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Abstract 73 

Introduction:  High-grade serous carcinoma (HGSC) gene expression subtypes are associated 74 

with differential survival. We characterized HGSC gene expression in Black individuals and 75 

considered whether gene expression differences by race may contribute to poorer HGSC survival 76 

among Black versus non-Hispanic White individuals.  77 

Methods: We included newly generated RNA-Seq data from Black and White individuals, and 78 

array-based genotyping data from four existing studies of White and Japanese individuals. We 79 

assigned subtypes using K-means clustering. Cluster- and dataset-specific gene expression 80 

patterns were summarized by moderated t-scores. We compared cluster-specific gene expression 81 

patterns across datasets by calculating the correlation between the summarized vectors of 82 

moderated t-scores. Following mapping to The Cancer Genome Atlas (TCGA)-derived HGSC 83 

subtypes, we used Cox proportional hazards models to estimate subtype-specific survival by 84 

dataset.  85 

Results: Cluster-specific gene expression was similar across gene expression platforms. 86 

Comparing the Black study population to the White and Japanese study populations, the 87 

immunoreactive subtype was more common (39% versus 23%-28%) and the differentiated 88 

subtype less common (7% versus 22%-31%). Patterns of subtype-specific survival were similar 89 

between the Black and White populations with RNA-Seq data; compared to mesenchymal cases, 90 

the risk of death was similar for proliferative and differentiated cases and suggestively lower for 91 

immunoreactive cases (Black population HR=0.79 [0.55, 1.13], White population HR=0.86 92 

[0.62, 1.19]). 93 

Conclusions: A single, platform-agnostic pipeline can be used to assign HGSC gene expression 94 
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subtypes. While the observed prevalence of HGSC subtypes varied by race, subtype-specific 95 

survival was similar.  96 

  97 
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Introduction  98 

Ovarian cancer is a highly fatal malignancy comprised of multiple histologically-defined 99 

subtypes (i.e., <histotypes=). High-grade serous carcinoma (HGSC) is the most common 100 

histotype (1), and an important contributor to ovarian cancer mortality (234). HGSC is also 101 

molecularly heterogeneous, which is relevant to both prognosis and treatment. Prior studies have 102 

described between three and five molecularly distinct subtypes (5310), and, while no gold 103 

standard exists for defining these subtypes, they are commonly mapped to the four TCGA-104 

derived subtypes, which are similar to those reported in Tothill et al., 2008: mesenchymal 105 

(Tothill C1.MES), proliferative (Tothill C5.PRO), immunoreactive (Tothill C2.IMM), and 106 

differentiated (Tothill C4.DIF) (5,11). Key characteristics of the mesenchymal subtype include 107 

high expression of HOX genes, increased stromal components, and poor survival (5,9,11). The 108 

proliferative subtype has been characterized by low expression of ovarian tumor markers (e.g., 109 

MUC1, MUC16), high expression of transcription factors, and intermediate survival (5,9,11). 110 

Defining characteristics of the immunoreactive subtype include the enrichment of genes and 111 

pathways associated with an immune response, including CD3+/CD8+ T-cell markers and genes 112 

in the CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation, and more favorable 113 

survival (5,9,11). The differentiated subtype has been the most difficult to characterize and 114 

reproduce (7,12), yet multiple studies have described it as having high expression of ovarian 115 

tumor markers (e.g., MUC1, MUC16, SLPI) and intermediate to good survival (5,9).  116 

Since HGSC gene expression-based subtypes have potential clinical utility, it is of 117 

interest to develop a clinical-grade, gene expression-based subtype classifier that is applicable 118 

across diverse populations. One recently developed gene-set assay, the Predictor of high-grade-119 

serous Ovarian carcinoma molecular subTYPE (PrOTYPE) assay, was derived using array-based 120 
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gene expression data from mostly non-Hispanic White individuals and migrated to a NanoString 121 

platform (11). The PrOTYPE assay has been reported to classify HGSC into the four TCGA-122 

derived subtypes with >95% accuracy (11). Here, we leverage RNA-sequencing (RNA-seq) data 123 

to characterize HGSC gene expression subtypes among a more racially diverse study population, 124 

including a population of >300 self-identified Black individuals. Prior studies have noted that 125 

Black individuals have poorer overall ovarian cancer survival (13), and poorer three-year and 126 

six-year HGSC survival when compared to White individuals (14,15), so inclusion of Black 127 

individuals in the derivation of HGSC molecular subtypes is especially important.  128 

In the present study, we used K-means clustering to assign HGSC tumors from Black, 129 

White, and Japanese individuals to molecular subtypes (7). Following subtype assignment, we 130 

compared subtype-specific gene expression, subtype frequency, and subtype-specific survival 131 

across all possible pairs of studies with different racial distributions (e.g., Black, White, 132 

Japanese), and different data types (array-based gene expression data, and RNA-seq). 133 

Methods 134 

Primary study population 135 

We included epithelial ovarian cancer cases enrolled in one of two population-based 136 

case-control studies, the North Carolina Ovarian Cancer Study (NCOCS, diagnosis dates 1999-137 

2005) (16), and the African American Cancer Epidemiology Study (AACES, diagnosis dates 138 

2010-2015) (15,17). Both studies enrolled epithelial ovarian cancer cases covering a range of 139 

histotypes, grades, and stages, though some of the most aggressive cases were missed because 140 

they were feeling very ill or were already deceased by the time they were invited to participate in 141 

research (15). Written informed consent was obtained for NCOCS participants, while AACES 142 

participants provided verbal consent and signed medical record and pathology release forms to 143 
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allow for access to tumor tissue. All cases were confirmed via centralized pathology review. 144 

Both the NCOCS and AACES studies were approved by the Duke Medical Center Institutional 145 

Review Board (IRB) and the IRBs of participating enrollment sites.  146 

Together, the AACES and NCOCS included 747 Black ovarian cancer cases, 464 of 147 

which were HGSC. Of these, 325 provided consent to participate in biospecimen-based research 148 

and had adequate tissue available to pursue RNA extraction (Supplemental Figure 1A). Fifty-149 

three of these cases were excluded from gene expression analyses due to a history of neoadjuvant 150 

chemotherapy, which can influence observed gene expression (Supplemental Figure 1B). 151 

Following these exclusions, there were 272 self-identified Black or African American cases (3 152 

Hispanic; 269 non-Hispanic) who we subsequently refer to as <SchildkrautB=. The NCOCS 153 

study included 1,014 White cases, 484 of which were HGSC. Of these, 316 provided consent to 154 

participate in biospecimen-based research and had sufficient tissue available to pursue RNA 155 

extraction (Supplemental Figure 2A). None of these cases had neoadjuvant chemotherapy prior 156 

to tissue collection, so all were considered eligible for gene expression analyses. We 157 

subsequently refer to this set of 316 non-Hispanic White cases as <SchildkrautW=.  158 

Demographic characteristics, disease characteristics, and vital status were available for all 159 

individuals included in SchildkrautB and SchildkrautW. Information on age at diagnosis was 160 

obtained from questionnaires and pathology reports. Tumor stage, debulking status, and use of 161 

neoadjuvant chemotherapy were abstracted from medical records and pathology reports. The 162 

proportions of intratumoral CD3+ T cells and CD3+/CD8+ suppressor T cells were obtained 163 

from multiplex immunofluorescence staining of formalin-fixed paraffin-embedded (FFPE) tissue 164 

(18). Vital status was assessed using data from population-based cancer registries, obituaries, 165 

LexisNexis, and the National Death Index.  166 
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Acquisition of gene expression data   167 

RNA was extracted from FFPE tumor tissue and stored at -80°C. An initial quality 168 

control (QC) evaluation revealed substantial RNA degradation, so a re-purification step 169 

consisting of DNAase treatment and purification on a Zymo research spin column was 170 

completed before library preparation to reduce the bulk of degraded RNA product (i.e., RNA 171 

product <200 nucleotides in length). Following re-purification, RNA libraries were prepared 172 

from total RNA samples (5-100 ng) using reagents from the Illumina Stranded mRNA Prep (cat# 173 

20020189) and the Illumina RNA UD Indexes Set (20091657) for reverse transcription, adapter 174 

ligation, and PCR amplification. Amplified libraries were hybridized to biotin-labeled probes 175 

from the Illumina Exome Panel (cat# 20020183) using the Illumina RNA Fast Hyb Enrichment 176 

kit (20040540) to generate strand-specific libraries enriched for coding regions of the 177 

transcriptome. The quality of exon-enriched libraries was assessed on an Agilent Technologies 178 

2200 TapeStation using a D1000 ScreenTape assay (cat# 5067-5582 and 5067-5583). The 179 

molarity of adapter-modified molecules was defined by quantitative PCR using the Kapa 180 

Biosystems Kapa Library Quant Kit (cat#KK4824). Individual libraries were normalized to 0.95 181 

nM in preparation for Illumina sequence analysis. Sequencing libraries were chemically 182 

denatured and applied to an Illumina NovaSeq flow cell using the NovaSeq XP workflow 183 

(20043131). Following the transfer of the flow cell to an Illumina NovaSeq 6000 instrument, a 184 

150 x 150 cycle paired-end sequence run was performed using a NovaSeq 6000 S4 reagent Kit 185 

v1.5 (20028312).   186 

Quantification of gene expression data 187 

We trimmed adapters and filtered read quality using fastp (19). We filtered to reads with 188 

a PHRED score of at least 15 and a length of at least 20 base pairs. While a minimum PHRED 189 
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score of 15 may include some reads with low quality, we found that most bases across all 190 

samples in SchildkrautB and SchildkrautW had a quality score greater than 30 (Supplemental 191 

Figure 3). We quantified paired-end reads with Salmon (version 1.4.0) (20) using GRCh38 192 

release 95. We used the seqBias and gcBias flags to correct for sequence-specific biases. We also 193 

used the recommended rangeFactorizationBins parameter value 4, which improves quantification 194 

accuracy on difficult-to-quantify transcripts. We then filtered out low-expression genes by 195 

excluding genes with a median expression of 0 within a dataset (SchildkrautB: 10,620 genes 196 

removed, SchildkrautW: 10,410 genes removed). We library-size normalized samples using 197 

upper quantile normalization. This normalization matches the 85th percentile across samples to 198 

correct for library size differences across samples.  199 

Overview of comparator study populations 200 

Consistent with the data processing pipeline used by Way et al. (7), we included data 201 

from the TCGA (platform: AffymetrixHT_HG-U133A), Yoshihara (platform: AgilentG4112F), 202 

and Tothill (platform: AffymetrixHG-U133Plus2) datasets included in the R package 203 

curatedOvarianData (21), and additional data from the dataset <Mayo= (GEO Accession: 204 

GSE74357, platform: AgilentG4112F). All gene expression data generated from these studies 205 

was derived from fresh frozen tumor tissue. Using the R package doppelgangR (22), we 206 

identified four more duplicate pairs across studies than found previously (7) and one pair of 207 

duplicate samples in SchildkrautW.  208 

Clustering Methods 209 

We performed clustering analyses by modifying the pipeline from Way et al. (7) for 210 

inclusion of RNA-Seq data. Briefly, for K-means clustering, we used the R package cluster 211 

(version 2.0.6) (23), and for non-negative matrix factorization (NMF), we used the R package 212 
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NMF (version 0.20.6) (24). We identified the top 1,500 genes with the largest Median Absolute 213 

Deviance (MAD) from each of the six datasets (SchildkrautB, SchildkrautW, TCGA, Mayo, 214 

Yoshihara, and Tothill), then used their union set of 4,355 genes for clustering (Supplemental 215 

Table 1). Consensus clusters for both K-means and NMF were identified using multiple random 216 

starts for each value of K=2-4 (K-means starts: 100; NMF starts: 10). Each dataset was clustered 217 

independently using the same set of genes.  218 

We compared the similarity of clusters across datasets and clustering methods using the 219 

same approach as Way et al. (7). We used significance analysis of microarray (SAM) (25,26) to 220 

get cluster-specific vectors of moderated t-scores; this provided us with gene-specific expression 221 

patterns of each cluster within each dataset. We restricted to genes that were assayed and 222 

expressed across all datasets, which we denote as <common genes'' (Supplemental Table 2). 223 

Using these 8,360 <common genes'', we compared clusters across: (1) datasets, and (2) clustering 224 

methodologies by calculating the Pearson correlation between two vectors of moderated t-scores. 225 

To use this approach on the RNA-Seq datasets, we log10(x+1) transformed the normalized 226 

counts to more closely match the data distribution of the microarray datasets. We performed a 227 

simulation study to examine SAM9s performance on log10 transformed counts relative to 228 

DESeq29s performance on raw counts and found comparable performance (Supplemental Note 229 

1).  230 

Additionally, we compared the similarity of clusters in a global and aligned principal 231 

components analysis (PCA) projection. We filtered the datasets to only include the MAD genes 232 

used in our clustering pipeline, then within-sample scaled the expression values to ensure 233 

comparative ranges of expression across all datasets. We log10(x+1) transformed the RNA-Seq 234 

expression values before scaling to better match the RNA-Seq and microarray data distributions. 235 
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After normalization, we concatenated the datasets to calculate a global PCA projection. We then 236 

subtracted each dataset's total centroid from each dataset's cluster centroid to align each dataset 237 

such that it was centered at the origin of the PCA projection. This allowed us to compare the 238 

relative differences between each cluster across all datasets.  239 

Survival analyses by cluster 240 

We generated Kaplan-Meier survival curves to visualize overall survival and subtype-241 

specific survival within each dataset. We used Cox proportional hazards (PH) models to 242 

calculate hazard ratios (HR) and 95% confidence intervals (CIs) quantifying the differences in 243 

survival across HGSC subtypes. For five of the six datasets (SchildkrautB, SchildkrautW, 244 

TCGA, Mayo, Tothill), Cox PH models were adjusted for three factors that independently 245 

influence survival: age (in 5-year age groups), stage (I, II, III and IV), and debulking status 246 

(optimal debulking, suboptimal or missing debulking status). Yoshihara et al. did not provide 247 

information on age at HGSC diagnosis, so models for this dataset were adjusted for stage and 248 

debulking status only.  249 

Cluster comparison between pipeline runs and consensusOV 250 

To ensure that our run of the updated Way et al. (7) pipeline was producing similar 251 

results to those from previously published subtype predictors, we compared the assigned cluster 252 

labels for each case in the TCGA, Mayo, Yoshihara, and Tothill datasets. To quantify the 253 

similarity between pipeline results, we rephrased the cluster comparison problem as a prediction 254 

problem. The ground-truth labels were the previously published cluster IDs (7) or consensusOV 255 

(27) predictions for each case, and the predicted labels were our newly assigned cluster labels. 256 

consensusOV version 1.16.0 was run using default parameters and no significance filtering. We 257 
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used balanced accuracy as the metric for comparing current and published labels due to 258 

variations in cluster sizes. Balanced accuracy is defined in the following equations.  259 

��������	��������	 = 	 (�����������	 + �����������	)	/	2 260 

����������� = 	
������	��	����	���������

������	��	����	���������	 + 	������	��	�����	���������
 261 

����������� = 	
������	��	����	���������

������	��	����	���������	 + 	������	��	�����	���������
 262 

Sensitivity analysis of K-means cluster assignments 263 

K-means is sensitive to outliers and local minima; therefore, we quantified the stability of 264 

the cluster labels when using a subsample within each dataset. First, we removed any samples 265 

that were more than 1.5x the interquartile range from the first or third quartiles in the first five 266 

PCs. Using the remaining samples, we subsampled 80% of the samples within each dataset and 267 

re-ran K-means clustering. We then matched the new cluster labels to the original cluster labels 268 

using a greedy approach. We matched labels by finding the cluster IDs with the highest sample 269 

overlap. We did this iteratively, removing each cluster from consideration once its matched 270 

cluster ID was assigned. 271 

Data Availability Statement 272 

We provide all software under the BSD 3-Clause License. We include scripts for the 273 

analyses presented in this manuscript, including RNA-Seq quantification, quality control, 274 

clustering, and figure generation. To support reproducibility, we provide code to recreate the 275 

environments and re-run both the RNA-Seq data analysis 276 

(https://github.com/greenelab/hgsc_rnaseq_cluster/) and our updated clustering pipeline 277 

(https://github.com/greenelab/hgsc_rnaseq_clustering_pipeline/). All derived expression data are 278 

publicly available and included in Supplemental Tables 6 and 7.  279 
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Results 280 

Data quality 281 

For both SchildkrautB and SchildkrautW, we further excluded samples due to possible 282 

technical artifacts (Supplemental Tables 3 and 4). In SchildkrautB and SchildkrautW, 14 and 4 283 

cases were re-sequenced, respectively, due to insufficient read depth, and the transcriptomic 284 

profiles from the first sequencing attempt were excluded. After resequencing, all18 cases 285 

attained a read depth comparable to the other sequenced samples and progressed to the next step 286 

of the quality control pipeline (Supplemental Figures 1B and 2B).  All other samples in both 287 

datasets were considered high quality, with over 83.3% of reads having a base quality of at least 288 

30 (Supplemental Figure 3). After normalization, read count distributions were similar across 289 

sequencing batches, including samples previously identified by the sequencing core as low-290 

quality (Supplemental Figure 4C-H). However, a small subset of samples had lower-than-291 

expected read counts. To account for this, we removed all samples where the median normalized 292 

read count was below 925 or where the bottom 25th quantile read count for a sample was below 293 

30. This additional read count filter removed 10 SchildkrautB cases and 5 SchildkrautW cases 294 

(Supplemental Figure 4A-B). The final technical exclusion for SchildkrautB and SchildkrautW 295 

removed samples flagged by doppelgangR (22) as having overly similar expression patterns, 296 

suggesting they originated from the same tumor. Only SchildkrautW had a pair of samples 297 

identified as too similar (NCO0557 and NCO0625).  298 

Following the SchildkrautB and SchildkrautW technical exclusions, we applied the Way 299 

pipeline exclusions to the TCGA, Mayo, Yoshihara, and Tothill datasets, and we applied 300 

doppelgangR exclusions to all datasets. The sizes of our final analytic data sets were as follows: 301 

SchildkrautB (n=262); SchildkrautW (n=309); TCGA (n = 499; phs000178) (5); Mayo (n = 377; 302 
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GSE74357) (9); Yoshihara (n = 255; GSE32062.GPL6480) (28), and Tothill (n = 241; 303 

GSE9891) (6).  304 

Validation of updated clustering pipeline 305 

We updated an HGSC subtyping pipeline (7) that previously identified clusters across 306 

four microarray studies from the United States, Japan, and Australia. While most of our pipeline 307 

was the same, we used balanced accuracy to quantify the similarity in output between pipelines. 308 

Balanced accuracy for our K-means clusters was consistently g0.91 across all datasets for K=2-4 309 

(Supplemental Figure 5). The limited differences that arose were primarily due to changes in 310 

stochastic elements of the clustering methods and software packages, such as differences in 311 

computing environments, random seeds, and package versions. Another source of variation 312 

between the output of the pipelines was the addition of the Schildkraut datasets since the genes 313 

used for clustering must be shared across all datasets and have a high MAD in at least one 314 

dataset (Methods). After adding the Schildkraut datasets, 893 genes that were previously 315 

denoted as common were reclassified as MAD genes, 609 MAD genes were re-classified as 316 

common genes, and 911 genes were removed from consideration. A Venn diagram of the 317 

removed genes is provided in Supplemental Figure 6.  318 

To ensure that clustering outcomes were robust across methods, we compared the clusters 319 

from two different clustering methods: K-means and NMF. We derived a gene expression pattern 320 

for each cluster using the significance analysis of microarray (SAM) moderated t-score 321 

(Methods). Using this cluster-specific gene expression pattern, we calculated the Pearson 322 

correlation between moderated t-scores for clusters identified by each method. We found 323 

extremely high cluster concordance in all datasets between the clusters identified by NMF and 324 

K-means when we selected two and three clusters. We saw diminished concordance between 325 
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methods when we used four clusters. Clusters in all datasets (except the Mayo dataset for K=4) 326 

had the highest concordance with the matched cluster along the diagonal (Supplemental Figure 327 

7). Since K-means clustering is sensitive to outliers, we additionally ran K-means clustering in 328 

subsets of 80% of the data and found that, in all datasets, the majority of samples maintained 329 

their same cluster label in more than 50% of the subsampled reclusterings (Supplemental 330 

Figure 8). 331 

Our final clustering validation was to compare our output to output from another external 332 

HGSC subtype classifier, consensusOV (27). consensusOV combines four methods (5,6,8,9,29) 333 

into a consensus classifier. Since consensusOV can only assign samples to the four Verhaak-334 

defined clusters, we only compare our K-means results for K=4. We found that our subtype calls 335 

were very similar to the consensusOV calls across all microarray datasets, with a minimum per-336 

class balanced accuracy of 0.72 (Supplemental Table 5). We saw more discordance between 337 

our calls and consensusOV when we compared RNA-Seq samples, with per-class balanced 338 

accuracy ranging from 0.589-0.818 (Supplemental Table 5). 339 

Gene expression patterns in the self-identified Black study population compared with other study 340 

populations 341 

Expression patterns for each cluster were summarized in two ways, first by plotting the 342 

principal components of normalized and aligned centroids in each dataset, and second, using 343 

SAM-moderated t-scores (7). In both approaches, we sought to determine if the relative cluster 344 

distances for each individual dataset were consistent across datasets. In our principal components 345 

(PC)-based approach, we normalized and projected all datasets into a shared PC space, then 346 

centered them at the origin of the space. For K=3, PC2 and PC3 could separate each cluster 347 

(Figure 1a). For K=4, PC2 and PC3 could not independently separate each cluster, but, together, 348 
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could differentiate them (Figure 1b). Furthermore, in the first three PCs, the SchildkrautB 349 

dataset did not cluster away from any other datasets, and clustered closely with the 350 

SchildkrautW, TCGA, and Tothill datasets.  351 

In our second, complementary approach, we compared differential gene expression 352 

between clusters by calculating the Pearson correlation for each cluster9s SAM-moderated t-353 

score across pairs of datasets. Figure 2 compares the cluster-specific gene expression pattern 354 

between the SchildkrautB cases and cases from the other five datasets. For K=3, SchildkrautB 355 

cluster-specific gene expression was highly correlated with cluster-specific gene expression 356 

across all datasets, and showed the strongest correlations with SchildkrautW cluster-specific 357 

gene expression. This provides strong evidence that the derived clusters from Black cases are the 358 

same as the derived clusters from White and Japanese cases. A high correlation between clusters 359 

was also found when performing pairwise comparisons among all six datasets (Supplemental 360 

Figure 9). Similar to Way et al. (7), we found that the correlation of cluster-specific gene 361 

expression patterns was diminished when using four, as opposed to three, clusters to describe the 362 

data. This was evident when comparing SchildkrautB to each of the five other populations 363 

(Figure 2B vs. Figure 2A) and when comparing gene expression patterns across all possible 364 

pairs of datasets (Supplemental Figure 10 vs. Supplemental Figure 9).   365 

Subtype distributions and characteristics by study population 366 

We mapped the K-means clusters with K=4 to the four TCGA-derived HGSC subtypes to 367 

compare the frequency of subtypes across datasets and evaluate how cancer characteristics vary 368 

by subtype. The immunoreactive subtype was more common (39% vs 23-28%), and the 369 

differentiated subtype less common (7% vs 22-31%) in the self-identified Black study population 370 

when compared to the White and Japanese study populations (Figure 3). In analyses restricted to 371 
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SchildkrautB and SchildkrautW, FIGO stage differed by HGSC subtype among both Black 372 

(p=0.040) and non-Hispanic White individuals (p=0.009); those with differentiated HGSC were 373 

more likely to have a lower FIGO stage at diagnosis (Table 1). Immune infiltration also differed 374 

by HGSC subtype, particularly among Black individuals (p=0.001 for CD3+ T cells; p=0.045 for 375 

CD3+/CD8+ suppressor T cells; Table 1). In both Black and White individuals, immune 376 

infiltration was higher for tumors categorized as mesenchymal or immunoreactive and lower for 377 

tumors categorized as proliferative.  378 

Survival patterns for clusters 379 

Overall HGSC survival varied by study (Supplemental Figure 11, p-value for test of 380 

heterogeneity in a stage-adjusted model <0.001), though patterns of subtype-specific survival 381 

were generally similar across studies (Figure 4). Multivariable-adjusted hazard ratios and 95% 382 

CIs indicated that, when compared to individuals with mesenchymal tumors, those with 383 

immunoreactive tumors had better survival in most (SchildkrautB HR=0.79 [0.55, 1.13]; 384 

SchildkrautW HR=0.86 [0.62, 1.19]; Mayo HR=0.54 [0.39, 0.75]; Yoshihara HR=0.65 [0.39, 385 

1.09]; Tothill HR=0.54 [0.31, 0.95]), but not all (TCGA HR=1.01 [0.69, 1.49]) study populations 386 

(Table 2). Meanwhile, the risk of death among those with proliferative HGSC was not 387 

statistically significantly different from the risk of death among those with mesenchymal tumors 388 

in any study population (Table 2), and it was close to the null value of 1.00 in both SchildkrautB 389 

(HR=0.98 [0.66, 1.46]) and SchildkrautW (HR=1.05 [0.70, 1.57]). The risk of death among those 390 

with differentiated HGSC was not statistically significantly different from the risk of death 391 

among those with mesenchymal tumors in five of the six study populations, and was lower in the 392 

Mayo study population (HR=0.61 [0.44, 0.84]; Table 2).  393 
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Discussion 394 

We performed a cross-platform and cross-population analysis of HGSC, including four 395 

existing datasets, plus newly generated RNA-Seq gene expression data from 262 Black and 309 396 

White HGSC cases. When comparing RNA-Seq data from the 309 White cases to microarray 397 

gene expression data from the predominantly White populations that comprise the Tothill and 398 

TCGA study populations, we observed high cluster stability within each dataset when advancing 399 

from K=2 to K=4 (Supplemental Figure 8) and consistent cluster-specific gene expression 400 

profiles across datasets (Supplemental Figures 9 and 10). This indicates that similar HGSC 401 

gene expression clusters can be defined using combined data from array-based technologies in 402 

fresh frozen tissue and RNA-seq technologies in FFPE tissue. We also observed consistent 403 

cluster composition (Figure 1) and gene expression profiles when comparing Black HGSC cases 404 

to White and Japanese HGSC cases (Figure 2). This indicates that HGSC gene expression 405 

clusters are consistent across Black, White, and Japanese individuals, so it is unlikely that racial 406 

differences in HGSC gene expression patterns are a key driver behind poorer HGSC survival in 407 

Black populations. 408 

Our interest in determining how an existing HGSC subtype clustering pipeline performs 409 

with RNA-Seq data was motivated by the increasing use of RNA-Seq technology to interrogate 410 

cancer gene expression (30). Previously published HGSC subtype clustering approaches were 411 

designed around array-based gene expression data (537,9,28,31), and while array-based and 412 

RNA-Seq technologies observe the same underlying biological processes, the data they produce 413 

follow different data distributions (32,33). This is most clear in the methodological differences 414 

between array-based and RNA-Seq differential gene expression methods (34337). Here, we 415 

demonstrated that, despite the difference in data distributions generated by array-based and 416 
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RNA-Seq technologies, the Way et al. (7) subtype pipeline built for array-based gene expression 417 

data can be applied to normalized and log-transformed RNA-Seq data. The high cluster 418 

correlations across all four array-based datasets using fresh frozen tissue and both RNA-Seq 419 

datasets using FFPE tissue indicate that the delineation of HGSC subtypes is agnostic to 420 

sequencing technology and fresh frozen versus FFPE tissue. 421 

As done in previous studies, we assigned all cases to one of the four TCGA-derived 422 

HGSC subtypes; however, as was previously reported in Way et al. (7), we observed that cluster-423 

specific gene expression was more concordant across datasets when clusters were assigned using 424 

K=2 or K=3 compared to K=4. This was most evident when comparing each dataset9s cluster-425 

specific expression profiles to the cluster-specific expression profiles across all of the other 426 

datasets (Figure 2, Supplemental Figures 9 and 10). When considering K=3, the largest off-427 

diagonal correlation we observed over all datasets was 0.07 (Supplemental Figure 9). In 428 

contrast, for K=4 we found much larger positive off-diagonal correlations for the clusters 429 

observed in the array-based TCGA, Mayo, Yoshihara, and Tothill datasets, with the largest per-430 

dataset correlations ranging from 0.19 to 0.33 (Supplemental Figure 10). We also observed 431 

large positive off-diagonal correlations for the RNA-Seq-based SchildkrautB and SchildkrautW 432 

datasets, with the largest per-dataset correlations ranging from 0.17 to 0.34 (Supplemental 433 

Figure 10). Since cluster-specific gene expression was more concordant for K=2 and K=3 versus 434 

K=4 for all datasets, we encourage future studies to test whether a number other than four best 435 

represents HGSC subtypes. Our results are consistent with a model where either two HGSC gene 436 

expression axes (e.g., mesenchymal-like and immune) or a set of three HGSC subtypes (e.g., as 437 

derived using K=3) may more effectively describe the biological variation in HGSC gene 438 

expression than the four subtypes most commonly seen in the literature.  439 
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Beyond methodological advances, our work also provides strong evidence that HGSC 440 

subtypes can be reproduced among Black HGSC cases and that Black, White, and Japanese 441 

HGSC cases share similar subtype-specific gene expression profiles. At increasing values of K, 442 

we observed patterns in cluster composition among Black HGSC cases that were consistent with 443 

those observed among White and Japanese HGSC cases (Figure 1, Supplemental Figure 8). 444 

Further, we observed strong correlations between cluster-specific gene expression in Black cases 445 

and cluster-specific gene expression in White and Japanese cases, especially when comparing 446 

clusters defined using K=2 and K=3 (Figure 2). Patterns of subtype-specific survival were also 447 

generally consistent across populations. When compared to mesenchymal HGSC, the risk of 448 

death was similar for proliferative and differentiated cases, and lower, but not statistically 449 

significantly lower, for immunoreactive cases both in SchildkrautB (HR=0.79 [0.55, 1.13]) and 450 

SchildkrautW (HR=0.86 [0.62, 1.19], Table 2, Figure 4).  451 

The primary difference we observed when comparing HGSC subtypes in Black 452 

individuals (i.e., cases in SchildkrautB) to HGSC subtypes in all other study populations was that 453 

more Black HGSC cases had gene expression profiles consistent with the TCGA 454 

immunoreactive subtype (39% compared to 23%-28%) and fewer Black HGSC cases had gene 455 

expression profiles consistent with the TCGA differentiated subtype (7% compared to 22%-31%; 456 

Figure 3). Differences in the Tothill, C1-C6, gene expression subtype signatures for Black 457 

(n=29) versus White (n=156) ovarian cancers were observed previously, though in different 458 

proportions (17), so it is possible that there exists true variation in the proportion of HGSC 459 

subtypes for Black versus non-Black HGSC cases. However, it is also possible that variations in 460 

study design across the six study populations contributed to the different subtype distributions 461 

that we observed. For example, case-control studies like the AACES and NCOCS are unable to 462 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2023. ; https://doi.org/10.1101/2023.11.01.565179doi: bioRxiv preprint 

https://paperpile.com/c/8W751m/dJHO
https://doi.org/10.1101/2023.11.01.565179
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

enroll cases with rapidly fatal HGSC (15). This could have skewed the observed subtype 463 

distribution for Black cases toward a greater proportion of less aggressive, immunoreactive 464 

tumors, and artificially inflated estimates of overall survival in the SchildkrautB study population 465 

(Supplemental Figure 11), as has been posited previously (15).  466 

A key contribution of this study was that we were able to update a previously published 467 

subtype clustering pipeline to accept either array-based gene expression data or RNA-Seq data 468 

and validate our modifications. We also created the first large RNA-Seq dataset of HGSC in self-469 

identified Black cases, consisting of 262 high-quality expression profiles. This dataset allowed us 470 

to compare the expression profiles of HGSC subtypes in Black cases against other study 471 

populations, and it provided an opportunity to evaluate differences in subtype frequency and 472 

survival in Black HGSC cases compared to non-Black HGSC cases. An important limitation of 473 

this study was that we lacked adequate data to explore whether the observed racial variation in 474 

the proportions of gene expression subtypes and survival outcomes was due to biological, 475 

sociodemographic, or access-to-care differences.  476 

In summary, we have updated an existing HGSC gene expression subtype classifier to be 477 

compatible with both array-based gene expression data and RNA-Seq data. This advancement 478 

will facilitate reproducible HGSC subtyping for research purposes and is available for use in 479 

future studies. We have also demonstrated that the HGSC subtypes generated by our classifier 480 

generalize to racially diverse populations, and we have indicated that HGSC subtype-specific 481 

gene expression and subtype-specific survival are consistent across Black, White and Asian 482 

study populations. Given our findings, we expect that a clinical HGSC gene expression assay 483 

would benefit prognostication and treatment strategies similarly for women from multiple racial 484 

and ethnic backgrounds.  485 
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Table 1. Characteristics of the Schildkraut study populations, by subtype 

  Mesenchymal Proliferative Immunoreactive Differentiated p-value Mesenchymal Proliferative Immunoreactive Differentiated p-value 

 Schildkraut Black Schildkraut White 

Case count 79 63 101 19  106 40 84 79  

Age (%)           

Under 40 1 (1.3) 2 (3.2) 2 (2.0) 1 (5.3)  4 (3.8) 0 (0.0) 1 (1.2) 2 (2.5)  

40-44 8 (10.1) 2 (3.2) 6 (5.9) 3 (15.8)  2 (1.9) 1 (2.5) 7 (8.3) 6 (7.6)  

45-49 9 (11.4) 5 (7.9) 14 (13.9) 2 (10.5)  6 (5.7) 5 (12.5) 10 (11.9) 9 (11.4)  

50-54 17 (21.5) 8 (12.7) 13 (12.9) 3 (15.8)  17 (16.0) 2 (5.0) 17 (20.2) 13 (16.5)  

55-59 8 (10.1) 16 (25.4) 25 (24.8) 4 (21.1)  16 (15.1) 9 (22.5) 17 (20.2) 16 (20.3)  

60-64 16 (20.3) 9 (14.3) 16 (15.8) 1 (5.3)  20 (18.9) 13 (32.5) 17 (20.2) 13 (16.5)  

65-69 6 (7.6) 9 (14.3) 15 (14.9) 2 (10.5)  24 (22.6) 1 (2.5) 9 (10.7) 8 (10.1)  

70-74 12 (15.2) 8 (12.7) 7 (6.9) 1 (5.3)  17 (16.0) 9 (22.5) 6 (7.1) 12 (15.2)  

75+ 2 (2.5) 4 (6.3) 3 (3.0) 2 (10.5) 0.30 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0.024 

FIGO Stage (%)           

I   5 (6.3) 4 (6.3) 13 (12.9) 7 (36.8)  1 (0.9) 1 (2.5) 6 (7.1) 10 (12.7)  

II  8 (10.1) 6 (9.5) 7 (6.9) 3 (15.8)  5 (4.7) 1 (2.5) 2 (2.4) 4 (5.1)  

III 60 (75.9) 49 (77.8) 74 (73.3) 8 (42.1)  97 (91.5) 36 (90.0) 73 (86.9) 59 (74.7)  

IV 4 (5.1) 3 (4.8) 6 (5.9) 0 (0.0)  3 (2.8) 2 (5.0) 3 (3.6) 2 (2.5)  

Missing 2 (2.5) 1 (1.6) 1 (1.0) 1 (5.3) 0.040 0 (0.0) 0 (0.0) 0 (0.0) 4 (5.1) 0.009 

Debulking (%)           

Optimal 33 (41.8) 24 (38.1) 45 (44.6) 8 (42.1)  28 (26.4) 14 (35.0) 23 (27.4) 26 (32.9)  

Suboptimal 25 (31.6) 15 (23.8) 21 (20.8) 2 (10.5)  8 (7.5) 3 (7.5) 2 (2.4) 4 (5.1)  

Missing 21 (26.6) 24 (38.1) 35 (34.7) 9 (47.4) 0.34 70 (66.0) 23 (57.5) 59 (70.2) 49 (62.0) 0.59 

Neoadjuvant 

chemotherapy (%)           

No 68 (86.1) 54 (85.7) 85 (84.2) 17 (89.5)  106 (100.0) 40 (100.0) 84 (100.0) 79 (100.0) NA 

Missing 11 (13.9) 9 (14.3) 16 (15.8) 2 (10.5) 0.94      

Proportion CD3+  

T cells (%) 4.24 (4.68) 1.51 (3.18) 3.88 (4.54) 1.04 (1.24) 0.001 2.46 (2.36) 0.72 (1.25) 4.35 (6.55) 2.24 (2.20) 0.053 

Proportion 

CD3+/CD8+ 

Suppressor T cells 

(%)  1.38 (2.30) 0.52 (1.80) 1.42 (2.33) 0.32 (0.53) 0.045 1.15 (1.18) 0.22 (0.30) 2.39 (4.48) 1.16 (1.21) 0.084 
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Table 2. Subtype distribution and risk of death by study population 

Study and molecular subtype Case count (%) Model 1 HRa (95% CI) Model 2 HRb (95% CI) 

Schildkraut Black    

Mesenchymal 79 (30.2) (ref) (ref) 

Proliferative 63 (24.0) 1.13 (0.76, 1.67) 0.98 (0.66, 1.46) 

Immunoreactive 101 (38.5) 0.83 (0.59, 1.19) 0.79 (0.55, 1.13) 

Differentiated 19 (7.3) 0.87 (0.42, 1.83) 0.83 (0.40, 1.72) 

Schildkraut White    

Mesenchymal 106 (34.3) (ref) (ref) 

Proliferative 40 (12.9) 1.00 (0.67, 1.49) 1.05 (0.70, 1.57) 

Immunoreactive 84 (27.2) 0.85 (0.61, 1.18) 0.86 (0.62, 1.19) 

Differentiated 79 (25.6) 1.01 (0.73, 1.40) 0.98 (0.70, 1.36) 

TCGA    

Mesenchymal  125 (25.1) (ref) (ref) 

Proliferative 102 (20.4) 0.82 (0.56, 1.20) 0.84 (0.57, 1.23) 

Immunoreactive 116 (23.2) 0.92 (0.63, 1.35) 1.01 (0.69, 1.49) 

Differentiated 156 (31.3) 0.93 (0.67, 1.28) 1.03 (0.74, 1.44) 

Mayo    

Mesenchymal  105 (27.9) (ref) (ref) 

Proliferative 79 (21.0) 0.81 (0.59, 1.12) 0.92 (0.66, 1.28) 

Immunoreactive 93 (24.7) 0.54 (0.39, 0.75) 0.54 (0.39, 0.75) 

Differentiated 100 (26.5) 0.63 (0.46, 0.87) 0.61 (0.44, 0.84) 

Yoshiharac    

Mesenchymal  89 (34.9) (ref) (ref) 

Proliferative 30 (11.8) 1.35 (0.77, 2.35) 1.48 (0.86, 2.57) 

Immunoreactive 71 (27.8) 0.62 (0.37, 1.04) 0.65 (0.39, 1.09) 

Differentiated 65 (25.5) 1.16 (0.73, 1.85) 1.36 (0.85, 2.19) 

Tothill    

Mesenchymal  75 (31.1) (ref) (ref) 

Proliferative 45 (18.7) 0.77 (0.43, 1.37) 0.79 (0.44, 1.42) 

Immunoreactive 67 (27.8) 0.55 (0.32, 0.95) 0.54 (0.31, 0.95) 

Differentiated 54 (22.4) 0.64 (0.37, 1.12) 0.65 (0.37, 1.14) 
a Multivariable model adjusted for age (in 5-year age groups) and stage (I, II, III, IV)  
b Multivariable model adjusted for age (in 5-year age groups), stage (I, II, III, IV), and debulking status (optimal, 

not optimal) 
c  Yoshihara dataset does not include information on age, so multivariable models are not adjusted for age in this 

dataset 
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 641 

Figure 1. Principal Components Analysis (PCA) plots of cluster centroids for each dataset, after 642 

dataset alignment. Panel a compares K-means cluster centroids (K=3), and Panel b compares K-643 

means cluster centroids (K=4) for each dataset considered in this study. We find that the 644 

principal components separate each cluster centroid in a consistent way across almost all 645 

datasets. For K=3, PC2 and PC3 are both able to separate each cluster independently, but for 646 

K=4 the combination of PC2 and PC3 are needed to separate each cluster. Furthermore, for K=3, 647 

we see that the Yoshihara and Mayo datasets have centroids that are much higher in PC1 than the 648 

other datasets. This trend continues for the Mayo dataset when K=4, in all PCs.  649 

  650 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2023. ; https://doi.org/10.1101/2023.11.01.565179doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565179
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 

 651 

Figure 2. Significance analysis of microarray (SAM) moderated t-score Pearson correlation 652 

heatmaps of clusters across datasets. Panel a compares K-means clusters (K=3) between 653 

SchildkrautB and every other dataset considered in this study. Across each dataset we find a 654 

strong positive correlation with the clusters in SchildkrautB, with matched cluster correlations 655 

ranging from 0.37-0.86, and mismatched cluster correlations ranging from -0.65-0.03. Panel b 656 

performs the same comparison, but for K=4. In this comparison, we see much more 657 

inconsistency between matched clusters, with some mismatched clusters having a higher 658 

correlation than some matched clusters. 659 
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 661 

Figure 3. Distribution of subtypes across datasets.  662 
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 664 

Figure 4. Kaplan Meier survival curves comparing subtype-specific survival by dataset.  665 
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