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Abstract
Inquiries into properties of brain structure and function have progressed due to

devel opments in magnetic resonance imaging (MRI). To sustain progress in investigating and
guantifying neuroanatomical detailsin vivo, the reliability and validity of brain measurements
are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the
validity and reliability of brain measurements. Despite itsimportance, there is little guidance on
best QC practices and reporting procedures. The study of hippocampal subfieldsin vivoisa
critical case for QC because of their small size, inter-dependent boundary definitions, and
common artifactsin the MRI data used for subfield measurements. We addressed this gap by
surveying the broader scientific community studying hippocampal subfields on their views and
approaches to QC. We received responses from 37 investigators spanning 10 countries, covering
different career stages, and studying both healthy and pathological development and aging. In
this sample, 81% of researchers considered QC to be very important or important, and 19%
viewed it asfairly important. Despite this, only 46% of researchers reported on their QC
processes in prior publications. In many instances, lack of reporting appeared due to ambiguous
guidance on relevant details and guidance for reporting, rather than absence of QC. Here, we
provide recommendations for correcting errors to maximize reliability and minimize bias. We
also summarize threats to segmentation accuracy, review common QC methods, and make
recommendations for best practices and reporting in publications. Implementing the
recommended QC practices will collectively improve inferences to the larger population, as well

as have implications for clinical practice and public health.
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Introduction

Continuing developments in magnetic resonance imaging (MRI) have enabled
progressively degpening inquiries into properties of brain structure and function. This progress
hasin part enabled the development of well-defined and anatomically grounded segmentation
protocols for various neuroanatomical regions that can be visualized on MR images. To sustain
progress in investigating and quantifying neuroanatomical detailsin vivo, the reliability and
validity of brain measurements are paramount.

Hippocampal subfields are small regions, sometimes less than a millimeter in thickness,
that are defined by contiguous boundaries and are distinct in their cytoarchitecture,
neurochemistry, and function (Duvernoy, 2005; Insausti & Amaral, 2012). In the context of
hippocampal subfields, valid in vivo structural measurements start with the acquisition of
appropriate MR images (i.e., high-resolution T,-weighted images, see
http://www.hi ppocampal subfiel ds.com/peopl &/ acqui sition-working-group and Yushkevich et al.,
2015afor details), which are segmented and labeled based on anatomical atlases developed to
reflect underlying cytoarchitecture. The HSG (hippocampal subfields.com) was developed in
2013 with the aim of devel oping a harmonized protocol for the segmentation of hippocampal
subfields for high-resolution T,-weighted MRI data (Olsen et al., 2019). In our prior publications
we have reviewed common imaging methods and recommended best practices for MRI protocol
design for measuring hippocampal subfieldsin vivo (Wisse et a., 2020). In that prior work, we
emphasized that reliable application of boundary definitions is needed to maintain confidencein
the hippocampal measurement results. Although the problems arising from variationsin scan

quality and segmentation accuracy are not unique to hippocampal subfields, because of the small
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size of the targets and different application of labels along the anterior-posterior axis, the
consequence of measurement error is disproportionately high. Therefore, consistent applications
of quality control (QC) of collected scans and segmentation accuracy (i.e., detecting deviations
in labeling of regions from the defined protocol), are important for ensuring reliable and valid
measurement of the hippocampal subfields.

Although most brain MRI studies report using some form of QC, and despite occasional
callsfor its standardization (e.g., Backhausen et a., 2021), there are limited QC guidelines that
are clearly recommended in the literature, especialy in relation to specific and widely studied
anatomic structures such as the hippocampus. When testing hypotheses involving MRI-derived
measurements, QC provides a means to mitigate measurement error that can lead to Type | and
Type Il errors, and subsequently improves the reproducibility of results (Elyounssi et al., 2023).
Therefore, reporting QC details of the segmentations are necessary to support interpretation of
hippocampal subfield measures correlated with function and cognition across the human
lifespan, and potential application as biomarkers of disease processes.

Survey on QC
Currently neither concrete recommendations for best practices of QC for hippocampal

subfield measurement nor minimum reporting standards exist in the literature. We recently began
to address this gap by surveying the views and approaches to MRI QC from the broader
community of Hippocampal Subfields Group (HSG) investigators who work with measures of
hippocampal subfield structure. Thus, asinvestigators concerned with assessing the role of
hippocampal subfieldsin development, aging, cognition, and neuropathology, our goal isto

provide a guide to QC that will be effective in this specific application to subfield segmentation.
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An extensive survey assessed the views and approaches to QC of hippocampal subfield
segmentation in the HSG community and was distributed using the HSG' s listserv, social media,
and website. Survey responses were collected from 07/11/2022 to 10/14/2022. The survey was
completed by 37 respondents each representing a different laboratory spanning 10 different
countries and 4 continents. Respondents’ research represented the study of hippocampal
subfields across the lifespan (from O years - 75+ years) and in healthy and diseased populations
(see Supplementary Material for detailed breakdown of respondent demographics).

Of the 37 respondents, 81% considered QC to be “very important or important” and 19%
considered QC to be “fairly important”. While al respondents considered QC to be important to
some degree, only 46% reported on their QC practicesin prior publications. This response
highlights the mismatch between the importance of QC and the inconsistent standards of
reporting QC in published studies. In many instances, this may not be due to absence of QC but
merely ambiguous guidance on relevant details to report (see Supplementary Material for
detailed survey results).

QC Guideines

The goal of this guideisto provide guidance covering the various decision points
investigators may encounter during the QC process. We take an a la carte approach and
anticipate an investigator may choose to implement some or all of the practices we review, and
that thiswill vary across studies. Our intention isto provide an overview of each stage of QC to
allow for the investigator to make informed decisions for their study and follow best practice

recommendations on reporting the procedures they implement. The goal of this guidanceisto
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improve the quality of data and transparency in reporting within the hippocampal subfields
literature.

Although the many protocols to delineate hippocampal subfields vary meaningfully in
both their label composition and defined boundaries (Yushkevich et al., 2015a), a common set of
QC procedures will be applicable to any manual or automated segmentation protocol. In the
following sections, we propose best practices for QC of acquired MR images and labeling to
measure hippocampal subfields. We aso provide concrete suggestions and illustrations of how to
identify, correct, and report segmentation errors. Below, we briefly address several topics related
to the QC process, such as excluding data of questionable quality, measuring the reliability of
QC interventions, reducing biasin subfield measurement, and special considerations for
implementing QC procedures in longitudinal studies (see schematic summary of QC procedures

in Figure 1).
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Figure 1. lllustration of the QC process and investigator-guided decision making for data quality. Green

checkmarks indicate passed QC, while red cross marks indicate failed QC.

QC of MR Images
Quality of MR images directly affects the reliability and validity of segmentations, and

by extension, the reproducibility of results. Two related aspects of MR image QC are the

identification of artifacts affecting overall image quality and image features that impede the
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ability to visualize neuroanatomical landmarks. Prior to segmenting hippocampal subfields
(either manually or automatically), a critical first step in the QC processis ng the quality
of acquired images for imaging artifacts, poor contrast, and insufficient landmark visualization.
Across the investigators surveyed by the HSG, over 89% of respondents reported conducting QC
of MR images, and 94% of those exclude images due to quality issues. Segmentation of
hippocampal subfields relies on the visualization of specific landmarks, typically on T-weighted
high-resolution images (Wisse et al., 2020), in order to determine outer boundaries of the
hippocampus and the inner boundaries between subfields (see QC of Landmark Visbility
section). Thus, our discussion and illustration of QC for MR images in the following sections are
applied in the context of hippocampal subfield measurement from oblique coronal T»-weighted
scans with high in-plane resolution and orientation roughly orthogonal to the hippocampus as
recommended by the HSG (for a discussion of T;-weighted image QC not specific to

hippocampal subfields see Alfaro-Almagro et al., 2018; Rosen &t al., 2018).

MR Image Artifact | dentification
Description of the Problem

MR images are prone to artifacts during acquisition due to a variety of factors, including
participant movement, metal implants, magnetic field inhomogeneities related to head geometry
and tissue compartments, and mechanical faults in the gradient coils. These result in suboptimal
image quality and the ensuing “artifacts’. These artifacts affect the quality of the data, whichin

turn reduces the quality of the segmentation. Although images do not need to be perfect to have
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valid measurements of brain structures, there is a minimum standard of data quality that often
leads investigators to exclude scans as afirst step in QC.

Among surveyed investigators, motion artifacts (e.g., ghosting) and susceptibility
artifacts (e.g., image distortion due to metallic dental work) (Figure 2) were the most common
examples of imaging artifacts flagged in QC of To-weighted images. Motion artifacts can
degrade the clarity of the image due to blurring of boundaries between tissue compartments and
loss of image contrast (Reuter et al., 2015). Of note, the majority of respondents identified
problems related to motion as the most common cause of exclusion (70%). For example,
ghosting artifacts appear as rings or streaks within slices and are due to motion. Artifacts due to
reconstruction errors can occur near high contrast boundaries and can also appear as multiple
lines in the image that alternate between bright and dark coloring (i.e., rings or bands) (Bellon et
al., 1986). Susceptibility artifacts also affect the tissue appearance on MR images as local
magnetic field inhomogeneities are translated into structural distortions and signal dropout. For
example, the presence of an implanted metallic object with significant magnetic susceptibility
(e.g., metallic dental work) results in pronounced inhomogeneities in the By static magnetic field
and subsequently issues in the reconstruction of the affected areas. These artifacts are
exacerbated at higher field strengths (Dietrich et al., 2008) and independently, as well as
collectively, lead to insufficient image contrast that could severely distort hippocampal subfield
segmentation.

Review of Current Approaches and Recommendations
As an overal summary of image quality, a practice noted by a number of investigators

surveyed is to quantify the image signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).

10
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MR image SNR isthe proportional mean signal of aregion of interest to background noise
(typically the standard deviation of the signal sampled from air space), whereas CNR refersto
comparison of the mean signal in aregion of interest to areference region (e.g., gray matter to
white matter) in proportion to background noise. Thus, SNR provides a global estimate of image
quality, whereas CNR provides alocal estimate of contrast between tissue types. Additional
inspection of the MR image for artifacts can be performed manually or with automated tools
(detailed below).

Manual Image Quality Screening Procedures. Qualitative review is a common approach
in assessing the quality of MR images. Thistype of approach entailsthe visual inspection of all
images in adata set, which is usually done by one or more trained raters. Manual QC procedures
are based on investigator judgment and experience. As some degree of imaging artifact is often
tolerated during segmentation, the rater decides whether artifacts are severe enough to undermine
confidence in subsequent segmentation, including anticipating a critical segmentation failure
with automated software. Based on the results of the inspection, low-quality images are often
excluded from the data set.

Rater’ s review of image quality is sometimes reported in methods sections of papers, but
the specific procedure for thisisrarely explicated. In some applications, the QC decision appears
to be abinary choice (i.e., include or exclude), whereas in other instances, an ordinal rating scale
may be used to describe the quality of theimage or severity of artifacts (e.g., 0 = no artifact/pass,
1 = minimal artifact/check, 2 = severe artifact/fail). We recommend using arating system (either
abinary or multi-point ordinal scale) to determine if an imageis of sufficient quality for

segmentation. This approach aids investigators in specifying the operational criterion used to

11
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determine the image quality as sufficient and improves the transparency and reproducibility of
the methods. For examples of scales and criteriarelated to imaging artifacts see Backhausen et
al. (2021), Ding et a. (2019), and Rosen et al. (2018). Because of subjectivity in this procedure,
describing the criteria for the decision and the reliability of the procedure (e.g., kappa statistics
between- or within-rater; minimum 0.75 indicates a strong level of agreement; Fleiss et al., 2003)
isimportant for ensuring the quality of the generated data and reproducibility of the findings.
Automated Image QC Methods. As manual image quality evaluation can be labor
intensive and time consuming, especially when working with large data sets, automated
approaches present an efficient alternative. There are several automated tools available to assess
the quality of MR images (e.g., MRIQC, Esteban et al., 2017; LONI QC, Kim et al., 2019) and a
semi-automated approach using machine learning (Ding et a., 2019). These tools provide
internal consistency and easy-to-read outputs with user-rating options (e.g., html pages for
MRIQC). Some of the tools aso provide volumes of the structuresin question and flag statistical
outliers, which is particularly useful in dealing with very large data sets (see Measurement Data
Screening section for additional information on statistical outliers). We recommend reporting the
parameters for exclusion and the level of artifacts or image quality tolerated by the automated
method (e.g., Ding et al., 2019). An optional addition for those who use a quantitative SNR or
CNR measurement isto exclude scans with low ratios in the areas of interest (i.e., hippocampus)
compared to the reference region, with SNR less than 40 and CNR less than 10 (Magnotta et al.,
2006). A caveat to this recommendation isthat the procedures were developed for the data
collected in healthy participants and have not been validated in the images with significant

structural pathology (e.g., hippocampal sclerosisin temporal lobe epilepsy).

12
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Automated approaches have high internal consistency. However, it isimportant to note
that their application to detecting poor image quality may have some disadvantages. These tools
can be used with little user knowledge of relevant parameterization programmed into the method,
and users may be unable to change certain steps or parameters during the automated assessment.
Moreover, automated methods may not be as accurate as experienced human raters in detecting
subtle distortions in images. In choosing between manual and automated procedures, the
investigators can weigh their knowledge of the methods against the expertise of the team and
available time.

One final note. During QC decisions, investigators should consider the context of the
population under study. For example, individuals with more severe diseases are likely to have
more artifacts on MRI. In these instances, extremely conservative QC practices may lead to
disproportionately excluding persons with high disease severity, which leads to another form of
bias due to underrepresentation of the population under study. Therefore, an investigator may use
their knowledge of the population in evaluating the risk-benefit tradeoff of their data QC

practices.

13
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Pass Check Fail

Moderate artifacts detected on many
slices or heavy artifacts detected on a
contained number of slices (1-2 slices)

Heavy artifacts detected throughout
the image set

No visible artifacts or minor artifacts
detected throughout the image set

Artifacts: N/A Artifacts: Motion Artifacts: Banding, ringing, and motion

Figure 2. Examples of the quality of T,-weighted images according to rating categories of
“Pass’ (left panel), “Check” (middle pandl), and “Fail” (right pandl). In this example, image
quality rated as “Pass’” and “Check” are considered passable. However, those in the “ Check”
category may be at higher risk of subsequent segmentation errors. The types of imaging

artifacts present in the example images are noted.

QC of Landmark Visibility
Description of the Problem

Brain region segmentation in manual and automated protocols is based on anatomical
landmarks that are visible on MRI and correlate with histologically identifiable macro- and
micro-structural tissue features. As the correspondence of MRI labels to histology constitutes the

basis of construct validity of in vivo measurements, any artifact or distortion that interferes with

14
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visualization of key landmarks in the segmentation protocol weakens the vaidity (Wisse et al.,
2020). Of particular importance for hippocampal subfield segmentation isthe visualization of the
stratum radiatum lacunosum moleculare (SRLM), athin, layered sub-1-mm? structure (de Flores
et a., 2020). It spans the anterior-posterior length of the hippocampus and forms a layer of the
cornu ammonis (CA) regions and subiculum. It also serves as a critical landmark for determining
the internal boundary between dentate gyrus (DG) and CA subfields, or subiculum (Duvernoy,
2005; Insausti & Amaral, 2012). In addition, the visualization of the SRLM in the hippocampal
head isimportant for the identification of structural digitations, which play a critical rolein
determining the presentation of subfields in the anterior hippocampus (Adler et a., 2018). In T,-
weighted images of sufficient quality as we presume here, the SRLM should be clearly visible
across most hippocampal slices as a dark band perpendicular to the anterior-posterior axis of the
hippocampus (Figure 3).

Because of similar decision-making regarding MR image quality, the procedures for
evaluating landmark visibility follow the same steps and are often performed together. Although
issues of image quality and landmark visibility apply to any region of interest, segmentation of
hippocampal subfieldsis somewhat uniquein its contiguous regions that share internal
boundaries. If one boundary isincorrectly determined due to poor visualization of alandmark,
the error can propagate across all subfield measurements, diminishing the validity of each
subsequent label. An additional nuance of hippocampal subfield segmentation is that the label
definitions for a subfield often shift on the anterior-posterior axis, and in many cases the same
region will have separate |abel's anterior-to-posterior and by hemisphere. Therefore, depending

on the protocol used, QC decisions may vary across different levels of measurement. For
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example, QC decisions may differ by slice, subfield, subregion, or hemisphere. In addition, an
investigator may evaluate landmark visibility only within the limited range of the hippocampus
sampled (e.g., many subfield protocols are exclusive to the hippocampal body) or decide to use
measurements from one region or hemisphere and not others due to differencesin quality (see
Approaches to Data Exclusion and Recommendations considerations of missing data). Further,
QC decisions may vary depending on the imaging modality. Extensive discussion of modality
considerationsin QC falls outside the scope of this guide. However, to provide an example, those
employing hippocampal subfield segmentations to estimate the volume of these structures rely

on information across numerous slices whereas those applying segmentations as amask in fMRI
may use measurements from only afew glices.

Notably, among those survey respondents who conducted QC, the SRLM was the most
frequently identified landmark reviewed in QC (42% of investigators). However, decisions
regarding exclusion based on SRLM visibility varied across investigators. For example, multiple
respondents noted that scans were excluded only if there were issues with SRLM visualizations
on multiple consecutive slices, while others did not specify criteria but included SRLM visibility
as afactor in a subjective judgment combining multiple artifacts and problems. See Figure 3 for
examples of different SRLM visualization quality on T,-weighted images.

In addition to the SRLM, other prominent landmarks (e.g., alveus, fimbria, endfolial
pathway, ambient cistern, or uncus depending on specific segmentation atlases used) should be
visible in order to determine the border of contiguous hippocampal subfields and the anterior-
posterior transitions from hippocampal head, body, and tail. For example, the uncal apex is often

used for identifying the transition from hippocampal head to the body (Malykhin et al., 2007),
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which marks a change in the morphometry of the subfields for labeling. The lamina
guadrigemina (LQ) and visualization of the fornix are additional landmarks used to determine
the posterior boundary of the hippocampal body and transition to tail. Bender et al., (2018) noted
that different ranges can be established by hemisphere so long as at least one of the four colliculi
of the LQ isvisible. Thefornix is also used in some protocols to define the most posterior slice
of the hippocampal body, namely the slice before the fornix isfully visible or clearly separates
from the wall of the ventricle (Malykhin et a., 2007, 2010).

Apart from landmarks used to identify anterior and posterior portions of the
hippocampus, structures such as the alveus and fimbria facilitate the identification of outer
boundaries to exclude external white matter and partial voluming with cerebrospinal fluid and
choroid plexus in the gray matter labels. The alveus is athin white matter structure enveloping
the dorsal aspect of the hippocampus. It appears as a dark band on T,-weighted images on the
dorsal edge of the hippocampus and is contiguous with the fimbriain the posterior hippocampus.
This structure helps identify the boundary of the hippocampus and the shape of digitationsin
hippocampal head and can aid in identifying the first slice of the hippocampus as it distinguishes
from the amygdala. Visualized external white matter structures often serve as alandmark to
identify the superior boundary of the CA regions throughout the length of the hippocampus. In
the posterior hippocampus near the tail region, the fimbriais continuous with the columns of
fornix that form a sulcus at the junction with the DG. In addition, it serves as a posterior
landmark to the hippocampus (for depiction of selected landmarks see Figure 3). While the

specific landmarks referenced may differ between protocols, clear visualization of these
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landmarksis essential to reliably identify the outer boundaries of the hippocampus and its inner
subfield boundaries.
Review of Current Approaches and Recommendations

To our knowledge, there are no automated methods for evaluating landmark visualization
independent of general image quality and artifacts. Therefore, these evaluations are performed
manually and completed using software such as ITK-SNAP (www.itksnap.org; Y ushkevich et
a., 2006), FreeSurfer’s FreeView application (Fischl et al., 2002), FSLeyes (McCarthy, 2023),
and Analyze (AnalyzeDirect, Overland Park, KS, USA) to view the slice images. Common
practice requires that raters be familiar with neuroanatomy on MR images in reference to the
protocol used to make sound judgments about landmark visualization.

Following the recommended practices for QC of MR image artifacts mentioned in the
prior section, we recommend using rating scales to determine the quality of landmark
visualization required for hippocampal subfield segmentation. For example, on a 3-point scale,
scans could be identified as “Pass/Clearly Visible’, “Check/Somewhat Visible’, or “Fail/Not
Visible” based upon the visibility of the selected landmark (e.g., SRLM). Thisor other similar
rating systems could be used to make determinations of exclusion across the multiple criteriawe
have discussed. As noted above, QC decisions may vary across different levels of measurement
by dlice, by region, or by subfield and hemisphere.

As with artifacts, the rating procedure for landmarks is somewhat subjective, and
consistency in the decision within a research team applied to a data set should be prioritized. To
allow for the transparency necessary for replication across research groups and references in the

extant literature, we recommend that investigators describe the rating procedure, including the
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specific landmarks examined for the chosen segmentation atlas and criterion used to determine
the rating system. Further, investigators should report reliability of the ratersin the decision (e.g.,
a kappa statistic) to demonstrate consistency in the subjective decisions made using the defined
criteria. Thiswill allow some continuity of methods in the literature, even if different
investigators refer to different criteria based on the study sample (e.g., healthy vs. patients),
segmentation protocol, or imaging modality. When trained raters cannot clearly identify the
landmarks, the scan isjudged to be of insufficient quality and is typically excluded from
measurement.

Finally, like the QC of MR image quality, QC of landmark visibility should consider the
context of the population under study. For example, in the context of disease, the SRLM might

be more difficult to visualize with increasing severity.
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Head

Body

Figure 3. Examples of scan quality ratings based on the landmark visualization of the SRLM, a
critical landmark for segmentation in the head (top panel) and body (bottom panel) of the

hippocampus. Additional landmarks, the alveus and uncus, are also depicted. Note: Definitions
of quality may differ between investigators but there should be consistency in the application of

operational definitions.

QC of Hippocampal Subfield Segmentations
Description of the Problem

The procedure for determining the accuracy of hippocampal subfield segmentation labels
depends on whether the segmentation was generated using manual or automated methods.

Among the survey respondents, 88% report having employed automated segmentation methods
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and 49% manual segmentation methods for delineating hippocampal subfields. Many
investigators applied either of these methods depending on the data set.

When using manual segmentation, rater reliability should be established before segmentation
commences. Besides being an indicator for accurate segmentation, a high rater reliability of a
manual segmentation protocol also implies accurate identification of severe segmentation errors
that deviate from the protocol during QC. Of the respondents who used a manual approach for
segmenting hippocampal subfields, 77% reported assessing inter- or intra-rater reliability of the
protocol. Whereas QC of the labels may be done concurrently with manual segmentation, labels
from automated segmentation must be vetted afterward. Additionally for automated
segmentation, reliability between the manual and automated segmentation should be confirmed
(e.g., Yushkevich et a., 2010). Even though automated segmentation has high reliability (Bender
et al., 2018), it can produce errors with high consistency.

QC Segmentation Error Identification

Among investigators surveyed, 95% reported reviewing the quality of subfield
segmentations, with 63% providing specific examples of errors identified. The survey response
notably highlights that, despite differences in existing protocols, there are some common types of
segmentation errors. 36% reported issues related to overestimation (e.g., inclusion of choroid
plexus or cerebrospinal fluid, overestimation errors due to partial volume effects or voxels
erroneoudly extending into the fimbria) or groups of pixels labeled unattached to the
hippocampus; 13% reported mislabeling of hippocampal subfields (e.g., 1abels overextending
internal boundaries, or sulcal cavities labeled as tissue); and 9% reported underestimation of

regions (e.g., labels not fully extending to the boundary, or groups of pixels dropped from within
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the label). Errorsin segmentation labels may result from multiple sources. some related to image
quality and landmark visualization that we have already discussed, and others reflecting specific
properties of the automated software (for examples see Wang & Y ushkevich, 2013). Itis
important to note that in applying automated software, the segmentation atlases validated in one
data set can produce segmentation errors when applied to new data sets. Bias in the frequency or
type of errors may also differ depending on the population under study—e.g., certain errors may
be more common in particular populations (patients, childhood development) as compared to
healthy adults (see Breakout Box 1). Identifying such errors using QC allows for the efficiency

of an automated approach while ensuring measurement validity.

Review of Current Approaches and Recommendations

Despite the similarity among segmentation error types, there was little consensus among
the survey responders on the steps taken to identify these errors. Further, these steps differed
between those investigators who performed manual as compared to automatic segmentation
procedures. In both automated and manual segmentation, QC for segmentation errors depends on
knowledge of the standard anatomy and the segmentation atlas or protocol used to define
hippocampal subfields. Our key recommended practiceisto clearly describe in the methods
section of a paper how segmentation labels were reviewed for errors.

For manual procedures, labels are commonly reviewed during segmentation as well as
post-segmentation. Expert knowledge of the trained, reliable rater is typically depended upon for
identifying errors. We recommend investigators report rater reliability for the manual

segmentation protocol, with intra-class correlation assuming random raters (ICC[ 2,1]; Shrout &
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Fleiss, 1979) if measuring volumes, or report dice coefficientsif using the segmentations as
masks on other imaging modalities. Investigators should also report if segmentations have been
reviewed by trained independent raters. For reliability assessment that enables the user to
partition multiple sources of unreliability, see Brandmaier et al. (2018).

For automated segmentation procedures, the most common approach to identifying errors
isvisual inspection of the output using specialized software to open segmentation files (e.g.,
ITK-SNAP, www.itksnap.org; Yushkevich et al., 2006). For those respondents on the survey
who indicated visually inspecting automated segmentations, 56% sought large or obvious errors.
If an investigator is considering manual correction of automated segmentation errors (e.g., Semi-
automated methods), we recommend using segmentation quality ratings to correct only the most
severe errors, reducing burden as well as possible introduction of human error in the process.
Scales should have operational criteriato define error severity levels and establish reliability of
the rater(s) (e.g., kappa statistics for within- or between-rater reliability). Criteria across
protocols do not need to be identical. Instead, the best practice is to provide operational
definitions that allow investigators to consistently identify errors that threaten validity. For
example, investigators may define error severity based on the percentage of the label affected
(see Figure 4 for an example of an error rating scale). Another approach has been to determine
the extent of subfield labels affected on multiple slices along the longitudinal axis of the
hippocampus as an index of severity (see Figure 5 for an example). In this approach, only errors
affecting acertain length (e.g., 3-7 mm, 3 or more slices) of the longitudinal axis were

considered severe and subsequently corrected or excluded. Thereis also value added by
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concretely defining specific errors that commonly occur (see Figure 4) to aid rater training and
promote consistency within and between raters.

The main purpose of identifying errors on a severity scale is not to have perfect
segmentations but rather to identify cases with egregious threats to validity. Multiple
investigators reported using a 4-point scale to quantify the severity of segmentation errors as not
present (0), minor (1), moderate (2), or major (3), while others reported using pass/fail ratings. In
addition, 31% of respondents reported examining inter- or intra-rater reliability of error
identification ratings. To determine severity of errors, some investigators employ a group review
where either the segmentation or screenshots are examined by multiple people simultaneously
and decisions on the presence or absence of an error are determined by group consensus.
Reporting on the approach(es) that investigators take to identify segmentation errors, 10% of
respondents stated that segmentation error identification was always completed by multiple
raters, 60% mentioned that errors were sometimes reviewed by more than one rater, and 30%
said that only a single rater reviewed errors. It isimportant to note that the variability in the
number of raters that review segmentation errors across labs may be due to differencesin the
availability of personnel necessary to review segmentation quality. It isimportant to note that in
cases involving very large data sets (e.g., Alzheimer’ s Disease Neuroimaging Initiative (ADNI)
data sets), it may not be feasible to QC all of the collected scans for segmentation errors. As
such, at least a subset of the data set should be QC-ed in order to get a sense of the data quality.

Similar to the judgments of MR image quality, the manual evaluation of segmentation
errors is also subjective; thus, it requires standardized approaches to promote consi stent

decisions. There are several resources available to provide some options for standardized
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protocols: 1) MAGeT-related QC (https://github.com/CoBrA Lab/documentation/wiki/M AGeT -
Brain-Quality-Control-(QC)-Guide), 2) HippUnfold's automated QC (DSC overlap with a
deformable registration), and 3) MRIQC (Esteban et al., 2017). Additionally, the examples of
manual evaluations from Canada et al. (2023) and Wisse
(https:.//www.youtube.com/watchy=X HXu-AGR6pE) demonstrate that investigators can use
different criteria but similarly implement the recommended best practice to identify severe
segmentation errors. Using existing QC protocols as a resource provides operational definitions
and criterion that can be applied or modified for an investigator’s particular data set.

The inability to confidently appraise or correct segmentations due to image quality can be
arelated, but distinct, problem that also can lead to exclusion of images. However, if an image
has passed the QC for artifacts and landmark visualization, thisissue isless likely to occur (see

MR Image Quality).
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Minor Error Moderate Error Major Error
(<10%) (10-25%) (>25%)

Subiculum

CA1-2

CA3-DG

Figure 4. Example QC approach using a 4-point error severity scale from a published and
validated protocol (Canadaet al., 2023). In this example protocol, errors could be O- not present
(not pictured here), 1- minor (<10% of label affected), 2- moderate (10-25% of label affected),
or 3- mgjor (>25% label affected) and were categorized by type. Only major errors are corrected
in this protocol to mitigate human bias. Overestimated label (OL), underestimated boundary

(UB), and dropped pixel (DP) errors are depicted.
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Coronal Sagittal

Anterior

Posterior

I Subiculum - Siices
Figure 5. Example QC approach from https://www.youtube.com/watch?v=X HX u-A GR6pE for
the PM C segmentation atlas (Y ushkevich et al., 2015b) applied to data collected using the
parameters reported in Daugherty et al. (2016). In this approach, QC mosaic screenshots
generated by ASHS are examined by hemisphere to detect potential errors for each subject.
Segmentations are subsequently fully reviewed dlice-by-slice only for regions with identified
errors. This protocol recommends correcting only larger errors that are present on a
predetermined number of dlices (3 dlicesisused in the linked demonstration). In the depicted
example, major errors were present in the right hemisphere QC screenshot for the subiculum

(pink) label. In the full review of the segmentation, errorsin the right subiculum label were

27


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

present in 8 dlices. Following this QC approach, the depicted subject would require manual

correction of these errors or be excluded from analyses.

Resegmentation, Manual Correction, or Exclusion of Caseswith Errors from Automated
Segmentation
Description of the Problem

Segmentation errors often affect multiple subfields because they share boundaries.
Following QC of images and segmentations, decisions for resegmentation, correction, or
exclusion may differ by subregion or hemisphere. As hippocampal subfields are part of awhole,
the choice to exclude any single subfield label on a particular slice or for a particular participant
would preclude interpretation of generalized hippocampal effects.

Because of these challenges to hippocampal subfield segmentation, we review multiple
approaches to support measurement validity after identifying automated segmentation errors:
manual correction, submitting images for re-segmentation by automated methods, and data
exclusion. Each approach calls for different degrees of rater expertise and time investment. The
choice to exclude cases versus correcting errors can depend on several factors. Among survey
respondents who reported either practice, 25% of investigators made the decision to correct or
exclude based on the sample size available (e.g., excluding subjectsin large studies versus
correcting segmentations in smaller studies), 31% made their decisions based on the uniqueness
of the population (e.g., retaining rare cases), 31% made their decisions based on biasin

segmentation errors (e.g., error frequency related to certain demographics; responses not
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mutually-exclusive). However, 49% of survey respondents who correct or exclude segmentations
reported that they did not consider sample or study specific factors in decisions.

We describe common procedures for each approach and a few considerations that can
help the investigator make an informed choice. These approaches have a shared goal: to
minimize the threat of segmentation errors to measurement validity while maximizing retained
sample size (when images are flagged for exclusion). A valid segmentation does not require
perfection (i.e., without any error); some segmentation errors that are randomly distributed
across slices and cases will introduce statistically negligible bias and thereby not affect validity
of analyses with imperfect data. Therefore, choices for remediation of automated segmentation
errors are about minimizing the greatest threats to validity and maintaining the efficiency (i.e.,
reduced time required) of automated methods.

Approaches to Re-segmentation of MR images and Recommendations

Commonly used methods for automated segmentation of the hippocampal subfields are
often based on segmentation atlases that are validated against manual segmentationsin a
particular data set (e.g., Bender et al., 2018; Y ushkevich et al., 2015b). Some software tools offer
choices of segmentation atlases (e.g., ITK-SNAP, www.itksnap.org; Yushkevich et al., 2006). It
is often difficult to predict the performance of these tools prior to applying them on anew data
set. When selecting a segmentation atlas, an investigator should consider if the protocol has been
validated in similar samples as the one to be processed (Wisse et al., 2020). Poor segmentation
guality across the magjority of adata set may indicate the specific segmentation atlas or protocol
isnot suitable. However, even when investigators select segmentation atlases that are appropriate

to their studied population and ensure MR images are of sufficient quality, underperformance of
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the automated segmentation atlas can still occur and result in a high degree of error. This has
been reported in the literature by investigators using validated segmentation atlases with MR
images collected from both 3T and 7T magnets. For example, Wisse et al.’s (2017) segmentation
atlas resulted in consistently smaller automatically segmented volumes of certain hippocampal
subfields compared to manual segmentation. Another exampleis errors in the automated
segmentation using the Bender et al. (2018) atlas that primarily occurred at the most anterior and
posterior aspects of the hippocampal body. One solution to this problem is manual intervention.
However, practical factorsincluding rater expertise and time may be untenable, especially in
large data sets. Thus, re-segmenting data with an alternative segmentation atlas or modified
parameters is one approach investigators can take when severe errors are prevalent.

A decision to exclude all existing segmentations may be made if the investigator finds
that alarge number of scansfail to segment, alarge number of severe segmentation errors affect
the mgjority of the sample, or there is systematic bias in the segmentation errors with
demographic features of the sample.

We recommend considering re-segmentation when segmentations fail on more than 40%
of the data set, severe errors that threaten measurement validity are present in more than 40% of
slices counted across all images, or when failed segmentations and major errors are
systematically correlated with avariable of interest. This recommendation is based on guidelines
on tolerance of data loss (see Little et al. (2014), McNeish (2017), and Raykov (2005) in-depth
reviews, and section “ Approaches to Data Exclusion and Recommendations’ below for brief

review of missing data tolerance and application to neuroimaging studies). If re-segmentation

30


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

using a different segmentation atlasis not feasible or is unsuccessful, investigators may modify
software-specific parameters and re-segment with the original segmentation atlas.

If a given segmentation software does not allow for parameter adjustment, then there may
be other ways to correct for mis-segmentations. For example, in ASHS, frequent large mis-
segmentations have been found to be caused by a subject’s T1-weighted scan not being properly
co-registered to the T, template or to their To-weighted scan. This problem in registration is often
dueto the subject’ s neck being too visiblein their T1 scan, or due to the header information
being incorrectly recorded in their T;- and T,-weighted scans, which can lead to problemsin the
initialization of the registration of the T; and T, scans. The solution to the first caseisto trim the
neck in the T;-weighted scan (which ASHS has a script for). In the second case, the T;- and To-
weighted scans can be run with a set of rigid registration parameters in ASHS. The other times
ASHS fails are typically related to poor image quality (addressed in prior sections) or if the
segmentation protocol is very distinct from the target data (i.e., there is a mismatch between the
data used to devel op the segmentation atlas and the data to be segmented).

Following the re-segmentation of hippocampal subfields, investigators should repeat the
QC procedure on the re-segmented data. While not perfect, re-segmentation has been shown in
practice to be a reasonable approach to retaining a greater proportion of data or reducing the
number of errors that require further manual intervention. If issues of segmentation quality are
not reduced following re-segmentation, investigators need to determine if manual correction or
data exclusions are warranted. Final atlas selection and relevant parameters should be reported in

the methods sections accompanying the data analysis. The trial-and-error of methods selection
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and atlas evaluation in the sample may be additionally helpful to the filed as we continue to

refine our neuroimaging and segmentation procedures.

Approaches to Manual Correction of Automated Segmentation and Recommendations

With rater expertise and available time, errors in automated hippocampal subfield
segmentation can be corrected manually. Manual intervention was reported by 43% of
respondents as always being used to correct identified errors (the decision of which errorsto
correct differed between investigators), sometimes being used to correct identified errors by 31%
of respondents (i.e., decisions on manual correction differed across data sets for the same
investigator), and not being used to correct identified errors by 26% (i.e., errors were consistently
uncorrected). Selective manual correction of only some errors, such as removing an obvious
mislabel (e.g., cerebrospinal fluid) or adding labels to voxels that should have been labeled
originally, is aviable approach to addressing severe segmentation errors while preserving
benefits of automated segmentation efficiency, especially when working with large data sets. The
severity ratings of segmentation errors made in prior QC steps are used to determine where
manual intervention is applied (e.g., Canadaet al., 2023). In this practice, manual corrections are
made according to the segmentation protocol that was used to generate the segmentations which
allows all images to be segmented using the same protocol regardless of whether it was

corrected. Therefore, rater expertise in the segmentation protocol is a prerequisite of this
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approach.

Breakout Box 1: Considerationsof biasand error.

Because human raters are prone to error, especially in the absence of clear rules, high
reliability of amanual correction procedure must be established. Human error can be
introduced to the measurement even with highly reliable correction procedures. The amount
of human error introduced can be indexed by the ICC departure from 1.0 (because
automated segmentation without human intervention shows high consistency) and should be
both small and randomly distributed in order to mitigate bias. Unbiased error is supported if
the frequency of corrected segmentations is not correlated with demographic features. If
segmentation errors correlate with sample characteristicsit leads to systematic biasin the
measurement, even if the error is small. For example, in aged brainsthe loss of gray-white
matter contrast is common, which could cause more segmentation errors for older brains as

compared to younger ones for a given automated atlas.

Similar to our prior recommendations, human error should be minimized during the
correction procedure by ensuring consi stent decisions about data treatment and reliable error
correction. However, as reflected by the responses of those surveyed, currently only 23% of
respondents assess reliability of corrections to hippocampal subfields. As abest practice, we
recommend establishing inter- or intra-rater reliability of the measurements following corrections
in a subset of scanswith errors before corrections are applied to the full data set. Specifically, we
recommend reporting in the methods on good agreement in volume measures (with ICC > .85;

Koo & Li, 2016) and spatial overlap (with DSC > .70; Zijdenbos et al., 1994) by making
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corrections on the same subjects to be compared between raters, or in the case of asingle rater,
with themselves after a delay. In addition, we recommend reporting the proportion of cases that
were corrected or re-segmented using adjusted segmentation software parameters.

Approaches to Data Exclusion and Recommendations

Maintaining all cases in the collected sample isatop priority for external validity;
however, there are instances where the segmentation errors cannot be remediated by re-
segmentation or manual correction and the suitability of the MR images for hippocampal
subfield segmentation may be deemed insufficient. In these instances, subfield segmentations
from the original segmentation atlas are retained and the choice to exclude cases with errors that
threaten measurement validity is reasonable. Among the investigators surveyed, 43% always
excluded cases based on QC procedures, 31% sometimes excluded them, and 14% never
excluded them despite segmentation errors. In most instances, cases with severe error are
excluded from further analysis while cases with small or moderate errors are retained. Following
from the QC decisionsthat vary by subregion and hemisphere, portions of the measured structure
might be excluded while other parts are retained for the case (e.g., excluding left hemisphere but
retaining the right hemisphere; or excluding hippocampal head measurements while retaining
measurements in hippocampal body).

When cases are excluded, the criterion for exclusion and number of cases excluded
should be reported and noted as a limitation. Exclusion of cases contributesto overall dataloss
and impacts statistical analysis and interpretation. Excluded cases are missing data; therefore, the
same statistical considerations for randomness should apply. The loss of data due to exclusion

may meaningfully reduce statistical power for subsequent hypothesistesting. The statistical
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literature offers a good overview of missing data considerations (Little et al., 2014; McNeish,
2017; Raykov, 2005), which we will review briefly for applied neuroimaging studies.

The decision about parameter estimation under the condition of missing data isinformed
by three criteria: the planned statistical estimation method, the amount of missing data, and the
randomness of missingness. We have emphasi zed detection of errors during QC to maximize
validity of the hippocampal subfield measurements, but we also must consider if the retained
sample upon completion of QC still represents the study population. Many of the common
analyses in applied neuroimaging studies are based on cases with complete data. Listwise or
pairwise deletion of cases of missing data (in this case by exclusion) will provide unbiased
estimates of the population-level effect only when data are missing completely at random
(Baraldi & Enders, 2010). There are alternative approaches including multiple imputation or
latent modeling with incomplete data (see Little et al. (2014) for an overview) that can maximize
external validity and have additional benefits to statistical power, but these also rely on data
missing at random to provide unbiased estimates. To support the conclusion of data missing at
random, formal test statistics (e.g., Little's chi-square test) can indicate for randomness and the
frequency of data loss due to QC should be negligibly correlated with demographic or study
variables of interest, as shown with descriptive statistics or logistic regression. In practice,
however, the assumption of data missing completely at random in QC is difficult to meet as more
severe cases are more likely to fail QC, which underscores the importance of re-segmentation
and manual correction options to retain as much data as possible. Based on current recommended
practices for statistical tolerance of missing data (Little et al., 2014; McNeish, 2017; Raykov,

2005), we recommend that no more than 40% of data should be lost to QC issues collectively.
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Data Screening
Description of the problem

Following QC of hippocampal subfield segmentation labels, an important additional step
in the process is statistical data screening prior to hypothesis testing. Data screening helps
provide assurance that the dataincluded for analysis is accurate, meets assumptions of the
planned statistical analyses and promotes rigorous best practices.
Review of Current Approaches and Recommendations

Data screening following other steps in the QC procedure is an important last check point
to identify errors such as statistical outliers in the data and is an approach taken by 33% of the
respondents. Although prior QC steps discussed will facilitate the identification of the majority
of errors, some errors may be overlooked, or investigators may choose to conduct a subset of the
reviewed procedures. Thus, data screening of measurement values provides a secondary check of
the QC procedures. A common first step in data screening is the inspection of univariate
descriptive statistics. Thisincludes examining data for out-of-range values (e.g., implausibly
small or large volumes), inspecting the means and standard deviation for plausibility, and
assessing the presence of univariate outliers. This step was included in the QC steps of most
respondents, with 54% examining segmentation values for outliers within the sample. Screening
procedures for out-of-range values and outliers are often repeated for volumes adjusted for
intracranial volume that are intended for planned analysis, which is a sasmple-specific procedure

that can modify the relative rank of a case relative to its sample distribution.
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As an initial data screening approach, an investigator can examine correlations of a
regional measure between hemispheres. for many populations, high consistency is expected and
cases that deviate from the diagonal of the scatterplot would be candidates for review. Outlier
detection is the highest priority in data screening related to QC best practices. With a reasonable
approximation of anormal distribution, univariate outliers can be determined by z-scores
exceeding |3.29|. However, the majority of statistical methods used in applied neuroimaging
studies are more sensitive to multivariate outliers than univariate deviations. For hippocampal
subfield measurements, assessing multivariate normality by quantile-quantile (Q-Q) or
probability-probability (P-P) plots is recommended. Multivariate outliers can be detected by
Mahalnobis distance with a cut-off of acritical chi-square (degrees of freedom = number of
variables; apha=0.001), in addition to assessments of outliersin regression residuals during
hypothesis testing (Tabachnick & Fidell, 2019). Decisions to remove outliers from analyses are
another instance of missing data, which contributes to the overall consideration of tolerancein
the statistical design discussed above. It isimportant to note that investigators should be aware of
individual differencesin data sets (e.g., cases of severe neurodegeneration) when assessing
outliers. Here we have described the use of statistical outlier detection as a means to identify
cases for QC review, but extreme values are realistically plausible especially in the scenario of a
severe disease stage. After review of an outlier case, the investigator may determine it meets all
criteriathat we have reviewed to retain in the sample—it is, in fact, an accurate measurement—

and proceed with analysis following standard practices with outlier values.
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Special considerationsfor longitudinal data sets

Different procedures can be used to ensure continuity in longitudinal studies. One
approach is segmentation of data collected at each measurement independent of prior timepoints.
During QC, raters can refer to al available timepoints when evaluating poss ble segmentation
errors. Thistype of approach has produced high test-retest consistency and supports
measurement invariance over longitudinal assessments (Homayouni et a., 2021). In addition,
when applied to manually segmented data, raters can be blinded to timepoint to ensure no biasis
introduced.

An alternative approach is to study longitudinal change in subfields using deformation-
based morphometry (Das et al., 2012). In this approach, the change in volume is combined by
performing registration between MRI scans at different timepoints, and only one timepoint needs
to be segmented to obtain subfield-specific measures of change. While this approach reduces the
burden of QC of segmentations, it does require QC of the MRI scans at each timepoint separately
and of the pairwise registrations. However, QC of pairwise registrations can be done using a
semi-automatic method by examining registration quality metrics (e.g., intensity cross-
correlation in the MTL region after registration) and focusing manual QC procedures on image
pairs where that metric is more than 2.5 standard deviations from the mean (Xie et al., 2020).

It isimportant to note that although there are differences in the approach for longitudinal
segmentation, the QC procedures we have reviewed above apply similarly to data at all
timepoints (Shaw et al., 2020). When datasets are large, the general quality of segmentation and
potential extent of segmentation errors can be approximated from the procedures applied to a

subset of cases that are selected at random. This approach benefits from the same principle of
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sampling in statistical analysis: if the subset is randomly selected and representative of the
sample features, then the frequency and severity of segmentation errorsis expected to generalize
to the whole sample. Because the goal of QC isto minimize systematic measurement error, and
the goal is not perfect data per se, this subset evaluation may identify that major threats to
validity are infrequent and therefore the investigator retains the data for further analysis. In the
event that severe image artifacts and severe segmentation errors are identified with high
frequency in a subset, the investigator can weigh the further time investment to screen the dataset

in more detail.

Reporting QC Procedures

All data screening procedures and decisions for data conditioning or exclusion should be
described in publications. Describing the amount of missing data and reasons for dataloss (i.e.,
poor image quality, segmentation failure, ssgmentation error, or statistical outlier) is paramount
for determining the external validity of the analysis based on the representativeness of the
retained sample.
Guidelines for implementing and reporting QC methods*:
Note (*) that we review options for QC procedures and provide guidelines for the reporting and
implementing of QC that the investigator can use to inform their choice of QC steps. The
recurring recommendation for best practice across al possible QC stepsis reporting in
publications which steps were implemented and with enough detail so that readers can

sufficiently understand the decisions made and amount of data affected.
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QC Step Recommendations What to report:
Assessment of MR | e Rating scaleforimage | e Criteriafor exclusion (e.g., rating
Image Quality quality and landmark scale, yes/no)
visualization e Number of raters
e Rater reliability (inter and/or intra) of
e Optional: SNR/CNR scans (kappa statistic)
e Number (percentage) of scans
excluded
e |f exclusion correlated with variables
of interest
Assessment of e Rating scale of severity | e If segmentations were reviewed and
Segmentation of error criteriafor judgment
Quality e Determine amount of e Number of raters

data loss due to
segmentation failure
(lessthan 40
recommended%o)

e Rater reliability (inter and/or intra) of
manual segmentations (kappa statitic)

e Number (percentage) of segmentations
faled

e Potential covariates of segmentation
error frequency or exclusion

Options for Error Remediation

Manual Correction

Establishing reliability

e |f segmentations were corrected, what

of Automated of correction procedure procedure was used
Segmentation e Correction of only e Number of raters
severeerrorstoreduce | e Rater reliability (inter and/or intra) of
human bias the correction procedure for
measurement of interest: volume
(ICC2) or mask (DSC coefficient)
e Number (percentage) of segmentations
corrected
Data Exclusion e Define specific e Number (percentage) of segmentations

parameters for exclusion
Assessment of dataloss
dueto exclusion
(percent)

Assessment of missing
data assumptions

excluded
e Chi-Squaretest for MCAR
e Potential covariates of exclusion
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Data Screening e Assessdigtribution of e Univariate outlier detection
data e Assessment of missing data
e Examine and exclude e Multivariate outlier detection (e.g.,
outliers M ahalnobis distance)
e Report criterion used e High correlation between hemispheres
and data excluded e Longitudinal consistency within
hemisphere (ICC3, DSC)

Conclusion

In the ever-growing field of hippocampal subfields neuroimaging research, ensuring
accurate measurement is vital to progress our understanding of brain structural and functional
correlates, lifespan devel opment, and neuropathology. QC is an essential part of ensuring valid
results by promoting accurate hippocampal subfield segmentation and retaining all eligible data
for analysis. In addition, recent advancements in neuroimaging have given investigators the
unique opportunity to study hippocampal subfields with greater precision than ever beforein
pursuit of the ultimate goal of drawing robust scientific conclusions that meet a high standard of
quality.

Using the literature and our findings from a survey of investigators with experience
segmenting hippocampal subfields, we summarized the threats to segmentation accuracy,
reviewed common methods for QC, and made recommendations for best practices and reporting
of QC in publication. In the following section we highlight broader impacts of ensuring quality
data on neuroimaging and clinical research.

The importance of QC is underscored by goals related to investigating and validating
structure-function relationships. The study of hippocampal subfieldsisauniquein vivo endeavor

asamajor focusisthe ability to understand the nuanced roles of hippocampal function in human
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cognition and forward translation from animal models of devel opment, aging, and disease. For
example, determining the impact of normative and pathological aging on hippocampal structure
and related memory abilities requires reliable measurements of both cognition and brain that
allow accurate conclusions from hypothesis testing. Moreover, validity is critical in supporting
the clinical trandation of hippocampal subfields measurement to biomarkers of healthy

devel opment, neurodegenerative disease, and neurodevelopmental disorders. The requisite of
interpreting hippocampal subfields as biomarkers is confidence that the measures used reflect the
underlying tissue structure and its changes over the course of time.

Further, QC of hippocampal subfield segmentationsis essential to promoting
reproducibility of findings and methods because the subfields are small regions that share
boundaries, increasing the risk of errors with serious consequences to validity. While we focused
on hippocampal subfield segmentation in this manuscript to highlight the importance of QC, it
should be noted that it iswithin the larger context of measurement reliability and validity in
applied neuroimaging. Thus, the QC practices we recommend here play atwo-fold rolein
supporting reproducible neuroimaging research broadly. First, using best practicesin QC
supports reproducibility in neuroimaging research by focusing on transparent reporting of the
methods and decisions made. Reporting decisions made in the treatment of data from post-
acquisition to analysis contextualizes the results of a given study within the larger literature and
provides a path forward for others to implement similar approaches in the study of hippocampal
subfields. Second, harmonization of methods across laboratories, including QC procedures, is
essential to reproducible research. The Hippocampal Subfields Group (HSG) isleading

harmonization efforts, including a harmonized set of definitions for subfield segmentation (Olsen
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et a., 2019; Wisse et al., 2017; Yushkevich et al., 2015a). These efforts have highlighted another
gap inthe available literature, best practices for QC. We attempt to address this gap by providing
recommendations that will apply to any segmentation approach, including a harmonized
procedure that isin development. The need for QC remains critical, especially with

harmoni zation efforts, as site- and sample-specific errors that affect image quality and
segmentation accuracy can occur even with a harmonized segmentation protocol. With possible
errors occurring for the many reasons discussed in this paper, the application of QC procedures
aids in the harmonization of data, ensuring transparent and appropriate decision making across
sites. With repeated calls for large, representative data sets in the neuroimaging field, transparent
knowledge and reporting of decisions made when segmenting, correcting, and ultimately
retaining measures of hippocampal subfields are facilitated by the QC procedures recommended
here. In addition, it iscritical for research groupsto share their data and QC procedures in their
publicationsin order to aid in the further development of robust automatic QC tools (e.g.,
artificial intelligence-based QC).

Retaining all eligible dataisa priority for external validity to address substantial
limitations in sample representation and inferences on development, aging, and neuropathology.
As we have discussed, there is the potential for bias in the occurrence of errors. For example, the
risk of threatsto validity is increased when applying automated methods with segmentation
atlases developed in healthy populations to clinical populations or vice versa. Identifying and
correcting errors in hippocampal subfield segmentations ensures measurement validity is

acceptable across different subpopulations. Thus, implementing QC to identify and correct data
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errorsincreases not only the validity of the measures but also the validity of the inferencesto the

larger population and subsequently the implications for clinical practice and public health.


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References
Adler, D. H., Wissg, L. E. M., Ittyerah, R., Pluta, J. B., Ding, S.-L., Xie, L., Wang, J., Kadivar,
S., Robinson, J. L., Schuck, T., Trojanowski, J. Q., Grossman, M., Detre, J. A., Elliott,
M. A., Toledo, J. B., Liu, W., Pickup, S., Miller, M. I., Das, S. R., ... Yushkevich, P. A.
(2018). Characterizing the human hippocampusin aging and Alzheimer’s disease using a
computational atlas derived from ex vivo MRI and histology. Proceedings of the
National Academy of Sciences, 115(16), 4252—-4257.
https://doi.org/10.1073/pnas.1801093115
Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R., Griffanti, L., Douaud,
G., Sotiropoulos, S. N., Joabdi, S., Hernandez-Fernandez, M., Vallee, E., Vidaurre, D.,
Webster, M., McCarthy, P., Rorden, C., Daducci, A., Alexander, D. C., Zhang, H.,
Dragonu, I., Matthews, P. M., ... Smith, S. M. (2018). Image processing and Quality
Control for the first 10,000 brain imaging datasets from UK Biobank. Neurolmage, 166,
400-424. https://doi.org/10.1016/j.neuroimage.2017.10.034
Backhausen, L. L., Herting, M. M., Tamnes, C. K., & Vetter, N. C. (2021). Best Practicesin
Structural Neuroimaging of Neurodevelopmental Disorders. Neuropsychology Review.
https://doi.org/10.1007/s11065-021-09496-2
Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses.
Journal of School Psychology, 48(1), 5-37. https.//doi.org/10.1016/j.j5.2009.10.001
Bellon, E., Haacke, E., Coleman, P., Sacco, D., Steiger, D., & Gangarosa, R. (1986). MR
artifacts: A review. American Journal of Roentgenology, 147(6), 1271-1281.

https://doi.org/10.2214/ajr.147.6.1271

45


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Bender, A. R., Keresztes, A., Bodammer, N. C., Shing, Y. L., Werkle[1Bergner, M., Daugherty,
A. M., Yu, Q., Kihn, S,, Lindenberger, U., & Raz, N. (2018). Optimization and
validation of automated hippocampal subfield segmentation across the lifespan. Human
Brain Mapping, 39(2), 916-931. https.//doi.org/10.1002/hbm.23891

Brandmaier, A. M., Wenger, E., Bodammer, N. C., Kihn, S,, Raz, N., & Lindenberger, U.
(2018). Assessing reliability in neuroimaging research through intra-class effect

decomposition (ICED). eLife, 7. https.//doi.org/10.7554/€life.35718

Canada, K. L., Saifullah, S., Gardner, J. C., Sutton, B. P., Fabiani, M., Gratton, G., Raz, N., &
Daugherty, A. M. (2023). Development and validation of aquality control procedure for
automatic segmentation of hippocampal subfields. Hippocampus, hipo.23552.
https://doi.org/10.1002/hipo.23552

Das, S. R., Avants, B. B., Pluta, J., Wang, H., Suh, J. W., Weiner, M. W., Mudller, S. G., &

Y ushkevich, P. A. (2012). Measuring longitudinal change in the hippocampal formation
from in vivo high-resolution T2-weighted MRI. Neuroimage, 60(2), 1266-1279.

Daugherty, A. M., Bender, A. R., Raz, N., & Ofen, N. (2016). Age differences in hippocampal
subfield volumes from childhood to late adulthood. Hippocampus, 26(2).
https://doi.org/10.1002/hipo.22517

de Fores, R., Berron, D., Ding, S, Ittyerah, R., Pluta, J. B., Xie, L., Adler, D. H., Robinson, J.
L., Schuck, T., Trojanowski, J. Q., Grossman, M., Liu, W., Pickup, S, Das, S. R., Wolk,
D. A., Yushkevich, P. A., & Wissg, L. E. M. (2020). Characterization of hippocampal
subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation.

Hippocampus, 30(6), 545-564. https.//doi.org/10.1002/hipo.23172

46


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dietrich, O., Reiser, M. F., & Schoenberg, S. O. (2008). Artifactsin 3-T MRI: Physical
background and reduction strategies. European Journal of Radiology, 65(1), 29-35.
https://doi.org/10.1016/j.€rad.2007.11.005

Ding, Y., Suffren, S, Bellec, P., & Lodygensky, G. A. (2019). Supervised machine learning
guality control for magnetic resonance artifacts in neonatal data sets. Human Brain
Mapping, 40(4), 1290-1297. https://doi.org/10.1002/hbm.24449

Duvernoy, H. M. (2005). The Human Hippocampus: Functional Anatomy, Vascularization and
Serial Sectionswith MRI (3rd ed.). Springer-Verlag. https.//doi.org/10.1007/b138576

Elyounss, S., Kunitoki, K., Clauss, J. A., Laurent, E., Kane, K., Hughes, D. E., Hopkinson, C.
E., Bazer, O., Sussman, R. F., Doyle, A. E., Lee, H., Tervo-Clemmens, B., Eryilmaz, H.,
Gollub, R. L., Barch, D. M., Satterthwaite, T. D., Dowling, K. F., & Roffman, J. L.
(2023). Uncovering and mitigating bias in large, automated MRI analyses of brain
development [Preprint]. Neuroscience. https.//doi.org/10.1101/2023.02.28.530498

Esteban, O., Birman, D., Schaer, M., Koygo, O. O., Poldrack, R. A., & Gorgolewski, K. J.
(2017). MRIQC: Advancing the automatic prediction of image quality in MRI from
unseen sites. PLoS ONE, 12. https://doi.org/10.1371/journal.pone.0184661

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A.,
Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A.
M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures
in the human brain. Neuron, 33(3), 341-355.

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical Methods for Rates and Proportions.

Wiley.

a7


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Homayouni, R., Yu, Q., Ramesh, S., Tang, L., Daugherty, A. M., & Ofen, N. (2021). Test—retest
reliability of hippocampal subfield volumes in adevelopmental sample: Implications for
longitudinal developmental studies. Journal of Neuroscience Research, jnr.24831.
https://doi.org/10.1002/jnr.24831

Insausti, R., & Amaral, D. G. (2012). Hippocampal Formation. In The Human Nervous System
(Third Edit). Elsevier. https://doi.org/10.1016/B978-0-12-374236-0.10024-0

Kim, H., Irimia, A., Hobd, S. M., Pogosyan, M., Tang, H., Petrosyan, P., Blanco, R. E. C,,
Duffy, B. A., Zhao, L., Crawford, K. L., Liew, S.-L., Clark, K., Law, M., Mukherjee, P.,
Manley, G. T., Van Horn, J. D., & Toga, A. W. (2019). The LONI QC System: A Semi-
Automated, Web-Based and Freely-Available Environment for the Comprehensive
Quality Control of Neuroimaging Data. Frontiersin Neuroinformatics, 13, 60.
https://doi.org/10.3389/fninf.2019.00060

Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation
Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155-163.
https://doi.org/10.1016/j.jcm.2016.02.012

Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, E. W. G. (2014). On the Joys of Missing
Data. Journal of Pediatric Psychology, 39(2), 151-162.
https://doi.org/10.1093/jpepsy/jst048

Magnotta, V. A., Friedman, L., & FIRST BIRN. (2006). Measurement of Signal-to-Noise and
Contrast-to-Noise in the fBIRN Multicenter Imaging Study. Journal of Digital Imaging,

19(2), 140-147. hitps//doi.org/10.1007/s10278-006-0264-x

48


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Malykhin, N. V., Bouchard, T. P., Ogilvie, C. J., Coupland, N. J., Seres, P., & Camiciali, R.
(2007). Three-dimensional volumetric analysis and reconstruction of amygdala and
hippocampal head, body and tail. Psychiatry Research: Neuroimaging, 155(2), 155-165.
https://doi.org/10.1016/j.pscychresns.2006.11.011

Malykhin, N. V., Lebel, R. M., Coupland, N. J., Wilman, A. H., & Carter, R. (2010). In vivo
quantification of hippocampal subfieldsusing 4.7 T fast spin echo imaging. Neurolmage,

49(2). https.//doi.org/10.1016/j.neuroimage.2009.09.042

McCarthy, P. (2023). FSLeyes (1.10.0). Zenodo. https://doi.org/10.5281/zenodo.10122614

McNeish, D. (2017). Missing data methods for arbitrary missingness with small samples.
Journal of Applied Statistics, 44(1), 24-39.
https://doi.org/10.1080/02664763.2016.1158246

Olsen, R. K., Carr, V. A., Daugherty, A. M., LaJoie, R.,, Amaral, R. S. C., Amunts, K.,
Augustinack, J. C., Bakker, A., Bender, A. R., Berron, D., Boccardi, M., Bocchetta, M.,
Burggren, A. C., Chakravarty, M. M., Chételat, G., Flores, R., DeKraker, J., Ding, S.,
Geerlings, M. 1., ... Hippocampal Subfields Group. (2019). Progress update from the
hippocampal subfields group. Alzheimer’s & Dementia: Diagnos's, Assessment &
Disease Monitoring, 11(1), 439-449. https://doi.org/10.1016/j.dadm.2019.04.001

Raykov, T. (2005). Analysis of Longitudinal Studies With Missing Data Using Covariance
Structure Modeling With Full-Information Maximum Likelihood. Structural Equation
Modeling: A Multidisciplinary Journal, 12(3), 493-505.

https://doi.org/10.1207/s15328007sem1203_8

49


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Reuter, M., Tisdall, M. D., Qureshi, A., Buckner, R. L., van der Kouwe, A. J. W., & Fischl, B.
(2015). Head motion during MRI acquisition reduces gray matter volume and thickness
estimates. Neurolmage, 107, 107-115. https://doi.org/10.1016/j.neuroimage.2014.12.006

Rosen, A. F. G,, Radlf, D. R., Rupardl, K., Blake, J., Sedlaus, K., Villa, L. P., Ciric, R., Cook, P.
A., Davatzikos, C., Elliott, M. A., Garciade La Garza, A., Gennatas, E. D., Quarmley,
M., Schmitt, J. E., Shinohara, R. T., Tisdall, M. D., Craddock, R. C., Gur, R. E., Gur, R.
C., & Satterthwaite, T. D. (2018). Quantitative assessment of structural image quality.
Neurolmage, 169, 407-418. https://doi.org/10.1016/j.neuroimage.2017.12.059

Shaw, T., York, A., Ziaei, M., Barth, M., & Bollmann, S. (2020). Longitudinal Automatic
Segmentation of Hippocampal Subfields (LASHIS) using Multi-Contrast MRI.
Neurolmage, 218, https.//doi.org/10.1016/].neuroimage.2020.116798

Shrout, P. E., & Heiss, J. L. (1979). Intraclass correlations-uses in assessing rater reliability.
Psychological Bulletin, 86(2), https://doi.org/10.1037//0033-2909.86.2.420

Tabachnick, B. G., & Fiddl, L. S. (2019). Using multivariate statistics (Seventh edition).
Pearson.

Wang, H., & Yushkevich, P. A. (2013). Multi-atlas segmentation with joint label fusion and
corrective learning—An open source implementation. Frontiers in Neuroinformatics, 7.
https://doi.org/10.3389/fninf.2013.00027

Wissg, L. E. M., Chétdat, G., Daugherty, A. M., Flores, R., Joie, R., Mudller, S. G., Stark, C. E.
L., Wang, L., Yushkevich, P. A., Berron, D., Raz, N., Bakker, A., Olsen, R. K., & Carr,
V. A. (2020). Hippocampal subfield volumetry from structural isotropic 1 mm 3 MRI

scans. A note of caution. Human Brain Mapping, 42. https://doi.org/10.1002/hbm.25234

50


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Wissg, L. E. M., Daugherty, A. M., Olsen, R. K., Berron, D., Carr, V. A., Stark, C. E. L.,
Amara, R. S. C., Amunts, K., Augustinack, J. C., Bender, A. R., Berngtein, J. D.,
Boccardi, M., Bocchetta, M., Burggren, A., Chakravarty, M. M., Chupin, M., Ekstrom,
A., deFores, R, Insausti, R., ... laJoie, R. (2017). A harmonized segmentation protocol
for hippocampal and parahippocampa subregions: Why do we need one and what are the
key goals? Hippocampus, 27(1). https://doi.org/10.1002/hipo.22671

Xie L., Wissg, L. E,, Das, S. R., Vergnet, N., Dong, M., Ittyerah, R., ... & Alzheimer's Disease
Neuroimaging Initiative. (2020). Longitudinal atrophy in early Braak regionsin
preclinical Alzheimer's disease. Human Brain Mapping, 41(16), 4704-4717.

Yushkevich, P. A., Amaral, R. S. C., Augustinack, J. C., Bender, A. R, Bernstein, J. D.,
Boccardi, M., Bocchetta, M., Burggren, A. C., Carr, V. A., Chakravarty, M. M., Chételat,
G., Daugherty, A. M., Davachi, L., Ding, S. L., Ekstrom, A., Geerlings, M. |., Hassan, A.,
Huang, Y., Iglesias, J. E., ... Zeineh, M. M. (2015a). Quantitative comparison of 21
protocols for labeling hippocampal subfields and parahippocampal subregionsin in vivo
MRI: Towards a harmonized segmentation protocol. Neurolmage, 111, 526-541.
https://doi.org/10.1016/j.neuroimage.2015.01.004

Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S, Gege, J. C., & Gerig, G. (2006).
User-guided 3D active contour segmentation of anatomical structures. Significantly
improved efficiency and reliability. Neurolmage, 31(3), 1116-1128.
https://doi.org/10.1016/j.neuroimage.2006.01.015

Yushkevich, P. A., Pluta, J. B., Wang, H., Xie, L., Ding, S.-L., Gertje, E. C., Mancuso, L., Kliot,

D., Das, S. R., & Wolk, D. A. (2015b). Automated volumetry and regional thickness

51


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568895; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

analysis of hippocampal subfields and medial temporal cortical structuresin mild
cognitive impairment: Automatic Morphometry of MTL Subfields in MCI. Human Brain
Mapping, 36(1), 258-287. https://doi.org/10.1002/hbm.22627

Yushkevich, P. A., Wang, H., Pluta, J, Das, S. R., Craige, C., Avants, B. B., Weiner, M. W., &
Mueller, S. (2010). Nearly automatic segmentation of hippocampal subfieldsin in vivo
focal T2-weighted MRI. Neurolmage, 53(4), 1208-1224.
https://doi.org/10.1016/j.neuroimage.2010.06.040

Zijdenbos, A. P., Dawant, B. M., Margolin, R. A., & Palmer, A. C. (1994). Morphometric
analysis of white matter lesionsin MR images: Method and validation. IEEE

Transactions on Medical Imaging, 13(4), 716—724. https://doi.org/10.1109/42.363096

52


https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/

