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26  Abstract
27  Background

28  Analysis of mass spectrometry-based metaproteomic data, in particular large-scale

29  data-independent acquisition MS (DIA-MS) data, remains a computational challenge. Here, we
30  aim to develop a software tool for efficiently constructing spectral libraries and analyzing

31 extensive datasets of DIA-based metaproteomics.

32 Results

33 We present a computational pipeline called metaExpertPro for metaproteomics data analysis.
34  This pipeline encompasses spectral library generation using data-dependent acquisition MS

35 (DDA-MS), protein identification and quantification using DIA-MS, functional and taxonomic
36  annotation, as well as quantitative matrix generation for both microbiota and hosts. To enhance
37  accessibility and ease of use, all modules and dependencies are encapsulated within a Docker
38  container.

39 By integrating FragPipe and DIA-NN, metaExpertPro offers compatibility with both

40  Orbitrap-based and PASEF-based DDA and DIA data. To evaluate the depth and accuracy of

41 identification and quantification, we conducted extensive assessments using human fecal

42 samples and benchmark tests. Performance tests conducted on human fecal samples

43  demonstrated that metaExpertPro quantified an average of 45,000 peptides in a 60-minute

44  diaPASEF injection. Notably, metaExpertPro outperformed three existing software tools by

45  characterizing a higher number of peptides and proteins. Importantly, metaExpertPro maintained
46  alow factual False Discovery Rate (FDR) of less than 5% for protein groups across four

47  benchmark tests. Applying a filter of five peptides per genus, metaExpertPro achieved relatively
48  high accuracy (F-score = 0.67-0.90) in genus diversity and demonstrated a high correlation

49  (rspearman = 0.73-0.82) between the measured and true genus relative abundance in benchmark
50  tests.

51 Additionally, the quantitative results at the protein, taxonomy, and function levels exhibited high
52 reproducibility and consistency across the commonly adopted public human gut microbial

53  protein databases IGC and UHGP. In a metaproteomic analysis of dyslipidemia patients,

54  metaExpertPro revealed characteristic alterations in microbial functions and potential

55  interactions between the microbiota and the host.

56 Conclusions

57  metaExpertPro presents a robust one-stop computational solution for constructing
58  metaproteomics spectral libraries, analyzing DIA-MS data, and annotating taxonomic as well as
59  functional data.
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60  Background

61 Microbial communities and functions have attracted increasing research interests in the past few
62  years due to their crucial roles in human health, including nutrition, metabolism, and immunity'.
63  Multi-omics approaches (i.e., 16/18S ribosomal RNA sequencing, metagenomics) have been

64  widely applied in gut microbiota studies to provide multifaceted information in characterizing
65  the microbial profiles and their alterations linked with human diseases such as obesity, type 2
66  diabetes, hepatic steatosis, intestinal bowel diseases (IBDs), and cancer’. These technologies

67  provide important information on the taxonomic composition and functional potential of

68  microbiota but lack the messages of the truly expressed functions.

69  Metaproteomics is an emerging research area due to its unique strengths in quantifying the truly
70  expressed proteins in the entire microbial community, assessing the community structure based
71  on the biomass contributions of individual community members, exploring the interactions

72 between microorganisms and their hosts or environment®, as well as identifying

73 disease-associated protein biomarkers, e.g., in human fecal*, or saliva® samples.

74  However, data analysis of MS-based metaproteomics data is highly sophisticated. Searching

75  against comprehensive protein databases containing several million protein sequences not only
76  requires huge storage space and memory but also presents the tradeoff between proteome depth
77  and false positive identifications®. Consequently, although widely used proteomics software tools
78  like X!Tandem’, OMSSA3, MS-GF+°, Comet'?, Proteome Discoverer (PD), and MaxQuant'

79  have been employed in metaproteomics data analysis, they are primarily applicable only to

80  DDA-MS data. These tools are not well-suited for analyzing very large metaproteomic datasets
81 (ranging from hundreds to thousands) due to suboptimal computational efficiency. Therefore, the
82  majority of published metaproteomic datasets consist of fewer than 200 MS injections. To

83  enhance computational efficiency, specialized software such as metaLab!>!4, MetaProteome

84  Analyzer (MPA)'5, and ProteoStorm'® have been developed exclusively for metaproteomics

85  analysis. However, they are all designed for DDA-MS-based metaproteomics analysis.

86  Data-independent acquisition mass spectrometry (DIA-MS) demonstrates superb reproducibility,
87  throughput, and proteome depth for single-injection analysis of complex proteomes'’. However,
88  DIA-MS generates highly convoluted fragment ion spectra which require sophisticated data

89  analysis'®, especially in metaproteomic samples that have an increased chance of co-elution of
90  precursor ions'®. Only two software tools namely diatools?® and its updated version glaDIAtor?!

91 were designed for DIA-MS-based metaproteomics analysis.

92  However, neither of them is compatible with parallel accumulation-serial fragmentation

93  combined with data-independent acquisition (diaPASEF) data which include ion mobility

94  information?. In particular, diaPASEF achieves almost 100% peptide precursor ion current for

95  DIA-MS data acquisition, leading to 5—10 times higher sensitivity improvement, but further

96  increasing the complexity of metaproteomic data. Reducing search space without compromising

97  proteomic depth is crucial for diaPASEF-based metaproteomics data analysis. Spectral

98  library-based database search methods following peptide prefractionation typically yield a higher

99  number of identified spectra compared to library-free database and pseudospectral library search
100 methods?® in DIA analysis. Moreover, this approach requires less computational resource due to
101 a reduced search space compared to library-free database search methods?!. FragPipe?* harnesses
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102 the remarkable speed of the MSFragger proteomic search engine, surpassing X!Tandem,

103 SEQUEST, and Comet by 100-fold in the analysis of a single DDA-MS run consisting of 41,820
104  MS/MS spectra. It seamlessly supports both Orbitrap and PASEF DDA-MS data. Additionally,
105  FragPipe’s split database function, coupled with an accelerated proteinprophet module, renders it
106  highly suitable for spectral library generation in metaproteomics data?>. DIA-NN?¢ facilitates

107  comprehensive proteome quantification in DIA-MS data, proving particularly advantageous for
108  high-throughput applications owing to its rapid processing. Notably, a recent study by Demichev
109 et al. demonstrated that integrating FragPipe with DIA-NN for diaPASEF data analysis led to a
110 substantial increase in proteomic depth, approximately 70% higher than the originally published
111 diaPASEF workflow using DIA-NN library-free analysis?’.

112 Based on these progresses, here we developed a metaproteomic data analysis workflow called
113 metaExpertPro, which is compatible with both DDA and DIA MS data from both ordinary MS
114 and MS with ion mobility information such as timsTOF. metaExpertPro utilizes DDA-MS data
115  for spectral library generation and DIA-MS data for peptide and protein identification and

116  quantification. It offers a comprehensive one-stop metaproteomic workflow, including peptide
117  and protein measurement, functional and taxonomic annotation, and quantitative data matrix
118  generation. Additionally, metaExpertPro is easily accessible as a Docker image

119 (https://github.com/guomics-lab/metaExpertPro). This method showed deep identification of
120 about 45,000 peptides per human fecal sample from more than 10,000 protein groups with a 60
121 min LC gradient DIA-MS acquisition on a timsTOF Pro. Benchmark tests demonstrated that
122 metaExpertPro maintains both low factual FDR (~ 5%) and high-sensitivity identification at

123 protein group level. Also, laboratory-artificial microbial mixture tests showed that

124 metaExpertPro achieves high accuracy in both diversity and relative abundance at genus level.
125  Furthermore, the negligible effects of different databases on quantification suggest that matched
126  metagenomic sequencing is not required, and the results generated by metaExpertPro based on
127  public different databases will be directly comparable. Finally, we applied the metaExpertPro
128 software to study fecal specimens from dyslipidemia (DLP) patients. The results uncovered

129  previously unclear alterations of microbial functions and the potential interactions between the
130  microbiota and the host.
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131  Results
132 Overview of metaExpertPro workflow

133 In this study, we proposed a metaproteomics data analysis workflow called metaExpertPro for
134 the measurement of peptides, protein groups, functions, and taxa of gut microbes as well as host
135  proteins based on DDA-MS and DIA-MS data from either Thermo Fisher Orbitrap ( .raw

136  /.mzML format) or Bruker (.d format) mass spectrometers. Briefly, the workflow includes four
137  stages: DDA-MS-based spectral library generation, DIA-MS-based peptide and protein

138 quantification, functional and taxonomic annotation, as well as quantitative matrix generation.
139 The implementation of the metaExpertPro workflow is shown in Figure 1A with more details
140  explained below.

141 In the first stage, we applied FragPipe (version 20.0) software?* for spectral library generation
142  (Figure 1A). To minimize computational memory demands, the original database (e.g. integrated
143 gene catalog database (IGC) of human gut microbiome and Unified Human Gastrointestinal

144  Protein (UHGP)) was divided into multiple databases utilizing the database split parameter of
145  MSFragger. The more the database is split, the less memory is required, but the longer the

146  runtime. Therefore, users need to judiciously choose the number of database splits based on the
147  quantity of protein sequences contained in the database. Then, each DDA-MS raw data was

148 searched against each split database, generating a pepXML and a pin file. All the pepXML and
149  pin files for each DDA-MS raw data were aggregated for PSM validation using either

150  PeptideProphet or MSBooster-Percolator. To decide the appropriate PSM validation method, we
151 assessed the number of protein groups and the factual FDR in two benchmark tests using

152  PeptideProphet and the MSBooster-Percolator method, respectively. The benchmark tests

153 utilized the public dataset (PXD006118) from a synthetic community of 32 organisms, searching
154  against a sample-matched metagenomic database supplemented with either a subset of IGC

155  database, containing ten times the proteins in metagenomic database, or 48 human gut microbial
156  species. False positives included contaminant proteins, IGC proteins, or proteins from the added
157  microbial species (Figure S1A). Both benchmark tests demonstrated a lower factual FDR using
158  the PeptideProphet method (0.057 vs 0.091 and 0.037 vs 0.048), despite the

159  MSBooster-Percolator method achieving 8.7—-12.1% higher protein group identifications than the
160  PeptideProphet method (Figure S1B). To maintain a relatively low factual FDR, we selected

161 PeptideProphet as the default PSM validation method in metaExpertPro.

162 In the second stage, we applied DIA-NN software 2° to identify and quantify peptides and

163 proteins from each DIA-MS data file (Figure 1A). In the third stage, we performed taxonomic
164  annotation using the peptide-centric taxonomic annotation software Unipept?®??, which has been
165  proved to exhibit more accurate and precise taxonomic annotation®® compared to Kraken23'-32
166  and Diamond®*34. Because the Unipept only indexes perfectly cleaved tryptic peptides®, we in
167  silico digested the peptides and filtered the peptide length before the Unipept taxonomic

168  annotation (Figure S1B). To enhance annotation confidence, peptides with conflicting taxon

169 annotations were excluded (Figure S1D). To eliminate unreliable taxa, we calculated the number
170 of peptides associated with each taxon and selected taxa with more than 1, 3, 5, 10, 15, and 20
171 peptides. The metaproteomic functional annotation tools eggnog-mapper®®3’ and

172 GhostKOALA?3® were integrated into the pipeline to process functional annotation (Figure 1A).
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In the fourth stage, we generated quantitative matrices at nine levels including human peptide,
microbial peptide, human protein group, microbial protein group, COG, KO, COG category, KO
category, and taxonomy. The peptides corresponding to both human protein group and microbial
protein group were removed from the quantitative results to avoid protein assignment ambiguity
(Figure S2).

In summary, the metaExpertPro pipeline integrates high-performance proteomic analysis
tools—FragPipe and DIA-NN—along with functional and taxonomic annotation software tools,
employing rigorous filter criteria to provide a comprehensive metaproteomics workflow in a

single package.

Subsequently, to assess the performance of metaExpertPro in human gut microbial samples, we
conducted tests to evaluate identification depth and result reproducibility using two MS
instruments. Additionally, we compared the measurement results and runtime of metaExpertPro
with three existing metaproteomics software tools—MetaLab, ProteoStorm, and glaDIAtor. For
workflow accuracy estimation, we computed the factual FDR of protein groups, the F-score of
taxa, and the correlation between measured taxa and true protein amounts in multiple benchmark
tests. Furthermore, we examined the effects of databases on spectral libraries and quantitative
matrices using five mainstream human gut microbial databases. Finally, we applied
metaExpertPro in metaproteomic analysis of dyslipidemia patients to explore potential
associations between human gut microbial functions and taxa related to dyslipidemia (Figure 1B).

Detailed descriptions of all tests are provided below.

In-depth identification and high reproducibility of metaExpertPro workflow in human

fecal samples

To demonstrate the benefits of metaExpertPro, we applied it to the metaproteomic analysis of 62
human fecal samples from 62 middle-aged and elderly volunteers of the Guangzhou Nutrition
and Health Study (GNHS)*. Sixty samples were acquired using two MS instrument platforms:
the timsTOF Pro (Bruker) and the Orbitrap Exploris™ 480 (Thermo Fisher Scientific) (Figure
2A). Approximately 5 pg peptides from each sample were mixed into a pooled sample for
high-pH fractionation. A total of 30 fractionated samples were obtained. Each fraction was
analyzed by DDA-MS acquisition with a 60 min gradient for spectral library generation. The
remaining peptides from each sample were used for DIA-MS acquisition (Figure 2A). A total of
220,365 peptides and 58,952 protein groups, including 57,862 microbial protein groups and
1,065 human protein groups, were identified in the spectral library derived from timsTOF Pro
(Figure 2 B). Using Exploris 480, 189,808 peptides and 51,269 protein groups, including 50,218
microbial protein groups and 1,024 human protein groups, were characterized (Figure 2C). The
average identification rate of the acquired MS spectra was 32.2% and 29.3% for the spectral
libraries derived from timsTOF Pro and Exploris 480, respectively (Figure 2 D-E, Table S1).
The identification rates were comparable to the MetaPro-IQ!? results (medium = 32%) obtained
from 4 h gradient DDA-MS run on the Q Exactive MS spectrometer for eight human stool
samples. For each sample, we quantified 43,194 + 11,704 (mean + SD) microbial peptides
corresponding to 15,501 + 3,880 microbial protein groups, and 2,453 + 398 human peptides
corresponding to 537 + 91 human protein groups on timsTOF Pro. On Exploris 480, we
quantified 22,460 + 4,964 microbial peptides corresponding to 11,301 + 2,172 microbial protein
groups, and 1,374 =+ 246 human peptides corresponding to 414 + 69 human protein groups
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(Figure 2 F—G, Table S2). Nevertheless, to the best of our knowledge, the numbers of peptide
identifications on two types of MS instruments are the highest compared to the published
metaproteomic results with the same or even longer LC gradient. For example, the MetaPro-1Q
workflow identified 15,210 peptides per human fecal sample with 4 h gradient DDA-MS
acquisition'?, and glaDIAtor identified 8211 peptides per human fecal sample with 90 min
gradient DIA-MS acquisition?'. Moreover, the number of peptides with 60 min gradient
acquisition on timsTOF Pro identified by metaExpertPro is comparable to the MetaPro-1Q results
with 22 h of MS analysis (45,647 vs 44,955 peptides per human fecal sample)*. Due to the
in-depth identification of peptides and protein groups, we also quantified an average of 90-92
microbial species, 68—71 genera, 1,406—1,511 COGs, and 1,350-1,475 KOs per human fecal
sample (Figure 2 F-G, Table S2).

Another major benefit of DIA methods is the high degree of quantitative consistency. Thus, we
next investigated the reproducibility of the quantified protein groups, functions, and taxa in five
pairs of technical replicate samples and six pairs of biological replicate samples. As expected,
high correlation was observed in all pairs of technical replicates at each level in two MS
instruments (Figure 2 H-I). We also observed high correlation in all pairs of biological replicates
at each level (Figure 2 H-I). In addition, the Bray-Curtis (BC) distance between all pairs of
technical and biological replicates was low, and no statistically significant difference were
observed between the first and the second repeat MS acquisition (PERMANOVA p = 0.89-1)
(Figure 2 H-I).

The reproducibility between two MS instruments was assessed by comparing their identifications
in the DDA-MS-based spectral library. Among the total peptides identified, 34.2% (104,521)
were detected by both MS instruments, while 37.8% (30,291) of the total protein groups were
identified by both instruments. These shared identifications accounted for 55.0% of the peptides
and 58.9% of the protein groups identified by the Exploris 480 MS instrument (Figure S3A). For
the DIA-MS-based quantification, 25.6% (56,939) of the total peptides and 36.2% (22,597) of
the total protein groups were quantified by both MS instruments. The abundance correlation
between the datasets generated by the two MS instruments were assessed using twelve biological
replicate samples. The results showed that the median Spearman correlation was 0.788 for
human proteins, 0.604 for microbial proteins, 0.673 for human peptides, 0.643 for microbial
peptides, 0.908 for genera, 0.861 for species, 0.880 for COGs, and 0.852 for KOs, respectively
(Figure S3B). In summary, metaExpertPro offers comprehensive identification and quantification
capability for metaproteomics analysis of human fecal samples, utilizing MS raw data from
either timsTOF or Exploris 480 instruments. Notably, it demonstrates remarkable reproducibility

across replicate samples and MS instruments, ensuring reliable and consistent results.
Comparison of metaExpertPro with other metaproteomics software tools

We next compared the application scenarios and the performance of metaExpertPro with the
existing metaproteomics software tools. Among them, metalLab'3, MetaProteomeAnalyzer
(MPA)'>41 and ProteoStorm!® are DDA-MS-based metaproteomics analysis tools. They are all
compatible with Q Exactive and Orbitrap Exploris MS instruments. Additionally, ProteoStorm is
also compatible with Low-res LCQ/LTQ (Figure 3A). Both metalLab and MPA can perform
DDA-MS-based peptide and protein quantification in metaproteomics analysis. Furthermore,

metalab provides additional functionalities for function and taxonomic annotation, as well as
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259  quantification. glaDIAtor?! is the next generation of diatools?’. diatools and glaDIAtor are

260  currently the only published analysis tools available for DIA-MS metaproteomics. However, it is
261 important to note that neither glaDIAtor nor diatools is compatible with PASEF MS instrument.
262  metaExpertPro is the exclusive DDA-assisted DIA-based metaproteomics analysis tool that is
263 compatible with the timsTOF MS instrument. It provides a comprehensive solution

264  encompassing DDA-MS-based spectral library generation, DIA-MS-based peptide and protein
265  quantification, as well as function and taxonomic annotation and quantification, all in one

266  platform (Figure 3A). To compare the performance of these software tools, we reanalyzed the
267  Orbitrap acquired DDA-MS and DIA-MS datasets from six human fecal samples published by
268 the Elo team*2. For the DDA-MS-based software tools metaLab and ProteoStorm, six DDA-MS
269  raw data files were used for peptide and protein quantification or identification. On the other
270  hand, in the case of DIA-MS-based software tools glaDIAtor and metaExpertPro, these same six
271 DDA-MS data sets were employed for spectral library generation. Subsequently, peptide and
272 protein quantification were performed using DIA-MS raw data and the generated spectral library
273 (Figure 3B).

274  We compared DDA-MS-based peptide identifications among metaExpertPro, glaDIAtor,

275  metalab, and ProteoStorm. metaExpertPro demonstrated the highest peptide identifications in
276  the spectral library (30,155) among the compared tools, surpassing glaDIAtor (19,371 peptides),
277  metalab (24,557 peptides), and ProteoStorm (11,226 peptides) in the spectral library. Despite the
278  wvariations in peptide identification counts, metaExpertPro exhibited substantial overlap with
279  other tools. It identified 16,580 peptides shared with glaDIAtor, 20,415 peptides shared with
280  metalab, and 9,384 peptides shared with ProteoStorm. These shared peptides accounted for

281 85.6%, 83.1%, and 83.6% of the total peptides identified by glaDIAtor, metalLab, and

282  ProteoStorm, respectively (Figure 3C, Table S3). Additionally, metaExpertPro identified 5,368
283  unique peptides in the spectral library. Next, we compared the DIA-MS-based quantification of
284  metaExpertPro and glaDIAtor. To ensure a fair comparison, both software tools were set to

285  DDA-assisted DIA mode, guaranteeing identical raw data input for the analysis. Using

286  metaExpertPro, we measured more than two-fold peptides (mean + SD = 16,971 = 3,315 vs

287 6,918 + 1,456) and six-fold protein groups (mean + SD = 5,368 + 885 vs 812 &+ 218) compared to
288  glaDIAtor (Figure 3D, Table S4). Over half of all the peptides (59%) and protein groups (80%)
289  were only detected by metaExpertPro. 32% of the peptides and 16% of the protein groups were
290  quantified by both workflows. Only 8% of the peptides and 4% of the protein groups were

291 quantified by glaDIAtor only (Figure 3E). In the comparison of peptide and protein abundance
292  between the two workflows, we observed a relatively high correlation in the abundance of

293  peptides and protein groups quantified by both metaExpertPro and glaDIAtor (median rspearman =
294 0.79 and 0.63) (Figure 3F). Furthermore, the abundance of peptides and protein groups

295  exclusively detected by metaExpertPro was significantly lower compared to those identified by
296  both workflows (Figure 3G, Table S5). These findings suggest that our workflow excels in

297  identifying low-abundance peptides and protein groups.

298  To further verify the confidence of the peptides quantified only by metaExpertPro compared to
299  glaDIAtor, we inspected the probability, the number of fragments, the b /y ion intensity ratio,
300  and the spectra of these peptides. Among the 30,155 peptides identified in the metaExpertPro
301 spectral library, 13,575 peptides were uniquely identified compared to glaDIAtor spectral library,
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while 16,580 peptides were shared between the two libraries. We firstly evaluated the accuracy
of the 13,575 peptides in the metaExpertPro spectral library, confirming their reliability.
Remarkably, all these peptides exhibited peptide probability values of 0.9963 £ 0.12 (median +
SD), indicating the high confidence in the peptide-spectrum matches. The median number of
fragments matched for all peptides was 14, ranging from a minimum of 5 fragments to a
maximum of 169 (Figure 3H). Notably, among the 13,575 peptides, 99.6% displayed two-sided
fragment types, while only 54 peptides were identified as one-sided. Furthermore, in ion trap
mass spectrometry, the intensities of y-ions are typically approximately twice that of their
corresponding b-ions*. Among the 13,575 identified peptides, the median ratio of intensities
between y-ions and their corresponding b-ions was 1.6, aligning with the anticipated pattern for
complex peptide spectra (Figure 3H). To visually showcase the qualitative accuracy of the
peptide identifications in the metaExpertPro spectral library, we obtained the DDA MS/MS
spectra of the top 20 lowest abundant peptides. All 20 peptide spectra can be identified with at
least 8 fragments containing both y ions and b ions. Most of the high-intensity peaks in the
spectra can be matched to fragments, and there was a large dynamic range between high and
low-intensity fragments. In addition, the intensity of y ions is higher than that of b ions (Figure
S4). These criteria are in line with the manual assessment of high-quality peptide segments*® ,
which demonstrate the reliability and precision of the identified peptides in the spectral library
(Figure S4). Collectively, these findings strongly support the high quality and reliability of the
peptides exhibiting relatively low abundance.

Next, we conducted a comparison of the running times for metaExpertPro and glaDIAtor on an
AMD EPYC hardware system with 512 GB RAM using the PXD008738 dataset. With ten
threads, glaDIAtor took approximately 21.1 hours for DDA-MS analysis, while metaExpertPro
required approximately 17.4 hours. For DIA-MS analysis, glaDIAtor took around 23 minutes per
file, while metaExpertPro completed the analysis in just 1 minute per file (Figure 31).
Considering that the number of DDA-MS raw data is usually less than 100, while a
high-throughput project may involve thousands of DIA-MS raw data files, metaExpertPro proves

to be well-suited for high-throughput metaproteomic analysis.

In conclusion, the metaExpertPro workflow effectively enhanced proteome depth and upheld
strong quantitative reproducibility in metaproteomic analysis. While the generation of
DDA-MS-based spectral libraries using metaExpertPro may require longer running times, the
DIA-MS-based quantification process is notably faster. This characteristic offers a significant
advantage, particularly in high-throughput studies utilizing DIA-MS.

Benchmark test of protein group identifications of metaExpertPro

We further investigated the accuracy of protein groups identified by metaExpertPro using
benchmark tests. We initially assessed the factual FDR of protein groups in the spectral library
using the published dataset of HeLa cells®°. Briefly, the DDA-MS data of the HeLa cell was
searched against the human protein database (Swiss-Prot, date 20211213) supplemented with 0x,
1%, 10%, 100x%, and the entire mouse microbiome catalog sequences (~2.6 million proteins),
respectively (Figure 4A). The factual FDR is defined as the bacterial and contaminant hits
divided by all the identified hits. As expected, when searching against the human protein
database only (benchmark standard), the factual FDR was extremely low (0.015) (Figure 4B,
Table S5). The count of human protein groups reached 5,511 (Figure 4B, Table S6), surpassing
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the originally published result of approximately 5,000 human protein groups® based on a
single-step search using MaxQuant software!!. When increasing microbial sequences in the
human protein database, the factual FDRs remained well-controlled (FDRs = 0.022-0.028), and
the count of true human protein groups showed a slight decrease compared to the benchmark
result (5,082 in the supplemented all bacteria sequences vs. 5,431 in the human protein database
only) (Figure 4B, Table S6). To evaluate the ability of metaExpertPro to maintain a low
protein-level FDR with larger sample sizes, we extended the number of DDA-MS raw data to
255, including 100 pancreas tissue samples and 155 thyroid tissue samples (IPX0001400000).
These raw data were then searched against the human protein database (Swiss-Prot, date
20211213) supplemented with 0%, 1x, 10x, and 100X mouse microbiome catalog sequences
(Figure S5A). The factual protein group FDRs remained below 5% when adding 0%, 1x, or 10x
mouse protein sequences (~2.6 million proteins) (Figure S5B, Table S7). However, when
searching against 100x mouse protein sequences, the protein group FDR reached 5.4%. This
suggests that controlling the factual protein group FDR becomes challenging when both the
sample size and the unmatched protein sequences in the database increase in metaExpertPro.

To gain insights into real-life scenarios of metaproteomics studies, we conducted two additional
benchmark tests to identify false positive microbial proteins from microbiota mixtures. In the
first test, we used the "equal protein amount" (P) dataset (PXD006118) and searched it against a
metagenomic database (MG) supplemented with varying numbers of human gut microbiota
species protein databases (5, 16, 32, 48) (Figure 4C). In the second test, we added the protein
sequences of 0x, 1x, 5x, 10x IGC+ protein sequences (10,352,085) to the MG database (Figure
S5C). Remarkably, we consistently achieved factual protein group FDRs below 5%, except for
the 10x IGC+ benchmark test, which had a factual FDR of 5.8% (Figure 4D, Figure S5D, Table
S8-S9). These results indicate the robustness of metaExpertPro in maintaining a low

protein-level FDR in challenging scenarios.

In conclusion, the metaExpertPro workflow effectively maintains both a low factual FDR and

high-sensitivity identification at the protein group level during spectral library building.
Taxonomic accuracy estimation of metaExpertPro

Determination of taxonomic annotation and biomass contributions is another challenge due to a
large number of homologous protein or peptide sequences derived from hundreds of closely
related species. Thus, we next estimated the taxonomic accuracy at genus and species levels
using two artificial bacterial community datasets. One of the datasets is the mixture of twelve
different bacterial strains isolated from fecal samples of three human donors (hereafter referred
to as “12-mix data”) published by Pietili et al.>! (Figure 5A). Another dataset is called “CPU
data” which were generated from synthetic communities consisting of 32 organisms with “equal
cell number” (C), “equal protein amount” (P), and “uneven” (U) published by Kleiner and
colleagues* (Figure 5B). We searched the 12-mix data against the integrated gene catalog
database (IGC) of human gut microbiome*’ and the CPU MS data against the matched
metagenomic database** using the metaExpertPro workflow. Then, we calculated the true
positive (TP), false positive (FP), false negative (FN), and F-score*® (the harmonic mean of
precision and recall) at genus and species levels. When filtering out the taxa annotated by only
one peptide, we got a relatively high true positive rate (TPR) (8/10) and a low false negative rate
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(FNR) (2/10) at genus level using the 12-mix dataset. But we also obtained a high false
discovery rate (FDR) (10/18-11/19) and thus a relatively low F-score (average of 0.56) at genus
level (Table S10). At species level, because of the decrease of TPR and increase of FNR and
FDR, the F-score further decreased to 0.26 (Table S10). The average F-scores of the CPU data
were 0.73 and 0.40 at genus and species level, respectively, outperforming the 12-mix data.
Interestingly, the numbers of FP taxa in “uneven” samples were extremely low (4-5), resulting in
high F-scores (0.84—0.86) at genus level (Table S10).

Here the F-scores were relatively low. Thus, we next investigated the impacts of the spectral
count of peptides, the peptide length, and the number of peptides corresponding to the taxa on
the TP and FP identifications at both genus and species levels (Figure S6 A—B). The data showed
that, while all these three factors exhibited significant differences between the TP and FP
identifications, the number of peptides corresponding to the taxa displayed the highest difference
(Figure S6 A—B). After checking the peptide count distribution of TP and FP taxa (Figure S6
C-D), we filtered the number of peptides corresponding to taxa at the threshold of 1, 2, 3, 5, 10,
15, and 20, respectively, and recalculated the TF, FP, FN, and F-score. The data showed that
filtering the taxa with at least five peptides led to the highest F-scores (C: 0.90; P: 0.85; U: 0.90)
at the genus level (Figure 5 C-D, Table S10) in C, P, U datasets. This resulted in high TPR (C:
15/17; P: 15/17; U:17.25/20), low FNR (C:2/17; P: 2/17; U: 2.75/20) and low FDR (C: 1.5/16.5;
P: 3.5/18.5; U:1/18.25). However, in the 12-mix dataset, filtering at least three peptides led to the
highest F-scores (0.73) at the genus level. At the species level, we also obtained the highest
F-score with the threshold of five peptides. But at the species level, the F-scores were still
relatively low in two datasets (0.44-0.55) (Figure S6 E-F, Table S10).

The true quantitative information of the microorganisms in the CPU dataset* allowed us to
investigate the accuracy of the relative abundance of the taxa calculated by metaExpertPro
workflow. With a threshold of five peptides, relatively high correlation between the true protein
biomass of genera and the metaExpertPro results were observed (rspearman = 0.8, 0.73, and 0.82) in
the C, P, and U datasets (Figure SE). As expected, the correlation between the true cell number of
taxa were relatively low (rspearman = 0.63, 0.58, and 0.52 for the C, P, and U datasets, respectively)
(Table S11). The consistency of the true protein biomass of taxa and metaExpertPro results at
species level was relatively low (rspearman = 0.2, 0.27, and 0.35) in the C, P, and U dataset (Figure
S6G, Table S11).

Taken together, we found that filtering the taxa with at least three to five peptides led to the
highest F-score at genus and species levels, and metaExpertPro achieved high accuracy in both
diversity and biomass at genus level. The relatively low accuracy at species level might be due to
that we used the Unipept-based taxonomy annotation. As a peptide-centric taxonomic annotation
software, Unipept depends on taxon-specific peptides to identify taxa. However, the number of
taxon-specific peptide sequences steadily decreases from higher to lower taxonomic rankings,
with a particularly large drop between genus and species levels*’ -In addition, there are some
species or even genera in the metaproteomic samples do not present in the NCBI taxonomy
database, such as Burkholderia xenovorans, Nitrosomonas europaeae, Pseudomonas
denitrificans, Pseudomonas pseudoalcaligenes and Burkholderia (Figure 5E, Figure S6G,
marked in gray), which leads to false negative taxa. Nevertheless, Unipept is still the preferred

software for taxonomy annotation in the absence of matched metagenomic data according to the
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previous study®. Here, we showed that metaExpertPro integrated Unipept can achieve high
accuracy in the relative abundance estimation of genera (Figure SE, Table S11).

Negligible effects of public gut microbial gene catalog databases on DIA-MS-based
proteome measurements

Three types of protein databases were commonly used in gut microbiota metaproteomic studies,
including well-annotated public gut microbial gene catalog databases (e.g., integrated gene
catalog (IGC) of human gut microbiome*, Unified Human Gastrointestinal Protein (UHGP)
catalog*®), protein sequences that predicted from metagenome data from matched samples, and
the merged databases of above two types of databases. To evaluate the impacts of databases on
the peptide identifications in spectral library generation, we compared the peptide numbers in the
five spectral libraries based on IGC+*, UHGP-90 (90% protein identity), matched metagenomic
protein catalog database (MG), and their merged databases (MG_IGC+ and MG_UHGP-90)
using 90 min gradient DDA-MS acquisition on timsTOF Pro of the 62 human fecal samples
mentioned above (Figure 6A). The data showed that the spectral library based on IGC+ database
identified the most peptides (284,681), followed by MG _1GC+ database (273,779),

MG UHGP-90 (273,338), UHGP-90 (271,751) and MG (261,986) (Figure 6B, Table S12). More
specifically, 57.0% (194,485) of the peptides were commonly identified by all the spectral
libraries. The spectral library based on MG contained the most unique peptides (21,296) (Figure
6C, Table S12). The identification rate of IGC+ spectral library was significantly higher than that
of the other four databases. The identification rates (average of 30.6—31.8%) based on the five
databases were comparable to the MetaPro-1Q'? results searching against matched metagenome
(average of 34%) and IGC (average of 33%) (Figure 6D, Table S13). Overall, we found that in
the spectral library generation step of metaExpert Pro, public gene catalog databases
outperformed the matched metagenome database in terms of peptide identification. A similar
conclusion has been proposed by Zhang et al. using MetaPro-1Q!2.

We further investigated the impacts of different public gene catalog databases on 60 min
DIA-MS-based proteome measurements using two public gut microbial gene catalog databases
(IGC+ and UHGP-90). High mapping ratios were obtained at COG (medium of 95.3% and
95.5%), KO (medium of 76.1% and 76.7%), and taxonomy (medium of 87.5% and 87.6%) levels
with the two databases (Figure S7). The mapping ratio at the phylum level was comparable to the
results of six human fecal data analyzed by glaDIAtor?! (~70%). But the mapping ratio was less
than that of glaDIAtor at the genus level (~18% vs ~40%), which may be because we used a
stringent taxonomy filtering criterion of at least five peptides per taxonomy to ensure the

accuracy of identification.

Next, we compared the richness per sample at eight levels and observed no significant
differences between the two databases at all levels (Figure 7A, Table S14). At the peptide, COG,
and KO levels, we also observed a high proportion of overlapped features (77-92%) between the
two databases (Figure 7B). 84% of the genera and 86% of the species were identified by both
databases, showing a high degree of consistency. The taxonomic and functional profiles
identified by the two databases were also highly similar (Figure 7C, Table S15). In detail, at the
taxonomic level, most of the peptides (99.4%) were assigned to the four major phyla of human
gut microorganisms characterized by metagenomic data>*>3, namely Bacillota (~60%),
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472  Bacteroidota (~30%), Actinomycetota (~9%), and Pseudomonadota (~1%). Also, the profiles of
473  taxa were highly similar to that obtained by glaDIAtor (~60% Bacillota, ~10% Bacteroidetes,
474  ~7% Actinomycetota, and ~0.5% Pseudomonadota). At the functional level, the largest

475  functional categories included G ‘carbohydrate metabolism’ (~18%), J ‘translation’ (~16%), and
476  C ‘energy metabolism’ (~10%), which was in line with previous studies of human fecal

477  metaproteomes?!>* (Figure 7C, Table S15). The abundance of human protein groups, microbial
478  functions, and taxa also showed high correlation (medium of pairwise Spearman correlation
479  coefficients = 0.95-0.97) between the two databases (Figure 7D, Table S16). Taken together,
480  these results suggest the negligible effects of public gut microbial gene catalog databases on

481 DIA-MS-based quantification at peptide, functional, or taxonomic levels. Therefore, matched
482  metagenomic sequencing may not be required for the metaExpertPro and the results generated by
483  metaExpertPro based on public databases could be directly comparable.

484 metaExpertPro analysis revealed the functions associated with dyslipidemia and the
485 potential interactions between the microbiota and the host

486  Dyslipidemia (DLP) is a disorder in lipid metabolism characterized by high levels of

487  LDL-cholesterol and/or triglycerides and low HDL-cholesterol levels, which is considered a

488  high-risk factor for cardiovascular disease>>°. Gut microbiota has been proved to be highly

489  associated with dyslipidemia and related diseases®’. However, the real functions of the

490  microbiota associated with DLP are still unclear. The 62 GNHS subjects mentioned above

491 included 31 subjects without DLP and 31 subjects with DLP. Here, we performed metaproteomic
492  analysis on the fecal samples from these subjects to characterize the changes of microbial taxa,
493 functions, and human protein groups in DLP. In total, we quantified 55,573 microbial protein
494  groups and 993 human protein groups. The microbial protein groups were annotated as 2,347
495  COGs and 2,469 KOs. The microbial peptides were annotated as 106 genera and 172 species.
496  About 87-97% of the identified protein groups, functions, and taxa were present in both

497  non-DLP and DLP groups (Figure 8 A). Two of the six genera uniquely identified in the DLP

498  group (Olsenella®®*® and Cloacibacillus®’) have previously been reported to show a positive

499  association with serum lipids or obesity in mice, as well as in metabolically unhealthy obese

500  human individuals. Among the eight genera uniquely identified in the non-DLP group, three have
501 been reported to exhibit a negative association with DLP and obesity in mice. Enterococcus, a
502  well-known probiotic, has been shown to alleviate obesity-associated dyslipidemia in mice®'-2,
503  Lactococcus, a potential antihyperlipidemic probiotic®, is also linked to insulin resistance and
504  systemic inflammation, exerting an antiobesity effect®. Turicibacter is markedly reduced in mice
505  fed with high-fat diet (HFD)®. A total of 56 COGs, 3 species, and 18 human proteins were

506  significantly associated with DLP using General Linear Model (GLM) (p-value < 0.05 and | beta
507 coefficient | > 0.2) (Figure S8 A—C, Table S17). The t-distributed stochastic neighbor embedding
508  (t-SNE) analysis showed two close clusters corresponding to the DLP and non-DLP groups based
509  on the associated microbial COGs, human proteins, and species, respectively (Figure 8 B-C,

510  Figure S8D, Table S18). Wilcoxon Rank Sum Test was used to further verify the associations.
511  The data showed that 34 of the associated microbial COGs were significantly differentially

512 expressed between the two groups (Wilcoxon Rank Sum Test, p < 0.05) (Table S19). Functions
513 related to the “Energy production and conversion” (two COGs in category C), “Lipid transport
514  and metabolism” (two COGs in category I), “Transcription” (two COGs in category K),
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515  “Replication, recombination and repair” (three COGs in category L), and “Intracellular

516 trafficking, secretion, and vesicular transport” (one COG in category U) showed significantly
517  increased in DLP group. While the functions related to “Amino acid transport and metabolism”
518  (two COGs in category E), “Lipid transport and metabolism” (one COG in category I),

519  “Inorganic ion transport and metabolism” (two COGs in category P), “intracellular trafficking,
520  secretion, and vesicular transport” (one COG in category U), and “defense mechanisms” (one
521 COG in category V) showed significantly decreased in the DLP group (Figure 8D, Table S19).
522 The results indicated an enhancement in energy production, conversion, lipid transport, and

523  metabolism functionality in the gut microbiota of DLP patients. The increase of the functions in
524  DNA repair pathways such as uracil-DNA glycosylase (UDG) functions was consistent with the
525  metaproteomic results in pediatric IBD patients*’. Defects in human amino acid transporters are
526  linked to inherited metabolic disorders®. In this study, we observed a reduction in amino acid
527  transport and metabolism within the human gut microbiota. This finding suggests potential drug
528  targets that could be focused on microbial proteins related to amino acid transport. We also found
529  that the functions related to bacteria-secreted protein toxins such as biopolymer transport protein
530  ExbD and WXG100 family proteins YukE and EsxA were downregulated in the DLP group

531 (Figure 8D, Table S19). Two species including Blautia luti and Fusobacterium mortiferum were
532 significantly differentially altered in DLP (Figure S8E). Both species or their corresponding

533 genera have been reported to be associated with metabolic disorders including obesity®’, type 2
534  diabetes or hypercholesterolemia®®.

535  One benefit of metaproteomic analysis was exploring the interactions between the host proteins
536  and microbiota. Thus, we analyzed differentially expressed human proteins between the DLP and
537  non-DLP groups using Wilcoxon Rank Sum Test. We identified six significant differentially

538  expressed human proteins (p < 0.05). Interestingly, all of them were upregulated in the DLP

539  group (Figure 8E, Table S19). Four human proteins including transthyretin (TTR), heat shock
540  protein HSP 90-alpha (HS90A), small ribosomal subunit protein (RACK1), and peroxiredoxin-4
541 (PRDX4) have been reported to be related to obesity, diabetes, and hyperlipidemia based on

542  serum or tissue samples® 72, However, it has not been reported that the dysregulation of these

543  human proteins in human feces is also associated with dyslipidemia.

544  Next, we analyzed the co-expression between the six human proteins and the 34 differentially
545  expressed COGs. With a threshold of | rspearman | = 0.2 and Benjamini-Hochberg (B-H) adjusted
546  p-value < 0.05, we screened out 25 co-expressed proteins and COGs (Figure 8F, Table S20). The
547  human protein transthyretin (TTR) exhibited the strongest correlation with microbial COGs.

548  Four positively correlated COGs were COG1595 (related to transcription), COG2968 (protein
549  YggE), COG3516 (component TssA of the type VI protein secretion system), and COG4646

550  (adenine-specific DNA methylase). The other five negatively correlated COGs were COG0600
551 (ABC-type nitrate/sulfonate/bicarbonate transport system), COG3428 (membrane protein YdbT),
552 COG3706 (Two-component response regulator, PleD family), COG4842 (secreted virulence

553 factor YukE/EsxA, WXG100 family), and COG4991 (uncharacterized conserved protein Yral).
554 Notably, the microbial function COG4842, a secreted virulence factor YukE/EsxA of the

555  WXG100 family, exhibited negative correlations with three up-regulated human proteins

556 (PRDX4, RACKI1, and TTHY), indicating its significant role in the interaction with human

557  proteins in the context of DLP. Taken together, the metaExpertPro-based metaproteomic analysis
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on DLP patients uncovered the alterations of microbial functions in DLP and the potential
interactions between the microbiota and the host.

Discussion

Due to the complexity of the samples, metaproteomic data analysis has inherent limitations of
high dependency on databases, low efficiency of peptide identification rate (ID rate), the
relatively low resolution of taxonomic identification, and large computer memory consumption.
In this study, to solve the problems of low-efficiency ID rate and memory consumption, we used
a library-based database search strategy in metaExpertPro, therefore our approach cannot
eliminate the database dependency. FDR control poses another challenge in metaproteomics
analysis due to large number of homologous bacterial sequences in the databases. In this study,
benchmark tests using HeLa cell and bacteria mixture samples showed a low factual FDR (<5%).
However, as the sample size and unmatched protein sequences in the database increase,
controlling the factual protein group FDR becomes more challenging. Therefore, there is still a
need for algorithms that can efficiently distinguish true positive spectra from highly similar
spectra and employ stricter FDR filtering methods to ensure more accurate identifications.
Although our data showed negligible effects on the metaproteomic results based on two public
gut microbial gene catalog databases and 62 human fecal samples, one cannot assume similar
results can also be obtained with other gene catalog databases or other types of metaproteomic
samples, such as soil microbiota and marine microbiota. Moreover, the Unipept-based taxonomic
annotation still limits the resolution of accurate taxonomy identification at the species level due
to the limited number of taxonomy-unique peptides. If matched metagenomic data is available,
integrating metagenomic taxonomic information with Unipept has the potential to increase the
number of taxonomy-unique peptides. This integration limits the potential species to those
specific to the samples, leading to a higher count of taxonomy-unique peptides compared to
considering all species from the NCBI taxonomy database. Thus, a novel taxonomic annotation
software integrating metagenomic taxonomic information and Unipept has the potential to
enhance the resolution of accurate taxonomy identification. Additionally, it is important to note
that we did not observe any significantly associated microbial taxa, functions, or human proteins
after correcting for multiple testing. This can be attributed to the limited number of samples used
in our study, which consisted of 31 samples from individuals with dyslipidemia (DLP) and 31
samples from individuals without dyslipidemia (non-DLP). In order to obtain more accurate and
reliable results, a larger sample size is required for future studies. Finally, this study and most
published metaproteomic studies only focus on the proteins expressed by the host and microbiota;
however, the proteins from foods and the environment may also play important roles in the hosts’
health and the metabolisms of microbiota. Therefore, despite these research advances, there is

still much to discover in the metaproteome of the human gut.

Conclusions

The metaExpertPro workflow provides a computational pipeline for metaproteomic analysis and
shows a high degree of accuracy, reproducibility, and proteome coverage in the quantification of
peptides, protein groups, functions, and taxa in human gut microbiota. The workflow is

established by integrating the high-performance proteomic analysis tools and stringent filter
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criteria to ensure both in-depth and high accuracy measurments. The negligible effects of
databases on the measurement of peptides, functions, and taxa indicate that matched
metagenomic databases are not indispensable for metaExpertPro-based metaproteomic analysis,
thus enabling direct comparison of metaproteomic data generated by metaExpertPro based on
different public databases.
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606  Methods
607  Human fecal sample collection

608 A total of 62 fecal samples were collected from 31 subjects without DLP and 31 subjects with
609  DLP (40-75 years old) from the Guangzhou Nutrition and Health Study (GNHS)*°. These

610  individuals had not received any antibiotic treatment in the two weeks before biomaterial

611  collections to avoid the effects of the antibiotic on the gut microbiome. The fecal samples were
612  immediately homogenized, stored on ice, and then transferred to -80 °C within 4 h. Additionally,
613 the corresponding metadata variables including age, gender, blood triglycerides (TG), total

614  cholesterol (TC), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein

615  cholesterol (HDL) were also collected either by questionnaire or blood biochemical

616 measurement. Dyslipidemia (DLP) was defined as one or more of the TG, TC, LDL, and HDL
617  were abnormal or medical treatment for DLP73,

618  Metaproteomic protein extraction and trypsin digestion

619  The gut microbiota was first enriched using differential centrifugation’. In detail, about 200 mg
620  of feces were resuspended in 500 pL cold phosphate buffer (PBS) and centrifuged at 500 x g,
621 4°C for 5 min. Then the supernatant was transferred into a new tube. The above process was

622  repeated three times. All the supernatants were combined (about 1.5 mL) and centrifuged at 500
623 x g, 4°C for 10 min to remove the debris in the fecal samples. Then, the microbial cells were

624  collected by centrifugation at 18,000 x g, 4°C for 20 min. Next, the microbial pellets were used
625  for protein extraction”. Briefly, 250 uL lysis buffer (4% w/v SDS and ¢cOmplete Tablets (Roche)
626  in 50 mM Tris-HCI, pH = 8.0) was added into the microbial pellets and the mixture was boiled at
627 95 °C for 10 min. Then, the mixture was ultrasonicated at 40 Khz (SCIENTZ) for 1 h on ice.

628  Finally, to further discard the cell debris, the mixture was centrifuged at 18,000 x g for 5 min,
629  and the proteins were precipitated overnight at -20 °C using a 5-fold volume of acetone. Next,
630  the in-solution digestion method”®’” was performed as follows. After purifying (washing by

631 acetone) and re-dissolving (using 8 mM urea and 100 mM ammonium bicarbonate) the

632  precipitated proteins, about 50 pg proteins from each sample were reduced with 10 mM tris

633  (2-carboxyethyl) phosphine (TCEP, Adamas-beta) and then alkylated with 40 mM iodoacetamide
634  (IAA, Sigma-Aldrich). Proteins were pre-digested with 0.5 pg trypsin (Hualishi Tech) for 4 h at
635 32 °C. Then the proteins were further digested with another 0.5 pg trypsin for 16 h at 32 °C. The
636  tryptic peptides were desalted using solid-phase extraction plates (ThermoFisher Scientific,

637  SOLAP™) and then freeze-dried for storage. Dried peptides were finally resuspended in a

638 solution (2% acetonitrile, 98% water, and 0.1% formic acid [FA]) before MS acquisition.

639  Metagenomic DNA extraction, sequencing, and gene prediction

640  The metagenomic raw data was derived from the previous study’®. Briefly, the raw sequencing
641  reads were first filtered and trimmed with PRINSEQ (version 0.20.4)7 for quality control. The
642  raw reads aligned to the human genome (H. sapiens, UCSC hgl9) were removed using Bowtie2
643 (version 2.2.5)%. Then, the remaining reads were used for metagenomic assembly using

644  MEGAHIT (version 1.2.9)3! and binning the contigs with MetaBAT (version 2.12.1)3? by default
645  parameters. We further clustered and de-replicated the Metagenome-Assembled Genome (MAGs)
646  at an estimated species level (ANI > 95%) using dRep (version 3.0.0)%3. The minimum genome
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completeness and maximum genome contamination were set to 75 and 25, respectively.
Protein-coding sequences (CDS) for each MAG were predicted and annotated with Prokka
(version 1.13.3)%. All the predicted protein sequences were compiled to generate the MG protein
database. Cd-hit (version 4.8.1)% was used for the integration of MG and IGC+* or UHGP*
database with the following parameters: -c 0.95 -n 5 -M 16000 -d 0 -T 32.

High-pH reversed-phase fractionation

For the 62 fecal samples, approximately 5 pug peptides were collected from each tryptic peptide
sample to form a pooled sample for high-pH fractionation. The pooled sample was then
fractionated using high-pH reversed-phase liquid chromatography (LC). The mobile phase of
buffer A was water with 0.6% ammonia (pH = 10), and buffer B was 98% acetonitrile and 0.6%
ammonia (pH = 10). Specially, about 300 ug tryptic peptides were separated using a nanoflow
DIONEX Ultimate 3000 RSLC nano System (ThermoFisher Scientific) with an XBridge Peptide
BEH C18 column (300 A, 5 pmx 4.6 mm x 250 mm) at 45 °C. A 60 min gradient from 5% to
35% buffer B with a flow rate of 1 mL/min was applied. A total of 60 fractions were collected
and further combined into 30 fractions. Finally, the fraction samples were freeze-dried and
re-dissolved in 2% acetonitrile with 98% water and 0.1% FA.

DDA mass spectrometry acquisition for library generation

The fractionated peptides were first spiked with iRT (Biognosys)®¢. For the timsTOF Pro (Bruker)
based DDA mass spectrometry acquisition, two gradients of 90 min and 60 min were used,
respectively. The 90 min LC gradient was linearly increased from 2% to 22% buffer B for 80 min,
followed by a second linear gradient from 22% to 35% buffer B for 10 min (buffer A: 0.1% FA in
water; buffer B: 0.1% FA in ACN). The 60 min LC gradient was linearly increased from 5% to
27% bufter B for 50 min, followed by a second linear gradient from 27% to 40% bufter B for 10
min. The peptides were loaded at 217.5 bar on a precolumn (5 um, 100 A, 5 mm x 300 pm 1.D.)
in 0.1 % FA/water and then separated by a nanoElute UHPLC System (Bruker Daltonics)
equipped with an in-house packed 15 ¢cm analytical column (75 pm ID, 1.9 um 120 A C18 beads)
at a flow rate of 300 nL/min. The timsTOF Pro was operated in ddaPASEF mode with 10
consecutive PASEF MS/MS scans after a full scan in a total cycle. The capillary voltage was set
to 1400 V. The MS and MS/MS spectra were acquired from 100 to 1700 m/z. The TIMS section
was operated with a 100 ms ramp time and a scan range of 0.6-1.6 V-s/cm?. A polygon filter was
used to filter out singly charged ions. For all experiments, the quadrupole isolation width was set
to 2 Th for m/z < 700 and 3 Th for m/z > 800. The collision energy was ramped linearly as a
function of mobility from 20 eV at 1/Ko = 0.6 V-s/cm? to 59 eV at 1/Ko = 1.60 V-s/cm?.

For the Orbitrap Exploris™ 480 mass spectrometer (ThermoFisher Scientific Inc.) based DDA
mass spectrometry acquisition, the fractionated peptides spiked with iRT were loaded onto a
pre-column (3 um, 100 A, 20 mm x 75 mm i.d., Thermo Fisher Scientific, USA) using a Thermo
Scientific UltiMateTM 3000 RSLCnano LC a U3000 LC system. The peptides were then
separated at a flow rate of 300 nL/min using a 60 min LC gradient on an in-house packed 15 cm
analytical column (75 pm ID, 1.9 um, C18 beads) with a linear gradient from 5% to 28% buffer
B for 60 min. Next, the column was washed with 80% buffer B. The mobile phase B consisted of
0.1% formic acid in MS-grade ACN, while the mobile phase A consisted of 0.1% formic acid in
2% ACN and 98% MS-grade water. The eluted peptides were analyzed by an Exploris 480 MS
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with the FAIMS Pro (High field asymmetric waveform ion mobility spectrometry) interfacing in
standard Data-dependent acquisition (DDA) acquisition mode. Compensation voltage was set at
two different CVs, -42 and -62 V, respectively. Gas flow was applied with 4 L/min with a spray
voltage set to 2.1 kV. The DDA was performed using the following parameters. MS1 resolution
was set at 60,000 at m/z 200 with a normalized AGC target of 300%, and the maximum injection
time was set to 20 ms. The scan range of MS1 ranged from 350-1200 m/z. For MS2, the
resolution was set to 15,000 with a normalized AGC target of 200%. The maximum injection
time was set as 20 ms for MS1. Dynamic exclusion was set at 30 s. Mass tolerance of = 10 ppm
was allowed, and the precursor intensity threshold was set at 2e4. The cycle time was 1 second,
and the top-abundance precursors (charge state 2—6) within an isolation window of 1.6 m/z were
considered for MS/MS analysis. For precursor fragmentation in HCD mode, a normalized
collision energy of 30% was used. All data were acquired in centroid mode using positive
polarity and peptide match and isotope exclusion were turned on.

We obtained a total of 90 DDA-MS raw data profiles. These included 30 profiles from timsTOF
Pro MS instrument with a 60 min gradient, 30 profiles from timsTOF Pro MS instrument with a

90 min gradient, and 30 profiles from Exploris 480 MS instrument with a 60 min gradient.
DIA mass spectrometry acquisition for peptide and protein quantification

For the timsTOF Pro-based DIA-MS acquisition, 300 ng peptides were trapped at 217.5 bar on
the precolumn and then separated along the 60 min LC gradient same as the ddaPASEF LC
gradient mentioned above. The ion mobility range was limited to 0.7-1.3 V-s/cm?®. Four
precursor isolation windows were applied to each 100 ms diaPASEF scan. Fourteen of these
scans covered the doubly and triply charged peptides’ diagonal scan line in the m/z ion mobility
plane. The precursor mass range 384—1087 m/z was covered by 28 m/z narrow windows with a 3
m/z overlap between adjacent ones. Other parameters were the same as the setting in the
ddaPASEF acquisition.

For the Exploris 480-based DIA-MS acquisition, 500 ng peptides were separated by the LC
methods with a slight modification from the DDA-MS LC methods. The initial phase B of the
gradient was increased from 5% to 7% to get a more effective time for separation. The Spray
voltage of FAIMS was set to 2.2 kV. The other FAIMS settings were consistent with those of the
DDA-MS acquisition. In DIA mode, full MS resolutions were set to 60,000 at m/z 200 and the
full MS AGC target was 300% with an IT to 50 ms. The mass range was set to 390-1010. The
AGC target value for fragment spectra was set at 2000%. 15 isolation windows of 15 Da were
used for -62V compensation voltage with an overlapped of 1 Da, and 19 isolation windows of 20
Da were used for -42V compensation voltage with an overlapped of 1 Da. The resolution was set
to 15,000 and the IT to 54 ms. The normalized collision energy was set at 32%.

Overall, 62 diaPASEF raw data profiles and 60 DIA-MS (Exploris 480) raw data profiles were

obtained for the human fecal samples.
Comparison of metaExpertPro with other metaproteomics software tools

We firstly incorporated the comparison of DDA-MS-based peptide identifications among
ProteoStorm'S, metaLab'3, glaDIAtor*?, and metaExpertPro using the same raw data, database,
and parameters. Specially, six DDA-MS files of human fecal samples from dataset PXD0087384?
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were searched against the integrated gene catalog (IGC) database using ProteoStorm, glaDIAtor,
and metaExpertPro, respectively. Enzyme specificity was set to “Trypsin/P” with maximum one
missed cleavage. Precursor mass tolerance and fragment mass tolerance were set at 10 ppm and
0.02 Da, respectively. All the tests were performed on a computer with AMD EPYC hardware
and 512GB RAM.

Multivariate statistical analysis

The intensity values at peptide, protein, functional and taxonomic levels were logio transformed
for statistical analysis. The reproducibility of the quantitative proteins, functions, and taxa in
biological replicate samples was estimated by Spearman correlation. The intensity comparisons
of the identified peptides and protein groups between glaDIAtor*? and metaExpertPro were
conducted using Wilcoxon Rank Sum Test. The COGs, KOs, human proteins, and species
significantly associated with DLP were determined by General Linear Model (GLM)?7 (adjust
the confounders of sex, age, and Bristol Stool Scale, p-value < 0.05 and | beta coefficient | > 0.2).
The differentially expressed human proteins, COGs, and species were identified by Wilcoxon
Rank Sum Test (p-value < 0.05). t-SNE was performed using the Rtsne package (version 4.1.3).
The co-expressed COGs and human proteins were identified using the Spearman correlation of
their abundance in 62 human fecal samples (| r'spearman | > 0.2, Benjamini-Hochberg [B-H]
adjusted p-value <0.05).
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982 Figure 1 Overview of computational workflow and performance tests of metaExpertPro.
983 (A) Overview of metaExpertPro workflow. The metaExpertPro workflow consists of four stages,
984  including DDA-MS based spectral library generation, DIA-MS based peptide and protein
985  quantification, functional and taxonomic annotation, as well as quantitative matrix generation.
986  Stage 1 depicts the spectral library generation process using FragPipe software. Detailed
987 procedures are described in Methods. DDA-MS raw data in .d, .raw, .mzML, .wiff formats are all
988  compatible. In stage 2, the peptides and proteins are quantified based on DIA-MS data and the
989  spectral library using DIA-NN. In stage 3, the taxa, COGs, and KEGGs are annotated by Unipept,
990  eggnog-mapper, and GhostKOALA, respectively. The annotation results are then filtered through
991 the in-house filtering scripts. In stage 4, the quantitative matrices of subject samples and quality
992  control samples at taxa, COG, and KEGG levels are generated using matrix generation scripts.
993 (B) Overview of performance tests of metaExpertPro. The identification depth and
994  reproducibility of metaExpertPro were assessed in 60 human fecal samples, with MS raw data
995  acquired using both timsTOF Pro and Orbitrap instruments. The results of identification and
996  quantification, as well as running time were compared among MetaLab, ProteoStorm, glaDIAtor,
997  and metaExpertPro software tools utilizing a public dataset. FDR benchmark tests were
998  performed at both the protein groups and taxa levels using multiple datasets. At the protein group
999  level, factual FDR was employed to gauge the accuracy of protein group identification. At the
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1000  taxon level, the F-score was calculated for the identification accuracy test, while the correlation
1001 was computed for the quantification accuracy test. The impact of databases on spectral libraries
1002  and quantitative matrices was assessed using IGC+, UHGP_90, MG, MG_IGC, and

1003  MG_UHGP-90 databases. Finally, metaExpertPro was employed for metaproteomics data

1004  analysis on dyslipidemia (DLP) and non-DLP samples to characterize DLP-associated features at
1005 the human protein, microbial protein, COG, KO, and taxon levels.
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1008  Figure 2 In-depth identification and high reproducibility of the metaExpertPro workflow
1009  in the metaproteomic analysis of human fecal samples.

1010  (A) Experimental design including sample collection, sample preparation, MS acquisition, and
1011  metaExpertPro data analysis of human fecal samples. A total of 60 peptide samples were
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1012 obtained from 60 human fecal samples after the sample preparation process. For the DDA-MS
1013 based spectral library generation, the 60 peptide samples were firstly mixed. Then, the mixed
1014  peptides were fractionated into 30 fractions for DDA-MS acquisition. For DIA-MS based

1015  peptide and protein quantification, all 60 peptide samples were used for DIA-MS acquisition.
1016 ~ Two types of mass spectrometers including timsTOF Pro and Orbitrap Exploris™ 480 were
1017  applied for both DDA-MS and DIA-MS acquisition. (B—C) Identification performance of

1018  peptides and protein groups in spectral libraries based on 30 DDA-MS runs on timsTOF Pro (B)
1019  or Orbitrap Exploris™ 480 (C) MS spectrometer. (D-E) Identification rate of the MS spectra
1020  acquired from 60 DIA-MS runs collected on timsTOF Pro (D) or Orbitrap Exploris™ 480 (E)
1021 MS spectrometer. The y-axis stands for the identification rate of acquired MS spectra (%). (F—G)
1022 The richness per sample detected on timsTOF Pro (F) or Orbitrap Exploris™ 480 (G) instrument.
1023 The x-axis reports the richness per sample at each level. (H-I) Pairwise Spearman correlation
1024  and Bray-Curtis (BC) distance between five pairs of technical replicates and six pairs of

1025 biological replicates based on timsTOF Pro (H) or Orbitrap Exploris™ 480 (I) instrument.
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Figure 3 Comparison of metaExpertPro with other metaproteomics software tools.

(A) Comparison of the application situations among metal.ab, MetaProteomeAnalyzer (MPA),

ProteoStorm, glaDIAtor and metaExpertPro. (B) Experimental design of the comparison between
two software packages. The DDA-MS and DIA-MS data from dataset PXD008738 and the

integrated gene catalog database (IGC) database were used for the measurement of peptides and

protein groups by the metal.ab, ProteoStorm, glaDIAtor, or metaExpertPro. (C) Comparison of

peptide identifications by metal.ab, ProteoStorm, glaDIAtor, and metaExpertPro. (D) The

number of peptides and protein groups quantified by glaDIAtor and metaExpertPro. (E) The

overlapped peptides or protein groups quantified by glaDIAtor and metaExpertPro. (F) The

Spearman correlation of the abundance of peptides and protein groups quantified by both
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1038  glaDIAtor and metaExpertPro. (G) Comparison of the intensity of peptides or protein groups
1039  identified by both glaDIAtor and metaExpertPro or identified by metaExpertPro only. (H)

1040  Density plots of the fragment number and the y /b ion intensity ratio of each peptide. The red
1041 line shows the median of the fragment number per peptide or the y /b ion intensity ratio. (I)

1042 Comparison of the running time between gladiator and metaExpertPro in DDA-MS based

1043 spectral library generation and DIA-MS based quantification. The tests were performed using six
1044  DDA-MS and six DIA-MS raw data of human fecal samples in dataset PXD008738 on AMD
1045  EPYC hardware and a 512G RAM computer. p value: * p <0.05; ** p <0.01; *** p <0.001,
1046 *#** p <(0.0001.
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Figure 4 Benchmark test of protein group identifications of metaExpertPro.

(A) The experimental design of the benchmark test for protein group identification based on Hela
cell sample. The DDA-MS data of Hela cell from dataset PXD021928, and the databases
containing human proteins supplemented with different sizes of mouse microbiome catalog were
used for spectral library generation using metaExpertPro. (B) The number and factual FDR of the
protein groups identified from HeLa cell MS raw data searching against the human protein
database supplemented with 0%, 1%, 10x, 100%, and all the mouse microbiome catalog (~2.6
million proteins), respectively. (C) The experimental design of the benchmark test for protein
group identification based on bacteria mixture samples. The DDA-MS data of 32-species mixture
from dataset PXD006118 (P: equal protein amount) were searched against databases containing
P matched metagenomic database supplemented with 0, 5, 16, 32, and 48 human gut microbial
species databases, respectively. (D) The number and factual FDR of protein groups in each
subset test is present. The dashed lines depict the factual FDR of 0.05 and 0.01.
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1064  Figure 5 Taxonomic accuracy estimation of metaExpertPro.

1065  (A-B) The experimental design of the benchmark tests for taxa based on the 12-mix dataset
1066  (PXDO008738) (A) and CPU dataset (C: equal cell number; P: equal protein amount; U: uneven)
1067  (PXDO006118) (B). The figure depicts the original samples, the MS instrument, MS gradient, and
1068  MS acquisition modes applied in the 12-mix dataset (A) and CPU dataset (B). The 12-mix MS
1069  data were searched against the integrated gene catalog (IGC) database, while the CPU data were
1070  searched against the matched metagenomic database. The true positive (TP), false positive (FP),
1071 false negative (FN), and F-score of genera and species in each sample were calculated for both
1072 datasets. The measured relative abundance of genera or species was correlated with the true
1073 protein amount in the CPU dataset (B). (C—D) F-score of genera or species filtered by different
1074  numbers of corresponded peptides based on 12-mix MS data (C) or CPU MS data (D) using
1075  metaExpertPro. The F-score is the harmonic mean of precision and recall. The x-axis represents
1076  the minimum number of distinct peptides corresponding to genera or species. The y-axis displays
1077  the F-score of genera or species corresponding to the peptide count cutoff. The lines are

1078  smoothed by LOESS regression. (E) Spearman correlation between the true relative protein
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1079  amount and the relative protein abundance of genera measured by metaExpertPro in the CPU
1080  dataset. The genera were filtered by containing at least five distinct peptides. Genera shown in
1081  grey indicate their absence in the Unipept database.
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1082 Figure 6

A
Databases Sample types # protein sequences File sizes (GB) References
IGC+ Human fecal 10,352,085 34 Lietal. Zhang et al.
UHGP-90 Human gastrointestinal tract 13,811,247 47 Almeida et al.
MG Human fecal 2,672,692 0.9 this study
MG_IGC+ Human fecal 9,048,870 29 this study
MG_UHGP-90 Human fecal and gastrointestinal tract 13,043,740 4.3 this study
B g g D
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1084  Figure 6 Comparison of the spectral libraries generated based on five different databases
1085 and DDA-MS data from human fecal samples.

1086  (A) The table lists the basic information of five protein databases, including IGC+, UHGP-90,
1087 MG, MG _IGC+, and MG_UHGP-90. The IGC+ database is the integrated gene catalog of
1088  human gut microbiome supplement with seven human gut fungal species, NCBI Virus, and gut
1089  microbial gene catalog of 28 mucosal-luminal interface samples. The UHGP-90 database is the
1090  Unified Human Gastrointestinal Protein catalog (UHGP-90) filtered by 90% protein identity. MG
1091 database is the matched metagenomic protein catalog database from 62 human feces. The

1092 MG _IGC+ and MG_UHGP-90 are the merged databases using MG and IGC+ or UHGP-90,
1093  respectively. The number of total peptides (B), the shared and unique peptides (C), and the
1094  identification rate of acquired MS spectra in each DDA-MS profile (D) in five spectral libraries
1095  were generated based on five databases and 30 ddaPASEF MS data (90 min gradient) from 62
1096  human fecal samples. p value: * p <0.05; ** p <0.01; *** p <0.001, **** p <0.0001.
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1097  Figure 7
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1099  Figure 7 Negligible effects of public gut microbial gene catalog databases on DIA-MS based
1100  quantification.

1101  The analyses were based on 62 diaPASEF MS runs (60 min gradient) of 62 human fecal samples.
1102 (A) The number of quantitative peptides, protein groups, functions, and taxa per sample based on
1103 the IGC+ or UHGP-90 database. (B) The overlapped peptides, functions, and taxa in 62 human
1104  fecal samples based on IGC+ and UHGP-90 database. (C) The bar plots show the phylum-level
1105  taxonomic annotation of the peptides (upper) or COG-category-level functional annotation of
1106  protein groups (lower). The pie plots show the genus-level taxonomic annotation of the peptides
1107 (upper), or COG-level functional annotation of protein groups (lower) based on the IGC+ or
1108  UHGP-90 database. (D) The abundance correlation of human protein groups, functions, and taxa
1109  based on the IGC+ and UHGP-90 database. p value: * p <0.05; ** p <0.01; *** p <0.001, ****
1110  p<0.0001.
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Figure 8
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Figure 8 Proteins, functions, and taxa associated with DLP based on metaExpertPro
workflow.

The analyses are based on 62 diaPASEF MS runs (90 min gradient) of 62 human fecal samples
collected from 31 non-DLP and 31 DLP subjects. (A) The overlapped quantitative proteins,
functions, and taxa in DLP and non-DLP groups. The number of each section is labeled in the
parenthesis. (B—C) The t-distributed stochastic neighbor embedding (t-SNE) visualization of
DLP and non-DLP individuals calculated by significantly associated COGs (B) or human
proteins (C) with DLP (General Linear Model (GLM) adjust the confounders of sex, age, and
Bristol Stool Scale, p-value < 0.05 and | beta coefticient | > 0.2). (D) The intensity (logio
transformed) of significantly differentially expressed COGs (Wilcoxon Rank Sum Test, p < 0.05)
belonging to the increased COG categories (red shadow) or the decreased categories (blue
shadow). The COG categories are marked on the top of each COG. (E) The intensity (logio
transformed) of significantly differentially expressed human proteins between DLP and non-DLP
groups (Wilcoxon Rank Sum Test, p < 0.05). (F) The co-expressed network between
significantly changed COGs and human proteins in DLP. The co-expression between COGs and
human proteins was determined by the Spearman correlation of their intensity in the 62 human
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1129  fecal samples (] rspearman | = 0.2, Benjamini-Hochberg [B-H] adjusted p-value <0.05). * p value <
1130  0.05, ** p value < 0.01, *** p value < 0.001, **** p value < 0.0001.
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