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Abstract26

Background27

Analysis of mass spectrometry-based metaproteomic data, in particular large-scale28
data-independent acquisition MS (DIA-MS) data, remains a computational challenge. Here, we29
aim to develop a software tool for efficiently constructing spectral libraries and analyzing30
extensive datasets of DIA-based metaproteomics.31

Results32

We present a computational pipeline called metaExpertPro for metaproteomics data analysis.33
This pipeline encompasses spectral library generation using data-dependent acquisition MS34
(DDA-MS), protein identification and quantification using DIA-MS, functional and taxonomic35
annotation, as well as quantitative matrix generation for both microbiota and hosts. To enhance36
accessibility and ease of use, all modules and dependencies are encapsulated within a Docker37
container.38

By integrating FragPipe and DIA-NN, metaExpertPro offers compatibility with both39
Orbitrap-based and PASEF-based DDA and DIA data. To evaluate the depth and accuracy of40
identification and quantification, we conducted extensive assessments using human fecal41
samples and benchmark tests. Performance tests conducted on human fecal samples42
demonstrated that metaExpertPro quantified an average of 45,000 peptides in a 60-minute43
diaPASEF injection. Notably, metaExpertPro outperformed three existing software tools by44
characterizing a higher number of peptides and proteins. Importantly, metaExpertPro maintained45
a low factual False Discovery Rate (FDR) of less than 5% for protein groups across four46
benchmark tests. Applying a filter of five peptides per genus, metaExpertPro achieved relatively47
high accuracy (F-score = 0.67–0.90) in genus diversity and demonstrated a high correlation48
(rSpearman = 0.73–0.82) between the measured and true genus relative abundance in benchmark49
tests.50

Additionally, the quantitative results at the protein, taxonomy, and function levels exhibited high51
reproducibility and consistency across the commonly adopted public human gut microbial52
protein databases IGC and UHGP. In a metaproteomic analysis of dyslipidemia patients,53
metaExpertPro revealed characteristic alterations in microbial functions and potential54
interactions between the microbiota and the host.55

Conclusions56

metaExpertPro presents a robust one-stop computational solution for constructing57
metaproteomics spectral libraries, analyzing DIA-MS data, and annotating taxonomic as well as58
functional data.59
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Background60

Microbial communities and functions have attracted increasing research interests in the past few61
years due to their crucial roles in human health, including nutrition, metabolism, and immunity1.62
Multi-omics approaches (i.e., 16/18S ribosomal RNA sequencing, metagenomics) have been63
widely applied in gut microbiota studies to provide multifaceted information in characterizing64
the microbial profiles and their alterations linked with human diseases such as obesity, type 265
diabetes, hepatic steatosis, intestinal bowel diseases (IBDs), and cancer2. These technologies66
provide important information on the taxonomic composition and functional potential of67
microbiota but lack the messages of the truly expressed functions.68

Metaproteomics is an emerging research area due to its unique strengths in quantifying the truly69
expressed proteins in the entire microbial community, assessing the community structure based70
on the biomass contributions of individual community members, exploring the interactions71
between microorganisms and their hosts or environment3, as well as identifying72
disease-associated protein biomarkers, e.g., in human fecal4, or saliva5 samples.73

However, data analysis of MS-based metaproteomics data is highly sophisticated. Searching74
against comprehensive protein databases containing several million protein sequences not only75
requires huge storage space and memory but also presents the tradeoff between proteome depth76
and false positive identifications6. Consequently, although widely used proteomics software tools77
like X!Tandem7, OMSSA8, MS-GF+9, Comet10, Proteome Discoverer (PD), and MaxQuant1178
have been employed in metaproteomics data analysis, they are primarily applicable only to79
DDA-MS data. These tools are not well-suited for analyzing very large metaproteomic datasets80
(ranging from hundreds to thousands) due to suboptimal computational efficiency. Therefore, the81
majority of published metaproteomic datasets consist of fewer than 200 MS injections. To82
enhance computational efficiency, specialized software such as metaLab12–14, MetaProteome83
Analyzer (MPA)15, and ProteoStorm16 have been developed exclusively for metaproteomics84
analysis. However, they are all designed for DDA-MS-based metaproteomics analysis.85
Data-independent acquisition mass spectrometry (DIA-MS) demonstrates superb reproducibility,86
throughput, and proteome depth for single-injection analysis of complex proteomes17. However,87
DIA-MS generates highly convoluted fragment ion spectra which require sophisticated data88
analysis18, especially in metaproteomic samples that have an increased chance of co-elution of89
precursor ions19. Only two software tools namely diatools20 and its updated version glaDIAtor2190
were designed for DIA-MS-based metaproteomics analysis.91

However, neither of them is compatible with parallel accumulation-serial fragmentation92
combined with data-independent acquisition (diaPASEF) data which include ion mobility93
information22. In particular, diaPASEF achieves almost 100% peptide precursor ion current for94
DIA-MS data acquisition, leading to 5–10 times higher sensitivity improvement, but further95
increasing the complexity of metaproteomic data. Reducing search space without compromising96
proteomic depth is crucial for diaPASEF-based metaproteomics data analysis. Spectral97
library-based database search methods following peptide prefractionation typically yield a higher98
number of identified spectra compared to library-free database and pseudospectral library search99
methods23 in DIA analysis. Moreover, this approach requires less computational resource due to100
a reduced search space compared to library-free database search methods21. FragPipe24 harnesses101
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the remarkable speed of the MSFragger proteomic search engine, surpassing X!Tandem,102
SEQUEST, and Comet by 100-fold in the analysis of a single DDA-MS run consisting of 41,820103
MS/MS spectra. It seamlessly supports both Orbitrap and PASEF DDA-MS data. Additionally,104
FragPipe’s split database function, coupled with an accelerated proteinprophet module, renders it105
highly suitable for spectral library generation in metaproteomics data25. DIA-NN26 facilitates106
comprehensive proteome quantification in DIA-MS data, proving particularly advantageous for107
high-throughput applications owing to its rapid processing. Notably, a recent study by Demichev108
et al. demonstrated that integrating FragPipe with DIA-NN for diaPASEF data analysis led to a109
substantial increase in proteomic depth, approximately 70% higher than the originally published110
diaPASEF workflow using DIA-NN library-free analysis27.111

Based on these progresses, here we developed a metaproteomic data analysis workflow called112
metaExpertPro, which is compatible with both DDA and DIAMS data from both ordinary MS113
and MS with ion mobility information such as timsTOF. metaExpertPro utilizes DDA-MS data114
for spectral library generation and DIA-MS data for peptide and protein identification and115
quantification. It offers a comprehensive one-stop metaproteomic workflow, including peptide116
and protein measurement, functional and taxonomic annotation, and quantitative data matrix117
generation. Additionally, metaExpertPro is easily accessible as a Docker image118
(https://github.com/guomics-lab/metaExpertPro). This method showed deep identification of119
about 45,000 peptides per human fecal sample from more than 10,000 protein groups with a 60120
min LC gradient DIA-MS acquisition on a timsTOF Pro. Benchmark tests demonstrated that121
metaExpertPro maintains both low factual FDR (~ 5%) and high-sensitivity identification at122
protein group level. Also, laboratory-artificial microbial mixture tests showed that123
metaExpertPro achieves high accuracy in both diversity and relative abundance at genus level.124
Furthermore, the negligible effects of different databases on quantification suggest that matched125
metagenomic sequencing is not required, and the results generated by metaExpertPro based on126
public different databases will be directly comparable. Finally, we applied the metaExpertPro127
software to study fecal specimens from dyslipidemia (DLP) patients. The results uncovered128
previously unclear alterations of microbial functions and the potential interactions between the129
microbiota and the host.130
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Results131

Overview of metaExpertPro workflow132

In this study, we proposed a metaproteomics data analysis workflow called metaExpertPro for133
the measurement of peptides, protein groups, functions, and taxa of gut microbes as well as host134
proteins based on DDA-MS and DIA-MS data from either Thermo Fisher Orbitrap ( .raw135
/ .mzML format) or Bruker (.d format) mass spectrometers. Briefly, the workflow includes four136
stages: DDA-MS-based spectral library generation, DIA-MS-based peptide and protein137
quantification, functional and taxonomic annotation, as well as quantitative matrix generation.138
The implementation of the metaExpertPro workflow is shown in Figure 1Awith more details139
explained below.140

In the first stage, we applied FragPipe (version 20.0) software24 for spectral library generation141
(Figure 1A). To minimize computational memory demands, the original database (e.g. integrated142
gene catalog database (IGC) of human gut microbiome and Unified Human Gastrointestinal143
Protein (UHGP)) was divided into multiple databases utilizing the database split parameter of144
MSFragger. The more the database is split, the less memory is required, but the longer the145
runtime. Therefore, users need to judiciously choose the number of database splits based on the146
quantity of protein sequences contained in the database. Then, each DDA-MS raw data was147
searched against each split database, generating a pepXML and a pin file. All the pepXML and148
pin files for each DDA-MS raw data were aggregated for PSM validation using either149
PeptideProphet or MSBooster-Percolator. To decide the appropriate PSM validation method, we150
assessed the number of protein groups and the factual FDR in two benchmark tests using151
PeptideProphet and the MSBooster-Percolator method, respectively. The benchmark tests152
utilized the public dataset (PXD006118) from a synthetic community of 32 organisms, searching153
against a sample-matched metagenomic database supplemented with either a subset of IGC154
database, containing ten times the proteins in metagenomic database, or 48 human gut microbial155
species. False positives included contaminant proteins, IGC proteins, or proteins from the added156
microbial species (Figure S1A). Both benchmark tests demonstrated a lower factual FDR using157
the PeptideProphet method (0.057 vs 0.091 and 0.037 vs 0.048), despite the158
MSBooster-Percolator method achieving 8.7–12.1% higher protein group identifications than the159
PeptideProphet method (Figure S1B). To maintain a relatively low factual FDR, we selected160
PeptideProphet as the default PSM validation method in metaExpertPro.161

In the second stage, we applied DIA-NN software 26 to identify and quantify peptides and162
proteins from each DIA-MS data file (Figure 1A). In the third stage, we performed taxonomic163
annotation using the peptide-centric taxonomic annotation software Unipept28,29, which has been164
proved to exhibit more accurate and precise taxonomic annotation30 compared to Kraken231,32165
and Diamond33,34. Because the Unipept only indexes perfectly cleaved tryptic peptides35, we in166
silico digested the peptides and filtered the peptide length before the Unipept taxonomic167
annotation (Figure S1B). To enhance annotation confidence, peptides with conflicting taxon168
annotations were excluded (Figure S1D). To eliminate unreliable taxa, we calculated the number169
of peptides associated with each taxon and selected taxa with more than 1, 3, 5, 10, 15, and 20170
peptides. The metaproteomic functional annotation tools eggnog-mapper36,37 and171
GhostKOALA38 were integrated into the pipeline to process functional annotation (Figure 1A).172
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In the fourth stage, we generated quantitative matrices at nine levels including human peptide,173
microbial peptide, human protein group, microbial protein group, COG, KO, COG category, KO174
category, and taxonomy. The peptides corresponding to both human protein group and microbial175
protein group were removed from the quantitative results to avoid protein assignment ambiguity176
(Figure S2).177

In summary, the metaExpertPro pipeline integrates high-performance proteomic analysis178
tools—FragPipe and DIA-NN—along with functional and taxonomic annotation software tools,179
employing rigorous filter criteria to provide a comprehensive metaproteomics workflow in a180
single package.181

Subsequently, to assess the performance of metaExpertPro in human gut microbial samples, we182
conducted tests to evaluate identification depth and result reproducibility using two MS183
instruments. Additionally, we compared the measurement results and runtime of metaExpertPro184
with three existing metaproteomics software tools—MetaLab, ProteoStorm, and glaDIAtor. For185
workflow accuracy estimation, we computed the factual FDR of protein groups, the F-score of186
taxa, and the correlation between measured taxa and true protein amounts in multiple benchmark187
tests. Furthermore, we examined the effects of databases on spectral libraries and quantitative188
matrices using five mainstream human gut microbial databases. Finally, we applied189
metaExpertPro in metaproteomic analysis of dyslipidemia patients to explore potential190
associations between human gut microbial functions and taxa related to dyslipidemia (Figure 1B).191
Detailed descriptions of all tests are provided below.192

In-depth identification and high reproducibility of metaExpertPro workflow in human193
fecal samples194

To demonstrate the benefits of metaExpertPro, we applied it to the metaproteomic analysis of 62195
human fecal samples from 62 middle-aged and elderly volunteers of the Guangzhou Nutrition196
and Health Study (GNHS)39. Sixty samples were acquired using two MS instrument platforms:197
the timsTOF Pro (Bruker) and the Orbitrap Exploris™ 480 (Thermo Fisher Scientific) (Figure198
2A). Approximately 5 μg peptides from each sample were mixed into a pooled sample for199
high-pH fractionation. A total of 30 fractionated samples were obtained. Each fraction was200
analyzed by DDA-MS acquisition with a 60 min gradient for spectral library generation. The201
remaining peptides from each sample were used for DIA-MS acquisition (Figure 2A). A total of202
220,365 peptides and 58,952 protein groups, including 57,862 microbial protein groups and203
1,065 human protein groups, were identified in the spectral library derived from timsTOF Pro204
(Figure 2 B). Using Exploris 480, 189,808 peptides and 51,269 protein groups, including 50,218205
microbial protein groups and 1,024 human protein groups, were characterized (Figure 2C). The206
average identification rate of the acquired MS spectra was 32.2% and 29.3% for the spectral207
libraries derived from timsTOF Pro and Exploris 480, respectively (Figure 2 D–E, Table S1).208
The identification rates were comparable to the MetaPro-IQ12 results (medium = 32%) obtained209
from 4 h gradient DDA-MS run on the Q Exactive MS spectrometer for eight human stool210
samples. For each sample, we quantified 43,194 ± 11,704 (mean ± SD) microbial peptides211
corresponding to 15,501 ± 3,880 microbial protein groups, and 2,453 ± 398 human peptides212
corresponding to 537 ± 91 human protein groups on timsTOF Pro. On Exploris 480, we213
quantified 22,460 ± 4,964 microbial peptides corresponding to 11,301 ± 2,172 microbial protein214
groups, and 1,374 ± 246 human peptides corresponding to 414 ± 69 human protein groups215
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(Figure 2 F–G, Table S2). Nevertheless, to the best of our knowledge, the numbers of peptide216
identifications on two types of MS instruments are the highest compared to the published217
metaproteomic results with the same or even longer LC gradient. For example, the MetaPro-IQ218
workflow identified 15,210 peptides per human fecal sample with 4 h gradient DDA-MS219
acquisition12, and glaDIAtor identified 8211 peptides per human fecal sample with 90 min220
gradient DIA-MS acquisition21. Moreover, the number of peptides with 60 min gradient221
acquisition on timsTOF Pro identified by metaExpertPro is comparable to the MetaPro-IQ results222
with 22 h of MS analysis (45,647 vs 44,955 peptides per human fecal sample)40. Due to the223
in-depth identification of peptides and protein groups, we also quantified an average of 90–92224
microbial species, 68–71 genera, 1,406–1,511 COGs, and 1,350–1,475 KOs per human fecal225
sample (Figure 2 F–G, Table S2).226

Another major benefit of DIA methods is the high degree of quantitative consistency. Thus, we227
next investigated the reproducibility of the quantified protein groups, functions, and taxa in five228
pairs of technical replicate samples and six pairs of biological replicate samples. As expected,229
high correlation was observed in all pairs of technical replicates at each level in two MS230
instruments (Figure 2 H–I). We also observed high correlation in all pairs of biological replicates231
at each level (Figure 2 H–I). In addition, the Bray-Curtis (BC) distance between all pairs of232
technical and biological replicates was low, and no statistically significant difference were233
observed between the first and the second repeat MS acquisition (PERMANOVA p = 0.89–1)234
(Figure 2 H–I).235

The reproducibility between two MS instruments was assessed by comparing their identifications236
in the DDA-MS-based spectral library. Among the total peptides identified, 34.2% (104,521)237
were detected by both MS instruments, while 37.8% (30,291) of the total protein groups were238
identified by both instruments. These shared identifications accounted for 55.0% of the peptides239
and 58.9% of the protein groups identified by the Exploris 480 MS instrument (Figure S3A). For240
the DIA-MS-based quantification, 25.6% (56,939) of the total peptides and 36.2% (22,597) of241
the total protein groups were quantified by both MS instruments. The abundance correlation242
between the datasets generated by the two MS instruments were assessed using twelve biological243
replicate samples. The results showed that the median Spearman correlation was 0.788 for244
human proteins, 0.604 for microbial proteins, 0.673 for human peptides, 0.643 for microbial245
peptides, 0.908 for genera, 0.861 for species, 0.880 for COGs, and 0.852 for KOs, respectively246
(Figure S3B). In summary, metaExpertPro offers comprehensive identification and quantification247
capability for metaproteomics analysis of human fecal samples, utilizing MS raw data from248
either timsTOF or Exploris 480 instruments. Notably, it demonstrates remarkable reproducibility249
across replicate samples and MS instruments, ensuring reliable and consistent results.250

Comparison of metaExpertPro with other metaproteomics software tools251

We next compared the application scenarios and the performance of metaExpertPro with the252
existing metaproteomics software tools. Among them, metaLab13, MetaProteomeAnalyzer253
(MPA)15,41, and ProteoStorm16 are DDA-MS-based metaproteomics analysis tools. They are all254
compatible with Q Exactive and Orbitrap Exploris MS instruments. Additionally, ProteoStorm is255
also compatible with Low-res LCQ/LTQ (Figure 3A). Both metaLab and MPA can perform256
DDA-MS-based peptide and protein quantification in metaproteomics analysis. Furthermore,257
metaLab provides additional functionalities for function and taxonomic annotation, as well as258

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.569331doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.569331
http://creativecommons.org/licenses/by-nc-nd/4.0/


quantification. glaDIAtor21 is the next generation of diatools20. diatools and glaDIAtor are259
currently the only published analysis tools available for DIA-MS metaproteomics. However, it is260
important to note that neither glaDIAtor nor diatools is compatible with PASEF MS instrument.261
metaExpertPro is the exclusive DDA-assisted DIA-based metaproteomics analysis tool that is262
compatible with the timsTOF MS instrument. It provides a comprehensive solution263
encompassing DDA-MS-based spectral library generation, DIA-MS-based peptide and protein264
quantification, as well as function and taxonomic annotation and quantification, all in one265
platform (Figure 3A). To compare the performance of these software tools, we reanalyzed the266
Orbitrap acquired DDA-MS and DIA-MS datasets from six human fecal samples published by267
the Elo team42. For the DDA-MS-based software tools metaLab and ProteoStorm, six DDA-MS268
raw data files were used for peptide and protein quantification or identification. On the other269
hand, in the case of DIA-MS-based software tools glaDIAtor and metaExpertPro, these same six270
DDA-MS data sets were employed for spectral library generation. Subsequently, peptide and271
protein quantification were performed using DIA-MS raw data and the generated spectral library272
(Figure 3B).273

We compared DDA-MS-based peptide identifications among metaExpertPro, glaDIAtor,274
metaLab, and ProteoStorm. metaExpertPro demonstrated the highest peptide identifications in275
the spectral library (30,155) among the compared tools, surpassing glaDIAtor (19,371 peptides),276
metaLab (24,557 peptides), and ProteoStorm (11,226 peptides) in the spectral library. Despite the277
variations in peptide identification counts, metaExpertPro exhibited substantial overlap with278
other tools. It identified 16,580 peptides shared with glaDIAtor, 20,415 peptides shared with279
metaLab, and 9,384 peptides shared with ProteoStorm. These shared peptides accounted for280
85.6%, 83.1%, and 83.6% of the total peptides identified by glaDIAtor, metaLab, and281
ProteoStorm, respectively (Figure 3C, Table S3). Additionally, metaExpertPro identified 5,368282
unique peptides in the spectral library. Next, we compared the DIA-MS-based quantification of283
metaExpertPro and glaDIAtor. To ensure a fair comparison, both software tools were set to284
DDA-assisted DIA mode, guaranteeing identical raw data input for the analysis. Using285
metaExpertPro, we measured more than two-fold peptides (mean ± SD = 16,971 ± 3,315 vs286
6,918 ± 1,456) and six-fold protein groups (mean ± SD = 5,368 ± 885 vs 812 ± 218) compared to287
glaDIAtor (Figure 3D, Table S4). Over half of all the peptides (59%) and protein groups (80%)288
were only detected by metaExpertPro. 32% of the peptides and 16% of the protein groups were289
quantified by both workflows. Only 8% of the peptides and 4% of the protein groups were290
quantified by glaDIAtor only (Figure 3E). In the comparison of peptide and protein abundance291
between the two workflows, we observed a relatively high correlation in the abundance of292
peptides and protein groups quantified by both metaExpertPro and glaDIAtor (median rSpearman =293
0.79 and 0.63) (Figure 3F). Furthermore, the abundance of peptides and protein groups294
exclusively detected by metaExpertPro was significantly lower compared to those identified by295
both workflows (Figure 3G, Table S5). These findings suggest that our workflow excels in296
identifying low-abundance peptides and protein groups.297

To further verify the confidence of the peptides quantified only by metaExpertPro compared to298
glaDIAtor, we inspected the probability, the number of fragments, the b / y ion intensity ratio,299
and the spectra of these peptides. Among the 30,155 peptides identified in the metaExpertPro300
spectral library, 13,575 peptides were uniquely identified compared to glaDIAtor spectral library,301
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while 16,580 peptides were shared between the two libraries. We firstly evaluated the accuracy302
of the 13,575 peptides in the metaExpertPro spectral library, confirming their reliability.303
Remarkably, all these peptides exhibited peptide probability values of 0.9963 ± 0.12 (median ±304
SD), indicating the high confidence in the peptide-spectrum matches. The median number of305
fragments matched for all peptides was 14, ranging from a minimum of 5 fragments to a306
maximum of 169 (Figure 3H). Notably, among the 13,575 peptides, 99.6% displayed two-sided307
fragment types, while only 54 peptides were identified as one-sided. Furthermore, in ion trap308
mass spectrometry, the intensities of y-ions are typically approximately twice that of their309
corresponding b-ions43. Among the 13,575 identified peptides, the median ratio of intensities310
between y-ions and their corresponding b-ions was 1.6, aligning with the anticipated pattern for311
complex peptide spectra (Figure 3H). To visually showcase the qualitative accuracy of the312
peptide identifications in the metaExpertPro spectral library, we obtained the DDAMS/MS313
spectra of the top 20 lowest abundant peptides. All 20 peptide spectra can be identified with at314
least 8 fragments containing both y ions and b ions. Most of the high-intensity peaks in the315
spectra can be matched to fragments, and there was a large dynamic range between high and316
low-intensity fragments. In addition, the intensity of y ions is higher than that of b ions (Figure317
S4). These criteria are in line with the manual assessment of high-quality peptide segments43 ,318
which demonstrate the reliability and precision of the identified peptides in the spectral library319
(Figure S4). Collectively, these findings strongly support the high quality and reliability of the320
peptides exhibiting relatively low abundance.321

Next, we conducted a comparison of the running times for metaExpertPro and glaDIAtor on an322
AMD EPYC hardware system with 512 GB RAM using the PXD008738 dataset. With ten323
threads, glaDIAtor took approximately 21.1 hours for DDA-MS analysis, while metaExpertPro324
required approximately 17.4 hours. For DIA-MS analysis, glaDIAtor took around 23 minutes per325
file, while metaExpertPro completed the analysis in just 1 minute per file (Figure 3I).326
Considering that the number of DDA-MS raw data is usually less than 100, while a327
high-throughput project may involve thousands of DIA-MS raw data files, metaExpertPro proves328
to be well-suited for high-throughput metaproteomic analysis.329

In conclusion, the metaExpertPro workflow effectively enhanced proteome depth and upheld330
strong quantitative reproducibility in metaproteomic analysis. While the generation of331
DDA-MS-based spectral libraries using metaExpertPro may require longer running times, the332
DIA-MS-based quantification process is notably faster. This characteristic offers a significant333
advantage, particularly in high-throughput studies utilizing DIA-MS.334

Benchmark test of protein group identifications of metaExpertPro335

We further investigated the accuracy of protein groups identified by metaExpertPro using336
benchmark tests. We initially assessed the factual FDR of protein groups in the spectral library337
using the published dataset of HeLa cells30. Briefly, the DDA-MS data of the HeLa cell was338
searched against the human protein database (Swiss-Prot, date 20211213) supplemented with 0×,339
1×, 10×, 100×, and the entire mouse microbiome catalog sequences (~2.6 million proteins),340
respectively (Figure 4A). The factual FDR is defined as the bacterial and contaminant hits341
divided by all the identified hits. As expected, when searching against the human protein342
database only (benchmark standard), the factual FDR was extremely low (0.015) (Figure 4B,343
Table S5). The count of human protein groups reached 5,511 (Figure 4B, Table S6), surpassing344
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the originally published result of approximately 5,000 human protein groups30 based on a345
single-step search using MaxQuant software11. When increasing microbial sequences in the346
human protein database, the factual FDRs remained well-controlled (FDRs = 0.022–0.028), and347
the count of true human protein groups showed a slight decrease compared to the benchmark348
result (5,082 in the supplemented all bacteria sequences vs. 5,431 in the human protein database349
only) (Figure 4B, Table S6). To evaluate the ability of metaExpertPro to maintain a low350
protein-level FDR with larger sample sizes, we extended the number of DDA-MS raw data to351
255, including 100 pancreas tissue samples and 155 thyroid tissue samples (IPX0001400000).352
These raw data were then searched against the human protein database (Swiss-Prot, date353
20211213) supplemented with 0×, 1×, 10×, and 100× mouse microbiome catalog sequences354
(Figure S5A). The factual protein group FDRs remained below 5% when adding 0×, 1×, or 10×355
mouse protein sequences (~2.6 million proteins) (Figure S5B, Table S7). However, when356
searching against 100× mouse protein sequences, the protein group FDR reached 5.4%. This357
suggests that controlling the factual protein group FDR becomes challenging when both the358
sample size and the unmatched protein sequences in the database increase in metaExpertPro.359

To gain insights into real-life scenarios of metaproteomics studies, we conducted two additional360
benchmark tests to identify false positive microbial proteins from microbiota mixtures. In the361
first test, we used the "equal protein amount" (P) dataset (PXD006118) and searched it against a362
metagenomic database (MG) supplemented with varying numbers of human gut microbiota363
species protein databases (5, 16, 32, 48) (Figure 4C). In the second test, we added the protein364
sequences of 0×, 1×, 5×, 10× IGC+ protein sequences (10,352,085) to the MG database (Figure365
S5C). Remarkably, we consistently achieved factual protein group FDRs below 5%, except for366
the 10× IGC+ benchmark test, which had a factual FDR of 5.8% (Figure 4D, Figure S5D, Table367
S8–S9). These results indicate the robustness of metaExpertPro in maintaining a low368
protein-level FDR in challenging scenarios.369

In conclusion, the metaExpertPro workflow effectively maintains both a low factual FDR and370
high-sensitivity identification at the protein group level during spectral library building.371

Taxonomic accuracy estimation of metaExpertPro372

Determination of taxonomic annotation and biomass contributions is another challenge due to a373
large number of homologous protein or peptide sequences derived from hundreds of closely374
related species. Thus, we next estimated the taxonomic accuracy at genus and species levels375
using two artificial bacterial community datasets. One of the datasets is the mixture of twelve376
different bacterial strains isolated from fecal samples of three human donors (hereafter referred377
to as “12-mix data”) published by Pietilä et al.21 (Figure 5A). Another dataset is called “CPU378
data” which were generated from synthetic communities consisting of 32 organisms with “equal379
cell number” (C), “equal protein amount” (P), and “uneven” (U) published by Kleiner and380
colleagues44 (Figure 5B). We searched the 12-mix data against the integrated gene catalog381
database (IGC) of human gut microbiome45 and the CPU MS data against the matched382
metagenomic database44 using the metaExpertPro workflow. Then, we calculated the true383
positive (TP), false positive (FP), false negative (FN), and F-score46 (the harmonic mean of384
precision and recall) at genus and species levels. When filtering out the taxa annotated by only385
one peptide, we got a relatively high true positive rate (TPR) (8/10) and a low false negative rate386
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(FNR) (2/10) at genus level using the 12-mix dataset. But we also obtained a high false387
discovery rate (FDR) (10/18–11/19) and thus a relatively low F-score (average of 0.56) at genus388
level (Table S10). At species level, because of the decrease of TPR and increase of FNR and389
FDR, the F-score further decreased to 0.26 (Table S10). The average F-scores of the CPU data390
were 0.73 and 0.40 at genus and species level, respectively, outperforming the 12-mix data.391
Interestingly, the numbers of FP taxa in “uneven” samples were extremely low (4–5), resulting in392
high F-scores (0.84–0.86) at genus level (Table S10).393

Here the F-scores were relatively low. Thus, we next investigated the impacts of the spectral394
count of peptides, the peptide length, and the number of peptides corresponding to the taxa on395
the TP and FP identifications at both genus and species levels (Figure S6 A–B). The data showed396
that, while all these three factors exhibited significant differences between the TP and FP397
identifications, the number of peptides corresponding to the taxa displayed the highest difference398
(Figure S6 A–B). After checking the peptide count distribution of TP and FP taxa (Figure S6399
C–D), we filtered the number of peptides corresponding to taxa at the threshold of 1, 2, 3, 5, 10,400
15, and 20, respectively, and recalculated the TF, FP, FN, and F-score. The data showed that401
filtering the taxa with at least five peptides led to the highest F-scores (C: 0.90; P: 0.85; U: 0.90)402
at the genus level (Figure 5 C–D, Table S10) in C, P, U datasets. This resulted in high TPR (C:403
15/17; P: 15/17; U:17.25/20), low FNR (C:2/17; P: 2/17; U: 2.75/20) and low FDR (C: 1.5/16.5;404
P: 3.5/18.5; U:1/18.25). However, in the 12-mix dataset, filtering at least three peptides led to the405
highest F-scores (0.73) at the genus level. At the species level, we also obtained the highest406
F-score with the threshold of five peptides. But at the species level, the F-scores were still407
relatively low in two datasets (0.44–0.55) (Figure S6 E–F, Table S10).408

The true quantitative information of the microorganisms in the CPU dataset44 allowed us to409
investigate the accuracy of the relative abundance of the taxa calculated by metaExpertPro410
workflow. With a threshold of five peptides, relatively high correlation between the true protein411
biomass of genera and the metaExpertPro results were observed (rSpearman = 0.8, 0.73, and 0.82) in412
the C, P, and U datasets (Figure 5E). As expected, the correlation between the true cell number of413
taxa were relatively low (rSpearman = 0.63, 0.58, and 0.52 for the C, P, and U datasets, respectively)414
(Table S11). The consistency of the true protein biomass of taxa and metaExpertPro results at415
species level was relatively low (rSpearman = 0.2, 0.27, and 0.35) in the C, P, and U dataset (Figure416
S6G, Table S11).417

Taken together, we found that filtering the taxa with at least three to five peptides led to the418
highest F-score at genus and species levels, and metaExpertPro achieved high accuracy in both419
diversity and biomass at genus level. The relatively low accuracy at species level might be due to420
that we used the Unipept-based taxonomy annotation. As a peptide-centric taxonomic annotation421
software, Unipept depends on taxon-specific peptides to identify taxa. However, the number of422
taxon-specific peptide sequences steadily decreases from higher to lower taxonomic rankings,423
with a particularly large drop between genus and species levels47. In addition, there are some424
species or even genera in the metaproteomic samples do not present in the NCBI taxonomy425
database, such as Burkholderia xenovorans, Nitrosomonas europaeae, Pseudomonas426
denitrificans, Pseudomonas pseudoalcaligenes and Burkholderia (Figure 5E, Figure S6G,427
marked in gray), which leads to false negative taxa. Nevertheless, Unipept is still the preferred428
software for taxonomy annotation in the absence of matched metagenomic data according to the429
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previous study30. Here, we showed that metaExpertPro integrated Unipept can achieve high430
accuracy in the relative abundance estimation of genera (Figure 5E, Table S11).431

Negligible effects of public gut microbial gene catalog databases on DIA-MS-based432
proteome measurements433

Three types of protein databases were commonly used in gut microbiota metaproteomic studies,434
including well-annotated public gut microbial gene catalog databases (e.g., integrated gene435
catalog (IGC) of human gut microbiome45, Unified Human Gastrointestinal Protein (UHGP)436
catalog48), protein sequences that predicted from metagenome data from matched samples, and437
the merged databases of above two types of databases. To evaluate the impacts of databases on438
the peptide identifications in spectral library generation, we compared the peptide numbers in the439
five spectral libraries based on IGC+49, UHGP-90 (90% protein identity), matched metagenomic440
protein catalog database (MG), and their merged databases (MG_IGC+ and MG_UHGP-90)441
using 90 min gradient DDA-MS acquisition on timsTOF Pro of the 62 human fecal samples442
mentioned above (Figure 6A). The data showed that the spectral library based on IGC+ database443
identified the most peptides (284,681), followed by MG_IGC+ database (273,779),444
MG_UHGP-90 (273,338), UHGP-90 (271,751) and MG (261,986) (Figure 6B, Table S12). More445
specifically, 57.0% (194,485) of the peptides were commonly identified by all the spectral446
libraries. The spectral library based on MG contained the most unique peptides (21,296) (Figure447
6C, Table S12). The identification rate of IGC+ spectral library was significantly higher than that448
of the other four databases. The identification rates (average of 30.6–31.8%) based on the five449
databases were comparable to the MetaPro-IQ12 results searching against matched metagenome450
(average of 34%) and IGC (average of 33%) (Figure 6D, Table S13). Overall, we found that in451
the spectral library generation step of metaExpert Pro, public gene catalog databases452
outperformed the matched metagenome database in terms of peptide identification. A similar453
conclusion has been proposed by Zhang et al. using MetaPro-IQ12.454

We further investigated the impacts of different public gene catalog databases on 60 min455
DIA-MS-based proteome measurements using two public gut microbial gene catalog databases456
(IGC+ and UHGP-90). High mapping ratios were obtained at COG (medium of 95.3% and457
95.5%), KO (medium of 76.1% and 76.7%), and taxonomy (medium of 87.5% and 87.6%) levels458
with the two databases (Figure S7). The mapping ratio at the phylum level was comparable to the459
results of six human fecal data analyzed by glaDIAtor21 (~70%). But the mapping ratio was less460
than that of glaDIAtor at the genus level (~18% vs ~40%), which may be because we used a461
stringent taxonomy filtering criterion of at least five peptides per taxonomy to ensure the462
accuracy of identification.463

Next, we compared the richness per sample at eight levels and observed no significant464
differences between the two databases at all levels (Figure 7A, Table S14). At the peptide, COG,465
and KO levels, we also observed a high proportion of overlapped features (77–92%) between the466
two databases (Figure 7B). 84% of the genera and 86% of the species were identified by both467
databases, showing a high degree of consistency. The taxonomic and functional profiles468
identified by the two databases were also highly similar (Figure 7C, Table S15). In detail, at the469
taxonomic level, most of the peptides (99.4%) were assigned to the four major phyla of human470
gut microorganisms characterized by metagenomic data50–53, namely Bacillota (~60%),471
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Bacteroidota (~30%), Actinomycetota (~9%), and Pseudomonadota (~1%). Also, the profiles of472
taxa were highly similar to that obtained by glaDIAtor (~60% Bacillota, ~10% Bacteroidetes,473
~7%Actinomycetota, and ~0.5% Pseudomonadota). At the functional level, the largest474
functional categories included G ‘carbohydrate metabolism’ (~18%), J ‘translation’ (~16%), and475
C ‘energy metabolism’ (~10%), which was in line with previous studies of human fecal476
metaproteomes21,54 (Figure 7C, Table S15). The abundance of human protein groups, microbial477
functions, and taxa also showed high correlation (medium of pairwise Spearman correlation478
coefficients = 0.95–0.97) between the two databases (Figure 7D, Table S16). Taken together,479
these results suggest the negligible effects of public gut microbial gene catalog databases on480
DIA-MS-based quantification at peptide, functional, or taxonomic levels. Therefore, matched481
metagenomic sequencing may not be required for the metaExpertPro and the results generated by482
metaExpertPro based on public databases could be directly comparable.483

metaExpertPro analysis revealed the functions associated with dyslipidemia and the484
potential interactions between the microbiota and the host485

Dyslipidemia (DLP) is a disorder in lipid metabolism characterized by high levels of486
LDL-cholesterol and/or triglycerides and low HDL-cholesterol levels, which is considered a487
high-risk factor for cardiovascular disease55,56. Gut microbiota has been proved to be highly488
associated with dyslipidemia and related diseases57. However, the real functions of the489
microbiota associated with DLP are still unclear. The 62 GNHS subjects mentioned above490
included 31 subjects without DLP and 31 subjects with DLP. Here, we performed metaproteomic491
analysis on the fecal samples from these subjects to characterize the changes of microbial taxa,492
functions, and human protein groups in DLP. In total, we quantified 55,573 microbial protein493
groups and 993 human protein groups. The microbial protein groups were annotated as 2,347494
COGs and 2,469 KOs. The microbial peptides were annotated as 106 genera and 172 species.495
About 87–97% of the identified protein groups, functions, and taxa were present in both496
non-DLP and DLP groups (Figure 8A). Two of the six genera uniquely identified in the DLP497
group (Olsenella58,59 and Cloacibacillus60) have previously been reported to show a positive498
association with serum lipids or obesity in mice, as well as in metabolically unhealthy obese499
human individuals. Among the eight genera uniquely identified in the non-DLP group, three have500
been reported to exhibit a negative association with DLP and obesity in mice. Enterococcus, a501
well-known probiotic, has been shown to alleviate obesity-associated dyslipidemia in mice61,62.502
Lactococcus, a potential antihyperlipidemic probiotic63, is also linked to insulin resistance and503
systemic inflammation, exerting an antiobesity effect64. Turicibacter is markedly reduced in mice504
fed with high-fat diet (HFD)65. A total of 56 COGs, 3 species, and 18 human proteins were505
significantly associated with DLP using General Linear Model (GLM) (p-value < 0.05 and | beta506
coefficient | > 0.2) (Figure S8 A–C, Table S17). The t-distributed stochastic neighbor embedding507
(t-SNE) analysis showed two close clusters corresponding to the DLP and non-DLP groups based508
on the associated microbial COGs, human proteins, and species, respectively (Figure 8 B–C,509
Figure S8D, Table S18). Wilcoxon Rank Sum Test was used to further verify the associations.510
The data showed that 34 of the associated microbial COGs were significantly differentially511
expressed between the two groups (Wilcoxon Rank Sum Test, p < 0.05) (Table S19). Functions512
related to the “Energy production and conversion” (two COGs in category C), “Lipid transport513
and metabolism” (two COGs in category I), “Transcription” (two COGs in category K),514
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“Replication, recombination and repair” (three COGs in category L), and “Intracellular515
trafficking, secretion, and vesicular transport” (one COG in category U) showed significantly516
increased in DLP group. While the functions related to “Amino acid transport and metabolism”517
(two COGs in category E), “Lipid transport and metabolism” (one COG in category I),518
“Inorganic ion transport and metabolism” (two COGs in category P), “intracellular trafficking,519
secretion, and vesicular transport” (one COG in category U), and “defense mechanisms” (one520
COG in category V) showed significantly decreased in the DLP group (Figure 8D, Table S19).521
The results indicated an enhancement in energy production, conversion, lipid transport, and522
metabolism functionality in the gut microbiota of DLP patients. The increase of the functions in523
DNA repair pathways such as uracil-DNA glycosylase (UDG) functions was consistent with the524
metaproteomic results in pediatric IBD patients49. Defects in human amino acid transporters are525
linked to inherited metabolic disorders66. In this study, we observed a reduction in amino acid526
transport and metabolism within the human gut microbiota. This finding suggests potential drug527
targets that could be focused on microbial proteins related to amino acid transport. We also found528
that the functions related to bacteria-secreted protein toxins such as biopolymer transport protein529
ExbD and WXG100 family proteins YukE and EsxA were downregulated in the DLP group530
(Figure 8D, Table S19). Two species including Blautia luti and Fusobacterium mortiferum were531
significantly differentially altered in DLP (Figure S8E). Both species or their corresponding532
genera have been reported to be associated with metabolic disorders including obesity67, type 2533
diabetes or hypercholesterolemia68.534

One benefit of metaproteomic analysis was exploring the interactions between the host proteins535
and microbiota. Thus, we analyzed differentially expressed human proteins between the DLP and536
non-DLP groups using Wilcoxon Rank Sum Test. We identified six significant differentially537
expressed human proteins (p < 0.05). Interestingly, all of them were upregulated in the DLP538
group (Figure 8E, Table S19). Four human proteins including transthyretin (TTR), heat shock539
protein HSP 90-alpha (HS90A), small ribosomal subunit protein (RACK1), and peroxiredoxin-4540
(PRDX4) have been reported to be related to obesity, diabetes, and hyperlipidemia based on541
serum or tissue samples69–72. However, it has not been reported that the dysregulation of these542
human proteins in human feces is also associated with dyslipidemia.543

Next, we analyzed the co-expression between the six human proteins and the 34 differentially544
expressed COGs. With a threshold of | rSpearman | ≥ 0.2 and Benjamini-Hochberg (B-H) adjusted545
p-value < 0.05, we screened out 25 co-expressed proteins and COGs (Figure 8F, Table S20). The546
human protein transthyretin (TTR) exhibited the strongest correlation with microbial COGs.547
Four positively correlated COGs were COG1595 (related to transcription), COG2968 (protein548
YggE), COG3516 (component TssA of the type VI protein secretion system), and COG4646549
(adenine-specific DNAmethylase). The other five negatively correlated COGs were COG0600550
(ABC-type nitrate/sulfonate/bicarbonate transport system), COG3428 (membrane protein YdbT),551
COG3706 (Two-component response regulator, PleD family), COG4842 (secreted virulence552
factor YukE/EsxA, WXG100 family), and COG4991 (uncharacterized conserved protein YraI).553
Notably, the microbial function COG4842, a secreted virulence factor YukE/EsxA of the554
WXG100 family, exhibited negative correlations with three up-regulated human proteins555
(PRDX4, RACK1, and TTHY), indicating its significant role in the interaction with human556
proteins in the context of DLP. Taken together, the metaExpertPro-based metaproteomic analysis557
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on DLP patients uncovered the alterations of microbial functions in DLP and the potential558
interactions between the microbiota and the host.559

560

Discussion561

Due to the complexity of the samples, metaproteomic data analysis has inherent limitations of562
high dependency on databases, low efficiency of peptide identification rate (ID rate), the563
relatively low resolution of taxonomic identification, and large computer memory consumption.564
In this study, to solve the problems of low-efficiency ID rate and memory consumption, we used565
a library-based database search strategy in metaExpertPro, therefore our approach cannot566
eliminate the database dependency. FDR control poses another challenge in metaproteomics567
analysis due to large number of homologous bacterial sequences in the databases. In this study,568
benchmark tests using HeLa cell and bacteria mixture samples showed a low factual FDR (<5%).569
However, as the sample size and unmatched protein sequences in the database increase,570
controlling the factual protein group FDR becomes more challenging. Therefore, there is still a571
need for algorithms that can efficiently distinguish true positive spectra from highly similar572
spectra and employ stricter FDR filtering methods to ensure more accurate identifications.573
Although our data showed negligible effects on the metaproteomic results based on two public574
gut microbial gene catalog databases and 62 human fecal samples, one cannot assume similar575
results can also be obtained with other gene catalog databases or other types of metaproteomic576
samples, such as soil microbiota and marine microbiota. Moreover, the Unipept-based taxonomic577
annotation still limits the resolution of accurate taxonomy identification at the species level due578
to the limited number of taxonomy-unique peptides. If matched metagenomic data is available,579
integrating metagenomic taxonomic information with Unipept has the potential to increase the580
number of taxonomy-unique peptides. This integration limits the potential species to those581
specific to the samples, leading to a higher count of taxonomy-unique peptides compared to582
considering all species from the NCBI taxonomy database. Thus, a novel taxonomic annotation583
software integrating metagenomic taxonomic information and Unipept has the potential to584
enhance the resolution of accurate taxonomy identification. Additionally, it is important to note585
that we did not observe any significantly associated microbial taxa, functions, or human proteins586
after correcting for multiple testing. This can be attributed to the limited number of samples used587
in our study, which consisted of 31 samples from individuals with dyslipidemia (DLP) and 31588
samples from individuals without dyslipidemia (non-DLP). In order to obtain more accurate and589
reliable results, a larger sample size is required for future studies. Finally, this study and most590
published metaproteomic studies only focus on the proteins expressed by the host and microbiota;591
however, the proteins from foods and the environment may also play important roles in the hosts’592
health and the metabolisms of microbiota. Therefore, despite these research advances, there is593
still much to discover in the metaproteome of the human gut.594

595

Conclusions596

The metaExpertPro workflow provides a computational pipeline for metaproteomic analysis and597
shows a high degree of accuracy, reproducibility, and proteome coverage in the quantification of598
peptides, protein groups, functions, and taxa in human gut microbiota. The workflow is599
established by integrating the high-performance proteomic analysis tools and stringent filter600
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criteria to ensure both in-depth and high accuracy measurments. The negligible effects of601
databases on the measurement of peptides, functions, and taxa indicate that matched602
metagenomic databases are not indispensable for metaExpertPro-based metaproteomic analysis,603
thus enabling direct comparison of metaproteomic data generated by metaExpertPro based on604
different public databases.605
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Methods606

Human fecal sample collection607

A total of 62 fecal samples were collected from 31 subjects without DLP and 31 subjects with608
DLP (40–75 years old) from the Guangzhou Nutrition and Health Study (GNHS)39. These609
individuals had not received any antibiotic treatment in the two weeks before biomaterial610
collections to avoid the effects of the antibiotic on the gut microbiome. The fecal samples were611
immediately homogenized, stored on ice, and then transferred to -80 ℃ within 4 h. Additionally,612
the corresponding metadata variables including age, gender, blood triglycerides (TG), total613
cholesterol (TC), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein614
cholesterol (HDL) were also collected either by questionnaire or blood biochemical615
measurement. Dyslipidemia (DLP) was defined as one or more of the TG, TC, LDL, and HDL616
were abnormal or medical treatment for DLP73.617

Metaproteomic protein extraction and trypsin digestion618

The gut microbiota was first enriched using differential centrifugation74. In detail, about 200 mg619
of feces were resuspended in 500 μL cold phosphate buffer (PBS) and centrifuged at 500 × g,620
4°C for 5 min. Then the supernatant was transferred into a new tube. The above process was621
repeated three times. All the supernatants were combined (about 1.5 mL) and centrifuged at 500622
× g, 4°C for 10 min to remove the debris in the fecal samples. Then, the microbial cells were623
collected by centrifugation at 18,000 × g, 4°C for 20 min. Next, the microbial pellets were used624
for protein extraction75. Briefly, 250 μL lysis buffer (4% w/v SDS and cOmplete Tablets (Roche)625
in 50 mM Tris-HCl, pH = 8.0) was added into the microbial pellets and the mixture was boiled at626
95 °C for 10 min. Then, the mixture was ultrasonicated at 40 Khz (SCIENTZ) for 1 h on ice.627
Finally, to further discard the cell debris, the mixture was centrifuged at 18,000 × g for 5 min,628
and the proteins were precipitated overnight at -20 °C using a 5-fold volume of acetone. Next,629
the in-solution digestion method76,77 was performed as follows. After purifying (washing by630
acetone) and re-dissolving (using 8 mM urea and 100 mM ammonium bicarbonate) the631
precipitated proteins, about 50 μg proteins from each sample were reduced with 10 mM tris632
(2-carboxyethyl) phosphine (TCEP, Adamas-beta) and then alkylated with 40 mM iodoacetamide633
(IAA, Sigma-Aldrich). Proteins were pre-digested with 0.5 μg trypsin (Hualishi Tech) for 4 h at634
32 °C. Then the proteins were further digested with another 0.5 μg trypsin for 16 h at 32 °C. The635
tryptic peptides were desalted using solid-phase extraction plates (ThermoFisher Scientific,636
SOLAµ™) and then freeze-dried for storage. Dried peptides were finally resuspended in a637
solution (2% acetonitrile, 98% water, and 0.1% formic acid [FA]) before MS acquisition.638

Metagenomic DNA extraction, sequencing, and gene prediction639

The metagenomic raw data was derived from the previous study78. Briefly, the raw sequencing640
reads were first filtered and trimmed with PRINSEQ (version 0.20.4)79 for quality control. The641
raw reads aligned to the human genome (H. sapiens, UCSC hg19) were removed using Bowtie2642
(version 2.2.5)80. Then, the remaining reads were used for metagenomic assembly using643
MEGAHIT (version 1.2.9)81 and binning the contigs with MetaBAT (version 2.12.1)82 by default644
parameters. We further clustered and de-replicated the Metagenome-Assembled Genome (MAGs)645
at an estimated species level (ANI ≥ 95%) using dRep (version 3.0.0)83. The minimum genome646
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completeness and maximum genome contamination were set to 75 and 25, respectively.647
Protein-coding sequences (CDS) for each MAG were predicted and annotated with Prokka648
(version 1.13.3)84. All the predicted protein sequences were compiled to generate the MG protein649
database. Cd-hit (version 4.8.1)85 was used for the integration of MG and IGC+49 or UHGP48650
database with the following parameters: -c 0.95 -n 5 -M 16000 -d 0 -T 32.651

High-pH reversed-phase fractionation652

For the 62 fecal samples, approximately 5 μg peptides were collected from each tryptic peptide653
sample to form a pooled sample for high-pH fractionation. The pooled sample was then654
fractionated using high-pH reversed-phase liquid chromatography (LC). The mobile phase of655
buffer A was water with 0.6% ammonia (pH = 10), and buffer B was 98% acetonitrile and 0.6%656
ammonia (pH = 10). Specially, about 300 μg tryptic peptides were separated using a nanoflow657
DIONEX Ultimate 3000 RSLC nano System (ThermoFisher Scientific) with an XBridge Peptide658
BEH C18 column (300 Å, 5 μm× 4.6 mm × 250 mm) at 45 °C. A 60 min gradient from 5% to659
35% buffer B with a flow rate of 1 mL/min was applied. A total of 60 fractions were collected660
and further combined into 30 fractions. Finally, the fraction samples were freeze-dried and661
re-dissolved in 2% acetonitrile with 98% water and 0.1% FA.662

DDAmass spectrometry acquisition for library generation663

The fractionated peptides were first spiked with iRT (Biognosys)86. For the timsTOF Pro (Bruker)664
based DDAmass spectrometry acquisition, two gradients of 90 min and 60 min were used,665
respectively. The 90 min LC gradient was linearly increased from 2% to 22% buffer B for 80 min,666
followed by a second linear gradient from 22% to 35% buffer B for 10 min (buffer A: 0.1% FA in667
water; buffer B: 0.1% FA in ACN). The 60 min LC gradient was linearly increased from 5% to668
27% buffer B for 50 min, followed by a second linear gradient from 27% to 40% buffer B for 10669
min. The peptides were loaded at 217.5 bar on a precolumn (5 μm, 100 Å, 5 mm × 300 μm I.D.)670
in 0.1 % FA/water and then separated by a nanoElute UHPLC System (Bruker Daltonics)671
equipped with an in-house packed 15 cm analytical column (75 μm ID, 1.9 μm 120 Å C18 beads)672
at a flow rate of 300 nL/min. The timsTOF Pro was operated in ddaPASEF mode with 10673
consecutive PASEF MS/MS scans after a full scan in a total cycle. The capillary voltage was set674
to 1400 V. The MS and MS/MS spectra were acquired from 100 to 1700 m/z. The TIMS section675
was operated with a 100 ms ramp time and a scan range of 0.6–1.6 V·s/cm2. A polygon filter was676
used to filter out singly charged ions. For all experiments, the quadrupole isolation width was set677
to 2 Th for m/z < 700 and 3 Th for m/z > 800. The collision energy was ramped linearly as a678
function of mobility from 20 eV at 1/K0 = 0.6 V·s/cm2 to 59 eV at 1/K0 = 1.60 V·s/cm2.679

For the Orbitrap Exploris™ 480 mass spectrometer (ThermoFisher Scientific Inc.) based DDA680
mass spectrometry acquisition, the fractionated peptides spiked with iRT were loaded onto a681
pre-column (3 μm, 100 Å, 20 mm × 75 mm i.d., Thermo Fisher Scientific, USA) using a Thermo682
Scientific UltiMateTM 3000 RSLCnano LC a U3000 LC system. The peptides were then683
separated at a flow rate of 300 nL/min using a 60 min LC gradient on an in-house packed 15 cm684
analytical column (75 μm ID, 1.9 μm, C18 beads) with a linear gradient from 5% to 28% buffer685
B for 60 min. Next, the column was washed with 80% buffer B. The mobile phase B consisted of686
0.1% formic acid in MS-grade ACN, while the mobile phase A consisted of 0.1% formic acid in687
2%ACN and 98% MS-grade water. The eluted peptides were analyzed by an Exploris 480 MS688
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with the FAIMS Pro (High field asymmetric waveform ion mobility spectrometry) interfacing in689
standard Data-dependent acquisition (DDA) acquisition mode. Compensation voltage was set at690
two different CVs, -42 and -62 V, respectively. Gas flow was applied with 4 L/min with a spray691
voltage set to 2.1 kV. The DDAwas performed using the following parameters. MS1 resolution692
was set at 60,000 at m/z 200 with a normalized AGC target of 300%, and the maximum injection693
time was set to 20 ms. The scan range of MS1 ranged from 350–1200 m/z. For MS2, the694
resolution was set to 15,000 with a normalized AGC target of 200%. The maximum injection695
time was set as 20 ms for MS1. Dynamic exclusion was set at 30 s. Mass tolerance of ± 10 ppm696
was allowed, and the precursor intensity threshold was set at 2e4. The cycle time was 1 second,697
and the top-abundance precursors (charge state 2−6) within an isolation window of 1.6 m/z were698
considered for MS/MS analysis. For precursor fragmentation in HCD mode, a normalized699
collision energy of 30% was used. All data were acquired in centroid mode using positive700
polarity and peptide match and isotope exclusion were turned on.701

We obtained a total of 90 DDA-MS raw data profiles. These included 30 profiles from timsTOF702
Pro MS instrument with a 60 min gradient, 30 profiles from timsTOF Pro MS instrument with a703
90 min gradient, and 30 profiles from Exploris 480 MS instrument with a 60 min gradient.704

DIAmass spectrometry acquisition for peptide and protein quantification705

For the timsTOF Pro-based DIA-MS acquisition, 300 ng peptides were trapped at 217.5 bar on706
the precolumn and then separated along the 60 min LC gradient same as the ddaPASEF LC707
gradient mentioned above. The ion mobility range was limited to 0.7–1.3 V·s/cm2. Four708
precursor isolation windows were applied to each 100 ms diaPASEF scan. Fourteen of these709
scans covered the doubly and triply charged peptides’ diagonal scan line in the m/z ion mobility710
plane. The precursor mass range 384–1087 m/z was covered by 28 m/z narrow windows with a 3711
m/z overlap between adjacent ones. Other parameters were the same as the setting in the712
ddaPASEF acquisition.713

For the Exploris 480-based DIA-MS acquisition, 500 ng peptides were separated by the LC714
methods with a slight modification from the DDA-MS LC methods. The initial phase B of the715
gradient was increased from 5% to 7% to get a more effective time for separation. The Spray716
voltage of FAIMS was set to 2.2 kV. The other FAIMS settings were consistent with those of the717
DDA-MS acquisition. In DIA mode, full MS resolutions were set to 60,000 at m/z 200 and the718
full MS AGC target was 300% with an IT to 50 ms. The mass range was set to 390–1010. The719
AGC target value for fragment spectra was set at 2000%. 15 isolation windows of 15 Da were720
used for -62V compensation voltage with an overlapped of 1 Da, and 19 isolation windows of 20721
Da were used for -42V compensation voltage with an overlapped of 1 Da. The resolution was set722
to 15,000 and the IT to 54 ms. The normalized collision energy was set at 32%.723

Overall, 62 diaPASEF raw data profiles and 60 DIA-MS (Exploris 480) raw data profiles were724
obtained for the human fecal samples.725

Comparison of metaExpertPro with other metaproteomics software tools726

We firstly incorporated the comparison of DDA-MS-based peptide identifications among727
ProteoStorm16, metaLab13, glaDIAtor42, and metaExpertPro using the same raw data, database,728
and parameters. Specially, six DDA-MS files of human fecal samples from dataset PXD00873842729
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were searched against the integrated gene catalog (IGC) database using ProteoStorm, glaDIAtor,730
and metaExpertPro, respectively. Enzyme specificity was set to “Trypsin/P” with maximum one731
missed cleavage. Precursor mass tolerance and fragment mass tolerance were set at 10 ppm and732
0.02 Da, respectively. All the tests were performed on a computer with AMD EPYC hardware733
and 512GB RAM.734

Multivariate statistical analysis735

The intensity values at peptide, protein, functional and taxonomic levels were log10 transformed736
for statistical analysis. The reproducibility of the quantitative proteins, functions, and taxa in737
biological replicate samples was estimated by Spearman correlation. The intensity comparisons738
of the identified peptides and protein groups between glaDIAtor42 and metaExpertPro were739
conducted using Wilcoxon Rank Sum Test. The COGs, KOs, human proteins, and species740
significantly associated with DLP were determined by General Linear Model (GLM)87 (adjust741
the confounders of sex, age, and Bristol Stool Scale, p-value < 0.05 and | beta coefficient | > 0.2).742
The differentially expressed human proteins, COGs, and species were identified by Wilcoxon743
Rank Sum Test (p-value < 0.05). t-SNE was performed using the Rtsne package (version 4.1.3).744
The co-expressed COGs and human proteins were identified using the Spearman correlation of745
their abundance in 62 human fecal samples (| rSpearman | ≥ 0.2, Benjamini-Hochberg [B-H]746
adjusted p-value <0.05).747
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Main figures979

Figure 1980

981

Figure 1 Overview of computational workflow and performance tests of metaExpertPro.982

(A) Overview of metaExpertPro workflow. The metaExpertPro workflow consists of four stages,983
including DDA-MS based spectral library generation, DIA-MS based peptide and protein984
quantification, functional and taxonomic annotation, as well as quantitative matrix generation.985
Stage 1 depicts the spectral library generation process using FragPipe software. Detailed986
procedures are described in Methods. DDA-MS raw data in .d, .raw, .mzML, .wiff formats are all987
compatible. In stage 2, the peptides and proteins are quantified based on DIA-MS data and the988
spectral library using DIA-NN. In stage 3, the taxa, COGs, and KEGGs are annotated by Unipept,989
eggnog-mapper, and GhostKOALA, respectively. The annotation results are then filtered through990
the in-house filtering scripts. In stage 4, the quantitative matrices of subject samples and quality991
control samples at taxa, COG, and KEGG levels are generated using matrix generation scripts.992
(B) Overview of performance tests of metaExpertPro. The identification depth and993
reproducibility of metaExpertPro were assessed in 60 human fecal samples, with MS raw data994
acquired using both timsTOF Pro and Orbitrap instruments. The results of identification and995
quantification, as well as running time were compared among MetaLab, ProteoStorm, glaDIAtor,996
and metaExpertPro software tools utilizing a public dataset. FDR benchmark tests were997
performed at both the protein groups and taxa levels using multiple datasets. At the protein group998
level, factual FDR was employed to gauge the accuracy of protein group identification. At the999
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taxon level, the F-score was calculated for the identification accuracy test, while the correlation1000
was computed for the quantification accuracy test. The impact of databases on spectral libraries1001
and quantitative matrices was assessed using IGC+, UHGP_90, MG, MG_IGC, and1002
MG_UHGP-90 databases. Finally, metaExpertPro was employed for metaproteomics data1003
analysis on dyslipidemia (DLP) and non-DLP samples to characterize DLP-associated features at1004
the human protein, microbial protein, COG, KO, and taxon levels.1005
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Figure 21006

1007

Figure 2 In-depth identification and high reproducibility of the metaExpertPro workflow1008
in the metaproteomic analysis of human fecal samples.1009

(A) Experimental design including sample collection, sample preparation, MS acquisition, and1010
metaExpertPro data analysis of human fecal samples. A total of 60 peptide samples were1011
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obtained from 60 human fecal samples after the sample preparation process. For the DDA-MS1012
based spectral library generation, the 60 peptide samples were firstly mixed. Then, the mixed1013
peptides were fractionated into 30 fractions for DDA-MS acquisition. For DIA-MS based1014
peptide and protein quantification, all 60 peptide samples were used for DIA-MS acquisition.1015
Two types of mass spectrometers including timsTOF Pro and Orbitrap Exploris™ 480 were1016
applied for both DDA-MS and DIA-MS acquisition. (B–C) Identification performance of1017
peptides and protein groups in spectral libraries based on 30 DDA-MS runs on timsTOF Pro (B)1018
or Orbitrap Exploris™ 480 (C) MS spectrometer. (D–E) Identification rate of the MS spectra1019
acquired from 60 DIA-MS runs collected on timsTOF Pro (D) or Orbitrap Exploris™ 480 (E)1020
MS spectrometer. The y-axis stands for the identification rate of acquired MS spectra (%). (F–G)1021
The richness per sample detected on timsTOF Pro (F) or Orbitrap Exploris™ 480 (G) instrument.1022
The x-axis reports the richness per sample at each level. (H–I) Pairwise Spearman correlation1023
and Bray-Curtis (BC) distance between five pairs of technical replicates and six pairs of1024
biological replicates based on timsTOF Pro (H) or Orbitrap Exploris™ 480 (I) instrument.1025
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Figure 31026

1027

Figure 3 Comparison of metaExpertPro with other metaproteomics software tools.1028

(A) Comparison of the application situations among metaLab, MetaProteomeAnalyzer (MPA),1029
ProteoStorm, glaDIAtor and metaExpertPro. (B) Experimental design of the comparison between1030
two software packages. The DDA-MS and DIA-MS data from dataset PXD008738 and the1031
integrated gene catalog database (IGC) database were used for the measurement of peptides and1032
protein groups by the metaLab, ProteoStorm, glaDIAtor, or metaExpertPro. (C) Comparison of1033
peptide identifications by metaLab, ProteoStorm, glaDIAtor, and metaExpertPro. (D) The1034
number of peptides and protein groups quantified by glaDIAtor and metaExpertPro. (E) The1035
overlapped peptides or protein groups quantified by glaDIAtor and metaExpertPro. (F) The1036
Spearman correlation of the abundance of peptides and protein groups quantified by both1037
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glaDIAtor and metaExpertPro. (G) Comparison of the intensity of peptides or protein groups1038
identified by both glaDIAtor and metaExpertPro or identified by metaExpertPro only. (H)1039
Density plots of the fragment number and the y / b ion intensity ratio of each peptide. The red1040
line shows the median of the fragment number per peptide or the y / b ion intensity ratio. (I)1041
Comparison of the running time between gladiator and metaExpertPro in DDA-MS based1042
spectral library generation and DIA-MS based quantification. The tests were performed using six1043
DDA-MS and six DIA-MS raw data of human fecal samples in dataset PXD008738 on AMD1044
EPYC hardware and a 512G RAM computer. p value: * p < 0.05; ** p < 0.01; *** p < 0.001,1045
**** p < 0.0001.1046
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Figure 41047

1048

Figure 4 Benchmark test of protein group identifications of metaExpertPro.1049

(A) The experimental design of the benchmark test for protein group identification based on Hela1050
cell sample. The DDA-MS data of Hela cell from dataset PXD021928, and the databases1051
containing human proteins supplemented with different sizes of mouse microbiome catalog were1052
used for spectral library generation using metaExpertPro. (B) The number and factual FDR of the1053
protein groups identified from HeLa cell MS raw data searching against the human protein1054
database supplemented with 0×, 1×, 10×, 100×, and all the mouse microbiome catalog (~2.61055
million proteins), respectively. (C) The experimental design of the benchmark test for protein1056
group identification based on bacteria mixture samples. The DDA-MS data of 32-species mixture1057
from dataset PXD006118 (P: equal protein amount) were searched against databases containing1058
P matched metagenomic database supplemented with 0, 5, 16, 32, and 48 human gut microbial1059
species databases, respectively. (D) The number and factual FDR of protein groups in each1060
subset test is present. The dashed lines depict the factual FDR of 0.05 and 0.01.1061
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Figure 51062

1063

Figure 5 Taxonomic accuracy estimation of metaExpertPro.1064

(A–B) The experimental design of the benchmark tests for taxa based on the 12-mix dataset1065
(PXD008738) (A) and CPU dataset (C: equal cell number; P: equal protein amount; U: uneven)1066
(PXD006118) (B). The figure depicts the original samples, the MS instrument, MS gradient, and1067
MS acquisition modes applied in the 12-mix dataset (A) and CPU dataset (B). The 12-mix MS1068
data were searched against the integrated gene catalog (IGC) database, while the CPU data were1069
searched against the matched metagenomic database. The true positive (TP), false positive (FP),1070
false negative (FN), and F-score of genera and species in each sample were calculated for both1071
datasets. The measured relative abundance of genera or species was correlated with the true1072
protein amount in the CPU dataset (B). (C–D) F-score of genera or species filtered by different1073
numbers of corresponded peptides based on 12-mix MS data (C) or CPU MS data (D) using1074
metaExpertPro. The F-score is the harmonic mean of precision and recall. The x-axis represents1075
the minimum number of distinct peptides corresponding to genera or species. The y-axis displays1076
the F-score of genera or species corresponding to the peptide count cutoff. The lines are1077
smoothed by LOESS regression. (E) Spearman correlation between the true relative protein1078
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amount and the relative protein abundance of genera measured by metaExpertPro in the CPU1079
dataset. The genera were filtered by containing at least five distinct peptides. Genera shown in1080
grey indicate their absence in the Unipept database.1081
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Figure 61082

1083

Figure 6 Comparison of the spectral libraries generated based on five different databases1084
and DDA-MS data from human fecal samples.1085

(A) The table lists the basic information of five protein databases, including IGC+, UHGP-90,1086
MG, MG_IGC+, and MG_UHGP-90. The IGC+ database is the integrated gene catalog of1087
human gut microbiome supplement with seven human gut fungal species, NCBI Virus, and gut1088
microbial gene catalog of 28 mucosal-luminal interface samples. The UHGP-90 database is the1089
Unified Human Gastrointestinal Protein catalog (UHGP-90) filtered by 90% protein identity. MG1090
database is the matched metagenomic protein catalog database from 62 human feces. The1091
MG_IGC+ and MG_UHGP-90 are the merged databases using MG and IGC+ or UHGP-90,1092
respectively. The number of total peptides (B), the shared and unique peptides (C), and the1093
identification rate of acquired MS spectra in each DDA-MS profile (D) in five spectral libraries1094
were generated based on five databases and 30 ddaPASEF MS data (90 min gradient) from 621095
human fecal samples. p value: * p < 0.05; ** p < 0.01; *** p < 0.001, **** p < 0.0001.1096
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Figure 71097

1098

Figure 7 Negligible effects of public gut microbial gene catalog databases on DIA-MS based1099
quantification.1100

The analyses were based on 62 diaPASEF MS runs (60 min gradient) of 62 human fecal samples.1101
(A) The number of quantitative peptides, protein groups, functions, and taxa per sample based on1102
the IGC+ or UHGP-90 database. (B) The overlapped peptides, functions, and taxa in 62 human1103
fecal samples based on IGC+ and UHGP-90 database. (C) The bar plots show the phylum-level1104
taxonomic annotation of the peptides (upper) or COG-category-level functional annotation of1105
protein groups (lower). The pie plots show the genus-level taxonomic annotation of the peptides1106
(upper), or COG-level functional annotation of protein groups (lower) based on the IGC+ or1107
UHGP-90 database. (D) The abundance correlation of human protein groups, functions, and taxa1108
based on the IGC+ and UHGP-90 database. p value: * p < 0.05; ** p < 0.01; *** p < 0.001, ****1109
p < 0.0001.1110
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Figure 81111

1112

Figure 8 Proteins, functions, and taxa associated with DLP based on metaExpertPro1113
workflow.1114

The analyses are based on 62 diaPASEF MS runs (90 min gradient) of 62 human fecal samples1115
collected from 31 non-DLP and 31 DLP subjects. (A) The overlapped quantitative proteins,1116
functions, and taxa in DLP and non-DLP groups. The number of each section is labeled in the1117
parenthesis. (B–C) The t-distributed stochastic neighbor embedding (t-SNE) visualization of1118
DLP and non-DLP individuals calculated by significantly associated COGs (B) or human1119
proteins (C) with DLP (General Linear Model (GLM) adjust the confounders of sex, age, and1120
Bristol Stool Scale, p-value < 0.05 and | beta coefficient | > 0.2). (D) The intensity (log101121
transformed) of significantly differentially expressed COGs (Wilcoxon Rank Sum Test, p < 0.05)1122
belonging to the increased COG categories (red shadow) or the decreased categories (blue1123
shadow). The COG categories are marked on the top of each COG. (E) The intensity (log101124
transformed) of significantly differentially expressed human proteins between DLP and non-DLP1125
groups (Wilcoxon Rank Sum Test, p < 0.05). (F) The co-expressed network between1126
significantly changed COGs and human proteins in DLP. The co-expression between COGs and1127
human proteins was determined by the Spearman correlation of their intensity in the 62 human1128
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fecal samples (| rSpearman | ≥ 0.2, Benjamini-Hochberg [B-H] adjusted p-value <0.05). * p value <1129
0.05, ** p value < 0.01, *** p value < 0.001, **** p value < 0.0001.1130
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