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Abstract

Introduction: High-grade serous carcinoma (HGSC) gene expression subtypes are associated
with differential survival. We characterized HGSC gene expression in Black individuals and
considered whether gene expression differences by race may contribute to poorer HGSC survival
among Black versus non-Hispanic White individuals.

Methods: We included newly generated RNA-Seq data from Black and White individuals, and
array-based genotyping data from four existing studies of White and Japanese individuals. We
assigned subtypes using K-means clustering. Cluster- and dataset-specific gene expression
patterns were summarized by moderated t-scores. We compared cluster-specific gene expression
patterns across datasets by calculating the correlation between the summarized vectors of
moderated t-scores. Following mapping to The Cancer Genome Atlas (TCGA)-derived HGSC
subtypes, we used Cox proportional hazards models to estimate subtype-specific survival by
dataset.

Results: Cluster-specific gene expression was similar across gene expression platforms.
Comparing the Black study population to the White and Japanese study populations, the
immunoreactive subtype was more common (39% versus 23%-28%) and the differentiated
subtype less common (7% versus 22%-31%). Patterns of subtype-specific survival were similar
between the Black and White populations with RNA-Seq data; compared to mesenchymal cases,
the risk of death was similar for proliferative and differentiated cases and suggestively lower for
immunoreactive cases (Black population HR=0.79 [0.55, 1.13], White population HR=0.86
[0.62, 1.19]).

Conclusions: A single, platform-agnostic pipeline can be used to assign HGSC gene expression
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95  subtypes. While the observed prevalence of HGSC subtypes varied by race, subtype-specific
96  survival was similar.

97
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98 Introduction

99 Ovarian cancer is a highly fatal malignancy comprised of multiple histologically-defined
100  subtypes (i.e., “histotypes”). High-grade serous carcinoma (HGSC) is the most common
101  histotype (1), and an important contributor to ovarian cancer mortality (2—4). HGSC is also
102  molecularly heterogeneous, which is relevant to both prognosis and treatment. Prior studies have
103  described between three and five molecularly distinct subtypes (5-10), and, while no gold
104  standard exists for defining these subtypes, they are commonly mapped to the four TCGA-
105  derived subtypes, which are similar to those reported in Tothill et al., 2008: mesenchymal
106  (Tothill C1.MES), proliferative (Tothill C5.PRO), immunoreactive (Tothill C2.IMM), and
107  differentiated (Tothill C4.DIF) (5,11). Key characteristics of the mesenchymal subtype include
108  high expression of HOX genes, increased stromal components, and poor survival (5,9,11). The
109  proliferative subtype has been characterized by low expression of ovarian tumor markers (e.g.,
110  MUCI, MUCI16), high expression of transcription factors, and intermediate survival (5,9,11).
111 Defining characteristics of the immunoreactive subtype include the enrichment of genes and
112  pathways associated with an immune response, including CD3+/CD8+ T-cell markers and genes
113  inthe CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation, and more favorable
114 survival (5,9,11). The differentiated subtype has been the most difficult to characterize and
115  reproduce (7,12), yet multiple studies have described it as having high expression of ovarian
116  tumor markers (e.g., MUC1, MUCI16, SLPI) and intermediate to good survival (5,9).
117 Since HGSC gene expression-based subtypes have potential clinical utility, it is of
118 interest to develop a clinical-grade, gene expression-based subtype classifier that is applicable
119  across diverse populations. One recently developed gene-set assay, the Predictor of high-grade-

120  serous Ovarian carcinoma molecular subTYPE (PrOTYPE) assay, was derived using array-based
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121 gene expression data from mostly non-Hispanic White individuals and migrated to a NanoString
122  platform (11). The PrOTYPE assay has been reported to classify HGSC into the four TCGA-
123 derived subtypes with >95% accuracy (11). Here, we leverage RNA-sequencing (RNA-seq) data
124 to characterize HGSC gene expression subtypes among a more racially diverse study population,
125  including a population of >300 self-identified Black individuals. Prior studies have noted that
126  Black individuals have poorer overall ovarian cancer survival (13), and poorer three-year and
127  six-year HGSC survival when compared to White individuals (14,15), so inclusion of Black

128  individuals in the derivation of HGSC molecular subtypes is especially important.

129 In the present study, we used K-means clustering to assign HGSC tumors from Black,
130  White, and Japanese individuals to molecular subtypes (7). Following subtype assignment, we
131 compared subtype-specific gene expression, subtype frequency, and subtype-specific survival
132  across all possible pairs of studies with different racial distributions (e.g., Black, White,

133  Japanese), and different data types (array-based gene expression data, and RNA-seq).

134  Methods

135  Primary study population

136 We included epithelial ovarian cancer cases enrolled in one of two population-based

137  case-control studies, the North Carolina Ovarian Cancer Study (NCOCS, diagnosis dates 1999-
138  2005) (16), and the African American Cancer Epidemiology Study (AACES, diagnosis dates
139  2010-2015) (15,17). Both studies enrolled epithelial ovarian cancer cases covering a range of
140  histotypes, grades, and stages, though some of the most aggressive cases were missed because
141  they were feeling very ill or were already deceased by the time they were invited to participate in
142  research (15). Written informed consent was obtained for NCOCS participants, while AACES

143  participants provided verbal consent and signed medical record and pathology release forms to
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144  allow for access to tumor tissue. All cases were confirmed via centralized pathology review.

145  Both the NCOCS and AACES studies were approved by the Duke Medical Center Institutional
146 Review Board (IRB) and the IRBs of participating enrollment sites.

147 Together, the AACES and NCOCS included 747 Black ovarian cancer cases, 464 of

148  which were HGSC. Of these, 325 provided consent to participate in biospecimen-based research
149  and had adequate tissue available to pursue RNA extraction (Supplemental Figure 1A). Fifty-
150 three of these cases were excluded from gene expression analyses due to a history of neoadjuvant
151  chemotherapy, which can influence observed gene expression (Supplemental Figure 1B).

152  Following these exclusions, there were 272 self-identified Black or African American cases (3
153  Hispanic; 269 non-Hispanic) who we subsequently refer to as “SchildkrautB”. The NCOCS

154  study included 1,014 White cases, 484 of which were HGSC. Of these, 316 provided consent to
155  participate in biospecimen-based research and had sufficient tissue available to pursue RNA

156  extraction (Supplemental Figure 2A). None of these cases had neoadjuvant chemotherapy prior
157  to tissue collection, so all were considered eligible for gene expression analyses. We

158  subsequently refer to this set of 316 non-Hispanic White cases as “SchildkrautW”.

159 Demographic characteristics, disease characteristics, and vital status were available for all
160  individuals included in SchildkrautB and SchildkrautW. Information on age at diagnosis was

161  obtained from questionnaires and pathology reports. Tumor stage, debulking status, and use of
162  neoadjuvant chemotherapy were abstracted from medical records and pathology reports. The
163  proportions of intratumoral CD3+ T cells and CD3+/CD8+ suppressor T cells were obtained

164  from multiplex immunofluorescence staining of formalin-fixed paraffin-embedded (FFPE) tissue
165  (18). Vital status was assessed using data from population-based cancer registries, obituaries,

166  LexisNexis, and the National Death Index.


https://paperpile.com/c/8W751m/2WVp
https://doi.org/10.1101/2023.11.01.565179
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.01.565179; this version posted December 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

167  Acquisition of gene expression data

168 RNA was extracted from FFPE tumor tissue and stored at -80°C. An initial quality

169  control (QC) evaluation revealed substantial RNA degradation, so a re-purification step

170  consisting of DNAase treatment and purification on a Zymo research spin column was

171 completed before library preparation to reduce the bulk of degraded RNA product (i.e., RNA
172  product <200 nucleotides in length). Following re-purification, RNA libraries were prepared
173  from total RNA samples (5-100 ng) using reagents from the Illumina Stranded mRNA Prep (cat#
174 20020189) and the Illumina RNA UD Indexes Set (20091657) for reverse transcription, adapter
175  ligation, and PCR amplification. Amplified libraries were hybridized to biotin-labeled probes
176  from the [llumina Exome Panel (cat# 20020183) using the Illumina RNA Fast Hyb Enrichment
177 kit (20040540) to generate strand-specific libraries enriched for coding regions of the

178  transcriptome. The quality of exon-enriched libraries was assessed on an Agilent Technologies
179 2200 TapeStation using a D1000 ScreenTape assay (cat# 5067-5582 and 5067-5583). The

180  molarity of adapter-modified molecules was defined by quantitative PCR using the Kapa

181  Biosystems Kapa Library Quant Kit (cat#KK4824). Individual libraries were normalized to 0.95
182  nM in preparation for Illumina sequence analysis. Sequencing libraries were chemically

183  denatured and applied to an Illumina NovaSeq flow cell using the NovaSeq XP workflow

184  (20043131). Following the transfer of the flow cell to an Illumina NovaSeq 6000 instrument, a
185 150 x 150 cycle paired-end sequence run was performed using a NovaSeq 6000 S4 reagent Kit
186  v1.5(20028312).

187  Quantification of gene expression data

188 We trimmed adapters and filtered read quality using fastp (19). We filtered to reads with

189  a PHRED score of at least 15 and a length of at least 20 base pairs. While a minimum PHRED
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190  score of 15 may include some reads with low quality, we found that most bases across all

191  samples in SchildkrautB and SchildkrautW had a quality score greater than 30 (Supplemental
192  Figure 3). We quantified paired-end reads with Salmon (version 1.4.0) (20) using GRCh38

193 release 95. We used the seqBias and gcBias flags to correct for sequence-specific biases. We also
194  used the recommended rangeFactorizationBins parameter value 4, which improves quantification
195  accuracy on difficult-to-quantify transcripts. We then filtered out low-expression genes by

196  excluding genes with a median expression of 0 within a dataset (SchildkrautB: 10,620 genes
197  removed, SchildkrautW: 10,410 genes removed). We library-size normalized samples using
198  upper quantile normalization. This normalization matches the 85" percentile across samples to
199  correct for library size differences across samples.

200  Overview of comparator study populations

201 Consistent with the data processing pipeline used by Way et al. (7), we included data
202  from the TCGA (platform: AffymetrixHT HG-U133A), Yoshihara (platform: AgilentG4112F),
203  and Tothill (platform: AffymetrixHG-U133Plus2) datasets included in the R package

204  curatedOvarianData (21), and additional data from the dataset “Mayo” (GEO Accession:

205 GSE74357, platform: AgilentG4112F). All gene expression data generated from these studies
206  was derived from fresh frozen tumor tissue. Using the R package doppelgangR (22), we

207  identified four more duplicate pairs across studies than found previously (7) and one pair of
208  duplicate samples in SchildkrautW.

209  Clustering Methods

210 We performed clustering analyses by modifying the pipeline from Way et al. (7) for
211 inclusion of RNA-Seq data. Briefly, for K-means clustering, we used the R package cluster

212 (version 2.0.6) (23), and for non-negative matrix factorization (NMF), we used the R package
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213  NMF (version 0.20.6) (24). We identified the top 1,500 genes with the largest Median Absolute
214  Deviance (MAD) from each of the six datasets (SchildkrautB, SchildkrautW, TCGA, Mayo,
215 Yoshihara, and Tothill), then used their union set of 4,355 genes for clustering (Supplemental
216  Table 1). Consensus clusters for both K-means and NMF were identified using multiple random
217  starts for each value of K=2-4 (K-means starts: 100; NMF starts: 10). Each dataset was clustered
218 independently using the same set of genes.

219 We compared the similarity of clusters across datasets and clustering methods using the
220 same approach as Way et al. (7). We used significance analysis of microarray (SAM) (25,26) to
221  get cluster-specific vectors of moderated t-scores; this provided us with gene-specific expression
222  patterns of each cluster within each dataset. We restricted to genes that were assayed and

223  expressed across all datasets, which we denote as “common genes" (Supplemental Table 2).
224  Using these 8,360 “common genes", we compared clusters across: (1) datasets, and (2) clustering
225 methodologies by calculating the Pearson correlation between two vectors of moderated t-scores.
226  To use this approach on the RNA-Seq datasets, we log10(x+1) transformed the normalized

227  counts to more closely match the data distribution of the microarray datasets. We performed a
228  simulation study to examine SAM’s performance on log10 transformed counts relative to

229  DESeq2’s performance on raw counts and found comparable performance (Supplemental Note
230 1).

231 Additionally, we compared the similarity of clusters in a global and aligned principal
232  components analysis (PCA) projection. We filtered the datasets to only include the MAD genes
233  used in our clustering pipeline, then within-sample scaled the expression values to ensure

234  comparative ranges of expression across all datasets. We logl10(x+1) transformed the RNA-Seq

235  expression values before scaling to better match the RNA-Seq and microarray data distributions.

10
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236  After normalization, we concatenated the datasets to calculate a global PCA projection. We then
237  subtracted each dataset's total centroid from each dataset's cluster centroid to align each dataset
238  such that it was centered at the origin of the PCA projection. This allowed us to compare the
239 relative differences between each cluster across all datasets.

240  Survival analyses by cluster

241 We generated Kaplan-Meier survival curves to visualize overall survival and subtype-
242  specific survival within each dataset. We used Cox proportional hazards (PH) models to

243  calculate hazard ratios (HR) and 95% confidence intervals (CIs) quantifying the differences in
244  survival across HGSC subtypes. For five of the six datasets (SchildkrautB, SchildkrautW,

245 TCGA, Mayo, Tothill), Cox PH models were adjusted for three factors that independently

246  influence survival: age (in 5-year age groups), stage (I, II, III and IV), and debulking status

247  (optimal debulking, suboptimal or missing debulking status). Yoshihara et al. did not provide
248  information on age at HGSC diagnosis, so models for this dataset were adjusted for stage and
249  debulking status only.

250  Cluster comparison between pipeline runs and consensusOV

251 To ensure that our run of the updated Way et al. (7) pipeline was producing similar

252  results to those from previously published subtype predictors, we compared the assigned cluster
253  labels for each case in the TCGA, Mayo, Yoshihara, and Tothill datasets. To quantify the

254  similarity between pipeline results, we rephrased the cluster comparison problem as a prediction
255  problem. The ground-truth labels were the previously published cluster IDs (7) or consensusOV
256  (27) predictions for each case, and the predicted labels were our newly assigned cluster labels.

257  consensusOV version 1.16.0 was run using default parameters and no significance filtering. We

11
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258  used balanced accuracy as the metric for comparing current and published labels due to
259  variations in cluster sizes. Balanced accuracy is defined in the following equations.
260 Balanced Accuracy = (Sensitivity + Specificity) /2

Number of True Positives

261  Sensitivity =
ENSUVIY = Number of True Positives + Number of False Negatives

e Number of True Negatives
262  Specificity =

Number of True Negatives + Number of False Positives

263  Sensitivity analysis of K-means cluster assignments

264 K-means is sensitive to outliers and local minima; therefore, we quantified the stability of
265  the cluster labels when using a subsample within each dataset. First, we removed any samples
266  that were more than 1.5x the interquartile range from the first or third quartiles in the first five
267  PCs. Using the remaining samples, we subsampled 80% of the samples within each dataset and
268  re-ran K-means clustering. We then matched the new cluster labels to the original cluster labels
269  using a greedy approach. We matched labels by finding the cluster IDs with the highest sample
270  overlap. We did this iteratively, removing each cluster from consideration once its matched

271  cluster ID was assigned.

272  Data Availability Statement

273 We provide all software under the BSD 3-Clause License. We include scripts for the

274  analyses presented in this manuscript, including RNA-Seq quantification, quality control,

275  clustering, and figure generation. To support reproducibility, we provide code to recreate the
276  environments and re-run both the RNA-Seq data analysis

277  (https://github.com/greenelab/hgsc_rnaseq_cluster/) and our updated clustering pipeline

278  (https://github.com/greenelab/hgsc_rnaseq clustering_ pipeline/). All derived expression data are

279  publicly available and included in Supplemental Tables 6 and 7.
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280  Results

281  Data quality

282 For both SchildkrautB and SchildkrautW, we further excluded samples due to possible
283  technical artifacts (Supplemental Tables 3 and 4). In SchildkrautB and SchildkrautW, 14 and 4
284  cases were re-sequenced, respectively, due to insufficient read depth, and the transcriptomic

285  profiles from the first sequencing attempt were excluded. After resequencing, all18 cases

286  attained a read depth comparable to the other sequenced samples and progressed to the next step
287  of'the quality control pipeline (Supplemental Figures 1B and 2B). All other samples in both
288  datasets were considered high quality, with over 83.3% of reads having a base quality of at least
289 30 (Supplemental Figure 3). After normalization, read count distributions were similar across
290 sequencing batches, including samples previously identified by the sequencing core as low-

291  quality (Supplemental Figure 4C-H). However, a small subset of samples had lower-than-

292  expected read counts. To account for this, we removed all samples where the median normalized
293  read count was below 925 or where the bottom 25th quantile read count for a sample was below
294  30. This additional read count filter removed 10 SchildkrautB cases and 5 SchildkrautW cases
295  (Supplemental Figure 4A-B). The final technical exclusion for SchildkrautB and SchildkrautW
296 removed samples flagged by doppelgangR (22) as having overly similar expression patterns,
297  suggesting they originated from the same tumor. Only SchildkrautW had a pair of samples

298 identified as too similar (NCO0557 and NCO0625).

299 Following the SchildkrautB and SchildkrautW technical exclusions, we applied the Way
300 pipeline exclusions to the TCGA, Mayo, Yoshihara, and Tothill datasets, and we applied

301  doppelgangR exclusions to all datasets. The sizes of our final analytic data sets were as follows:

302  SchildkrautB (n=262); SchildkrautW (n=309); TCGA (n = 499; phs000178) (5); Mayo (n =377,
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303  GSE74357) (9); Yoshihara (n = 255; GSE32062.GPL6480) (28), and Tothill (n = 241;

304  GSE9891) (6).

305  Validation of updated clustering pipeline

306 We updated an HGSC subtyping pipeline (7) that previously identified clusters across
307  four microarray studies from the United States, Japan, and Australia. While most of our pipeline
308  was the same, we used balanced accuracy to quantify the similarity in output between pipelines.
309  Balanced accuracy for our K-means clusters was consistently >0.91 across all datasets for K=2-4

310  (Supplemental Figure 5). The limited differences that arose were primarily due to changes in

311 stochastic elements of the clustering methods and software packages, such as differences in

312  computing environments, random seeds, and package versions. Another source of variation

313  between the output of the pipelines was the addition of the Schildkraut datasets since the genes
314  used for clustering must be shared across all datasets and have a high MAD in at least one

315  dataset (Methods). After adding the Schildkraut datasets, 893 genes that were previously

316  denoted as common were reclassified as MAD genes, 609 MAD genes were re-classified as

317  common genes, and 911 genes were removed from consideration. A Venn diagram of the

318 removed genes is provided in Supplemental Figure 6.

319 To ensure that clustering outcomes were robust across methods, we compared the clusters
320 from two different clustering methods: K-means and NMF. We derived a gene expression pattern
321  for each cluster using the significance analysis of microarray (SAM) moderated t-score

322  (Methods). Using this cluster-specific gene expression pattern, we calculated the Pearson

323  correlation between moderated t-scores for clusters identified by each method. We found

324  extremely high cluster concordance in all datasets between the clusters identified by NMF and

325 K-means when we selected two and three clusters. We saw diminished concordance between
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326  methods when we used four clusters. Clusters in all datasets (except the Mayo dataset for K=4)
327  had the highest concordance with the matched cluster along the diagonal (Supplemental Figure
328 7). Since K-means clustering is sensitive to outliers, we additionally ran K-means clustering in
329  subsets of 80% of the data and found that, in all datasets, the majority of samples maintained
330 their same cluster label in more than 50% of the subsampled reclusterings (Supplemental

331  Figure 8).

332 Our final clustering validation was to compare our output to output from another external
333  HGSC subtype classifier, consensusOV (27). consensusOV combines four methods (5,6,8,9,29)
334  into a consensus classifier. Since consensusOV can only assign samples to the four Verhaak-
335  defined clusters, we only compare our K-means results for K=4. We found that our subtype calls
336  were very similar to the consensusOV calls across all microarray datasets, with a minimum per-
337 class balanced accuracy of 0.72 (Supplemental Table 5). We saw more discordance between
338  our calls and consensusOV when we compared RNA-Seq samples, with per-class balanced

339  accuracy ranging from 0.589-0.818 (Supplemental Table 5).

340  Gene expression patterns in the self-identified Black study population compared with other study
341 populations

342 Expression patterns for each cluster were summarized in two ways, first by plotting the
343  principal components of normalized and aligned centroids in each dataset, and second, using
344  SAM-moderated t-scores (7). In both approaches, we sought to determine if the relative cluster
345  distances for each individual dataset were consistent across datasets. In our principal components
346  (PC)-based approach, we normalized and projected all datasets into a shared PC space, then

347  centered them at the origin of the space. For K=3, PC2 and PC3 could separate each cluster

348  (Figure 1a). For K=4, PC2 and PC3 could not independently separate each cluster, but, together,
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349  could differentiate them (Figure 1b). Furthermore, in the first three PCs, the SchildkrautB

350 dataset did not cluster away from any other datasets, and clustered closely with the

351 SchildkrautW, TCGA, and Tothill datasets.

352 In our second, complementary approach, we compared differential gene expression

353  between clusters by calculating the Pearson correlation for each cluster’s SAM-moderated t-

354  score across pairs of datasets. Figure 2 compares the cluster-specific gene expression pattern
355  between the SchildkrautB cases and cases from the other five datasets. For K=3, SchildkrautB
356  cluster-specific gene expression was highly correlated with cluster-specific gene expression

357  across all datasets, and showed the strongest correlations with SchildkrautW cluster-specific

358  gene expression. This provides strong evidence that the derived clusters from Black cases are the
359  same as the derived clusters from White and Japanese cases. A high correlation between clusters
360  was also found when performing pairwise comparisons among all six datasets (Supplemental
361  Figure 9). Similar to Way et al. (7), we found that the correlation of cluster-specific gene

362  expression patterns was diminished when using four, as opposed to three, clusters to describe the
363  data. This was evident when comparing SchildkrautB to each of the five other populations

364  (Figure 2B vs. Figure 2A) and when comparing gene expression patterns across all possible
365  pairs of datasets (Supplemental Figure 10 vs. Supplemental Figure 9).

366  Subtype distributions and characteristics by study population

367 We mapped the K-means clusters with K=4 to the four TCGA-derived HGSC subtypes to
368  compare the frequency of subtypes across datasets and evaluate how cancer characteristics vary
369 by subtype. The immunoreactive subtype was more common (39% vs 23-28%), and the

370 differentiated subtype less common (7% vs 22-31%) in the self-identified Black study population

371  when compared to the White and Japanese study populations (Figure 3). In analyses restricted to
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372 SchildkrautB and SchildkrautW, FIGO stage differed by HGSC subtype among both Black

373  (p=0.040) and non-Hispanic White individuals (p=0.009); those with differentiated HGSC were
374  more likely to have a lower FIGO stage at diagnosis (Table 1). Immune infiltration also differed
375 by HGSC subtype, particularly among Black individuals (p=0.001 for CD3+ T cells; p=0.045 for
376  CD3+/CD8+ suppressor T cells; Table 1). In both Black and White individuals, immune

377  infiltration was higher for tumors categorized as mesenchymal or immunoreactive and lower for
378  tumors categorized as proliferative.

379  Survival patterns for clusters

380 Overall HGSC survival varied by study (Supplemental Figure 11, p-value for test of
381  heterogeneity in a stage-adjusted model <0.001), though patterns of subtype-specific survival
382  were generally similar across studies (Figure 4). Multivariable-adjusted hazard ratios and 95%
383  ClIs indicated that, when compared to individuals with mesenchymal tumors, those with

384  immunoreactive tumors had better survival in most (SchildkrautB HR=0.79 [0.55, 1.13];

385  SchildkrautW HR=0.86 [0.62, 1.19]; Mayo HR=0.54 [0.39, 0.75]; Yoshihara HR=0.65 [0.39,
386  1.09]; Tothill HR=0.54 [0.31, 0.95]), but not all (TCGA HR=1.01 [0.69, 1.49]) study populations
387  (Table 2). Meanwhile, the risk of death among those with proliferative HGSC was not

388 statistically significantly different from the risk of death among those with mesenchymal tumors
389  in any study population (Table 2), and it was close to the null value of 1.00 in both SchildkrautB
390 (HR=0.98 [0.66, 1.46]) and SchildkrautW (HR=1.05 [0.70, 1.57]). The risk of death among those
391  with differentiated HGSC was not statistically significantly different from the risk of death

392  among those with mesenchymal tumors in five of the six study populations, and was lower in the

393  Mayo study population (HR=0.61 [0.44, 0.84]; Table 2).
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394  Discussion

395 We performed a cross-platform and cross-population analysis of HGSC, including four
396  existing datasets, plus newly generated RNA-Seq gene expression data from 262 Black and 309
397  White HGSC cases. When comparing RNA-Seq data from the 309 White cases to microarray
398  gene expression data from the predominantly White populations that comprise the Tothill and
399 TCGA study populations, we observed high cluster stability within each dataset when advancing
400 from K=2 to K=4 (Supplemental Figure 8) and consistent cluster-specific gene expression

401  profiles across datasets (Supplemental Figures 9 and 10). This indicates that similar HGSC
402  gene expression clusters can be defined using combined data from array-based technologies in
403  fresh frozen tissue and RNA-seq technologies in FFPE tissue. We also observed consistent

404  cluster composition (Figure 1) and gene expression profiles when comparing Black HGSC cases
405  to White and Japanese HGSC cases (Figure 2). This indicates that HGSC gene expression

406  clusters are consistent across Black, White, and Japanese individuals, so it is unlikely that racial
407  differences in HGSC gene expression patterns are a key driver behind poorer HGSC survival in
408  Black populations.

409 Our interest in determining how an existing HGSC subtype clustering pipeline performs
410  with RNA-Seq data was motivated by the increasing use of RNA-Seq technology to interrogate
411  cancer gene expression (30). Previously published HGSC subtype clustering approaches were
412  designed around array-based gene expression data (5-7,9,28,31), and while array-based and
413  RNA-Seq technologies observe the same underlying biological processes, the data they produce
414  follow different data distributions (32,33). This is most clear in the methodological differences
415  between array-based and RNA-Seq differential gene expression methods (34-37). Here, we

416  demonstrated that, despite the difference in data distributions generated by array-based and
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417  RNA-Seq technologies, the Way et al. (7) subtype pipeline built for array-based gene expression
418  data can be applied to normalized and log-transformed RNA-Seq data. The high cluster

419  correlations across all four array-based datasets using fresh frozen tissue and both RNA-Seq

420  datasets using FFPE tissue indicate that the delineation of HGSC subtypes is agnostic to

421  sequencing technology and fresh frozen versus FFPE tissue.

422 As done in previous studies, we assigned all cases to one of the four TCGA-derived

423  HGSC subtypes; however, as was previously reported in Way et al. (7), we observed that cluster-
424  specific gene expression was more concordant across datasets when clusters were assigned using
425 K=2 or K=3 compared to K=4. This was most evident when comparing each dataset’s cluster-
426  specific expression profiles to the cluster-specific expression profiles across all of the other

427  datasets (Figure 2, Supplemental Figures 9 and 10). When considering K=3, the largest off-
428  diagonal correlation we observed over all datasets was 0.07 (Supplemental Figure 9). In

429  contrast, for K=4 we found much larger positive off-diagonal correlations for the clusters

430  observed in the array-based TCGA, Mayo, Yoshihara, and Tothill datasets, with the largest per-
431  dataset correlations ranging from 0.19 to 0.33 (Supplemental Figure 10). We also observed

432  large positive off-diagonal correlations for the RNA-Seq-based SchildkrautB and SchildkrautW
433  datasets, with the largest per-dataset correlations ranging from 0.17 to 0.34 (Supplemental

434  Figure 10). Since cluster-specific gene expression was more concordant for K=2 and K=3 versus
435 K=4 for all datasets, we encourage future studies to test whether a number other than four best
436  represents HGSC subtypes. Our results are consistent with a model where either two HGSC gene
437  expression axes (e.g., mesenchymal-like and immune) or a set of three HGSC subtypes (e.g., as
438  derived using K=3) may more effectively describe the biological variation in HGSC gene

439  expression than the four subtypes most commonly seen in the literature.
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440 Beyond methodological advances, our work also provides strong evidence that HGSC
441  subtypes can be reproduced among Black HGSC cases and that Black, White, and Japanese

442  HGSC cases share similar subtype-specific gene expression profiles. At increasing values of K,
443  we observed patterns in cluster composition among Black HGSC cases that were consistent with
444  those observed among White and Japanese HGSC cases (Figure 1, Supplemental Figure 8).
445  Further, we observed strong correlations between cluster-specific gene expression in Black cases
446  and cluster-specific gene expression in White and Japanese cases, especially when comparing
447  clusters defined using K=2 and K=3 (Figure 2). Patterns of subtype-specific survival were also
448  generally consistent across populations. When compared to mesenchymal HGSC, the risk of
449  death was similar for proliferative and differentiated cases, and lower, but not statistically

450  significantly lower, for immunoreactive cases both in SchildkrautB (HR=0.79 [0.55, 1.13]) and
451  SchildkrautW (HR=0.86 [0.62, 1.19], Table 2, Figure 4).

452 The primary difference we observed when comparing HGSC subtypes in Black

453  individuals (i.e., cases in SchildkrautB) to HGSC subtypes in all other study populations was that
454  more Black HGSC cases had gene expression profiles consistent with the TCGA

455  immunoreactive subtype (39% compared to 23%-28%) and fewer Black HGSC cases had gene
456  expression profiles consistent with the TCGA differentiated subtype (7% compared to 22%-31%;
457  Figure 3). Differences in the Tothill, C1-C6, gene expression subtype signatures for Black

458  (n=29) versus White (n=156) ovarian cancers were observed previously, though in different

459  proportions (17), so it is possible that there exists true variation in the proportion of HGSC

460  subtypes for Black versus non-Black HGSC cases. However, it is also possible that variations in
461  study design across the six study populations contributed to the different subtype distributions

462  that we observed. For example, case-control studies like the AACES and NCOCS are unable to
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463  enroll cases with rapidly fatal HGSC (15). This could have skewed the observed subtype

464  distribution for Black cases toward a greater proportion of less aggressive, immunoreactive

465  tumors, and artificially inflated estimates of overall survival in the SchildkrautB study population
466  (Supplemental Figure 11), as has been posited previously (15).

467 A key contribution of this study was that we were able to update a previously published
468  subtype clustering pipeline to accept either array-based gene expression data or RNA-Seq data
469  and validate our modifications. We also created the first large RNA-Seq dataset of HGSC in self-
470  1identified Black cases, consisting of 262 high-quality expression profiles. This dataset allowed us
471  to compare the expression profiles of HGSC subtypes in Black cases against other study

472  populations, and it provided an opportunity to evaluate differences in subtype frequency and

473  survival in Black HGSC cases compared to non-Black HGSC cases. An important limitation of
474  this study was that we lacked adequate data to explore whether the observed racial variation in
475  the proportions of gene expression subtypes and survival outcomes was due to biological,

476  sociodemographic, or access-to-care differences.

477 In summary, we have updated an existing HGSC gene expression subtype classifier to be
478  compatible with both array-based gene expression data and RNA-Seq data. This advancement
479  will facilitate reproducible HGSC subtyping for research purposes and is available for use in

480  future studies. We have also demonstrated that the HGSC subtypes generated by our classifier
481  generalize to racially diverse populations, and we have indicated that HGSC subtype-specific
482  gene expression and subtype-specific survival are consistent across Black, White and Asian

483  study populations. Given our findings, we expect that a clinical HGSC gene expression assay
484  would benefit prognostication and treatment strategies similarly for women from multiple racial

485  and ethnic backgrounds.
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Table 1. Characteristics of the Schildkraut study populations, by subtype

Mesenchymal Proliferative Immunoreactive Differentiated p-value|Mesenchymal Proliferative Immunoreactive Differentiated p-value
Schildkraut Black Schildkraut White
Case count 79 63 101 19 106 40 84 79
Age (%)
Under 40|1 (1.3) 2(3.2) 2(2.0) 1(5.3) 4 (3.8) 0(0.0) 1(1.2) 2(2.5)
40-44(8 (10.1) 2(3.2) 6 (5.9) 3(15.8) 2(1.9) 1(2.5) 7 (8.3) 6 (7.6)
45-49(9 (11.4) 5(7.9) 14 (13.9) 2 (10.5) 6 (5.7) 5(12.5) 10 (11.9) 9(11.4)
50-54(17 (21.5) 8(12.7) 13 (12.9) 3(15.8) 17 (16.0) 2 (5.0) 17 (20.2) 13 (16.5)
55-59(8 (10.1) 16 (25.4) 25 (24.8) 4(21.1) 16 (15.1) 9 (22.5) 17 (20.2) 16 (20.3)
60-64(16 (20.3) 9(14.3) 16 (15.8) 1(5.3) 20 (18.9) 13 (32.5) 17 (20.2) 13 (16.5)
65-69|6 (7.6) 9(14.3) 15 (14.9) 2 (10.5) 24 (22.6) 1(2.5) 9(10.7) 8(10.1)
70-74(12 (15.2) 8(12.7) 7 (6.9) 1(5.3) 17 (16.0) 9 (22.5) 6(7.1) 12 (15.2)
75+(2 (2.5) 4 (6.3) 3(3.0) 2 (10.5) 0.30 [0(0.0) 0(0.0) 0(0.0) 0(0.0) 0.024
FIGO Stage (%)
I|5(6.3) 4 (6.3) 13 (12.9) 7 (36.8) 1(0.9) 1(2.5) 6(7.1) 10(12.7)
I8 (10.1) 6(9.5) 7 (6.9) 3(15.8) 5(4.7) 1(2.5) 2(2.4) 4(5.1)
1l |60 (75.9) 49 (77.8) 74 (73.3) 8(42.1) 97 (91.5) 36 (90.0) 73 (86.9) 59 (74.7)
IV |4 (5.1) 3(4.8) 6 (5.9) 0(0.0) 3(2.8) 2(5.0) 3(3.6) 2(2.5)
Missing |2 (2.5) 1(1.6) 1(1.0) 1(5.3) 0.040 |0(0.0) 0(0.0) 0(0.0) 4(5.1) 0.009
Debulking (%)
Optimal |33 (41.8) 24 (38.1) 45 (44.6) 8(42.1) 28 (26.4) 14 (35.0) 23 (27.4) 26 (32.9)
Suboptimal |25 (31.6) 15 (23.8) 21(20.8) 2(10.5) 8(7.5) 3(7.5) 2(2.4) 4(5.1)
Missing |21 (26.6) 24 (38.1) 35(34.7) 9 (47.4) 0.34 |70(66.0) 23 (57.5) 59 (70.2) 49 (62.0) 0.59
Neoadjuvant
chemotherapy (%)
No |68 (86.1) 54 (85.7) 85 (84.2) 17 (89.5) 106 (100.0)  40(100.0)  84(100.0) 79 (100.0) NA
Missing |11 (13.9) 9(14.3) 16 (15.8) 2 (10.5) 0.94
Proportion CD3+
T cells (%) 4.24 (4.68) 1.51(3.18) 3.88(4.54) 1.04 (1.24) 0.001 |2.46(2.36)  0.72(1.25) 4.35(6.55) 2.24(2.20) 0.053
Proportion
CD3+/CD8+
Suppressor T cells
(%) 1.38(2.30)  0.52(1.80) 1.42(2.33) 0.32 (0.53) 0.045 |1.15(1.18)  0.22(0.30) 2.39(4.48) 1.16(1.21) 0.084
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Table 2. Subtype distribution and risk of death by study population

Study and molecular subtype Case count (%) Model 1 HR? (95% Cl) Model 2 HR® (95% Cl)
Schildkraut Black
Mesenchymal 79 (30.2) (ref) (ref)
Proliferative 63 (24.0) 1.13 (0.76, 1.67) 0.98 (0.66, 1.46)
Immunoreactive 101 (38.5) 0.83 (0.59, 1.19) 0.79 (0.55, 1.13)
Differentiated 19 (7.3) 0.87 (0.42, 1.83) 0.83 (0.40, 1.72)
Schildkraut White
Mesenchymal 106 (34.3) (ref) (ref)
Proliferative 40 (12.9) 1.00 (0.67, 1.49) 1.05 (0.70, 1.57)
Immunoreactive 84 (27.2) 0.85(0.61, 1.18) 0.86 (0.62, 1.19)
Differentiated 79 (25.6) 1.01(0.73, 1.40) 0.98 (0.70, 1.36)
TCGA
Mesenchymal 125(25.1) (ref) (ref)
Proliferative 102 (20.4) 0.82 (0.56, 1.20) 0.84 (0.57,1.23)
Immunoreactive 116 (23.2) 0.92 (0.63, 1.35) 1.01(0.69, 1.49)
Differentiated 156 (31.3) 0.93(0.67, 1.28) 1.03 (0.74, 1.44)
Mayo
Mesenchymal 105 (27.9) (ref) (ref)
Proliferative 79 (21.0) 0.81(0.59, 1.12) 0.92 (0.66, 1.28)
Immunoreactive 93 (24.7) 0.54 (0.39, 0.75) 0.54 (0.39, 0.75)
Differentiated 100 (26.5) 0.63 (0.46, 0.87) 0.61(0.44, 0.84)
Yoshihara®
Mesenchymal 89 (34.9) (ref) (ref)
Proliferative 30(11.8) 1.35(0.77, 2.35) 1.48 (0.86, 2.57)
Immunoreactive 71 (27.8) 0.62 (0.37, 1.04) 0.65 (0.39, 1.09)
Differentiated 65 (25.5) 1.16 (0.73, 1.85) 1.36 (0.85, 2.19)
Tothill
Mesenchymal 75 (31.1) (ref) (ref)
Proliferative 45 (18.7) 0.77 (0.43,1.37) 0.79 (0.44, 1.42)
Immunoreactive 67 (27.8) 0.55 (0.32, 0.95) 0.54 (0.31, 0.95)
Differentiated 54 (22.4) 0.64 (0.37,1.12) 0.65 (0.37, 1.14)
@ Multivariable model adjusted for age (in 5-year age groups) and stage (I, Il, Ill, IV)
b Multivariable model adjusted for age (in 5-year age groups), stage (I, I, I, IV), and debulking status (optimal,
not optimal)
¢ Yoshihara dataset does not include information on age, so multivariable models are not adjusted for age in this
dataset
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642  Figure 1. Principal Components Analysis (PCA) plots of cluster centroids for each dataset, after

643  dataset alignment. Panel a compares K-means cluster centroids (K=3), and Panel b compares K-
644  means cluster centroids (K=4) for each dataset considered in this study. We find that the

645  principal components separate each cluster centroid in a consistent way across almost all

646  datasets. For K=3, PC2 and PC3 are both able to separate each cluster independently, but for

647  K=4 the combination of PC2 and PC3 are needed to separate each cluster. Furthermore, for K=3,
648  we see that the Yoshihara and Mayo datasets have centroids that are much higher in PC1 than the
649  other datasets. This trend continues for the Mayo dataset when K=4, in all PCs.

650
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652  Figure 2. Significance analysis of microarray (SAM) moderated t-score Pearson correlation
653  heatmaps of clusters across datasets. Panel a compares K-means clusters (K=3) between

654  SchildkrautB and every other dataset considered in this study. Across each dataset we find a
655  strong positive correlation with the clusters in SchildkrautB, with matched cluster correlations
656  ranging from 0.37-0.86, and mismatched cluster correlations ranging from -0.65-0.03. Panel b
657  performs the same comparison, but for K=4. In this comparison, we see much more

658  inconsistency between matched clusters, with some mismatched clusters having a higher

659  correlation than some matched clusters.
660
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662  Figure 3. Distribution of subtypes across datasets.
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