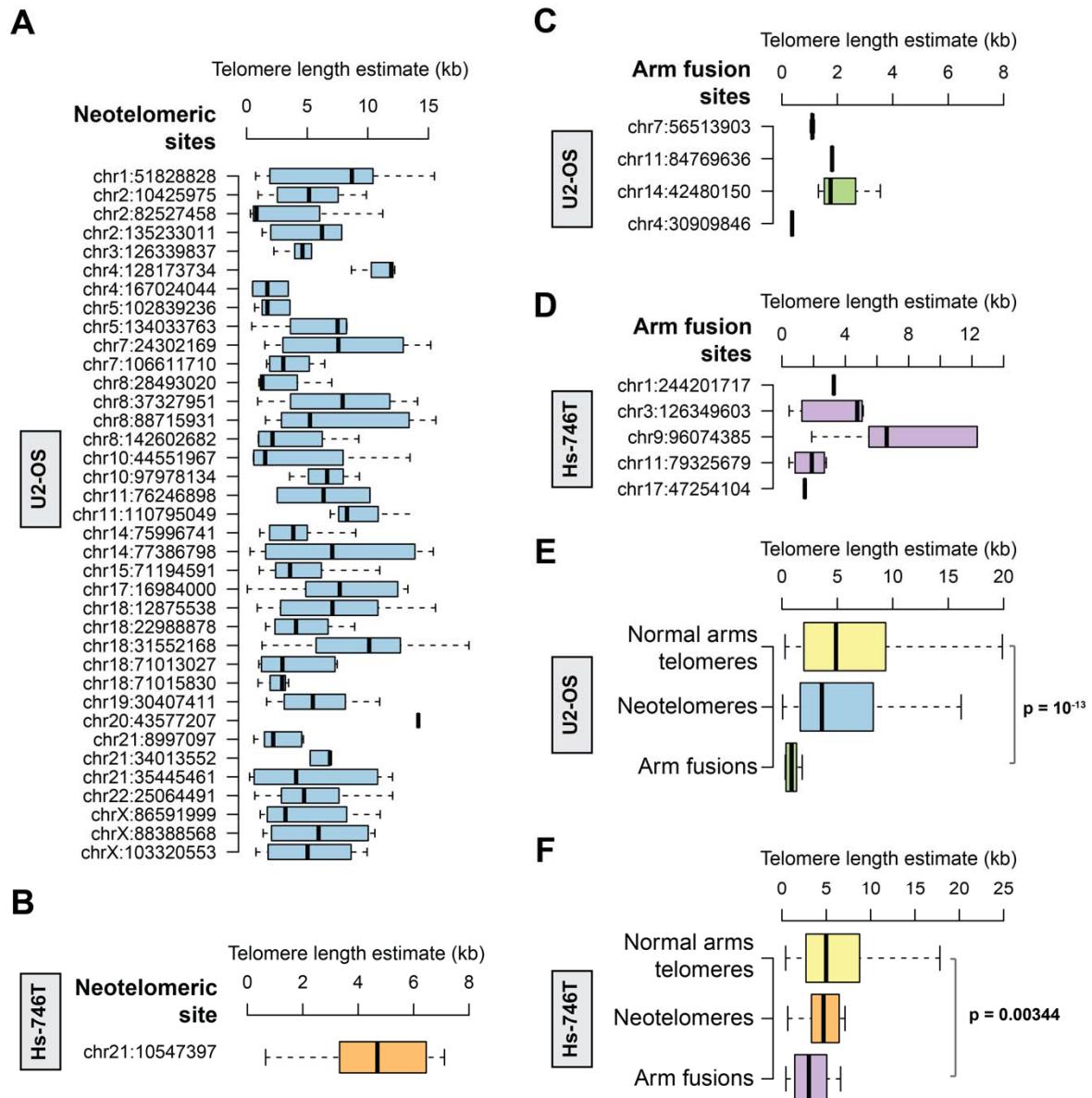
Supplementary Figure S7

A

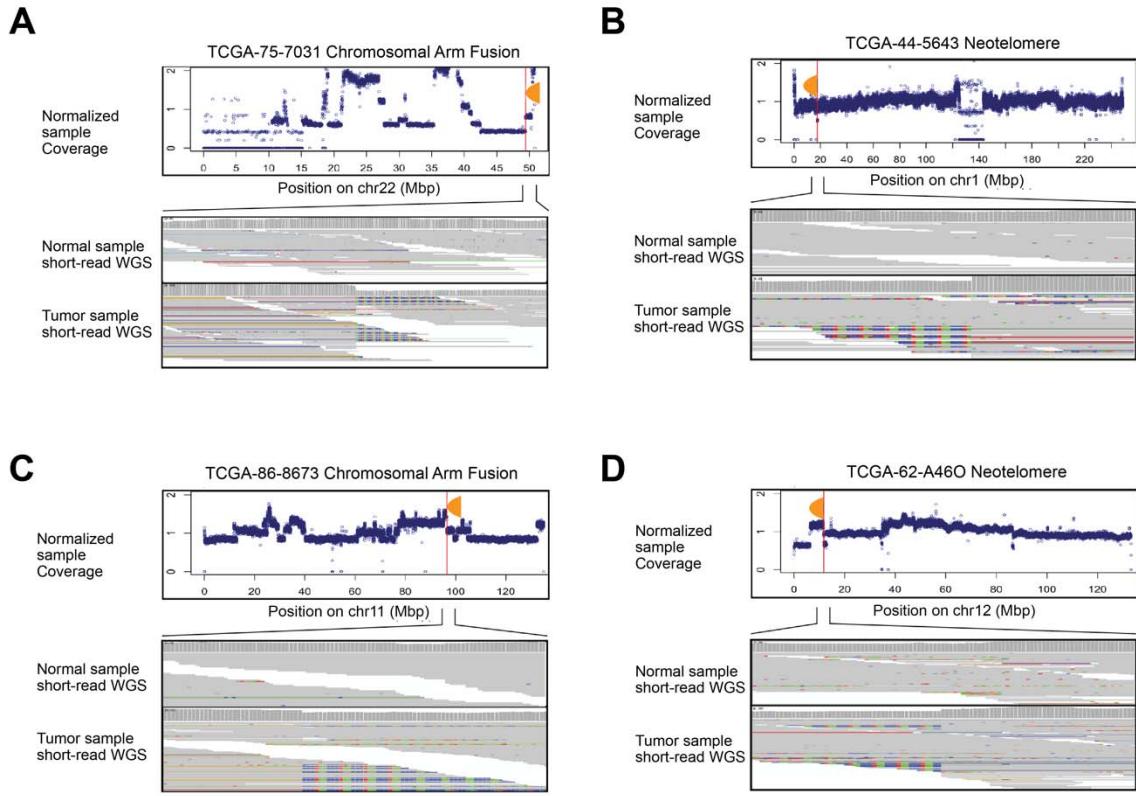


B

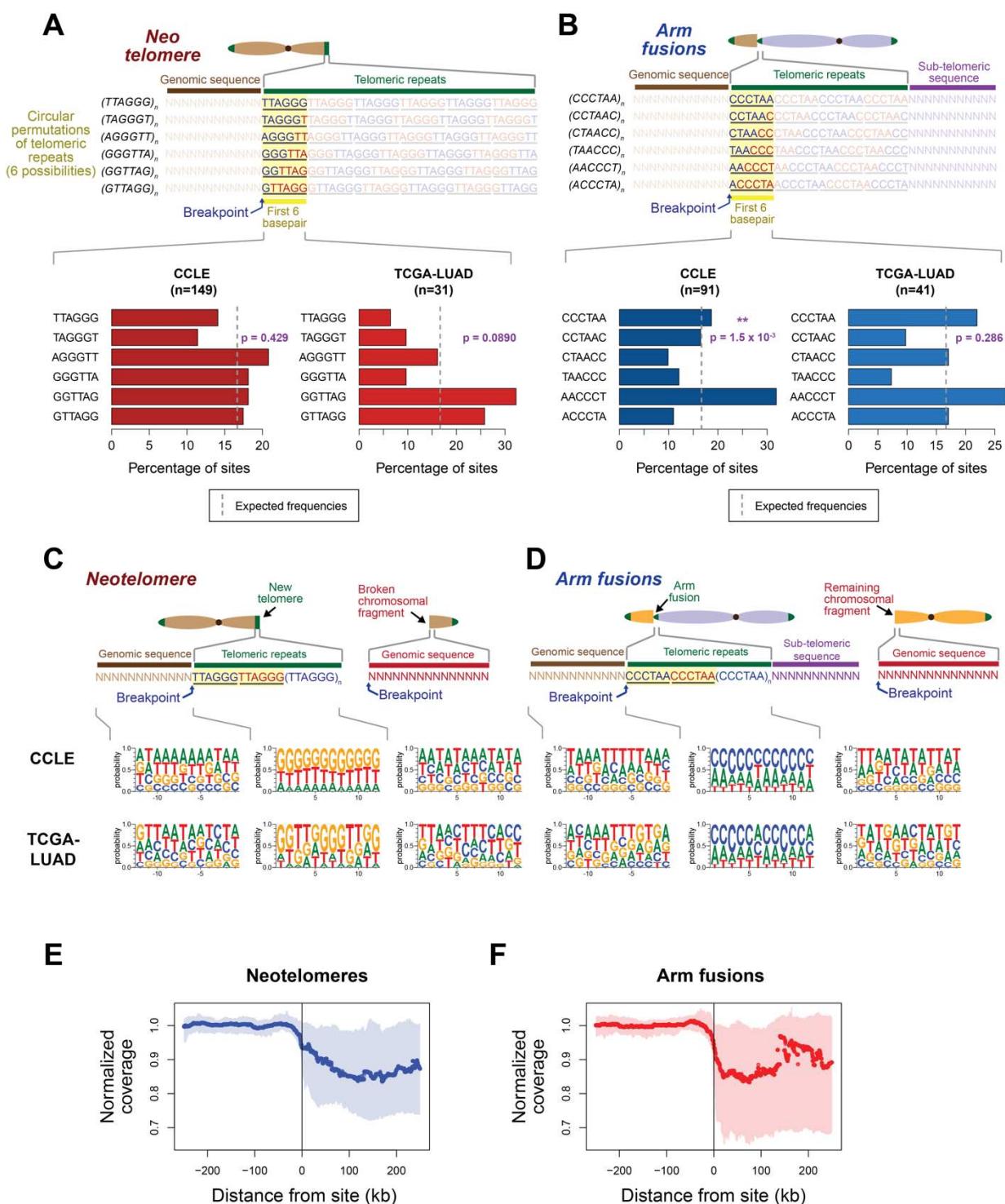
1861 **Figure S7 Estimation of telomere length from telomeric long-reads. (A)** Schematic
1862 depicting how the telomeric region from a single telomeric long-read is defined. The
1863 TTAGGG motif on a single telomeric long-read is highlighted in yellow on the left, and a
1864 concentration of telomeric repeats can be observed towards the end of the telomeric
1865 long-read. The telomeric region from the single long-read can then be defined to
1866 estimate telomere length on the single long-read. A zoomed-in view of the boundary
1867 between the sub-telomeric and telomeric region is provided on the right. **(B)** Telomere
1868 length estimate for each chromosomal arm in the CHM13 cell line determined using
1869 PacBio HiFi long-read genome sequencing.
1870
1871


Supplementary Figure S8

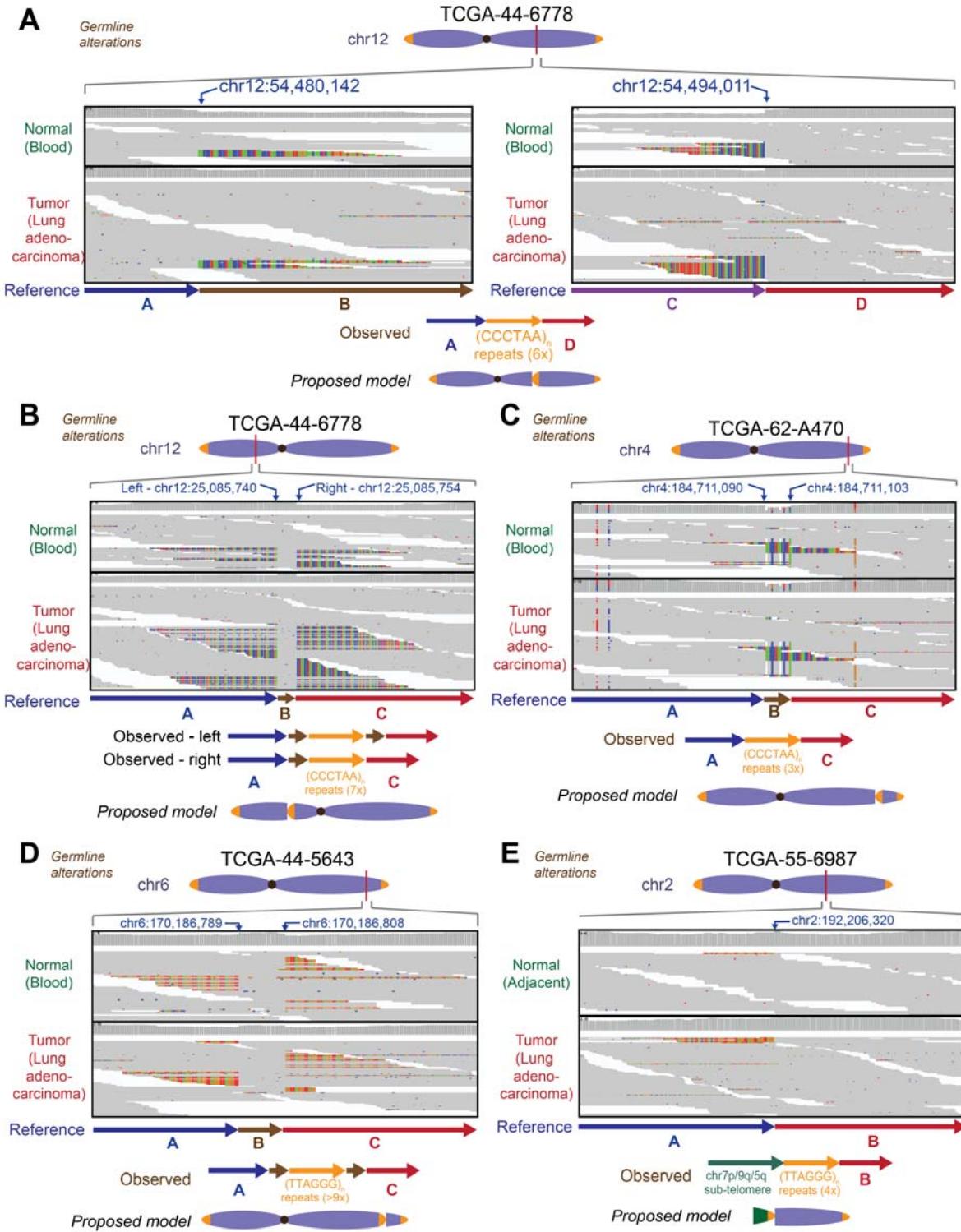
1874 **Figure S8 Telomere length estimates for the cell lines sequenced in this study**
1875 **using different sequencing platforms. (A)** Number of telomeric reads of each class in
1876 the long-read datasets generated in this study. Long-reads containing telomeric repeats
1877 were split into four different classes depending on where telomeric repeats were
1878 observed in the long-read. These four classes are: Full – Long-reads that contains
1879 telomeric repeat sequences end-to-end, Left – Long-reads that contains telomeric
1880 repeat sequences on the left edge of the long-read, Right – Long-reads that contains
1881 telomeric repeat sequences on the right edge of the long-read, and Intra – Long-reads
1882 that contains telomeric repeat sequences in the middle of the single long-read. The type
1883 of telomeric repeat sequences observed is also further indicated (i.e. if the reads
1884 contain (TTAGGG)_n or (CCCTAA)_n repeats). Results for the four cell lines sequenced in
1885 this study by Nanopore, PacBio (All reads), or PacBio HiFi (read quality ≥ 0.9)
1886 sequencing are as indicated. **(D-F)** Telomere length estimates for the four classes of
1887 telomeric reads in the four cell lines sequenced. Results for each of the sequencing
1888 platforms: **(D)** Nanopore, **(E)** PacBio (All reads) and **(F)** PacBio HiFi (read quality ≥ 0.9)
1889 are as indicated. **(G-I)** Telomere length estimates for telomeric reads derived from either
1890 the “forward” strand (i.e. containing (TTAGGG)_n repeats) or “reverse” strand (i.e.
1891 containing (CCCTAA)_n repeats) are as indicated. Results for each of the sequencing
1892 platforms: **(G)** Nanopore, **(H)** PacBio (All reads) and **(I)** PacBio HiFi (read quality ≥ 0.9)
1893 are as indicated.


1894
1895

Supplementary Figure S9


1898 **Figure S9 Length of telomeric repeats at neotelomeres and chromosomal arm**
1899 **fusion events as estimated using PacBio HiFi sequencing, related to Figure 4.** The
1900 length of telomeric repeats on each long-read was estimated from these telomeric
1901 repeat signal profiles. Boxplots depicting the distribution of telomere length found at
1902 each neotelomere assessed by PacBio HiFi for the **(A)** U2-OS and **(B)** Hs-746T cell
1903 lines. Boxplot depicting length of telomeric repeats assessed using PacBio HiFi for each
1904 chromosomal arm fusion event in the **(C)** U2-OS and **(D)** Hs-746T cell lines. Note:
1905 telomere length for neotelomeres and normal chromosomal arms were only estimated
1906 using long-reads reads that start or end in telomeric repeats, while length of telomeric
1907 repeats at chromosomal arm fusions were estimated using long-reads with telomeric
1908 repeats in the middle of the read. Aggregated telomeric length of all long-reads at the
1909 normal chromosomal arms (p- and q-arms), neotelomeres, and chromosomal arm
1910 fusion events in the **(E)** U2-OS and **(F)** Hs-746T cell lines. P-values indicated in the
1911 plots were calculated using the two-sided Wilcoxon Rank Sum test.
1912
1913

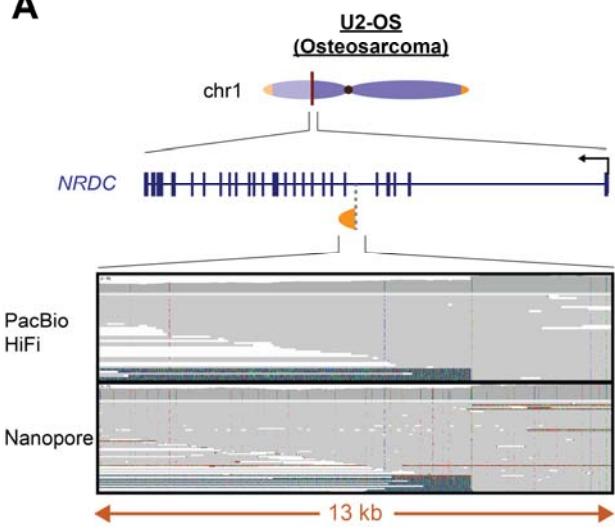
Supplementary Figure S10


1916 **Figure S10 Representative examples of neotelomeres and chromosomal arm**
1917 **fusion events detected in patients with lung adenocarcinoma. (A-D)** Normalized
1918 tumor sequencing coverage of chromosomes with neotelomeres and chromosomal arm
1919 fusion events predicted by TelFuse analysis of short-read genome sequencing are as
1920 depicted. Sequencing coverage of the tumor was normalized to the matched normal
1921 sample (Methods). IGV screenshots of the tumor and matched normal samples with
1922 neotelomeres and chromosomal arm fusion events are also as indicated. The sites and
1923 samples represented in the plot are **(A)** the putative chromosomal arm fusion site
1924 chr22:49,418,106 in TCGA-75-7031, **(B)** the putative neotelomere site chr1:17,644,075
1925 in TCGA-44-5643, **(C)** the putative chromosomal arm fusion site chr11:96,570,712 in
1926 TCGA-86-8673, and **(D)** the putative neotelomere site chr12:11,696,012 in TCGA-62-
1927 A46O.
1928
1929

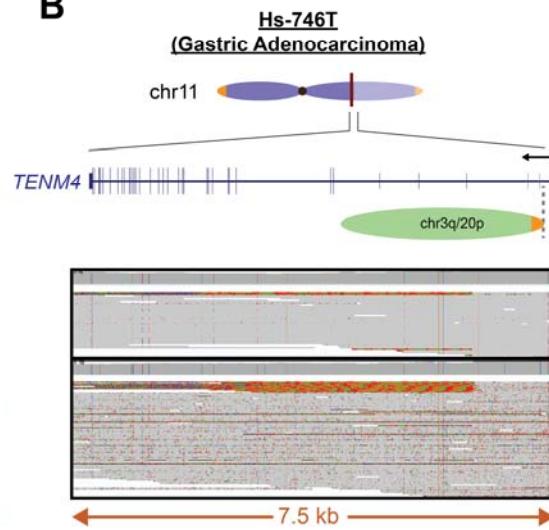
Supplementary Figure S11

1932 **Figure S11 Little to no sequence preference associated with neotelomeres and**
1933 **chromosomal arm fusion events. (A-B)** The first 6 base-pairs of each stretch of
1934 telomeric repeat sequence at each **(A)** neotelomere or **(B)** chromosomal arm fusion
1935 event was assessed and classified into one of six possible circular permutations
1936 representing the telomeric repeat sequence. **(A)** (top) Schematic illustrating the
1937 telomeric repeat sequences that are found directly after a breakpoint, and at a
1938 neotelomere. The first 6 base-pairs of the neotelomere after the breakpoint can occur in
1939 anyone of six possible circular permutations of the TTAGGG sequence. (bottom) Bar
1940 plots depicting the frequency of each six possible circular permutations observed on the
1941 first 6 base-pairs of the neotelomere in the CCLE and TCGA-LUAD cohorts. **(B)** (top)
1942 Schematic illustrating the telomeric repeat sequences that are found directly after a
1943 breakpoint, and at a chromosomal arm fusion site. The first 6 base-pairs of the
1944 chromosomal arm fusion after the breakpoint can occur in anyone of six possible
1945 circular permutations of the TTAGGG sequence. (bottom) Bar plots depict the frequency
1946 of each six possible circular permutations observed on the first 6 base-pairs of the
1947 chromosomal arm fusions observed in the CCLE and TCGA-LUAD cohorts. p-values in
1948 **(A)** and **(B)** were calculated using the chi-squared test under the assumption that all six
1949 circular permutations are expected to be observed at the same frequency. The
1950 expected frequencies are indicated by a grey dotted line, and the number of events
1951 assessed for each cohort is indicated in the header of each plot. **(C-D)** Sequence logo
1952 plot representing the frequencies of nucleotides observed near the breakpoints of
1953 neotelomere and chromosomal arm fusion events. **(C)** (top) Schematic of the
1954 neotelomere, and the three main regions (genomic region flanking the neotelomere,
1955 telomeric repeats corresponding to the neotelomeres, and genomic region of the broken
1956 chromosomal fragment that was detached from the neotelomere) associated with these
1957 events. (bottom) Logo plots representing frequencies of nucleotides in the three main
1958 regions around a neotelomeric event. **(D)** (top) Schematic of a chromosomal arm fusion
1959 event, and the four main regions around the breakpoint of the chromosomal arm fusion
1960 event (genomic region flanking the arm fusion event, telomeric repeats corresponding to
1961 the chromosomal arm that fused to this site, sub-telomeric region of the arm that
1962 underwent fusion, and the genomic region of the remaining chromosomal fragment that
1963 was detached following the chromosomal arm fusion event). (bottom) Frequency of
1964 nucleotides in the three regions around the breakpoint of a chromosomal arm fusion
1965 event. **(E-F)** Coverage profiles in the ± 200 kb region surrounding a **(E)** neotelomere or
1966 **(F)** telomere fusion event in the CCLE cohort. The line depicts the median coverage
1967 observed across all sites, while the shaded area represents the interquartile range.
1968
1969

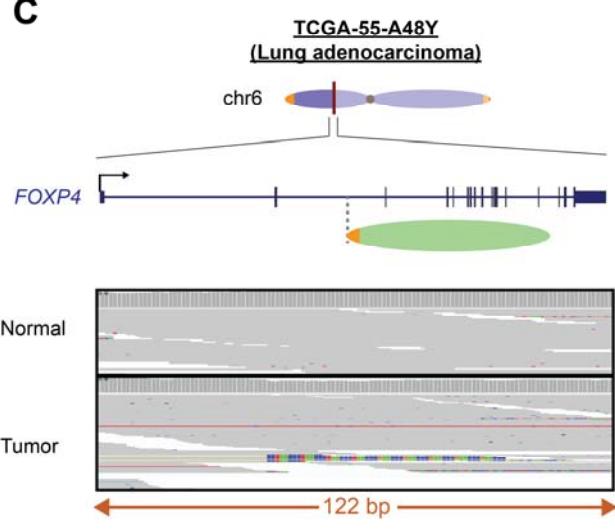
Supplementary Figure S12

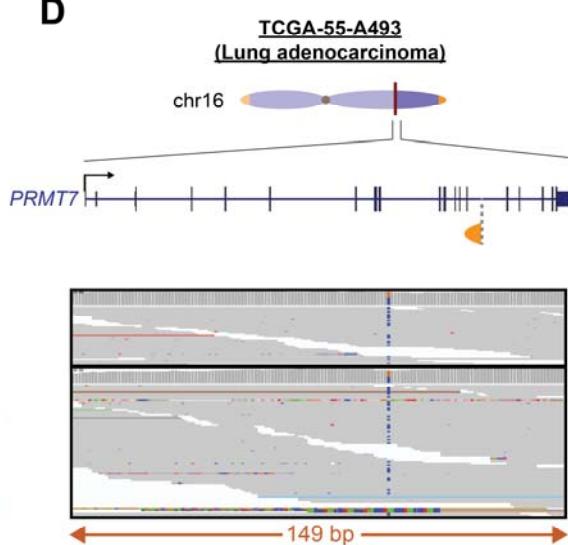

1970
1971

1972 **Figure S12 Putative germline ectopic telomeric events observed in lung**
1973 **adenocarcinoma tumor samples from patients. (A)** Ectopic telomeric repeat
1974 sequences in the inverted orientation at the site chr12:54,480,142, and in the standard
1975 orientation at the site chr12:54,494,011 in both the normal (blood) and tumor (lung
1976 adenocarcinoma) sample for the patient TCGA-44-6778. IGV screenshots depicting
1977 these observations are as indicated. These observations point to a model where ~6x
1978 (CCCTAA)_n repeats have integrated into this locus at chr12q, coupled with a deletion of
1979 regions B and C indicated in the figure. **(B)** Ectopic telomeric repeat sequences in the
1980 standard orientation were found at the site chr12:25,085,740, and in the inverted
1981 orientation at the site chr12:25,085,754 in both the normal (blood) and tumor (lung
1982 adenocarcinoma) sample for the patient TCGA-44-6778. IGV screenshots depicting
1983 these observations are as indicated. These observations point to a model where ~7x
1984 (CCCTAA)_n repeats have integrated into this locus at chr12p, coupled with a duplication
1985 of region B for the event on the left. The event on the right represents the insertion of
1986 the telomeric repeats without duplication of region B. **(C)** Ectopic telomeric repeat
1987 sequences in the inverted orientation at the site chr4:184,711,090, and in the standard
1988 orientation at the site chr4:184,711,103 in both the normal (blood) and tumor (lung
1989 adenocarcinoma) sample for the patient TCGA-62-A470. IGV screenshots depicting
1990 these observations are as indicated. These observations point to a model where ~3x
1991 (CCCTAA)_n repeats have integrated into this locus at chr4q, coupled with a deletion of
1992 region B found on the reference genome. **(D)** Ectopic telomeric repeat sequences in the
1993 inverted orientation was found at the site chr6:170,186,789, and in the standard
1994 orientation at the site chr6:170,186,808 in both the normal (blood) and tumor (lung
1995 adenocarcinoma) sample for the patient TCGA-44-5643. IGV screenshots depicting
1996 these observations are as indicated. These observations point to a model where >9x
1997 (TTAGGG)_n repeats have integrated into this locus at chr6q, coupled with a duplication
1998 of region B in the reference genome. **(E)** Ectopic telomeric repeat sequences in the
1999 inverted orientation was found at the site chr2:192,206,320 in both the normal (adjacent
2000 lung tissue) and tumor (lung adenocarcinoma) sample for the patient TCGA-55-6987.
2001 IGV screenshots depicting these observations are as indicated. These observations
2002 point to a model where 4x (TTAGGG)_n repeats have integrated into this locus at chr2q,
2003 together with sub-telomeric sequences corresponding to either chr7q/9q/5q, suggesting
2004 that a chromosomal arm fusion event has potentially occurred here.


2005
2006

Supplementary Figure S13


A


B

C

D

2009 **Figure S13 Additional examples of neotelomeric and chromosomal arm fusion**
2010 **events which led to gene disruptions, related to Figure 6. (A-B)** Schematic and IGV
2011 screenshots depicting gene disrupting events caused by neotelomeres or chromosomal
2012 arm fusion events in cancer cell lines. These were observed in **(A)** the U2-OS
2013 osteosarcoma cell line where a neotelomere could be observed in the middle of the
2014 *NRDC* gene at the site chr1:51,828,828, and **(B)** the Hs-746T gastric adenocarcinoma
2015 cell line where a chromosomal arm fusion event could be observed within the *TENM4*
2016 gene at the site chr11:79,325,679. **(C-D)** Somatic neotelomere and chromosomal arm
2017 fusion events observed in primary lung adenocarcinoma tumor samples. These were
2018 observed in the tumor sample of **(C)** patient TCGA-55-A48Y in the middle of the *FOXP4*
2019 gene at the position chr6:41,573,027 where a putative chromosomal arm fusion is
2020 observed, and in **(D)** patient TCGA-55-A493 in the *PRMT7* gene at the position
2021 chr16:68,349,160, where a putative neotelomere could be observed.
2022
2023