

1 **metaExpertPro: a computational workflow for**
2 **metaproteomics spectral library construction and**
3 **data-independent acquisition mass spectrometry data**
4 **analysis**

5

6 Yingying Sun^{1,2,3#}, Ziyuan Xing^{1,2,3#}, Shuang Liang^{1,2,3,4#}, Zelei Miao^{1,3,6}, Lai-bao
7 Zhuo⁵, Wenhao Jiang^{1,2,3}, Hui Zhao^{1,3,6}, Huanhuan Gao^{1,2,3}, Yuting Xie^{1,2,3}, Yan
8 Zhou^{1,2,3}, Liang Yue^{1,2,3}, Xue Cai^{1,2,3}, Yu-ming Chen^{5*}, Ju-Sheng Zheng^{1,3,6*}, Tiannan
9 Guo^{1,2,3*}

10

11 1, Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine,
12 Hangzhou, Zhejiang Province, 310030, China

13 2, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province,
14 310030, China

15 3, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou,
16 Zhejiang, 310030, China

17 4, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of
18 Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

19 5, Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health,
20 School of Public Health, Sun Yat-sen University, Guangzhou, China

21 6, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of
22 Life Sciences, Westlake University, Hangzhou, China

23 # These authors contribute equally

24 *Correspondence: chenym@mail.sysu.edu.cn (Y. C.), zhengjusheng@westlake.edu.cn (J. Z.),
25 guotianan@westlake.edu.cn (T.G.)

26 **Abstract**

27 **Background**

28 Analysis of mass spectrometry-based metaproteomic data, in particular large-scale
29 data-independent acquisition MS (DIA-MS) data, remains a computational challenge. Here, we
30 aim to develop a software tool for efficiently constructing spectral libraries and analyzing
31 extensive datasets of DIA-based metaproteomics.

32 **Results**

33 We present a computational pipeline called metaExpertPro for metaproteomics data analysis.
34 This pipeline encompasses spectral library generation using data-dependent acquisition MS
35 (DDA-MS), protein identification and quantification using DIA-MS, functional and taxonomic
36 annotation, as well as quantitative matrix generation for both microbiota and hosts. To enhance
37 accessibility and ease of use, all modules and dependencies are encapsulated within a Docker
38 container.

39 By integrating FragPipe and DIA-NN, metaExpertPro offers compatibility with both
40 Orbitrap-based and PASEF-based DDA and DIA data. To evaluate the depth and accuracy of
41 identification and quantification, we conducted extensive assessments using human fecal
42 samples and benchmark tests. Performance tests conducted on human fecal samples
43 demonstrated that metaExpertPro quantified an average of 45,000 peptides in a 60-minute
44 diaPASEF injection. Notably, metaExpertPro outperformed three existing software tools by
45 characterizing a higher number of peptides and proteins. Importantly, metaExpertPro maintained
46 a low factual False Discovery Rate (FDR) of less than 5% for protein groups across four
47 benchmark tests. Applying a filter of five peptides per genus, metaExpertPro achieved relatively
48 high accuracy (F-score = 0.67–0.90) in genus diversity and demonstrated a high correlation
49 ($r_{Spearman} = 0.73–0.82$) between the measured and true genus relative abundance in benchmark
50 tests.

51 Additionally, the quantitative results at the protein, taxonomy, and function levels exhibited high
52 reproducibility and consistency across the commonly adopted public human gut microbial
53 protein databases IGC and UHGP. In a metaproteomic analysis of dyslipidemia patients,
54 metaExpertPro revealed characteristic alterations in microbial functions and potential
55 interactions between the microbiota and the host.

56 **Conclusions**

57 metaExpertPro presents a robust one-stop computational solution for constructing
58 metaproteomics spectral libraries, analyzing DIA-MS data, and annotating taxonomic as well as
59 functional data.

60 **Background**

61 Microbial communities and functions have attracted increasing research interests in the past few
62 years due to their crucial roles in human health, including nutrition, metabolism, and immunity¹.
63 Multi-omics approaches (*i.e.*, 16/18S ribosomal RNA sequencing, metagenomics) have been
64 widely applied in gut microbiota studies to provide multifaceted information in characterizing
65 the microbial profiles and their alterations linked with human diseases such as obesity, type 2
66 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs), and cancer². These technologies
67 provide important information on the taxonomic composition and functional potential of
68 microbiota but lack the messages of the truly expressed functions.

69 Metaproteomics is an emerging research area due to its unique strengths in quantifying the truly
70 expressed proteins in the entire microbial community, assessing the community structure based
71 on the biomass contributions of individual community members, exploring the interactions
72 between microorganisms and their hosts or environment³, as well as identifying
73 disease-associated protein biomarkers, *e.g.*, in human fecal⁴, or saliva⁵ samples.

74 However, data analysis of MS-based metaproteomics data is highly sophisticated. Searching
75 against comprehensive protein databases containing several million protein sequences not only
76 requires huge storage space and memory but also presents the tradeoff between proteome depth
77 and false positive identifications⁶. Consequently, although widely used proteomics software tools
78 like X!Tandem⁷, OMSSA⁸, MS-GF+⁹, Comet¹⁰, Proteome Discoverer (PD), and MaxQuant¹¹
79 have been employed in metaproteomics data analysis, they are primarily applicable only to
80 DDA-MS data. These tools are not well-suited for analyzing very large metaproteomic datasets
81 (ranging from hundreds to thousands) due to suboptimal computational efficiency. Therefore, the
82 majority of published metaproteomic datasets consist of fewer than 200 MS injections. To
83 enhance computational efficiency, specialized software such as metaLab¹²⁻¹⁴, MetaProteome
84 Analyzer (MPA)¹⁵, and ProteoStorm¹⁶ have been developed exclusively for metaproteomics
85 analysis. However, they are all designed for DDA-MS-based metaproteomics analysis.

86 Data-independent acquisition mass spectrometry (DIA-MS) demonstrates superb reproducibility,
87 throughput, and proteome depth for single-injection analysis of complex proteomes¹⁷. However,
88 DIA-MS generates highly convoluted fragment ion spectra which require sophisticated data
89 analysis¹⁸, especially in metaproteomic samples that have an increased chance of co-elution of
90 precursor ions¹⁹. Only two software tools namely diaTools²⁰ and its updated version glaDIATOR²¹
91 were designed for DIA-MS-based metaproteomics analysis.

92 However, neither of them is compatible with parallel accumulation-serial fragmentation
93 combined with data-independent acquisition (diaPASEF) data which include ion mobility
94 information²². In particular, diaPASEF achieves almost 100% peptide precursor ion current for
95 DIA-MS data acquisition, leading to 5–10 times higher sensitivity improvement, but further
96 increasing the complexity of metaproteomic data. Reducing search space without compromising
97 proteomic depth is crucial for diaPASEF-based metaproteomics data analysis. Spectral
98 library-based database search methods following peptide prefractionation typically yield a higher
99 number of identified spectra compared to library-free database and pseudospectral library search
100 methods²³ in DIA analysis. Moreover, this approach requires less computational resource due to
101 a reduced search space compared to library-free database search methods²¹. FragPipe²⁴ harnesses

102 the remarkable speed of the MSFragger proteomic search engine, surpassing X!Tandem,
103 SEQUEST, and Comet by 100-fold in the analysis of a single DDA-MS run consisting of 41,820
104 MS/MS spectra. It seamlessly supports both Orbitrap and PASEF DDA-MS data. Additionally,
105 FragPipe's split database function, coupled with an accelerated proteinprophet module, renders it
106 highly suitable for spectral library generation in metaproteomics data²⁵. DIA-NN²⁶ facilitates
107 comprehensive proteome quantification in DIA-MS data, proving particularly advantageous for
108 high-throughput applications owing to its rapid processing. Notably, a recent study by Demichev
109 *et al.* demonstrated that integrating FragPipe with DIA-NN for diaPASEF data analysis led to a
110 substantial increase in proteomic depth, approximately 70% higher than the originally published
111 diaPASEF workflow using DIA-NN library-free analysis²⁷.

112 Based on these progresses, here we developed a metaproteomic data analysis workflow called
113 metaExpertPro, which is compatible with both DDA and DIA MS data from both ordinary MS
114 and MS with ion mobility information such as timsTOF. metaExpertPro utilizes DDA-MS data
115 for spectral library generation and DIA-MS data for peptide and protein identification and
116 quantification. It offers a comprehensive one-stop metaproteomic workflow, including peptide
117 and protein measurement, functional and taxonomic annotation, and quantitative data matrix
118 generation. Additionally, metaExpertPro is easily accessible as a Docker image
119 (<https://github.com/guomics-lab/metaExpertPro>). This method showed deep identification of
120 about 45,000 peptides per human fecal sample from more than 10,000 protein groups with a 60
121 min LC gradient DIA-MS acquisition on a timsTOF Pro. Benchmark tests demonstrated that
122 metaExpertPro maintains both low factual FDR (~ 5%) and high-sensitivity identification at
123 protein group level. Also, laboratory-artificial microbial mixture tests showed that
124 metaExpertPro achieves high accuracy in both diversity and relative abundance at genus level.
125 Furthermore, the negligible effects of different databases on quantification suggest that matched
126 metagenomic sequencing is not required, and the results generated by metaExpertPro based on
127 public different databases will be directly comparable. Finally, we applied the metaExpertPro
128 software to study fecal specimens from dyslipidemia (DLP) patients. The results uncovered
129 previously unclear alterations of microbial functions and the potential interactions between the
130 microbiota and the host.

131 **Results**

132 **Overview of metaExpertPro workflow**

133 In this study, we proposed a metaproteomics data analysis workflow called metaExpertPro for
134 the measurement of peptides, protein groups, functions, and taxa of gut microbes as well as host
135 proteins based on DDA-MS and DIA-MS data from either Thermo Fisher Orbitrap (.raw
136 / .mzML format) or Bruker (.d format) mass spectrometers. Briefly, the workflow includes four
137 stages: DDA-MS-based spectral library generation, DIA-MS-based peptide and protein
138 quantification, functional and taxonomic annotation, as well as quantitative matrix generation.
139 The implementation of the metaExpertPro workflow is shown in Figure 1A with more details
140 explained below.

141 In the first stage, we applied FragPipe (version 20.0) software²⁴ for spectral library generation
142 (Figure 1A). To minimize computational memory demands, the original database (e.g. integrated
143 gene catalog database (IGC) of human gut microbiome and Unified Human Gastrointestinal
144 Protein (UHGP)) was divided into multiple databases utilizing the database split parameter of
145 MSFragger. The more the database is split, the less memory is required, but the longer the
146 runtime. Therefore, users need to judiciously choose the number of database splits based on the
147 quantity of protein sequences contained in the database. Then, each DDA-MS raw data was
148 searched against each split database, generating a pepXML and a pin file. All the pepXML and
149 pin files for each DDA-MS raw data were aggregated for PSM validation using either
150 PeptideProphet or MSBooster-Percolator. To decide the appropriate PSM validation method, we
151 assessed the number of protein groups and the factual FDR in two benchmark tests using
152 PeptideProphet and the MSBooster-Percolator method, respectively. The benchmark tests
153 utilized the public dataset (PXD006118) from a synthetic community of 32 organisms, searching
154 against a sample-matched metagenomic database supplemented with either a subset of IGC
155 database, containing ten times the proteins in metagenomic database, or 48 human gut microbial
156 species. False positives included contaminant proteins, IGC proteins, or proteins from the added
157 microbial species (Figure S1A). Both benchmark tests demonstrated a lower factual FDR using
158 the PeptideProphet method (0.057 vs 0.091 and 0.037 vs 0.048), despite the
159 MSBooster-Percolator method achieving 8.7–12.1% higher protein group identifications than the
160 PeptideProphet method (Figure S1B). To maintain a relatively low factual FDR, we selected
161 PeptideProphet as the default PSM validation method in metaExpertPro.

162 In the second stage, we applied DIA-NN software²⁶ to identify and quantify peptides and
163 proteins from each DIA-MS data file (Figure 1A). In the third stage, we performed taxonomic
164 annotation using the peptide-centric taxonomic annotation software UniPept^{28,29}, which has been
165 proved to exhibit more accurate and precise taxonomic annotation³⁰ compared to Kraken2^{31,32}
166 and Diamond^{33,34}. Because the UniPept only indexes perfectly cleaved tryptic peptides³⁵, we *in*
167 *silico* digested the peptides and filtered the peptide length before the UniPept taxonomic
168 annotation (Figure S1B). To enhance annotation confidence, peptides with conflicting taxon
169 annotations were excluded (Figure S1D). To eliminate unreliable taxa, we calculated the number
170 of peptides associated with each taxon and selected taxa with more than 1, 3, 5, 10, 15, and 20
171 peptides. The metaproteomic functional annotation tools eggNOG-mapper^{36,37} and
172 GhostKOALA³⁸ were integrated into the pipeline to process functional annotation (Figure 1A).

173 In the fourth stage, we generated quantitative matrices at nine levels including human peptide,
174 microbial peptide, human protein group, microbial protein group, COG, KO, COG category, KO
175 category, and taxonomy. The peptides corresponding to both human protein group and microbial
176 protein group were removed from the quantitative results to avoid protein assignment ambiguity
177 (Figure S2).

178 In summary, the metaExpertPro pipeline integrates high-performance proteomic analysis
179 tools—FragPipe and DIA-NN—along with functional and taxonomic annotation software tools,
180 employing rigorous filter criteria to provide a comprehensive metaproteomics workflow in a
181 single package.

182 Subsequently, to assess the performance of metaExpertPro in human gut microbial samples, we
183 conducted tests to evaluate identification depth and result reproducibility using two MS
184 instruments. Additionally, we compared the measurement results and runtime of metaExpertPro
185 with three existing metaproteomics software tools—MetaLab, ProteoStorm, and glaDIator. For
186 workflow accuracy estimation, we computed the factual FDR of protein groups, the F-score of
187 taxa, and the correlation between measured taxa and true protein amounts in multiple benchmark
188 tests. Furthermore, we examined the effects of databases on spectral libraries and quantitative
189 matrices using five mainstream human gut microbial databases. Finally, we applied
190 metaExpertPro in metaproteomic analysis of dyslipidemia patients to explore potential
191 associations between human gut microbial functions and taxa related to dyslipidemia (Figure 1B).
192 Detailed descriptions of all tests are provided below.

193 **In-depth identification and high reproducibility of metaExpertPro workflow in human
194 fecal samples**

195 To demonstrate the benefits of metaExpertPro, we applied it to the metaproteomic analysis of 62
196 human fecal samples from 62 middle-aged and elderly volunteers of the Guangzhou Nutrition
197 and Health Study (GNHS)³⁹. Sixty samples were acquired using two MS instrument platforms:
198 the timsTOF Pro (Bruker) and the Orbitrap Exploris™ 480 (Thermo Fisher Scientific) (Figure
199 2A). Approximately 5 µg peptides from each sample were mixed into a pooled sample for
200 high-pH fractionation. A total of 30 fractionated samples were obtained. Each fraction was
201 analyzed by DDA-MS acquisition with a 60 min gradient for spectral library generation. The
202 remaining peptides from each sample were used for DIA-MS acquisition (Figure 2A). A total of
203 220,365 peptides and 58,952 protein groups, including 57,862 microbial protein groups and
204 1,065 human protein groups, were identified in the spectral library derived from timsTOF Pro
205 (Figure 2 B). Using Exploris 480, 189,808 peptides and 51,269 protein groups, including 50,218
206 microbial protein groups and 1,024 human protein groups, were characterized (Figure 2C). The
207 average identification rate of the acquired MS spectra was 32.2% and 29.3% for the spectral
208 libraries derived from timsTOF Pro and Exploris 480, respectively (Figure 2 D–E, Table S1).
209 The identification rates were comparable to the MetaPro-IQ¹² results (medium = 32%) obtained
210 from 4 h gradient DDA-MS run on the Q Exactive MS spectrometer for eight human stool
211 samples. For each sample, we quantified $43,194 \pm 11,704$ (mean \pm SD) microbial peptides
212 corresponding to $15,501 \pm 3,880$ microbial protein groups, and $2,453 \pm 398$ human peptides
213 corresponding to 537 ± 91 human protein groups on timsTOF Pro. On Exploris 480, we
214 quantified $22,460 \pm 4,964$ microbial peptides corresponding to $11,301 \pm 2,172$ microbial protein
215 groups, and $1,374 \pm 246$ human peptides corresponding to 414 ± 69 human protein groups

216 (Figure 2 F–G, Table S2). Nevertheless, to the best of our knowledge, the numbers of peptide
217 identifications on two types of MS instruments are the highest compared to the published
218 metaproteomic results with the same or even longer LC gradient. For example, the MetaPro-IQ
219 workflow identified 15,210 peptides per human fecal sample with 4 h gradient DDA-MS
220 acquisition¹², and glaDIAtor identified 8211 peptides per human fecal sample with 90 min
221 gradient DIA-MS acquisition²¹. Moreover, the number of peptides with 60 min gradient
222 acquisition on timsTOF Pro identified by metaExpertPro is comparable to the MetaPro-IQ results
223 with 22 h of MS analysis (45,647 vs 44,955 peptides per human fecal sample)⁴⁰. Due to the
224 in-depth identification of peptides and protein groups, we also quantified an average of 90–92
225 microbial species, 68–71 genera, 1,406–1,511 COGs, and 1,350–1,475 KOs per human fecal
226 sample (Figure 2 F–G, Table S2).

227 Another major benefit of DIA methods is the high degree of quantitative consistency. Thus, we
228 next investigated the reproducibility of the quantified protein groups, functions, and taxa in five
229 pairs of technical replicate samples and six pairs of biological replicate samples. As expected,
230 high correlation was observed in all pairs of technical replicates at each level in two MS
231 instruments (Figure 2 H–I). We also observed high correlation in all pairs of biological replicates
232 at each level (Figure 2 H–I). In addition, the Bray-Curtis (BC) distance between all pairs of
233 technical and biological replicates was low, and no statistically significant difference were
234 observed between the first and the second repeat MS acquisition (PERMANOVA $p = 0.89–1$)
235 (Figure 2 H–I).

236 The reproducibility between two MS instruments was assessed by comparing their identifications
237 in the DDA-MS-based spectral library. Among the total peptides identified, 34.2% (104,521)
238 were detected by both MS instruments, while 37.8% (30,291) of the total protein groups were
239 identified by both instruments. These shared identifications accounted for 55.0% of the peptides
240 and 58.9% of the protein groups identified by the Exploris 480 MS instrument (Figure S3A). For
241 the DIA-MS-based quantification, 25.6% (56,939) of the total peptides and 36.2% (22,597) of
242 the total protein groups were quantified by both MS instruments. The abundance correlation
243 between the datasets generated by the two MS instruments were assessed using twelve biological
244 replicate samples. The results showed that the median Spearman correlation was 0.788 for
245 human proteins, 0.604 for microbial proteins, 0.673 for human peptides, 0.643 for microbial
246 peptides, 0.908 for genera, 0.861 for species, 0.880 for COGs, and 0.852 for KOs, respectively
247 (Figure S3B). In summary, metaExpertPro offers comprehensive identification and quantification
248 capability for metaproteomics analysis of human fecal samples, utilizing MS raw data from
249 either timsTOF or Exploris 480 instruments. Notably, it demonstrates remarkable reproducibility
250 across replicate samples and MS instruments, ensuring reliable and consistent results.

251 **Comparison of metaExpertPro with other metaproteomics software tools**

252 We next compared the application scenarios and the performance of metaExpertPro with the
253 existing metaproteomics software tools. Among them, metaLab¹³, MetaProteomeAnalyzer
254 (MPA)^{15,41}, and ProteoStorm¹⁶ are DDA-MS-based metaproteomics analysis tools. They are all
255 compatible with Q Exactive and Orbitrap Exploris MS instruments. Additionally, ProteoStorm is
256 also compatible with Low-res LCQ/LTQ (Figure 3A). Both metaLab and MPA can perform
257 DDA-MS-based peptide and protein quantification in metaproteomics analysis. Furthermore,
258 metaLab provides additional functionalities for function and taxonomic annotation, as well as

259 quantification. glaDIAtor²¹ is the next generation of diatools²⁰. diatools and glaDIAtor are
260 currently the only published analysis tools available for DIA-MS metaproteomics. However, it is
261 important to note that neither glaDIAtor nor diatools is compatible with PASEF MS instrument.
262 metaExpertPro is the exclusive DDA-assisted DIA-based metaproteomics analysis tool that is
263 compatible with the timsTOF MS instrument. It provides a comprehensive solution
264 encompassing DDA-MS-based spectral library generation, DIA-MS-based peptide and protein
265 quantification, as well as function and taxonomic annotation and quantification, all in one
266 platform (Figure 3A). To compare the performance of these software tools, we reanalyzed the
267 Orbitrap acquired DDA-MS and DIA-MS datasets from six human fecal samples published by
268 the Elo team⁴². For the DDA-MS-based software tools metaLab and ProteoStorm, six DDA-MS
269 raw data files were used for peptide and protein quantification or identification. On the other
270 hand, in the case of DIA-MS-based software tools glaDIAtor and metaExpertPro, these same six
271 DDA-MS data sets were employed for spectral library generation. Subsequently, peptide and
272 protein quantification were performed using DIA-MS raw data and the generated spectral library
273 (Figure 3B).

274 We compared DDA-MS-based peptide identifications among metaExpertPro, glaDIAtor,
275 metaLab, and ProteoStorm. metaExpertPro demonstrated the highest peptide identifications in
276 the spectral library (30,155) among the compared tools, surpassing glaDIAtor (19,371 peptides),
277 metaLab (24,557 peptides), and ProteoStorm (11,226 peptides) in the spectral library. Despite the
278 variations in peptide identification counts, metaExpertPro exhibited substantial overlap with
279 other tools. It identified 16,580 peptides shared with glaDIAtor, 20,415 peptides shared with
280 metaLab, and 9,384 peptides shared with ProteoStorm. These shared peptides accounted for
281 85.6%, 83.1%, and 83.6% of the total peptides identified by glaDIAtor, metaLab, and
282 ProteoStorm, respectively (Figure 3C, Table S3). Additionally, metaExpertPro identified 5,368
283 unique peptides in the spectral library. Next, we compared the DIA-MS-based quantification of
284 metaExpertPro and glaDIAtor. To ensure a fair comparison, both software tools were set to
285 DDA-assisted DIA mode, guaranteeing identical raw data input for the analysis. Using
286 metaExpertPro, we measured more than two-fold peptides (mean \pm SD = 16,971 \pm 3,315 vs
287 6,918 \pm 1,456) and six-fold protein groups (mean \pm SD = 5,368 \pm 885 vs 812 \pm 218) compared to
288 glaDIAtor (Figure 3D, Table S4). Over half of all the peptides (59%) and protein groups (80%)
289 were only detected by metaExpertPro. 32% of the peptides and 16% of the protein groups were
290 quantified by both workflows. Only 8% of the peptides and 4% of the protein groups were
291 quantified by glaDIAtor only (Figure 3E). In the comparison of peptide and protein abundance
292 between the two workflows, we observed a relatively high correlation in the abundance of
293 peptides and protein groups quantified by both metaExpertPro and glaDIAtor (median $r_{Spearman}$ =
294 0.79 and 0.63) (Figure 3F). Furthermore, the abundance of peptides and protein groups
295 exclusively detected by metaExpertPro was significantly lower compared to those identified by
296 both workflows (Figure 3G, Table S5). These findings suggest that our workflow excels in
297 identifying low-abundance peptides and protein groups.

298 To further verify the confidence of the peptides quantified only by metaExpertPro compared to
299 glaDIAtor, we inspected the probability, the number of fragments, the b / y ion intensity ratio,
300 and the spectra of these peptides. Among the 30,155 peptides identified in the metaExpertPro
301 spectral library, 13,575 peptides were uniquely identified compared to glaDIAtor spectral library,

302 while 16,580 peptides were shared between the two libraries. We firstly evaluated the accuracy
303 of the 13,575 peptides in the metaExpertPro spectral library, confirming their reliability.
304 Remarkably, all these peptides exhibited peptide probability values of 0.9963 ± 0.12 (median \pm
305 SD), indicating the high confidence in the peptide-spectrum matches. The median number of
306 fragments matched for all peptides was 14, ranging from a minimum of 5 fragments to a
307 maximum of 169 (Figure 3H). Notably, among the 13,575 peptides, 99.6% displayed two-sided
308 fragment types, while only 54 peptides were identified as one-sided. Furthermore, in ion trap
309 mass spectrometry, the intensities of *y*-ions are typically approximately twice that of their
310 corresponding *b*-ions⁴³. Among the 13,575 identified peptides, the median ratio of intensities
311 between *y*-ions and their corresponding *b*-ions was 1.6, aligning with the anticipated pattern for
312 complex peptide spectra (Figure 3H). To visually showcase the qualitative accuracy of the
313 peptide identifications in the metaExpertPro spectral library, we obtained the DDA MS/MS
314 spectra of the top 20 lowest abundant peptides. All 20 peptide spectra can be identified with at
315 least 8 fragments containing both *y* ions and *b* ions. Most of the high-intensity peaks in the
316 spectra can be matched to fragments, and there was a large dynamic range between high and
317 low-intensity fragments. In addition, the intensity of *y* ions is higher than that of *b* ions (Figure
318 S4). These criteria are in line with the manual assessment of high-quality peptide segments⁴³,
319 which demonstrate the reliability and precision of the identified peptides in the spectral library
320 (Figure S4). Collectively, these findings strongly support the high quality and reliability of the
321 peptides exhibiting relatively low abundance.

322 Next, we conducted a comparison of the running times for metaExpertPro and glaDIAtor on an
323 AMD EPYC hardware system with 512 GB RAM using the PXD008738 dataset. With ten
324 threads, glaDIAtor took approximately 21.1 hours for DDA-MS analysis, while metaExpertPro
325 required approximately 17.4 hours. For DIA-MS analysis, glaDIAtor took around 23 minutes per
326 file, while metaExpertPro completed the analysis in just 1 minute per file (Figure 3I).
327 Considering that the number of DDA-MS raw data is usually less than 100, while a
328 high-throughput project may involve thousands of DIA-MS raw data files, metaExpertPro proves
329 to be well-suited for high-throughput metaproteomic analysis.

330 In conclusion, the metaExpertPro workflow effectively enhanced proteome depth and upheld
331 strong quantitative reproducibility in metaproteomic analysis. While the generation of
332 DDA-MS-based spectral libraries using metaExpertPro may require longer running times, the
333 DIA-MS-based quantification process is notably faster. This characteristic offers a significant
334 advantage, particularly in high-throughput studies utilizing DIA-MS.

335 **Benchmark test of protein group identifications of metaExpertPro**

336 We further investigated the accuracy of protein groups identified by metaExpertPro using
337 benchmark tests. We initially assessed the factual FDR of protein groups in the spectral library
338 using the published dataset of HeLa cells³⁰. Briefly, the DDA-MS data of the HeLa cell was
339 searched against the human protein database (Swiss-Prot, date 20211213) supplemented with 0×,
340 1×, 10×, 100×, and the entire mouse microbiome catalog sequences (~2.6 million proteins),
341 respectively (Figure 4A). The factual FDR is defined as the bacterial and contaminant hits
342 divided by all the identified hits. As expected, when searching against the human protein
343 database only (benchmark standard), the factual FDR was extremely low (0.015) (Figure 4B,
344 Table S5). The count of human protein groups reached 5,511 (Figure 4B, Table S6), surpassing

345 the originally published result of approximately 5,000 human protein groups³⁰ based on a
346 single-step search using MaxQuant software¹¹. When increasing microbial sequences in the
347 human protein database, the factual FDRs remained well-controlled (FDRs = 0.022–0.028), and
348 the count of true human protein groups showed a slight decrease compared to the benchmark
349 result (5,082 in the supplemented all bacteria sequences vs. 5,431 in the human protein database
350 only) (Figure 4B, Table S6). To evaluate the ability of metaExpertPro to maintain a low
351 protein-level FDR with larger sample sizes, we extended the number of DDA-MS raw data to
352 255, including 100 pancreas tissue samples and 155 thyroid tissue samples (IPX0001400000).
353 These raw data were then searched against the human protein database (Swiss-Prot, date
354 20211213) supplemented with 0×, 1×, 10×, and 100× mouse microbiome catalog sequences
355 (Figure S5A). The factual protein group FDRs remained below 5% when adding 0×, 1×, or 10×
356 mouse protein sequences (~2.6 million proteins) (Figure S5B, Table S7). However, when
357 searching against 100× mouse protein sequences, the protein group FDR reached 5.4%. This
358 suggests that controlling the factual protein group FDR becomes challenging when both the
359 sample size and the unmatched protein sequences in the database increase in metaExpertPro.

360 To gain insights into real-life scenarios of metaproteomics studies, we conducted two additional
361 benchmark tests to identify false positive microbial proteins from microbiota mixtures. In the
362 first test, we used the "equal protein amount" (P) dataset (PXD006118) and searched it against a
363 metagenomic database (MG) supplemented with varying numbers of human gut microbiota
364 species protein databases (5, 16, 32, 48) (Figure 4C). In the second test, we added the protein
365 sequences of 0×, 1×, 5×, 10× IGC+ protein sequences (10,352,085) to the MG database (Figure
366 S5C). Remarkably, we consistently achieved factual protein group FDRs below 5%, except for
367 the 10× IGC+ benchmark test, which had a factual FDR of 5.8% (Figure 4D, Figure S5D, Table
368 S8–S9). These results indicate the robustness of metaExpertPro in maintaining a low
369 protein-level FDR in challenging scenarios.

370 In conclusion, the metaExpertPro workflow effectively maintains both a low factual FDR and
371 high-sensitivity identification at the protein group level during spectral library building.

372 **Taxonomic accuracy estimation of metaExpertPro**

373 Determination of taxonomic annotation and biomass contributions is another challenge due to a
374 large number of homologous protein or peptide sequences derived from hundreds of closely
375 related species. Thus, we next estimated the taxonomic accuracy at genus and species levels
376 using two artificial bacterial community datasets. One of the datasets is the mixture of twelve
377 different bacterial strains isolated from fecal samples of three human donors (hereafter referred
378 to as "12-mix data") published by Pietilä et al.²¹ (Figure 5A). Another dataset is called "CPU
379 data" which were generated from synthetic communities consisting of 32 organisms with "equal
380 cell number" (C), "equal protein amount" (P), and "uneven" (U) published by Kleiner and
381 colleagues⁴⁴ (Figure 5B). We searched the 12-mix data against the integrated gene catalog
382 database (IGC) of human gut microbiome⁴⁵ and the CPU MS data against the matched
383 metagenomic database⁴⁴ using the metaExpertPro workflow. Then, we calculated the true
384 positive (TP), false positive (FP), false negative (FN), and F-score⁴⁶ (the harmonic mean of
385 precision and recall) at genus and species levels. When filtering out the taxa annotated by only
386 one peptide, we got a relatively high true positive rate (TPR) (8/10) and a low false negative rate

387 (FNR) (2/10) at genus level using the 12-mix dataset. But we also obtained a high false
388 discovery rate (FDR) (10/18–11/19) and thus a relatively low F-score (average of 0.56) at genus
389 level (Table S10). At species level, because of the decrease of TPR and increase of FNR and
390 FDR, the F-score further decreased to 0.26 (Table S10). The average F-scores of the CPU data
391 were 0.73 and 0.40 at genus and species level, respectively, outperforming the 12-mix data.
392 Interestingly, the numbers of FP taxa in “uneven” samples were extremely low (4–5), resulting in
393 high F-scores (0.84–0.86) at genus level (Table S10).

394 Here the F-scores were relatively low. Thus, we next investigated the impacts of the spectral
395 count of peptides, the peptide length, and the number of peptides corresponding to the taxa on
396 the TP and FP identifications at both genus and species levels (Figure S6 A–B). The data showed
397 that, while all these three factors exhibited significant differences between the TP and FP
398 identifications, the number of peptides corresponding to the taxa displayed the highest difference
399 (Figure S6 A–B). After checking the peptide count distribution of TP and FP taxa (Figure S6
400 C–D), we filtered the number of peptides corresponding to taxa at the threshold of 1, 2, 3, 5, 10,
401 15, and 20, respectively, and recalculated the TF, FP, FN, and F-score. The data showed that
402 filtering the taxa with at least five peptides led to the highest F-scores (C: 0.90; P: 0.85; U: 0.90)
403 at the genus level (Figure 5 C–D, Table S10) in C, P, U datasets. This resulted in high TPR (C:
404 15/17; P: 15/17; U: 17.25/20), low FNR (C: 2/17; P: 2/17; U: 2.75/20) and low FDR (C: 1.5/16.5;
405 P: 3.5/18.5; U: 1/18.25). However, in the 12-mix dataset, filtering at least three peptides led to the
406 highest F-scores (0.73) at the genus level. At the species level, we also obtained the highest
407 F-score with the threshold of five peptides. But at the species level, the F-scores were still
408 relatively low in two datasets (0.44–0.55) (Figure S6 E–F, Table S10).

409 The true quantitative information of the microorganisms in the CPU dataset⁴⁴ allowed us to
410 investigate the accuracy of the relative abundance of the taxa calculated by metaExpertPro
411 workflow. With a threshold of five peptides, relatively high correlation between the true protein
412 biomass of genera and the metaExpertPro results were observed ($r_{Spearman} = 0.8, 0.73$, and 0.82) in
413 the C, P, and U datasets (Figure 5E). As expected, the correlation between the true cell number of
414 taxa were relatively low ($r_{Spearman} = 0.63, 0.58$, and 0.52 for the C, P, and U datasets, respectively)
415 (Table S11). The consistency of the true protein biomass of taxa and metaExpertPro results at
416 species level was relatively low ($r_{Spearman} = 0.2, 0.27$, and 0.35) in the C, P, and U dataset (Figure
417 S6G, Table S11).

418 Taken together, we found that filtering the taxa with at least three to five peptides led to the
419 highest F-score at genus and species levels, and metaExpertPro achieved high accuracy in both
420 diversity and biomass at genus level. The relatively low accuracy at species level might be due to
421 that we used the UniPept-based taxonomy annotation. As a peptide-centric taxonomic annotation
422 software, UniPept depends on taxon-specific peptides to identify taxa. However, the number of
423 taxon-specific peptide sequences steadily decreases from higher to lower taxonomic rankings,
424 with a particularly large drop between genus and species levels⁴⁷. In addition, there are some
425 species or even genera in the metaproteomic samples do not present in the NCBI taxonomy
426 database, such as *Burkholderia xenovorans*, *Nitrosomonas europaea*, *Pseudomonas*
427 *denitrificans*, *Pseudomonas pseudoalcaligenes* and *Burkholderia* (Figure 5E, Figure S6G,
428 marked in gray), which leads to false negative taxa. Nevertheless, UniPept is still the preferred
429 software for taxonomy annotation in the absence of matched metagenomic data according to the

430 previous study³⁰. Here, we showed that metaExpertPro integrated UniPept can achieve high
431 accuracy in the relative abundance estimation of genera (Figure 5E, Table S11).

432 **Negligible effects of public gut microbial gene catalog databases on DIA-MS-based**
433 **proteome measurements**

434 Three types of protein databases were commonly used in gut microbiota metaproteomic studies,
435 including well-annotated public gut microbial gene catalog databases (e.g., integrated gene
436 catalog (IGC) of human gut microbiome⁴⁵, Unified Human Gastrointestinal Protein (UHGP)
437 catalog⁴⁸), protein sequences that predicted from metagenome data from matched samples, and
438 the merged databases of above two types of databases. To evaluate the impacts of databases on
439 the peptide identifications in spectral library generation, we compared the peptide numbers in the
440 five spectral libraries based on IGC+⁴⁹, UHGP-90 (90% protein identity), matched metagenomic
441 protein catalog database (MG), and their merged databases (MG_IGC+ and MG_UHGP-90)
442 using 90 min gradient DDA-MS acquisition on timsTOF Pro of the 62 human fecal samples
443 mentioned above (Figure 6A). The data showed that the spectral library based on IGC+ database
444 identified the most peptides (284,681), followed by MG_IGC+ database (273,779),
445 MG_UHGP-90 (273,338), UHGP-90 (271,751) and MG (261,986) (Figure 6B, Table S12). More
446 specifically, 57.0% (194,485) of the peptides were commonly identified by all the spectral
447 libraries. The spectral library based on MG contained the most unique peptides (21,296) (Figure
448 6C, Table S12). The identification rate of IGC+ spectral library was significantly higher than that
449 of the other four databases. The identification rates (average of 30.6–31.8%) based on the five
450 databases were comparable to the MetaPro-IQ¹² results searching against matched metagenome
451 (average of 34%) and IGC (average of 33%) (Figure 6D, Table S13). Overall, we found that in
452 the spectral library generation step of metaExpert Pro, public gene catalog databases
453 outperformed the matched metagenome database in terms of peptide identification. A similar
454 conclusion has been proposed by Zhang *et al.* using MetaPro-IQ¹².

455 We further investigated the impacts of different public gene catalog databases on 60 min
456 DIA-MS-based proteome measurements using two public gut microbial gene catalog databases
457 (IGC+ and UHGP-90). High mapping ratios were obtained at COG (medium of 95.3% and
458 95.5%), KO (medium of 76.1% and 76.7%), and taxonomy (medium of 87.5% and 87.6%) levels
459 with the two databases (Figure S7). The mapping ratio at the phylum level was comparable to the
460 results of six human fecal data analyzed by glaDIATOR²¹ (~70%). But the mapping ratio was less
461 than that of glaDIATOR at the genus level (~18% vs ~40%), which may be because we used a
462 stringent taxonomy filtering criterion of at least five peptides per taxonomy to ensure the
463 accuracy of identification.

464 Next, we compared the richness per sample at eight levels and observed no significant
465 differences between the two databases at all levels (Figure 7A, Table S14). At the peptide, COG,
466 and KO levels, we also observed a high proportion of overlapped features (77–92%) between the
467 two databases (Figure 7B). 84% of the genera and 86% of the species were identified by both
468 databases, showing a high degree of consistency. The taxonomic and functional profiles
469 identified by the two databases were also highly similar (Figure 7C, Table S15). In detail, at the
470 taxonomic level, most of the peptides (99.4%) were assigned to the four major phyla of human
471 gut microorganisms characterized by metagenomic data^{50–53}, namely Bacillota (~60%),

472 Bacteroidota (~30%), Actinomycetota (~9%), and Pseudomonadota (~1%). Also, the profiles of
473 taxa were highly similar to that obtained by glaDIATOR (~60% Bacillota, ~10% Bacteroidetes,
474 ~7% Actinomycetota, and ~0.5% Pseudomonadota). At the functional level, the largest
475 functional categories included G ‘carbohydrate metabolism’ (~18%), J ‘translation’ (~16%), and
476 C ‘energy metabolism’ (~10%), which was in line with previous studies of human fecal
477 metaproteomes^{21,54} (Figure 7C, Table S15). The abundance of human protein groups, microbial
478 functions, and taxa also showed high correlation (medium of pairwise Spearman correlation
479 coefficients = 0.95–0.97) between the two databases (Figure 7D, Table S16). Taken together,
480 these results suggest the negligible effects of public gut microbial gene catalog databases on
481 DIA-MS-based quantification at peptide, functional, or taxonomic levels. Therefore, matched
482 metagenomic sequencing may not be required for the metaExpertPro and the results generated by
483 metaExpertPro based on public databases could be directly comparable.

484 **metaExpertPro analysis revealed the functions associated with dyslipidemia and the**
485 **potential interactions between the microbiota and the host**

486 Dyslipidemia (DLP) is a disorder in lipid metabolism characterized by high levels of
487 LDL-cholesterol and/or triglycerides and low HDL-cholesterol levels, which is considered a
488 high-risk factor for cardiovascular disease^{55,56}. Gut microbiota has been proved to be highly
489 associated with dyslipidemia and related diseases⁵⁷. However, the real functions of the
490 microbiota associated with DLP are still unclear. The 62 GNHS subjects mentioned above
491 included 31 subjects without DLP and 31 subjects with DLP. Here, we performed metaproteomic
492 analysis on the fecal samples from these subjects to characterize the changes of microbial taxa,
493 functions, and human protein groups in DLP. In total, we quantified 55,573 microbial protein
494 groups and 993 human protein groups. The microbial protein groups were annotated as 2,347
495 COGs and 2,469 KOs. The microbial peptides were annotated as 106 genera and 172 species.
496 About 87–97% of the identified protein groups, functions, and taxa were present in both
497 non-DLP and DLP groups (Figure 8A). Two of the six genera uniquely identified in the DLP
498 group (*Olsenella*^{58,59} and *Cloacibacillus*⁶⁰) have previously been reported to show a positive
499 association with serum lipids or obesity in mice, as well as in metabolically unhealthy obese
500 human individuals. Among the eight genera uniquely identified in the non-DLP group, three have
501 been reported to exhibit a negative association with DLP and obesity in mice. *Enterococcus*, a
502 well-known probiotic, has been shown to alleviate obesity-associated dyslipidemia in mice^{61,62}.
503 *Lactococcus*, a potential antihyperlipidemic probiotic⁶³, is also linked to insulin resistance and
504 systemic inflammation, exerting an antiobesity effect⁶⁴. *Turicibacter* is markedly reduced in mice
505 fed with high-fat diet (HFD)⁶⁵. A total of 56 COGs, 3 species, and 18 human proteins were
506 significantly associated with DLP using General Linear Model (GLM) (p -value < 0.05 and | beta
507 coefficient | > 0.2) (Figure S8 A–C, Table S17). The t-distributed stochastic neighbor embedding
508 (t-SNE) analysis showed two close clusters corresponding to the DLP and non-DLP groups based
509 on the associated microbial COGs, human proteins, and species, respectively (Figure 8 B–C,
510 Figure S8D, Table S18). Wilcoxon Rank Sum Test was used to further verify the associations.
511 The data showed that 34 of the associated microbial COGs were significantly differentially
512 expressed between the two groups (Wilcoxon Rank Sum Test, p < 0.05) (Table S19). Functions
513 related to the “Energy production and conversion” (two COGs in category C), “Lipid transport
514 and metabolism” (two COGs in category I), “Transcription” (two COGs in category K),

515 “Replication, recombination and repair” (three COGs in category L), and “Intracellular
516 trafficking, secretion, and vesicular transport” (one COG in category U) showed significantly
517 increased in DLP group. While the functions related to “Amino acid transport and metabolism”
518 (two COGs in category E), “Lipid transport and metabolism” (one COG in category I),
519 “Inorganic ion transport and metabolism” (two COGs in category P), “intracellular trafficking,
520 secretion, and vesicular transport” (one COG in category U), and “defense mechanisms” (one
521 COG in category V) showed significantly decreased in the DLP group (Figure 8D, Table S19).
522 The results indicated an enhancement in energy production, conversion, lipid transport, and
523 metabolism functionality in the gut microbiota of DLP patients. The increase of the functions in
524 DNA repair pathways such as uracil-DNA glycosylase (UDG) functions was consistent with the
525 metaproteomic results in pediatric IBD patients⁴⁹. Defects in human amino acid transporters are
526 linked to inherited metabolic disorders⁶⁶. In this study, we observed a reduction in amino acid
527 transport and metabolism within the human gut microbiota. This finding suggests potential drug
528 targets that could be focused on microbial proteins related to amino acid transport. We also found
529 that the functions related to bacteria-secreted protein toxins such as biopolymer transport protein
530 ExbD and WXG100 family proteins YukE and EsxA were downregulated in the DLP group
531 (Figure 8D, Table S19). Two species including *Blautia luti* and *Fusobacterium mortiferum* were
532 significantly differentially altered in DLP (Figure S8E). Both species or their corresponding
533 genera have been reported to be associated with metabolic disorders including obesity⁶⁷, type 2
534 diabetes or hypercholesterolemia⁶⁸.

535 One benefit of metaproteomic analysis was exploring the interactions between the host proteins
536 and microbiota. Thus, we analyzed differentially expressed human proteins between the DLP and
537 non-DLP groups using Wilcoxon Rank Sum Test. We identified six significant differentially
538 expressed human proteins ($p < 0.05$). Interestingly, all of them were upregulated in the DLP
539 group (Figure 8E, Table S19). Four human proteins including transthyretin (TTR), heat shock
540 protein HSP 90-alpha (HS90A), small ribosomal subunit protein (RACK1), and peroxiredoxin-4
541 (PRDX4) have been reported to be related to obesity, diabetes, and hyperlipidemia based on
542 serum or tissue samples⁶⁹⁻⁷². However, it has not been reported that the dysregulation of these
543 human proteins in human feces is also associated with dyslipidemia.

544 Next, we analyzed the co-expression between the six human proteins and the 34 differentially
545 expressed COGs. With a threshold of $| r_{\text{Spearman}} | \geq 0.2$ and Benjamini-Hochberg (B-H) adjusted
546 p -value < 0.05 , we screened out 25 co-expressed proteins and COGs (Figure 8F, Table S20). The
547 human protein transthyretin (TTR) exhibited the strongest correlation with microbial COGs.
548 Four positively correlated COGs were COG1595 (related to transcription), COG2968 (protein
549 YggE), COG3516 (component TssA of the type VI protein secretion system), and COG4646
550 (adenine-specific DNA methylase). The other five negatively correlated COGs were COG0600
551 (ABC-type nitrate/sulfonate/bicarbonate transport system), COG3428 (membrane protein YdbT),
552 COG3706 (Two-component response regulator, PleD family), COG4842 (secreted virulence
553 factor YukE/EsxA, WXG100 family), and COG4991 (uncharacterized conserved protein YraI).
554 Notably, the microbial function COG4842, a secreted virulence factor YukE/EsxA of the
555 WXG100 family, exhibited negative correlations with three up-regulated human proteins
556 (PRDX4, RACK1, and TTHY), indicating its significant role in the interaction with human
557 proteins in the context of DLP. Taken together, the metaExpertPro-based metaproteomic analysis

558 on DLP patients uncovered the alterations of microbial functions in DLP and the potential
559 interactions between the microbiota and the host.

560

561 **Discussion**

562 Due to the complexity of the samples, metaproteomic data analysis has inherent limitations of
563 high dependency on databases, low efficiency of peptide identification rate (ID rate), the
564 relatively low resolution of taxonomic identification, and large computer memory consumption.
565 In this study, to solve the problems of low-efficiency ID rate and memory consumption, we used
566 a library-based database search strategy in metaExpertPro, therefore our approach cannot
567 eliminate the database dependency. FDR control poses another challenge in metaproteomics
568 analysis due to large number of homologous bacterial sequences in the databases. In this study,
569 benchmark tests using HeLa cell and bacteria mixture samples showed a low factual FDR (<5%).
570 However, as the sample size and unmatched protein sequences in the database increase,
571 controlling the factual protein group FDR becomes more challenging. Therefore, there is still a
572 need for algorithms that can efficiently distinguish true positive spectra from highly similar
573 spectra and employ stricter FDR filtering methods to ensure more accurate identifications.
574 Although our data showed negligible effects on the metaproteomic results based on two public
575 gut microbial gene catalog databases and 62 human fecal samples, one cannot assume similar
576 results can also be obtained with other gene catalog databases or other types of metaproteomic
577 samples, such as soil microbiota and marine microbiota. Moreover, the UniPept-based taxonomic
578 annotation still limits the resolution of accurate taxonomy identification at the species level due
579 to the limited number of taxonomy-unique peptides. If matched metagenomic data is available,
580 integrating metagenomic taxonomic information with UniPept has the potential to increase the
581 number of taxonomy-unique peptides. This integration limits the potential species to those
582 specific to the samples, leading to a higher count of taxonomy-unique peptides compared to
583 considering all species from the NCBI taxonomy database. Thus, a novel taxonomic annotation
584 software integrating metagenomic taxonomic information and UniPept has the potential to
585 enhance the resolution of accurate taxonomy identification. Additionally, it is important to note
586 that we did not observe any significantly associated microbial taxa, functions, or human proteins
587 after correcting for multiple testing. This can be attributed to the limited number of samples used
588 in our study, which consisted of 31 samples from individuals with dyslipidemia (DLP) and 31
589 samples from individuals without dyslipidemia (non-DLP). In order to obtain more accurate and
590 reliable results, a larger sample size is required for future studies. Finally, this study and most
591 published metaproteomic studies only focus on the proteins expressed by the host and microbiota;
592 however, the proteins from foods and the environment may also play important roles in the hosts'
593 health and the metabolisms of microbiota. Therefore, despite these research advances, there is
594 still much to discover in the metaproteome of the human gut.

595

596 **Conclusions**

597 The metaExpertPro workflow provides a computational pipeline for metaproteomic analysis and
598 shows a high degree of accuracy, reproducibility, and proteome coverage in the quantification of
599 peptides, protein groups, functions, and taxa in human gut microbiota. The workflow is
600 established by integrating the high-performance proteomic analysis tools and stringent filter

601 criteria to ensure both in-depth and high accuracy measurements. The negligible effects of
602 databases on the measurement of peptides, functions, and taxa indicate that matched
603 metagenomic databases are not indispensable for metaExpertPro-based metaproteomic analysis,
604 thus enabling direct comparison of metaproteomic data generated by metaExpertPro based on
605 different public databases.

606 **Methods**

607 ***Human fecal sample collection***

608 A total of 62 fecal samples were collected from 31 subjects without DLP and 31 subjects with
609 DLP (40–75 years old) from the Guangzhou Nutrition and Health Study (GNHS)³⁹. These
610 individuals had not received any antibiotic treatment in the two weeks before biomaterial
611 collections to avoid the effects of the antibiotic on the gut microbiome. The fecal samples were
612 immediately homogenized, stored on ice, and then transferred to -80 °C within 4 h. Additionally,
613 the corresponding metadata variables including age, gender, blood triglycerides (TG), total
614 cholesterol (TC), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein
615 cholesterol (HDL) were also collected either by questionnaire or blood biochemical
616 measurement. Dyslipidemia (DLP) was defined as one or more of the TG, TC, LDL, and HDL
617 were abnormal or medical treatment for DLP⁷³.

618 ***Metaproteomic protein extraction and trypsin digestion***

619 The gut microbiota was first enriched using differential centrifugation⁷⁴. In detail, about 200 mg
620 of feces were resuspended in 500 µL cold phosphate buffer (PBS) and centrifuged at 500 × g,
621 4°C for 5 min. Then the supernatant was transferred into a new tube. The above process was
622 repeated three times. All the supernatants were combined (about 1.5 mL) and centrifuged at 500
623 × g, 4°C for 10 min to remove the debris in the fecal samples. Then, the microbial cells were
624 collected by centrifugation at 18,000 × g, 4°C for 20 min. Next, the microbial pellets were used
625 for protein extraction⁷⁵. Briefly, 250 µL lysis buffer (4% w/v SDS and cOmplete Tablets (Roche)
626 in 50 mM Tris-HCl, pH = 8.0) was added into the microbial pellets and the mixture was boiled at
627 95 °C for 10 min. Then, the mixture was ultrasonicated at 40 KHz (SCIENTZ) for 1 h on ice.
628 Finally, to further discard the cell debris, the mixture was centrifuged at 18,000 × g for 5 min,
629 and the proteins were precipitated overnight at -20 °C using a 5-fold volume of acetone. Next,
630 the in-solution digestion method^{76,77} was performed as follows. After purifying (washing by
631 acetone) and re-dissolving (using 8 mM urea and 100 mM ammonium bicarbonate) the
632 precipitated proteins, about 50 µg proteins from each sample were reduced with 10 mM tris
633 (2-carboxyethyl) phosphine (TCEP, Adamas-beta) and then alkylated with 40 mM iodoacetamide
634 (IAA, Sigma-Aldrich). Proteins were pre-digested with 0.5 µg trypsin (Hualishi Tech) for 4 h at
635 32 °C. Then the proteins were further digested with another 0.5 µg trypsin for 16 h at 32 °C. The
636 tryptic peptides were desalting using solid-phase extraction plates (ThermoFisher Scientific,
637 SOLAµ™) and then freeze-dried for storage. Dried peptides were finally resuspended in a
638 solution (2% acetonitrile, 98% water, and 0.1% formic acid [FA]) before MS acquisition.

639 ***Metagenomic DNA extraction, sequencing, and gene prediction***

640 The metagenomic raw data was derived from the previous study⁷⁸. Briefly, the raw sequencing
641 reads were first filtered and trimmed with PRINSEQ (version 0.20.4)⁷⁹ for quality control. The
642 raw reads aligned to the human genome (*H. sapiens*, UCSC hg19) were removed using Bowtie2
643 (version 2.2.5)⁸⁰. Then, the remaining reads were used for metagenomic assembly using
644 MEGAHIT (version 1.2.9)⁸¹ and binning the contigs with MetaBAT (version 2.12.1)⁸² by default
645 parameters. We further clustered and de-replicated the Metagenome-Assembled Genome (MAGs)
646 at an estimated species level (ANI ≥ 95%) using dRep (version 3.0.0)⁸³. The minimum genome

647 completeness and maximum genome contamination were set to 75 and 25, respectively.
648 Protein-coding sequences (CDS) for each MAG were predicted and annotated with Prokka
649 (version 1.13.3)⁸⁴. All the predicted protein sequences were compiled to generate the MG protein
650 database. Cd-hit (version 4.8.1)⁸⁵ was used for the integration of MG and IGC+⁴⁹ or UHGP⁴⁸
651 database with the following parameters: -c 0.95 -n 5 -M 16000 -d 0 -T 32.

652 ***High-pH reversed-phase fractionation***

653 For the 62 fecal samples, approximately 5 µg peptides were collected from each tryptic peptide
654 sample to form a pooled sample for high-pH fractionation. The pooled sample was then
655 fractionated using high-pH reversed-phase liquid chromatography (LC). The mobile phase of
656 buffer A was water with 0.6% ammonia (pH = 10), and buffer B was 98% acetonitrile and 0.6%
657 ammonia (pH = 10). Specially, about 300 µg tryptic peptides were separated using a nanoflow
658 DIONEX Ultimate 3000 RSLC nano System (ThermoFisher Scientific) with an XBridge Peptide
659 BEH C18 column (300 Å, 5 µm × 4.6 mm × 250 mm) at 45 °C. A 60 min gradient from 5% to
660 35% buffer B with a flow rate of 1 mL/min was applied. A total of 60 fractions were collected
661 and further combined into 30 fractions. Finally, the fraction samples were freeze-dried and
662 re-dissolved in 2% acetonitrile with 98% water and 0.1% FA.

663 ***DDA mass spectrometry acquisition for library generation***

664 The fractionated peptides were first spiked with iRT (Biognosys)⁸⁶. For the timsTOF Pro (Bruker)
665 based DDA mass spectrometry acquisition, two gradients of 90 min and 60 min were used,
666 respectively. The 90 min LC gradient was linearly increased from 2% to 22% buffer B for 80 min,
667 followed by a second linear gradient from 22% to 35% buffer B for 10 min (buffer A: 0.1% FA in
668 water; buffer B: 0.1% FA in ACN). The 60 min LC gradient was linearly increased from 5% to
669 27% buffer B for 50 min, followed by a second linear gradient from 27% to 40% buffer B for 10
670 min. The peptides were loaded at 217.5 bar on a precolumn (5 µm, 100 Å, 5 mm × 300 µm I.D.)
671 in 0.1 % FA/water and then separated by a nanoElute UHPLC System (Bruker Daltonics)
672 equipped with an in-house packed 15 cm analytical column (75 µm ID, 1.9 µm 120 Å C18 beads)
673 at a flow rate of 300 nL/min. The timsTOF Pro was operated in ddaPASEF mode with 10
674 consecutive PASEF MS/MS scans after a full scan in a total cycle. The capillary voltage was set
675 to 1400 V. The MS and MS/MS spectra were acquired from 100 to 1700 m/z. The TIMS section
676 was operated with a 100 ms ramp time and a scan range of 0.6–1.6 V·s/cm². A polygon filter was
677 used to filter out singly charged ions. For all experiments, the quadrupole isolation width was set
678 to 2 Th for m/z < 700 and 3 Th for m/z > 800. The collision energy was ramped linearly as a
679 function of mobility from 20 eV at 1/K₀ = 0.6 V·s/cm² to 59 eV at 1/K₀ = 1.60 V·s/cm².

680 For the Orbitrap Exploris™ 480 mass spectrometer (ThermoFisher Scientific Inc.) based DDA
681 mass spectrometry acquisition, the fractionated peptides spiked with iRT were loaded onto a
682 pre-column (3 µm, 100 Å, 20 mm × 75 mm i.d., Thermo Fisher Scientific, USA) using a Thermo
683 UltiMateTM 3000 RSLCnano LC a U3000 LC system. The peptides were then
684 separated at a flow rate of 300 nL/min using a 60 min LC gradient on an in-house packed 15 cm
685 analytical column (75 µm ID, 1.9 µm, C18 beads) with a linear gradient from 5% to 28% buffer
686 B for 60 min. Next, the column was washed with 80% buffer B. The mobile phase B consisted of
687 0.1% formic acid in MS-grade ACN, while the mobile phase A consisted of 0.1% formic acid in
688 2% ACN and 98% MS-grade water. The eluted peptides were analyzed by an Exploris 480 MS

689 with the FAIMS Pro (High field asymmetric waveform ion mobility spectrometry) interfacing in
690 standard Data-dependent acquisition (DDA) acquisition mode. Compensation voltage was set at
691 two different CVs, -42 and -62 V, respectively. Gas flow was applied with 4 L/min with a spray
692 voltage set to 2.1 kV. The DDA was performed using the following parameters. MS1 resolution
693 was set at 60,000 at m/z 200 with a normalized AGC target of 300%, and the maximum injection
694 time was set to 20 ms. The scan range of MS1 ranged from 350–1200 m/z. For MS2, the
695 resolution was set to 15,000 with a normalized AGC target of 200%. The maximum injection
696 time was set as 20 ms for MS1. Dynamic exclusion was set at 30 s. Mass tolerance of \pm 10 ppm
697 was allowed, and the precursor intensity threshold was set at 2e4. The cycle time was 1 second,
698 and the top-abundance precursors (charge state 2–6) within an isolation window of 1.6 m/z were
699 considered for MS/MS analysis. For precursor fragmentation in HCD mode, a normalized
700 collision energy of 30% was used. All data were acquired in centroid mode using positive
701 polarity and peptide match and isotope exclusion were turned on.

702 We obtained a total of 90 DDA-MS raw data profiles. These included 30 profiles from timsTOF
703 Pro MS instrument with a 60 min gradient, 30 profiles from timsTOF Pro MS instrument with a
704 90 min gradient, and 30 profiles from Exploris 480 MS instrument with a 60 min gradient.

705 ***DIA mass spectrometry acquisition for peptide and protein quantification***

706 For the timsTOF Pro-based DIA-MS acquisition, 300 ng peptides were trapped at 217.5 bar on
707 the precolumn and then separated along the 60 min LC gradient same as the ddaPASEF LC
708 gradient mentioned above. The ion mobility range was limited to 0.7–1.3 V·s/cm². Four
709 precursor isolation windows were applied to each 100 ms diaPASEF scan. Fourteen of these
710 scans covered the doubly and triply charged peptides' diagonal scan line in the m/z ion mobility
711 plane. The precursor mass range 384–1087 m/z was covered by 28 m/z narrow windows with a 3
712 m/z overlap between adjacent ones. Other parameters were the same as the setting in the
713 ddaPASEF acquisition.

714 For the Exploris 480-based DIA-MS acquisition, 500 ng peptides were separated by the LC
715 methods with a slight modification from the DDA-MS LC methods. The initial phase B of the
716 gradient was increased from 5% to 7% to get a more effective time for separation. The Spray
717 voltage of FAIMS was set to 2.2 kV. The other FAIMS settings were consistent with those of the
718 DDA-MS acquisition. In DIA mode, full MS resolutions were set to 60,000 at m/z 200 and the
719 full MS AGC target was 300% with an IT to 50 ms. The mass range was set to 390–1010. The
720 AGC target value for fragment spectra was set at 2000%. 15 isolation windows of 15 Da were
721 used for -62V compensation voltage with an overlapped of 1 Da, and 19 isolation windows of 20
722 Da were used for -42V compensation voltage with an overlapped of 1 Da. The resolution was set
723 to 15,000 and the IT to 54 ms. The normalized collision energy was set at 32%.

724 Overall, 62 diaPASEF raw data profiles and 60 DIA-MS (Exploris 480) raw data profiles were
725 obtained for the human fecal samples.

726 ***Comparison of metaExpertPro with other metaproteomics software tools***

727 We firstly incorporated the comparison of DDA-MS-based peptide identifications among
728 ProteoStorm¹⁶, metaLab¹³, glaDIATOR⁴², and metaExpertPro using the same raw data, database,
729 and parameters. Specially, six DDA-MS files of human fecal samples from dataset PXD008738⁴²

730 were searched against the integrated gene catalog (IGC) database using ProteoStorm, glaDIator,
731 and metaExpertPro, respectively. Enzyme specificity was set to “Trypsin/P” with maximum one
732 missed cleavage. Precursor mass tolerance and fragment mass tolerance were set at 10 ppm and
733 0.02 Da, respectively. All the tests were performed on a computer with AMD EPYC hardware
734 and 512GB RAM.

735 ***Multivariate statistical analysis***

736 The intensity values at peptide, protein, functional and taxonomic levels were \log_{10} transformed
737 for statistical analysis. The reproducibility of the quantitative proteins, functions, and taxa in
738 biological replicate samples was estimated by Spearman correlation. The intensity comparisons
739 of the identified peptides and protein groups between glaDIator⁴² and metaExpertPro were
740 conducted using Wilcoxon Rank Sum Test. The COGs, KOs, human proteins, and species
741 significantly associated with DLP were determined by General Linear Model (GLM)⁸⁷ (adjust
742 the confounders of sex, age, and Bristol Stool Scale, *p*-value < 0.05 and | beta coefficient | > 0.2).
743 The differentially expressed human proteins, COGs, and species were identified by Wilcoxon
744 Rank Sum Test (*p*-value < 0.05). t-SNE was performed using the Rtsne package (version 4.1.3).
745 The co-expressed COGs and human proteins were identified using the Spearman correlation of
746 their abundance in 62 human fecal samples (| r_{Spearman} | \geq 0.2, Benjamini-Hochberg [B-H]
747 adjusted *p*-value <0.05).

748 **Declarations**

749 **Ethics approval and Consent to participate**

750 The study protocols of the Guangzhou Nutrition and Health Study were approved by the Ethics
751 Committee of the School of Public Health at Sun Yat-sen University and the Ethics Committee of
752 Westlake University. Written informed consent was obtained from all participants.

753

754 **Consent for publication**

755 Not applicable.

756

757 **Competing interests**

758 T.G. is the shareholder of Westlake Omics Inc. The remaining authors declare no competing
759 interests.

760

761 **Funding**

762 This work is supported by grants from the National Key R&D Program of China (No.
763 2022YF0608403).

764

765 **Authors' contributions**

766 T.G., J.Z., and Y.C. designed and supervised the project. Z.M., L.Z., and H.Z. collected the
767 samples and metadata. Y.S., Z.X., S.L., W.J., H.G., Y.X., L.Y., and X.C. generated the data. Y.S.,
768 Z.X., S.L., H.Z., and Y.Z. analyzed the data. Y.S., Z.X., S.L., and T.G. drafted the manuscript with
769 inputs from all co-authors. Y.S., Z.X., and S.L. contributed equally to this work.

770

771 **Acknowledgements**

772 We thank Dr. Fengchao Yu from the Alexey I. Nesvizhskii group at University of Michigan for
773 the assistance in establishing the pipeline. We thank Dr. Xu Zhang from the Daniel Figeys group
774 at University of Ottawa for generously providing the human gut gene catalog database, IGC+.
775 We thank Laura L. Elo group at University of Turku and Åbo Akademi University for their
776 support in the processing of glaDIATOR. We thank Dr. Guojie Cui for the discussion. We thank
777 Westlake University Supercomputer Center for assistance in data generation and storage.

778 **References**

- 779 1. Vos, W. M. de, Tilg, H., Hul, M. V. & Cani, P. D. Gut microbiome and health: mechanistic
780 insights. *Gut* **71**, 1020–1032 (2022).
- 781 2. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. *Nat Rev
782 Microbiol* **19**, 55–71 (2021).
- 783 3. Kleiner, M. Metaproteomics: Much More than Measuring Gene Expression in Microbial
784 Communities. *mSystems* **4**, e00115-19 (2019).
- 785 4. Long, S. *et al.* Metaproteomics characterizes human gut microbiome function in colorectal
786 cancer. *npj Biofilms Microbiomes* **6**, 1–10 (2020).
- 787 5. Rabe, A. *et al.* Metaproteomics analysis of microbial diversity of human saliva and tongue
788 dorsum in young healthy individuals. *Journal of Oral Microbiology* **11**, (2019).
- 789 6. Heyer, R. *et al.* Challenges and perspectives of metaproteomic data analysis. *Journal of
790 Biotechnology* **261**, 24–36 (2017).
- 791 7. Craig, R. & Beavis, R. C. TANDEM: matching proteins with tandem mass spectra.
792 *Bioinformatics* **20**, 1466–1467 (2004).
- 793 8. Geer, L. Y. *et al.* Open Mass Spectrometry Search Algorithm. *J. Proteome Res.* **3**, 958–964
794 (2004).
- 795 9. Kim, S. & Pevzner, P. A. MS-GF+ makes progress towards a universal database search tool
796 for proteomics. *Nat Commun* **5**, 5277 (2014).
- 797 10. Eng, J. K., Jahan, T. A. & Hoopmann, M. R. Comet: An open-source MS/MS sequence
798 database search tool. *PROTEOMICS* **13**, 22–24 (2013).
- 799 11. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized
800 p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol* **26**,
801 1367–1372 (2008).
- 802 12. Zhang, X. *et al.* MetaPro-IQ: a universal metaproteomic approach to studying human and
803 mouse gut microbiota. *Microbiome* **4**, 31 (2016).
- 804 13. Cheng, K. *et al.* MetaLab: an automated pipeline for metaproteomic data analysis.
805 *Microbiome* **5**, 157 (2017).
- 806 14. Liao, B. *et al.* iMetaLab 1.0: a web platform for metaproteomics data analysis.
807 *Bioinformatics* **34**, 3954–3956 (2018).
- 808 15. Muth, T. *et al.* The MetaProteomeAnalyzer: a powerful open-source software suite for
809 metaproteomics data analysis and interpretation. *J Proteome Res* **14**, 1557–1565 (2015).
- 810 16. Beyter, D., Lin, M. S., Yu, Y., Pieper, R. & Bafna, V. ProteoStorm: An Ultrafast
811 Metaproteomics Database Search Framework. *Cell Systems* **7**, 463-467.e6 (2018).
- 812 17. Krasny, L. & H. Huang, P. Data-independent acquisition mass spectrometry (DIA-MS) for
813 proteomic applications in oncology. *Molecular Omics* **17**, 29–42 (2021).
- 814 18. Zhang, F., Ge, W., Ruan, G., Cai, X. & Guo, T. Data-Independent Acquisition Mass
815 Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. *PROTEOMICS* **20**,
816 1900276 (2020).
- 817 19. Hu, A., Noble, W. S. & Wolf-Yadlin, A. Technical advances in proteomics: new
818 developments in data-independent acquisition. Preprint at
819 <https://doi.org/10.12688/f1000research.7042.1> (2016).
- 820 20. Aakko, J. *et al.* Data-Independent Acquisition Mass Spectrometry in Metaproteomics of Gut
821 Microbiota—Implementation and Computational Analysis. *J. Proteome Res.* **19**, 432–436

822 (2020).

823 21. Pietilä, S., Suomi, T. & Elo, L. L. *ISME COMMUN.* **2**, 1–8 (2022).

824 22. Meier, F. *et al.* diaPASEF: parallel accumulation–serial fragmentation combined with
825 data-independent acquisition. *Nat Methods* **17**, 1229–1236 (2020).

826 23. Griss, J. Spectral library searching in proteomics. *PROTEOMICS* **16**, 729–740 (2016).

827 24. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I.
828 MSFagger: ultrafast and comprehensive peptide identification in mass spectrometry–based
829 proteomics. *Nat Methods* **14**, 513–520 (2017).

830 25. Analysis of DIA proteomics data using MSFagger-DIA and FragPipe computational
831 platform | Nature Communications. <https://www.nature.com/articles/s41467-023-39869-5>.

832 26. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural
833 networks and interference correction enable deep proteome coverage in high throughput. *Nat
834 Methods* **17**, 41–44 (2020).

835 27. Demichev, V. *et al.* High sensitivity dia-PASEF proteomics with DIA-NN and FragPipe.
836 2021.03.08.434385 Preprint at <https://doi.org/10.1101/2021.03.08.434385> (2021).

837 28. Mesuere, B. *et al.* UniPept: Tryptic Peptide-Based Biodiversity Analysis of Metaproteome
838 Samples. *J. Proteome Res.* **11**, 5773–5780 (2012).

839 29. Mesuere, B., Van der Jeugt, F., Devreese, B., Vandamme, P. & Dawyndt, P. The unique
840 peptidome: Taxon-specific tryptic peptides as biomarkers for targeted metaproteomics.
841 *PROTEOMICS* **16**, 2313–2318 (2016).

842 30. Nalpas, N. *et al.* An integrated workflow for enhanced taxonomic and functional coverage
843 of the mouse fecal metaproteome. *Gut Microbes* **13**, 1994836 (2021).

844 31. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2.
845 *Genome Biology* **20**, 257 (2019).

846 32. Chen, Y. *et al.* Preterm infants harbour diverse Klebsiella populations, including atypical
847 species that encode and produce an array of antimicrobial resistance- and virulence- associated
848 factors. *Microb. Genomics* **6**, 000377 (2020).

849 33. Heyer, R. *et al.* A Robust and Universal Metaproteomics Workflow for Research Studies
850 and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the
851 MetaProteomeAnalyzer. *Frontiers in Microbiology* **10**, (2019).

852 34. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using
853 DIAMOND. *Nat Methods* **12**, 59–60 (2015).

854 35. Mesuere, B. *et al.* High-throughput metaproteomics data analysis with UniPept: A tutorial.
855 *Journal of Proteomics* **171**, 11–22 (2018).

856 36. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J.
857 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at
858 the Metagenomic Scale. *Mol Biol Evol* **38**, 5825–5829 (2021).

859 37. Huerta-Cepas, J. *et al.* eggNOG 5.0: a hierarchical, functionally and phylogenetically
860 annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Research*
861 **47**, D309–D314 (2019).

862 38. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for
863 Functional Characterization of Genome and Metagenome Sequences. *Journal of Molecular
864 Biology* **428**, 726–731 (2016).

865 39. Zhang, Z.-Q. *et al.* Association between dietary intake of flavonoid and bone mineral

866 density in middle aged and elderly Chinese women and men. *Osteoporos Int* **25**, 2417–2425
867 (2014).

868 40. Zhang, X. *et al.* Deep Metaproteomics Approach for the Study of Human Microbiomes.
869 *Anal. Chem.* **89**, 9407–9415 (2017).

870 41. Schiebenhoefer, H. *et al.* A complete and flexible workflow for metaproteomics data
871 analysis based on MetaProteomeAnalyzer and Prophane. *Nat Protoc* **15**, 3212–3239 (2020).

872 42. Pietilä, S., Suomi, T. & Elo, L. L. Introducing untargeted data-independent acquisition for
873 metaproteomics of complex microbial samples. *ISME COMMUN.* **2**, 1–8 (2022).

874 43. Tabb, D. L., Friedman, D. B. & Ham, A.-J. L. Verification of automated peptide
875 identifications from proteomic tandem mass spectra. *Nat Protoc* **1**, 2213–2222 (2006).

876 44. Kleiner, M. *et al.* Assessing species biomass contributions in microbial communities via
877 metaproteomics. *Nat Commun* **8**, 1558 (2017).

878 45. Li, J. *et al.* An integrated catalog of reference genes in the human gut microbiome. *Nat*
879 *Biotechnol* **32**, 834–841 (2014).

880 46. Sasaki, Y. The truth of the F-measure.

881 47. Kleikamp, H. B. C. *et al.* Database-independent de novo metaproteomics of complex
882 microbial communities. *Cell Systems* **12**, 375–383.e5 (2021).

883 48. Almeida, A. *et al.* A unified catalog of 204,938 reference genomes from the human gut
884 microbiome. *Nat Biotechnol* **39**, 105–114 (2021).

885 49. Zhang, X. *et al.* Metaproteomics reveals associations between microbiome and intestinal
886 extracellular vesicle proteins in pediatric inflammatory bowel disease. *Nat Commun* **9**, 2873
887 (2018).

888 50. Structure, Function and Diversity of the Healthy Human Microbiome. *Nature* **486**, 207–214
889 (2012).

890 51. Zhernakova, A. *et al.* Population-based metagenomics analysis reveals markers for gut
891 microbiome composition and diversity. *Science* **352**, 565–569 (2016).

892 52. Zhang, X. *et al.* Sex- and age-related trajectories of the adult human gut microbiota shared
893 across populations of different ethnicities. *Nat Aging* **1**, 87–100 (2021).

894 53. Gacesa, R. *et al.* Environmental factors shaping the gut microbiome in a Dutch population.
895 *Nature* 1–8 (2022) doi:10.1038/s41586-022-04567-7.

896 54. Verberkmoes, N. C. *et al.* Shotgun metaproteomics of the human distal gut microbiota.
897 *ISME J* **3**, 179–189 (2009).

898 55. Ference, B. A. *et al.* Low-density lipoproteins cause atherosclerotic cardiovascular disease.
899 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the
900 European Atherosclerosis Society Consensus Panel. *Eur Heart J* **38**, 2459–2472 (2017).

901 56. Nontraditional Risk Factors in Cardiovascular Disease Risk Assessment: Updated Evidence
902 Report and Systematic Review for the US Preventive Services Task Force | Cardiology | JAMA |
903 JAMA Network. <https://jamanetwork.com/journals/jama/fullarticle/2687224>.

904 57. Brial, F., Le Lay, A., Dumas, M.-E. & Gauguier, D. Implication of gut microbiota
905 metabolites in cardiovascular and metabolic diseases. *Cell Mol Life Sci* **75**, 3977–3990 (2018).

906 58. Lan, Y. *et al.* Sea buckthorn polysaccharide ameliorates high-fat diet induced mice
907 neuroinflammation and synaptic dysfunction via regulating gut dysbiosis. *International Journal*
908 *of Biological Macromolecules* **236**, 123797 (2023).

909 59. Wei, B. *et al.* Probiotic-fermented tomato alleviates high-fat diet-induced obesity in mice:

910 Insights from microbiome and metabolomics. *Food Chemistry* **436**, 137719 (2024).

911 60. A unique profile of gut microbiota associated with metabolic syndrome: a remote island
912 most afflicted by obesity in Japan. <https://www.researchsquare.com> (2022)
913 doi:10.21203/rs.3.rs-1484117/v1.

914 61. Huang, J. *et al.* Enterococcus faecium R-026 combined with Bacillus subtilis R-179
915 alleviate hypercholesterolemia and modulate the gut microbiota in C57BL/6 mice. *FEMS
916 Microbiology Letters* fnad118 (2023) doi:10.1093/femsle/fnad118.

917 62. Effects of a ferment soy product on the adipocyte area reduction and dyslipidemia control in
918 hypercholesterolemic adult male rats | Lipids in Health and Disease | Full Text.
919 <https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-7-50>.

920 63. Ali, S. M., Salem, F. E., Aboulwafa, M. M. & Shawky, R. M. Hypolipidemic activity of
921 lactic acid bacteria: Adjunct therapy for potential probiotics. *PLOS ONE* **17**, e0269953 (2022).

922 64. Zhang, Q., Kim, J.-H., Kim, Y. & Kim, W. Lactococcus chungangensis CAU 28 alleviates
923 diet-induced obesity and adipose tissue metabolism in vitro and in mice fed a high-fat diet.
924 *Journal of Dairy Science* **103**, 9803–9814 (2020).

925 65. Hu, R. *et al.* Extracts of Ganoderma lucidum attenuate lipid metabolism and modulate gut
926 microbiota in high-fat diet fed rats. *Journal of Functional Foods* **46**, 403–412 (2018).

927 66. Yahyaoui, R. & Pérez-Frías, J. Amino Acid Transport Defects in Human Inherited
928 Metabolic Disorders. *Int J Mol Sci* **21**, 119 (2019).

929 67. Zhang, Q. *et al.* Comparison of gut microbiota between adults with autism spectrum
930 disorder and obese adults. *PeerJ* **9**, e10946 (2021).

931 68. Xu, W. *et al.* Strain-level screening of human gut microbes identifies Blautia producta as a
932 new anti-hyperlipidemic probiotic. *Gut Microbes* **15**, 2228045 (2023).

933 69. Pandey, G. K. *et al.* Altered Circulating Levels of Retinol Binding Protein 4 and
934 Transthyretin in Relation to Insulin Resistance, Obesity, and Glucose Intolerance in Asian
935 Indians. *Endocrine Practice* **21**, 861–869 (2015).

936 70. Rai, S., Bhatia, V. & Bhatnagar, S. Drug repurposing for hyperlipidemia associated
937 disorders: An integrative network biology and machine learning approach. *Computational
938 Biology and Chemistry* **92**, 107505 (2021).

939 71. Norouzirad, R., González-Muniesa, P. & Ghasemi, A. Hypoxia in Obesity and Diabetes:
940 Potential Therapeutic Effects of Hyperoxia and Nitrate. *Oxidative Medicine and Cellular
941 Longevity* **2017**, e5350267 (2017).

942 72. Peroxiredoxin 4 (PRDX4): Its critical in vivo roles in animal models of metabolic syndrome
943 ranging from atherosclerosis to nonalcoholic fatty liver disease - Yamada - 2018 - Pathology
944 International - Wiley Online Library. <https://onlinelibrary.wiley.com/doi/full/10.1111/pin.12634>.

945 73. 2016 Chinese guidelines for the management of dyslipidemia in adults. *J Geriatr Cardiol*
946 **15**, 1–29 (2018).

947 74. Tanca, A., Palomba, A., Pisanu, S., Addis, M. F. & Uzzau, S. Enrichment or depletion? The
948 impact of stool pretreatment on metaproteomic characterization of the human gut microbiota.
949 *Proteomics* **15**, 3474–3485 (2015).

950 75. Differential Lysis Approach Enables Selective Extraction of Taxon-Specific Proteins for Gut
951 Metaproteomics - PubMed. <https://pubmed.ncbi.nlm.nih.gov/32096399/>.

952 76. Zhang, X. *et al.* Assessing the impact of protein extraction methods for human gut
953 metaproteomics. *J Proteomics* **180**, 120–127 (2018).

954 77. Gonzalez, C. G. *et al.* High-Throughput Stool Metaproteomics: Method and Application to
955 Human Specimens. *mSystems* **5**, e00200-20 (2020).

956 78. Shuai, M. *et al.* Human Gut Antibiotic Resistome and Progression of Diabetes. *Advanced*
957 *Science* **9**, 2104965 (2022).

958 79. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets.
959 *Bioinformatics* **27**, 863–864 (2011).

960 80. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**,
961 357–359 (2012).

962 81. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast
963 single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph.
964 *Bioinformatics* **31**, 1674–1676 (2015).

965 82. Kang, D. D. *et al.* MetaBAT 2: an adaptive binning algorithm for robust and efficient
966 genome reconstruction from metagenome assemblies. *PeerJ* **7**, e7359 (2019).

967 83. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate
968 genomic comparisons that enables improved genome recovery from metagenomes through
969 de-replication. *ISME J* **11**, 2864–2868 (2017).

970 84. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069
971 (2014).

972 85. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of
973 protein or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).

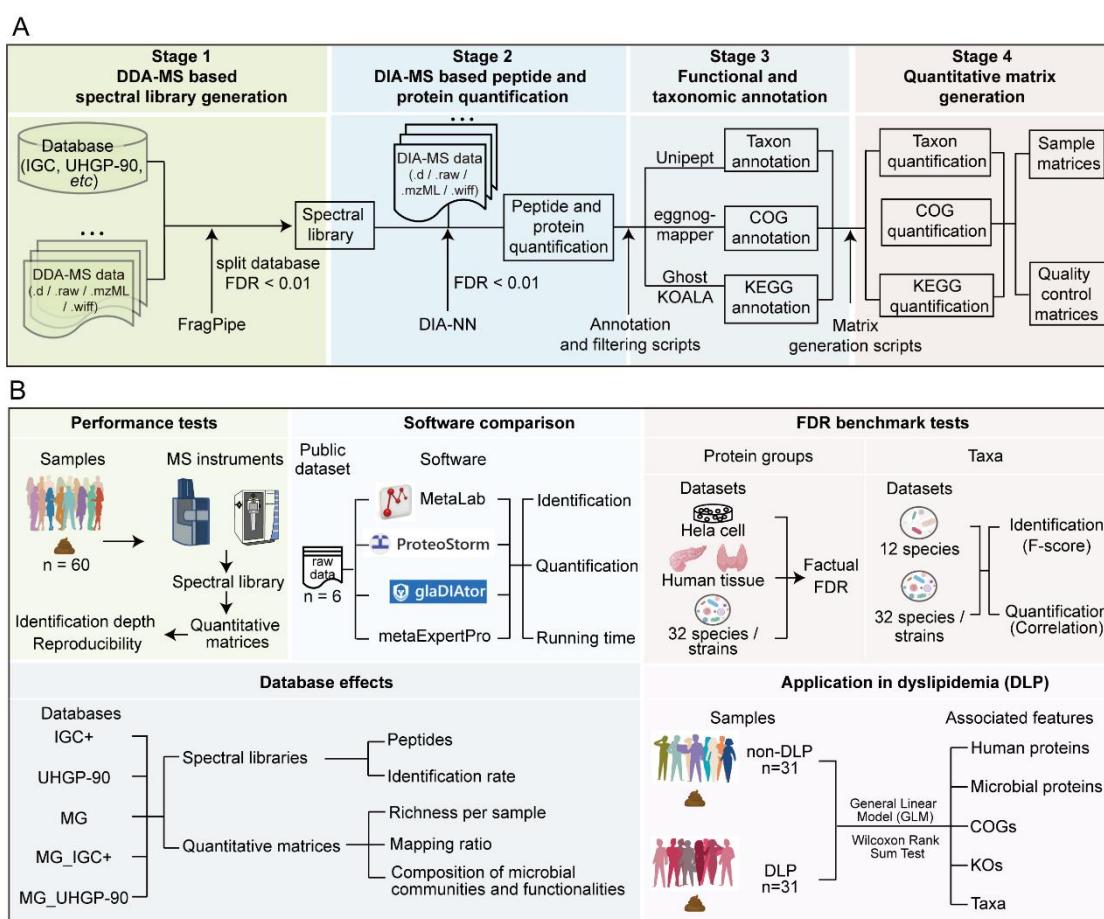
974 86. Escher, C. *et al.* Using iRT, a normalized retention time for more targeted measurement of
975 peptides. *Proteomics* **12**, 1111–1121 (2012).

976 87. Nelder, J. A. & Wedderburn, R. W. M. Generalized Linear Models. *Journal of the Royal*
977 *Statistical Society. Series A (General)* **135**, 370–384 (1972).

978

979 **Main figures**

980 **Figure 1**



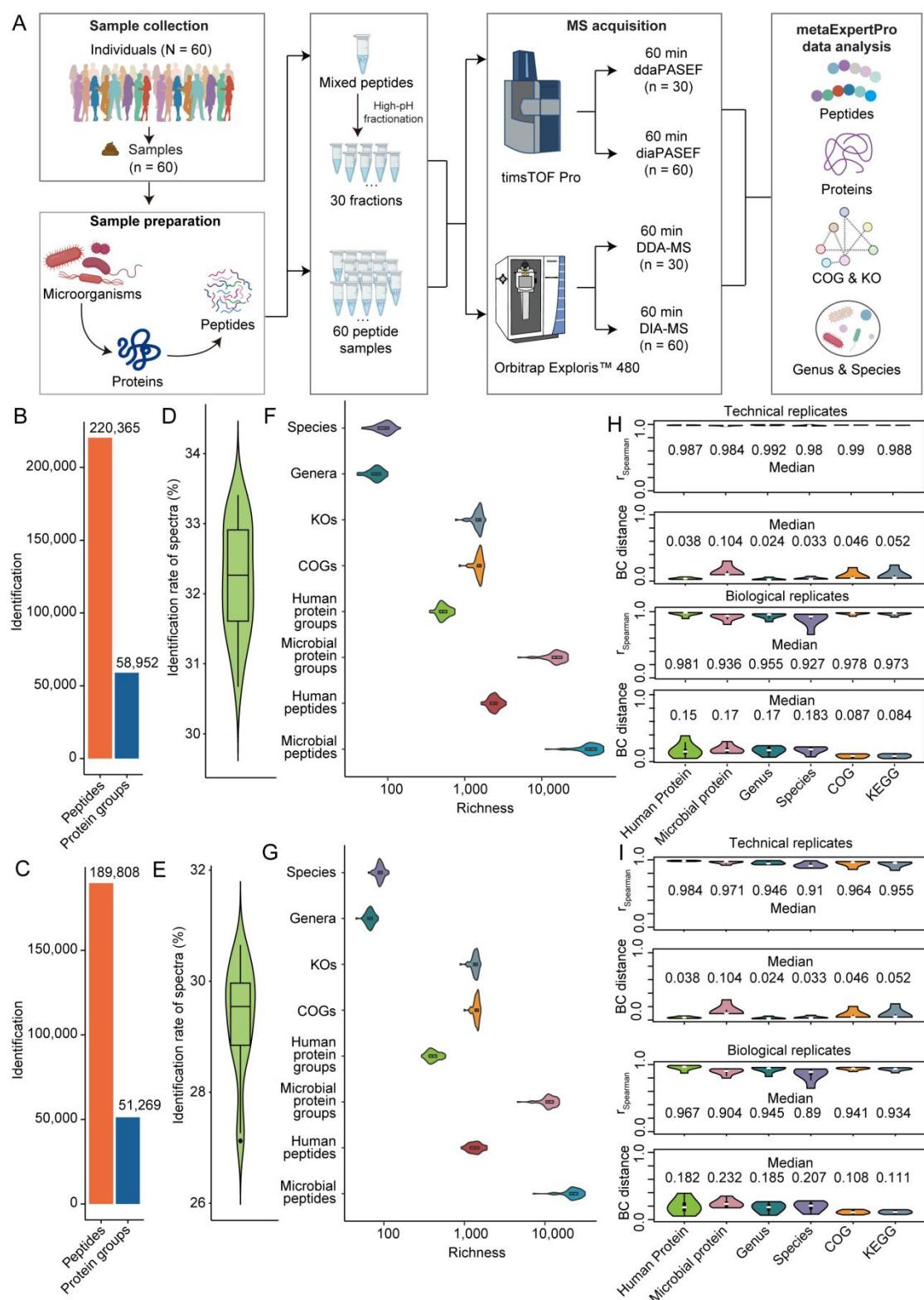
981

982 **Figure 1 Overview of computational workflow and performance tests of metaExpertPro.**

983 (A) Overview of metaExpertPro workflow. The metaExpertPro workflow consists of four stages,
984 including DDA-MS based spectral library generation, DIA-MS based peptide and protein
985 quantification, functional and taxonomic annotation, as well as quantitative matrix generation.
986 Stage 1 depicts the spectral library generation process using FragPipe software. Detailed
987 procedures are described in Methods. DDA-MS raw data in .d, .raw, .mzML, .wiff formats are all
988 compatible. In stage 2, the peptides and proteins are quantified based on DIA-MS data and the
989 spectral library using DIA-NN. In stage 3, the taxa, COGs, and KEGGs are annotated by UniPept,
990 eggNOG-mapper, and GhostKOALA, respectively. The annotation results are then filtered through
991 the in-house filtering scripts. In stage 4, the quantitative matrices of subject samples and quality
992 control samples at taxa, COG, and KEGG levels are generated using matrix generation scripts.
993 (B) Overview of performance tests of metaExpertPro. The identification depth and
994 reproducibility of metaExpertPro were assessed in 60 human fecal samples, with MS raw data
995 acquired using both timsTOF Pro and Orbitrap instruments. The results of identification and
996 quantification, as well as running time were compared among MetaLab, ProteoStorm, glaDIATOR,
997 and metaExpertPro software tools utilizing a public dataset. FDR benchmark tests were
998 performed at both the protein group and taxa levels using multiple datasets. At the protein group
999 level, factual FDR was employed to gauge the accuracy of protein group identification. At the

1000 taxon level, the F-score was calculated for the identification accuracy test, while the correlation
1001 was computed for the quantification accuracy test. The impact of databases on spectral libraries
1002 and quantitative matrices was assessed using IGC+, UHGP_90, MG, MG_IGC, and
1003 MG_UHGP-90 databases. Finally, metaExpertPro was employed for metaproteomics data
1004 analysis on dyslipidemia (DLP) and non-DLP samples to characterize DLP-associated features at
1005 the human protein, microbial protein, COG, KO, and taxon levels.

1006 **Figure 2**



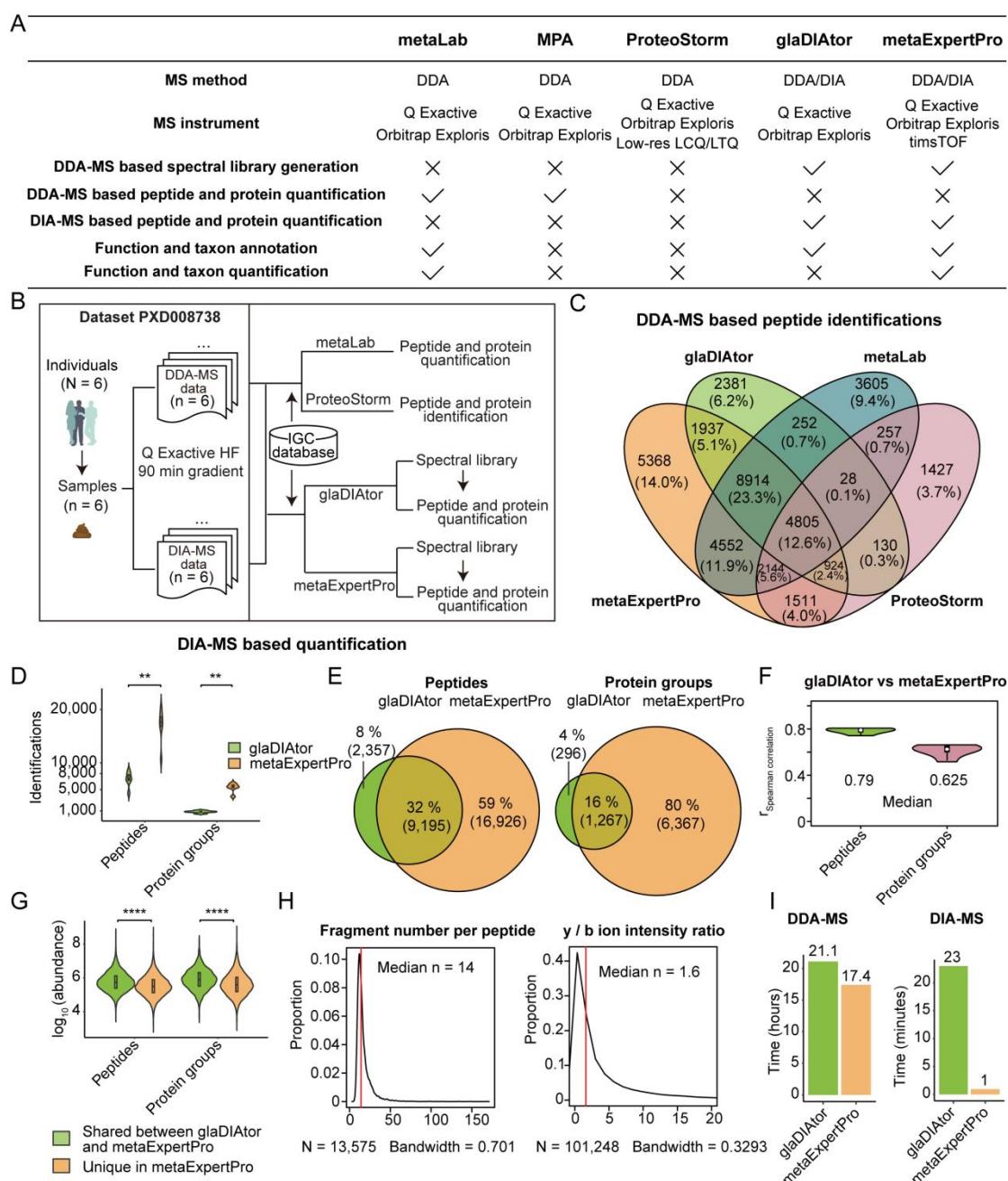
1007

1008 **Figure 2 In-depth identification and high reproducibility of the metaExpertPro workflow**
 1009 **in the metaproteomic analysis of human fecal samples.**

1010 (A) Experimental design including sample collection, sample preparation, MS acquisition, and
 1011 metaExpertPro data analysis of human fecal samples. A total of 60 peptide samples were

1012 obtained from 60 human fecal samples after the sample preparation process. For the DDA-MS
1013 based spectral library generation, the 60 peptide samples were firstly mixed. Then, the mixed
1014 peptides were fractionated into 30 fractions for DDA-MS acquisition. For DIA-MS based
1015 peptide and protein quantification, all 60 peptide samples were used for DIA-MS acquisition.
1016 Two types of mass spectrometers including timsTOF Pro and Orbitrap Exploris™ 480 were
1017 applied for both DDA-MS and DIA-MS acquisition. (B–C) Identification performance of
1018 peptides and protein groups in spectral libraries based on 30 DDA-MS runs on timsTOF Pro (B)
1019 or Orbitrap Exploris™ 480 (C) MS spectrometer. (D–E) Identification rate of the MS spectra
1020 acquired from 60 DIA-MS runs collected on timsTOF Pro (D) or Orbitrap Exploris™ 480 (E)
1021 MS spectrometer. The y-axis stands for the identification rate of acquired MS spectra (%). (F–G)
1022 The richness per sample detected on timsTOF Pro (F) or Orbitrap Exploris™ 480 (G) instrument.
1023 The x-axis reports the richness per sample at each level. (H–I) Pairwise Spearman correlation
1024 and Bray-Curtis (BC) distance between five pairs of technical replicates and six pairs of
1025 biological replicates based on timsTOF Pro (H) or Orbitrap Exploris™ 480 (I) instrument.

1026 **Figure 3**



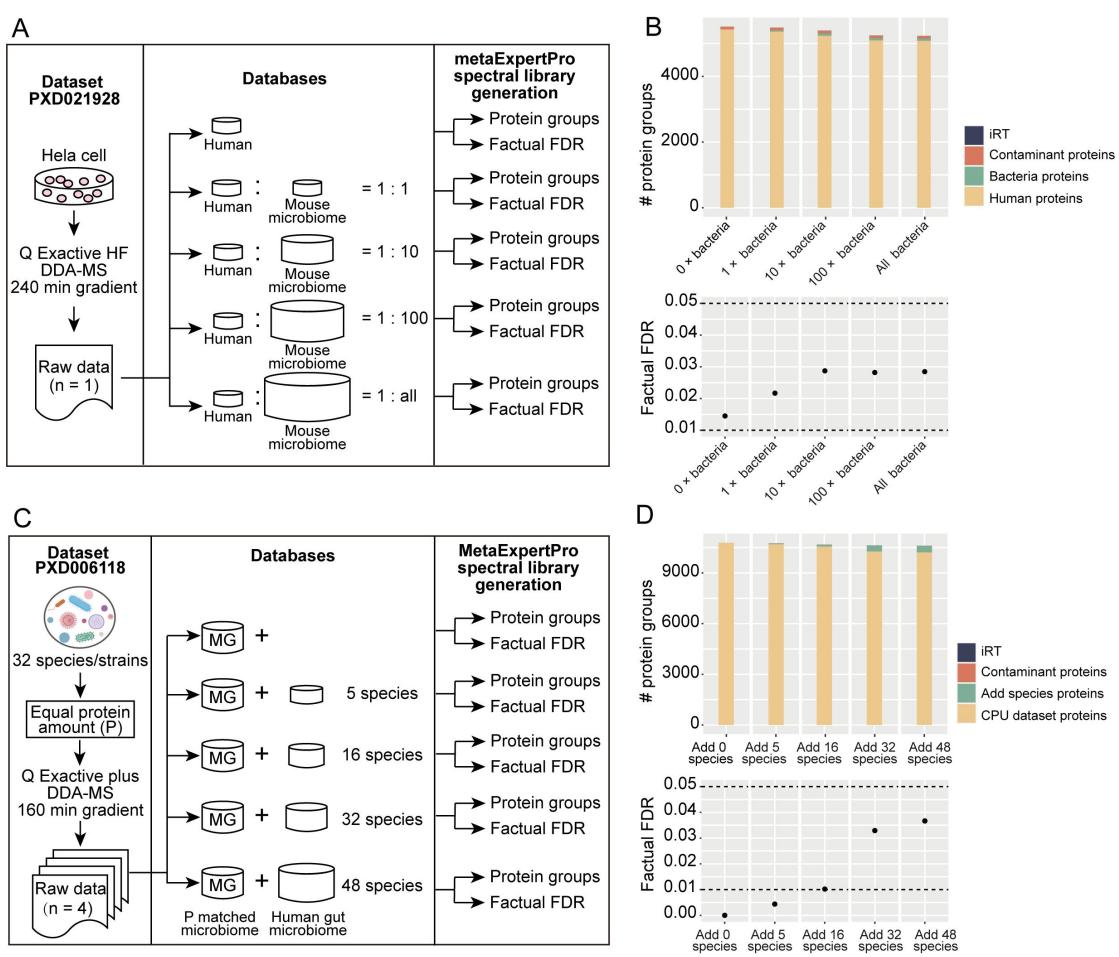
1027

1028 **Figure 3 Comparison of metaExpertPro with other metaproteomics software tools.**

1029 (A) Comparison of the application situations among metaLab, MetaProteomeAnalyzer (MPA),
1030 ProteoStorm, glaDIAtor and metaExpertPro. (B) Experimental design of the comparison between
1031 two software packages. The DDA-MS and DIA-MS data from dataset PXD008738 and the
1032 integrated gene catalog database (IGC) database were used for the measurement of peptides and
1033 protein groups by the metaLab, ProteoStorm, glaDIAtor, or metaExpertPro. (C) Comparison of
1034 peptide identifications by metaLab, ProteoStorm, glaDIAtor, and metaExpertPro. (D) The
1035 number of peptides and protein groups quantified by glaDIAtor and metaExpertPro. (E) The
1036 overlapped peptides or protein groups quantified by glaDIAtor and metaExpertPro. (F) The
1037 Spearman correlation of the abundance of peptides and protein groups quantified by both

1038 glaDIATOR and metaExpertPro. (G) Comparison of the intensity of peptides or protein groups
1039 identified by both glaDIATOR and metaExpertPro or identified by metaExpertPro only. (H)
1040 Density plots of the fragment number and the y/b ion intensity ratio of each peptide. The red
1041 line shows the median of the fragment number per peptide or the y/b ion intensity ratio. (I)
1042 Comparison of the running time between gladiator and metaExpertPro in DDA-MS based
1043 spectral library generation and DIA-MS based quantification. The tests were performed using six
1044 DDA-MS and six DIA-MS raw data of human fecal samples in dataset PXD008738 on AMD
1045 EPYC hardware and a 512G RAM computer. p value: * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$,
1046 **** $p < 0.0001$.

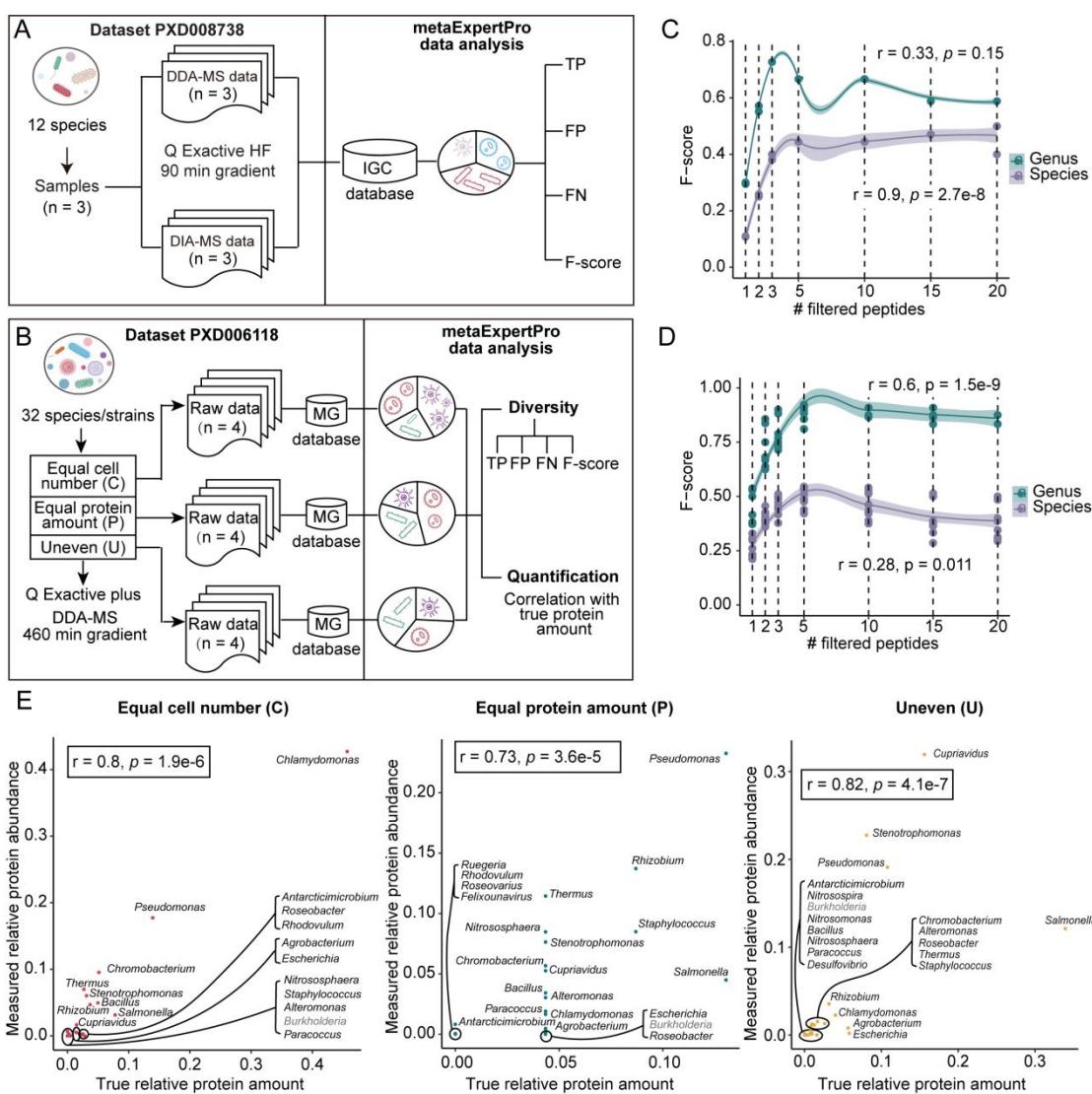
1047 **Figure 4**



1049 **Figure 4 Benchmark test of protein group identifications of metaExpertPro.**

1050 (A) The experimental design of the benchmark test for protein group identification based on Hela
1051 cell sample. The DDA-MS data of Hela cell from dataset PXD021928, and the databases
1052 containing human proteins supplemented with different sizes of mouse microbiome catalog were
1053 used for spectral library generation using metaExpertPro. (B) The number and factual FDR of the
1054 protein groups identified from HeLa cell MS raw data searching against the human protein
1055 database supplemented with 0×, 1×, 10×, 100×, and all the mouse microbiome catalog (~2.6
1056 million proteins), respectively. (C) The experimental design of the benchmark test for protein
1057 group identification based on bacteria mixture samples. The DDA-MS data of 32-species mixture
1058 from dataset PXD006118 (P: equal protein amount) were searched against databases containing
1059 P matched metagenomic database supplemented with 0, 5, 16, 32, and 48 human gut microbial
1060 species databases, respectively. (D) The number and factual FDR of protein groups in each
1061 subset test is present. The dashed lines depict the factual FDR of 0.05 and 0.01.

1062 **Figure 5**



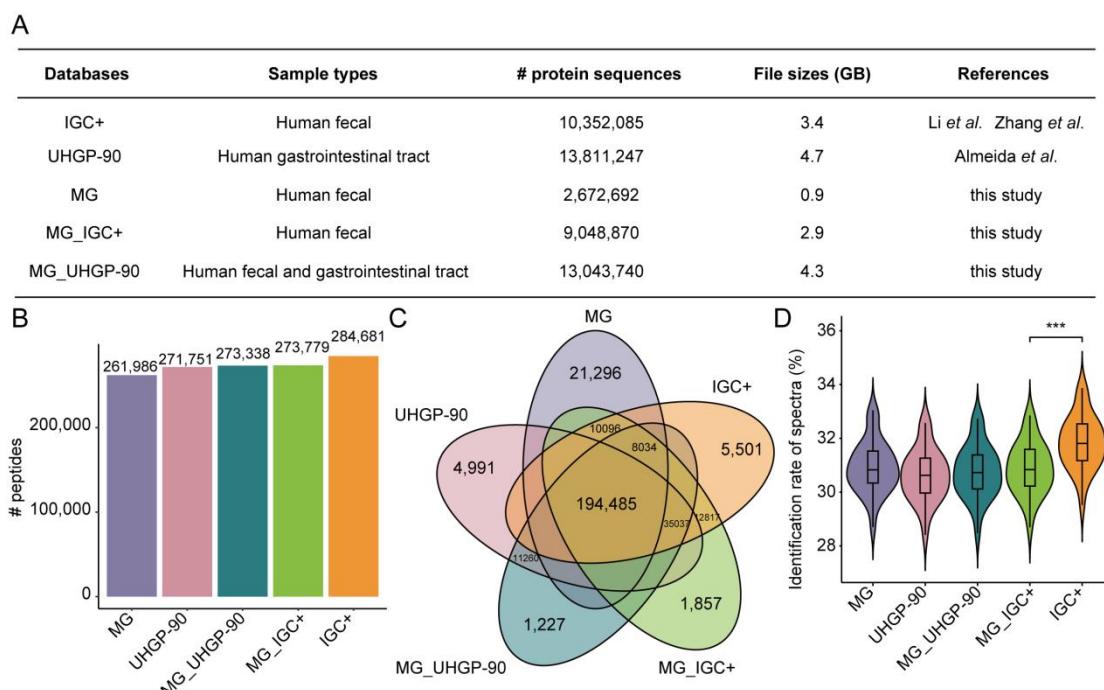
1063

1064 **Figure 5 Taxonomic accuracy estimation of metaExpertPro.**

1065 (A–B) The experimental design of the benchmark tests for taxa based on the 12-mix dataset
1066 (PXD008738) (A) and CPU dataset (C: equal cell number; P: equal protein amount; U: uneven)
1067 (PXD006118) (B). The figure depicts the original samples, the MS instrument, MS gradient, and
1068 MS acquisition modes applied in the 12-mix dataset (A) and CPU dataset (B). The 12-mix MS
1069 data were searched against the integrated gene catalog (IGC) database, while the CPU data were
1070 searched against the matched metagenomic database. The true positive (TP), false positive (FP),
1071 false negative (FN), and F-score of genera and species in each sample were calculated for both
1072 datasets. The measured relative abundance of genera or species was correlated with the true
1073 protein amount in the CPU dataset (B). (C–D) F-score of genera or species filtered by different
1074 numbers of corresponded peptides based on 12-mix MS data (C) or CPU MS data (D) using
1075 metaExpertPro. The F-score is the harmonic mean of precision and recall. The x-axis represents
1076 the minimum number of distinct peptides corresponding to genera or species. The y-axis displays
1077 the F-score of genera or species corresponding to the peptide count cutoff. The lines are
1078 smoothed by LOESS regression. (E) Spearman correlation between the true relative protein

1079 amount and the relative protein abundance of genera measured by metaExpertPro in the CPU
1080 dataset. The genera were filtered by containing at least five distinct peptides. Genera shown in
1081 grey indicate their absence in the UniPept database.

1082 **Figure 6**

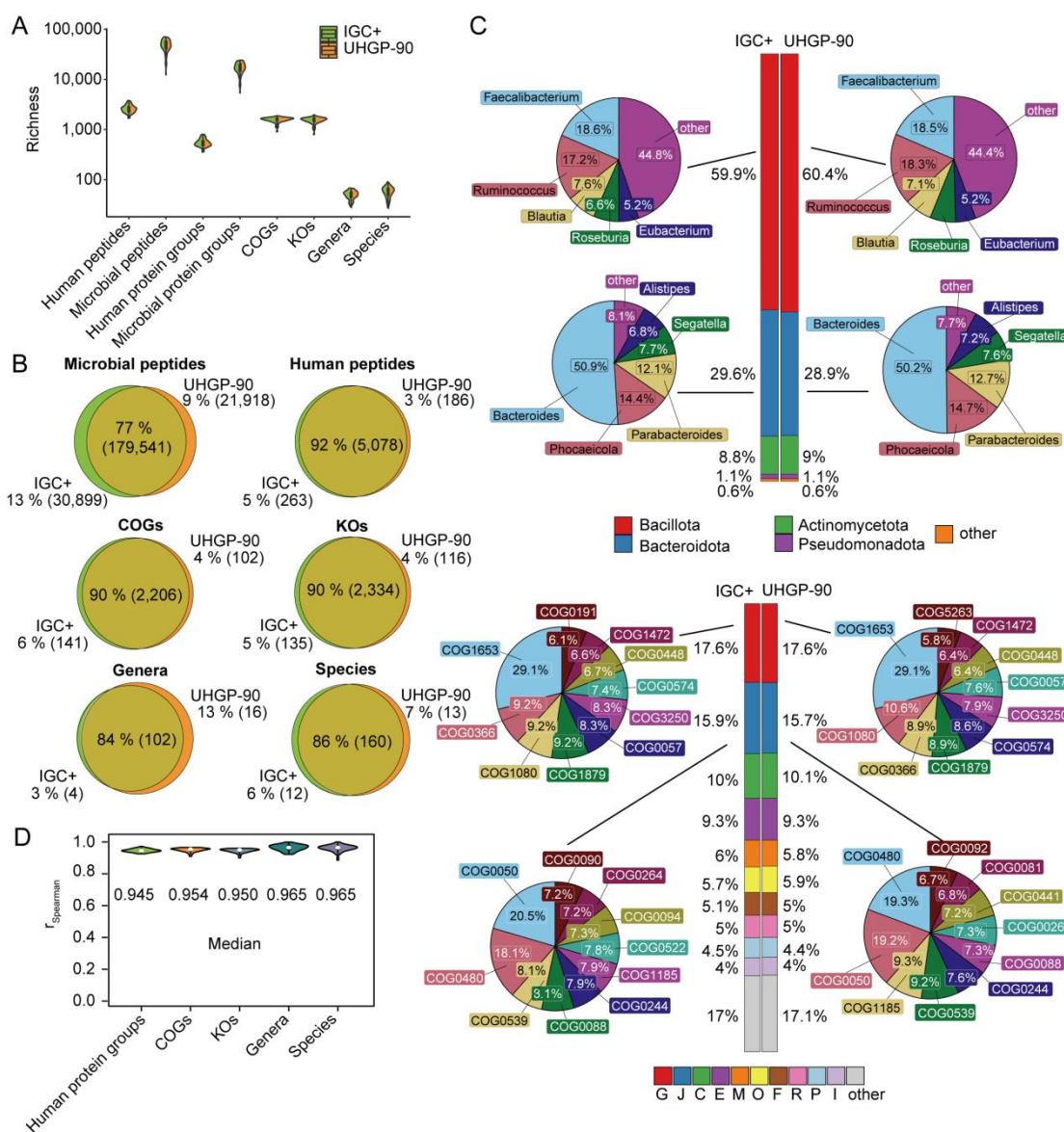


1083

1084 **Figure 6 Comparison of the spectral libraries generated based on five different databases**
1085 **and DDA-MS data from human fecal samples.**

1086 (A) The table lists the basic information of five protein databases, including IGC+, UHGP-90,
1087 MG, MG_IGC+, and MG_UHGP-90. The IGC+ database is the integrated gene catalog of
1088 human gut microbiome supplement with seven human gut fungal species, NCBI Virus, and gut
1089 microbial gene catalog of 28 mucosal-luminal interface samples. The UHGP-90 database is the
1090 Unified Human Gastrointestinal Protein catalog (UHGP-90) filtered by 90% protein identity. MG
1091 database is the matched metagenomic protein catalog database from 62 human feces. The
1092 MG_IGC+ and MG_UHGP-90 are the merged databases using MG and IGC+ or UHGP-90,
1093 respectively. The number of total peptides (B), the shared and unique peptides (C), and the
1094 identification rate of acquired MS spectra in each DDA-MS profile (D) in five spectral libraries
1095 were generated based on five databases and 30 ddaPASEF MS data (90 min gradient) from 62
1096 human fecal samples. *p* value: * *p* < 0.05; ** *p* < 0.01; *** *p* < 0.001, **** *p* < 0.0001.

1097 **Figure 7**

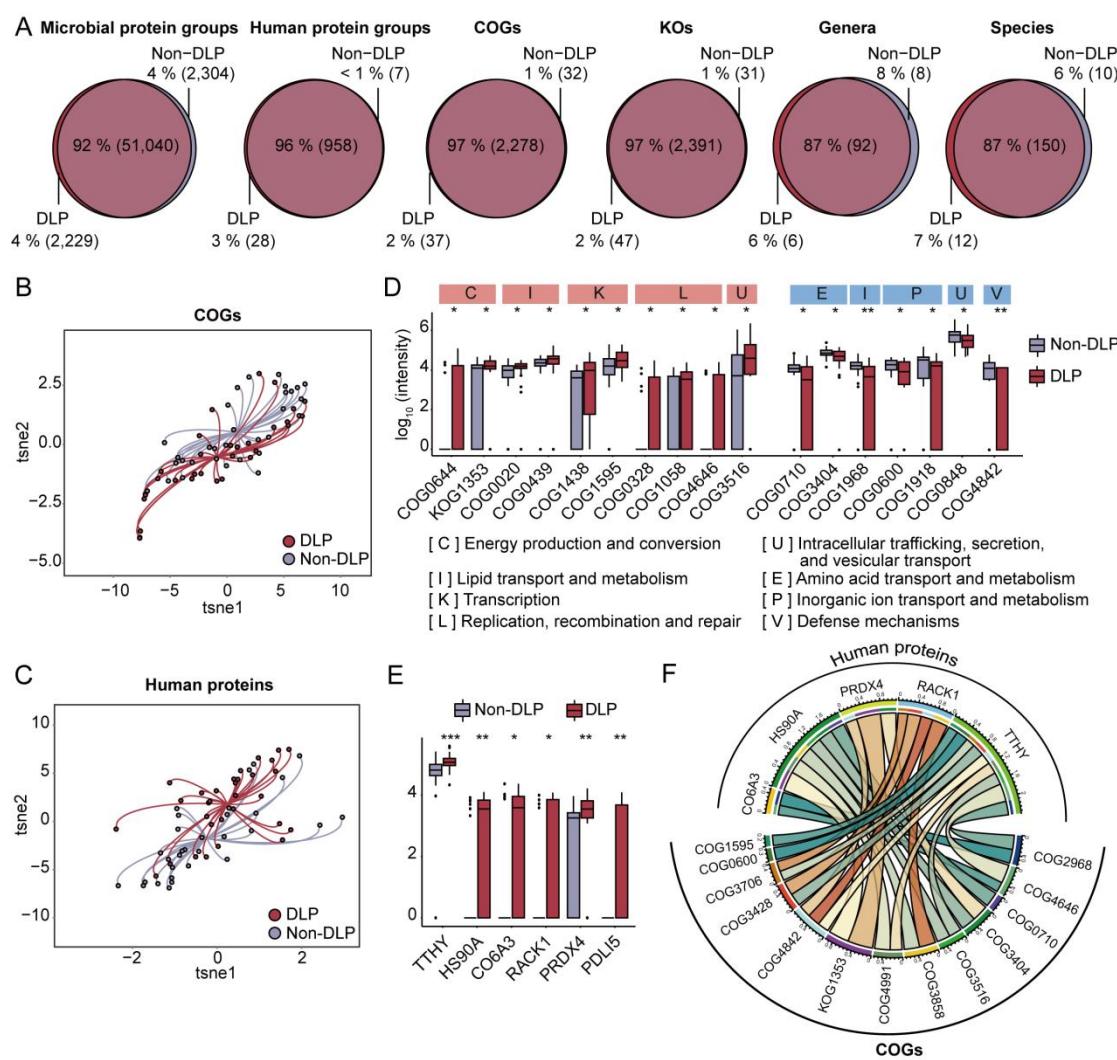


1098

1099 **Figure 7 Negligible effects of public gut microbial gene catalog databases on DIA-MS based**
1100 **quantification.**

1101 The analyses were based on 62 diaPASEF MS runs (60 min gradient) of 62 human fecal samples.
1102 (A) The number of quantitative peptides, protein groups, functions, and taxa per sample based on
1103 the IGC+ or UHGP-90 database. (B) The overlapped peptides, functions, and taxa in 62 human
1104 fecal samples based on IGC+ and UHGP-90 database. (C) The bar plots show the phylum-level
1105 taxonomic annotation of the peptides (upper) or COG-category-level functional annotation of
1106 protein groups (lower). The pie plots show the genus-level taxonomic annotation of the peptides
1107 (upper), or COG-level functional annotation of protein groups (lower) based on the IGC+ or
1108 UHGP-90 database. (D) The abundance correlation of human protein groups, functions, and taxa
1109 based on the IGC+ and UHGP-90 database. *p* value: * *p* < 0.05; ** *p* < 0.01; *** *p* < 0.001, ****
1110 *p* < 0.0001.

1111 **Figure 8**



1112

1113 **Figure 8 Proteins, functions, and taxa associated with DLP based on metaExpertPro**
1114 **workflow.**

1115 The analyses are based on 62 diaPASEF MS runs (90 min gradient) of 62 human fecal samples
1116 collected from 31 non-DLP and 31 DLP subjects. (A) The overlapped quantitative proteins,
1117 functions, and taxa in DLP and non-DLP groups. The number of each section is labeled in the
1118 parenthesis. (B–C) The t-distributed stochastic neighbor embedding (t-SNE) visualization of
1119 DLP and non-DLP individuals calculated by significantly associated COGs (B) or human
1120 proteins (C) with DLP (General Linear Model (GLM) adjust the confounders of sex, age, and
1121 Bristol Stool Scale, p -value < 0.05 and $|\beta$ coefficient $| > 0.2$). (D) The intensity (\log_{10}
1122 transformed) of significantly differentially expressed COGs (Wilcoxon Rank Sum Test, $p < 0.05$)
1123 belonging to the increased COG categories (red shadow) or the decreased categories (blue
1124 shadow). The COG categories are marked on the top of each COG. (E) The intensity (\log_{10}
1125 transformed) of significantly differentially expressed human proteins between DLP and non-DLP
1126 groups (Wilcoxon Rank Sum Test, $p < 0.05$). (F) The co-expressed network between
1127 significantly changed COGs and human proteins in DLP. The co-expression between COGs and
1128 human proteins was determined by the Spearman correlation of their intensity in the 62 human

1129 fecal samples ($|r_{\text{Spearman}}| \geq 0.2$, Benjamini-Hochberg [B-H] adjusted p -value < 0.05). * p value $<$
1130 0.05 , ** p value < 0.01 , *** p value < 0.001 , **** p value < 0.0001 .