

1 **Shoot phenotyping of cytokinin receptors mutants revealed fluorescence parameters as early
2 markers of drought stress.**

3

4 Ján Šmeringai^{1,2†}, Jiří Rudolf^{1,2,3†}, Martin Trtílek⁴, Petra Procházková Schrumpfová^{1,2}, Markéta
5 Pernisová^{1,2*}.

6

7 ¹Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research,
8 Faculty of Science, Masaryk University, Brno, Czech Republic

9 ²Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology,
10 Masaryk University, Brno, Czech Republic

11 ³Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of
12 Sciences, Brno, Czech Republic

13 ⁴PSI (Photon Systems Instruments), spol. s r.o., Drásov, Czech Republic

14 † These authors contributed equally to this work.

15 * Correspondence: pernisova@sci.muni.cz

16

17

18 Email addresses:

19 Ján Šmeringai: Jan.Smeringai@ceitec.muni.cz; Jiří Rudolf: 484194@mail.muni.cz; Martin Trtílek:
20 martin@psi.cz; Petra Procházková Schrumpfová: schpetra@sci.muni.cz; Markéta Pernisová:
21 pernisova@sci.muni.cz

22 Date of submission: 30 November 2023

23 Number of figures: 5; number of supplementary figures: 3; number of supplementary tables: 8;
24 number of supplementary datasets: 1.

25 Word count: 4785

26

27

28

29

30

31

32

33

34

35 **Highlight**

36 Fluorescence parameters can serve as early markers of drought stress before morphological
37 alterations appear. Shoot phenotyping of cytokinin receptor mutants showed drought resistance in
38 the *ahk2 ahk3* double mutant.

39

40 **Abstract**

41 Plant phenotyping represents an increasing promise in plant research by providing a complex
42 picture of plant development and fitness. In research focused on various environmental stresses,
43 phenotyping can uncover markers that can sensitively assess the stress impact in very early stages
44 before morphological changes. PlantScreen™ System represents a tool dedicated for shoot and root
45 phenotyping in soil enabling high-precision, high-throughput phenotyping of small, mid-size and large
46 plants. The system offers wide range of sensors providing the number of non-invasive analyses of
47 morphological and physiological parameters as well as of pigments, water, or metabolite content.

48 In our work, we combined phenotyping approaches to determine morphological changes and
49 the status of the photosynthetic apparatus in *Arabidopsis* plants exposed to drought stress. Focused
50 on morphology, the rosette area became smaller after seven days of drought stress when compared
51 to control conditions. Interestingly, cytokinin signalling mutant *ahk2 ahk3* revealed drought resistance
52 compared to other genotypes. The fluorescent parameters showed higher sensitivity even in wild type.
53 Non-photochemical quenching displayed values connected to reduced activity of photosynthetic
54 apparatus after five days of drought stress. Taken together, acquired fluorescence parameters can
55 serve as a marker of drought stress detection before morphological alterations occur.

56

57 **Keywords**

58 cytokinin signalling, drought stress, fluorescence parameters, morphological parameters,
59 PlantScreen™ System, shoot phenotyping

60

61

62

63

64

65

66

67

68

69

70

71

72 Introduction

73 The green revolution in the first half of the 20th century, helped increase world food security
74 sharply, which allowed higher standards of living, and a rapid increase in the global population. These
75 accomplishments, in their turn, gave rise to many new challenges. Intensive agriculture has resulted in
76 soil exhaustion, soil degradation and, decrease in biodiversity (Tsiafouli *et al.*, 2015). Alongside that,
77 the climate change is increasing the frequency of extreme weather phenomena such as heatwaves,
78 droughts or heavy precipitation (Rummukainen, 2012). Plants, being sessile organisms, are inevitably
79 exposed to these weather fluctuations, which can result in the disruption of their physiology and
80 morphology. Since food production is vastly dependent on proper functioning of the plant body, these
81 challenges pose a major barrier for sufficient food production. Therefore, while basic research should
82 aim at uncovering the defence mechanisms used by plants to withstand stress conditions (Hu and
83 Xiong, 2014), applied research should urgently focus on breeding (and introduction into agricultural
84 practice) of more crop varieties resistant to biotic or abiotic stresses.

85 Non-destructive and repeatable methods that could be used on large-scale experiments is
86 absolutely essential to achieve these stated goals. Recent technical advances have provided us with a
87 broad set of tools used for plant body phenotyping, which is defined as the set of methodologies and
88 protocols used to precisely measure plant growth, architecture, and composition at different scales, in
89 controlled environments and in the field (Fiorani and Schurr, 2013; Yang *et al.*, 2014; Milella *et al.*,
90 2019; Mertens *et al.*, 2021). The necessity to perform these measurements in large numbers, means
91 that high-throughput phenotyping is now seen as a major bottleneck in the association of crop
92 improvement and information regarding phenotype data (Feng *et al.*, 2017). This problem was partially
93 resolved with several integrating technologies over the past two decades. However, the high
94 dimensional datasets provided by phenotyping methods are a challenge for data processing and
95 evaluation, which has become a new bottleneck in the whole process (Minervini *et al.*, 2016). Deep
96 learning has been proposed as a solution to alleviate this issue (reviewed in (Arya *et al.*, 2022)).

97 Measuring the kinetics of chlorophyll *a* fluorescence is a useful non-invasive method for
98 evaluating the condition of the photosynthetic apparatus, and is often used in phenotyping (Sperdouli
99 *et al.*, 2021; Shomali *et al.*, 2023). Energy absorbed by photosystem II can be utilized in three main
100 ways: i) it can be used up in photosynthetic processes (photosynthetic quenching); ii) dissipated as
101 heat (non-photochemical quenching) or iii) re-emitted as fluorescence back into the environment
102 (reviewed in (Roháček and Barták, 1999)). Rapid light curve is a method of measuring induced
103 fluorescence kinetics often used for assessing stress in plants in controlled environments or in the field
104 (Rascher *et al.*, 2000; Kalaji *et al.*, 2016; Sánchez-Reinoso *et al.*, 2019). To measure the rapid light curve,
105 the plants are exposed to gradually increasing intensities of light. This allows us to obtain useful
106 parameters such as maximum quantum yield (F_v/F_m), actual quantum yield of photosystem II (QY) or
107 non-photochemical quenching (NPQ). RGB image analysis is used for phenotyping the plants. This
108 method can be based on the analysis of the colour of individual pixels to provide us with useful
109 information about the morphology of the observed plants (Pavicic *et al.*, 2017). Simultaneously, the
110 data can also be used for the analysis of the presence and composition of individual pigments in the
111 plant shoot (Bednářková *et al.*, 2023). Higher-resolution and more complex information can be
112 obtained by combining pigment analysis, chlorophyll fluorescence and morphology. The PlantScreen™
113 System is capable of high-throughput, high-precision, and non-invasive measurement of the plant
114 phenotype, combining RGB analysis of shoot morphology and colour spectrum, measurement of
115 chlorophyll fluorescence kinetics and image analysis of the root system. Such a combination of
116 phenotyping techniques provides comprehensive information about the plant – comprising
117 information on growth and development, physiological status and fitness, yield and biomass
118 production or reactions to stresses.

119 Biotic and abiotic stress are some of the main causes for decrease in agronomical yield (Pandey
120 *et al.*, 2017; Kopecká *et al.*, 2023) and therefore, breeding has focused on the development of new
121 approaches to improve crop stress tolerance (González Guzmán *et al.*, 2022). These approaches
122 require a robust understanding of plant physiology in terms of stress responses and especially plant
123 hormone signalling, which controls plant development and ultimately, crop yield (Sah *et al.*, 2016;
124 Wang *et al.*, 2021; Castro-Camba *et al.*, 2022; Mandal *et al.*, 2022a).

125 Cytokinins play an important role in stress pre-adaptations and stress tolerance (Mandal *et al.*,
126 2022a,b). Modulation of cytokinin biosynthesis leads to increased drought tolerance (Reguera *et al.*,
127 2013). Furthermore, cytokinins are crucial regulators of hydrotropism in several species, which
128 suggests even tighter link between drought stress resistance and cytokinin signalling (Chang *et al.*,
129 2019; Miyazawa and Takahashi, 2020).

130 Cytokinin signalling employs the multistep phosphorelay which helps the plant to integrate
131 various environmental stimuli, including abiotic stresses (Skalak *et al.*, 2021). In Arabidopsis, the
132 multistep phosphorelay comprises three families of proteins – histidine kinases (AHKs), His-containing
133 phosphotransfer proteins (AHPs) and response regulators (ARRs), which can be functionally and
134 structurally sub-divided into three groups (A-ARRs, B-ARRs, C-ARRs) (reviewed in (Kieber and Schaller,
135 2018). The AHKs represent a diverse group of proteins which can act in both a cytokinin-dependent or
136 independent manner depending on differences in their domain composition (Spíchal *et al.*, 2004; Tran
137 *et al.*, 2007; Desikan *et al.*, 2008; Deng *et al.*, 2010). The cytokinin receptors AHK2-4 (Inoue *et al.*, 2001;
138 Higuchi *et al.*, 2004; Nishimura *et al.*, 2004) possess the cytokinin-binding CHASE domain
139 (Anantharaman and Aravind, 2001) followed by a transmembrane domain, a histidine kinase domain
140 and a receiver domain. Upon activation, AHKs autophosphorylate on their histidine kinase domain and
141 trigger the His-Asp phosphotransfer toward the conserved Asp residue of their receiver domains.
142 The phosphate group is further transferred to AHPs and finally to B-ARRs – transcription factors, which
143 are activable by phosphorylation (Sakai *et al.*, 2000; Argyros *et al.*, 2008) and A-ARRs, which act as
144 major negative feedback links in the signalling pathway (To *et al.*, 2004; Kim, 2008). The precise
145 functioning of C-ARRs has not been elucidated yet. They presumably act as AHP-phosphatases with a
146 positive impact on abiotic stress tolerance, as it was shown that the expression of ARR22 increases
147 when exposed to drought and freezing (Gattolin *et al.*, 2006; Horak *et al.*, 2008; Kang *et al.*, 2013).

148 Regarding stressors, cytokinin receptors AHK2, AHK3, and AHK4 negatively regulate drought
149 and dehydration tolerance, as seen by the phenotypes of their corresponding mutants (Tran *et al.*,
150 2007; Kang *et al.*, 2012). Similarly, AHPs and B-ARRs act as partially redundant negative regulators of
151 drought tolerance (Nishiyama *et al.*, 2013; Nguyen *et al.*, 2016). Complementarily, the negative
152 components of cytokinin signalling – A-ARRs and C-ARRs have been observed to positively affect water-
153 deficiency stress tolerance (Wohlbach *et al.*, 2008; Kang *et al.*, 2013; Huang *et al.*, 2018). Interestingly,
154 although the cytokinin receptors seem to act as negative regulators of drought tolerance, the
155 cytokinin-independent AHK1 is a positive effector of water-deficiency tolerance and is a potential
156 osmosensor (Tran *et al.*, 2007; Wohlbach *et al.*, 2008; Kumar *et al.*, 2013). Further, AHK5 negatively
157 regulates plant tolerance to osmotic and drought stress, possibly due to its role in ROS-dependent
158 stomatal closure and crosstalk with ethylene and ABA signalling (Iwama *et al.*, 2006; Desikan *et al.*,
159 2008; Pham and Desikan, 2012; Pham *et al.*, 2012; Szmitskowska *et al.*, 2021).

160 In summary, with respect to drought tolerance, the positive executors of multistep
161 phosphorelay seem to act as negative regulators, while the quenching components seem to act as
162 positive regulators. Although the components are partially redundant, their function does not overlap
163 completely. This presents a conundrum which can potentially be solved by precise phenotyping
164 combined with appropriate data analysis, which is now possible using the PlantScreen™ Compact

165 System. Since the system generates large amounts of data, the main concern is data
166 multidimensionality – with all the associated advantages and disadvantages. The main concerns
167 include data visualization, reduction of dimensionality and further simplification without losing
168 information.

169 In our work, we implemented and optimised a drought stress protocol on an assembly of
170 *Arabidopsis* wild type (Col) and single and double mutants in the cytokinin receptors AHK2 and AHK3.
171 Aiming for proper data analysis, several methods of multivariate statistical analysis were employed
172 covering clustering analysis, ordination methods like principal component analysis (PCA), and a
173 machine learning approach (random forest) to enable the extraction of important parameters. Our
174 results indicate that the drought impact can be significantly differentiated from control within 5 days
175 of drought stress using fluorescence parameters. Non-photochemical quenching and qN were
176 identified as the most important parameters and indicated the involvement of protective mechanisms
177 of the photosynthetic apparatus during drought stress. Comparing wild type and cytokinin receptor
178 mutants, parameters from all three inspected categories (morphology, color segmentation and
179 chlorophyll fluorescence) showed a high degree of importance. Altogether, combining multiple
180 phenotyping approaches and advanced data analysis furnishes a comprehensive set of information
181 about plant morphology, physiology, and fitness during drought stress. Fluorescence parameters were
182 shown to be useful markers of the very early phases of drought stress before morphological changes
183 are apparent. This protocol can now be applied to study other stresses, cultivation conditions or
184 genotypes.

185

186 **Materials and methods**

187 Plant material

188 All plant material used was *Arabidopsis thaliana*. The Nottingham *Arabidopsis* Stock Centre
189 (NASC) provided seeds for the wild type accession Col (N60000). The mutant lines have been described
190 previously: *ahk2-5*, *ahk3-7*, *ahk2-5 ahk3-7* (Riefler *et al.*, 2006). The AGI codes (www.arabidopsis.org)
191 are: *AHK2* (AT5G35750), *AHK3* (AT1G27320).

192 Growth conditions

193 For plant cultivation we used the Klasmann Substrate TS3 fine (416, Pasič) and 7x7x6.5 cm pots
194 (Pasič). Seeds were germinated in one pot and were replanted after 7 days in the very centre of a single
195 pot. Plants were grown in cultivation chambers – phytotrons (CLF Plant Climatics or PSI - Photon
196 Systems Instruments), under long-day conditions (16 hours light/8 hours dark) at 21°C with a light
197 intensity of 150 $\mu\text{Mm}^{-2} \text{s}^{-1}$ and 40-60% relative humidity. Watering was adjusted according to control
198 or drought stress conditions (Fig. 1A).

199 PlantScreen™ Compact System

200 *Hardware*

201 The phenotype data were acquired using the PlantScreen™ Compact System (developed by
202 Photon Systems Instruments, Drásov, Czech Republic), which is designed for digital phenotyping and
203 cultivation of small and mid-size plants up to 0.8 m in height (e.g., *Arabidopsis thaliana*, cereals,
204 strawberries, turfgrass, young soybean, tobacco, corn, etc.). In our version the transport of plants is
205 carried out manually in trays that can be adapted to carry different patterns for single or multiple
206 plants grown in individual pots or *in vitro* (e.g., multiwell plates) providing flexibility of use with

207 numerous different species, or with a single species throughout its growth cycle. The entire system is
208 built in a light isolated box with active internal ventilation, which does not transmit any ambient light
209 from outside. For precise morphometric imaging and correct measurement of chlorophyll
210 fluorescence, dark/light adaptation is included. Environmental parameters are monitored using
211 temperature, humidity, and light sensors.

212 The system is equipped with several imaging sensors:

213 (i) Dual (monochromatic and RGB) camera for top view RGB and chlorophyll fluorescence imaging –
214 the PSI DUAL CAM is fitted with two 12.36-megapixel CMOS sensors, a monochromatic Sony
215 IMX253LLR-C for chlorophyll fluorescence measurement and a colour Sony IMX253LQR-C sensor for
216 RGB structural imaging. These sensors deliver a resolution of 4112×3006 pixels as well as global
217 shutter feature. The sensors are extremely sensitive and are real megapixel CCD substitutes that
218 produce sharp and low-noise images. The monochromatic sensor runs in binning mode with $2056 \times$
219 1503 resolution, which means four times higher sensitivity.

220 (ii) RGB camera for side view imaging (linear scan) – the UI-5580CP is fitted with a 5-megapixel CMOS
221 sensor. About half an inch in size, the sensor delivers a resolution of 2560×1920 pixels as well as rolling
222 and global start shutter features. The various shutter modes produce sharp, low-noise images.

223 (iii) RGB camera for root imaging – the PSI BW is fitted with a 12.36-megapixel CMOS sensor (Sony
224 IMX253LQR-M). The sensor delivers a resolution of 4112×3006 pixels as well as global shutter feature.

225 Software

226 The comprehensive software package with remote accessibility comprises the PlantScreen™
227 Server application, the PlantScreen™ Scheduler client, a PlantScreen™ Database and a PlantScreen™
228 Data Analyzer. The package provides control over all imaging modules, as well as database
229 configuration, data acquisition and image analysis. A set of computed morphological parameters is
230 available: area, perimeter, compactness, rotational mass symmetry (RMS), roundness, isotropy,
231 eccentricity, slenderness of leaves (SOL) and convex hull area (Fig. 1B). A detailed definition of the
232 morphological parameters has been published previously (Pavlicic *et al.*, 2017).

233 Several protocols for fluorescence measurement are available:

234 (i) F_v/F_M protocol – protocol providing two measured parameters F_0 and F_M , and one calculated
235 parameter, maximum QY. Detailed definition of parameters can be found in supplementary data
236 (Supplementary Table S1).

237 (ii) Kautsky slow induction kinetics – during this protocol, plants in the dark-adapted state are exposed
238 to actinic irradiation, which results in a rapid increase in fluorescence culminating in maximum F_p value.
239 With ongoing exposition to actinic light, the photosynthetic apparatus accommodates to the radiation
240 via the involvement of secondary photosynthetic processes which results in reduced fluorescence until
241 transient fluorescence (F_T) is reached (Roháček and Barták, 1999). Out of the calculated parameters
242 F_v , QY_{max} and Rfd are available. Detailed definition of parameters can be found in supplementary
243 data (Supplementary Table S2).

244 (iii) Quenching analysis protocol – Kautsky kinetics supplemented with saturation pulses. The plants in
245 the dark-adapted state are firstly exposed to a saturation pulse and afterwards, actinic light is switched
246 on. Saturation pulses are then applied on plants in the light-adapted state throughout the
247 measurement. This protocol provides a broad spectrum of measured (F_0 , F_M , F_p , F_{M_Ln} , F_{M_LSS} , F_{T_Ln} ,
248 F_{T_Lss}) and calculated (F_v , F_{0_Ln} , F_{0_Lss} , F_{v_Ln} , F_{v_Lss} , F_{q_Ln} , F_{q_Lss} , QY_{max} , F_v/F_{M_Lss} , F_v/F_{M_Ln} ,

249 QY_Ln, QY_Lss, NPQ_Ln, NPQ_Lss, qN_Ln, qN_Lss, qP_Ln, qP_Lss, qL_Ln, qL_Lss, Rfd_Ln, Rfd_Lss)
250 parameters. Detailed definition of parameters can be found in supplementary data (Supplementary
251 Table S3).

252 (iv) Rapid light curve – plants in the dark-adapted state are exposed to a saturation pulse and
253 subsequently exposed to low intensity actinic irradiation. After a certain time, another saturation pulse
254 is applied on plants in the light-adapted state. This saturation pulse is followed by exposure to actinic
255 light whose intensity has been increased by a specific amount (White and Critchley, 1999). This process
256 and the increase of radiation intensity is repeated six times. This analysis provides a broad range of
257 measured (F_0 , F_M , F_P , F_T) and calculated (F_v , F_M _Lss, F_T _Lss, F_0 _Lss, F_v _Lss, F_q _Lss, QY_max, F_v/F_M _Lss,
258 QY_Lss, NPQ_Lss, qN_Lss, qP_Lss, qL_Lss, ETR_Lss) parameters. Detailed definition of parameters can
259 be found in supplementary data (Supplementary Table S4).

260 Acquiring RGB parameters

261 The plants in pots were arranged in transportable trays, each of which held 20 plants (4x5
262 template). The top RGB camera was used to acquire the morphology parameters. The obtained images
263 were pre-processed via the PlantScreen™ Data Analyzer software to get RGB and binary data. These
264 data were used to calculate the morphological parameters (Fig. 1B).

265 The RGB data were used for colour segmentation analysis. Each pixel was indexed assigned to
266 the colour map according to its R, G, B channel ratio. These values were categorised into groups
267 according to the hues (Awlia *et al.*, 2021). The R, G, B values were grouped into 9 hues (R110, G111,
268 B90; R90, G98, B58; R72, G84, B58; R73, G86, B36; R57, G71, B46; R59, G71, B20; R45, G55, B36; R45,
269 G54, B13; R34, G38, B22) (Fig. 1B).

270 Acquiring fluorescence parameters

271 The physiological status of plant lines was assessed by measuring the induced fluorescence of
272 chlorophyl *a* (Fig. 1B). We used Rapid Light Curve protocol, which is suitable for detecting stress
273 affecting plants (Flexas *et al.*, 1999). The measurement was performed at a working distance of 430
274 mm on plants in the dark-adapted state. Arabidopsis plants were kept in the dark for 7 minutes. Firstly,
275 the measuring light was applied for 5 seconds to acquire information about the minimum level of
276 fluorescence in the dark-adapted state (F_0). A saturation pulse was applied for 800 ms, its source is a
277 LED, which has cool white 6500K spectrum, corresponding almost exactly to daylight, and the intensity
278 of the saturation pulse was $1256 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$. This pulse with high irradiation intensity is used to
279 determine the maximum fluorescence in the dark-adapted state (F_M). The actinic light intensities of
280 the individual steps were 15.6, 193.4, 396, 602, 810, and $1013 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$. Each step begins with a
281 800 ms saturation pulse in order to measure maximum fluorescence in the light-adapted state
282 (F_M _Lss). Subsequently, the actinic light is switched on for 60 seconds, and at the end of each step the
283 transient fluorescence (F_T) is measured. The acquired data of the measured fluorescence were
284 transferred to the PlantScreen™ Data Analyzer, which provided the calculated fluorescence
285 parameters.

286 Data analysis and statistical analysis (Fig. 1C)

287 Correlograms

288 The graphical representation of variable correlations was used to detect clusters of partial
289 redundant variables present in the dataset since the variable correlation is one of the prerequisites
290 for efficient principal component analysis (Supplementary Fig. S1). In order to achieve a more robust
291 representation, Spearman correlation coefficient was used, and the representation was colour-coded

292 using the viridis colour palette. Further, the variables were hierarchically clustered based on their
293 correlations using average agglomeration. The correlograms were made using the *stats* package (R
294 Core Team, 2023).

295 *Principal component analysis (PCA)*

296 PCA as one of the ordination methods was used to visualise the data and simplify its
297 multivariate nature. The data were scaled and subset into fluorescence-based and RGB-imaging-based
298 parameters, the latter consisting of morphometric parameters and colour segmentation variables. The
299 number of principal components was set based on a scree plot evaluation (Supplementary Fig. S2A, B).
300 The quality of the representation was evaluated by \cos^2 (Supplementary Fig. S2C, D). For the sake of
301 clarity, biplot was used as the final representation only in the demonstrative case. The package
302 *factoextra* (Kassambara and Mundt, 2020) was used. For visualisation of differences between defined
303 groups (genotype vs. stress conditions), the centroids with ellipses representing their 95% confidence
304 interval were depicted in the plots.

305 *Random forest*

306 A random forest algorithm was used for estimating parameter importance, utilising
307 *randomForest* package (Breiman, 2001; Liaw and Wiener, 2002). The models were trained on the
308 subset data covering all measured and derived variables. The number of trees was set to 1000, each
309 split tested 9 variables (based on square root estimation). The variable importance was extracted to
310 enable prediction of stress conditions or genotype (i.e., classification model). The performance of the
311 model was tested by confusion matrices using randomly subset test data, which were not used for
312 model training (Supplementary Tables S5-S8). The 20 most important variables were visualised by *vip*:
313 *Variable Importance Plots* package (Greenwell and Boehmke, 2020) with estimated importance on the
314 main axis and colour coded mean decrease in gini.

315 *Hierarchical clustering*

316 In order to see similarities in the tested genotypes under stress conditions, the averaged values
317 for each group were clustered based on Euclidean distance.

318 *Time series plots*

319 The selected parameters are depicted as a time series for each genotype under both tested
320 conditions. The lines represent LOESS regressions with shaded 95% confidence interval. The images
321 were generated by *ggplot2* and *ggpubr* (Wickham, 2016; Kassambara, 2022).

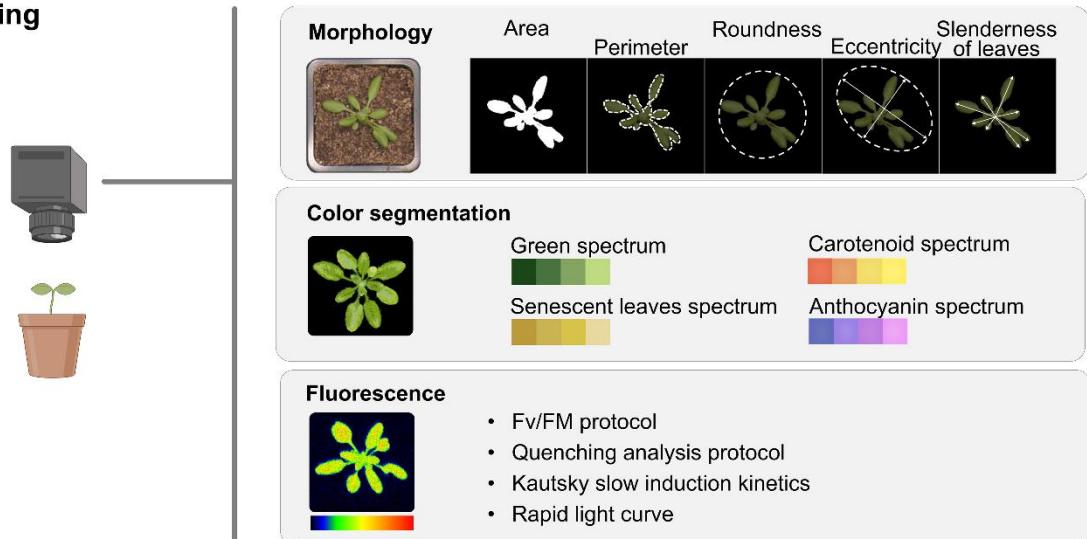
322 *Time point plots*

323 The selected parameters at representative time points are depicted by Tukey's boxplots. The
324 images were generated by *ggplot2* and *ggpubr*. The statistical significances were evaluated with a
325 Krustal-Wallis test and a post-hoc Dunn test. The significant differences were depicted using compact
326 letter display. The packages used for this were *rcompanion* (Mangiafico, 2023), *FSA* (Ogle *et al.*, 2023),
327 and *stats* (R Core Team, 2023).

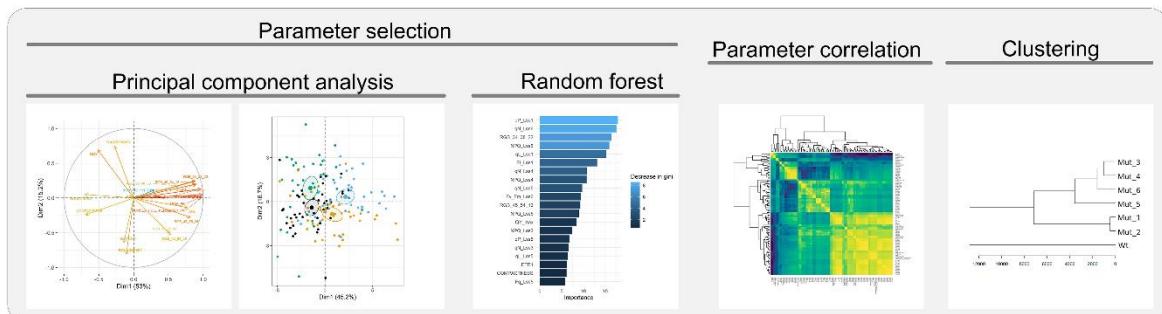
328 Data management, storage and access to users was managed in collaboration with the Biological Data
329 Management and Analysis Core Facility (Svoboda *et al.*, 2023).

A Abiotic / biotic stress

B Imaging



C Data analysis



330

331 **Fig. 1.** Drought stress experimental setup and phenotyping using PlantScreen™ Compact System. (A)
332 Potential abiotic or biotic stress is applied to plants. (B) Imaging by PSI DUAL CAM or by side RGB
333 cameras provides raw data used for calculating phenotype parameters. RGB cameras enable extraction
334 of morphological parameters (e.g., area, perimeter, roundness, eccentricity, slenderness of leaves) or
335 colour segmentation. Colour segmentation allows the definition of any colour from the RGB spectrum
336 and can detect senescent leaves or anthocyanins. Fluorescence camera allows imaging of the
337 chlorophyll fluorescence signal with various measuring protocols including F_v/F_M , quenching analysis,
338 Kautsky slow induction kinetics or rapid light curve. (C) Downstream analysis of the parameters based
339 on multidimensional principal component analysis or machine learning approach like random forest is
340 used to estimate the importance of morphological, colour or fluorescence parameters. Correlograms
341 utilizing Spearman rank correlation visualize correlating parameters. Further clustering of parameters,
342 such as genotypes, treatments, or stress conditions, helps identify the impact of the stresses on plants.
343 Created with BioRender.com.

344

345 **Results and discussion**

346 **Optimization of the drought stress experimental setup**

347 It is necessary to ensure precise regulation of water content in the substrate to determine the
348 effect of drought stress on the morphological and physiological aspects of plants. Cultivation
349 conditions were optimized to set the appropriate substrate humidity suitable for the drought stress
350 experimental protocol. The substrate was aliquoted at 50 g per each pot. The commercially available
351 substrate already had a humidity of 54%. After preparing the pots, we added 15 ml of water (10 ml
352 before replanting the seedlings and 5 ml afterwards) to keep the transplanted roots wet. Thus, the
353 overall humidity of the substrate reached approximately 65%. 11 days after sowing (DAS), the first
354 phenotyping was performed to verify uniformity of the observed parameters in plant lines before
355 applying drought stress. At this timepoint, both variants were equal in substrate water content. After
356 the first phenotyping, no more water was added to the substrate for the drought stress variant. The
357 phenotyping was then carried out three times per week at 14, 16, 18, 21, 23 and 25 DAS corresponding
358 to 3, 5, 7, 10, 12, 14 days of drought stress (DODS; Fig. 2A).

359 The effect of severe drought stress on overall plant body fitness has been studied intensively,
360 but the effect of mild and moderate drought stress is far less understood. In our optimized protocol
361 we concentrated on mild stress and the experiment was terminated when severe stress responses
362 began to appear. Mild and severe drought stress seem to activate different mechanisms. In drought
363 resistant barley exposed to mild drought stress, stomatal conductance was the main factor that limited
364 the rate of photosynthetic processes, while in case of severe drought light-dependent reactions were
365 structurally and biochemically impaired (Ghotbi-Ravandi *et al.*, 2014). Such processes limit the ability
366 of plant to produce biomass and result in yield reduction (Torres and Henry, 2018). Moreover, it seems
367 that there are no efficient mechanisms to resist moderate drought stress in *Arabidopsis*, as revealed
368 by the measurement of induced chlorophyll fluorescence, which showed a higher impact on
369 photosynthesis in mild and severe stress when compared to moderate stress. The mild stress reaction
370 was comparable to the severe stress effect (Sperdouli and Moustakas, 2012).

371

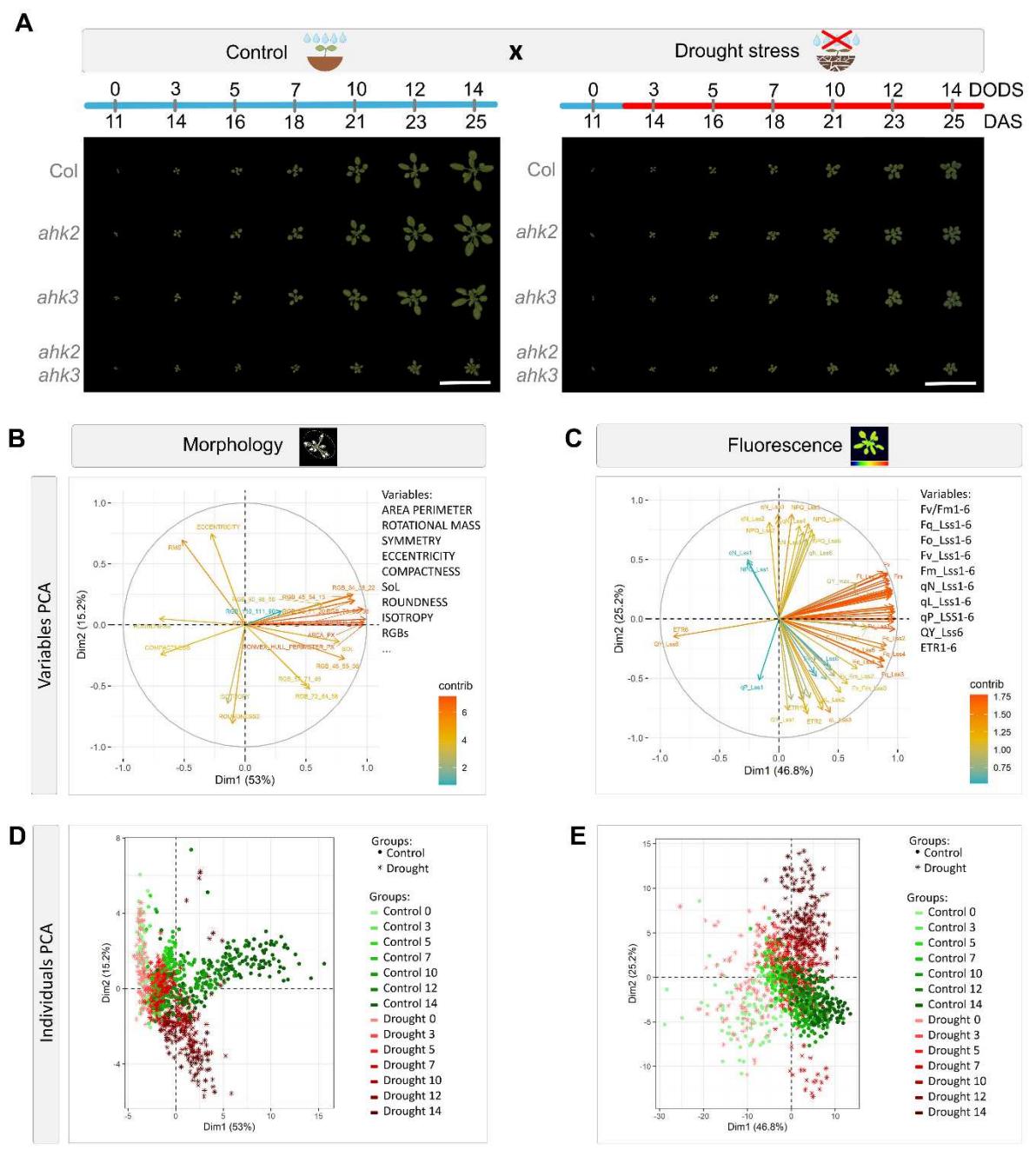
372 **The data set involves multiple collinear variables and shows global differences in stressed plants**

373 Our results revealed several parameters to be highly correlated (Supplementary Fig. S1). This
374 is especially valid for parameters acquired at a range of different light intensities (different LSSs).
375 Moreover, this multicollinearity can be explained by the fact that the dataset involves both directly
376 measured and calculated parameters and therefore a certain level of correlation can be expected
377 between the derived ones and their corresponding source.

378 Since PCA can effectively simplify the data with collinearity (Lafi and Kaneene, 1992), this
379 ordination method was selected for global data visualisation (Fig. 2B-E). Two models were created on
380 a dataset comprising all data points, where variables were divided into two groups based on their
381 acquisition origin. The first model was created on RGB-based variables, which involve morphometric
382 parameters and colour segmentation (Fig. 2B). The second model was created using fluorescence-
383 based parameters (Fig. 2C). Two principal components were selected for both models, which in both
384 cases cumulatively explained approximately 70% of the original variance. The contribution of each
385 parameter was evaluated (Fig. 2B,C).

386 Further, individual data points which represent measurements from a single plant at each time
387 point are depicted in the selected 2-component plane (Fig. 2D,E). The data points are colour-coded

388 with a light colour representing the experiment initiation and a progressively darker colour
 389 corresponds to progressing time. The non-stressed control is depicted in shades of green/points,
 390 whereas samples stressed by drought are depicted in shades of red/asterisks. The non-stressed and
 391 stressed clusters differentiated in the later phases of the experiment, which correspond to
 392 morphological, colour, and fluorescence changes which occurred in response to drought. In conclusion,
 393 it is possible to distinguish the global effects of drought stress on the plants. However, this
 394 methodology does not provide information about variable importance, which was further estimated
 395 applying a random forest approach.



396

397 **Fig. 2.** Measurement of morphological and fluorescence parameters in wild type (Col)
 398 and cytokinin receptor mutants (*ahk2*, *ahk3*, *ahk2 ahk3*). (A) Plants were exposed to drought stress and phenotyped
 399 for 14 days (0-14 DODS). The age of plants corresponds to days after sowing (DAS). Scale bar: 7 cm. (B,
 400 C) Charts of variable contribution to PCA models were built using (B) RGB-based parameters or (C)

401 fluorescence imaging. Variable labels are shown in simplified form. Detailed version is available as
402 supplementary data (Supplementary Figure S3). (D, E) In the corresponding space, single data points
403 are depicted showing global differences with progressing drought stress, generated from (D) RGB or
404 (E) fluorescence data.

405

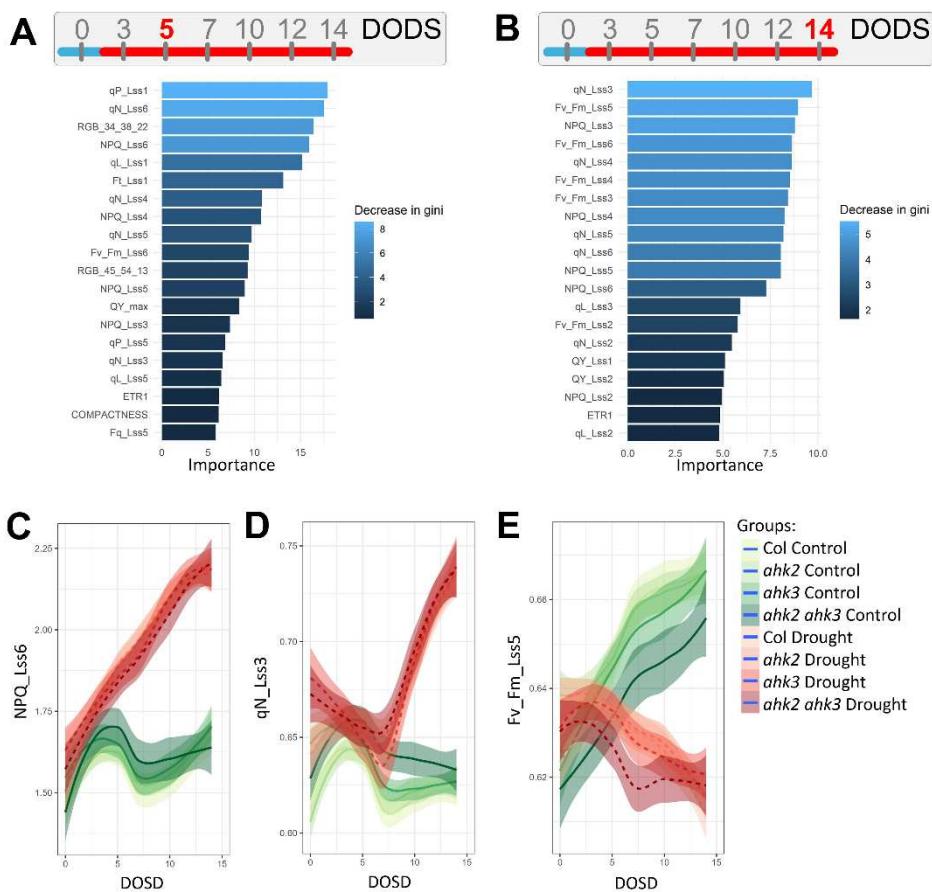
406 **Fluorescence parameters as markers of drought stress**

407 The random forest is a powerful machine learning algorithm which can be used for
408 classifications, regressions, and measurements of variable importance (Genuer *et al.*, 2010). We used
409 a random forest algorithm for the classification of drought stress conditions and subsequent
410 estimation of variable importance. The created models were used for parameter importance
411 evaluation, and not as predictors, thus the workflow was adjusted accordingly. The data set comprising
412 all time points was used as a training set for the classification model, which aimed to differentiate
413 between control and stressed plants across the tested lines (Col, *ahk2*, *ahk3*, and *ahk2 ahk3*). Error
414 rates of the model were 6.23% and 7.41% on the trained dataset and on the test dataset respectively
415 (Supplementary Table S5). This result shows that plants exposed to drought stress can be
416 differentiated from non-stressed controls.

417 We focused on the earliest time point where stressed plants were clearly differentiable from
418 controls. The model was therefore trained on a subset of data divided based on days since the start of
419 the stress treatment (0, 3, 5, 7, 10, 12, 14 DODS). Most importantly, the classification error was less
420 than 5% for plants after 5 DODS (2.27% train data, 0% test data; Supplementary Table S6) and it further
421 dropped to 0% at 14 DODS (0% train data, 0% test data; Supplementary Table S7), representing the
422 last measuring day. This hints that the impact of drought stress is likely clearly visible as early as 5 days
423 with a reasonably acceptable classification error which then further drops as drought-stressed plants
424 continue to diverge from the watered control. This is consistent with the PCAs (Fig. 2D, E) showing a
425 clear separability of stressed plants from the control at later timepoints. Based on the model, the
426 fluorescence parameters were selected as the most important parameters for stress distinction at 5
427 DODS. Interestingly, in the late phase of the experiment (14 DODS), the fluorescence parameters were
428 still evaluated by the model as the most important. This was very probably caused by the *ahk2 ahk3*
429 morphology *per se* and therefore the morphological parameters are probably not generally applicable
430 for such analyses. However, fluorescence parameters seem to be appropriate even for this type of
431 experiment and can serve as markers of drought stress.

432 The effect of drought stress on the physiological status of plants was evaluated by measuring
433 induced chlorophyll fluorescence. The random forest analysis showed that parameters associated with
434 the protective mechanisms of the photosynthetic apparatus [mainly NPQ and qN (Fig. 3A, B)] were
435 among the most important factors that explained the drought effect in plants both at 5 DODS and 14
436 DODS. NPQ is steady-state non-photochemical quenching, whereas qN is the coefficient of non-
437 photochemical quenching. Both, qN and NPQ point at the quenching mechanisms that play an
438 important role in the estimation of the absorbed energy that is consumed by protective mechanisms,
439 mainly through heat dissipation. NPQ started to increase after exposure to drought stress sooner (5
440 DODS; Fig. 3C) than qN (8 DODS; Fig. 3D). At both 5 and 14 DODS, qN measured under various light
441 intensities was more important in assessing the drought impact than NPQ (Fig. 3A, B). In higher plants
442 non-photochemical quenching is mainly based on the changing pH level in the thylakoid lumen, which
443 activates the xanthophyll cycle (Horton *et al.*, 2000; Müller *et al.*, 2001), and is therefore responsible
444 for the de-excitation of chlorophyll molecules in photosystem antennae (Havaux *et al.*, 2007). At higher
445 light intensities, NPQ is sensitive to the effect of drought stress (Yao *et al.*, 2018), which makes this

446 parameter a useful marker of the early signs of water deficit (Chou *et al.*, 2017). With increasing
 447 drought, defense mechanisms are activated to protect the photosynthetic machinery and NPQ values
 448 increase (Jia *et al.*, 2020). However, in case of intense and severe drought stress, the whole system
 449 collapses and NPQ decreases (Wang *et al.*, 2018). F_v/F_m _Lss5 is also among the parameters that can
 450 be used for estimating drought stress at 14 DODS. The F_v/F_m _Lss5 value started to decrease after 8
 451 DODS in stressed plants, whereas in control plants it kept increasing until the end of the experiment
 452 (Fig. 3E). F_v/F_m _Lss is defined as the maximum efficiency of photosystem II in the light-adapted state
 453 (Oxborough, 2004) and a decrease in this parameter points at the deteriorating condition of the
 454 photosynthetic apparatus. This decrease under abiotic stress was previously recorded *in vitro* (Wang
 455 *et al.*, 2018) and in substrate (Adhikari *et al.*, 2019).

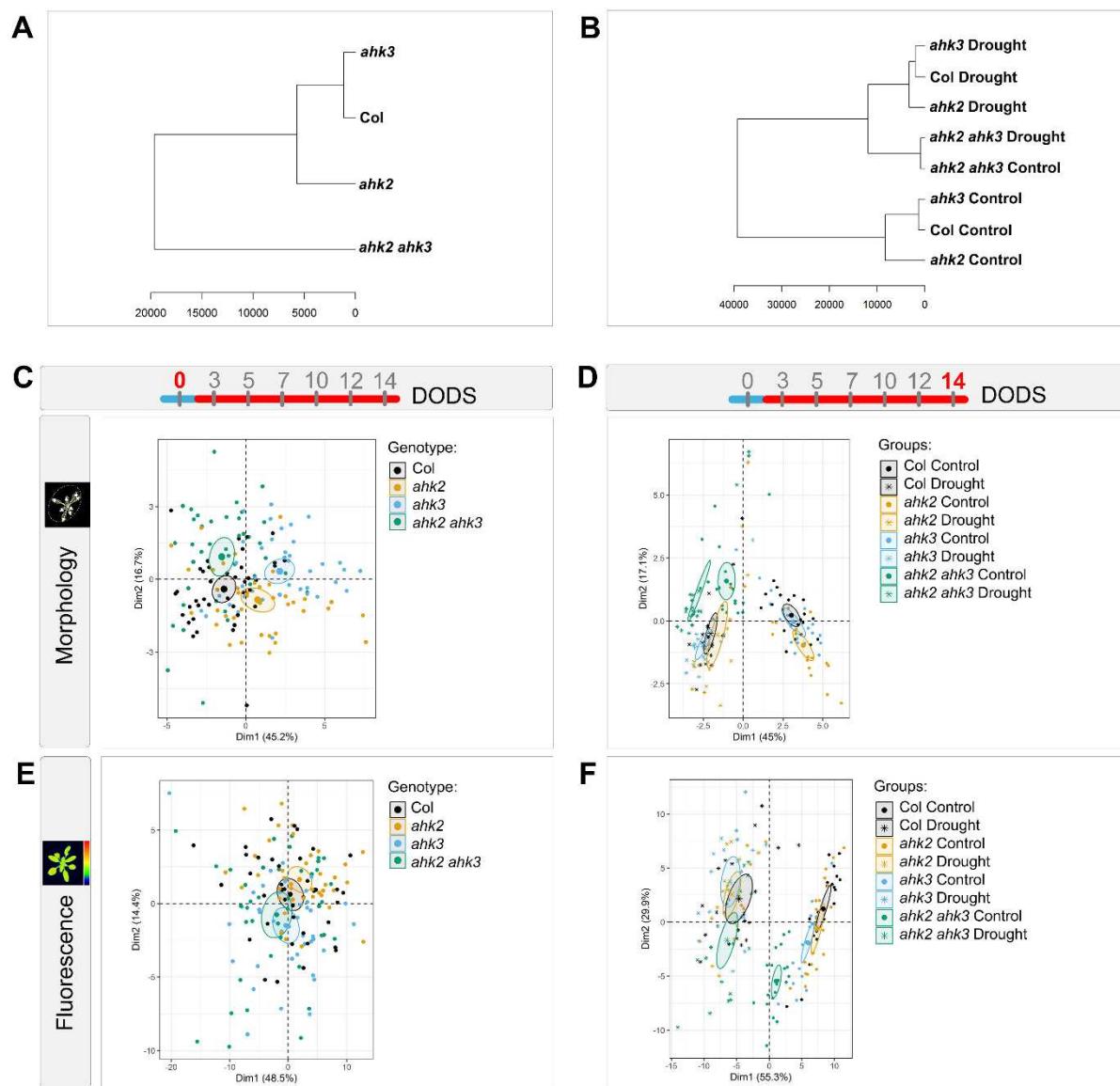


456
 457 **Fig. 3.** Random forest algorithm was used to identify the most important parameters at (A) 5 DODS
 458 and (B) 14 DODS with a color-coded mean decrease in gini. (C-E) Selected important variables are
 459 shown as they change during the drought stress in plants exposed to stress (shades of red) and in
 460 controls (shades of green). The lines depict LOESS models with a 95% confidence interval in
 461 corresponding shades.

462
 463 **Genotype and cultivation condition clustering reveals distinctive patterns.**
 464 To look for similarities or differences between the tested genotypes, the dataset was clustered
 465 with respect to either genotype or genotype in combination with stress condition (Fig. 4A, B). It was
 466 obvious that the biggest difference among the phenotype of the genetic lines is for *ahk2 ahk3*. *Col* is
 467 the most related to the *ahk3* mutant followed by the *ahk2* single mutant. When drought stress is

468 considered, the clustering has a similar fractality. The control and stressed plants belong to different
 469 clusters, except for *ahk2 ahk3* which exhibited only small differences between stressed and non-
 470 stressed plants (Fig. 4B). In this case, the *ahk2 ahk3* genetic contribution on phenotype is higher than
 471 the contribution of drought stress.

472 Principal component analysis was performed separately for morphological analysis comprising
 473 colour segmentation, and induced chlorophyll fluorescence analysis on the first (11 DAS/ 0 DODS) and
 474 the last (23 DAS/ 14 DODS) measurement of the experiment. As for morphology analysis (Fig. 4C), the
 475 first analysed phenotype at 11 DAS showed only small morphological differences between the
 476 genotypes, since the clusters partially overlap, but no overlaps were detected in the estimations of
 477 cluster centroid confidence intervals (depicted as ellipses). This suggests that there are small
 478 quantitative differences between the genotypes; nonetheless, the genotypes are not easily separable.
 479 Morphological data obtained at 23 DAS revealed a strong distinction between control and drought-
 480 stressed plants in the case of Col, *ahk2* and *ahk3* (Fig. 4D). However, no global differences in
 481 morphology among Col, *ahk2* and *ahk3* were detected using PCA. A different trend was observed in
 482 the case of the *ahk2 ahk3* double mutant, separated by the PCA analysis from other genotypes.



483

484 **Fig. 4.** Hierarchical clustering on whole dataset based on (A) genotypes or (B) genotypes in combination
485 with drought stress. (C-F) PCA models were built for (C, E) start of the experiment and (D, F) the end
486 of experiment to detect differences between genotypes at the selected time points. The models were
487 built using (C, D) RGB-based parameters or (E, F) fluorescence-based parameters. All charts show the
488 centroid of each defined group with its 95% confidence interval as a shaded ellipse.

489

490 No differences were observed in the PCA analysis of fluorescence parameters at 11 DAS/0
491 DODS (Fig. 4E), which points to a homogeneity in the rate of primary photosynthetic processes before
492 the drought stress. However, the measurement of induced chlorophyll fluorescence at 23 DAS/14
493 DODS revealed a strong distinction between well-watered and drought-stressed plants (Fig. 4F). The
494 PCA uncovered a linear separation between control and drought-stressed plants which fits with the
495 result obtained by training a random forest classifier on 14 DODS data showing 0% error rate
496 expected for linearly separable data. Taken together, we were not able to differentiate the individual
497 genotypes exposed to drought stress using PCA. However, in the control group, the cluster of *ahk2*
498 *ahk3* mutant was the most distant from other genotypes.

499 In principle, PCA does not substitute standard statistical methods for the evaluation of
500 differences between genotypes for single parameters, but it points out that the genotypes are very
501 likely not easily separable. This can be further supported by training a random forest classifier, which
502 exhibited approximately 25% error rate (28.91% train data; 25% test data; Supplementary Table S8) in
503 genotype estimation using the data from the last time point measurement. Since the classification
504 error on a random sample should be 75%, the model performed better than randomly generated data.
505 Although not precise, this estimation is better than random and can point out variables which are
506 important for such selection when their biological relevance is carefully evaluated (Fig. 5A).

507

508 **The *ahk* mutants exhibit several distinguishable phenotypes**

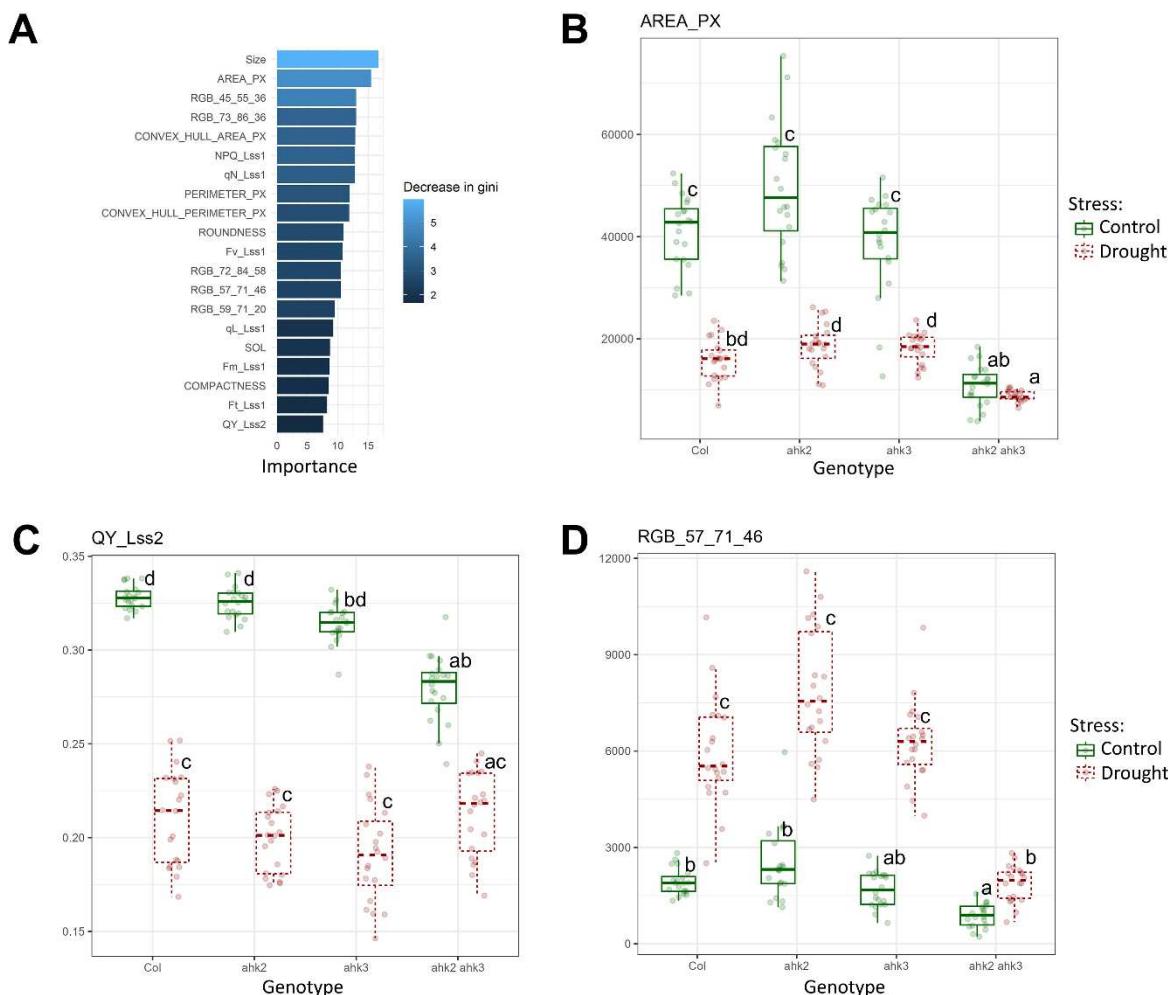
509 The random forest analysis showed that all categories of parameters (morphological,
510 fluorescence and colour segmentation) showed a high degree of importance for determination of
511 observed genotypes at 14 DODS (Fig. 5A). Apart from parameters suitable for drought stress distinction
512 (Fig. 3), morphological parameters were revealed to be the most important for genotypes distinction,
513 particularly area and size of the plant rosette, calculated as a sum of the pixels showing fluorescence
514 activity during fluorescence measurement. That may be the consequence of the phenotype of the
515 tested plant lines as the *ahk2 ahk3* double mutant displays a much smaller shoot compared to other
516 lines in general (Riefler *et al.*, 2006).

517 Unlike single mutants, *ahk2 ahk3* double mutant is known for its strong phenotype comprising
518 smaller shoot, shorter hypocotyl, compact rosettes with shortened petioles or affected leaf shape
519 (Nishimura *et al.*, 2004; Riefler *et al.*, 2006). At 14 DODS, no differences in rosette area among wild
520 type plants and single mutants were detected under both control and drought stress conditions (Fig.
521 5B). In control conditions *ahk2 ahk3* double mutant area is reduced when compared to other observed
522 plant lines. Such a difference in the *ahk2 ahk3* double mutant from other plant lines can be observed
523 also under drought conditions. We also examined the effect of drought on individual genetic lines.
524 Rosette area was reduced when control wild type and single mutants were compared to drought
525 exposed wild type and single mutants. There was no difference between control and drought exposed
526 *ahk2 ahk3* double mutant. Previous research suggests that rosette area can be used as a marker more

527 broadly. It was shown that it is a good determinant of the involvement of mutant lines in the plant
528 body response under various abiotic stresses (Awlia *et al.*, 2021).

529 Chlorophyll fluorescence provides information about the physiological status. Among our
530 results, the most important markers for plant genetic lines variance are NPQ and qN (Fig. 5A), which
531 reflect the proportion of the energy absorbed by the photosynthetic apparatus, that is used up by
532 defense mechanisms. Another important fluorescence parameter with a high degree of importance
533 was quantum yield measured under the effect of a light intensity that was moderately elevated when
534 compared to the cultivation conditions of plants. Quantum yield is one of the most often used
535 fluorescence parameters. Its value describes the amount of energy absorbed by photosystem II that is
536 used up in photosynthesis (Lazár, 2015). Under control conditions, no major differences were observed
537 among Col and single mutant plants. However, the quantum yield of the *ahk2 ahk3* double mutant was
538 reduced, when compared to wild type and *ahk2* cultivated under control conditions at 14 DODS (Fig.
539 5C), which points to the decreased ability of absorbed energy usage in linear electron transport in
540 primary photosynthesis. There was no difference in QY between *ahk3* and *ahk2 ahk3* in control
541 conditions (Fig. 5C). However, exposure to drought masked the differences among the used lines, and
542 there were no differences in quantum yield among plant genetic lines at 14 DODS. We also examined
543 the effect of drought stress on individual plant lines. When compared to plants grown under control
544 conditions, exposure to drought stress reduced the quantum yield of wild type and *ahk* single mutants.
545 With the *ahk2 ahk3* double mutant, there was no significant difference between plants grown under
546 control or drought conditions (Fig. 5C). The quantum yield often decreases in response to abiotic stress
547 and may act as a marker for evaluating the ability to resist abiotic conditions for various plant mutant
548 lines (Yao *et al.*, 2018) or crop varieties (Findurová *et al.*, 2023).

549 Color change is also a key determinant, using which we can predict the genotype of the
550 observed plant. The most important was hue R57 G71 B46 (Fig. 5A). This hue corresponds to a darker
551 color. This points at changes in the presence of photosynthetic pigments. No differences were
552 observed among wild type and single mutants under control conditions. The same result was detected
553 with wild type and single mutants exposed to drought stress. In *ahk2 ahk3* double mutant the R57 G71
554 B46 value was strongly decreased under drought stress conditions, when compared to other plant lines
555 (Fig. 5D). Under control conditions the R57 G71 B46 value for the *ahk2 ahk3* double mutant was
556 decreased only when compared to wild type and the *ahk2* single mutant. Drought stress increased the
557 R57 G71 B46 value in all observed plant lines. The presence of cytokinin has a strong effect on the
558 chlorophyll content of leaves (Richmond and Lang, 1957) and treatment with different types of
559 cytokinin modulated the chlorophyll *a*, chlorophyll *b* content as well as their ratio in cultivated apple
560 leaves *in vitro* (Dobránszki and Mendler-Drienyovszki, 2014). A strong decrease in chlorophyll (to
561 approximately 70% of wild type) was detected in the *ahk2 ahk3* double mutant (Riefler *et al.*, 2006).
562 However, studies linking color segmentation to the content of photosynthetic pigments are still
563 absent.



564

565 **Fig. 5.** (A) Random forest model was generated to reveal the most important parameters for genotype
 566 discrimination using data from 14 DODS. (C-D) Three parameters were selected – (B) one
 567 morphological - area, (C) one fluorescence-based - QY, and (D) one colour-segmentation-based –
 568 RGB_57_71_46. Lowercase letters in charts indicate significantly different groups as determined using
 569 Kruskal-Wallis test and post-hoc Dunn test ($p < 0.05$).

570

571 In conclusion, our results indicate that *ahk2* and *ahk3* show only low resistance to stress in the
 572 early phases of drought. The results seem to be partially different from previously published drought
 573 tolerant phenotype of *ahk2* and *ahk3* (Tran *et al.*, 2007; Kang *et al.*, 2012) which can be caused by
 574 different experimental setup. Previously published research dealt with long-term stress combined with
 575 recovery whereas our work focused on early stages of the drought stress.

576

577 Future Perspectives

578 Plant phenotyping with the help of state-of-the-art imaging techniques is a rapidly developing
 579 field that shows enormous potential in terms of the ability to recognize individual plant phenotypes
 580 that have improved resistance to both abiotic and biotic stresses. The new techniques being developed
 581 will provide more accurate information about how individual plants react to the applied stress and will
 582 further help us better understand a whole range of mechanisms that are responsible for the given

583 reaction. Kinetic imaging of chlorophyll fluorescence is a very sensitive method that provides a whole
584 range of information about plant physiology and fitness. There are also spectral analyses where, with
585 the help of hyperspectral cameras, we can obtain information about the composition of individual
586 pigments in plants or other metabolites. Raman spectroscopy then expands the spectrum of analysed
587 substances by including more complex organic compounds. X-ray tomography makes it possible to
588 investigate internal structures of the plant and monitor the morphology inside the observed objects.
589 Further, 3D modelling with the help of laser scanners, increases the accuracy of the 3D model and thus
590 the possibility of obtaining precise information about plant morphology. We can also expect that new
591 non-invasive sensors with higher sensitivity and precision will soon become available and will provide
592 more accurate information needed for plant phenotyping. Moreover, new developing AI approaches
593 will fundamentally enhance individual analyses. These new measurement techniques and analytical
594 methods will significantly improve our ability to uncover new plant phenotypes and traits associated
595 with environmental stresses.

596

597 **Supplementary data**

598 The following supplementary data are available at JXB online.

599 Fig. S1. The correlogram showing the data multicollinear nature.

600 Fig. S2. The supporting data for PCAs.

601 Fig. S3. The parameter contribution in PCA of global data.

602 Table S1. List and description of parameters obtained from FV/FM protocol.

603 Table S2. List and description of parameters obtained from Kautsky slow induction kinetics protocol.

604 Table S3. List and description of parameters obtained from Quenching analysis protocol.

605 Table S4. List and description of parameters obtained from Rapid light curve protocol.

606 Table S5. Confusion matrices for random forest for stress classification on total data.

607 Table S6. Confusion matrices for random forest for stress classification on 5 DODS.

608 Table S7. Confusion matrices for random forest for stress classification on 14 DODS.

609 Table S8. Confusion matrices for random forest for genotype classification on 14 DODS.

610 Dataset S1. Morphological, RGB and fluorescence data.

611

612 **Acknowledgements**

613 We would like to acknowledge the Plant Sciences Core Facility and Biological Data Management and
614 Analysis Core Facility of CEITEC Masaryk University (funded by ELIXIR CZ research infrastructure MEYS
615 Grant No: LM2023055) for their valuable technical support.

616

617 **Author contributions**

618 All authors conceptualized the project. JŠ performed the phenotyping experiments. JR analysed the
619 data. PPS prepared figures. All authors evaluated the data, wrote the manuscript, contributed to
620 reviewing the manuscript and approved the submitted version.

621

622 **Conflict of interest**

623 No conflict of interest declared.

624

625 **Funding**

626 This work was supported from European Regional Development Fund-Project “SINGING PLANT” (No.
627 CZ.02.1.01/0.0/0.0/16_026/0008446) funded by the Ministry of Education, Youths and Sports of the
628 Czech Republic through the National Programme for Sustainability II funds, and by Czech Science
629 Foundation project GA21-15841S to PPS.

630

References

Adhikari ND, Simko I, Mou B. 2019. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. *Sensors* **19**, 4814.

Anantharaman V, Aravind L. 2001. The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. *Trends in Biochemical Sciences* **26**, 579–582.

Argyros RD, Mathews DE, Chiang Y-H, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE. 2008. Type B Response Regulators of *Arabidopsis* Play Key Roles in Cytokinin Signaling and Plant Development. *The Plant Cell* **20**, 2102–2116.

Arya S, Sandhu KS, Singh J, Kumar S. 2022. Deep learning: as the new frontier in high-throughput plant phenotyping. *Euphytica* **218**, 47.

Awlia M, Alshareef N, Saber N, Korte A, Oakey H, Panzarová K, Trtílek M, Negrão S, Tester M, Julkowska MM. 2021. Genetic mapping of the early responses to salt stress in *Arabidopsis thaliana*. *The Plant Journal* **107**, 544–563.

Bednáříková M, Gauslaa Y, Solhaug KA. 2023. Non-invasive monitoring of photosynthetic activity and water content in forest lichens by spectral reflectance data and RGB colors from photographs. *Fungal Ecology* **62**, 101224.

Breiman L. 2001. Random Forests. *Machine Learning* **45**, 5–32.

Castro-Camba R, Sánchez C, Vidal N, Vielba JM. 2022. Plant Development and Crop Yield: The Role of Gibberellins. *Plants* **11**, 2650.

Chang J, Li X, Fu W, et al. 2019. Asymmetric distribution of cytokinins determines root hydrotropism in *Arabidopsis thaliana*. *Cell Research* **29**, 984–993.

Chou S, Chen J, Yu H, Chen B, Zhang X, Croft H, Khalid S, Li M, Shi Q. 2017. Canopy-Level Photochemical Reflectance Index from Hyperspectral Remote Sensing and Leaf-Level Non-Photochemical Quenching as Early Indicators of Water Stress in Maize. *Remote Sensing* **9**, 794.

Deng Y, Dong H, Mu J, Ren B, Zheng B, Ji Z, Yang WC, Liang Y, Zuo J. 2010. Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. *Plant Cell* **22**, 1232–48.

Desikan R, Horák J, Chaban C, et al. 2008. The Histidine Kinase AHK5 Integrates Endogenous and Environmental Signals in Arabidopsis Guard Cells. (M Grebe, Ed.). *PLoS ONE* **3**, e2491.

Dobránszki J, Mendler-Drienyovszki N. 2014. Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. *Journal of Plant Physiology* **171**, 1472–1478.

Feng H, Guo Z, Yang W, et al. 2017. An integrated hyperspectral imaging and genome-wide association analysis platform provides spectral and genetic insights into the natural variation in rice. *Scientific Reports* **7**, 4401.

Findurová H, Veselá B, Panzarová K, Pytela J, Trtílek M, Klem K. 2023. Phenotyping drought tolerance and yield performance of barley using a combination of imaging methods. *Environmental and Experimental Botany* **209**, 105314.

Fiorani F, Schurr U. 2013. Future Scenarios for Plant Phenotyping. *Annual Review of Plant Biology* **64**, 267–291.

Flexas J, Escalona JM, Medrano H. 1999. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. *Plant, Cell & Environment* **22**, 39–48.

Gattolin S, Alandete-Saez M, Elliott K, Gonzalez-Carranza Z, Naomab E, Powell C, Roberts JA. 2006. Spatial and temporal expression of the response regulators ARR22 and ARR24 in *Arabidopsis thaliana*. *Journal of Experimental Botany* **57**, 4225–4233.

Genuer R, Poggi J-M, Tuleau-Malot C. 2010. Variable selection using random forests. *Pattern Recognition Letters* **31**, 2225–2236.

Ghotbi-Ravandi AA, Shahbazi M, Shariati M, Mulo P. 2014. Effects of Mild and Severe Drought Stress on Photosynthetic Efficiency in Tolerant and Susceptible Barley (*Hordeum vulgare L.*) Genotypes. *Journal of Agronomy and Crop Science* **200**, 403–415.

González Guzmán M, Cellini F, Fotopoulos V, Balestrini R, Arbona V. 2022. New approaches to improve crop tolerance to biotic and abiotic stresses. *Physiologia Plantarum* **174**, e13547.

Greenwell B M, Boehmke B C. 2020. Variable Importance Plots—An Introduction to the vip Package. *The R Journal* **12**, 343.

Havaux M, Dall’Osto L, Bassi R. 2007. Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in *Arabidopsis* Leaves and Functions Independent of Binding to PSII Antennae. *Plant Physiology* **145**, 1506–1520.

Higuchi M, Pischke MS, Mahonen AP, et al. 2004. In planta functions of the *Arabidopsis* cytokinin receptor family. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 8821–6.

Horak J, Grefen C, Berendzen KW, Hahn A, Stierhof YD, Stadelhofer B, Stahl M, Koncz C, Harter K. 2008. The *Arabidopsis thaliana* response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds. *BMC Plant Biology* **8**, 77.

Horton P, Ruban AV, Wentworth M. 2000. Allosteric regulation of the light-harvesting system of photosystem II. (CB Osmond, CH Foyer, and G Bock, Eds.). *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* **355**, 1361–1370.

Hu H, Xiong L. 2014. Genetic Engineering and Breeding of Drought-Resistant Crops. *Annual Review of Plant Biology* **65**, 715–741.

Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y. 2018. The Antagonistic Action of Abscisic Acid and Cytokinin Signaling Mediates Drought Stress Response in *Arabidopsis*. *Molecular Plant* **11**, 970–982.

Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T. 2001. Identification of CRE1 as a cytokinin receptor from *Arabidopsis*. *Nature* **409**, 1060–1063.

Iwama A, Yamashino T, Tanaka Y, Sakakibara H, Kakimoto T, Sato S, Kato T, Tabata S, Nagatani A, Mizuno T. 2006. AHK5 Histidine Kinase Regulates Root Elongation Through an ETR1-Dependent Abscisic Acid and Ethylene Signaling Pathway in *Arabidopsis thaliana*. *Plant and Cell Physiology* **48**, 375–380.

Jia Y, Xiao W, Ye Y, Wang X, Liu X, Wang G, Li G, Wang Y. 2020. Response of Photosynthetic Performance to Drought Duration and Re-Watering in Maize. *Agronomy* **10**, 533.

Kalaji HM, Jajoo A, Oukarroum A, Breistic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. *Acta Physiologiae Plantarum* **38**, 102.

Kang NY, Cho C, Kim J. 2013. Inducible Expression of *Arabidopsis* Response Regulator 22 (ARR22), a Type-C ARR, in Transgenic *Arabidopsis* Enhances Drought and Freezing Tolerance. (M Uemura, Ed.). *PLoS ONE* **8**, e79248.

Kang NY, Cho C, Kim NY, Kim J. 2012. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of *Arabidopsis thaliana*. *Journal of Plant Physiology* **169**, 1382–1391.

Kassambara A. 2022. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots.

Kassambara A, Mundt F. 2020. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7.

Kieber JJ, Schaller GE. 2018. Cytokinin signaling in plant development. *Development* **145**, dev149344.

Kim J. 2008. Phosphorylation of A-type ARR to function as negative regulator of cytokinin signal transduction. *Plant Signaling & Behavior* **3**, 348–350.

Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. 2023. Abiotic Stress in Crop Production. *International Journal of Molecular Sciences* **24**, 6603.

Kumar MN, Jane W-N, Verslues PE. 2013. Role of the Putative Osmosensor *Arabidopsis Histidine Kinase1* in Dehydration Avoidance and Low-Water-Potential Response. *Plant Physiology* **161**, 942–953.

Lafi SQ, Kaneene JB. 1992. An explanation of the use of principal-components analysis to detect and correct for multicollinearity. *Preventive Veterinary Medicine* **13**, 261–275.

Lazár D. 2015. Parameters of photosynthetic energy partitioning. *Journal of Plant Physiology* **175**, 131–147.

Liaw A, Wiener M. 2002. Classification and Regression by randomForest.

Mandal S, Ghorai M, Anand U, et al. 2022a. Cytokinins: A Genetic Target for Increasing Yield Potential in the CRISPR Era. *Frontiers in Genetics* **13**, 883930.

Mandal S, Ghorai M, Anand U, et al. 2022b. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? *Frontiers in Genetics* **13**, 943025.

Mangiafico S. 2023. rcompanion: Functions to Support Extension Education Program Evaluation. Rutgers Cooperative Extension.

Mertens S, Verbraeken L, Sprenger H, et al. 2021. Proximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology. *Frontiers in Plant Science* **12**, 640914.

Milella A, Marani R, Petitti A, Reina G. 2019. In-field high throughput grapevine phenotyping with a consumer-grade depth camera. *Computers and Electronics in Agriculture* **156**, 293–306.

Minervini M, Fischbach A, Scharr H, Tsafaris SA. 2016. Finely-grained annotated datasets for image-based plant phenotyping. *Pattern Recognition Letters* **81**, 80–89.

Miyazawa Y, Takahashi H. 2020. Molecular mechanisms mediating root hydrotropism: what we have observed since the rediscovery of hydrotropism. *Journal of Plant Research* **133**, 3–14.

Müller P, Li X-P, Niyogi KK. 2001. Non-Photochemical Quenching. A Response to Excess Light Energy. *Plant Physiology* **125**, 1558–1566.

Nguyen KH, Ha CV, Nishiyama R, et al. 2016. *Arabidopsis* type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. *Proceedings of the National Academy of Sciences* **113**, 3090–3095.

Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C. 2004. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in *Arabidopsis*. *Plant Cell* **16**, 1365–77.

Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, et al. 2013. *Arabidopsis* AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. *Proceedings of the National Academy of Sciences* **110**, 4840–4845.

Ogle D, Doll J, Wheeler A, Dinno A. 2023. Ogle DH, Doll JC, Wheeler AP, Dinno A (2023). FSA: Simple Fisheries Stock Assessment Methods. R package version 0.9.5.

Oxborough K. 2004. Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. *Journal of Experimental Botany* **55**, 1195–1205.

Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. 2017. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physiomorphological Traits. *Frontiers in Plant Science* **8**.

Pavacic M, Mouhu K, Wang F, Bilicka M, Chovanček E, Himanen K. 2017. Genomic and Phenomic Screens for Flower Related RING Type Ubiquitin E3 Ligases in *Arabidopsis*. *Frontiers in Plant Science* **8**.

Pham J, Desikan R. 2012. Modulation of ROS production and hormone levels by AHK5 during abiotic and biotic stress signaling. *Plant Signaling & Behavior* **7**, 893–897.

Pham J, Liu J, Bennett MH, Mansfield JW, Desikan R. 2012. *Arabidopsis* histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. *New Phytologist* **194**, 168–180.

R Core Team. 2023. R: A Language and Environment for Statistical Computing.

Rascher U, Liebig M, Lüttge U. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. *Plant, Cell & Environment* **23**, 1397–1405.

Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E. 2013. Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice. *PLANT PHYSIOLOGY* **163**, 1609–1622.

Richmond AE, Lang A. 1957. Effect of Kinetin on Protein Content and Survival of Detached *Xanthium* Leaves. *Science* **125**, 650–651.

Riefler M, Novak O, Strnad M, Schmülling T. 2006. *Arabidopsis* cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. *Plant Cell* **18**, 40–54.

Roháček K, Barták M. 1999. Technique of the Modulated Chlorophyll Fluorescence: Basic Concepts, Useful Parameters, and Some Applications. *Photosynthetica* **37**.

Rummukainen M. 2012. Changes in climate and weather extremes in the 21st century. *WIREs Climate Change* **3**, 115–129.

Sah SK, Reddy KR, Li J. 2016. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. *Frontiers in Plant Science* **7**.

Sakai H, Aoyama T, Oka A. 2000. *Arabidopsis* ARR1 and ARR2 response regulators operate as transcriptional activators. *The Plant Journal* **24**, 703–711.

Sánchez-Reinoso AD, Ligarreto-Moreno GA, Restrepo-Díaz H. 2019. Chlorophyll α Fluorescence Parameters as an Indicator to Identify Drought Susceptibility in Common Bush Bean. *Agronomy* **9**, 526.

Shomali A, Aliniaefard S, Bakhtiarizadeh MR, Lotfi M, Mohammadian M, Vafaei Sadi MS, Rastogi A. 2023. Artificial neural network (ANN)-based algorithms for high light stress phenotyping of tomato genotypes using chlorophyll fluorescence features. *Plant Physiology and Biochemistry* **201**, 107893.

Skalak J, Nicolas KL, Vankova R, Hejatkó J. 2021. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. *Frontiers in Plant Science* **12**, 644823.

Sperdouli I, Mellidou I, Moustakas M. 2021. Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and Cultivated Tomato for High Photochemical Efficiency under Water Deficit for Climate Change Resilience. *Climate* **9**, 154.

Sperdouli I, Moustakas M. 2012. Spatio-temporal heterogeneity in *Arabidopsis thaliana* leaves under drought stress. *Plant Biology* **14**, 118–128.

Spíchal L, Rakova NYu, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T. 2004. Two Cytokinin Receptors of *Arabidopsis thaliana*, CRE1/AHK4 and AHK3, Differ in their Ligand Specificity in a Bacterial Assay. *Plant and Cell Physiology* **45**, 1299–1305.

Svoboda T, Raček T, Handl J, et al. 2023. Onedata4Sci: Life science data management solution based on Onedata. doi: 10.48550/ARXIV.2311.16712.

Szmitkowska A, Cuyacot AR, Pekárová B, et al. 2021. *AHK5 mediates ETR1-initiated multistep phosphorelay in Arabidopsis*. *Plant Biology*.

To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ. 2004. Type-A *Arabidopsis* response regulators are partially redundant negative regulators of cytokinin signaling. *Plant Cell* **16**, 658–71.

Torres RO, Henry A. 2018. Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. *Field Crops Research* **220**, 37–45.

Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **104**, 20623–20628.

Tsiafouli MA, Thébault E, Sgardelis SP, et al. 2015. Intensive agriculture reduces soil biodiversity across Europe. *Global Change Biology* **21**, 973–985.

Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. *Biology Open*, bio.035279.

Wang F, Yoshida H, Matsuoka M. 2021. Making the ‘Green Revolution’ Truly Green: Improving Crop Nitrogen Use Efficiency. *Plant and Cell Physiology* **62**, 942–947.

White AJ, Critchley C. 1999. Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. *Photosynthesis Research* **59**, 63–72.

Wickham H. 2016. *ggplot2: Elegant Graphics for Data Analysis*.

Wohlbach DJ, Quirino BF, Sussman MR. 2008. Analysis of the *Arabidopsis* Histidine Kinase ATHK1 Reveals a Connection between Vegetative Osmotic Stress Sensing and Seed Maturation. *The Plant Cell* **20**, 1101–1117.

Yang W, Guo Z, Huang C, et al. 2014. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. *Nature Communications* **5**, 5087.

Yao J, Sun D, Cen H, Xu H, Weng H, Yuan F, He Y. 2018. Phenotyping of Arabidopsis Drought Stress Response Using Kinetic Chlorophyll Fluorescence and Multicolor Fluorescence Imaging. *Frontiers in Plant Science* **9**, 603.