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Highlight 35 

Fluorescence parameters can serve as early markers of drought stress before morphological 36 

alterations appear. Shoot phenotyping of cytokinin receptor mutants showed drought resistance in 37 

the ahk2 ahk3 double mutant. 38 

 39 

Abstract 40 

Plant phenotyping represents an increasing promise in plant research by providing a complex 41 

picture of plant development and fitness. In research focused on various environmental stresses, 42 

phenotyping can uncover markers that can sensitively assess the stress impact in very early stages 43 

before morphological changes. PlantScreenTM System represents a tool dedicated for shoot and root 44 

phenotyping in soil enabling high-precision, high-throughput phenotyping of small, mid-size and large 45 

plants. The system offers wide range of sensors providing the number of non-invasive analyses of 46 

morphological and physiological parameters as well as of pigments, water, or metabolite content. 47 

In our work, we combined phenotyping approaches to determine morphological changes and 48 

the status of the photosynthetic apparatus in Arabidopsis plants exposed to drought stress. Focused 49 

on morphology, the rosette area became smaller after seven days of drought stress when compared 50 

to control conditions. Interestingly, cytokinin signalling mutant ahk2 ahk3 revealed drought resistance 51 

compared to other genotypes. The fluorescent parameters showed higher sensitivity even in wild  type. 52 

Non-photochemical quenching displayed values connected to reduced activity of photosynthetic 53 

apparatus after five days of drought stress. Taken together, acquired fluorescence parameters can 54 

serve as a marker of drought stress detection before morphological alterations occur. 55 

 56 
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Introduction 72 

The green revolution in the first half of the 20th century, helped increase world food security 73 

sharply, which allowed higher standards of living, and a rapid increase in the global population. These 74 

accomplishments, in their turn, gave rise to many new challenges. Intensive agriculture has resulted in 75 

soil exhaustion, soil degradation and, decrease in biodiversity (Tsiafouli et al., 2015). Alongside that, 76 

the climate change is increasing the frequency of extreme weather phenomena such as heatwaves, 77 

droughts or heavy precipitation (Rummukainen, 2012). Plants, being sessile organisms, are inevitably 78 

exposed to these weather fluctuations, which can result in the disruption of their physiology and 79 

morphology. Since food production is vastly dependent on proper functioning of the plant body, these 80 

challenges pose a major barrier for sufficient food production. Therefore, while basic research should 81 

aim at uncovering the defence mechanisms used by plants to withstand stress conditions (Hu and 82 

Xiong, 2014), applied research should urgently focus on breeding (and introduction into agricultural 83 

practice) of more crop varieties resistant to biotic or abiotic stresses.  84 

Non-destructive and repeatable methods that could be used on large-scale experiments is 85 

absolutely essential to achieve these stated goals. Recent technical advances have provided us with a 86 

broad set of tools used for plant body phenotyping, which is defined as the set of methodologies and 87 

protocols used to precisely measure plant growth, architecture, and composition at different scales, in 88 

controlled environments and in the field (Fiorani and Schurr, 2013; Yang et al., 2014; Milella et al., 89 

2019; Mertens et al., 2021). The necessity to perform these measurements in large numbers, means 90 

that high-throughput phenotyping is now seen as a major bottleneck in the association of crop 91 

improvement and information regarding phenotype data (Feng et al., 2017). This problem was partially 92 

resolved with several integrating technologies over the past two decades. However, the high 93 

dimensional datasets provided by phenotyping methods are a challenge for data processing and 94 

evaluation, which has become a new bottleneck in the whole process (Minervini et al., 2016). Deep 95 

learning has been proposed as a solution to alleviate this issue (reviewed in (Arya et al., 2022)). 96 

Measuring the kinetics of chlorophyll a fluorescence is a useful non-invasive method for 97 

evaluating the condition of the photosynthetic apparatus, and is often used in phenotyping (Sperdouli 98 

et al., 2021; Shomali et al., 2023). Energy absorbed by photosystem II can be utilized in three main 99 

ways: i) it can be used up in photosynthetic processes (photosynthetic quenching); ii) dissipated as 100 

heat (non-photochemical quenching) or iii) re-emitted as fluorescence back into the environment 101 

(reviewed in (Roháček and Barták, 1999). Rapid light curve is a method of measuring induced 102 

fluorescence kinetics often used for assessing stress in plants in controlled environments or in the field 103 

(Rascher et al., 2000; Kalaji et al., 2016; Sánchez-Reinoso et al., 2019). To measure the rapid light curve, 104 

the plants are exposed to gradually increasing intensities of light. This allows us to obtain useful 105 

parameters such as maximum quantum yield (FV/FM), actual quantum yield of photosystem II (QY) or 106 

non-photochemical quenching (NPQ). RGB image analysis is used for phenotyping the plants. This 107 

method can be based on the analysis of the colour of individual pixels to provide us with useful 108 

information about the morphology of the observed plants (Pavicic et al., 2017). Simultaneously, the 109 

data can also be used for the analysis of the presence and composition of individual pigments in the 110 

plant shoot (Bednaříková et al., 2023). Higher-resolution and more complex information can be 111 

obtained by combining pigment analysis, chlorophyll fluorescence and morphology. The PlantScreenTM 112 

System is capable of high-throughput, high-precision, and non-invasive measurement of the plant 113 

phenotype, combining RGB analysis of shoot morphology and colour spectrum, measurement of 114 

chlorophyll fluorescence kinetics and image analysis of the root system. Such a combination of 115 

phenotyping techniques provides comprehensive information about the plant – comprising 116 

information on growth and development, physiological status and fitness, yield and biomass 117 

production or reactions to stresses.  118 
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Biotic and abiotic stress are some of the main causes for decrease in agronomical yield (Pandey 119 

et al., 2017; Kopecká et al., 2023) and therefore, breeding has focused on the development of new 120 

approaches to improve crop stress tolerance (González Guzmán et al., 2022). These approaches 121 

require a robust understanding of plant physiology in terms of stress responses and especially plant 122 

hormone signalling, which controls plant development and ultimately, crop yield (Sah et al., 2016; 123 

Wang et al., 2021; Castro-Camba et al., 2022; Mandal et al., 2022a). 124 

Cytokinins play an important role in stress pre-adaptations and stress tolerance (Mandal et al., 125 

2022a,b). Modulation of cytokinin biosynthesis leads to increased drought tolerance (Reguera et al., 126 

2013). Furthermore, cytokinins are crucial regulators of hydrotropism in several species, which 127 

suggests even tighter link between drought stress resistance and cytokinin signalling (Chang et al., 128 

2019; Miyazawa and Takahashi, 2020). 129 

Cytokinin signalling employs the multistep phosphorelay which helps the plant to integrate 130 

various environmental stimuli, including abiotic stresses (Skalak et al., 2021). In Arabidopsis, the 131 

multistep phosphorelay comprises three families of proteins – histidine kinases (AHKs), His-containing 132 

phosphotransfer proteins (AHPs) and response regulators (ARRs), which can be functionally and 133 

structurally sub-divided into three groups (A-ARRs, B-ARRs, C-ARRs) (reviewed in (Kieber and Schaller, 134 

2018). The AHKs represent a diverse group of proteins which can act in both a cytokinin-dependent or 135 

independent manner depending on differences in their domain composition (Spíchal et al., 2004; Tran 136 

et al., 2007; Desikan et al., 2008; Deng et al., 2010). The cytokinin receptors AHK2-4 (Inoue et al., 2001; 137 

Higuchi et al., 2004; Nishimura et al., 2004) possess the cytokinin-binding CHASE domain 138 

(Anantharaman and Aravind, 2001) followed by a transmembrane domain, a histidine kinase domain 139 

and a receiver domain. Upon activation, AHKs autophosphorylate on their histidine kinase domain and 140 

trigger the His-Asp phosphotranspher toward the conserved Asp residue of their receiver domains. 141 

The phosphate group is further transferred to AHPs and finally to B-ARRs – transcription factors , which 142 

are activable by phosphorylation (Sakai et al., 2000; Argyros et al., 2008) and A-ARRs, which act as 143 

major negative feedback links in the signalling pathway (To et al., 2004; Kim, 2008). The precise 144 

functioning of C-ARRs has not been elucidated yet. They presumably act as AHP-phosphatases with a 145 

positive impact on abiotic stress tolerance, as it was shown that the expression of ARR22 increases 146 

when exposed to drought and freezing (Gattolin et al., 2006; Horak et al., 2008; Kang et al., 2013). 147 

Regarding stressors, cytokinin receptors AHK2, AHK3, and AHK4 negatively regulate drought 148 

and dehydration tolerance, as seen by the phenotypes of their corresponding mutants (Tran et al., 149 

2007; Kang et al., 2012). Similarly, AHPs and B-ARRs act as partially redundant negative regulators of 150 

drought tolerance (Nishiyama et al., 2013; Nguyen et al., 2016). Complementarily, the negative 151 

components of cytokinin signalling – A-ARRs and C-ARRs have been observed to positively affect water-152 

deficiency stress tolerance (Wohlbach et al., 2008; Kang et al., 2013; Huang et al., 2018). Interestingly, 153 

although the cytokinin receptors seem to act as negative regulators of drought tolerance, the 154 

cytokinin-independent AHK1 is a positive effector of water-deficiency tolerance and is a potential 155 

osmosensor (Tran et al., 2007; Wohlbach et al., 2008; Kumar et al., 2013). Further, AHK5 negatively 156 

regulates plant tolerance to osmotic and drought stress, possibly due to its role in ROS-dependent 157 

stomatal closure and crosstalk with ethylene and ABA signalling (Iwama et al., 2006; Desikan et al., 158 

2008; Pham and Desikan, 2012; Pham et al., 2012; Szmitkowska et al., 2021). 159 

In summary, with respect to drought tolerance, the positive executors of multistep 160 

phosphorelay seem to act as negative regulators, while the quenching components seem to act as 161 

positive regulators. Although the components are partially redundant, their function does not overlap 162 

completely. This presents a conundrum which can potentially be solved by precise phenotyping 163 

combined with appropriate data analysis, which is now possible using the PlantScreenTM Compact 164 
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System. Since the system generates large amounts of data, the main concern is data 165 

multidimensionality – with all the associated advantages and disadvantages. The main concerns 166 

include data visualization, reduction of dimensionality and further simplification without losing 167 

information.  168 

In our work, we implemented and optimised a drought stress protocol on an assembly of 169 

Arabidopsis wild type (Col) and single and double mutants in the cytokinin receptors AHK2 and AHK3. 170 

Aiming for proper data analysis, several methods of multivariate statistical analysis were employed 171 

covering clustering analysis, ordination methods like principal component analysis (PCA), and a 172 

machine learning approach (random forest) to enable the extraction of important parameters. Our 173 

results indicate that the drought impact can be significantly differentiated from control within 5 days 174 

of drought stress using fluorescence parameters. Non-photochemical quenching and qN were 175 

identified as the most important parameters and indicated the involvement of protective mechanisms 176 

of the photosynthetic apparatus during drought stress. Comparing wild type and cytokinin receptor 177 

mutants, parameters from all three inspected categories (morphology, color segmentation and 178 

chlorophyll fluorescence) showed a high degree of importance. Altogether, combining multiple 179 

phenotyping approaches and advanced data analysis furnishes a comprehensive set of information 180 

about plant morphology, physiology, and fitness during drought stress. Fluorescence parameters were 181 

shown to be useful markers of the very early phases of drought stress before morphological changes 182 

are apparent. This protocol can now be applied to study other stresses, cultivation conditions or 183 

genotypes. 184 

 185 

Materials and methods 186 

Plant material 187 

All plant material used was Arabidopsis thaliana. The Nottingham Arabidopsis Stock Centre 188 

(NASC) provided seeds for the wild type accession Col (N60000). The mutant lines have been described 189 

previously: ahk2-5, ahk3-7, ahk2-5 ahk3-7 (Riefler et al., 2006). The AGI codes (www.arabidopsis.org) 190 

are: AHK2 (AT5G35750), AHK3 (AT1G27320). 191 

Growth conditions 192 

For plant cultivation we used the Klasmann Substrate TS3 fine (416, Pasič) and 7x7x6.5 cm pots 193 

(Pasič). Seeds were geminated in one pot and were replanted after 7 days in the very centre of a single 194 

pot. Plants were grown in cultivation chambers – phytotrons (CLF Plant Climatics or PSI - Photon 195 

Systems Instruments), under long-day conditions (16 hours light/8 hours dark) at 21°C with a light 196 

intensity of 150 μMm−2 s−1 and 40-60% relative humidity. Watering  was adjusted according to control 197 

or drought stress conditions (Fig. 1A). 198 

PlantScreenTM Compact System 199 

Hardware 200 

The phenotype data were acquired using the PlantScreenTM Compact System (developed by 201 

Photon Systems Instruments, Drásov, Czech Republic), which is designed for digital phenotyping and 202 

cultivation of small and mid-size plants up to 0.8 m in height (e.g., Arabidopsis thaliana, cereals, 203 

strawberries, turfgrass, young soybean, tobacco, corn, etc.). In our version the transport of plants is 204 

carried out manually in trays that can be adapted to carry different patterns for single or multiple 205 

plants grown in individual pots or in vitro (e.g., multiwell plates) providing flexibility of use with 206 
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numerous different species, or with a single species throughout its growth cycle. The entire system is 207 

built in a light isolated box with active internal ventilation, which does not transmit any ambient light 208 

from outside. For precise morphometric imaging and correct measurement of chlorophyll 209 

fluorescence, dark/light adaptation is included. Environmental parameters are monitored using 210 

temperature, humidity, and light sensors. 211 

The system is equipped with several imaging sensors: 212 

(i) Dual (monochromatic and RGB) camera for top view RGB and chlorophyll fluorescence imaging – 213 

the PSI DUAL CAM is fitted with two 12.36-megapixel CMOS sensors, a monochromatic Sony 214 

IMX253LLR-C for chlorophyll fluorescence measurement and a colour Sony IMX253LQR-C sensor for 215 

RGB structural imaging. These sensors deliver a resolution of 4112 × 3006 pixels as well as global 216 

shutter feature. The sensors are extremely sensitive and are real megapixel CCD substitutes that 217 

produce sharp and low-noise images. The monochromatic sensor runs in binning mode with 2056 x 218 

1503 resolution, which means four times higher sensitivity. 219 

(ii) RGB camera for side view imaging (linear scan) – the UI-5580CP is fitted with a 5-megapixel CMOS 220 

sensor. About half an inch in size, the sensor delivers a resolution of 2560 x 1920 pixels as well as rolling 221 

and global start shutter features. The various shutter modes produce sharp, low-noise images. 222 

(iii) RGB camera for root imaging – the PSI BW is fitted with a 12.36-megapixel CMOS sensor (Sony 223 

IMX253LQR-M). The sensor delivers a resolution of 4112 × 3006 pixels as well as global shutter feature. 224 

Software 225 

The comprehensive software package with remote accessibility comprises the PlantScreen™ 226 

Server application, the PlantScreen™ Scheduler client, a PlantScreen™ Database and a PlantScreen™ 227 

Data Analyzer. The package provides control over all imaging modules, as well as database 228 

configuration, data acquisition and image analysis. A set of computed morphological parameters is 229 

available: area, perimeter, compactness, rotational mass symmetry (RMS), roundness, isotropy, 230 

eccentricity, slenderness of leaves (SOL) and convex hull area (Fig. 1B). A detailed definition of the 231 

morphological  parameters has been published previously (Pavicic et al., 2017). 232 

Several protocols for fluorescence measurement are available: 233 

(i) FV/FM protocol – protocol providing two measured parameters F0 and FM, and one calculated 234 

parameter, maximum QY. Detailed definition of parameters can be found in supplementary data 235 

(Supplementary Table S1). 236 

(ii) Kautsky slow induction kinetics – during this protocol, plants in the dark-adapted state are exposed 237 

to actinic irradiation, which results in a rapid increase in fluorescence culminating in maximum FP value. 238 

With ongoing exposition to actinic light, the photosynthetic apparatus accommodates to the radiation 239 

via the involvement of secondary photosynthetic processes which results in reduced fluorescence until 240 

transient fluorescence (FT) is reached (Roháček and Barták, 1999). Out of the calculated parameters 241 

FV, QY_max and Rfd are available. Detailed definition of parameters can be found in supplementary 242 

data (Supplementary Table S2). 243 

(iii) Quenching analysis protocol – Kautsky kinetics supplemented with saturation pulses. The plants in 244 

the dark-adapted state are firstly exposed to a saturation pulse and afterwards, actinic light is switched 245 

on. Saturation pulses are then applied on plants in the light-adapted state throughout the 246 

measurement. This protocol provides a broad spectrum of measured (F0, FM, FP, FM_Ln, FM_LSS, FT_Ln, 247 

FT_Lss) and calculated (FV, F0_Ln, F0_Lss, Fv_Ln, Fv_Lss, Fq_Ln, Fq_Lss, QY_max, FV/FM_Lss, FV/FM_Ln, 248 
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QY_Ln, QY_Lss, NPQ_Ln, NPQ_Lss, qN_Ln, qN_Lss, qP_Ln, qP_Lss, qL_Ln, qL_Lss, Rfd_Ln, Rfd_Lss) 249 

parameters. Detailed definition of parameters can be found in supplementary data (Supplementary 250 

Table S3). 251 

(iv) Rapid light curve – plants in the dark-adapted state are exposed to a saturation pulse and 252 

subsequently exposed to low intensity actinic irradiation. After a certain time, another saturation pulse 253 

is applied on plants in the light-adapted state. This saturation pulse is followed by exposure to actinic 254 

light whose intensity has been increased by a specific amount (White and Critchley, 1999). This process 255 

and the increase of radiation intensity is repeated six times. This analysis provides a broad range of 256 

measured (F0, FM, FP, FT) and calculated (FV, FM_Lss, FT_Lss, F0_Lss, Fv_Lss, Fq_Lss, QY_max, FV/FM_Lss, 257 

QY_Lss, NPQ_Lss, qN_Lss, qP_Lss, qL_Lss, ETR_Lss) parameters. Detailed definition of parameters can 258 

be found in supplementary data (Supplementary Table S4). 259 

Acquiring RGB parameters 260 

The plants in pots were arranged in transportable trays, each of which held 20 plants (4x5 261 

template). The top RGB camera was used to acquire the morphology parameters. The obtained images 262 

were pre-processed via the PlantScreenTM Data Analyzer software to get RGB and binary data. These 263 

data were used to calculate the morphological parameters (Fig. 1B). 264 

The RGB data were used for colour segmentation analysis. Each pixel was indexed assigned to 265 

the colour map according to its R, G, B channel ratio. These values were categorised into groups 266 

according to the hues (Awlia et al., 2021). The R, G, B values were grouped into 9 hues (R110, G111, 267 

B90; R90, G98, B58; R72, G84, B58; R73, G86, B36; R57, G71, B46; R59, G71, B20; R45, G55, B36; R45, 268 

G54, B13; R34, G38, B22) (Fig. 1B). 269 

Acquiring fluorescence parameters 270 

The physiological status of plant lines was assessed by measuring the induced fluorescence of 271 

chlorophyl a (Fig. 1B). We used Rapid Light Curve protocol, which is suitable for detecting stress 272 

affecting plants (Flexas et al., 1999). The measurement was performed at a working distance of 430 273 

mm on plants in the dark-adapted state. Arabidopsis plants were kept in the dark for 7 minutes. Firstly, 274 

the measuring light was applied for 5 seconds to acquire information about the minimum level of 275 

fluorescence in the dark-adapted state (F0). A saturation pulse was applied for 800 ms, its source is a 276 

LED, which has cool white 6500K spectrum, corresponding almost exactly to daylight, and the intensity 277 

of the saturation pulse was 1256 µmol.m-2.s-1. This pulse with high irradiation intensity is used to 278 

determine the maximum fluorescence in the dark-adapted state (FM). The actinic light intensities of 279 

the individual steps were 15.6, 193.4, 396, 602, 810, and 1013 µmol.m-2.s-1. Each step begins with a 280 

800 ms saturation pulse in order to measure maximum fluorescence in the light-adapted state 281 

(FM_Lss). Subsequently, the actinic light is switched on for 60 seconds, and at the end of each step the 282 

transient fluorescence (FT) is measured. The acquired data of the measured fluorescence were 283 

transferred to the PlantScreenTM Data Analyzer, which provided the calculated fluorescence 284 

parameters. 285 

Data analysis and statistical analysis (Fig. 1C) 286 

Correlograms 287 

The graphical representation of variable correlations was used to detect clusters of partial 288 

redundant variables present in the dataset since the variable correlation is one of the prerequisities 289 

for efficient principal component analysis (Supplementary Fig. S1). In order to achieve a more robust 290 

representation, Spearman correlation coefficient was used, and the representation was colour-coded 291 
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using the viridis colour palette. Further, the variables were hierarchically clustered based on their 292 

correlations using average agglomeration. The correlograms were made using the stats package (R 293 

Core Team, 2023). 294 

Principal component analysis (PCA) 295 

PCA as one of the ordination methods was used to visualise the data and simplify its 296 

multivariate nature. The data were scaled and subset into fluorescence-based and RGB-imaging-based 297 

parameters, the latter consisting of morphometric parameters and colour segmentation variables. The 298 

number of principal components was set based on a scree plot evaluation (Supplementary Fig. S2A, B). 299 

The quality of the representation was evaluated by cos2 (Supplementary Fig. S2C, D). For the sake of 300 

clarity, biplot was used as the final representation only in the demonstrative case. The package 301 

factoextra (Kassambara and Mundt, 2020) was used. For visualisation of differences between defined 302 

groups (genotype vs. stress conditions), the centroids with ellipses representing their 95% confidence 303 

interval were depicted in the plots. 304 

Random forest 305 

A random forest algorithm was used for estimating parameter importance, utilising 306 

randomForest package (Breiman, 2001; Liaw and Wiener, 2002). The models were trained on the 307 

subset data covering all measured and derived variables. The number of trees was set to 1000, each 308 

split tested 9 variables (based on square root estimation). The variable importance was extracted to 309 

enable prediction of stress conditions or genotype (i.e., classification model). The performance of the 310 

model was tested by confusion matrices using  randomly subset test data, which were not used for 311 

model training (Supplementary Tables S5-S8). The 20 most important variables were visualised by vip: 312 

Variable Importance Plots package (Greenwell and Boehmke, 2020) with estimated importance on the 313 

main axis and colour coded mean decrease in gini. 314 

Hierarchical clustering 315 

In order to see similarities in the tested genotypes under stress conditions, the averaged values 316 

for each group were clustered based on Euclidean distance. 317 

Time series plots 318 

The selected parameters are depicted as a time series for each genotype under both tested 319 

conditions. The lines represent LOESS regressions with shaded 95% confidence interval. The images 320 

were generated by ggplot2 and ggpubr (Wickham, 2016; Kassambara, 2022). 321 

Time point plots 322 

The selected parameters at representative time points are depicted by Tukey9s boxplots. The 323 

images were generated by ggplot2 and ggpubr. The statistical significances were evaluated with a 324 

Krustal-Wallis test and a post-hoc Dunn test. The significant differences were depicted using compact 325 

letter display. The packages used for this were  rcompanion (Mangiafico, 2023), FSA (Ogle et al., 2023), 326 

and stats (R Core Team, 2023). 327 

Data management, storage and access to users was managed in collaboration with the Biological Data 328 

Management and Analysis Core Facility (Svoboda et al., 2023). 329 
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 330 

Fig. 1. Drought stress experimental setup and phenotyping using PlantScreenTM Compact System. (A) 331 

Potential abiotic or biotic stress is applied to plants. (B) Imaging by PSI DUAL CAM or by side RGB 332 

cameras provides raw data used for calculating phenotype parameters. RGB cameras enable extraction 333 

of morphological parameters (e.g., area, perimeter, roundness, eccentricity, slenderness of leaves) or 334 

colour segmentation. Colour segmentation allows the definition of any colour from the RGB spectrum 335 

and can detect senescent leaves or anthocyanins. Fluorescence camera allows imaging of the 336 

chlorophyll fluorescence signal with various measuring protocols including FV/FM, quenching analysis, 337 

Kautsky slow induction kinetics or rapid light curve. (C) Downstream analysis of the parameters based 338 

on multidimensional principal component analysis or machine learning approach like random forest is 339 

used to estimate the importance of morphological, colour or fluorescence parameters. Correlograms 340 

utilizing Spearman rank correlation visualize correlating parameters. Further clustering of parameters, 341 

such as genotypes, treatments, or stress conditions, helps identify the impact of the stresses on plants. 342 

Created with BioRender.com. 343 

 344 
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Results and discussion 345 

Optimization of the drought stress experimental setup 346 

It is necessary to ensure precise regulation of water content in the substrate to determine the 347 

effect of drought stress on the morphological and physiological aspects of plants. Cultivation 348 

conditions were optimized to set the appropriate substrate humidity suitable for the drought stress 349 

experimental protocol. The substrate was aliquoted at 50 g per each pot. The commercially available 350 

substrate already had a humidity of 54%. After preparing the pots, we added 15 ml of water (10 ml 351 

before replanting the seedlings and 5 ml afterwards) to keep the transplanted roots wet. Thus, the 352 

overall humidity of the substrate reached approximately 65%. 11 days after sowing (DAS), the first 353 

phenotyping was performed to verify uniformity of the observed parameters in plant lines before 354 

applying drought stress. At this timepoint, both variants were equal in substrate water content. After 355 

the first phenotyping, no more water was added to the substrate for the drought stress variant. The 356 

phenotyping was then carried out three times per week at 14, 16, 18, 21, 23 and 25 DAS corresponding 357 

to 3, 5, 7, 10, 12, 14 days of drought stress (DODS; Fig. 2A). 358 

The effect of severe drought stress on overall plant body fitness has been studied intensively, 359 

but the effect of mild and moderate drought stress is far less understood. In our optimized protocol 360 

we concentrated on mild stress and the experiment was terminated when severe stress responses 361 

began to appear. Mild and severe drought stress seem to activate different mechanisms. In drought 362 

resistant barley exposed to mild drought stress, stomatal conductance was the main factor that limited 363 

the rate of photosynthetic processes, while in case of severe drought light-dependent reactions were 364 

structurally and biochemically impaired (Ghotbi‐Ravandi et al., 2014). Such processes limit the ability 365 

of plant to produce biomass and result in yield reduction (Torres and Henry, 2018). Moreover, it seems 366 

that there are no efficient mechanisms to resist moderate drought stress in Arabidopsis, as revealed 367 

by the measurement of induced chlorophyll fluorescence, which showed a higher impact on 368 

photosynthesis in mild and severe stress when compared to moderate stress. The mild stress reaction 369 

was comparable to the severe stress effect (Sperdouli and Moustakas, 2012). 370 

 371 

The data set involves multiple collinear variables and shows global differences in stressed plants 372 

Our results revealed several parameters to be highly correlated (Supplementary Fig. S1). This 373 

is especially valid for parameters acquired at a range of different light intensities (different LSSs). 374 

Moreover, this multicollinearity can be explained by the fact that the dataset involves both directly 375 

measured and calculated parameters and therefore a certain level of correlation can be expected 376 

between the derived ones and their corresponding source.  377 

Since PCA can effectively simplify the data with collinearity (Lafi and Kaneene, 1992), this 378 

ordination method was selected for global data visualisation (Fig. 2B-E). Two models were created on 379 

a dataset comprising all data points, where variables were divided into two groups based on their 380 

acquisition origin. The first model was created on RGB-based variables, which involve morphometric 381 

parameters and colour segmentation (Fig. 2B). The second model was created using fluorescence-382 

based parameters (Fig. 2C). Two principal components were selected for both models, which in both 383 

cases cumulatively explained approximately 70% of the original variance. The contribution of each 384 

parameter was evaluated (Fig. 2B,C). 385 

Further, individual data points which represent measurements from a single plant at each time 386 

point are depicted in the selected 2-component plane (Fig. 2D,E). The data points are colour-coded 387 
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with a light colour representing the experiment initiation and a progressively darker colour 388 

corresponds to progressing time. The non-stressed control is depicted in shades of green/points, 389 

whereas samples stressed by drought are depicted in shades of red/asterisks. The non-stressed and 390 

stressed clusters differentiated in the later phases of the experiment, which correspond to 391 

morphological, colour, and fluorescence changes which occurred in response to drought. In conclusion, 392 

it is possible to distinguish the global effects of drought stress on the plants. However, this 393 

methodology does not provide information about variable importance, which was further estimated 394 

applying a random forest approach. 395 

 396 

Fig. 2. Measurement of morphological and fluorescence parameters in wild type (Col) and cytokinin 397 

receptor mutants (ahk2, ahk3, ahk2 ahk3). (A) Plants were exposed to drought stress and phenotyped 398 

for 14 days (0-14 DODS). The age of plants corresponds to days after sowing (DAS). Scale bar: 7 cm. (B, 399 

C) Charts of variable contribution to PCA models were built using (B) RGB-based parameters or (C) 400 
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fluorescence imaging. Variable labels are shown in simplified form. Detailed version is available as 401 

supplementary data (Supplementary Figure S3). (D, E) In the corresponding space, single data points 402 

are depicted showing global differences with progressing drought stress, generated from (D) RGB or 403 

(E) fluorescence data. 404 

 405 

Fluorescence parameters as markers of drought stress 406 

The random forest is a powerful machine learning algorithm which can be used for 407 

classifications, regressions, and measurements of variable importance (Genuer et al., 2010). We used 408 

a random forest algorithm for the classification of drought stress conditions and subsequent 409 

estimation of variable importance. The created models were used for parameter importance 410 

evaluation, and not as predictors, thus the workflow was adjusted accordingly. The data set comprising 411 

all time points was used as a training set for the classification model, which aimed to differentiate 412 

between control and stressed plants across the tested lines (Col, ahk2, ahk3, and ahk2 ahk3). Error 413 

rates of the model were 6.23% and 7.41% on the trained dataset and on the test dataset respectively 414 

(Supplementary Table S5). This result shows that plants exposed to drought stress can be 415 

differentiated from non-stressed controls.  416 

We focused on the earliest time point where stressed plants were clearly differentiable from 417 

controls. The model was therefore trained on a subset of data divided based on days since the start of 418 

the stress treatment (0, 3, 5, 7, 10, 12, 14 DODS). Most importantly, the classification error was less 419 

than 5% for plants after 5 DODS (2.27% train data, 0% test data; Supplementary Table S6) and it further 420 

dropped to 0% at 14 DODS (0% train data, 0% test data; Supplementary Table S7), representing the 421 

last measuring day. This hints that the impact of drought stress is likely clearly visible as early as 5 days 422 

with a reasonably acceptable classification error which then further drops as drought-stressed plants 423 

continue to diverge from the watered control. This is consistent with the PCAs (Fig. 2D, E) showing a 424 

clear separability of stressed plants from the control at later timepoints. Based on the model, the 425 

fluorescence parameters were selected as the most important parameters for stress distinction at 5 426 

DODS. Interestingly, in the late phase of the experiment (14 DODS), the fluorescence parameters were 427 

still evaluated by the model as the most important. This was very probably caused by the ahk2 ahk3 428 

morphology per se and therefore the morphological parameters are probably not generally applicable 429 

for such analyses. However, fluorescence parameters seem to be appropriate even for this type of 430 

experiment and can serve as markers of drought stress.  431 

The effect of drought stress on the physiological status of plants was evaluated by measuring 432 

induced chlorophyll fluorescence. The random forest analysis showed that parameters associated with 433 

the protective mechanisms of the photosynthetic apparatus [mainly NPQ and qN (Fig. 3A, B)] were 434 

among the most important factors that explained the drought effect in plants both at 5 DODS and 14 435 

DODS. NPQ is steady-state non-photochemical quenching, whereas qN is the coefficient of non-436 

photochemical quenching. Both, qN and NPQ point at the quenching mechanisms that play an 437 

important role in the estimation of the absorbed energy that is consumed by protective mechanisms, 438 

mainly through heat dissipation. NPQ started to increase after exposure to drought stress sooner (5 439 

DODS; Fig. 3C) than qN (8 DODS; Fig. 3D). At both 5 and 14 DODS, qN measured under various light 440 

intensities was more important in assessing the drought impact than NPQ (Fig. 3A, B). In higher plants 441 

non-photochemical quenching is mainly based on the changing pH level in the thylakoid lumen, which 442 

activates the xanthophyll cycle (Horton et al., 2000; Müller et al., 2001), and is therefore responsible 443 

for the de-excitation of chlorophyll molecules in photosystem antennae (Havaux et al., 2007). At higher 444 

light intensities, NPQ is sensitive to the effect of drought stress (Yao et al., 2018), which makes this 445 
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parameter a useful marker of the early signs of water deficit (Chou et al., 2017). With increasing 446 

drought, defense mechanisms are activated to protect the photosynthetic machinery and NPQ values 447 

increase (Jia et al., 2020). However, in case of intense and severe drought stress, the whole system 448 

collapses and NPQ decreases (Wang et al., 2018). FV_FM_Lss5 is also among the parameters that can 449 

be used for estimating drought stress at 14 DODS. The FV_FM_Lss5 value started to decrease after 8 450 

DODS in stressed plants, whereas in control plants it kept increasing until the end of the experiment 451 

(Fig. 3E).  FV_FM_Lss is defined as the maximum efficiency of photosystem II in the light-adapted state 452 

(Oxborough, 2004) and a decrease in this parameter points at the deteriorating condition of the 453 

photosynthetic apparatus. This decrease under abiotic stress was previously recorded in vitro (Wang 454 

et al., 2018) and in substrate (Adhikari et al., 2019). 455 

 456 

Fig. 3. Random forest algorithm was used to identify the most important parameters at (A) 5 DODS 457 

and (B) 14 DODS with a color-coded mean decrease in gini. (C-E) Selected important variables are 458 

shown as they change during the drought stress in plants exposed to stress (shades of red) and in 459 

controls (shades of green). The lines depict LOESS models with a 95% confidence interval in 460 

corresponding shades. 461 

 462 

Genotype and cultivation condition clustering reveals distinctive patterns. 463 

To look for similarities or differences between the tested genotypes, the dataset was clustered 464 

with respect to either genotype or genotype in combination with stress condition (Fig. 4A, B). It was 465 

obvious that the biggest difference among the phenotype of the genetic lines is for ahk2 ahk3. Col is 466 

the most related to the ahk3 mutant followed by the ahk2 single mutant. When drought stress is 467 
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considered, the clustering has a similar fractality. The control and stressed plants belong to different 468 

clusters, except for ahk2 ahk3 which exhibited only small differences between stressed and non-469 

stressed plants (Fig. 4B). In this case, the ahk2 ahk3 genetic contribution on phenotype is higher than 470 

the contribution of drought stress. 471 

Principal component analysis was performed separately for morphological analysis comprising 472 

colour segmentation, and induced chlorophyll fluorescence analysis on the first (11 DAS/ 0 DODS) and 473 

the last (23 DAS/ 14 DODS) measurement of the experiment. As for morphology analysis (Fig. 4C), the 474 

first analysed phenotype at 11 DAS showed only small morphological differences between the 475 

genotypes, since the clusters partially overlap, but no overlaps were detected in the estimations of 476 

cluster centroid confidence intervals (depicted as ellipses). This suggests that there are small 477 

quantitative differences between the genotypes; nonetheless, the genotypes are not easily separable. 478 

Morphological data obtained at 23 DAS revealed a strong distinction between control and drought-479 

stressed plants in the case of Col, ahk2 and ahk3 (Fig. 4D). However, no global differences in 480 

morphology among Col, ahk2 and ahk3 were detected using PCA. A different trend was observed in 481 

the case of the ahk2 ahk3 double mutant, separated by the PCA analysis from other genotypes.  482 

 483 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569457doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569457
http://creativecommons.org/licenses/by/4.0/


15 

 

Fig. 4. Hierarchical clustering on whole dataset based on (A) genotypes or (B) genotypes in combination 484 

with drought stress. (C-F) PCA models were built for (C, E) start of the experiment and (D, F) the end 485 

of experiment to detect differences between genotypes at the selected time points. The models were 486 

built using (C, D) RGB-based parameters or (E, F) fluorescence-based parameters. All charts show the 487 

centroid of each defined group with its 95% confidence interval as a shaded ellipse. 488 

 489 

No differences were observed in the PCA analysis of fluorescence parameters at 11 DAS/0 490 

DODS (Fig. 4E), which points to a homogeneity in the rate of primary photosynthetic processes before 491 

the drought stress. However, the measurement of induced chlorophyll fluorescence at 23 DAS/14 492 

DODS revealed a strong distinction between well-watered and drought-stressed plants (Fig. 4F). The 493 

PCA uncovered a linear separation between control and drought-stressed plants which fits with the 494 

result obtained by training a random forest classificator on 14 DODS data showing 0% error rate 495 

expected for linearly separable data. Taken together, we were not able to differentiate the individual 496 

genotypes exposed to drought stress using PCA. However, in the control group, the cluster of ahk2 497 

ahk3 mutant was the most distant from other genotypes.  498 

In principle, PCA does not substitute standard statistical methods for the evaluation of 499 

differences between genotypes for single parameters, but it points out that the genotypes are very 500 

likely not easily separable. This can be further supported by training a random forest classifier, which 501 

exhibited approximately 25% error rate (28.91% train data; 25% test data; Supplementary Table S8) in 502 

genotype estimation using the data from the last time point measurement. Since the classification 503 

error on a random sample should be 75%, the model performed better than randomly generated data. 504 

Although not precise, this estimation is better than random and can point out variables which are 505 

important for such selection when their biological relevance is carefully evaluated (Fig. 5A).  506 

 507 

The ahk mutants exhibit several distinguishable phenotypes  508 

The random forest analysis showed that all categories of parameters (morphological, 509 

fluorescence and colour segmentation) showed a high degree of importance for determination of 510 

observed genotypes at 14 DODS (Fig. 5A). Apart from parameters suitable for drought stress distinction  511 

(Fig. 3), morphological parameters were revealed to be the most important for genotypes distinction, 512 

particularly area and size of the plant rosette, calculated as a sum of the pixels showing fluorescence 513 

activity during fluorescence measurement. That may be the consequence of the phenotype of the 514 

tested plant lines as the ahk2 ahk3 double mutant displays a much smaller shoot compared to other 515 

lines in general (Riefler et al., 2006). 516 

Unlike single mutants, ahk2 ahk3 double mutant is known for its strong phenotype comprising 517 

smaller shoot, shorter hypocotyl, compact rosettes with shortened petioles or affected leaf shape 518 

(Nishimura et al., 2004; Riefler et al., 2006). At 14 DODS, no differences in rosette area among wild 519 

type plants and single mutants were detected under both control and drought stress conditions (Fig. 520 

5B). In control conditions ahk2 ahk3 double mutant area is reduced when compared to other observed 521 

plant lines. Such a difference in the ahk2 ahk3 double mutant from other plant lines can be observed 522 

also under drought conditions. We also examined the effect of drought on individual genetic lines. 523 

Rosette area was reduced when control wild type and single mutants were compared to drought 524 

exposed wild type and single mutants. There was no difference between control and drought exposed 525 

ahk2 ahk3 double mutant. Previous research suggests that rosette area can be used as a marker more 526 
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broadly. It was shown that it is a good determinant of the involvement of mutant lines in the plant 527 

body response under various abiotic stresses (Awlia et al., 2021). 528 

Chlorophyll fluorescence provides information about the physiological status. Among our 529 

results, the most important markers for plant genetic lines variance are NPQ and qN (Fig. 5A), which 530 

reflect the proportion of the energy absorbed by the photosynthetic apparatus, that is used up by 531 

defense mechanisms. Another important fluorescence parameter with a high degree of importance 532 

was quantum yield measured under the effect of a light intensity that was moderately elevated when 533 

compared to the cultivation conditions of plants. Quantum yield is one of the most often used 534 

fluorescence parameters. Its value describes the amount of energy absorbed by photosystem II that is 535 

used up in photosynthesis (Lazár, 2015). Under control conditions, no major differences were observed 536 

among Col and single mutant plants. However, the quantum yield of the ahk2 ahk3 double mutant was 537 

reduced, when compared to wild type and ahk2 cultivated under control conditions at 14 DODS (Fig. 538 

5C), which points to the decreased ability of absorbed energy usage in linear electron transport in 539 

primary photosynthesis. There was no difference in QY between ahk3 and ahk2 ahk3 in control 540 

conditions (Fig. 5C). However, exposure to drought masked the differences among the used lines, and 541 

there were no differences in quantum yield among plant genetic lines at 14 DODS. We also examined 542 

the effect of drought stress on individual plant lines. When compared to plants grown under control 543 

conditions, exposure to drought stress reduced the quantum yield of wild type and ahk single mutants. 544 

With the ahk2 ahk3 double mutant, there was no significant difference between plants grown under 545 

control or drought conditions (Fig. 5C). The quantum yield often decreases in response to abiotic stress 546 

and may act as a marker for evaluating the ability to resist abiotic conditions for various plant mutant 547 

lines (Yao et al., 2018) or crop varieties (Findurová et al., 2023).  548 

Color change is also a key determinant, using which we can predict the genotype of the 549 

observed plant. The most important was hue R57 G71 B46 (Fig. 5A). This hue corresponds to a darker 550 

color. This points at changes in the presence of photosynthetic pigments. No differences were 551 

observed among wild type and single mutants under control conditions. The same result was detected 552 

with wild type and single mutants exposed to drought stress. In ahk2 ahk3 double mutant the R57 G71 553 

B46 value was strongly decreased under drought stress conditions, when compared to other plant lines 554 

(Fig. 5D). Under control conditions the R57 G71 B46 value for the ahk2 ahk3 double mutant was 555 

decreased only when compared to wild type and the ahk2 single mutant. Drought stress increased the 556 

R57 G71 B46 value in all observed plant lines. The presence of cytokinin has a strong effect on the 557 

chlorophyll content of leaves (Richmond and Lang, 1957) and treatment with different types of 558 

cytokinin modulated the chlorophyll a, chlorophyll b content as well as their ratio in cultivated apple 559 

leaves in vitro (Dobránszki and Mendler-Drienyovszki, 2014). A strong decrease in chlorophyll (to 560 

approximately 70% of wild type) was detected in the ahk2 ahk3 double mutant (Riefler et al., 2006). 561 

However, studies linking color segmentation to the content of photosynthetic pigments are still 562 

absent. 563 
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 564 

Fig. 5. (A) Random forest model was generated to reveal the most important parameters for genotype 565 

discrimination using data from 14 DODS. (C-D) Three parameters were selected – (B) one 566 

morphological - area, (C) one fluorescence-based - QY, and (D) one colour-segmentation-based – 567 

RGB_57_71_46. Lowercase letters in charts indicate significantly different groups as determined using 568 

Kruskal-Wallis test and post-hoc Dunn test (p< 0.05). 569 

 570 

In conclusion, our results indicate that ahk2 and ahk3 show only low resistance to stress in the 571 

early phases of drought. The results seem to be partially different from previously published drought 572 

tolerant phenotype of ahk2 and ahk3 (Tran et al., 2007; Kang et al., 2012) which can be caused by 573 

different experimental setup. Previously published research dealt with long-term stress combined with 574 

recovery whereas our work focused on early stages of the drought stress. 575 

 576 

Future Perspectives 577 

Plant phenotyping with the help of state-of-the-art imaging techniques is a rapidly developing 578 

field that shows enormous potential in terms of the ability to recognize individual plant phenotypes 579 

that have improved resistance to both abiotic and biotic stresses. The new techniques being developed 580 

will provide more accurate information about how individual plants react to the applied stress and will 581 

further help us better understand a whole range of mechanisms that are responsible for the given 582 
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reaction. Kinetic imaging of chlorophyll fluorescence is a very sensitive method that provides a whole 583 

range of information about plant physiology and fitness. There are also spectral analyses where, with 584 

the help of hyperspectral cameras, we can obtain information about the composition of individual 585 

pigments in plants or other metabolites. Raman spectroscopy then expands the spectrum of analysed 586 

substances by including more complex organic compounds. X-ray tomography makes it possible to 587 

investigate internal structures of the plant and monitor the morphology inside the observed objects. 588 

Further, 3D modelling with the help of laser scanners, increases the accuracy of the 3D model and thus 589 

the possibility of obtaining precise information about plant morphology. We can also expect that new 590 

non-invasive sensors with higher sensitivity and precision will soon become available and will provide 591 

more accurate information needed for plant phenotyping. Moreover, new developing AI approaches 592 

will fundamentally enhance individual analyses. These new measurement techniques and analytical 593 

methods will significantly improve our ability to uncover new plant phenotypes and traits associated 594 

with environmental stresses. 595 

 596 

Supplementary data 597 

The following supplementary data are available at JXB online. 598 

Fig. S1. The correlogram showing the data multicollinear nature. 599 

Fig. S2. The supporting data for PCAs. 600 

Fig. S3. The parameter contribution in PCA of global data. 601 

Table S1. List and description of parameters obtained from FV/FM protocol. 602 

Table S2. List and description of parameters obtained from Kautsky slow induction kinetics protocol. 603 

Table S3. List and description of parameters obtained from Quenching analysis protocol. 604 

Table S4. List and description of parameters obtained from Rapid light curve protocol. 605 

Table S5. Confusion matrices for random forest for stress classification on total data. 606 

Table S6. Confusion matrices for random forest for stress classification on 5 DODS. 607 

Table S7. Confusion matrices for random forest for stress classification on 14 DODS. 608 

Table S8. Confusion matrices for random forest for genotype classification on 14 DODS. 609 

Dataset S1. Morphological, RGB and fluorescence data. 610 
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