

1 **Development of a sequence-based *in silico* OspA typing method for *Borrelia burgdorferi***

2 **sensu lato**

3

4 Jonathan T. Lee ^a, Zhenghui Li ^a, Lorna D. Nunez ^a, Daniel Katzel ^b, B. Scott Perrin Jr. ^b, Varun

5 Raghuraman ^a, Urvi Rajyaguru ^a, Katrina E. Llamera ^a, Lubomira Andrew ^a, Annaliesa S.

6 Anderson ^a, Joppe W. Hovius ^c, Paul A. Liberator ^a, Raphael Simon ^a, Li Hao ^{a*}

7

8 ^a Vaccine Research and Development, Pfizer Inc., Pearl River, NY, 10965

9 ^b Pfizer Digital, Pfizer Inc., Pearl River, NY, 10965

10 ^c Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC),

11 Department of Internal Medicine, Division of Infectious Diseases, Center for Experimental and

12 Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands

13

14 Running Title: OspA *in silico* typing of Lyme *Borrelia*

15

16 *Corresponding author: Li.Hao@pfizer.com

17 Keywords: *In silico* OspA typing, OspA diversity, *Borrelia* genospecies

18

19 **Abstract**

20 Lyme disease (LD), caused by spirochete bacteria of the genus *Borrelia burgdorferi* sensu lato,
21 remains the most common vector-borne disease in the northern hemisphere. *Borrelia* outer
22 surface protein A (OspA) is an integral surface protein expressed during the tick cycle, and a
23 validated vaccine target. There are at least 20 recognized *Borrelia* genospecies, that vary in
24 OspA serotype. Traditional serotyping of *Borrelia* isolates using OspA-specific monoclonal
25 antibodies is technically challenging and reagent-constrained. This study presents a new *in silico*
26 sequence-based method for OspA typing using next-generation sequence data. Using a compiled
27 database of over 400 *Borrelia* genomes encompassing all major genospecies, we characterized
28 OspA diversity in a manner that can accommodate existing and new OspA types and then
29 defined boundaries for classification and assignment of OspA types based on the sequence
30 similarity. To accommodate potential novel OspA types, we have developed a new
31 nomenclature: OspA *in silico* type (IST). Beyond the ISTs which corresponded to existing OspA
32 serotypes (ST1-8), we identified nine additional ISTs which cover new OspA variants in *B.*
33 *bavariensis* (IST9-10), *B. garinii* (IST11-12), and other *Borrelia* genospecies (IST13-17).
34 Compared to traditional OspA serotyping methods, this new computational pipeline provides a
35 more comprehensive and broadly applicable approach for characterization of OspA type and
36 *Borrelia* genospecies to support vaccine development.

37

38 **Impact Statement**

39 As the incidence of LD continues to rise, so does the need to maintain genomic surveillance of
40 disease-causing *Borrelia* spp. and support clinical development of new vaccines. Towards this

41 goal, introducing the OspA *in silico* type (IST) nomenclature scheme, as well as the open-source
42 release of this OspA analysis pipeline, will enable characterization of novel *Borrelia* OspA types
43 using NGS data without the need for traditional, antibody-based serotyping systems.

44

45 **INTRODUCTION**

46 Lyme borreliosis, or Lyme disease (LD), is the most common tickborne disease in the
47 northern hemisphere and is caused by genospecies members of *Borrelia burgdorferi* sensu lato
48 (s.l.) (1-3). *B. burgdorferi* spirochetes are extracellular pathogens whose lifecycle is restricted to
49 cycling between vertebrae reservoir hosts and its vector, *Ixodes* ticks (4). At least 20 accepted
50 genospecies have been described within the species complex of *B. burgdorferi* s.l. (5, 6). Most
51 LD cases in North America are caused by *B. burgdorferi* sensu stricto (hereafter *B. burgdorferi*),
52 while multiple species of *Borrelia* cause the majority of LD in Europe and Asia including *B.*
53 *burgdorferi* *B. garinii*, *B. bavariensis*, and *B. afzelii* (1-3). The number of LD cases attributable
54 to these species has steadily increased as the disease continues to geographically expand (7-12).

55 Outer surface protein A (OspA), encoded by *ospA* on linear plasmid 54 (lp54), is a
56 dominant outer membrane antigen found in all *B. burgdorferi* s.l. species. OspA is expressed by
57 the spirochetes while in the tick mid-gut where it is integral to persistent colonization (13) and is
58 a proven antigen target for LD vaccines (14-20). The dominant disease-causing species of
59 *Borrelia* prevalent in North America and Europe primarily belong to six OspA serotypes (ST1-6)
60 (21). *B. burgdorferi*, that is the dominant genospecies in the US, shows homogeneity for OspA
61 serotype 1 (ST1). By comparison, in Europe, isolates comprise a diverse range of genomic
62 species and associated OspA serotypes. A comparison of *ospA* sequences revealed that certain

63 European *Borrelia* species were rather homogeneous (e.g., *B. afzelii* ST2 and *B. bavariensis*
64 ST4) while others were more heterogeneous (e.g., *B. garinii* ST3, ST5, ST6) in their OspA
65 grouping (22, 23), and that there was general agreement between *ospA* genotype and OspA
66 serotype assigned using type-specific monoclonal antibodies (mAbs) (24).

67 The first seven OspA serotypes (ST1-7) reported in 1993 (24), together with ST8 in 1996
68 (25), were identified using a traditional serotyping system limited by the non-commercial
69 availability of reference mAbs and a requirement for mAb combinations for identification. These
70 limitations have led researchers to move away from serological typing methods in favor of
71 alternative approaches (26, 27). Multilocus sequence typing (MLST) is a current gold standard
72 genotyping tool (28), as well as typing based on the 5S–23S rDNA (*rrfA-rrlB*) intergenic spacer
73 (IGS) (29). These approaches have the advantage of being more discriminative, but none have
74 allowed reliable differentiation of the *B. garinii*-associated OspA types in Europe. Moreover,
75 these prior approaches are not amenable to describing the diversity of OspA as it pertains to
76 coverage by investigational OspA vaccines in development. Increasingly, classic typing
77 approaches are being displaced by whole genome sequencing (WGS) with the rapid
78 advancement in next-generation sequencing (NGS) platforms and sequence analysis algorithms
79 (30). *In silico* strain typing based on WGS/NGS data can provide more precise information on
80 the diversity of *B. burgdorferi* s.l. and the relationship between phylogenetic clusters of OspA
81 variants, *Borrelia* genospecies, and the OspA type.

82 To support *Borrelia* surveillance and typing, we have compiled a database of over 400
83 genomes representing 11 genospecies of *B. burgdorferi* s.l.. Approximately half were accessed
84 from PubMLST and GenBank (31) and the remainder from NGS of isolates determined in-house.
85 The isolates in this collective database comprise human pathogenic *Borrelia* species of North

86 America and Europe (*B. burgdorferi*, *B. afzelii*, *B. garinii*, *B. bavariensis*, *B. spielmanii*, *B.*
87 *valaisiana*, and *B. mayonii*) as well as those not recognized as human pathogens (*B. japonica*, *B.*
88 *turdi*, and *B. finlandensis*). Our analysis of these genomes revealed a comprehensive picture of
89 OspA diversity across and within the major pathogenic *B. burgdorferi* genospecies and has been
90 used to define sequence similarity boundaries between OspA types. The development of a
91 sequence-based OspA *in silico* typing (IST) scheme, described here, provides a valuable tool for
92 characterization of clinical samples at the level of OspA type and genospecies.

93

94 METHODS

95 Sources of *Borrelia* isolate collections

96 *Borrelia* genomes used for this study (n = 421) were sourced from an internal collection
97 of unique isolates (n = 193) (Table S1, PRJNA1041728) and public genome sequences (n = 228)
98 from the PubMLST *Borrelia* isolates database (<https://pubmlst.org>) and GenBank (Table S2).
99 Accession numbers of externally sourced isolates are included in Table S2.

100 Bacterial growth and whole genome sequencing

101 MKP (Modified Kelly- Pettenkoffer) media prepared in-house (32) was used for
102 cultivation of *B. afzelii*, *B. garinii*, *B. bavariensis* and *B. spielmanii* isolates from frozen stock
103 vials, whereas BSK-H (modified Barbour-Stonener Kelly) media (Sigma-Aldrich Cat# B8219)
104 was used for the culture of *B. burgdorferi*. Cultures were incubated at 34° C for 5 to 14 days and
105 closely monitored for bacterial growth by dark field microscopy. Cultures were centrifuged at
106 10,000 x g for 10 minutes once the spirochete concentration reached at least 1.0 x 10⁶ cfu/mL.
107 Cell pellets were processed for genomic DNA extraction following the magnetic bead-based

108 Genfind V3 DNA isolation protocol (Beckman Coulter Life Sciences Cat# C34881). Next-
109 generation sequencing was performed on the Illumina MiSeq platform, with 2×300bp paired-end
110 NGS chemistry following a slightly modified protocol previously described by Jones *et al.* (33).
111 Read quality was verified using samtools (v1.15.1) to find the per-base-coverage of the
112 chromosome. An average sequencing depth of 193x was achieved across all isolates.

113 **Genotype characterization and phylogenetic analysis**

114 For NGS reads from each isolate, *de novo* genome assembly was performed using the
115 CLC Genomic Workbench (v21.0.5) with default settings. Whole-genome core alignment was
116 performed using Parsnp (34), and the OspA-specific phylogenetic tree was generated using
117 MEGA11 (35). Consensus OspA sequences per IST were calculated using CLC Genomic
118 Workbench. For ISTs where ≤ 2 sequences were identified, a single OspA variant was used in
119 place of a consensus sequence.

120 **Development of OspA *in silico* typing (IST) pipeline**

121 *OspA reference variants and IST.* Unique OspA protein sequences (Table S3) were
122 obtained from a combination of sources: NCBI, the PubMLST database (pubmlst.org) and
123 internal collections of *Borrelia* (Table S1, Table S2). Phylogenetic analysis (see previous
124 section) identified distinct OspA clusters, defined here as OspA ISTs wherever there are more
125 than 2 isolates.

126 *Read alignment and consensus ospA sequence.* *Borrelia* NGS reads were aligned by bwa
127 mem (v0.7.17) to reference sequences for multiple genospecies and ISTs: *B. burgdorferi* (IST1),
128 *B. afzelii* (IST2), *B. garinii* (IST3, IST5, IST6, IST11), and *B. bavariensis* (IST4, IST9, IST10).
129 Per-base coverage was extracted using samtools and the mean and standard deviation coverage

130 was computed for each alignment. The alignment with the highest mean minus one standard
131 deviation was used for further analysis. The selected alignments were assessed for median
132 coverage and sequence depth at each nucleotide in the *ospA* gene. Samples with under 100 reads
133 aligned, median coverage <10X, and/or sequence depth below 5X across <99% of the gene were
134 deemed low quality and excluded from further IST analysis. Variant calling was performed using
135 bcftools (v1.17) with the setting QUAL>=30, and the consensus *ospA* sequence generated by
136 bcftools.

137 To predict OspA IST from assembled genomic contigs, BLASTN was instead used to
138 obtain alignments to the IST-specific reference sequences. The alignment with the highest E-
139 value was used for downstream processing with sequences with less than 99% per-base
140 alignment considered low quality and excluded from further analysis.

141 *OspA IST assignment and estimation of IST-specific pairwise identity threshold.* The
142 consensus *ospA* nucleotide sequence was translated to amino acids and compared against 79
143 reference OspA variants (Table S3) using MAFFT (v.7.480 (36)). A pairwise sequence identity
144 was then calculated for each comparison. In cases of exact sequence match, the OspA IST of the
145 known sequence variant was used for IST assignment. For non-exact matches, the IST of the
146 OspA variant with the highest pairwise identity was assigned only if the pairwise identity met the
147 corresponding threshold. Otherwise, an “Unknown IST” designation was assigned.

148 To estimate IST-specific pairwise identity threshold, all known OspA variants were
149 multi-aligned using MAFFT and the number of mismatches calculated using a custom Python
150 script to determine pairwise sequence identity. For each OspA variant, the maximum pairwise
151 sequence identity within and outside of their corresponding IST was calculated. A similarity

152 threshold for each IST was then determined as the midpoint between the lowest within-IST
153 percent similarity and highest out-of-IST percent similarity.

154 *Evaluation of OspA NGS pipeline using clinical isolates.* To evaluate the performance of
155 the OspA typing pipeline, 22 clinical *B. burgdorferi* s.l. isolates obtained from Valneva SE
156 (Saint-Herblain, France) were used for testing. Bacterial genomic DNA was prepared using the
157 Illumina Nextera XT V2 kit and sequenced on the Illumina MiSeq platform.. Sequence data were
158 processed using the *in silico* OspA typing pipeline. Results were compared with OspA serotypes
159 previously determined by amino acid (AA) sequence alignment to reference strains containing
160 candidate OspA sequences (20).

161

162 **Data Availability Statement**

163 Raw data presented in this study will be deposited at NCBI SRA under accession
164 PRJNA1041728 pending the acceptance of the manuscript. Accession numbers will be included
165 in Table S1, and the code for *in silico* OspA typing pipeline will be available on GitHub
166 (<https://github.com/pfizer-opensource>) following acceptance of the manuscript.

167

168 **RESULTS**

169 ***Borrelia* genome collections**

170 We sequenced and assembled the genome of 193 *Borrelia* isolates (Table S1). The
171 majority of isolates were collected from humans between 1988 and 2018, 81% from human skin
172 biopsy samples (Figure 1A). A small percentage (7%) of isolates were obtained directly from

173 ticks. Overall, *B. afzelii* and *B. burgdorferi* predominated and all *B. afzelii* included in the
174 collection were isolated from Europe (88.4% of these from the Netherlands) (Table S1). Within
175 *B. burgdorferi*, 77.5% were collected from the US, whereas the remaining isolates were from
176 European countries.

177 An additional 228 genomes were sourced from the public databases PubMLST and
178 GenBank (Table S2). In contrast to our own sequenced collection, these were predominantly
179 obtained directly from ticks (Figure 1B). Nearly half of the isolates in this subset were *B.*
180 *burgdorferi* from North America, with the remainder predominantly consisting of *B. garinii* and
181 *B. bavariensis* from Europe and Japan (Table S2). When combined with our internal collection, a
182 total of 11 different *B. burgdorferi* s.l. genospecies were represented in the aggregate collection,
183 with *B. afzelii*, *B. burgdorferi*, *B. garinii*, and *B. bavariensis* all well represented (Figure 1C).

184

185 **Genetic diversity of OspA within and across *Borrelia* genospecies**

186 From the compiled genome collection, we identified a total of 79 unique OspA protein
187 variants (Table S3). The phylogenetic tree of OspA variants was annotated to identify the
188 existing reference *Borrelia* strains with known OspA serotypes (ST1-8) (Figure 2). As expected,
189 *ospA* sequences sharing the same OspA serotype were phylogenetically clustered. We also
190 observed additional clusters in the phylogeny that did not correspond to any previously reported
191 serotypes. To accommodate these potential novel OspA types, and to better characterize the
192 OspA diversity, we have developed a new nomenclature: OspA *in silico* type (IST). We found
193 that OspA IST correlated strongly with OspA ST1-8 and could be linked to the corresponding
194 genospecies: *B. burgdorferi* (IST1), *B. afzelii* (IST2), *B. bavariensis* (IST4), and *B. garinii*

195 (IST3, IST5, IST6, IST7 and IST8) (Figure 2, Table 1). OspA variants identified from *B.*
196 *burgdorferi* (IST1) and *B. afzelii* (IST2) were limited to a single phylogenetic cluster. In contrast,
197 two other genospecies typically restricted to LD cases in Europe and Asia, *B. garinii* and *B.*
198 *bavariensis*, were more heterogenous with multiple clusters of OspA variants (Figure 2). OspA
199 variants identified among *B. bavariensis* strains were clustered into three phylogenetic groups,
200 one of which corresponded to IST4 (sequence variant 12, *i.e.*, European OspA ST4). OspA
201 variants corresponding to two new phylogenetic groups designated IST9 and IST10 were
202 detected in *B. bavariensis* strains from Asia. Only OspA variant 12 was represented in the
203 phylogenetic IST4 cluster, although 23 isolates carried this OspA variant (Table S1 and S2). The
204 diversity of OspA variants from *B. garinii* was more considerable spanning seven phylogenetic
205 clusters. Five corresponded to the OspA serotypes originally identified for *B. garinii* (ST3, ST5-
206 8) (24, 25); two novel *B. garinii* clusters were labeled as IST11 and IST12. Unlike the other *B.*
207 *garinii* ISTs, only a single OspA variant was identified from IST8. Finally, individual
208 phylogenetic groups were identified for the genospecies *B. spielmanii* (IST13), *B. mayonii*
209 (IST14), *B. valaisiana* (IST15), *B. turdi* (IST16), and *B. yangtzensis* (IST17).

210 We next investigated the amino acid sequence diversity within and between ISTs. To
211 begin, we measured the pairwise sequence identity across all 79 OspA variants. For each variant
212 within an IST, we noted the highest sequence identity to variants from the same IST compared to
213 the highest identity to variants not in that IST. The distributions of these two groups are shown in
214 Figure 3 and Figure S1. In all 17 cases, a clear distinction was observed when comparing
215 sequence identity within an IST to sequence identity of variants from another IST. This indicated
216 that phylogenetic clustering was a robust method for assigning IST.

217 To further understand the variation between specific ISTs, we calculated the average
218 sequence identity between OspA variants from each of the first 12 ISTs (Figure 4A)
219 corresponding to *B. burgdorferi*, *B. afzelii*, *B. bavariensis*, and *B. garinii*. ISTs 4, 5, 6, 8 and 12
220 were found to have high between-IST sequence identity, reaching 93% average identity in the
221 cases of IST6 and IST12. This was relatively unsurprising as these ISTs occupy the same branch
222 in the OspA phylogeny (Figure 2). As variation in OspA is known to primarily occur at the C-
223 terminal domain (20), we aligned these regions using consensus or representative OspA
224 sequences these ISTs. We found that the C-terminal variable domain was relatively conserved
225 across these ISTs, with the exception of a divergent segment from positions 206-230 (Figure
226 4B). This region of OspA contained 11 amino acid substitutions and one in/del, and clearly
227 distinguished IST5 from IST8 and IST5 from IST6. In contrast, these substitutions were well
228 conserved between IST4, IST6, and IST12. Similarly, we found that IST3 and IST7, which
229 averaged 87.9% identity with one another, had well conserved C-terminal domains when
230 consensus OspA sequences are compared to the other ISTs (Figure S2).

231 Although within-IST sequence identity was consistently greater than between-ISTs, we
232 found that IST3 OspA variants had the greatest sequence heterogeneity, only averaging 92.8%
233 identity when compared with one another (Figure 4A). Based on the OspA phylogeny, it
234 appeared that three sub-groups of IST3 were present in the collection (Figure 2) and were
235 sufficiently diverged from one another to impact the average sequence identity. We aligned the
236 C-terminal domain of the ten IST3 OspA variants and identified a region from positions 201-227
237 that characterizes the two sub-groups, consisting of eight AA changes and a single residue indel
238 (Figure 4C). The full-length alignment of IST3 OspA variants is shown in Figure S3.

239

240 **Development of an *in silico* OspA typing pipeline**

241 Leveraging this collection of diverse OspA variants, we sought to develop a standardized
242 and automated method for determining the OspA IST of new isolates (Figure 5). To this end, we
243 first tested if alignment of short-read NGS data of *ospA* from whole genome sequence could be
244 used to generate a consensus sequence of OspA. For initial processing, a reference sequence(s)
245 was needed for alignment. To determine if a single *ospA* sequence was sufficient as a reference
246 for all ISTs, NGS reads of *ospA* from *B. burgdorferi* B31 (IST1) and a *B. garinii* IST6 isolate
247 were simulated using SimuSCoP v1.0 and aligned to *ospA* sequences corresponding to ISTs 1-6.
248 Coverage depth at each position of *ospA* is shown in Figure S4. While coverage was consistent
249 when aligned to the *ospA* sequence of the respective ISTs, the same could not be said when
250 aligning to heterologous reference sequences. Consistent with sequence divergence in the C-
251 terminal region of OspA, alignment failed at the 3' end of *ospA*. An example of this is illustrated
252 in Figure S4A for *B. burgdorferi* when aligning to non-*burgdorferi* *ospA* sequences. Similarly,
253 the *B. garinii* input reads were found to align poorly to the non-*garinii* reference sequences at the
254 3' end (Figure S4B). Given that alignment quality is species- and IST-dependent, we concluded
255 that alignment must be performed to corresponding reference *ospA* sequence from each target
256 IST in order to maximize coverage and sequence integrity.

257 To determine the best alignment for consensus sequence building, both the total read
258 coverage and coverage variation were considered. When aligning reads to a reference sequence
259 of a different IST, the average coverage across *ospA* was found to be both lower and more
260 variable, particularly in the C-terminal variable domain (Figure S3). To infer the best quality
261 alignment across ISTs, an alignment score was calculated as the mean coverage minus one
262 standard deviation. The alignment with the highest score was then used to build a consensus

263 *ospA* sequence. Although this scoring selects for the most robust alignment, it did not consider
264 cases where alignment quality or coverage is poor in general. In order to flag low confidence
265 *ospA* alignments, minimum required values were set for total reads aligned, median read
266 coverage, and depth of coverage across the entire *ospA* gene sequence (at least 5X sequence
267 depth; see Materials and Methods). If the assembled genomic contigs are used as input,
268 BLASTN was instead used to obtain alignments to the reference sequences of individual ISTs.

269 Finally, to determine the genospecies and IST, the generated consensus *ospA* sequence
270 was translated and aligned to the collection of 79 OspA variants with species and IST
271 assignments (Figure 5B). In cases where an exact OspA sequence match was available, the
272 corresponding species and IST were assigned. If an exact match was not returned, the highest
273 percent similarity to a known sequence was recorded alongside the IST associated with that
274 sequence. As we had previously calculated the sequence identity distribution for OspA variants
275 with known ISTs (Figure 3, Figure S1), these data were used to set thresholds for inclusion in
276 each IST (see Materials and Methods). If the similarity of the query sequence was greater than or
277 equal to the threshold for the known sequence, the associated IST was assigned. Otherwise, the
278 sample was labeled as an Unknown IST.

279

280 **Testing of the OspA NGS pipeline using clinical *Borrelia* isolates**

281 To evaluate performance of the OspA NGS pipeline, we ran a test dataset of whole
282 genome sequences from 22 isolates representing ST1-6 (24) and six genospecies (*B. burgdorferi*,
283 *B. garinii*, *B. afzelii*, *B. bavariensis*, *B. mayonii*, and *B. spielmanii*). A detailed comparison of the
284 OspA ISTs identified by the pipeline is found in Table S4. The pipeline returned 100%

285 concordance with the previously labeled genospecies, and all 22 of these isolates returned the
286 expected results for OspA ST/IST (Table S4). A single *B. garinii* isolate, previously labeled as
287 ST3, was found to harbor a novel allele of *ospA* with 99% identity to the reference IST3 *ospA*
288 sequence used by the OspA NGS pipeline.

289

290 **DISCUSSION**

291 A hexavalent (ST1-6) OspA-based vaccine, VLA15, is being developed for prevention of
292 LD caused by these 6 most prevalent serotypes in North America and Europe (37). VLA15 is
293 currently being tested for efficacy in a Phase 3 study conducted in both North America and
294 Europe (NCT05477524). Determination of the OspA type of clinical isolates is important for
295 vaccine development, both to determine concordance with the vaccine antigens, as well as to
296 better understand the epidemiology and prevalence of different OspA types and *Borrelia*
297 genospecies in human disease. Moreover, it is important to understand the genetic diversity of
298 OspA. Characterization of the efficacy of VLA15 in Europe will be challenged by the number of
299 potential OspA protein types present among European isolates. A reliable and implementable
300 classification method that can readily accommodate new OspA types is currently lacking.

301 In the present study, we developed a bioinformatic pipeline that accurately assigns OspA
302 ISTs and *Borrelia* genospecies from either OspA PCR amplicon sequence reads or assembled
303 *Borrelia* genome data. These include IST1-IST8 which correspond to ST1-ST8 that had been
304 previously assigned using traditional serological methods, as well as 9 novel ISTs (IST9-IST17).
305 Our IST approach is rapid, simple, standardized, and only requires sequence data of *ospA* or
306 *Borrelia* genome. The typing approach described in this work is the first reported pipeline

307 specifically designed for OspA types of *B. burgdorferi* s.l.. Consistent with mAb-assigned OspA
308 serotypes (24, 25), the OspA variants belonging to *B. burgdorferi* and *B. afzelii*, identified as
309 IST1 and IST2, respectively, displayed near 100% within-group homology. New OspA clusters
310 (IST11 and IST12) were identified for *B. garinii* as they diverge from the five established OspA
311 serotypes associated with this species (25) (reported here as IST3 and IST5-IST8). We found the
312 *B. bavariensis* IST4 European cluster was geographically distinct from two novel clusters (IST9-
313 IST10) containing *B. bavariensis* isolates from Asia. The divergence between these OspA groups
314 is expected given evidence for a clonal expansion of the European population of *B. bavariensis*
315 (38-40). Only a single OspA variant corresponding to IST4 (*B. bavariensis*) and IST8 (*B.*
316 *garinii*) was identified in our sequence collection, and thus, within-serotype similarity was set at
317 100% for these ISTs.

318 Traditional *Borrelia* serotyping by OspA-specific mAbs enabled the identification of
319 ST1-8 (25) and serotypes J1 to J11 among Japanese *B. burgdorferi* s.l. isolates (41). The utility
320 of mAb-based typing is technically challenging and subject to the level of expression of the
321 OspA protein *in vitro* (24) which can affect mAb binding. In addition, unlike other bacterial
322 species (*e.g.*, streptococci), standardized mAb typing reagents are not available. Moreover, some
323 of the OspA-specific mAb reagents have been prone to cross-reactivity due to high sequence
324 homology. As an example, cross-reactivity between *B. burgdorferi* and *B. bissettii* has been
325 reported using H3TS, an OspA-specific mAb used for the identification of OspA ST1 (42). By
326 comparison, the IST pipeline described herein unambiguously differentiates *B. burgdorferi* as
327 IST1 based on OspA sequence. Since the IST OspA pipeline only scans for *ospA* sequences,
328 interference of host DNA or DNA of similar pathogens lacking *ospA*, such as relapsing-fever
329 *Borrelia*, is also minimized. Consequently, the pipeline is capable of IST assignment using a

330 small amount of *Borrelia* DNA in a background of host DNA. Only NGS reads aligned to *ospA*
331 are utilized, and IST assigned with high sensitivity and specificity.

332 Genotyping *Borrelia* isolates in clinical samples is desirable for vaccine development to
333 better understand the epidemiology of LD. *Borrelia* genospecies and OspA types are
334 differentially distributed across the northern hemisphere and have been associated with distinct
335 manifestations of LD (24, 25, 43, 44). Sequence alignment of the *ospA* gene and analyses based
336 on OspA amino acid sequence similarity have been used broadly for clustering *Borrelia* isolates
337 (22, 41, 45-47). This clustering has provided useful genospecies information in agreement with
338 classification based on the analysis of other conserved chromosomal genes (27) and mAb-based
339 serotyping (24). However, alignment analyses suffer from limitations of scalability and
340 standardization, and often partial *ospA* gene was targeted. The pipeline presented here provides
341 high resolution to differentiate between multiple OspA ISTs, as well as the ability to identify
342 novel phylogenetic IST clusters within a single genospecies (e.g., IST9 and IST10 for *B.*
343 *bavariensis* and IST14 and IST12 for *B. garinii*). The ability for *de novo* strain detection,
344 identification, and assignment of *ospA* alleles is an advantage of NGS-based typing platform,
345 with the capability to easily build on phylogenetic trees as new disease-causing *Borrelia* species
346 are discovered (48) and more complete genomes are sequenced.

347 Evaluation of the OspA IST pipeline was limited to 22 *Borrelia* isolates from a single
348 collection. The lack of *Borrelia* isolates with both serological typing data and OspA sequence
349 information presented a challenge. In addition, the current pipeline design does not take co-
350 infection with multiple *Borrelia* strains into consideration, and therefore can detect the dominant
351 IST only when working on samples that may carry >1 isolates from different ISTs. As this
352 pipeline relies on the association between OspA sequence and genospecies, assignment of

353 genospecies based on IST could potentially be occluded in the case of horizontal gene or plasmid
354 transfer (49).

355 Our work has uncovered novel clusters of OspA variants among strains of *B. burgdorferi*
356 s.l., and also introduced the concept of ISTs as a new nomenclature for strain characterization.
357 Furthermore, we developed an open-source reliable OspA analysis pipeline which enables
358 characterization of novel *Borrelia* OspA types using NGS data without the need for traditional,
359 antibody-based serotyping systems. As global surveillance of *Borrelia* continues to expand, this
360 method has the potential to document additional ISTs. Such novel ISTs will be included in future
361 updates to the *in-silico* OspA typing pipeline.

362

363 **AUTHORS' CONTRIBUTIONS**

364 All authors met ICMJE criteria for authorship and participated in the study design and
365 conceptualization (JTL, PAL, LH, RS, ASA, JWH), methods development (JTL, LH, BSP, DK),
366 data collection and interpretation (JTL, LH, ZL, LDN, VR, BSP, DK, LA, KEL, UR), writing the
367 original draft (JTL, LH, ZL, JWH, RS, PAL), and study management (LH, RS, PAL, ASA). All
368 authors contributed to the development of the manuscript.

369

370 **AUTHOR DISCLOSURE STATEMENT**

371 Authors (except for JWH) are employees of Pfizer and may, consequently, be shareholders of
372 Pfizer Inc. Pfizer was involved in the study concept and design, the collection, analysis and
373 interpretation of the data, the drafting of the manuscript, and the decision to submit the

374 manuscript for publication. JWH has ongoing research collaborations with Pfizer Inc., and
375 collaborates, or has collaborated, with Moderna, Antigen Discovery Inc., Bio-Rad Laboratories,
376 Abbott, and ZEUS Scientific on other projects on Lyme borreliosis. JWH has an application for a
377 provisional patent related to *Borrelia* antigens pending.

378

379 **DATA AVAILABILITY**

380 The internal datasets generated and/or analyzed during the present study are available in the
381 NCBI repository BioProjects: PRJNA1041728. Accession numbers and isolate names are
382 included in Table S1. Code for the *in silico* OspA pipeline will be available on GitHub (
383 <https://github.com/pfizer-opensource/>) following acceptance of the manuscript.

384

385 **FUNDING INFORMATION**

386 This work was sponsored by Pfizer Inc.

387

388 **ACKNOWLEDGEMENTS**

389 The authors thank University of Amsterdam colleagues, Alje van Dam, for his role in the
390 isolation of Dutch *Borrelia* spirochetes from human samples, and Amber Vrijlandt, for the stock
391 preparation and sorting of all Dutch *Borrelia* isolates. The authors also acknowledge Christina
392 D'Arco (Pfizer) for writing support, and colleagues at Valneva (Urban Lundberg and Andreas
393 Meinke) as well as Gary Wormser (New York Medical College) for providing isolates.

394

395 **References**

- 396 1. Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. *Lancet*. 2012;379(9814):461-73.
- 397 2. Steere AC, Franc S, Wormser GP, Hu LT, Branda JA, Hovius JWR, et al. Correction: Lyme
398 borreliosis. *Nat Rev Dis Primers*. 2017;3:17062.
- 399 3. Stanek G, Strle F. Lyme borreliosis-from tick bite to diagnosis and treatment. *FEMS Microbiol
400 Rev*. 2018;42(3):233-58.
- 401 4. Eisen RJ, Eisen L, Beard CB. County-Scale Distribution of *Ixodes scapularis* and *Ixodes pacificus*
402 (Acari: Ixodidae) in the Continental United States. *J Med Entomol*. 2016;53(2):349-86.
- 403 5. Margos G, Fingerle V, Reynolds S. *Borrelia bavariensis*: Vector Switch, Niche Invasion, and
404 Geographical Spread of a Tick-Borne Bacterial Parasite. *Frontiers in Ecology and Evolution*. 2019;7.
- 405 6. Wolcott KA, Margos G, Fingerle V, Becker NS. Host association of *Borrelia burgdorferi* sensu lato:
406 A review. *Ticks Tick Borne Dis*. 2021;12(5):101766.
- 407 7. Sykes RA, Makiello P. An estimate of Lyme borreliosis incidence in Western Europe. *J
408 Public Health (Oxf)*. 2017;39(1):74-81.
- 409 8. Gasmi S, Ogden NH, Lindsay LR, Burns S, Fleming S, Badcock J, et al. Surveillance for Lyme
410 disease in Canada: 2009-2015. *Can Commun Dis Rep*. 2017;43(10):194-9.
- 411 9. Schwartz AM, Hinckley AF, Mead PS, Hook SA, Kugeler KJ. Surveillance for Lyme Disease - United
412 States, 2008-2015. *MMWR Surveill Summ*. 2017;66(22):1-12.
- 413 10. Mead PS. Epidemiology of Lyme disease. *Infect Dis Clin North Am*. 2015;29(2):187-210.
- 414 11. Nelson CA, Saha S, Kugeler KJ, Delorey MJ, Shankar MB, Hinckley AF, et al. Incidence of Clinician-
415 Diagnosed Lyme Disease, United States, 2005-2010. *Emerg Infect Dis*. 2015;21(9):1625-31.
- 416 12. Kugeler KJ, Farley GM, Forrester JD, Mead PS. Geographic Distribution and Expansion of Human
417 Lyme Disease, United States. *Emerg Infect Dis*. 2015;21(8):1455-7.
- 418 13. Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV. Essential role for OspA/B in the life cycle of the
419 Lyme disease spirochete. *J Exp Med*. 2004;199(5):641-8.
- 420 14. Comstedt P, Schuler W, Meinke A, Lundberg U. The novel Lyme borreliosis vaccine VLA15 shows
421 broad protection against *Borrelia* species expressing six different OspA serotypes. *PLoS One*.
422 2017;12(9):e0184357.
- 423 15. Comstedt P, Hanner M, Schuler W, Meinke A, Lundberg U. Design and development of a novel
424 vaccine for protection against Lyme borreliosis. *PLoS One*. 2014;9(11):e113294.
- 425 16. Koide S, Yang X, Huang X, Dunn JJ, Luft BJ. Structure-based design of a second-generation Lyme
426 disease vaccine based on a C-terminal fragment of *Borrelia burgdorferi* OspA. *J Mol Biol*.
427 2005;350(2):290-9.
- 428 17. Willett TA, Meyer AL, Brown EL, Huber BT. An effective second-generation outer surface protein
429 A-derived Lyme vaccine that eliminates a potentially autoreactive T cell epitope. *Proc Natl Acad Sci U S
430 A*. 2004;101(5):1303-8.
- 431 18. Sigal LH, Zahradnik JM, Lavin P, Patella SJ, Bryant G, Haselby R, et al. A vaccine consisting of
432 recombinant *Borrelia burgdorferi* outer-surface protein A to prevent Lyme disease. Recombinant Outer-
433 Surface Protein A Lyme Disease Vaccine Study Consortium. *N Engl J Med*. 1998;339(4):216-22.
- 434 19. Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, et al. Vaccination against Lyme
435 disease with recombinant *Borrelia burgdorferi* outer-surface lipoprotein A with adjuvant. Lyme Disease
436 Vaccine Study Group. *N Engl J Med*. 1998;339(4):209-15.
- 437 20. Nayak A, Schuler W, Seidel S, Gomez I, Meinke A, Comstedt P, et al. Broadly Protective
438 Multivalent OspA Vaccine against Lyme Borreliosis, Developed Based on Surface Shaping of the C-
439 Terminal Fragment. *Infect Immun*. 2020;88(4).
- 440 21. Piesman J, Gern L. Lyme borreliosis in Europe and North America. *Parasitology*. 2004;129
441 Suppl:S191-220.

442 22. Will G, Jauris-Heipke S, Schwab E, Busch U, Rossler D, Soutschek E, et al. Sequence analysis of
443 *ospA* genes shows homogeneity within *Borrelia burgdorferi* sensu stricto and *Borrelia afzelii* strains but
444 reveals major subgroups within the *Borrelia garinii* species. *Med Microbiol Immunol.* 1995;184(2):73-80.

445 23. Margos G, Vollmer SA, Cornet M, Garnier M, Fingerle V, Wilske B, et al. A new *Borrelia* species
446 defined by multilocus sequence analysis of housekeeping genes. *Appl Environ Microbiol.*
447 2009;75(16):5410-6.

448 24. Wilske B, Preac-Mursic V, Gobel UB, Graf B, Jauris S, Soutschek E, et al. An *OspA* serotyping
449 system for *Borrelia burgdorferi* based on reactivity with monoclonal antibodies and *OspA* sequence
450 analysis. *Journal of clinical microbiology.* 1993;31(2):340-50.

451 25. Wilske B, Busch U, Eiffert H, Fingerle V, Pfister HW, Rossler D, et al. Diversity of *OspA* and *OspC*
452 among cerebrospinal fluid isolates of *Borrelia burgdorferi* sensu lato from patients with neuroborreliosis
453 in Germany. *Med Microbiol Immunol.* 1996;184(4):195-201.

454 26. Wang G, Liveris D, Mukherjee P, Jungnick S, Margos G, Schwartz I. Molecular Typing of *Borrelia*
455 *burgdorferi*. *Curr Protoc Microbiol.* 2014;34:12C 5 1-31.

456 27. Wang G, van Dam AP, Schwartz I, Dankert J. Molecular typing of *Borrelia burgdorferi* sensu lato:
457 taxonomic, epidemiological, and clinical implications. *Clinical microbiology reviews.* 1999;12(4):633-53.

458 28. Margos G, Gatewood AG, Aanensen DM, Hanincova K, Terekhova D, Vollmer SA, et al. MLST of
459 housekeeping genes captures geographic population structure and suggests a European origin of
460 *Borrelia burgdorferi*. *Proc Natl Acad Sci U S A.* 2008;105(25):8730-5.

461 29. Coijan EC, Fonville M, Tijssse-Klasen E, van der Giessen JW, Takken W, Sprong H, et al.
462 Geodemographic analysis of *Borrelia burgdorferi* sensu lato using the 5S-23S rDNA spacer region.
463 *Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in*
464 *infectious diseases.* 2013;17:216-22.

465 30. Schwartz I, Margos G, Casjens SR, Qiu WG, Eggers CH. Multipartite Genome of Lyme Disease
466 *Borrelia*: Structure, Variation and Prophages. *Curr Issues Mol Biol.* 2021;42:409-54.

467 31. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software,
468 the PubMLST.org website and their applications. *Wellcome Open Res.* 2018;3:124.

469 32. Wagemakers A, Oei A, Fikrig MM, Miellet WR, Hovius JW. The relapsing fever spirochete *Borrelia*
470 miyamotoi is cultivable in a modified Kelly-Pettenkofer medium, and is resistant to human complement.
471 *Parasit Vectors.* 2014;7:418.

472 33. Jones CH, Mohamed N, Rojas E, Andrew L, Hoyos J, Hawkins JC, et al. Comparison of Phenotypic
473 and Genotypic Approaches to Capsule Typing of *Neisseria meningitidis* by Use of Invasive and Carriage
474 Isolate Collections. *Journal of clinical microbiology.* 2016;54(1):25-34.

475 34. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome
476 alignment and visualization of thousands of intraspecific microbial genomes. *Genome Biol.*
477 2014;15(11):524.

478 35. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11.
479 *Mol Biol Evol.* 2021;38(7):3022-7.

480 36. Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple
481 sequence alignments. *Bioinformatics.* 2018;34(14):2490-2.

482 37. Pfizer. Pfizer and Valneva Initiate Phase 3 Study of Lyme Disease Vaccine Candidate VLA15:
483 Pfizer; 2022 [Available from: <https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-valneva-initiate-phase-3-study-lyme-disease>].

485 38. Marconi RT, Hohenberger S, Jauris-Heipke S, Schulte-Spechtel U, LaVoie CP, Rossler D, et al.
486 Genetic analysis of *Borrelia garinii* *OspA* serotype 4 strains associated with neuroborreliosis: evidence
487 for extensive genetic homogeneity. *Journal of clinical microbiology.* 1999;37(12):3965-70.

488 39. Gatzmann F, Metzler D, Krebs S, Blum H, Sing A, Takano A, et al. NGS population genetics
489 analyses reveal divergent evolution of a Lyme Borreliosis agent in Europe and Asia. *Ticks Tick Borne Dis.*
490 2015;6(3):344-51.

491 40. Margos G, Wilske B, Sing A, Hizo-Teufel C, Cao WC, Chu C, et al. *Borrelia bavariensis* sp. nov. is
492 widely distributed in Europe and Asia. *Int J Syst Evol Microbiol.* 2013;63(Pt 11):4284-8.

493 41. Masuzawa T, Wilske B, Komikado T, Suzuki H, Kawabata H, Sato N, et al. Comparison of OspA
494 serotypes for *Borrelia burgdorferi* sensu lato from Japan, Europe and North America. *Microbiol*
495 *Immunol.* 1996;40(8):539-45.

496 42. Bretz AG, Ryffel K, Hutter P, Dayer E, Peter O. Specificities and sensitivities of four monoclonal
497 antibodies for typing of *Borrelia burgdorferi* sensu lato isolates. *Clin Diagn Lab Immunol.* 2001;8(2):376-
498 84.

499 43. Wilske B, Busch U, Fingerle V, Jauris-Heipke S, Preac Mursic V, Rossler D, et al. Immunological
500 and molecular variability of OspA and OspC. Implications for *Borrelia* vaccine development. *Infection.*
501 1996;24(2):208-12.

502 44. Wang G, van Dam AP, Spanjaard L, Dankert J. Molecular typing of *Borrelia burgdorferi* sensu lato
503 by randomly amplified polymorphic DNA fingerprinting analysis. *Journal of clinical microbiology.*
504 1998;36(3):768-76.

505 45. Wang J, Masuzawa T, Yanagihara Y. Characterization of *Borrelia garinii* isolated from Lyme
506 disease patients in Hokkaido, Japan, by sequence analysis of OspA and OspB genes. *FEMS Microbiol Lett.*
507 1997;154(2):371-5.

508 46. Grego E, Bertolotti L, Peletto S, Amore G, Tomassone L, Mannelli A. *Borrelia lusitaniae* OspA
509 gene heterogeneity in Mediterranean basin area. *J Mol Evol.* 2007;65(5):512-8.

510 47. Wang G, van Dam AP, Dankert J. Two distinct ospA genes among *Borrelia valaisiana* strains. *Res*
511 *Microbiol.* 2000;151(5):325-31.

512 48. Pritt BS, Mead PS, Johnson DKH, Neitzel DF, Respicio-Kingry LB, Davis JP, et al. Identification of a
513 novel pathogenic *Borrelia* species causing Lyme borreliosis with unusually high spirochaetaemia: a
514 descriptive study. *Lancet Infect Dis.* 2016;16(5):556-64.

515 49. Wang G, van Dam AP, Dankert J. Evidence for frequent OspC gene transfer between *Borrelia*
516 *valaisiana* sp. nov. and other Lyme disease spirochetes. *FEMS Microbiol Lett.* 1999;177(2):289-96.

517

518

519 **Figure Legends**

520 **Figure 1. Host and genospecies distribution of *Borrelia* strains.** (A) Isolates sequenced for
521 this study were largely collected from human hosts, with the majority coming from skin biopsies.
522 A small subset of strains was isolated directly from ticks. (B) Genomes sourced from public
523 collections were predominantly from ticks rather than human hosts. Some isolates were obtained
524 from non-human animal hosts. (C) Core genome phylogeny of *Borrelia* strains and
525 representation of the predominant genospecies in the combined collection.

526 **Figure 2. Phylogenetic tree of OspA variants.** Phylogenetic analysis of 79 unique OspA
527 protein variants. Clusters corresponding to the 17 ISTs defined in this study are labeled. The 12
528 OspA ISTs associated with species of *Borrelia* responsible for the majority of LD in North
529 America, Europe, and Asia (*B. burgdorferi*, *B. garinii*, *B. bavariensis*, and *B. afzelii*) are bolded.

530 **Figure 3. Comparison of OspA amino acid sequence identity within and outside of each**
531 **IST.** For each of the 79 OspA variants, sequence identity was compared to each variant from the
532 same IST, and the highest percent similarity saved. The distribution of maximal sequence
533 identity is shown in blue boxes. Likewise, sequence identity was compared to each variant not in
534 the same IST and the highest percent similarity saved. The distribution of maximal sequence
535 identity for these cases is shown in red boxes. A similarity threshold for each IST was then
536 calculated as the midpoint between the tails of the two distributions, the values for which are
537 depicted below the plot. As only a single OspA variant comprise both IST4 and IST8, sequence
538 identity within these ISTs is depicted at 100%. Distributions for IST13-17 are found in Figure
539 S1.

540 **Figure 4. OspA sequence identity within and between ISTs.** (A) Average percent sequence
541 identity of OspA protein variants within and between IST1-12. As ISTs 4 and 8 consist of only a

542 single OspA sequence variant, no within-IST identity was calculated for these types. (B) C-
543 terminal domain alignment of ISTs 4, 5 ,6 ,8, and 12 OspA sequences. (C) C-terminal alignment
544 of IST3 OspA variants.

545 **Figure 5. Workflow of an NGS-based *in silico* OspA typing pipeline.** (A) NGS data of *ospA*
546 are aligned to reference sequences for each IST. A consensus sequence is constructed based on
547 the highest quality alignment. (B) The consensus *ospA* gene sequence is translated and multi-
548 aligned against 79 known OspA variants. A sequence similarity threshold (Figure 3, Figure S1)
549 is used to assign the IST of novel variants.

550

551 **Supplementary Data**

552 **Table S1. Sample and NGS metadata of internally sequenced *Borrelia* isolates.**

553 **Table S2. Sample and NGS metadata of publicly obtained *Borrelia* isolates.**

554 **Table S3. OspA variants for IST pipeline.**

555 **Table S4. Evaluation of the IST pipeline against isolates with known ST and genospecies.**

556 **Figure S1. Comparison of OspA sequence identity for ISTs 13-17.**

557 **Figure S2. Alignment of IST consensus OspA sequences.**

558 **Figure S3. Alignment of IST3 OspA sequences.**

559 **Figure S4. Simulated NGS coverage for a *B. burgdorferi* and *B. garinii* isolate.**

560

561 **Table 1.** Comparison of OspA *in silico* types (IST) and reported OspA serotypes corresponding
562 to *B. burgdorferi* s.l. genospecies.

<i>In silico</i> Type (IST)	Serotype (ST)^a	Genospecies
1	1	<i>B. burgdorferi</i>
2	2	<i>B. afzelii</i>
3	3	<i>B. garinii</i>
4	4	<i>B. bavariensis</i>
5	5	<i>B. garinii</i>
6	6	<i>B. garinii</i>
7	7	<i>B. garinii</i>
8	8	<i>B. garinii</i>
9	NR ^b	<i>B. bavariensis</i>
10	NR ^b	<i>B. bavariensis</i>
11	NR ^b	<i>B. garinii</i>
12	NR ^b	<i>B. garinii</i>
13	NR ^b	<i>B. spielmanii</i>
14	NR ^b	<i>B. mayonii</i>
15	NR ^b	<i>B. valaisiana</i>
16	NR ^b	<i>B. turdi</i>
17	NR ^b	<i>B. yangtzensis</i>

563 ^aSerotypes listed here were classified using the monoclonal antibody-based typing system
564 described by Wilske and colleagues (24, 25).

565 ^bNR = not reported

566

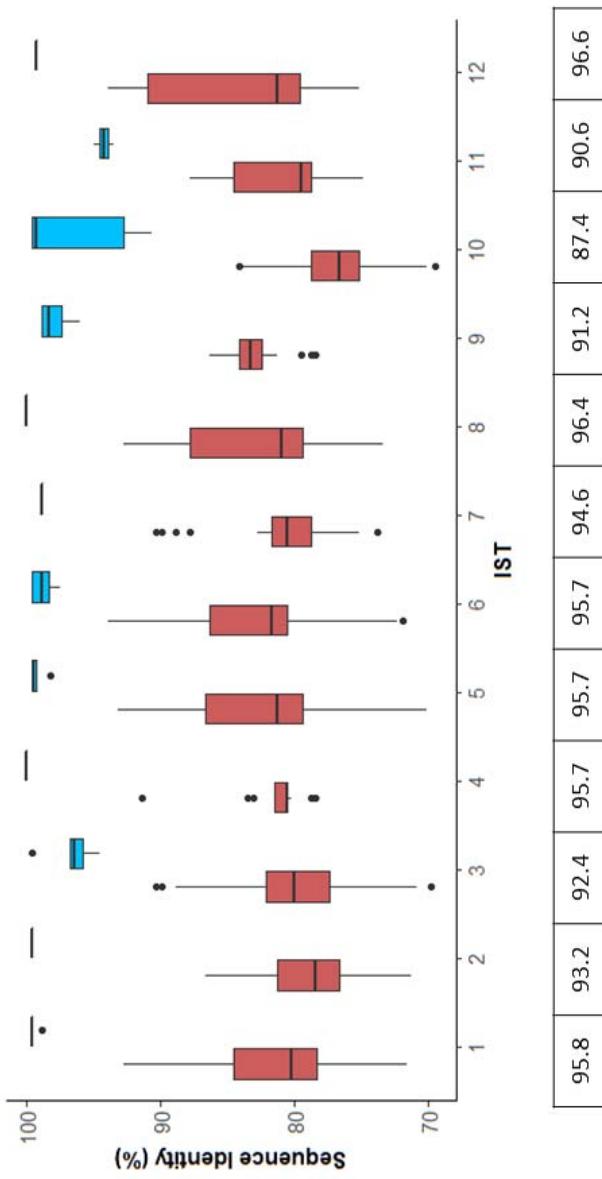
567

568

569

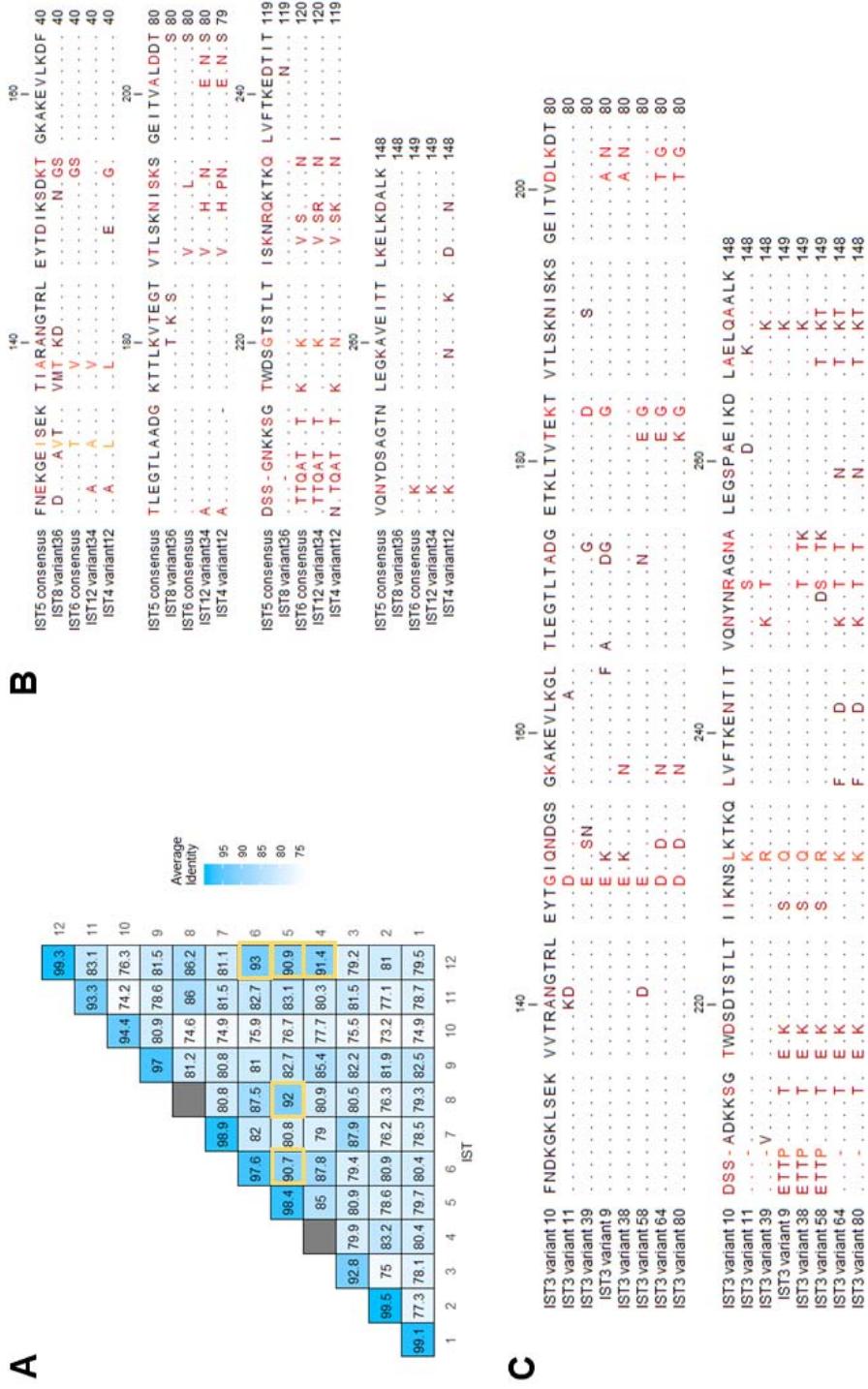
570 **Figure 1. Host and genospecies distribution of *Borrelia* strains**

571

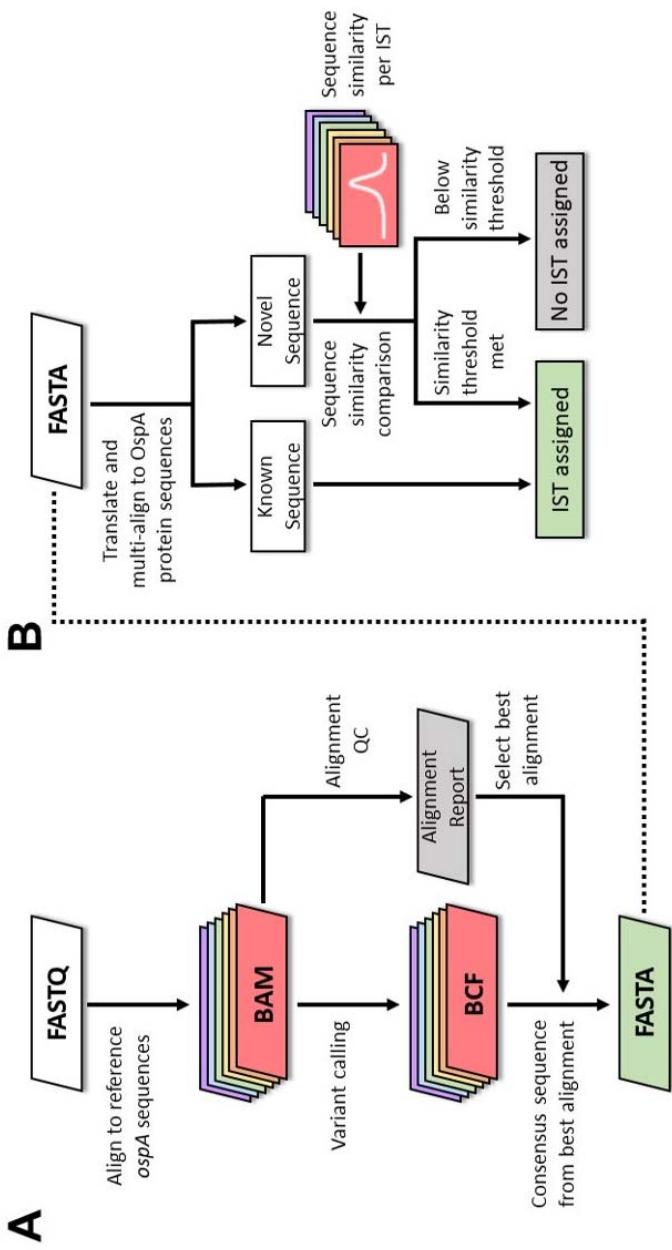


572

573 **Figure 2. Phylogenetic tree of OspA variants**



575 **Figure 3.** Comparison of OspA sequence identity within and outside of each IST

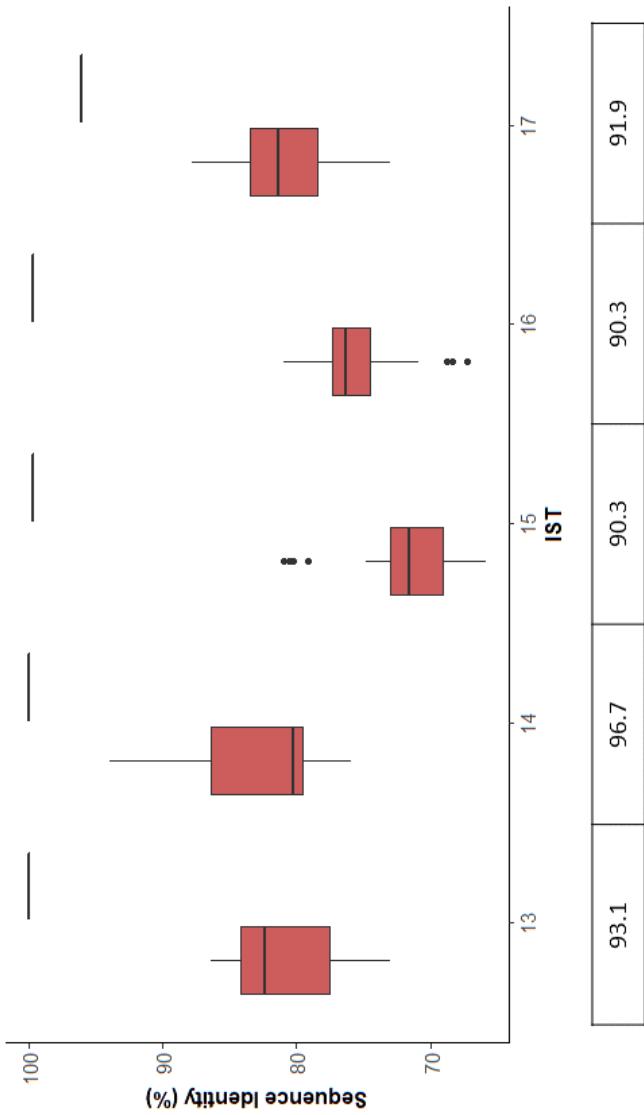
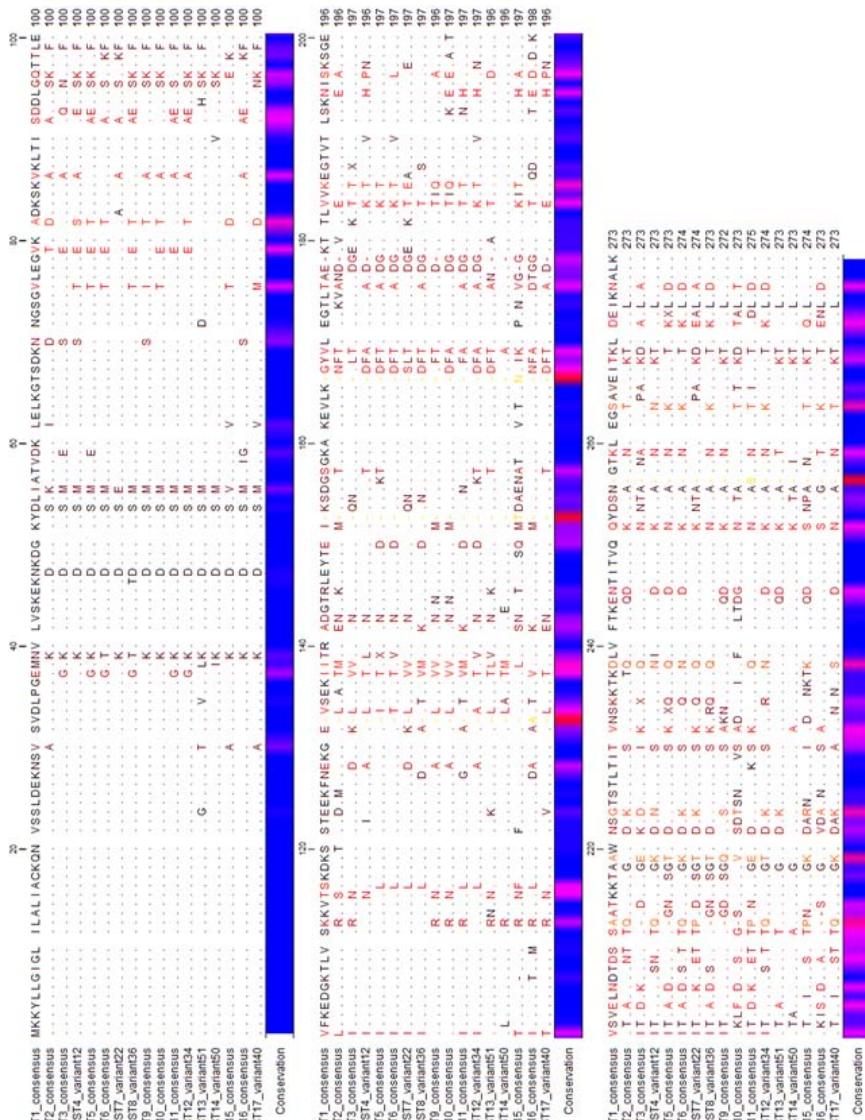
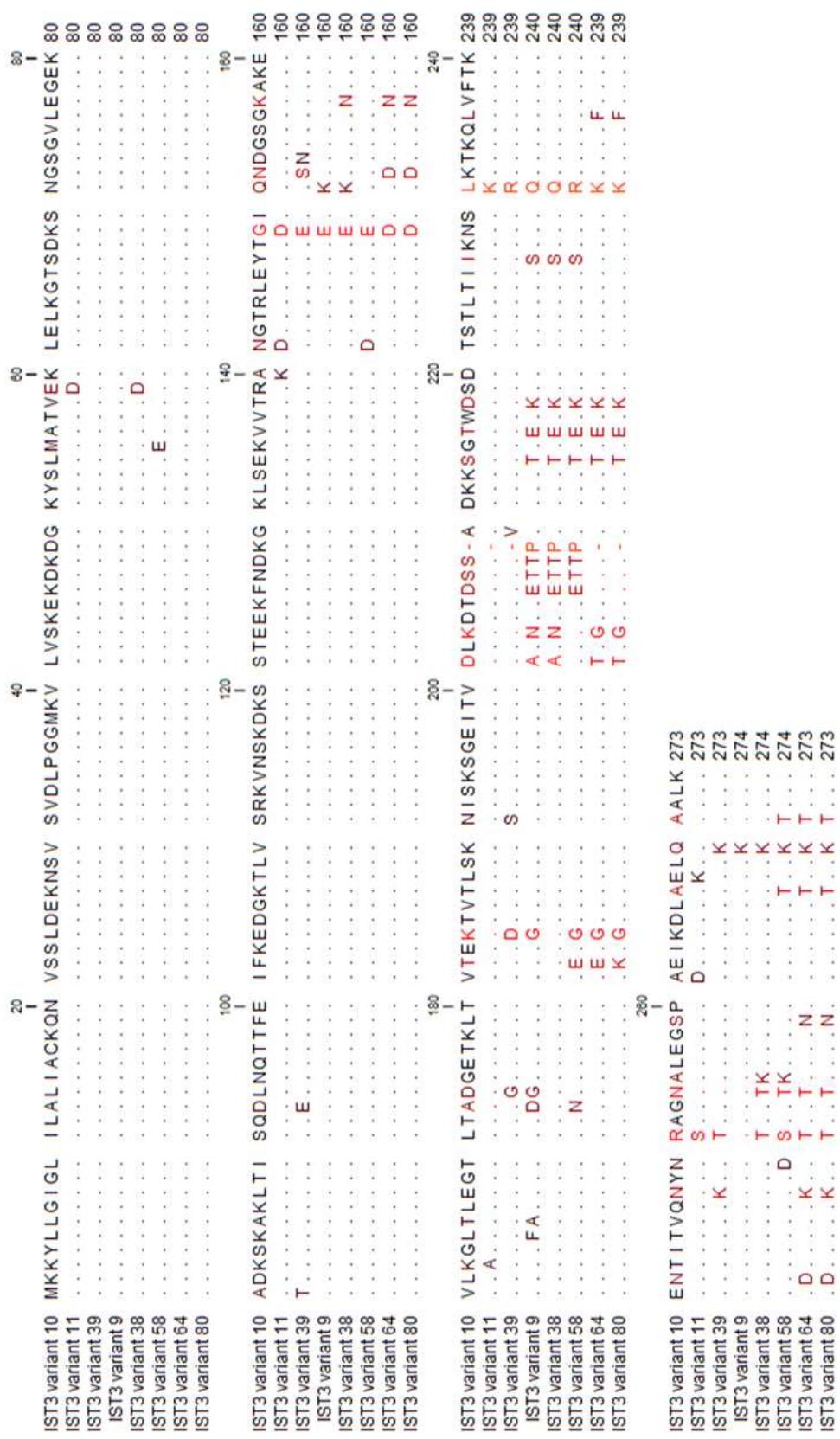


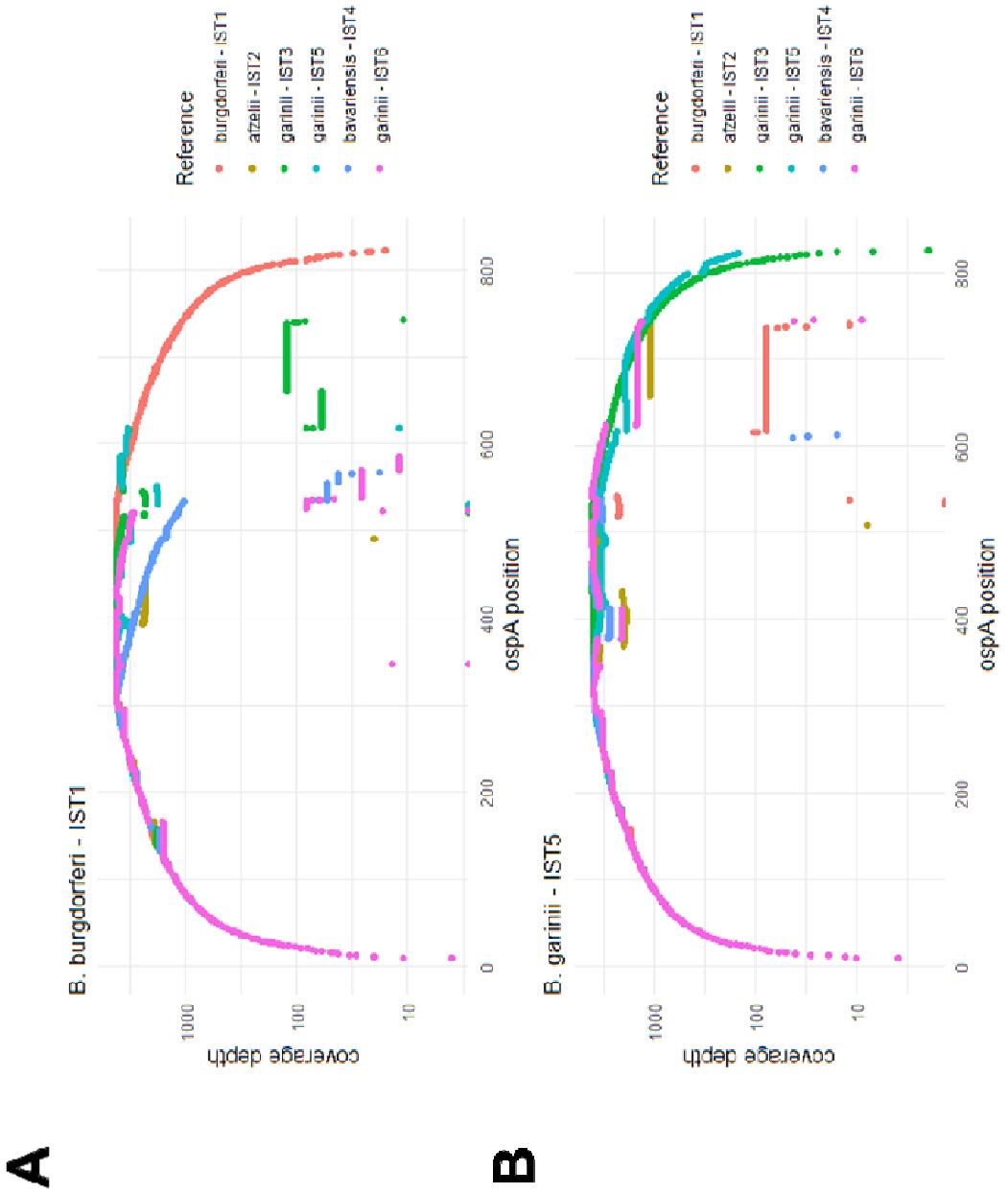
576
577

578 **Figure 4. OspA sequence identity within and between ISTs**

580 **Figure 5. Workflow of an NGS-based *in silico* OspA typing pipeline**

583 Figure S1. Comparison of OspA sequence identity for ISTs 13-17


Figure S2. Alignment of IST consensus OspA sequences

588 **Figure S3. Alignment of IST3 OspA sequences**

590 Figure S4. Simulated NGS coverage for a *B. burgdorferi* and *B. garinii* isolate

