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Highlight

Fluorescence parameters can serve as early markers of drought stress before morphological
alterations appear. Shoot phenotyping of cytokinin receptor mutants showed drought resistance in
the ahk2 ahk3 double mutant.

Abstract

Plant phenotyping represents an increasing promise in plant research by providing a complex
picture of plant development and fitness. In research focused on various environmental stresses,
phenotyping can uncover markers that can sensitively assess the stress impact in very early stages
before morphological changes. PlantScreen™ System represents a tool dedicated for shoot and root
phenotyping in soil enabling high-precision, high-throughput phenotyping of small, mid-size and large
plants. The system offers wide range of sensors providing the number of non-invasive analyses of
morphological and physiological parameters as well as of pigments, water, or metabolite content.

In our work, we combined phenotyping approaches to determine morphological changes and
the status of the photosynthetic apparatus in Arabidopsis plants exposed to drought stress. Focused
on morphology, the rosette area became smaller after seven days of drought stress when compared
to control conditions. Interestingly, cytokinin signalling mutant ahk2 ahk3 revealed drought resistance
compared to other genotypes. The fluorescent parameters showed higher sensitivity even in wild type.
Non-photochemical quenching displayed values connected to reduced activity of photosynthetic
apparatus after five days of drought stress. Taken together, acquired fluorescence parameters can
serve as a marker of drought stress detection before morphological alterations occur.

Keywords

cytokinin signalling, drought stress, fluorescence parameters, morphological parameters,
PlantScreen™ System, shoot phenotyping
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72 Introduction

73 The green revolution in the first half of the 20'" century, helped increase world food security
74  sharply, which allowed higher standards of living, and a rapid increase in the global population. These
75  accomplishments, in their turn, gave rise to many new challenges. Intensive agriculture has resulted in
76 soil exhaustion, soil degradation and, decrease in biodiversity (Tsiafouli et al., 2015). Alongside that,
77  the climate change is increasing the frequency of extreme weather phenomena such as heatwaves,
78 droughts or heavy precipitation (Rummukainen, 2012). Plants, being sessile organisms, are inevitably
79  exposed to these weather fluctuations, which can result in the disruption of their physiology and
80 morphology. Since food production is vastly dependent on proper functioning of the plant body, these
81 challenges pose a major barrier for sufficient food production. Therefore, while basic research should
82 aim at uncovering the defence mechanisms used by plants to withstand stress conditions (Hu and
83 Xiong, 2014), applied research should urgently focus on breeding (and introduction into agricultural
84 practice) of more crop varieties resistant to biotic or abiotic stresses.

85 Non-destructive and repeatable methods that could be used on large-scale experiments is
86 absolutely essential to achieve these stated goals. Recent technical advances have provided us with a
87  broad set of tools used for plant body phenotyping, which is defined as the set of methodologies and
88 protocols used to precisely measure plant growth, architecture, and composition at different scales, in
89 controlled environments and in the field (Fiorani and Schurr, 2013; Yang et al., 2014; Milella et al.,
90 2019; Mertens et al., 2021). The necessity to perform these measurements in large numbers, means
91 that high-throughput phenotyping is now seen as a major bottleneck in the association of crop
92 improvement and information regarding phenotype data (Feng et al., 2017). This problem was partially
93 resolved with several integrating technologies over the past two decades. However, the high
94 dimensional datasets provided by phenotyping methods are a challenge for data processing and
95  evaluation, which has become a new bottleneck in the whole process (Minervini et al., 2016). Deep
96 learning has been proposed as a solution to alleviate this issue (reviewed in (Arya et al., 2022)).
97 Measuring the kinetics of chlorophyll a fluorescence is a useful non-invasive method for
98  evaluating the condition of the photosynthetic apparatus, and is often used in phenotyping (Sperdouli
99 et al., 2021; Shomali et al., 2023). Energy absorbed by photosystem Il can be utilized in three main
100  ways: i) it can be used up in photosynthetic processes (photosynthetic quenching); ii) dissipated as
101 heat (non-photochemical quenching) or iii) re-emitted as fluorescence back into the environment
102 (reviewed in (Rohacek and Bartak, 1999). Rapid light curve is a method of measuring induced
103  fluorescence kinetics often used for assessing stress in plants in controlled environments or in the field
104  (Rascheretal., 2000; Kalaji et al., 2016; Sdnchez-Reinoso et al., 2019). To measure the rapid light curve,
105 the plants are exposed to gradually increasing intensities of light. This allows us to obtain useful
106 parameters such as maximum quantum vyield (Fv/Fwm), actual quantum yield of photosystem Il (QY) or
107 non-photochemical quenching (NPQ). RGB image analysis is used for phenotyping the plants. This
108 method can be based on the analysis of the colour of individual pixels to provide us with useful
109 information about the morphology of the observed plants (Pavicic et al., 2017). Simultaneously, the
110  data can also be used for the analysis of the presence and composition of individual pigments in the
111 plant shoot (Bednafikovd et al., 2023). Higher-resolution and more complex information can be
112 obtained by combining pigment analysis, chlorophyll fluorescence and morphology. The PlantScreen™
113 System is capable of high-throughput, high-precision, and non-invasive measurement of the plant
114 phenotype, combining RGB analysis of shoot morphology and colour spectrum, measurement of
115  chlorophyll fluorescence kinetics and image analysis of the root system. Such a combination of
116 phenotyping techniques provides comprehensive information about the plant — comprising
117  information on growth and development, physiological status and fitness, yield and biomass
118 production or reactions to stresses.


https://doi.org/10.1101/2023.11.30.569457
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.30.569457; this version posted December 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

119 Biotic and abiotic stress are some of the main causes for decrease in agronomical yield (Pandey
120 et al., 2017; Kopecka et al., 2023) and therefore, breeding has focused on the development of new
121  approaches to improve crop stress tolerance (Gonzalez Guzman et al., 2022). These approaches
122 require a robust understanding of plant physiology in terms of stress responses and especially plant
123 hormone signalling, which controls plant development and ultimately, crop vyield (Sah et al., 2016;
124 Wang et al., 2021; Castro-Camba et al., 2022; Mandal et al., 2022a).

125 Cytokinins play an important role in stress pre-adaptations and stress tolerance (Mandal et al.,
126  2022a,b). Modulation of cytokinin biosynthesis leads to increased drought tolerance (Reguera et al.,
127 2013). Furthermore, cytokinins are crucial regulators of hydrotropism in several species, which
128  suggests even tighter link between drought stress resistance and cytokinin signalling (Chang et al.,
129 2019; Miyazawa and Takahashi, 2020).

130 Cytokinin signalling employs the multistep phosphorelay which helps the plant to integrate
131 various environmental stimuli, including abiotic stresses (Skalak et al., 2021). In Arabidopsis, the
132 multistep phosphorelay comprises three families of proteins — histidine kinases (AHKs), His-containing
133 phosphotransfer proteins (AHPs) and response regulators (ARRs), which can be functionally and
134 structurally sub-divided into three groups (A-ARRs, B-ARRs, C-ARRs) (reviewed in (Kieber and Schaller,
135 2018). The AHKs represent a diverse group of proteins which can act in both a cytokinin-dependent or
136  independent manner depending on differences in their domain composition (Spichal et al., 2004; Tran
137 et al., 2007; Desikan et al., 2008; Deng et al., 2010). The cytokinin receptors AHK2-4 (Inoue et al., 2001;
138 Higuchi et al., 2004; Nishimura et al., 2004) possess the cytokinin-binding CHASE domain
139 (Anantharaman and Aravind, 2001) followed by a transmembrane domain, a histidine kinase domain
140  andareceiver domain. Upon activation, AHKs autophosphorylate on their histidine kinase domain and
141  trigger the His-Asp phosphotranspher toward the conserved Asp residue of their receiver domains.
142 The phosphate group is further transferred to AHPs and finally to B-ARRs — transcription factors , which
143  are activable by phosphorylation (Sakai et al., 2000; Argyros et al., 2008) and A-ARRs, which act as
144 major negative feedback links in the signalling pathway (To et al., 2004; Kim, 2008). The precise
145  functioning of C-ARRs has not been elucidated yet. They presumably act as AHP-phosphatases with a
146 positive impact on abiotic stress tolerance, as it was shown that the expression of ARR22 increases
147 when exposed to drought and freezing (Gattolin et al., 2006; Horak et al., 2008; Kang et al., 2013).

148 Regarding stressors, cytokinin receptors AHK2, AHK3, and AHK4 negatively regulate drought
149  and dehydration tolerance, as seen by the phenotypes of their corresponding mutants (Tran et al.,
150  2007; Kang et al., 2012). Similarly, AHPs and B-ARRs act as partially redundant negative regulators of
151  drought tolerance (Nishiyama et al., 2013; Nguyen et al., 2016). Complementarily, the negative
152  components of cytokinin signalling — A-ARRs and C-ARRs have been observed to positively affect water-
153  deficiency stress tolerance (Wohlbach et al., 2008; Kang et al., 2013; Huang et al., 2018). Interestingly,
154  although the cytokinin receptors seem to act as negative regulators of drought tolerance, the
155  cytokinin-independent AHK1 is a positive effector of water-deficiency tolerance and is a potential
156 osmosensor (Tran et al., 2007; Wohlbach et al., 2008; Kumar et al., 2013). Further, AHK5 negatively
157 regulates plant tolerance to osmotic and drought stress, possibly due to its role in ROS-dependent
158 stomatal closure and crosstalk with ethylene and ABA signalling (lwama et al., 2006; Desikan et al.,
159 2008; Pham and Desikan, 2012; Pham et al., 2012; Szmitkowska et al., 2021).

160 In summary, with respect to drought tolerance, the positive executors of multistep
161 phosphorelay seem to act as negative regulators, while the quenching components seem to act as
162 positive regulators. Although the components are partially redundant, their function does not overlap
163 completely. This presents a conundrum which can potentially be solved by precise phenotyping
164  combined with appropriate data analysis, which is now possible using the PlantScreen™ Compact

4
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165  System. Since the system generates large amounts of data, the main concern is data
166 multidimensionality — with all the associated advantages and disadvantages. The main concerns
167  include data visualization, reduction of dimensionality and further simplification without losing
168 information.

169 In our work, we implemented and optimised a drought stress protocol on an assembly of
170  Arabidopsis wild type (Col) and single and double mutants in the cytokinin receptors AHK2 and AHK3.
171  Aiming for proper data analysis, several methods of multivariate statistical analysis were employed
172  covering clustering analysis, ordination methods like principal component analysis (PCA), and a
173 machine learning approach (random forest) to enable the extraction of important parameters. Our
174  results indicate that the drought impact can be significantly differentiated from control within 5 days
175 of drought stress using fluorescence parameters. Non-photochemical quenching and gqN were
176  identified as the most important parameters and indicated the involvement of protective mechanisms
177  of the photosynthetic apparatus during drought stress. Comparing wild type and cytokinin receptor
178 mutants, parameters from all three inspected categories (morphology, color segmentation and
179  chlorophyll fluorescence) showed a high degree of importance. Altogether, combining multiple
180  phenotyping approaches and advanced data analysis furnishes a comprehensive set of information
181 about plant morphology, physiology, and fitness during drought stress. Fluorescence parameters were
182  shown to be useful markers of the very early phases of drought stress before morphological changes
183 are apparent. This protocol can now be applied to study other stresses, cultivation conditions or
184 genotypes.

185
186 Materials and methods
187 Plant material

188 All plant material used was Arabidopsis thaliana. The Nottingham Arabidopsis Stock Centre
189  (NASC) provided seeds for the wild type accession Col (N60000). The mutant lines have been described
190  previously: ahk2-5, ahk3-7, ahk2-5 ahk3-7 (Riefler et al., 2006). The AG/ codes (www.arabidopsis.org)
191 are: AHK2 (AT5G35750), AHK3 (AT1G27320).

192 Growth conditions

193 For plant cultivation we used the Klasmann Substrate TS3 fine (416, Pasi¢) and 7x7x6.5 cm pots
194  (Pasic). Seeds were geminated in one pot and were replanted after 7 days in the very centre of a single
195 pot. Plants were grown in cultivation chambers — phytotrons (CLF Plant Climatics or PSI - Photon
196  Systems Instruments), under long-day conditions (16 hours light/8 hours dark) at 21°C with a light
197  intensity of 150 pMm™ s and 40-60% relative humidity. Watering was adjusted according to control
198  or drought stress conditions (Fig. 1A).

199  PlantScreen™ Compact System

200 Hardware

201 The phenotype data were acquired using the PlantScreen™ Compact System (developed by
202 Photon Systems Instruments, Drasov, Czech Republic), which is designed for digital phenotyping and
203 cultivation of small and mid-size plants up to 0.8 m in height (e.g., Arabidopsis thaliana, cereals,
204  strawberries, turfgrass, young soybean, tobacco, corn, etc.). In our version the transport of plants is
205  carried out manually in trays that can be adapted to carry different patterns for single or multiple
206  plants grown in individual pots or in vitro (e.g., multiwell plates) providing flexibility of use with
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207  numerous different species, or with a single species throughout its growth cycle. The entire system is
208 built in a light isolated box with active internal ventilation, which does not transmit any ambient light
209 from outside. For precise morphometric imaging and correct measurement of chlorophyll
210  fluorescence, dark/light adaptation is included. Environmental parameters are monitored using
211 temperature, humidity, and light sensors.

212 The system is equipped with several imaging sensors:

213 (i) Dual (monochromatic and RGB) camera for top view RGB and chlorophyll fluorescence imaging —
214 the PSI DUAL CAM is fitted with two 12.36-megapixel CMOS sensors, a monochromatic Sony
215 IMX253LLR-C for chlorophyll fluorescence measurement and a colour Sony IMX253LQR-C sensor for
216 RGB structural imaging. These sensors deliver a resolution of 4112 x 3006 pixels as well as global
217 shutter feature. The sensors are extremely sensitive and are real megapixel CCD substitutes that
218  produce sharp and low-noise images. The monochromatic sensor runs in binning mode with 2056 x
219 1503 resolution, which means four times higher sensitivity.

220  (ii) RGB camera for side view imaging (linear scan) — the UI-5580CP is fitted with a 5-megapixel CMOS
221 sensor. About half an inch in size, the sensor delivers a resolution of 2560 x 1920 pixels as well as rolling
222  and global start shutter features. The various shutter modes produce sharp, low-noise images.

223 (iii) RGB camera for root imaging — the PSI BW is fitted with a 12.36-megapixel CMOS sensor (Sony
224  IMX253LQR-M). The sensor delivers a resolution of 4112 x 3006 pixels as well as global shutter feature.

225  Software

226 The comprehensive software package with remote accessibility comprises the PlantScreen™
227 Server application, the PlantScreen™ Scheduler client, a PlantScreen™ Database and a PlantScreen™
228 Data Analyzer. The package provides control over all imaging modules, as well as database
229 configuration, data acquisition and image analysis. A set of computed morphological parameters is
230  available: area, perimeter, compactness, rotational mass symmetry (RMS), roundness, isotropy,
231  eccentricity, slenderness of leaves (SOL) and convex hull area (Fig. 1B). A detailed definition of the
232 morphological parameters has been published previously (Pavicic et al., 2017).

233 Several protocols for fluorescence measurement are available:

234 (i) Fy/Fm protocol — protocol providing two measured parameters Fo and Fy, and one calculated
235 parameter, maximum QY. Detailed definition of parameters can be found in supplementary data
236  (Supplementary Table S1).

237 (i) Kautsky slow induction kinetics — during this protocol, plants in the dark-adapted state are exposed
238  toactinicirradiation, which results in a rapid increase in fluorescence culminating in maximum Fp value.
239  With ongoing exposition to actinic light, the photosynthetic apparatus accommodates to the radiation
240  viatheinvolvement of secondary photosynthetic processes which results in reduced fluorescence until
241  transient fluorescence (Fy) is reached (Rohacek and Bartak, 1999). Out of the calculated parameters
242 Fv, QY_max and Rfd are available. Detailed definition of parameters can be found in supplementary
243  data (Supplementary Table S2).

244  (iii) Quenching analysis protocol — Kautsky kinetics supplemented with saturation pulses. The plants in
245 the dark-adapted state are firstly exposed to a saturation pulse and afterwards, actinic light is switched
246  on. Saturation pulses are then applied on plants in the light-adapted state throughout the
247 measurement. This protocol provides a broad spectrum of measured (Fo, Fm, Fp, Fm_Ln, Fm_LSS, Fr_Ln,
248 Fr_Lss) and calculated (Fv, Fo_Ln, Fo_Lss, Fy_Ln, F,_Lss, Fq_Ln, Fq_Lss, QY_max, Fv/Fm_Lss, Fv/Fm_Ln,
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249  QY_Ln, QY_Lss, NPQ_Ln, NPQ_Lss, qN_Ln, gN_Lss, gP_Ln, qP_Lss, gL_Ln, gL_Lss, Rfd_Ln, Rfd_Lss)
250 parameters. Detailed definition of parameters can be found in supplementary data (Supplementary
251  Table S3).

252 (iv) Rapid light curve — plants in the dark-adapted state are exposed to a saturation pulse and
253  subsequently exposed to low intensity actinic irradiation. After a certain time, another saturation pulse
254 is applied on plants in the light-adapted state. This saturation pulse is followed by exposure to actinic
255 light whose intensity has been increased by a specific amount (White and Critchley, 1999). This process
256  and the increase of radiation intensity is repeated six times. This analysis provides a broad range of
257 measured (Fo, Fm, Fp, Fr) and calculated (Fy, Fm_Lss, Fr_Lss, Fo_Lss, F,_Lss, Fq_Lss, QY_max, Fy/Fu_Lss,
258  QY_Lss, NPQ_Lss, gN_Lss, gP_Lss, gL_Lss, ETR_Lss) parameters. Detailed definition of parameters can
259 be found in supplementary data (Supplementary Table S4).

260 Acquiring RGB parameters

261 The plants in pots were arranged in transportable trays, each of which held 20 plants (4x5
262  template). The top RGB camera was used to acquire the morphology parameters. The obtained images
263 were pre-processed via the PlantScreen™ Data Analyzer software to get RGB and binary data. These
264  data were used to calculate the morphological parameters (Fig. 1B).

265 The RGB data were used for colour segmentation analysis. Each pixel was indexed assigned to
266  the colour map according to its R, G, B channel ratio. These values were categorised into groups
267 according to the hues (Awlia et al., 2021). The R, G, B values were grouped into 9 hues (R110, G111,
268  B90; R90, G98, B58; R72, G84, B58; R73, G86, B36; R57, G71, B46; R59, G71, B20; R45, G55, B36; R45,
269 G54, B13; R34, G38, B22) (Fig. 1B).

270 Acquiring fluorescence parameters

271 The physiological status of plant lines was assessed by measuring the induced fluorescence of
272 chlorophyl a (Fig. 1B). We used Rapid Light Curve protocol, which is suitable for detecting stress
273  affecting plants (Flexas et al., 1999). The measurement was performed at a working distance of 430
274  mmon plants in the dark-adapted state. Arabidopsis plants were kept in the dark for 7 minutes. Firstly,
275  the measuring light was applied for 5 seconds to acquire information about the minimum level of
276  fluorescence in the dark-adapted state (Fo). A saturation pulse was applied for 800 ms, its source is a
277 LED, which has cool white 6500K spectrum, corresponding almost exactly to daylight, and the intensity
278  of the saturation pulse was 1256 umol.m2s?. This pulse with high irradiation intensity is used to
279 determine the maximum fluorescence in the dark-adapted state (Fwm). The actinic light intensities of
280 the individual steps were 15.6, 193.4, 396, 602, 810, and 1013 umol.m™2.s. Each step begins with a
281 800 ms saturation pulse in order to measure maximum fluorescence in the light-adapted state
282 (Fm_Lss). Subsequently, the actinic light is switched on for 60 seconds, and at the end of each step the
283  transient fluorescence (Fr) is measured. The acquired data of the measured fluorescence were
284  transferred to the PlantScreen™ Data Analyzer, which provided the calculated fluorescence
285 parameters.

286 Data analysis and statistical analysis (Fig. 1C)

287 Correlograms

288 The graphical representation of variable correlations was used to detect clusters of partial
289  redundant variables present in the dataset since the variable correlation is one of the prerequisities
290 for efficient principal component analysis (Supplementary Fig. S1). In order to achieve a more robust
291 representation, Spearman correlation coefficient was used, and the representation was colour-coded
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292 using the viridis colour palette. Further, the variables were hierarchically clustered based on their
293 correlations using average agglomeration. The correlograms were made using the stats package (R
294 Core Team, 2023).

295  Principal component analysis (PCA)

296 PCA as one of the ordination methods was used to visualise the data and simplify its
297 multivariate nature. The data were scaled and subset into fluorescence-based and RGB-imaging-based
298 parameters, the latter consisting of morphometric parameters and colour segmentation variables. The
299 number of principal components was set based on a scree plot evaluation (Supplementary Fig. S2A, B).
300 The quality of the representation was evaluated by cos? (Supplementary Fig. S2C, D). For the sake of
301 clarity, biplot was used as the final representation only in the demonstrative case. The package
302 factoextra (Kassambara and Mundt, 2020) was used. For visualisation of differences between defined
303  groups (genotype vs. stress conditions), the centroids with ellipses representing their 95% confidence
304  interval were depicted in the plots.

305 Random forest

306 A random forest algorithm was used for estimating parameter importance, utilising
307 randomForest package (Breiman, 2001; Liaw and Wiener, 2002). The models were trained on the
308 subset data covering all measured and derived variables. The number of trees was set to 1000, each
309  split tested 9 variables (based on square root estimation). The variable importance was extracted to
310 enable prediction of stress conditions or genotype (i.e., classification model). The performance of the
311 model was tested by confusion matrices using randomly subset test data, which were not used for
312 model training (Supplementary Tables S5-58). The 20 most important variables were visualised by vip:
313 Variable Importance Plots package (Greenwell and Boehmke, 2020) with estimated importance on the
314  main axis and colour coded mean decrease in gini.

315  Hierarchical clustering

316 In order to see similarities in the tested genotypes under stress conditions, the averaged values
317  for each group were clustered based on Euclidean distance.

318 Time series plots

319 The selected parameters are depicted as a time series for each genotype under both tested
320 conditions. The lines represent LOESS regressions with shaded 95% confidence interval. The images
321  were generated by ggplot2 and ggpubr (Wickham, 2016; Kassambara, 2022).

322 Time point plots

323 The selected parameters at representative time points are depicted by Tukey’s boxplots. The
324  images were generated by ggplot2 and ggpubr. The statistical significances were evaluated with a
325 Krustal-Wallis test and a post-hoc Dunn test. The significant differences were depicted using compact
326 letter display. The packages used for this were rcompanion (Mangiafico, 2023), FSA (Ogle et al., 2023),
327  and stats (R Core Team, 2023).

328 Data management, storage and access to users was managed in collaboration with the Biological Data
329 Management and Analysis Core Facility (Svoboda et al., 2023).
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331 Fig. 1. Drought stress experimental setup and phenotyping using PlantScreen™ Compact System. (A)
332 Potential abiotic or biotic stress is applied to plants. (B) Imaging by PSI DUAL CAM or by side RGB
333  cameras provides raw data used for calculating phenotype parameters. RGB cameras enable extraction
334  of morphological parameters (e.g., area, perimeter, roundness, eccentricity, slenderness of leaves) or
335  colour segmentation. Colour segmentation allows the definition of any colour from the RGB spectrum
336 and can detect senescent leaves or anthocyanins. Fluorescence camera allows imaging of the
337 chlorophyll fluorescence signal with various measuring protocols including Fv/Fm, quenching analysis,
338 Kautsky slow induction kinetics or rapid light curve. (C) Downstream analysis of the parameters based
339 on multidimensional principal component analysis or machine learning approach like random forest is
340  used to estimate the importance of morphological, colour or fluorescence parameters. Correlograms
341 utilizing Spearman rank correlation visualize correlating parameters. Further clustering of parameters,
342 such as genotypes, treatments, or stress conditions, helps identify the impact of the stresses on plants.

343 Created with BioRender.com.
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345 Results and discussion
346  Optimization of the drought stress experimental setup

347 It is necessary to ensure precise regulation of water content in the substrate to determine the
348  effect of drought stress on the morphological and physiological aspects of plants. Cultivation
349 conditions were optimized to set the appropriate substrate humidity suitable for the drought stress
350 experimental protocol. The substrate was aliquoted at 50 g per each pot. The commercially available
351  substrate already had a humidity of 54%. After preparing the pots, we added 15 ml of water (10 ml
352 before replanting the seedlings and 5 ml afterwards) to keep the transplanted roots wet. Thus, the
353  overall humidity of the substrate reached approximately 65%. 11 days after sowing (DAS), the first
354 phenotyping was performed to verify uniformity of the observed parameters in plant lines before
355 applying drought stress. At this timepoint, both variants were equal in substrate water content. After
356 the first phenotyping, no more water was added to the substrate for the drought stress variant. The
357 phenotyping was then carried out three times per week at 14, 16, 18, 21, 23 and 25 DAS corresponding
358 to 3,5, 7,10, 12, 14 days of drought stress (DODS; Fig. 2A).

359 The effect of severe drought stress on overall plant body fitness has been studied intensively,
360 but the effect of mild and moderate drought stress is far less understood. In our optimized protocol
361 we concentrated on mild stress and the experiment was terminated when severe stress responses
362 began to appear. Mild and severe drought stress seem to activate different mechanisms. In drought
363 resistant barley exposed to mild drought stress, stomatal conductance was the main factor that limited
364  the rate of photosynthetic processes, while in case of severe drought light-dependent reactions were
365  structurally and biochemically impaired (Ghotbi-Ravandi et al., 2014). Such processes limit the ability
366  of plant to produce biomass and result in yield reduction (Torres and Henry, 2018). Moreover, it seems
367 that there are no efficient mechanisms to resist moderate drought stress in Arabidopsis, as revealed
368 by the measurement of induced chlorophyll fluorescence, which showed a higher impact on
369 photosynthesis in mild and severe stress when compared to moderate stress. The mild stress reaction
370  was comparable to the severe stress effect (Sperdouli and Moustakas, 2012).

371
372  The data set involves multiple collinear variables and shows global differences in stressed plants

373 Our results revealed several parameters to be highly correlated (Supplementary Fig. S1). This
374  is especially valid for parameters acquired at a range of different light intensities (different LSSs).
375 Moreover, this multicollinearity can be explained by the fact that the dataset involves both directly
376  measured and calculated parameters and therefore a certain level of correlation can be expected
377  between the derived ones and their corresponding source.

378 Since PCA can effectively simplify the data with collinearity (Lafi and Kaneene, 1992), this
379  ordination method was selected for global data visualisation (Fig. 2B-E). Two models were created on
380 a dataset comprising all data points, where variables were divided into two groups based on their
381 acquisition origin. The first model was created on RGB-based variables, which involve morphometric
382 parameters and colour segmentation (Fig. 2B). The second model was created using fluorescence-
383 based parameters (Fig. 2C). Two principal components were selected for both models, which in both
384  cases cumulatively explained approximately 70% of the original variance. The contribution of each
385  parameter was evaluated (Fig. 2B,C).

386 Further, individual data points which represent measurements from a single plant at each time
387 point are depicted in the selected 2-component plane (Fig. 2D,E). The data points are colour-coded
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388 with a light colour representing the experiment initiation and a progressively darker colour
389 corresponds to progressing time. The non-stressed control is depicted in shades of green/points,
390 whereas samples stressed by drought are depicted in shades of red/asterisks. The non-stressed and
391  stressed clusters differentiated in the later phases of the experiment, which correspond to
392 morphological, colour, and fluorescence changes which occurred in response to drought. In conclusion,
393 it is possible to distinguish the global effects of drought stress on the plants. However, this
394 methodology does not provide information about variable importance, which was further estimated
395  applying a random forest approach.
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396
397 Fig. 2. Measurement of morphological and fluorescence parameters in wild type (Col) and cytokinin
398 receptor mutants (ahk2, ahk3, ahk2 ahk3). (A) Plants were exposed to drought stress and phenotyped
399 for 14 days (0-14 DODS). The age of plants corresponds to days after sowing (DAS). Scale bar: 7 cm. (B,
400 C) Charts of variable contribution to PCA models were built using (B) RGB-based parameters or (C)
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401  fluorescence imaging. Variable labels are shown in simplified form. Detailed version is available as
402  supplementary data (Supplementary Figure S3). (D, E) In the corresponding space, single data points
403  are depicted showing global differences with progressing drought stress, generated from (D) RGB or
404 (E) fluorescence data.

405
406  Fluorescence parameters as markers of drought stress

407 The random forest is a powerful machine learning algorithm which can be used for
408 classifications, regressions, and measurements of variable importance (Genuer et al., 2010). We used
409 a random forest algorithm for the classification of drought stress conditions and subsequent
410 estimation of variable importance. The created models were used for parameter importance
411  evaluation, and not as predictors, thus the workflow was adjusted accordingly. The data set comprising
412  all time points was used as a training set for the classification model, which aimed to differentiate
413 between control and stressed plants across the tested lines (Col, ahk2, ahk3, and ahk2 ahk3). Error
414  rates of the model were 6.23% and 7.41% on the trained dataset and on the test dataset respectively
415 (Supplementary Table S5). This result shows that plants exposed to drought stress can be
416  differentiated from non-stressed controls.

417 We focused on the earliest time point where stressed plants were clearly differentiable from
418  controls. The model was therefore trained on a subset of data divided based on days since the start of
419  the stress treatment (0, 3, 5, 7, 10, 12, 14 DODS). Most importantly, the classification error was less
420  than 5% for plants after 5 DODS (2.27% train data, 0% test data; Supplementary Table S6) and it further
421  dropped to 0% at 14 DODS (0% train data, 0% test data; Supplementary Table S7), representing the
422 last measuring day. This hints that the impact of drought stress is likely clearly visible as early as 5 days
423  with a reasonably acceptable classification error which then further drops as drought-stressed plants
424  continue to diverge from the watered control. This is consistent with the PCAs (Fig. 2D, E) showing a
425 clear separability of stressed plants from the control at later timepoints. Based on the model, the
426  fluorescence parameters were selected as the most important parameters for stress distinction at 5
427 DODS. Interestingly, in the late phase of the experiment (14 DODS), the fluorescence parameters were
428  still evaluated by the model as the most important. This was very probably caused by the ahk2 ahk3
429  morphology per se and therefore the morphological parameters are probably not generally applicable
430  for such analyses. However, fluorescence parameters seem to be appropriate even for this type of
431  experiment and can serve as markers of drought stress.

432 The effect of drought stress on the physiological status of plants was evaluated by measuring
433 induced chlorophyll fluorescence. The random forest analysis showed that parameters associated with
434  the protective mechanisms of the photosynthetic apparatus [mainly NPQ and gN (Fig. 3A, B)] were
435  among the most important factors that explained the drought effect in plants both at 5 DODS and 14
436 DODS. NPQ is steady-state non-photochemical quenching, whereas gN is the coefficient of non-
437  photochemical quenching. Both, gN and NPQ point at the quenching mechanisms that play an
438 important role in the estimation of the absorbed energy that is consumed by protective mechanisms,
439 mainly through heat dissipation. NPQ started to increase after exposure to drought stress sooner (5
440  DODS; Fig. 3C) than gN (8 DODS; Fig. 3D). At both 5 and 14 DODS, gN measured under various light
441 intensities was more important in assessing the drought impact than NPQ (Fig. 3A, B). In higher plants
442 non-photochemical quenching is mainly based on the changing pH level in the thylakoid lumen, which
443 activates the xanthophyll cycle (Horton et al., 2000; Miiller et al., 2001), and is therefore responsible
444  forthe de-excitation of chlorophyll molecules in photosystem antennae (Havaux et al., 2007). At higher
445 light intensities, NPQ is sensitive to the effect of drought stress (Yao et al., 2018), which makes this
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446  parameter a useful marker of the early signs of water deficit (Chou et al., 2017). With increasing
447 drought, defense mechanisms are activated to protect the photosynthetic machinery and NPQ values
448 increase (Jia et al., 2020). However, in case of intense and severe drought stress, the whole system
449 collapses and NPQ decreases (Wang et al., 2018). Fy_Fm_Lss5 is also among the parameters that can
450 be used for estimating drought stress at 14 DODS. The Fy_Fm_Lss5 value started to decrease after 8
451 DODS in stressed plants, whereas in control plants it kept increasing until the end of the experiment
452 (Fig. 3E). Fv_Fm_Lss is defined as the maximum efficiency of photosystem Il in the light-adapted state
453 (Oxborough, 2004) and a decrease in this parameter points at the deteriorating condition of the
454  photosynthetic apparatus. This decrease under abiotic stress was previously recorded in vitro (Wang
455 et al., 2018) and in substrate (Adhikari et al., 2019).
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457  Fig. 3. Random forest algorithm was used to identify the most important parameters at (A) 5 DODS
458  and (B) 14 DODS with a color-coded mean decrease in gini. (C-E) Selected important variables are
459  shown as they change during the drought stress in plants exposed to stress (shades of red) and in
460  controls (shades of green). The lines depict LOESS models with a 95% confidence interval in

461  corresponding shades.
462
463 Genotype and cultivation condition clustering reveals distinctive patterns.

464 To look for similarities or differences between the tested genotypes, the dataset was clustered
465 with respect to either genotype or genotype in combination with stress condition (Fig. 4A, B). It was
466  obvious that the biggest difference among the phenotype of the genetic lines is for ahk2 ahk3. Col is
467  the most related to the ahk3 mutant followed by the ahk2 single mutant. When drought stress is
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468  considered, the clustering has a similar fractality. The control and stressed plants belong to different
469 clusters, except for ahk2 ahk3 which exhibited only small differences between stressed and non-
470  stressed plants (Fig. 4B). In this case, the ahk2 ahk3 genetic contribution on phenotype is higher than
471 the contribution of drought stress.

472 Principal component analysis was performed separately for morphological analysis comprising
473  colour segmentation, and induced chlorophyll fluorescence analysis on the first (11 DAS/ 0 DODS) and
474  thelast (23 DAS/ 14 DODS) measurement of the experiment. As for morphology analysis (Fig. 4C), the
475  first analysed phenotype at 11 DAS showed only small morphological differences between the
476  genotypes, since the clusters partially overlap, but no overlaps were detected in the estimations of
477  cluster centroid confidence intervals (depicted as ellipses). This suggests that there are small
478 guantitative differences between the genotypes; nonetheless, the genotypes are not easily separable.
479 Morphological data obtained at 23 DAS revealed a strong distinction between control and drought-
480  stressed plants in the case of Col, ahk2 and ahk3 (Fig. 4D). However, no global differences in
481 morphology among Col, ahk2 and ahk3 were detected using PCA. A different trend was observed in
482  the case of the ahk2 ahk3 double mutant, separated by the PCA analysis from other genotypes.
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484  Fig. 4. Hierarchical clustering on whole dataset based on (A) genotypes or (B) genotypes in combination
485 with drought stress. (C-F) PCA models were built for (C, E) start of the experiment and (D, F) the end
486  of experiment to detect differences between genotypes at the selected time points. The models were
487  built using (C, D) RGB-based parameters or (E, F) fluorescence-based parameters. All charts show the
488 centroid of each defined group with its 95% confidence interval as a shaded ellipse.

489

490 No differences were observed in the PCA analysis of fluorescence parameters at 11 DAS/0
491 DODS (Fig. 4E), which points to a homogeneity in the rate of primary photosynthetic processes before
492  the drought stress. However, the measurement of induced chlorophyll fluorescence at 23 DAS/14
493 DODS revealed a strong distinction between well-watered and drought-stressed plants (Fig. 4F). The
494 PCA uncovered a linear separation between control and drought-stressed plants which fits with the
495 result obtained by training a random forest classificator on 14 DODS data showing 0% error rate
496 expected for linearly separable data. Taken together, we were not able to differentiate the individual
497  genotypes exposed to drought stress using PCA. However, in the control group, the cluster of ahk2
498  ahk3 mutant was the most distant from other genotypes.

499 In principle, PCA does not substitute standard statistical methods for the evaluation of
500 differences between genotypes for single parameters, but it points out that the genotypes are very
501 likely not easily separable. This can be further supported by training a random forest classifier, which

502  exhibited approximately 25% error rate (28.91% train data; 25% test data; Supplementary Table S8) in
503 genotype estimation using the data from the last time point measurement. Since the classification
504  erroronarandom sample should be 75%, the model performed better than randomly generated data.
505  Although not precise, this estimation is better than random and can point out variables which are
506  important for such selection when their biological relevance is carefully evaluated (Fig. 5A).

507
508 The ahk mutants exhibit several distinguishable phenotypes

509 The random forest analysis showed that all categories of parameters (morphological,
510 fluorescence and colour segmentation) showed a high degree of importance for determination of
511  observed genotypes at 14 DODS (Fig. 5A). Apart from parameters suitable for drought stress distinction
512 (Fig. 3), morphological parameters were revealed to be the most important for genotypes distinction,
513 particularly area and size of the plant rosette, calculated as a sum of the pixels showing fluorescence
514  activity during fluorescence measurement. That may be the consequence of the phenotype of the
515 tested plant lines as the ahk2 ahk3 double mutant displays a much smaller shoot compared to other
516 lines in general (Riefler et al., 2006).

517 Unlike single mutants, ahk2 ahk3 double mutant is known for its strong phenotype comprising
518  smaller shoot, shorter hypocotyl, compact rosettes with shortened petioles or affected leaf shape
519 (Nishimura et al., 2004; Riefler et al., 2006). At 14 DODS, no differences in rosette area among wild
520 type plants and single mutants were detected under both control and drought stress conditions (Fig.
521  5B). In control conditions ahk2 ahk3 double mutant area is reduced when compared to other observed
522 plant lines. Such a difference in the ahk2 ahk3 double mutant from other plant lines can be observed
523  also under drought conditions. We also examined the effect of drought on individual genetic lines.
524 Rosette area was reduced when control wild type and single mutants were compared to drought
525 exposed wild type and single mutants. There was no difference between control and drought exposed
526  ahk2 ahk3 double mutant. Previous research suggests that rosette area can be used as a marker more
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527  broadly. It was shown that it is a good determinant of the involvement of mutant lines in the plant
528 body response under various abiotic stresses (Awlia et al., 2021).

529 Chlorophyll fluorescence provides information about the physiological status. Among our
530 results, the most important markers for plant genetic lines variance are NPQ and gN (Fig. 5A), which
531 reflect the proportion of the energy absorbed by the photosynthetic apparatus, that is used up by
532  defense mechanisms. Another important fluorescence parameter with a high degree of importance
533  was quantum yield measured under the effect of a light intensity that was moderately elevated when
534  compared to the cultivation conditions of plants. Quantum vyield is one of the most often used
535  fluorescence parameters. Its value describes the amount of energy absorbed by photosystem Il that is
536  usedupin photosynthesis (Lazar, 2015). Under control conditions, no major differences were observed
537  among Col and single mutant plants. However, the quantum yield of the ahk2 ahk3 double mutant was
538 reduced, when compared to wild type and ahk2 cultivated under control conditions at 14 DODS (Fig.
539  5C), which points to the decreased ability of absorbed energy usage in linear electron transport in
540 primary photosynthesis. There was no difference in QY between ahk3 and ahk2 ahk3 in control
541  conditions (Fig. 5C). However, exposure to drought masked the differences among the used lines, and
542  there were no differences in quantum yield among plant genetic lines at 14 DODS. We also examined
543 the effect of drought stress on individual plant lines. When compared to plants grown under control
544  conditions, exposure to drought stress reduced the quantum yield of wild type and ahk single mutants.
545 With the ahk2 ahk3 double mutant, there was no significant difference between plants grown under
546 control or drought conditions (Fig. 5C). The quantum yield often decreases in response to abiotic stress
547  and may act as a marker for evaluating the ability to resist abiotic conditions for various plant mutant
548 lines (Yao et al., 2018) or crop varieties (Findurova et al., 2023).

549 Color change is also a key determinant, using which we can predict the genotype of the
550 observed plant. The most important was hue R57 G71 B46 (Fig. 5A). This hue corresponds to a darker
551  color. This points at changes in the presence of photosynthetic pigments. No differences were
552  observed among wild type and single mutants under control conditions. The same result was detected
553  with wild type and single mutants exposed to drought stress. In ahk2 ahk3 double mutant the R57 G71
554  B46value was strongly decreased under drought stress conditions, when compared to other plant lines
555 (Fig. 5D). Under control conditions the R57 G71 B46 value for the ahk2 ahk3 double mutant was
556  decreased only when compared to wild type and the ahk2 single mutant. Drought stress increased the
557 R57 G71 B46 value in all observed plant lines. The presence of cytokinin has a strong effect on the
558  chlorophyll content of leaves (Richmond and Lang, 1957) and treatment with different types of
559  cytokinin modulated the chlorophyll a, chlorophyll b content as well as their ratio in cultivated apple
560 leaves in vitro (Dobranszki and Mendler-Drienyovszki, 2014). A strong decrease in chlorophyll (to
561  approximately 70% of wild type) was detected in the ahk2 ahk3 double mutant (Riefler et al., 2006).
562 However, studies linking color segmentation to the content of photosynthetic pigments are still
563  absent.
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564

565 Fig. 5. (A) Random forest model was generated to reveal the most important parameters for genotype
566  discrimination using data from 14 DODS. (C-D) Three parameters were selected — (B) one
567 morphological - area, (C) one fluorescence-based - QY, and (D) one colour-segmentation-based —
568 RGB_57 71 46. Lowercase letters in charts indicate significantly different groups as determined using
569 Kruskal-Wallis test and post-hoc Dunn test (p< 0.05).

570

571 In conclusion, our results indicate that ahk2 and ahk3 show only low resistance to stress in the
572 early phases of drought. The results seem to be partially different from previously published drought
573  tolerant phenotype of ahk2 and ahk3 (Tran et al., 2007; Kang et al., 2012) which can be caused by
574  different experimental setup. Previously published research dealt with long-term stress combined with
575 recovery whereas our work focused on early stages of the drought stress.

576
577 Future Perspectives

578 Plant phenotyping with the help of state-of-the-art imaging techniques is a rapidly developing
579 field that shows enormous potential in terms of the ability to recognize individual plant phenotypes
580 that have improved resistance to both abiotic and biotic stresses. The new techniques being developed
581  will provide more accurate information about how individual plants react to the applied stress and will
582 further help us better understand a whole range of mechanisms that are responsible for the given

17


https://doi.org/10.1101/2023.11.30.569457
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.30.569457; this version posted December 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

583 reaction. Kinetic imaging of chlorophyll fluorescence is a very sensitive method that provides a whole
584 range of information about plant physiology and fitness. There are also spectral analyses where, with
585  the help of hyperspectral cameras, we can obtain information about the composition of individual
586 pigments in plants or other metabolites. Raman spectroscopy then expands the spectrum of analysed
587 substances by including more complex organic compounds. X-ray tomography makes it possible to
588 investigate internal structures of the plant and monitor the morphology inside the observed objects.
589 Further, 3D modelling with the help of laser scanners, increases the accuracy of the 3D model and thus
590 the possibility of obtaining precise information about plant morphology. We can also expect that new
591 non-invasive sensors with higher sensitivity and precision will soon become available and will provide
592 more accurate information needed for plant phenotyping. Moreover, new developing Al approaches
593  will fundamentally enhance individual analyses. These new measurement techniques and analytical
594  methods will significantly improve our ability to uncover new plant phenotypes and traits associated
595 with environmental stresses.

596
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598  The following supplementary data are available at JXB online.

599 Fig. S1. The correlogram showing the data multicollinear nature.

600 Fig. S2. The supporting data for PCAs.

601 Fig. S3. The parameter contribution in PCA of global data.
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608  Table S7. Confusion matrices for random forest for stress classification on 14 DODS.
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