

1 Comparative transcriptomics of seed nourishing 2 tissues: uncovering conserved and divergent 3 pathways in seed plants

4

5 Ana Marcela Florez-Rueda^{1,2}, Célia M. Miguel³ and Duarte D. Figueiredo^{1*}

6 ¹ Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am
7 Mühlenberg 1, 14476 Potsdam, Germany

8 ² University of Potsdam, Karl-Liebknechts-Str. 24-25, Haus 26, 14476 Potsdam,
9 Germany

10 ³ Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University
11 of Lisbon, Portugal

12 * figueiredo@mpimp-golm.mpg.de, +49-331-5678166

13

14 **Summary**

15 The evolutionary and ecological success of Spermatophytes is intrinsically linked to
16 the seed habit, which provides a protective environment for the pre-development of the
17 new generation. This environment includes an ephemeral nourishing tissue that supports
18 embryo growth. In gymnosperms this tissue originates from the asexual proliferation of
19 the maternal megagametophyte, while in angiosperms it is a product of fertilization, and
20 is called the endosperm. The emergence of these nourishing tissues is of profound
21 evolutionary value, and they are also food staples for most of the world's population.
22 Here, using orthogroup inference, we provide a comparative transcriptomic analysis of
23 seed nourishing tissues from representative species of all main angiosperm clades,
24 including those of early diverging basal angiosperms, and of two gymnosperm
25 representatives. Our results show that, although the structure and composition of seed
26 nourishing tissues has seen significant divergence along evolution, there are signatures
27 that are conserved throughout the phylogeny. Conversely, we identified processes that
28 are exclusive to each clade, and thus illustrate their functional divergence. With this, we
29 aimed to provide a foundation for future studies on the evolutionary history of seed
30 nourishing structures, as well as a resource for gene discovery in new functional studies.

31

32

33 **Significance Statement**

34 Within seeds a specialized structure is responsible for nourishing the embryo, and is
35 thus analogous to the mammalian placenta. Moreover, these nourishing tissues are also
36 important sources of staple foods and feed. Here, we provide novel gene expression
37 datasets of nourishing tissues of early diverging angiosperms, and use this information
38 for a meta-analysis to identify pathways conserved, or divergent, throughout evolution.
39 Thus, we aim to provide a resource for gene discovery for seed biology studies.

40

41

42 **Keywords:** seed, endosperm, megagametophyte, basal angiosperm, gymnosperm,
43 orthogroup inference, transcriptomics.

44 Introduction

45 The seed nourishing tissues are specialized structures that provide nutrients and support
46 for the developing embryo or for the germinating seedling. There is an outstanding
47 diversity of plant seeds and strategies for nutrient transfer and storage (Linkies *et al.*,
48 2010; Chen *et al.*, 2017). In most angiosperms, these functions are carried out by the
49 endosperm, the development of which, like that of the embryo, is derived from a
50 fertilization event. However, this coupling to fertilization is an innovation of the
51 angiosperms: gymnosperm seeds do not produce an endosperm, but their embryos are
52 surrounded by a nutritive tissue that results from the proliferation of the
53 megagametophyte (Linkies *et al.*, 2010; Rodrigues *et al.*, 2018).

54 These seed nourishing structures can be persistent or be consumed by the developing
55 embryo. Seedlings of species with persistent endosperms, like cereals, rely on it for
56 nourishment. Morphologically, those cereal endosperms are often larger and more
57 prominent than those of other angiosperms, occupying a larger proportion of the mature
58 seed. Contrastingly, in most eudicots, although serving a critical role during early seed
59 development, the endosperm is much smaller, and is consumed as seeds mature. This
60 leaves the cotyledons as the main storage tissue for the germinating seedling. In
61 monocots, because the endosperm is typically the primary source of nutrients for the
62 developing embryo, the cotyledon is often very small or absent (Sabelli P A *et al.*, 2005;
63 Sabelli & Larkins, 2009). Like in most eudicots, in early divergent angiosperms such as
64 *Amborella* and *Nymphaea*, the endosperm is not involved in nutrient storage but rather its
65 main role is transfer (Floyd & Friedman, 2000; Povilus & Friedman, 2022). In fact, in
66 *Nymphaea*, the storage function is handled by the perisperm, which derives from the
67 ovule nucellus (Povilus *et al.*, 2015). This is also the case in other species with
68 perispermic seed habits, like those of the Amaranthaceae family (Vandeloek *et al.*, 2021).

69 The transcriptional landscape of seed endosperm is expected to vary between various
70 plant clades and to reflect their diverse evolutionary histories and functional adaptations.
71 Evolutionary convergence and divergence at the transcriptional level refer to the
72 similarities and differences in gene expression patterns between different species (Ran *et*
73 *al.*, 2018; García de la Torre *et al.*, 2021). Recently, evolutionary transcriptomics has
74 greatly benefited from advances in orthologous inference pipelines such as OrthoFinder
75 (Emms & Kelly, 2019). One major advantage is to accurately identify orthologous genes
76 across large numbers of species, allowing for a more comprehensive comparative gene

77 expression analysis, and thus the potential to uncover kingdom-wide mechanisms (Julca
78 *et al.*, 2021, 2023). Such studies have led to substantial insights into the evolution of gene
79 regulation and the role of gene expression in phenotypic divergence between species
80 (Ferrari *et al.*, 2019; Yu *et al.*, 2020; Gao *et al.*, 2021; García de la Torre *et al.*, 2021).
81 The availability of large-scale transcriptomic datasets, combined with advances in
82 computational and analytical tools, has enabled researchers to identify co-expression
83 networks and functional modules across different species (Hansen *et al.*, 2014; Qiao *et*
84 *al.*, 2016; Vercruyse *et al.*, 2020). The integration of the large amount of publicly
85 available datasets with novel analytical methods is opening the way for the community
86 to generate and test powerful hypotheses about gene function and evolution (Leebens-
87 Mack *et al.*, 2019; Julca *et al.*, 2023).

88 In this study we leverage the diversity of seed-nourishing tissues and perform a
89 multispecies comparative transcriptomic study. Our main question is what the
90 transcriptional signatures are, that are conserved in different nourishing tissues across the
91 plant phylogeny. Additionally, we aimed to identify particular transcriptional features of
92 the nourishing tissues of divergent plant clades. We chose to examine distinct clades with
93 different endosperm conformations to maximize the power of our inferences.
94 Specifically, we used early divergent angiosperms represented by *Amborella trichopoda*
95 (Amborella) and *Nymphaea caerulea* (water lily). We included maize (*Zea mays*) and rice
96 (*Oryza sativa*) which possess a large and persistent starchy endosperm. As core eudicots
97 we included the well-studied endosperm of *Arabidopsis thaliana* (Arabidopsis), and those
98 of *Solanum peruvianum* (wild tomato) and *Mimulus guttatus* (monkeyflower). This
99 selection also covers species with distinct patterns of endosperm development: nuclear,
100 for Arabidopsis, rice and maize; and *ab initio* cellular, for the remaining species. As
101 representatives of the gymnosperms, we studied the megagametophyte transcriptome of
102 *Pinus pinaster* (maritime pine) and *Ginkgo biloba* (ginkgo). Our analyses provide a
103 comparative framework to identify potential orthologs of genes of interest that are
104 expressed in the seed nourishing structures of land plants. With this, we aim to provide a
105 resource for future functional studies in seed biology.

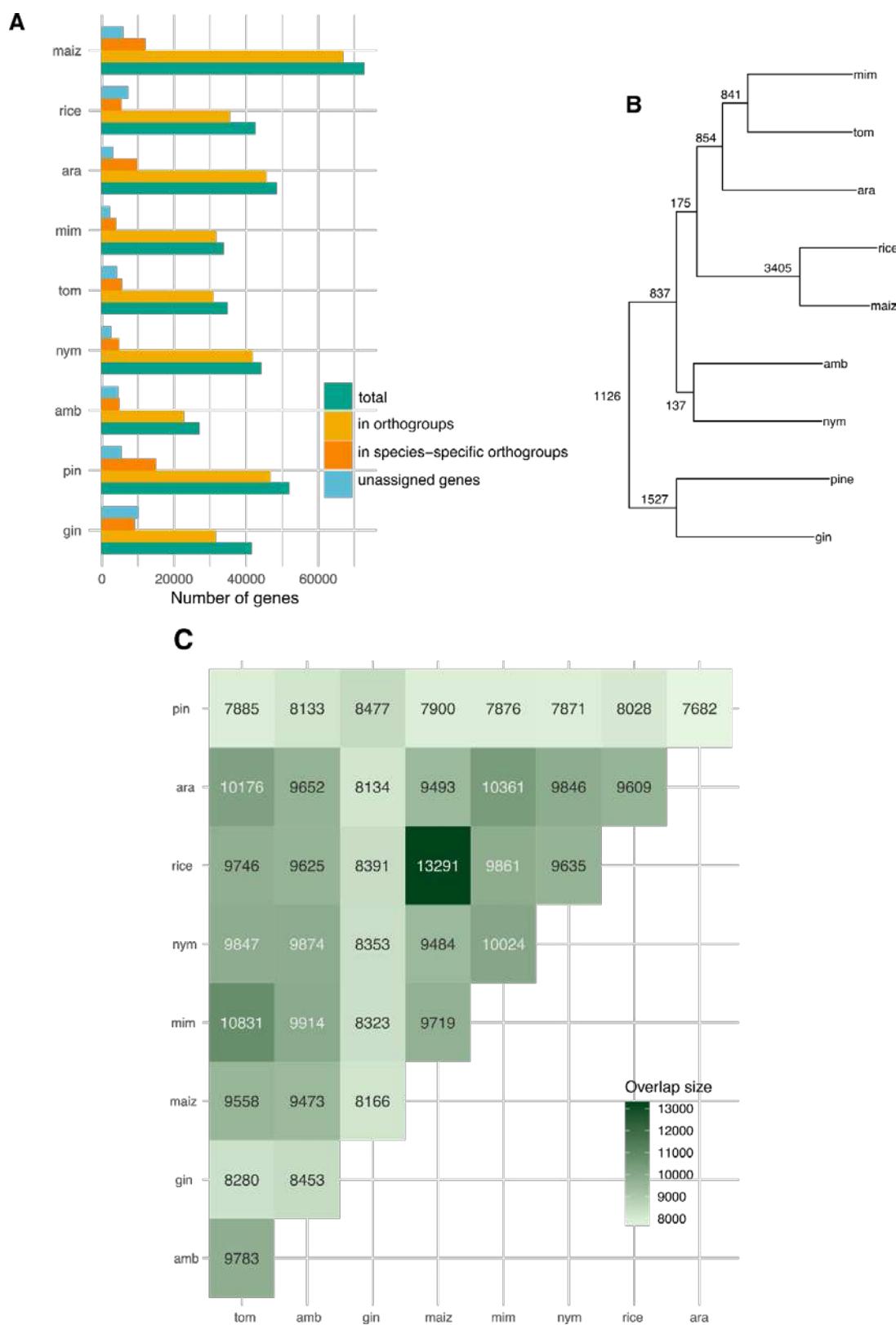
106

107 **Experimental Procedures**

108 Extended materials and methods are provided as Supporting Information (Methods S1).

109 We sampled transcriptomes of the earliest available stages of nourishing tissues in species
110 of all main angiosperm clades. We generated transcriptomes of laser microdissected
111 endosperms and of leaves of *Nymphaea caerulea* and *Amborella trichopoda* (Figure S1),
112 and of manually dissected megagametophytes of *Pinus pinaster*. We obtained
113 transcriptomes of nourishing tissues and leaves from public repositories for *Ginkgo*
114 *biloba*, *Arabidopsis thaliana*, *Solanum peruvianum*, *Mimulus guttatus*, *Oryza sativa* and
115 *Zea mays*. Details of data provenance and availability are in Table S1. We inferred
116 Orthogroups for all species using Orthofinder (Emms & Kelly, 2019). Mapping to
117 reference genomes was performed with Hisat2 (Kim *et al.*, 2015), and the genome
118 versions are described in Table S1. We performed differential gene expression analyses
119 on each species comparing nourishing tissues vs. leaves using DESEQ (Love *et al.*, 2014).
120 DEGs per species were translated to OG assignments, resulting in differentially expressed
121 orthogroups (DEOGs). Using DEOGs we performed set operations to identify conserved
122 and divergent OG sets among the species studied. Enrichment analyses and protein
123 network inferences were performed in STRING (Szklarczyk *et al.*, 2017) using the best
124 *Arabidopsis* ortholog Blast hit for the OGs. All additional data plotting and statistical tests
125 were performed in R (version 4.2.0).

126

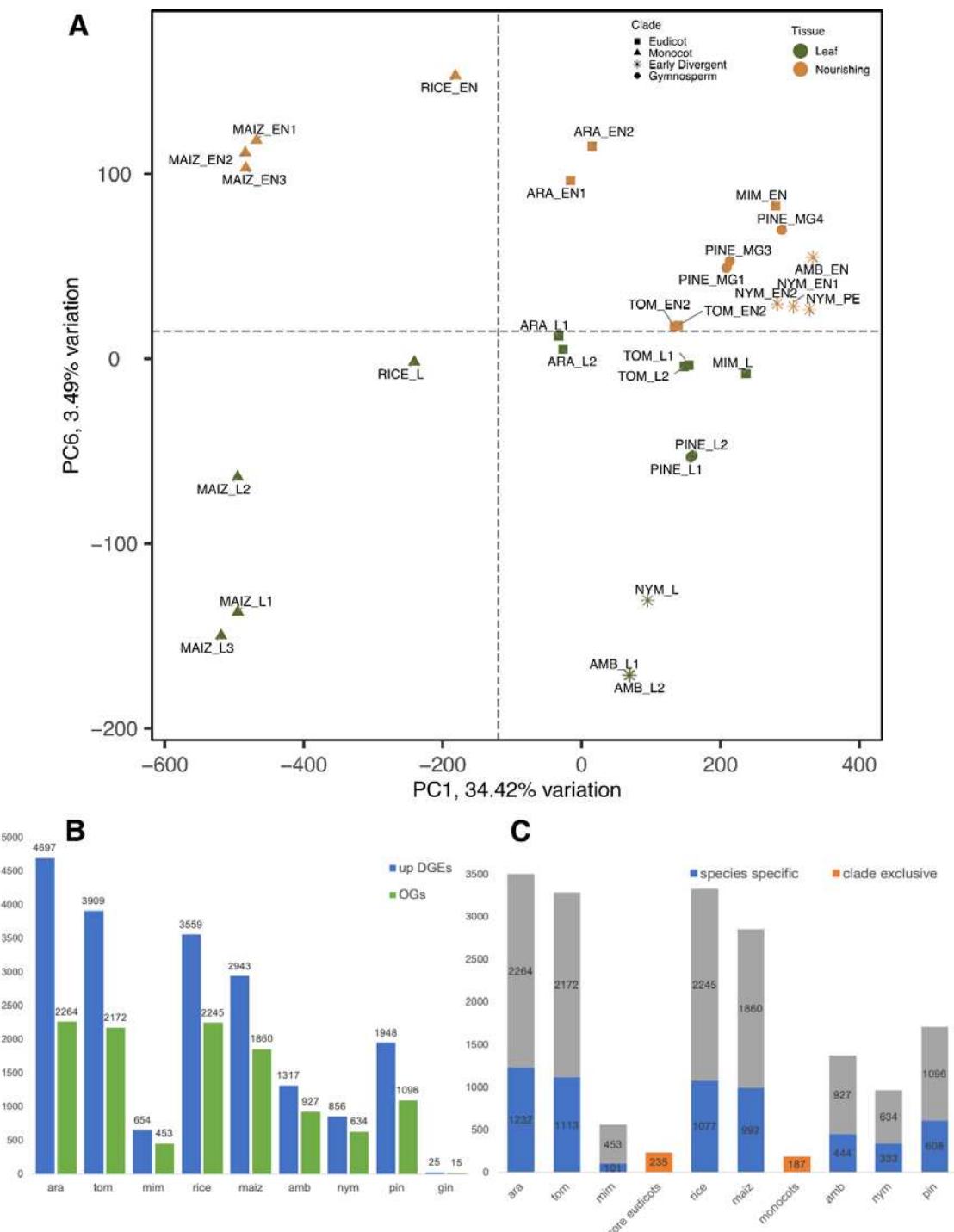

127 **Results**

128 *Broad gene expression patterns discriminate the larger angiosperm clades: Monocots set*
129 *the difference*

130 Seed nourishing tissues have substantially diverged in morphology and developmental
131 patterns throughout the more than 300 million years since angiosperms diverged from
132 their common gymnosperm ancestor (Zimmer *et al.*, 2007; Ran *et al.*, 2018; Lubna *et al.*,
133 2021). Nevertheless, we hypothesized that there should be common transcriptomic
134 signatures that remained unchanged throughout evolution. To test this hypothesis, we
135 compared the gene expression profiles of seed nourishing tissues to those of somatic ones
136 (in this case leaves). We did this for species of all main angiosperm clades: monocots,
137 eudicots and basal angiosperms; and included two diverging gymnosperm
138 representatives, as we hypothesized that some of those transcriptomic signatures could
139 already be present in the gymnosperm megagametophyte, which is the evolutionary
140 precursor of the endosperm. We also included in the analysis the perisperm of *Nymphaea*,

141 because in this species it is the perisperm, and not the endosperm, that functions as a
142 storage tissue. We used either publicly available datasets for the clades chosen, or
143 generated our own, as described in the Experimental Procedures and Methods S1. For all
144 species we used, or produced, datasets from nourishing tissues at the earliest available
145 stages of seed development (Table S1, Figure S1).

146 To compare the transcriptional landscapes among tissues of divergent clades, we used
147 Orthofinder (Emms & Kelly, 2019), and assigned orthologous genes to orthogroups
148 (OGs). These OGs represent the set of genes from the species used in this study, which
149 descended from a single gene in the last common ancestor of this set of species (Emms
150 & Kelly, 2019). Eighty nine percent of the input genes were assigned to 34,041 OGs. Rice
151 had the largest percentage of unassigned genes (16.7%) and the largest number of
152 duplications were detected on the monocot node clade in the phylogenetic tree produced
153 (3,405, Figure 1A-B). The species tree of Figure 1B reflects the individual OGs gene trees
154 and the gene duplication events that were identified using our datasets. On the other hand,
155 *Ginkgo* and *Pinus* revealed the smallest OG overlap with the other species included in the
156 study while also displaying numerous gene duplication events (Figure 1 B-C). The largest
157 OG overlap is between the two monocot species analyzed, sharing 13,291 OGs, followed
158 by overlaps within the eudicot species (Figure 1C). Rice and maize displayed striking
159 similarities and overlapping OG sets (total and differentially expressed), despite maize
160 having almost twice the number of genes annotated and assigned to OGs, compared to
161 rice (Figure 1A). Details of the OGs identified and the species gene correspondence can
162 be found in Table S2.


163

164 Figure 1. Orthology inference pipeline descriptive results. A. Overall statistics per species. B. Species trees
 165 with nodes displaying gene duplication events C. Overlap in the number of OGs in each pair of species.
 166 mim=*Mimulus*, nym=*Nymphaea*, amb=*Amborella*, gin=*Ginkgo*, pin=*Pine*, maiz=*Zea*, tom=*Solanum*,
 167 rice=*Oryza*, ara=*Arabidopsis*.

168 Having assigned genes into OGs, we used expression estimates for leaves and
169 nourishing tissues and ran a PCA analysis to assess the variation among our datasets.
170 Most of the variation in overall gene expression is captured by PC1, accounting for
171 34.83% of the total variance and exhibiting a significant correlation (0.75) with the
172 corresponding clade (Figure 2A and Figure S2): the transcriptomic diversity of a tissue is
173 determined by whether it belongs to a gymnosperm, early divergent angiosperm, eudicot,
174 or monocot. Monocots are prominently located on the left side of the PCA (Figure 2A)
175 and are distinct from other angiosperms, including from the more divergent plant clades.
176 This pattern likely indicates the specialization of the large, starchy endosperm of cereals
177 (Poaceae), which are the only representative of the clade in this study, although the
178 divergence also extends to the somatic tissues. The PC6, which accounts for 3.49% of the
179 variance, exhibits the second strongest and significant correlation (0.71) with the tissue
180 variable (Figure S2). The top loadings of PC6 therefore define the transcriptional network
181 of angiosperm nourishing tissues, and correspond to OGs annotated with functions related
182 to nutrient storage: CRUCIFERIN 2 (CRU2), RMLC-LIKE CUPIN, CYSTEINE
183 PEROXIDOREDOXIN 1 (PER1) and VICILIN-LIKE SEED STORAGE PROTEIN
184 (PAP85; Figure S2 and Table S3).

185 Interestingly, the gymnosperm nourishing tissues cluster together with all angiosperm
186 endosperms, regardless of their intrinsic biological differences, such as ploidy and
187 parental origin. Although all eudicot nourishing tissues cluster together in the upper right
188 quadrant of the PCA, there appears to be a close relationship in the overall patterns of
189 gene expression of the basal endosperms *Amborella* and *Nymphaea*. This is in contrast to
190 the more divergent samples of *Solanum*, *Arabidopsis*, and *Mimulus*, which probably
191 reflects specialization of the nourishing tissues in the later diversified clades of
192 Angiosperms.

193

194

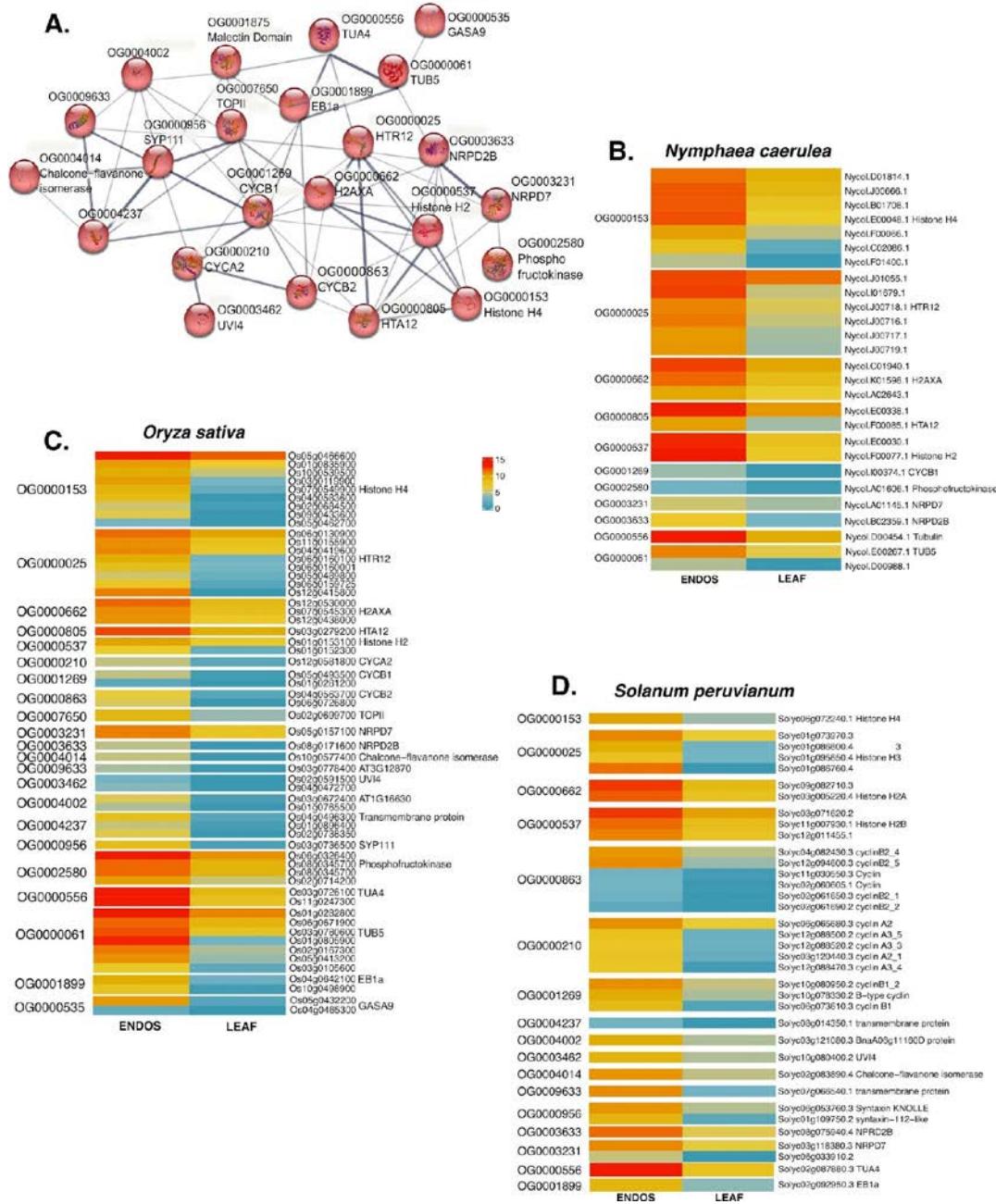
195 Figure 2. A. PCA describes broad gene expression patterns of photosynthetic vs. nourishing tissues in a
 196 broad range of land plants. B. Differentially expressed genes (DEGs, in blue) and corresponding
 197 differentially expressed orthogroups (DEOG in green) per species. C. DEOGs set description. Fractions of
 198 species specific OGs are depicted in blue, shared OGs in grey. mim=*Mimulus*, nym=*Nymphaea*, amb
 199 =*Amborella*, gin=*Ginkgo*, pin=*Pine*, maiz=*Zea*, tom=*Solanum*, rice=*Oryza*, ara=*Arabidopsis*, L= leaf,
 200 MG=megagametophyte, EN=endosperm, PE=perisperm.

201

202 *Cross-species DGE analyses using OGs*

203 To find transcriptional signatures that are specific for the seed nourishing tissues, for each
204 species we performed an analysis of differential gene expression (DGE) between the
205 transcriptomes of the leaves and of the nourishing tissues (Table S3). To enable cross-
206 species comparisons, an OG identity was assigned to each DEG, delimiting Differentially
207 Expressed OrthoGroups (DEOGs; Table S3). Some OGs consisted of multiple genes and
208 some genes did not have OG assignment (Figure 1), resulting in less DEOGs than actual
209 DEGs (Figure 2B). It is important to note that the number of identified DEOGs can be
210 determined not exclusively by the biological properties of the taxa and tissue but also by
211 technical limitations, such as genome annotation or library complexity, resulting in low
212 numbers of identifiable DEOGs in the tissue. A significant proportion of the DEOGs were
213 private, meaning they did not overlap between species (Figure 2C, Figure S2). DEOGs
214 in the endosperms of rice and maize show the highest degree of overlap. This can be
215 attributed to their similar transcriptional strategies, which also explains why they are
216 grouped together on PC1 (Figure 2A). The second largest set of overlapping DEOGs is
217 found in *Solanum* and *Arabidopsis* (Figure 2C, Figure S2), which also entail the best
218 annotated eudicot genomes. In contrast, overlaps of *Mimulus* DEOGs with the other
219 eudicot taxa were circa one order of magnitude lower (Figure S2). Due to this low number
220 of shared features, the DEOGs of *Mimulus* were not included in the overlapping eudicot
221 set (described below). Among all species tested, *Arabidopsis*, *Solanum*, *Oryza*, and *Zea*
222 had the highest number of DEOGs in their endosperms (Figure 2B-C, Figure S2, Table
223 S1, Table S3). We therefore focused our eudicot and monocot clade analyses on the
224 shared sets of these taxa. Next, we investigate the identity of shared, non-shared, and
225 private DEOGs between and within the main plant clades to describe the transcriptional
226 networks of their nourishing tissues. For the sake of simplicity, the full transcriptional
227 networks are provided as Supplementary Figures. Below we focus on a pair of relevant
228 DEOG networks per comparative analysis.

229


230 *The conserved transcriptional network of the angiosperm seed nourishing tissue*

231 First, we identified 175 OGs that were enriched in angiosperm endosperms in at least one
232 monocot, one dicot, and one early diverging taxon (Hypergeometric test p-value: 2,70E-
233 02). We constructed functional clusters out of these OGs, to assess what biological
234 functions are specifically enriched in seed nourishing tissues. Sixteen functional clusters

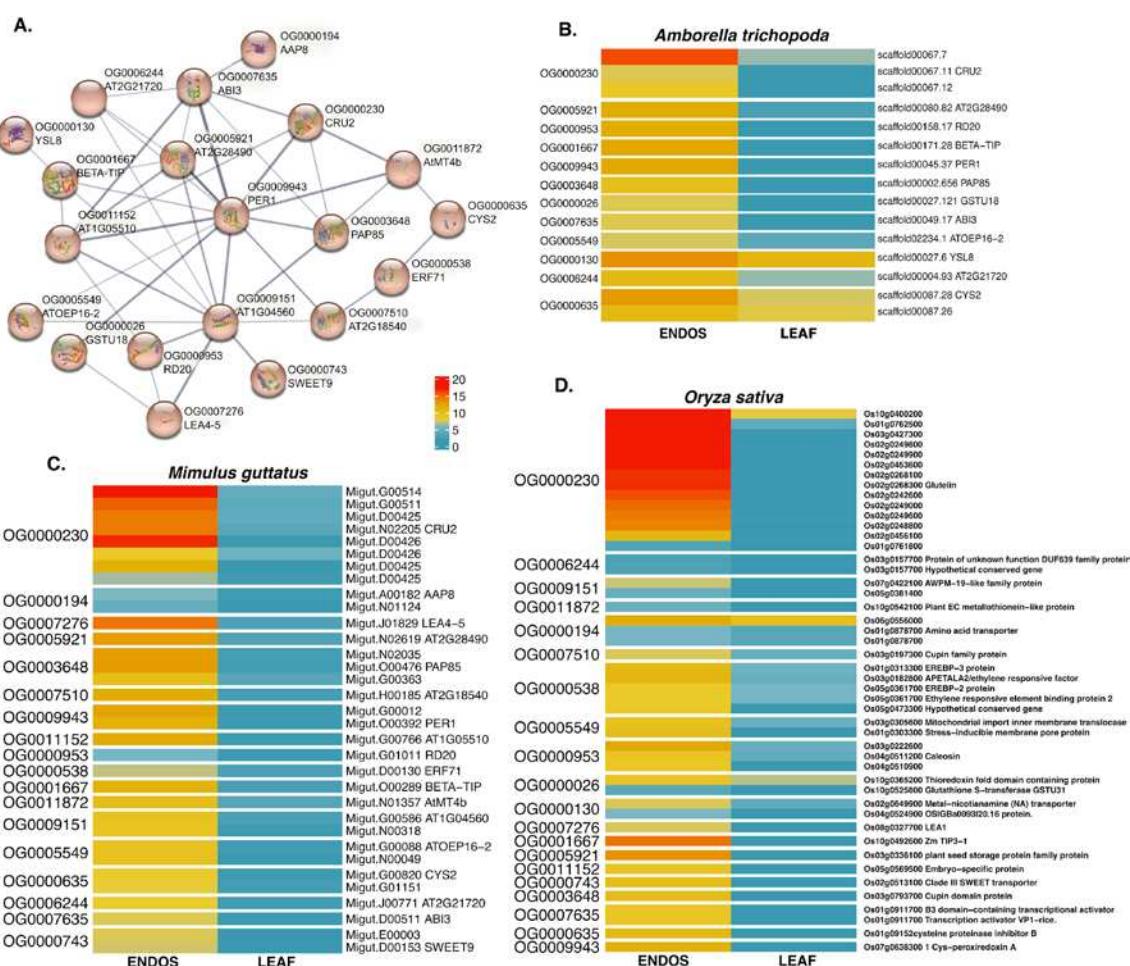
235 were identified, two of which were prominent and we describe here in more detail (Figure
236 S3, Table S4). First, one cluster involved in cell cycle and nucleosome architecture drives
237 the enrichment of the KEGG term “Nucleosome Core” (KW-0544; Figure S3, Table S4).
238 At the core of this cluster are five histone-annotated OGs (Figure 3, Figure S3 and Table
239 S3), which are functionally linked to two OGs representing subunits of the RNA
240 Polymerase IV (RNAP IV). Also interacting with the main histone cluster are three OGs
241 that represent A2 and type B cyclins, as well as UV-B-INSENSITIVE 4 (UVI4), a
242 regulator of cyclin turnover. Additionally, there are four OGs representing components
243 of the microtubule machinery. These OGs and the species-specific genes they encompass
244 represent a gene network that is involved in cell cycle transitions and cell division in the
245 angiosperm nourishing tissues. Interestingly, an OG annotated as SYP111/KNOLLE is
246 also enriched. SYP111/KNOLLE is necessary for endosperm cellularization in
247 *Arabidopsis* (Tiwari *et al.*, 2010; Park *et al.*, 2018), and our results thus indicate that its
248 function is likely evolutionarily conserved.

249 To illustrate the structure of OGs in each of our target species, we created heatmaps
250 displaying the expression values for all DEGs belonging to the OGs in the cluster (Figure
251 3 and Figure S4). OGs annotated as histones and cyclins, in particular, are composed of
252 multiple genes per species. This pattern indicates their diversification in the endosperm.
253 Other OGs in this cluster do not include a significant number of DEGs. For instance,
254 those representing RNAP IV subunits or components of the microtubule assembly
255 machinery typically have only one DEG in most species examined (Figure 3 and Figure
256 S4). Importantly, histone variants are emerging as modulators of chromatin architecture
257 (Borg *et al.*, 2021; Bhagyshree *et al.*, 2023). The histone proteins that we identified in
258 this conserved cluster of enriched OGs are therefore strong candidates for determining
259 the specific chromatin state of the endosperm.

260

261

262 Figure 3. Conserved transcriptional network of the angiosperm seed nourishing tissue. A. Cell cycle
 263 and nucleosome architecture interacting network. B-D Orthogroup to DEG correspondence and expression
 264 values in CPM for B. *Nymphaea caerulea*. C. *Oryza sativa* and D. *Solanum peruvianum*.


265

266 A second important cluster conserved in all clades relates to nutrient storage (Figure
267 4A). The term “nutrient reservoir activity, and lipid droplet” was found enriched in the
268 conserved sets of 175 OGs (STRING cluster CL:39149). This cluster comprises the OGs
269 that drive most of the variation of the PC6 (Figure S2). These OGs are mostly annotated

270 as CUPINS, which are non-enzymatic proteins involved in seed storage (Dunwell, 1998).
271 One example being CRU2 (Lin *et al.*, 2013). To display the relative expression of these
272 genes in the endosperm we plotted heatmaps of expression of DGEs belonging to these
273 OGs in all species studied (Figure 4B-D, Figure S5). Although most OGs in this cluster
274 are single gene OGs, OG0000230, annotated as CRU2, shows multiple members in all
275 species, evidencing diversification of cruciferin storage proteins in angiosperms.
276 Interestingly, a well-defined set of rice storage glutelins also belong to this OG. The
277 OG0007276 is best annotated as a Late Embryogenesis Abundant (LEA), LEA4-5, and
278 is similarly present in the nutrient transfer cluster (Figure 4). Furthermore, three more
279 OGs annotated as LEA proteins are present in the larger set of 175 OGs conserved
280 expressed in endosperms (Table S4).

281 Interestingly, OGs related to Abscisic acid (ABA) signaling were also found on this
282 interacting cluster. Specifically, ABSCISIC ACID INSENSITIVE 3 (ABI3), a
283 transcription factor that participates in ABA-regulated gene expression during seed
284 development (Mönke *et al.*, 2012), and regulates seed storage genes (Lara *et al.*, 2003).
285 The same was true for GLUTATHIONE S-TRANSFERASE 18 (GSTU18), as
286 glutathione metabolism plays roles in seed dormancy and germination (Koramutla *et al.*,
287 2021). Other OGs of relevance in this cluster encode seed transporter proteins, such as
288 AMINO ACID PERMEASE 8 (AAP8) and the sugar transporter SWEET9 (Table S4).

289

290

291 Figure 4. Conserved transcriptional network of the angiosperm seed nourishing tissue. A. Nourishing
292 cluster protein interacting network. Orthogroup to DEG correspondence and expression values in CPM for
293 B. *Amborella trichopoda*. C. *Mimulus guttatus* and D. *Oryza sativa*.

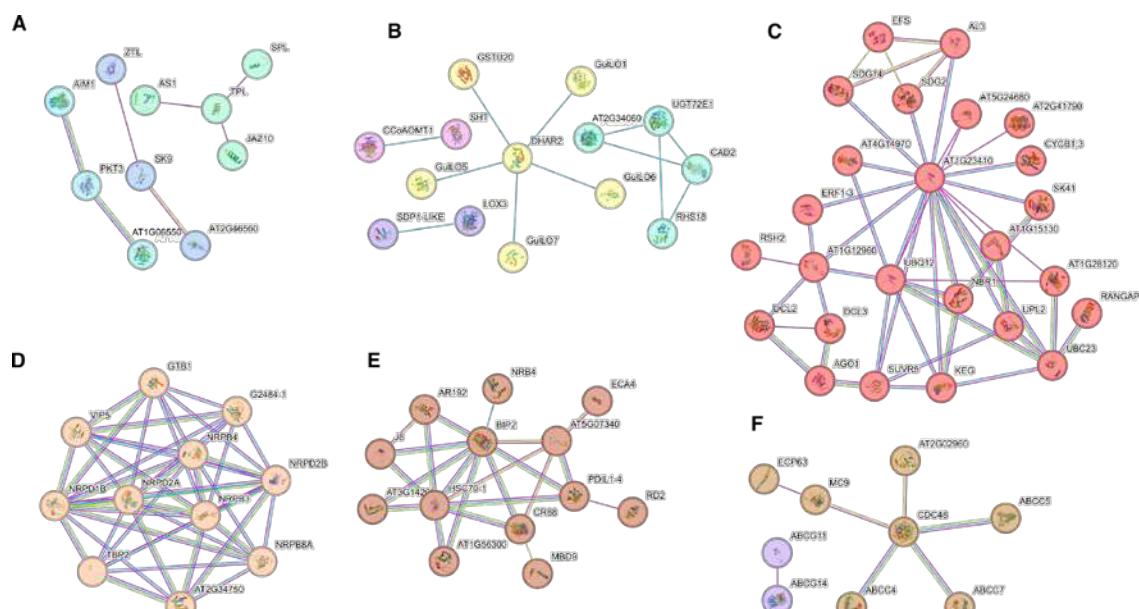
294

295 The shared transcriptional network of angiosperm nourishing tissues also includes
296 four OGs that form a chaperone/heat shock cluster (Table S4, Figure S3). Moreover,
297 there are a number of OGs encoding transcription factors (TFs) that are shared among
298 angiosperms. These include the MYB-type TFs MYB65 and MYB100. Interestingly,
299 only one OG annotated as a MADS-box transcription factor was present in the
300 angiosperm common set, which was composed of a large set of SEPALLATA-like
301 proteins across the angiosperms.

302 Likewise present was RGE1, also known as ZHOUPI. Moreover, two OGs annotated
303 as subtilisin proteases (SBT1.1, SBT1.7) are consistently present in angiosperm
304 endosperms and likely fulfill functions similar to that of another subtilase protein, ALE1
305 which together with ZHOUPI acts in an intercompartment signaling pathway between
306 endosperms and embryos (Xing *et al.*, 2013; Moussu *et al.*, 2017). Other conserved OGs

307 in the angiosperm nourishing tissues but not forming clusters in the STRING protein
308 network are proteins involved in hormone biosynthesis and signaling. These proteins
309 include YUCCA11, involved in auxin biosynthesis, and the brassinosteroid response
310 regulator BRASSINOSTEROID-RELATED HOMEOBOX 2 (Table S4).

311


312 *The transcriptional network of the gymnosperm megagametophyte*

313 As non-angiosperm seed plants, the gymnosperms are expected to exhibit some degree
314 of evolutionary divergence. Their seeds contain a nourishing tissue resulting from the
315 proliferation of the haploid female megagametophyte, which is not the product of
316 fertilization. We aimed to uncover similarities and differences of the nourishing tissues
317 of angiosperms and gymnosperms, using *Pinus pinaster* as the model gymnosperm
318 species. For this, we intersected the set of exclusive DEOGs of the conserved angiosperm
319 nourishing tissue (see above and in Table S4) and compared it to the full set of DEOGs
320 of the pine megagametophyte. Sixty-four OGs that were conserved in angiosperms were
321 also found as DEOGs in pine (Table S5). We found that members of the two main groups
322 of conserved OGs in the angiosperm private network were partly present in the
323 gymnosperm DEOG set. This included OGs annotated as histones, RNAP IV subunits
324 and microtubule machinery (Table S5). The only OG corresponding to a MADS box TF
325 that was found conserved in all angiosperms, annotated as SEP3, was not present in the
326 DEOGs uncovered in pine. This was expected, given that *SEP* genes are specific to the
327 angiosperms (Zahn *et al.*, 2005). Other sets of DEOGs conserved in angiosperms and
328 absent in gymnosperm include those annotated as gibberellin regulated proteins, GASAs,
329 and the subtilisin-like proteases SBT1.1 and SBT1.7.

330 Next, we identified 608 OGs that are unique to the nourishing tissue of gymnosperms
331 (Hypergeometric test p-value: 1,49E-21, Figure 2C, Figure S2; Figure S6). Enrichment
332 of several terms shows the specialization of pine megagametophyte in the biosynthesis of
333 specific secondary metabolites (ATH01110 KEGG term “Biosynthesis of secondary
334 metabolites”). Moreover, we found pine private OGs involved in pathways related to
335 jasmonic acid (JA), alpha linoleic acid, ascorbic acid, and phenylpropanoid and flavonoid
336 biosynthesis. Regarding JA, OGs related to both its biosynthesis and signaling were
337 enriched (Fig. 5A). For example, this includes OGs annotated as LIPOXYGENASE 3
338 (LOX3), which is involved in JA biosynthesis, as well as for the JA effector
339 JASMONATE-ASSOCIATED 10 (JAZ10). Importantly, JA has been shown to be

340 involved in the regulation of seed size and germination (Linkies & Leubner-Metzger,
341 2012; Pan *et al.*, 2020a; Hu *et al.*, 2021). Moreover, we identified a cluster involved in
342 phenylpropanoid biosynthesis (Fig. 5B), a process tightly linked to lignin biosynthesis
343 (Douglas, 1996). Although lignin has been found to play a role in angiosperm seed coats,
344 the private occurrence of this cluster in the pine megagametophyte may be related to the
345 exposed nature of the gymnosperm seed, and this particular cluster of genes may be
346 involved in mediating its protection (Emonet & Hay, 2022). Flavonoids are also a product
347 of the phenylpropanoid pathway, and we identified a cluster involved in their biosynthesis
348 (Figure 5B). Finally, still regarding metabolite biosynthesis, the term “L-ascorbic acid
349 biosynthesis process” was enriched in our analyses. Key OGs in this pathway include
350 those annotated as GLUTATHIONE S-TRANSFERASE 20 (GSTU20) and
351 DEHYDROASCORBATE REDUCTASE 2 (DHAR2; Figure 5B). In addition to their
352 roles in ascorbic acid biosynthesis, these OGs may be involved in gymnosperm seed
353 dormancy and germination, as part of the glutathione metabolism machinery (Koramutla
354 *et al.*, 2021).

355

356
357

358 Figure 5. Orthogroup-based putative protein clusters private to the pine megagametophyte
359 transcriptional network. A. Jasmonate related. B. Metabolite biosynthesis C. Epigenetic machinery D. RNA
360 polymerases. E. Chaperones F. ABC-type transporters.

361 The gymnosperm nourishing tissues also entails a specific set of epigenetic
362 machinery, as illustrated by the largest cluster identified in our analyses (Figure 5C). This

363 includes, for example, two OGs annotated as DICER-LIKE (DCL) proteins, and as
364 ARGONAUTE 1 (AGO1). Moreover, this large interacting cluster of proteins includes
365 four SET domain-containing OGs annotated as histone methyltransferases, namely, SET
366 DOMAIN GROUP 2 (SDG2), EARLY FLOWERING IN SHORT DAYS (EFS),
367 TRITHORAX 3 (SDG14) and SU(VAR)3-9-RELATED PROTEIN 5 (SUVR5; Figure
368 5C). This cluster also contains several OGs annotated as proteins belonging to the
369 ubiquitin conjugation pathway, such as UBIQUITIN 12 (UBQ12) and UBIQUITIN-
370 CONJUGATING ENZYME 23 (UBC23), among others (Figure 5C). These, together
371 with a smaller cluster containing OGs annotated as SKP1-LIKE 9 (SK9) and ZEITLUPE
372 (ZTL), represent the ubiquitination pathway in the pine megagametophyte. This pathway
373 may be particularly important for the programmed cell death events that occur in *Pinus*,
374 as in other conifers, whereby all the embryos resulting from cleavage polyembryony
375 except the dominant one are eliminated (Filonova *et al.*, 2002), in a process in which the
376 megagametophyte may play a role (Williams, 2009).

377 Further related to epigenetic processes, we detected a separate large cluster in the
378 protein interaction network which is composed of eight OGs encoding subunits of the
379 RNAPs II, IV, and V (Figure 5D). The identification of OGs highlighting crucial
380 components associated with 24-nt siRNA production and the silencing machinery, such
381 as DCL3, AGO1 and RNAPs IV and V, along with previous findings showing the
382 presence of these small RNAs in these tissues (Rodrigues *et al.*, 2019), supports a role of
383 the gymnosperm megagametophyte in RdDM. In angiosperms, 24-nt siRNAs, likely
384 originating maternally, accumulate in endosperm tissues initially (Mosher *et al.*, 2009),
385 while at later stages of development these are produced from both parental genomes
386 (Rodrigues *et al.*, 2013; Xin *et al.*, 2014). Despite the distinctions between both
387 nourishing tissue types, it appears that active silencing pathways associated with siRNAs
388 are key, possibly to ensure genome stability and reproductive success.

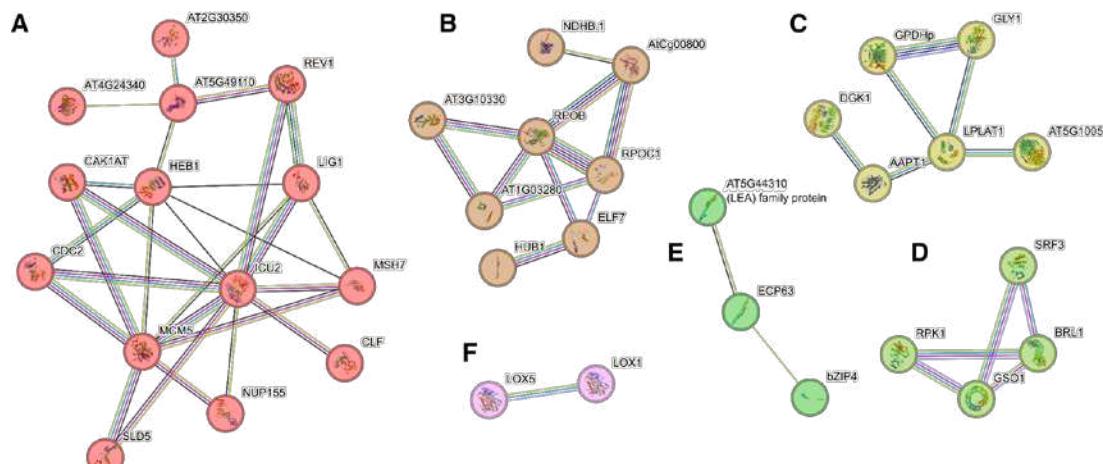
389 One of the largest sets of interacting proteins uncovered in our analyses comprises
390 eight OGs annotated as chaperones, as well as five OGs annotated as chaperones with
391 DnaJ domains (Figure 5E). Interestingly, eight ATPase coupled ABC transporters are
392 present in the OGs that are enriched in the pine megagametophyte (Figure 5F). They drive
393 the enrichment of the GO term “ATPase-coupled transmembrane transporter activity”,
394 and include OGs annotated as ABC transporters of Type 1 and Type 2, such as ABCG11
395 and ABCG14 (Figure 5F). Among other functions, ABC transporters have been

396 implicated in the mobilization of surface lipids, accumulation of phytate in seeds, and in
397 transporting the phytohormones auxin and abscisic acid (Kang *et al.*, 2011; Do *et al.*,
398 2018).

399

400 *The private transcriptional networks of the nourishing tissues of the early divergent*
401 *angiosperm lineages, Amborella and Nymphaea.*

402 The basal angiosperms investigated in this study are *Amborella* and *Nymphaea*. Although
403 both are considered early divergent angiosperms, *Amborella* is regarded as the most basal
404 of all angiosperms and forms a sister clade to all remaining extant flowering plants
405 (Amborella Genome Project, 2013; The Angiosperm Phylogeny Group, 2016). The
406 endosperms of both species, however, exhibit striking differences: water lilies exhibit a
407 diploid endosperm with a reduced size, suggesting a more derived state compared to the
408 larger triploid endosperm of *Amborella*. We examined the private transcriptional
409 networks of their nourishing tissues separately due to these distinctive characteristics.


410 For *Amborella*, we detected 437 OGs that were expressed in its nourishing tissue but
411 not in any of the other angiosperms studied here (Hypergeometric test p-value: 3,62E-14,
412 Figure 2C, Figure S2). The most prominent cluster in the private transcriptional network
413 of the *Amborella* endosperm involves proteins related to cell cycle processes and
414 chromosome organization (Figure 6A, Figure S7, Table S6). Particularly relevant OGs
415 are three annotated as cyclins, and two annotated as components of RNAPs, namely,
416 INCURVATA2 (ICU2) and REVERSIONLESS 1 (REV1). Additionally, there are OGs
417 annotated as proteins involved in chromosome organization, such as
418 MINICHROMOSOME MAINTENANCE 5 (MCM5), MUTS HOMOLOG 7 (MSH7)
419 and CURLY LEAF (CLF), a Polycomb Group protein (PcG). Another set of interacting
420 OGs present in the protein interaction network are involved in transcriptional regulation
421 and include DNA-DIRECTED RNA POLYMERASES SUBUNITS (Figure 6B).
422 Interacting with those, there are two OGs annotated as TRANSCRIPTION INITIATION
423 FACTORS, TFIIB2 and TFIIE (Table S6).

424 Metabolism-related OGs were also found enriched in the *Amborella* endosperm. For
425 instance, there is a large cluster of proteins related to lipid biosynthesis (Figure 6C).
426 Moreover, three OGs were annotated as lipoxygenases (LOX; Table S6, Figure 6G),
427 which are typical of seeds and catalyze the oxidation of polyunsaturated fatty acids into
428 functionally diverse oxylipins.

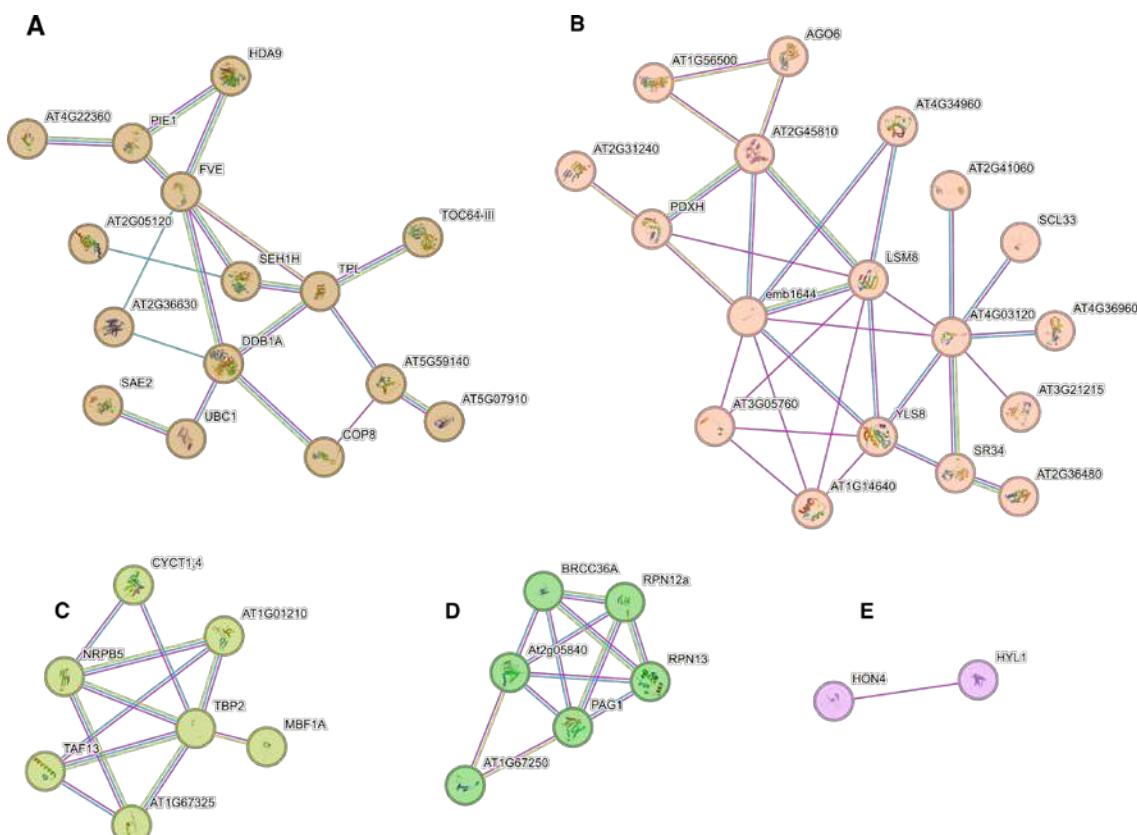
429 Importantly, a set of four OGs annotated as receptors harboring protein kinase
430 domains were found exclusive in *Amborella*. These are STRUBBELIG-RECEPTOR
431 FAMILY 3 (SRF3), RECEPTOR-LIKE PROTEIN KINASE 1 (RPK1), GASSHO1
432 (GSO1) and the putative brassinosteroid receptor BRI1-LIKE 1 (BRL1; Figure 6D).
433 Other hormone-related OGs were also found enriched in the *Amborella* endosperm,
434 namely those related to auxin and ethylene signaling. Some examples are AUXIN
435 RESPONSE FACTOR 2 (ARF2), ETHYLENE-INSENSITIVE3-LIKE 1 (EIL1) and
436 ETHYLENE RESPONSE FACTOR 71 (ERF71; Table S6).

437 A specialization of a subset of LEA proteins seems to be shared among all the clades
438 studied. In the case of *Amborella*, OGs representing LEA proteins were found in the
439 exclusive set of OGs in the endosperm, such as LEA3 (Figure 6F).

440

441

442 Figure 6. Orthogroup-based putative protein clusters private to the *Amborella* endosperm transcriptional
443 network. A. Cell cycle and chromosome organization. B. DNA-directed RNA polymerases and associated
444 proteins. C. Glycerolipid biosynthesis. D. Receptor Kinases. E. LEA proteins. F. Lipooxygenases.


445

446 Next, we identified the DEGs that are specific to the nourishing tissues of the *Nymphaea*
447 seeds, the endosperm and the perisperm. At the time of collection, around a week after
448 pollination, the endosperm was significantly smaller than the perisperm, which was filled
449 with starch and oil deposits (Fig. S1). Our analyses of differential gene expression
450 between these two tissues showed that the endosperm had more DEGs (2214) than the
451 perisperm (826), likely reflecting a more active transcriptional state. There were
452 commonalities in the sets of enriched terms in both the perisperm and endosperm, when
453 compared to somatic tissues (Table S7). Shared functions include hormone metabolism
454 and signaling, as illustrated by the enriched terms “ABA-activated signaling pathway”,

455 “Response to auxin” and “Hormone biosynthetic process” (Table S7). Also development-
456 related terms were found enriched in both DEG sets, like “Meristem development” and
457 “Plant organ development” (Table S7). The genes that are privately enriched in each
458 tissue separately give us an overview of their specific functions in the *Nymphaea* seed.
459 The perisperm was enriched in several secondary metabolism related processes, including
460 “Flavonoid biosynthetic process”, “Phenylpropanoid metabolic process” and “Ethylene
461 biosynthetic process”, pointing to a pivotal role for the perisperm in the biosynthesis of
462 hormones and secondary metabolites. Likewise, peroxisome related terms were specific
463 to the perisperm. Roles for the peroxisome in the perisperm may be related to hormone
464 biosynthesis and fatty acid-oil body interactions (Pan et al., 2020). The endosperm had
465 however a larger set of enriched terms correlating with the larger number of DGEs (Table
466 S7). Among them we can highlight those with transcriptional regulation and epigenetic
467 functions, like “Chromatin assembly”, “RNA methylation”, as well as those highlighting
468 specific cell components, such as “Plasmodesmata”, “Plant-type cell wall”, “Plant-type
469 vacuole” and “Microtubule”. These DEGs between endosperm and perisperm clearly
470 indicate a sub-functionalization of these two structures, with the endosperm being
471 enriched in processes related to gene regulation and cellular dynamics, while the
472 perisperm is mostly enriched in metabolism-related processes.

473 In addition to the DEOGs shared with other Angiosperms (Table S4), we identified
474 transcriptional networks that were specific to the water lily nourishing tissues. We
475 detected 334 OGs that were exclusively DE in the endosperm and perisperm
476 (Hypergeometric Test p-value: 3,12E-09, Figure 2C, Figure S2). The protein interaction
477 network of the *Nymphaea* endosperm displayed proteins involved in chromatin
478 organization (Figure S8, Table S7). This was evidenced by a large cluster that includes
479 OGs encompassing proteins with epigenetic roles, like HISTONE DEACETYLASE 9
480 (HDA9), PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 (PIE1), a
481 chromatin remodeler of the SWI2/SNF2 family, and the Flowering Locus VE (FVE), an
482 MSI1 family protein and putative subunit of Polycomb Repressive Complexes (PRC)
483 (Pazhohandeh et al., 2011). Members of the Cul4-RING E3 ubiquitin ligase complex
484 are also present in this interaction cluster (Figure 7A), which may reflect interactions of
485 endosperm-specific epigenetic machinery that involves PRC2 and Cul4-RING E3
486 interactions, as reported in *Arabidopsis* (Pazhohandeh et al., 2011). Still related to the

487 ubiquitination machinery, we identified a protein cluster with several components of the
488 proteasome (Figure 7D).
489

491 Figure 7. Orthogroup-based putative protein clusters private to the *Nymphaea* endosperm transcriptional
492 network. A. Chromatin organization. B. Spliceosome. C. RNA Pol II. D. Proteasome. E. RdDM.

493

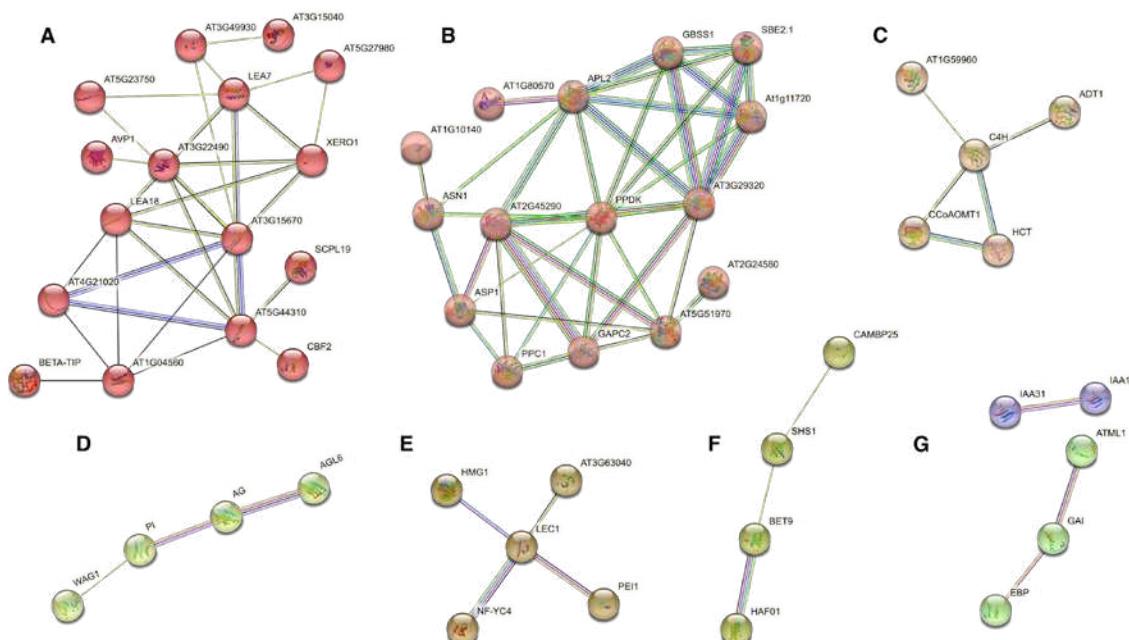
494 Another prominent functional cluster includes members of the spliceosome, driving
495 the enrichment of the term “Interchromatin granule”, which in animal cells is linked to
496 spliceosome activity (Mintz *et al.*, 1999). Another interesting cluster is composed of two
497 OGs representing RNAPs, namely, DNA-DIRECTED RNA POLYMERASE, SUBUNIT
498 M (ARCHAEAL) and RNA POLYMERASE II SUBUNIT 5 (NRPB5) (Figure 7C).
499 Interacting with them are three OGs that encode accompanying proteins of the
500 Polymerase II holoenzyme (Figure 7C). Additionally, two OGs putatively involved in
501 RdDM were present in the private *Nymphaea* set, including the linker histone
502 HON4/HYPONASTIC LEAVES 1 (HYL1) and ARGONAUTE 6 (AGO6; Figure 7E).

503

504 *Transcriptional Landscapes in Monocots and Eudicots: Shared Features and Unique*
505 *Patterns*

506 We then proceeded to the realm of core angiosperms, monocots and eudicots. Here, we
507 focus on describing the transcriptional signatures inherent to the endosperms of both
508 clades, elucidating distinctive and common gene expression patterns.

509 The transcriptional signatures of the monocot endosperm showed strong
510 differentiation to other seed plants, as illustrated by the PCA analysis (Figure 2A). It is
511 worth highlighting that the monocot dataset is restricted to the Poaceae, which displays
512 the large persistent endosperm of cereals. With the aim to describe its transcriptional
513 network we identified DEOGs exclusively expressed in the monocot endosperms and,
514 secondly, looked for OGs that were absent in monocots but present in eudicots. We thus
515 identified 235 DEOGs private to the rice and maize endosperms (Hypergeometric test p-
516 value: 6,45E-06, Figure 2C, Figure S2, Table S8). Interestingly, we identified a monocot-
517 exclusive nutrient storage cluster (Figure 8A). At least seven of the OGs encode LEA
518 proteins and dehydrins, which are LEA2-type proteins, evidencing a definitive role for
519 these in monocot endosperm nutrient storage. Another important cluster includes many
520 genes involved in processes related to the Krebs cycle and starch biosynthesis, processes
521 that take place in the amyloplast of cereal endosperms (Figure 8B, Figure S9 and Table
522 S8). These OGs drive the enrichment of the GO process terms “Starch biosynthetic
523 process”, “Glycogen metabolic process”, and the GO Component term “Amyloplast”
524 (Table S8). Another relevant cluster is related to flavonoid biosynthesis and other
525 secondary metabolites (Figure 8C, Figure S9). The accumulation of flavonoids has been
526 proposed to inhibit auxin transport and modulate seed development (Peer & Murphy,
527 2007). Most of these OGs had their best Orthofinder assigned target in the *Oryza* genome
528 (Table S8).


529 Monocots appear to have a transcriptional regulatory machinery specialized in the
530 endosperm. We found enriched the terms: “Regulation of transcription, DNA-templated”
531 and “DNA-binding transcription factor activity” (Table S8). Moreover, we identified
532 clusters of OGs that include putative transcription factors and other transcriptional
533 regulators (Figure 8D-F, Figure S9, Table S8). Among those are three MADS domain
534 containing OGs and two putative subunits of Nuclear Factor Y, the latter being a best hit
535 for LEAFY COTYLEDON 1 (LEC1). Among other sets of transcriptional regulators
536 found in this OG set, are bromodomain containing proteins which likely function as
537 epigenetic regulators (Jarończyk *et al.*, 2021): two OGs containing bromodomains, the
538 histone acetyltransferase TBP-ASSOCIATED FACTOR 1 (HAF01) and

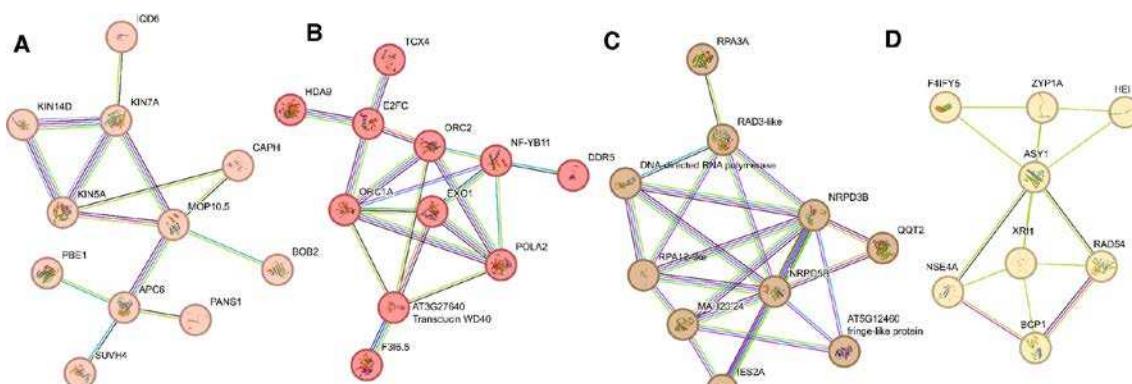
539 BROMODOMAIN AND EXTRATERMINAL DOMAIN PROTEIN 9 (BET9), were
540 found exclusively in the monocot endosperm (Figure 8F).

541 Additionally, we found OGs related to hormone signaling in the monocot nourishing
542 tissue (Figure 8G): two OGs corresponding to the INDOLE-3-ACETIC ACID
543 INDUCIBLE (IAA) family of proteins, implicated in auxin signaling, and OGs related to
544 gibberellin and ethylene signaling, like GIBBERELLIC ACID INSENSITIVE (GAI) and
545 ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP).

546

547

548


549 Figure 8. Orthogroup-based putative protein clusters private to the monocot endosperm transcriptional
550 network. A. Storage. B. Starch biosynthesis / Amyloplast. C. Secondary metabolite biosynthesis. D. MADS-
551 box proteins. E. Other TFs. F. Bromodomain-containing proteins. G. Hormone signaling.

552

553 Likewise, we detected 187 DEOGs that were exclusive to the eudicot endosperms
554 (Hypergeometric test p-value: 8,10E-03, Figure 2C, Figure S2; Table S9). The term
555 “Microtubule cytoskeleton” was enriched in this DEOG set. Genes that drive its
556 enrichment and that appear to form a cluster of interacting proteins include three kinases,
557 KIN5A, KIN7A, KIN14D, and other important components of the cytoskeleton (Figure
558 9A, Figure S20). Specialization of the replication and transcription machinery in the
559 eudicot endosperm is also evidenced by the presence of two related protein clusters
560 (Figure 9B-C). One of them encompasses DEOGs involved in DNA replication (Figure
561 9B), which includes two origin-of-replication complexes, ORC1 and ORC2. Likewise,

562 POLA2, an alpha subunit of the DNA polymerase, and EXO1, an exonuclease, were
563 present in this replication cluster (Figure 9B). The other cluster is composed of several
564 DEOGs that are annotated as subunits of DNA-directed RNAPs and their accompanying
565 proteins (Figure 9C). This includes for example: NRPD3B, NRPD5B, RPA12-like and
566 RPA3A. Additionally, the term “Condensed chromosome” was found enriched. Its
567 corresponding DEOGs form a cluster of interacting proteins, which include
568 ASYNTIC1 (ASY1) and the SWI/SNF member RAD54 (Figure 9D). Other DEOGs
569 of importance are best annotated as transcription factors, including AGAMOUS-like 18
570 (AGL18), Homeobox-leucine zipper protein (ATHB-9), GLABRA 2 (GL2) and
571 REGULATOR OF AXILLARY MERISTEMS 2 (RAX2; Table S9).

572

573

574 Figure 9. Orthogroup-based putative protein clusters private to the eudicot endosperm transcriptional
575 network. A. Cytoskeleton. B. Replication. C. Transcription. D. Chromosome condensation.

576

577 With the aim to detect differences between monocots and eudicots we identified non-
578 exclusive DEOGs sets of the monocot and eudicot taxa. We found 568 DEOGs shared
579 between maize and rice and 574 DEOGs shared between the eudicots. We performed set
580 operations to disentangle the differences in the transcriptomic landscape of those taxa.
581 This analysis clarifies angiosperm differences, disregarding patterns predating the core
582 angiosperms that might obscure diversification within clades, if gymnosperms and early
583 divergent angiosperm DEOG sets were included. With the aim to determine which
584 DEOGs were specific to each of the two main angiosperm groups, monocots and eudicots,
585 we determined the complement DEOG sets of both clades. A total of 464 DEOGs were
586 found in eudicots and not in monocots (Table S9). Replicating the trend of the exclusive
587 set of DEOGs of core eudicots, we found five DEOGs annotated as subunits of RNAPs,
588 as well as nine members of the kinesin complex. Although microtubule cytoskeleton

589 proteins were part of the conserved transcriptional network of the angiosperm seed
590 nourishing tissue (Table S4), the large diversification of kinesins was observed only in
591 the core eudicots and not in monocots. The larger number of DEOGs belonging to these
592 families, in this broader comparison (non-exclusive to other taxa), indicates that these
593 OGs likely share ancestry with non-core angiosperm taxa such as gymnosperms and early
594 divergent groups, rather than the more closely related monocots. This suggests an
595 ancestral evolutionary role in the nourishing tissues for these OGs and their
596 diversification within the eudicot lineage. Other DEOGs show the same trend of increased
597 diversification in the eudicots in comparison to monocots. For example, five ABC-type
598 transporters, two WUSCHEL RELATED HOMEOBOX (WOX) TFs and three DNA
599 repair RAD-annotated DEOGs were found only in eudicots and not in monocots (Table
600 S9).

601 Comparing only the DEOGs of core angiosperms, we then identified 459 monocot-
602 specific DEOGs, including families such as ATL RING-H2 finger proteins, ethylene-
603 responsive transcription factors (ERFs), Subtilisin-like proteases (SBTs), UDP-
604 glycosyltransferases (UGTs), and ZAT family TFs (ZATs), showcasing examples of
605 diversifying evolution within monocots. These families were notably absent in the core
606 eudicots complement set of DEOGs (Table S8).

607

608 **Discussion**

609 The evolutionary advent of seeds is one of the factors that allowed land plants to
610 reproduce in dry environments and, therefore, to occupy new ecological niches. In part,
611 this is due to the protection of the embryo against environmental conditions by the
612 sporophytic tissues of the maternal plant. Moreover, seeds allow for a state of dormancy,
613 and only germinating when the conditions are favorable. But a major advance of the seed
614 habit is the pre-development of the new sporophytic generation within the maternal
615 tissues, where it is nourished by a specialized structure. Interestingly, already in seed
616 ferns there were structures with a nourishing function, probably derived from the
617 megagametophyte (Spencer *et al.*, 2013). In the gymnosperms the nourishing function is
618 carried out by the proliferating megagametophyte, while in the angiosperms, this is done
619 by the endosperm. The main difference being that the nourishing structure of the
620 gymnosperms develops autonomously, i.e., its proliferation is not coupled to a

621 fertilization event, while the development of the angiosperm endosperm is coupled to
622 fertilization. This coupling has obvious advantages, such as ensuring that nutrients are
623 not allocated to “empty” seeds (without embryos), but it also allows for a coordinated
624 development between the embryo and the endosperm (Ingram, 2020). It is also worth
625 noting that the nourishing function in some angiosperms can also be provided by the
626 perisperm, which originates from the sporophytic nucellus of the ovule. This is the case
627 in *Nymphaea*, which we studied here, and in species of Amaranthaceae, like amaranth
628 and quinoa (Burrieza *et al.*, 2014; Povilus *et al.*, 2015). Interestingly, it seems that in
629 endospermic seeds, like those of *Arabidopsis*, the endosperm develops antagonistically
630 with the nucellus, instructing its degeneration (Xu *et al.*, 2016). In seeds where the two
631 structures co-exist, it is reasonable to hypothesize that they carry out complementary
632 functions. This is supported by our comparative analysis of DEOGs between the
633 endosperm and the perisperm of *Nymphaea*. Indeed, while the perisperm is mostly
634 enriched in metabolism-related processes, the endosperm is enriched in gene regulation
635 and cell-related processes, likely linked to its proliferative nature and it being a site for
636 parental conflict (Povilus *et al.*, 2018; Köhler *et al.*, 2021). This suggests that in
637 perispermic seeds, there is a subfunctionalization of these two structures, whereas in
638 endospermic species these functions are fully fulfilled by the endosperm.

639 The fact that the seed nourishing structures of different clades share common
640 functionalities, suggests that they probably also share some transcriptomic signatures.
641 However, it is also expected that there are signatures that are specific to certain clades,
642 since there is significant divergence in the form and function of some of those structures.
643 This hypothesis is supported by our data, which shows that certain gene expression
644 signatures are conserved throughout evolution, while others are private to the nourishing
645 structures of each clade.

646

647 *Conserved transcriptional features of the angiosperm endosperm*

648 Seed storage proteins are a vital component of plant seeds and play a crucial role in
649 ensuring the successful germination and growth of new plants. OGs encompassing genes
650 that encode storage proteins were some of the main drivers of the differentiation of the
651 nourishing tissue transcriptomes. Proteins assembled in these OGs and consistently
652 present in all angiosperms studied are annotated as cruciferins, cupins and gluteins, but
653 also as caleosins and peroxygenases, which are involved in the biogenesis and

654 maintenance of lipid bodies (Rahman *et al.* 2018). LEA proteins, although not fulfilling
655 a specific storage function, were also part of the conserved angiosperm nutrient storage
656 cluster. These proteins primarily function to safeguard cellular components and maintain
657 seed viability under desiccation and dehydration stress (Cuming, 1999). Interestingly,
658 diversification of LEA proteins in the monocot endosperm was evidenced by our
659 analyses. It is important to note that some overlap or interactions between LEA proteins
660 and nutrient storage components may exist (Dirk *et al.*, 2020). For instance, during seed
661 desiccation and maturation, LEA proteins may interact with and stabilize storage proteins
662 and lipids, helping to maintain their integrity and functionality (Cuming, 1999; Dirk *et*
663 *al.*, 2020). Another group of seed proteins enriched in our analyses were lipoxygenases
664 (LOX), which were first discovered in legumes and are prominent seed proteins (Casey,
665 1999). LOX-generated oxylipins, particularly JA and its derivatives, can modulate seed
666 dormancy by influencing hormone signaling pathways and interacting with other
667 dormancy-related regulators (Casey, 1999; Chauvin *et al.*, 2013). LOX specialization in
668 the nourishing tissue as revealed by our analyses was not a conserved feature of
669 angiosperms but rather appeared to be an ancestral trait present only in gymnosperms and
670 *Amborella*. Instead of playing a critical role in core angiosperm endosperms, LOX
671 proteins seem to play roles in plant defense, development and stress responses in
672 vegetative tissues (Chauvin *et al.*, 2013).

673 A protein cluster involved in cell cycle and nucleosome assembly was also a highlight of
674 the clusters shared by angiosperms. Strikingly, OGs annotated as histone variants were
675 enriched in all angiosperm clades. Histone variants contribute to the definition of
676 chromatin states and gene expression patterns. By modifying chromatin structure, they
677 regulate the accessibility of DNA, influence gene expression, contribute to epigenetic
678 inheritance, and participate in plant responses to environmental cues and developmental
679 processes (Borg *et al.*, 2021; Bhagyshree *et al.*, 2023). Interestingly, histone variants were
680 exclusively present in the shared protein network and not in any of the private sets of
681 proteins specific to particular plant clades. This result may signify that the identified
682 histone variant OGs represent the entire range of variants that play crucial, and therefore
683 evolutionarily conserved, roles in angiosperm endosperms. Interestingly, genes encoding
684 histone variants have been shown to be determinant for parental effects during
685 embryogenesis in mammals (Molaro *et al.*, 2020). Moreover, histone variants have been
686 shown to correlate with different chromatin states (Borg *et al.*, 2021), and, for instance,

687 the paternal expression of an H3 variant which is insensitive to Pcg function is required
688 for reprogramming of the paternal germline (Borg *et al.*, 2020). This is particularly
689 relevant because the angiosperm endosperm is a site for genomic conflict between the
690 mother and the father, and the chromatin landscape of the endosperm underlies
691 reproductive barriers in angiosperms (Jiang *et al.*, 2017). Thus, it is tempting to
692 hypothesize that the differential expression of histone variants in the endosperm
693 correlates with the arisal of a parental conflict for nutrient allocation.

694

695 *Private transcriptional networks shed light into clade specializations*

696 The sets of private transcriptional networks in each major clade of seed plants potentially
697 represent genes that contributed to specialization within those clades. Genes that are
698 expressed in only a subset of plants within a restricted phylogenetic group should be
699 considered as potential candidates for functional studies. The private network of the
700 *Amborella* endosperm revealed OGs involved in epigenetic processes. Similarly, the
701 private network of *Nymphaea* consists of OGs that are annotated as RNA polymerases
702 and putative Pcg components. These results highlight the evolutionary divergence of
703 these taxa from core angiosperms and precisely pinpoint the differences in the epigenetic
704 machinery that is active in their endosperms. In *Arabidopsis*, expression of components
705 of the FERTILIZATION-INDEPENDENT SEED PRC2 (FIS-PRC2), which are specific
706 to the gametophyte and the endosperm, progressively declines during seed development.
707 After a few mitotic rounds, FIS-PRC2 components like FIS2, MEA and FIE become
708 undetectable or limited to the chalazal cyst (Luo *et al.*, 2000). Given that we do not detect
709 differential expression of PRC2-encoding genes in the endosperms of other eudicots and
710 monocots, it is likely that those genes are also downregulated after fertilization, like in
711 *Arabidopsis*. However, the same may not be true for early diverging lineages, where we
712 do detect those genes expressed in the endosperm. This suggests that constitutive PRC2
713 activity in the endosperm may be the ancestral state, and its downregulation during
714 endosperm formation arose later during angiosperm speciation.

715 An evident hallmark of the nourishing tissue specialization was the biosynthesis of
716 secondary metabolites. For example, the term "Biosynthetic process" was enriched in the
717 exclusive sets of pine and in monocots. Regarding the transcriptional network of pine, it
718 demonstrated a wide range of biosynthetic pathways related to hormone signaling, such
719 as JA, and to structural characteristics of the seed. JAs are derived from linolenic acid

720 (Wasternack & Strnad, 2018) and, together with other phytohormones, like auxin and
721 ABA, it has been shown to affect seed germination in *Arabidopsis* (Pan *et al.*, 2020a; Mei
722 *et al.*, 2023). Furthermore, flavonoids have been suggested to play a regulatory role in
723 phytohormone signaling (Appelhagen *et al.*, 2011; Li & Zachgo, 2013; Brunetti *et al.*,
724 2018). It is tempting to hypothesize that the specific proteins assembled in the OGs
725 identified with secondary metabolite biosynthesis in monocots and pine may act as
726 regulators of phytohormone signaling in their nourishing tissues.

727 The persistent nature of the monocot cereal endosperm leaves a distinct mark on their
728 exclusive transcriptional network. A large protein cluster involved in processes that take
729 place in the amyloplast of cereal endosperms, such as starch biosynthesis, was
730 conspicuous in our analysis. We also identified two OG clusters annotated as TFs in the
731 private transcriptional network of monocots. This highlights their functional role and
732 possibly signals the diversification of these TFs in the monocot endosperm. The MADS-
733 box and AP2-B3 protein families are well-studied transcription factor families that play
734 important roles in regulating endosperm development (Lu *et al.*, 2012; Batista *et al.*,
735 2019; Yang *et al.*, 2020; Song *et al.*, 2021). Although we identified a single DEOG
736 grouping a large set of AGAMOUS-LIKE proteins, AGL9, in the shared set of expressed
737 OGs among all angiosperms, and AGL18 in the private transcriptional network of the
738 eudicot endosperm, we did not observe any strong trend of diversification of OGs
739 containing these TFs in the various endosperm of angiosperms. The pattern may be
740 restricted to monocots, in which we identified three MADS domain containing DEOGs.
741 This could suggest that remaining OGs encompassing additional MADS-box TFs have
742 functional roles throughout the entire plant body and indeed play roles in the endosperms,
743 but not specifically in it. Alternatively, it is very likely that genes encoding endosperm-
744 specific MADS-box TFs were no longer expressed in the samples that we analyzed. Type
745 I MADS-box TFs have been shown to play prominent roles in endosperm development,
746 and their downregulation at the time of endosperm cellularization is crucial for this
747 developmental transition (Erilova *et al.*, 2009; Hehenberger *et al.*, 2012; Batista *et al.*,
748 2019). Because the datasets that we analyzed originated in endosperms that were in early
749 developmental stages, either cellular or close to undergoing cellularization, this likely
750 explains why this family of genes is not prominent in our analysis.

751 Our work provides the first comparative transcriptomic analysis of early seed
752 nourishing tissues, which includes representatives of all main angiosperm clades. We also

753 provide the first transcriptomic datasets of isolated endosperms of basal angiosperms. In
754 addition to the newly generated datasets, we present an orthogroup database
755 encompassing the main phylogenetic plant clades. These catalogs (private and shared
756 sets) will streamline the selection of candidate genes for functional genetic studies in
757 nourishing tissues across the plant kingdom, enabling targeted investigations and
758 enhancing our understanding of gene function and evolution.

759

760 **Acknowledgements**

761 We thank Bernhard Reiken at the Bonn botanical Garden for providing the *Amborella*
762 materials, and Ingo Kallemeier and Michael Burkart at the Potsdam Botanical Garden for
763 the *Nymphaea* materials. We are grateful to Barbara Schmidt and Prof. Julien Bachelier
764 at the Berlin Botanical Garden for guidance with *Nymphaea* material collection. We also
765 thank Arun Sampathkumar and Anja Froehlich for help with the LCM, and Andreia
766 Rodrigues for help with *Pinus* megagametophyte dissection.

767 This work was funded by a Humboldt Postdoctoral Fellowship to AMFR, by the Max
768 Planck Society to DDF, and by Fundação para a Ciência e a Tecnologia to CMM
769 (IF/01168/2013).

770

771 **Competing interests**

772 The authors have no competing interests.

773

774 **Author contributions**

775 AMFR and DDF designed the research. AMFR, CMM and DDF collected the plant
776 materials. AMFR performed the experiments and analyzed the data. AMFR wrote the
777 first draft of the manuscript, and all authors contributed to and approved the final version.

778

779 **Data statement**

780 Newly generated data for the endosperms and leaves of *Nymphaea caerulea* and
781 *Amborella trichopoda* as well as the megagametophyte transcriptomes of *Pinus pinaster*
782 have been posted in the NCBI SRA database under submission SUB13828753. All other
783 data used in this manuscript is publicly available and their sources described in Table S1.

784

785 **References**

786 **Amborella Genome Project.** 2013. The Amborella Genome and the Evolution of
787 Flowering Plants. *Science* **342**: 1241089.

788 **Appelhagen I, Lu G-H, Huep G, Schmelzer E, Weisshaar B, Sagasser M.** 2011.
789 TRANSPARENT TESTA1 interacts with R2R3-MYB factors and affects early and
790 late steps of flavonoid biosynthesis in the endothelium of *Arabidopsis thaliana*
791 seeds. *The Plant Journal* **67**: 406–419.

792 **Batista RA, Moreno-Romero J, Qiu Y, van Boven J, Santos-González J, Figueiredo
793 DD, Köhler C.** 2019. The mads-box transcription factor pheres1 controls imprinting
794 in the endosperm by binding to domesticated transposons. *eLife* **8**.

795 **Bhagyshree J, J LZ, Elin A, Akihisa O, Vikas S, Ramesh Y, Svetlana A, Luisa KA,
796 Frédéric B.** 2023. Histone variants shape the chromatin states in *Arabidopsis*. *eLife*
797 **12**.

798 **Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T,
799 Voigt P, Boavida L, Becker J, et al.** 2020. Targeted reprogramming of H3K27me3
800 resets epigenetic memory in plant paternal chromatin. *Nature Cell Biology* **22**: 621–
801 629.

802 **Borg M, Jiang D, Berger F.** 2021. Histone variants take center stage in shaping the
803 epigenome. *Current Opinion in Plant Biology* **61**: 101991.

804 **Brunetti C, Fini A, Sebastiani F, Gori A, Tattini M.** 2018. Modulation of
805 Phytohormone Signaling: A Primary Function of Flavonoids in Plant–Environment
806 Interactions. *Frontiers in Plant Science* **9**.

807 **Burrieza HP, López-Fernández MP, Maldonado S.** 2014. Analogous reserve
808 distribution and tissue characteristics in quinoa and grass seeds suggest convergent
809 evolution. *Frontiers in Plant Science* **5**.

810 **Casey R.** 1999. Lipoxygenases. In: Shewry PR, Casey R, eds. *Seed Proteins*.
811 Dordrecht: Springer Netherlands, 685–708.

812 **Chauvin A, Caldelari D, Wolfender J-L, Farmer EE.** 2013. Four 13-lipoxygenases
813 contribute to rapid jasmonate synthesis in wounded *Arabidopsis thaliana* leaves: a
814 role for lipoxygenase 6 in responses to long-distance wound signals. *New
815 Phytologist* **197**: 566–575.

816 **Chen F, Liu X, Yu C, Chen Y, Tang H, Zhang L.** 2017. Water lilies as emerging
817 models for Darwin's abominable mystery. *Horticulture Research* **4**.

818 **Cuming AC.** 1999. LEA Proteins. In: Shewry PR, Casey R, eds. *Seed Proteins*.
819 Dordrecht: Springer Netherlands, 753–780.

820 **Dirk LMA, Abdel CG, Ahmad I, Neta ICS, Pereira CC, Pereira FECB, Unêda-
821 Trevisoli SH, Pinheiro DG, Downie AB.** 2020. Late Embryogenesis Abundant
822 Protein–Client Protein Interactions. *Plants* **9**: 814.

823 **Do THT, Martinoia E, Lee Y.** 2018. Functions of ABC transporters in plant growth
824 and development. *Current Opinion in Plant Biology* **41**: 32–38.

825 **Douglas CJ.** 1996. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to
826 trees. *Trends in Plant Science* **1**: 171–178.

827 **Dunwell JM.** 1998. Cupins: A New Superfamily of Functionally Diverse Proteins that
828 Include Germins and Plant Storage Proteins. *Biotechnology and Genetic
829 Engineering Reviews* **15**: 1–32.

830 **Emms DM, Kelly S.** 2019. OrthoFinder: Phylogenetic orthology inference for

831 comparative genomics. *Genome Biology* **20**.

832 **Emonet A, Hay A. 2022.** Development and diversity of lignin patterns. *Plant*
833 *Physiology* **190**: 31–43.

834 **Erilova A, Brownfield L, Exner V, Rosa M, Twell D, Scheid OM, Hennig L,**
835 **Kohler C. 2009.** Imprinting of the polycomb group gene MEDEA serves as a ploidy
836 sensor in *Arabidopsis*. *PLoS Genetics* **5**: e1000663.

837 **Ferrari C, Proost S, Janowski M, Becker J, Nikoloski Z, Bhattacharya D, Price D,**
838 **Tohge T, Bar-Even A, Fernie A, et al. 2019.** Kingdom-wide comparison reveals the
839 evolution of diurnal gene expression in *Archaeplastida*. *Nature Communications* **10**:
840 737.

841 **Filonova LH, Von Arnold S, Daniel G, Bozhkov PV. 2002.** Programmed cell death
842 eliminates all but one embryo in a polyembryonic plant seed. *Cell Death &*
843 *Differentiation* **9**: 1057–1062.

844 **Floyd SK, Friedman WE. 2000.** Evolution of Endosperm Developmental Patterns
845 among Basal Flowering Plants. *International Journal of Plant Sciences* **161**: S57–
846 S81.

847 **Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, Qin L, Babic V, Liu L, Cram D,**
848 **Pasha A, et al. 2021.** Evolutionary divergence in embryo and seed coat development
849 of U's Triangle *Brassica* species illustrated by a spatiotemporal transcriptome atlas.
850 *New Phytologist*.

851 **García de la Torre VS, Majorel-Loulergue C, Rigaill GJ, Alfonso-González D,**
852 **Soubigou-Taconnat L, Pillon Y, Barreau L, Thomine S, Fogliani B, Burtet-**
853 **Sarramegna V, et al. 2021.** Wide cross-species RNA-Seq comparison reveals
854 convergent molecular mechanisms involved in nickel hyperaccumulation across
855 dicotyledons. *New Phytologist* **229**: 994–1006.

856 **Hansen BO, Vaid N, Musialak-Lange M, Janowski M, Mutwil M. 2014.** Elucidating
857 gene function and function evolution through comparison of co-expression networks
858 of plants. *Frontiers in Plant Science* **5**.

859 **Hehenberger E, Kradolfer D, Köhler C. 2012.** Endosperm cellularization defines an
860 important developmental transition for embryo development. *Development* **139**:
861 2031–2039.

862 **Hu S, Yang H, Gao H, Yan J, Xie D. 2021.** Control of seed size by jasmonate. *Science*
863 *China Life Sciences* **64**: 1215–1226.

864 **Ingram GC. 2020.** Family plot: the impact of the endosperm and other extra-embryonic
865 seed tissues on angiosperm zygotic embryogenesis. *F1000Research* **9**: F1000
866 Faculty Rev-18.

867 **Jarończyk K, Sosnowska K, Zaborowski A, Pupel P, Bucholc M, Małecka E,**
868 **Siwirykow N, Stachula P, Iwanicka-Nowicka R, Koblowska M, et al. 2021.**
869 Bromodomain-containing subunits BRD1, BRD2, and BRD13 are required for
870 proper functioning of SWI/SNF complexes in *Arabidopsis*. *Plant Communications*
871 **2**: 100174.

872 **Jiang H, Moreno-Romero J, Santos-González J, De Jaeger G, Gevaert K, Van De**
873 **Slijke E, Köhler C. 2017.** Ectopic application of the repressive histone modification
874 H3K9me2 establishes post-zygotic reproductive isolation in *Arabidopsis thaliana*.
875 *Genes & Development* **31**: 1272–1287.

876 **Julca I, Ferrari C, Flores-Tornero M, Proost S, Lindner A-C, Hackenberg D,**
877 **Steinbachová L, Michaelidis C, Gomes Pereira S, Misra CS, et al. 2021.**
878 Comparative transcriptomic analysis reveals conserved programmes underpinning
879 organogenesis and reproduction in land plants. *Nature Plants* **7**: 1143–1159.

880 **Julca I, Tan QW, Mutwil M. 2023.** Toward kingdom-wide analyses of gene
881 expression. *Trends in Plant Science* **28**: 235–249.

882 **Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. 2011.** Plant
883 ABC Transporters. *The Arabidopsis Book / American Society of Plant Biologists* **9**:
884 e0153.

885 **Kim D, Langmead B, Salzberg SL. 2015.** HISAT: A fast spliced aligner with low
886 memory requirements. *Nature Methods* **12**: 357–360.

887 **Köhler C, Dziasek K, Del Toro-De León G. 2021.** Postzygotic reproductive isolation
888 established in the endosperm: mechanisms, drivers and relevance. *Philosophical
889 Transactions of the Royal Society B: Biological Sciences* **376**: 20200118.

890 **Koramutla MK, Negi M, Ayele BT. 2021.** Roles of Glutathione in Mediating Abscisic
891 Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. *Genes*
892 **12**: 1620.

893 **Lara P, Oñate-Sánchez L, Abraham Z, Ferrández C, Díaz I, Carbonero P, Vicente-
894 Carbajosa J. 2003.** Synergistic activation of seed storage protein gene expression in
895 Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. *The Journal of
896 Biological Chemistry* **278**: 21003–21011.

897 **Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA,
898 Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S, et al. 2019.** One thousand
899 plant transcriptomes and the phylogenomics of green plants. *Nature* **574**: 679–685.

900 **Li S, Zachgo S. 2013.** TCP3 interacts with R2R3-MYB proteins, promotes flavonoid
901 biosynthesis and negatively regulates the auxin response in *Arabidopsis thaliana*.
902 *The Plant Journal* **76**: 901–913.

903 **Lin Y, Pajak A, Marsolais F, McCourt P, Riggs CD. 2013.** Characterization of a
904 Cruciferin Deficient Mutant of *Arabidopsis* and Its Utility for Overexpression of
905 Foreign Proteins in Plants. *PLoS ONE* **8**: e64980.

906 **Linkies A, Graeber K, Knight C, Leubner-Metzger G. 2010.** The evolution of seeds.
907 *New Phytologist* **186**: 817–831.

908 **Linkies A, Leubner-Metzger G. 2012.** Beyond gibberellins and abscisic acid: how
909 ethylene and jasmonates control seed germination. *Plant Cell Reports* **31**: 253–270.

910 **Love MI, Huber W, Anders S. 2014.** Moderated estimation of fold change and
911 dispersion for RNA-seq data with DESeq2. *Genome Biology* **15**: 550.

912 **Lu J, Zhang C, Baulcombe D, Chen Z. 2012.** Maternal siRNAs as regulators of
913 parental genome imbalance and gene expression in endosperm of *Arabidopsis* seeds.
914 *Proceedings of the National Academy of Sciences of the United States of America*
915 **109**: 5529–5534.

916 **Lubna, Asaf S, Khan AL, Jan R, Khan A, Khan A, Kim K, Lee I. 2021.** The
917 dynamic history of gymnosperm plastomes: Insights from structural
918 characterization, comparative analysis, phylogenomics, and time divergence. *The
919 Plant Genome* **14**: e20130.

920 **Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A. 2000.** Expression and
921 parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of
922 developing *Arabidopsis* seeds. *Proceedings of the National Academy of Sciences* **97**:
923 10637–10642.

924 **Mei S, Zhang M, Ye J, Du J, Jiang Y, Hu Y. 2023.** Auxin contributes to jasmonate-
925 mediated regulation of abscisic acid signaling during seed germination in
926 *Arabidopsis*. *The Plant Cell* **35**: 1110–1133.

927 **Mintz PJ, Patterson SD, Neuwald AF, Spahr CS, Spector DL. 1999.** Purification and
928 biochemical characterization of interchromatin granule clusters. *The EMBO Journal*

929 **18**: 4308–4320.

930 **Molaro A, Wood AJ, Janssens D, Kindelay SM, Eickbush MT, Wu S, Singh P,**
931 **Muller CH, Henikoff S, Malik HS.** **2020.** Biparental contributions of the H2A.B
932 histone variant control embryonic development in mice. *PLoS Biology* **18**:
933 e3001001.

934 **Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hänel U, Junker A,**
935 **Weisshaar B, Conrad U, Bäumlein H, et al.** **2012.** Toward the identification and
936 regulation of the *Arabidopsis thaliana* ABI3 regulon. *Nucleic Acids Research* **40**:
937 8240–8254.

938 **Mosher RA, Melnyk CW, Kelly KA, Dunn RM, Studholme DJ, Baulcombe DC.**
939 **2009.** Uniparental expression of PolIV-dependent siRNAs in developing endosperm
940 of *Arabidopsis*. *Nature* **460**: 283–286.

941 **Moussu S, Doll NM, Chamot S, Brocard L, Creff A, Fourquin C, Widiez T,**
942 **Nimchuk ZL, Ingram G.** **2017.** ZHOUPI and KERBEROS Mediate
943 Embryo/Endosperm Separation by Promoting the Formation of an Extracuticular
944 Sheath at the Embryo Surface. *The Plant Cell* **29**: 1642–1656.

945 **Pan J, Hu Y, Wang H, Guo Q, Chen Y, Howe GA, Yu D.** **2020a.** Molecular
946 Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid
947 Signaling during Seed Germination in *Arabidopsis*. *The Plant Cell* **32**: 3846–3865.

948 **Pan R, Liu J, Wang S, Hu J.** **2020b.** Peroxisomes: versatile organelles with diverse
949 roles in plants. *New Phytologist* **225**: 1410–1427.

950 **Park M, Krause C, Karnahl M, Reichardt I, El Kasmi F, Mayer U, Stierhof Y-D,**
951 **Hiller U, Strompen G, Bayer M, et al.** **2018.** Concerted Action of Evolutionarily
952 Ancient and Novel SNARE Complexes in Flowering-Plant Cytokinesis.
953 *Developmental Cell* **44**: 500–511.e4.

954 **Pazhouhandeh M, Molinier J, Berr A, Genschik P.** **2011.** MSI4/FVE interacts with
955 CUL4–DDB1 and a PRC2-like complex to control epigenetic regulation of
956 flowering time in *Arabidopsis*. *Proceedings of the National Academy of Sciences*
957 **108**: 3430–3435.

958 **Peer WA, Murphy AS.** **2007.** Flavonoids and auxin transport: modulators or
959 regulators? *Trends in Plant Science* **12**: 556–563.

960 **Povilus RA, Diggle PK, Friedman WE.** **2018.** Evidence for parent-of-origin effects
961 and interparental conflict in seeds of an ancient flowering plant lineage. *Proceedings*
962 *of the Royal Society B: Biological Sciences* **285**: 20172491.

963 **Povilus RA, Friedman WE.** **2022.** Transcriptomes across fertilization and seed
964 development in the water lily *Nymphaea thermarum* (Nymphaeales): evidence for
965 epigenetic patterning during reproduction. *Plant Reproduction*.

966 **Povilus RA, Losada JM, Friedman WE.** **2015.** Floral biology and ovule and seed
967 ontogeny of *Nymphaea thermarum*, a water lily at the brink of extinction with
968 potential as a model system for basal angiosperms. *Annals of Botany* **115**: 211–226.

969 **Qiao Z, Pingault L, Nourbakhsh-Rey M, Libault M.** **2016.** Comprehensive
970 Comparative Genomic and Transcriptomic Analyses of the Legume Genes
971 Controlling the Nodulation Process. *Frontiers in Plant Science* **7**: 34.

972 **Ran J-H, Shen T-T, Wang M-M, Wang X-Q.** **2018.** Phylogenomics resolves the deep
973 phylogeny of seed plants and indicates partial convergent or homoplastic evolution
974 between Gnetales and angiosperms. *Proceedings of the Royal Society B: Biological*
975 *Sciences* **285**: 20181012.

976 **Rodrigues AS, Chaves I, Costa BV, Lin Y-C, Lopes S, Milhinhos A, Van De Peer**
977 **Y, Miguel CM.** **2019.** Small RNA profiling in *Pinus pinaster* reveals the

978 transcriptome of developing seeds and highlights differences between zygotic and
979 somatic embryos. *Scientific Reports* **9**: 11327.

980 **Rodrigues JA, Ruan R, Nishimura T, Sharma MK, Sharma R, Ronald PC, Fischer**
981 **RL, Zilberman D.** 2013. Imprinted expression of genes and small RNA is
982 associated with localized hypomethylation of the maternal genome in rice
983 endosperm. *Proceedings of the National Academy of Sciences* **110**: 7934–7939.

984 **Rodrigues AS, Vega JJ, Miguel CM.** 2018. Comprehensive assembly and analysis of
985 the transcriptome of maritime pine developing embryos. *BMC Plant Biology* **18**: 1–
986 20.

987 **Sabelli PA, Larkins BA.** 2009. The Development of Endosperm in Grasses. *Plant*
988 *Physiology* **149**: 14–26.

989 **Sabelli P A, Leiva-Neto J T, Dante R A, Nguyen H, Larkins B A.** 2005. Cell cycle
990 regulation during maize endosperm development. *Maydica* **50**: 485–496.

991 **Song J, Xie X, Chen C, Shu J, Thapa RK, Nguyen V, Bian S, Kohalmi SE,**
992 **Marsolais F, Zou J, et al.** 2021. LEAFY COTYLEDON1 expression in the
993 endosperm enables embryo maturation in *Arabidopsis*. *Nature Communications* **12**.

994 **Spencer ART, Wang S-J, Dunn MT, Hilton J.** 2013. Species of the medullosan ovule
995 *Stephanospermum* from the Lopingian (late Permian) floras of China. *Journal of*
996 *Asian Earth Sciences* **76**: 59–69.

997 **Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A,**
998 **Doncheva NT, Roth A, Bork P, et al.** 2017. The STRING database in 2017:
999 Quality-controlled protein-protein association networks, made broadly accessible.
1000 *Nucleic Acids Research* **45**: D362–D368.

1001 **The Angiosperm Phylogeny Group.** 2016. An update of the Angiosperm Phylogeny
1002 Group classification for the orders and families of flowering plants: APG IV.
1003 *Botanical Journal of the Linnean Society* **181**: 1–20.

1004 **Tiwari S, Spielman M, Schulz R, Oakey RJ, Kelsey G, Salazar A, Zhang K,**
1005 **Pennell R, Scott RJ.** 2010. Transcriptional profiles underlying parent-of-origin
1006 effects in seeds of *Arabidopsis thaliana*. *BMC Plant Biology* **10**: 72.

1007 **Vandelook F, Newton RJ, Bobon N, Bohley K, Kadereit G.** 2021. Evolution and
1008 ecology of seed internal morphology in relation to germination characteristics in
1009 *Amaranthaceae*. *Annals of Botany* **127**: 799–811.

1010 **Verbruylse J, Van Bel M, Osuna-Cruz CM, Kulkarni SR, Storme V, Nelissen H,**
1011 **Gonzalez N, Inzé D, Vandepoele K.** 2020. Comparative transcriptomics enables
1012 the identification of functional orthologous genes involved in early leaf growth.
1013 *Plant Biotechnology Journal* **18**: 553–567.

1014 **Wasternack C, Strnad M.** 2018. Jasmonates: News on Occurrence, Biosynthesis,
1015 Metabolism and Action of an Ancient Group of Signaling Compounds. *International*
1016 *Journal of Molecular Sciences* **19**: 2539.

1017 **Williams CG (Ed.).** 2009. Syngamy, Embryo Development and Seed Dispersal. In:
1018 Conifer Reproductive Biology. Dordrecht: Springer Netherlands, 107–121.

1019 **Xin M, Yang R, Yao Y, Ma C, Peng H, Sun Q, Wang X, Ni Z.** 2014. Dynamic
1020 parent-of-origin effects on small interfering RNA expression in the developing
1021 maize endosperm. *BMC Plant Biology* **14**: 192.

1022 **Xing Q, Creff A, Waters A, Tanaka H, Goodrich J, Ingram GC.** 2013. ZHOUPI
1023 controls embryonic cuticle formation via a signalling pathway involving the
1024 subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases
1025 GASSHO1 and GASSHO2. *Development (Cambridge, England)* **140**: 770–779.

1026 **Xu W, Fiume E, Coen O, Pechoux C, Lepiniec L, Magnani E.** 2016. Endosperm and

1027 Nucellus Develop Antagonistically in *Arabidopsis* Seeds. *The Plant Cell*:
1028 tpc.00041.2016.

1029 **Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y. 2020.** The B3
1030 domain-containing transcription factor ZmABI19 coordinates expression of key
1031 factors required for maize seed development and grain filling. *The Plant Cell* **33**:
1032 104–128.

1033 **Yu Y, Hu H, Doust AN, Kellogg EA. 2020.** Divergent gene expression networks
1034 underlie morphological diversity of abscission zones in grasses. *The New*
1035 *Phytologist* **225**: 1799–1815.

1036 **Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE,**
1037 **dePamphilis CW, Ma H. 2005.** The Evolution of the SEPALLATA Subfamily of
1038 MADS-Box GenesSequence data from this article have been deposited with the
1039 EMBL/GenBank Data Libraries under accession nos. AY850178, AY850179,
1040 AY850180, AY850181, AY850182, AY850183, AY850184, AY850185,
1041 AY850186. *Genetics* **169**: 2209–2223.

1042 **Zimmer A, Lang D, Richardt S, Frank W, Reski R, Rensing SA. 2007.** Dating the
1043 early evolution of plants: detection and molecular clock analyses of orthologs.
1044 *Molecular Genetics and Genomics* **278**: 393–402.

1045

1046 **Supplementary Information**

1047

1048 **Methods S1**

1049

1050 **Table S1. Data provenance, tissue details, number of total mapped reads, total**
1051 **number of genes detected, DEGs and DEOGs.**

1052 **Table S2. Orthogroup description.**

1053 **Table S3. Results of differential gene expression between nourishing tissues and**
1054 **leaves of all species studied.**

1055 **Table S4. Conserved transcriptional network of the angiosperm seed nourishing**
1056 **tissue.**

1057 **Table S5. The transcriptional network of the *Pinus pinaster* megagametophyte.**

1058 **Table S6. The private transcriptional network of the *Amborella trichopoda***
1059 **endosperm. Table S7 – The transcriptional network of the *Nymphaea caerulea***
1060 **seed.**

1061 **Table S8. The monocot endosperm transcriptional network.**

1062 **Table S9. The transcriptional network of the eudicot endosperm.**

1063

1064 **Figure S1. Examples of seeds of *Amborella trichopoda* and *Nymphaea caerulea* used**
1065 **for microdissection and transcriptome generation.**

1066 **Figure S2. Details of PCA analyses and Upset plot of DEOGs showing intersections**

1067 **Figure S3. The conserved transcriptional network of the angiosperm endosperm.**

1068 **Figure S4. The conserved transcriptional network of the angiosperm endosperm,**
1069 **the cell cycle and nucleosome architecture interacting network**

1070 **Figure S5. Conserved transcriptional network of the angiosperm seed nourishing**
1071 **tissue, the Nourishing cluster protein interacting network**

1072 **Figure S6. The *Pinus pinaster* megagametophyte private protein network.**

1073 **Figure S7. The *Amborella* endosperm private protein network.**

1074 **Figure S8. The *Nymphaea caerulea* endosperm private protein network.**

1075 **Figure S9. The monocot endosperm private protein network.**

1076 **Figure S10. The eudicot endosperm private protein network.**

1077