

1 **Combined Partial-Nitrification and Phosphorus Removal with the co-**
2 **Existence of Nitrite-resistant phosphorous accumulating organisms (PAOs)**
3 **and nitrifiers in the treatment of high-strength manure digestate**

4 Yuan Yan^a, Peibo Guo^a, Mathew Baldwin^a, Guangyu Li^a, Hyun Yoon^a, Philip McGuire^a, Yi
5 Sang^a, Matthew C. Reid^a, Joseph Rudek^b and April Z. Gu^{a,*}

6 ^a*School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, 14850,*
7 *United States*

8 ^b*Environmental Defense Fund, Raleigh, NC, 27607, United States*

9 *Corresponding author: April Z. Gu

10 Civil and Environmental Engineering, Cornell University

11 E-mail address: aprilgu@cornell.edu

12 Abstract

13 Concurrent biological phosphorus (P) recovery and nitrogen (N) removal in treating high-
14 strength wastewater (such as anaerobic digestate) has been considered incompatible due to
15 presumed conflicts in the conflicting optimum conditions required by phosphorous accumulating
16 organisms (PAO) and nitrifiers. However, this study achieved a stable nitrite accumulation while
17 still maintained PAO activities in one sequencing batch reactor for treating the manure digestate
18 under two aeration schemes (continuous versus intermittent aeration). Nitrite accumulated up to
19 80.5 ± 21.1 mg-N/L under continuous aeration (6 h) mode. Switching to intermittent aeration
20 (equivalent to 3 h) halved nitrite accumulation but increased total nitrogen removal efficiency
21 from $53.5 \pm 12.2\%$ to $84.7 \pm 9.4\%$. Mass balance analysis indicates that nearly all ammonia was
22 removed as N_2O . Both Enhanced Biological Phosphorus Removal (EBPR) activity assessment
23 and phenotypic trait detection via single cell Raman spectrum (SCRS) confirmed the existence of
24 yet to be identified PAOs that are resistant to high nitrite inhibition in our system. Visual Minteq
25 calculation indicates that high concentrations of Ca in manure digestate may form precipitates
26 and influence the bioavailability of P forms. Therefore, both biotic and abiotic pathways lead to a
27 total P removal rate around $61.0 \pm 6.8\%$. This study highlights new opportunities to combine
28 short-cut nitrogen removal via partial nitrification, nitrous oxide (N_2O) collection, and EBPR in
29 commercial farm-collected digested manure wastewater. Higher N and P removal efficiency
30 could potentially be achieved by tuning aeration schemes in combination with down-stream
31 anammox process.

32 **Keywords:** manure management, partial nitrification, S2EBPR, EBPR, N_2O recovery,
33 phosphorus recovery

34 **Synopsis:** Concurrent partial nitrification, N₂O accumulation, and EBPR activity were found, leading to
35 the exploration of novel nitrite-resistant PAOs, simultaneously N/P recovery, and waste-energy
36 conversion in treating high strength wastewater.

37 **1. Introduction (~500 words)**

38 In recent years, there has been a growing interest in developing manure management
39 technologies that focus on resource recovery of water, biosolids, struvite, biogas, and
40 bioplastics.¹ Digested manure comprises relatively high concentration of soluble chemical
41 oxygen demand (sCOD) ranging from 700 to 2500 mg/L, ammonium as 47-1300 mg N/L,
42 phosphate as 10-120 mg P/L.² For farms with sufficient land, energy recovery can be realized
43 through the capture of biogas generated via anaerobic digestion of manure wastewaters
44 containing high-strength organic matter, while the remaining nutrient, mainly nitrogen and
45 phosphorus, could be used as fertilizer. However, many concentrated animal feeding operations
46 (CAFOs), which contain more than 1,000 cows per dairy farm, have limited land area and
47 therefore cannot accommodate the nutrients produced by digestion of their manure.^{3,4} If all
48 digested manure were land applied, N and P in excess of crop needs could be transported into
49 waterbodies as runoff, leaching and erosion and contribute to aquatic ecosystem eutrophication.⁵

50 Since manure is a byproduct of livestock production, farm owners are responsible for
51 managing manure that is produced on their farms. An effective technology with less chemical
52 addition and lower operation cost is crucial for the operation of a sustainable land-limited CAFO.
53 In this context, improving the biological nitrogen (N) and phosphorus (P) removal in the current
54 manure management chain is desirable. However, the environmentally-sound enhanced
55 biological nutrient removal technology, widely practiced for municipal wastewater, has hardly
56 been explored for high-strength agricultural or food wastewater.⁶ A few studies on biological
57 treatment of manure digestate have been reported, but they primarily focused on either N or P
58 removal alone.⁷⁻¹⁰ Considering the presence of both P and N in these high-strength wastes, the
59 integration of Enhanced Biological Phosphorus Removal (EBPR) with carbon- and energy-

60 efficient short-cut N removal (versus conventional carbon-dependent denitrification) would
61 increase the economic feasibility. Furthermore, unintended greenhouse gas (GHGs) (particularly
62 nitrous oxide - N₂O) emission from biological nitrogen removal processes has been a concern.¹¹
63 New perspectives have emerged recently suggesting that N₂O could be used as a fuel additive to
64 enhance the energy generated from methane captured in enclosed anaerobic digester systems.^{12,13}
65 A previous study indicated that 65~85% influent N could be recovered as N₂O in the Coupled
66 Aerobic–Anoxic Nitrous Decomposition Operation (CANDO) system.^{14–16} In additional research,
67 high strength digestate was found to be suitable for CANDO systems to recover N₂O.¹³
68 Integrating N₂O recovery with simultaneous N and P removal would greatly enhance the
69 economic feasibility of manure digestate management and increase the possibility to turn the
70 N₂O side-product, from a waste and climate pollutant into energy.

71 Though the integration is considered challenging due to presumed conflicts in the design
72 principles and conditions required by these two distinct bioprocesses,^{17,18} our research has
73 achieved simultaneous N and P removal (> 97%) with stable nitrite accumulation in a lab-scale
74 sequencing batch reactor (SBR) treating synthetic manure wastewater with NH₄⁺-N 50-100 mg-
75 N/L in a prior study.¹⁹ This result gave us confidence that if the Side Stream EBPR (S2EBPR)
76 concept were extended to anaerobic phases to encourage hydrolysis and fermentation of sludge
77 incorporated in the system, it could be combined with the short-cut N removal process to achieve
78 simultaneous N and P removal from high strength wastewater. Nevertheless, the feasibility of
79 transitioning this configuration to dairy manure digestate collected from a commercial dairy is
80 still challenging due to several factors. Firstly, the characteristics of manure digestate vary
81 depending on its origin (swine, cattle, hog) and the digestion parameters (summarized in Table
82 S1) pose difficulties in directly applying optimized operation parameters from one type of

83 manure digestate to another.²⁰ In addition, the presence of high metal concentrations and organic
84 forms of P in commercial manure digestate may affect the bioavailability of ortho-P that PAOs
85 required.²¹⁻²³ Furthermore, manure digestate is typically characterized as having high soluble
86 Chemical Oxygen demand (sCOD)/P ratio (10-30) but low volatile fatty acids (VFAs)
87 concentration.²⁴⁻²⁷ This particular nutrient composition poses limitations on the growth of
88 PAO.²⁸⁻³⁰

89 In this study, we further explore the feasibility of simultaneously coupled EBPR with short-
90 cut N removal for treating commercial manure digestate wastewater. In a lab-scale SBR, both N
91 and P removal performance were monitored by routine chemical analyses of influent and effluent.
92 Both P and N removal activities, including stoichiometry and kinetics, were evaluated via batch
93 activity tests. The greenhouse gas emissions were monitored during the SBR operation cycles of
94 the reactor. This research will advance our understanding of combining short-cut nitrogen
95 removal with S2EBPR in treating manure digestate.

96 2. Materials and Methods

97 2.1 Commercial manure digestate

98 The manure slurry was obtained from a collection pit next to the two anaerobic digesters in a
99 dairy CAFO near Ithaca, New York, and was stored at 4°C in polyethylene jugs until use. Due to
100 the high solid content and nutrient concentration in the raw manure slurry, the manure slurry was
101 centrifuged, and the supernatant was diluted 10 times prior to feeding into the reactor to prevent
102 bio-inhibition effect induced by extremely high ammonia concentration. The composition and
103 concentration of manure are listed in **Table 1**, being similar to the manure digestate wastewater
104 reported previously (Table S1).

Table 1 Manure digestate components in influent (10X diluted)

Parameter	2020-Period-I	2021-Period-II
pH	7.51	7.5-7.88
sCOD (mg/L)	959-2200	1379-1922
BOD ₅ (mg/L)	558-657	963
TOC (mg C/L)	224-270	
TP (mg P/L)	36-50	20-33
PO ₄ (mg P/L)	10-35	4-11
NH ₄ (mg N/L)	182-230	180-264
TSS (mg/L)	Both ranged between 2,290-3,760	
VSS (mg/L)	Both ranged between 1,740-2,379	
VFA (mg C/L)	153	250
C/N (mg sCOD/mg NH ₄ ⁺ -N)	5.6-8	7.2-7.9
C/P (mg sCOD/mg PO ₄ ³⁻ -P)	54-60	150-174

105

106 **2.2 SBR operation**

107 A lab-scale SBR with a working volume of 4 L and a volumetric exchange ratio of 50% was
108 used in this study. The reactor was inoculated with EBPR activated sludge from Hampton Roads
109 Sanitation District (HRSD) Virginia Initiative Treatment Plant (Norfolk, VA) and Nansemond
110 Treatment Plant (Suffolk, VA).

111 The operation periods were separated into two modes. In Period-I (97 days), the reactor was
112 operated for anaerobic/continuous aerobic phases as follows: Feeding time for 5 min, anaerobic
113 phase for 2.5 h, aerobic for 5 h, settling time for 20 min, decanting, and idle for 10 min. In
114 Period-II (87 days), the reactor was operated for anaerobic/intermittent aerobic phases as follows:
115 Feeding time for 5 min, anaerobic phase for 2.0 h, 30 min on/off aeration for 5 h, settling time
116 for 20 min, decanting, and idle for 10 min.

117 During the operation, pH was not controlled and varied between 7.2-8.5. Dissolved oxygen
118 (DO) was between 2-8 mg/L during the aerobic phase to avoid any oxygen limitations (Figure
119 S1). The reactor was operated at a constant temperature of around 25 °C. The sludge retention

120 time (SRT) was kept at 10 days by periodic wasting of the mixed liquor at the end of the aerobic
121 phase and the volatile suspended solids (MLVSS) was maintained around 6600 mg/L.

122 **2.3 Performance monitoring and chemical analysis**

123 The influent and effluent samples of the reactor were sampled routinely and then centrifuged
124 immediately at 6000 g for 10 min. The supernatant was filtered by 0.22 μ m filters before
125 chemical analysis. The untreated samples were stored at -20 °C for further analysis. The
126 concentrations of NH_4^+ , NO_3^- , NO_2^- , and PO_4^{3-} were measured by ion chromatography (IC)
127 (Thermo Fisher Scientific, Dionex ICS-2100, USA) with anion and cation exchange columns,
128 respectively. Mixed liquor suspended solids (MLSS), and MLVSS were analyzed in accordance
129 with Standard Methods.³¹ Total and soluble COD (Hach reaction digester method) and the total
130 VFA concentration (Hach esterification method, TNT872, USA) were measured by colorimetric
131 spectrometer.

132 The pH and DO concentration in the reactor were routinely measured by DO and pH meter
133 kit (DFRobot, Shanghai, China). The pH, DO and the oxidation reduction potential (ORP) in the
134 influent, effluent, and at the end of anaerobic phase were measured by Portable Dedicated
135 pH/ORP/mV Meter (Hach Company, HQ1110, USA).

136 For Al, Fe, Ca, Mg and total phosphorus (TP) measurements, samples were filtered, digested,
137 and measured by inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 7800, USA).
138 Soluble reactive phosphorus (SRP) was measured through molybdate blue method 4500-P.³¹

139 **2.4 Activity batch tests**

140 Denitrification and anammox activity tests were performed to identify the contribution of
141 nitrogen removal pathways. Activated sludge was washed 3 times to remove the remaining

142 medium. After that, about 3 g wet sludge was collected into a 250 ml serum bottle and
143 concentrated medium were injected into bottle to initiate the reaction. After 5-minute premixing,
144 samples were collected every 30 minutes for a total of 2.5 h, filtered through a 0.22 μm filter and
145 then analyzed for NH_4^+ -N, NO_2^- -N, NO_3^- -N concentrations. At the end of batch tests, the total
146 suspended solids (TSS) for each bottle were measured according to the standard methods.

147 The final concentration of media (sodium acetate, nitrate, nitrite, ammonium) in each batch
148 tests, the nitrate reduction, nitrite reduction rates, and total nitrogen removal rates in anammox
149 tests were respective calculated by linear regression and shown in **Table S2**.

150 **2.5 N_2O measurement**

151 For gaseous N_2O sampling, the holes on top of reactor for sensors were sealed with rubber
152 stopper. Only one hole was outfitted with a vent for gas collection. A small fan was installed
153 inside of the reactor to achieve thorough mixing of the headspace gas. Gas samples were
154 collected from the sampling vent into 50 ml nylon syringes at specific time intervals. During
155 anoxic phases, it is assumed that gaseous N_2O increases linearly with microbial activity.
156 Therefore, gas samples were only collected at the end of each anoxic phase. During aeration
157 phases, since dissolved N_2O would be stripped out of the liquid phase, more intensive sampling
158 points were used so the gaseous N_2O emissions can be fitted with an exponential equation.

159 For dissolved N_2O measurement, 5 ml mix liquor was collected every 30 minutes during the
160 cycle. After shaking 3 minutes with 45 ml N_2 , the equilibrated gas samples were stored in gas
161 vials for quantification.

162 N_2O was measured via gas chromatography (GC) analysis (Shimadzu GC-2014, Kyoto,
163 Japan), using an electron capture detector, and CH_4 was measured with a flame ionization

164 detector. All N₂O emissions (M_{N_2O} , mg-N₂O-N) were calculated by integrating the gaseous N₂O
165 curve in aeration phase and anoxic phase using equation (1):

$$M_{N_2O} = Q_{air} * \int_{t_0}^{t_{Aer}} C_{g_{Aer}} \cdot dt + \left(\frac{C_{g_{Ax,t}} - C_{g_{Ax,to}}}{t_{Ax}} \right) * V_{head} * t_{Ax} \quad (\text{Eq. 1})$$

Where: Q_{air} is the flow rate of air, 6.7 L/min; $C_{g_{Aer}}$ is the concentration of N₂O in aeration phase, mg-N₂O-N/L; t_{Aer} is the aeration time, 30 min in each aeration phase; $C_{g_{Ax,t}}$ and $C_{g_{Ax,to}}$ are the concentration of N₂O at the end/begin of anoxic phases, mg-N₂O-N /L; t_{Ax} is the anoxic time, 30 min in each anoxic phase; V_{head} is the head space of the reactor, 6 L.

166 N₂O emission factors were calculated as a percentage of the average influent NH₄⁺- N load
167 being emitted as N₂O.

168 **2.6 Single cell Raman spectrum (SCRS) analysis and phenotypic profiling**

169 Sludge samples (1 ml) were collected from the reactor at the end of the aerobic phases and
170 centrifuged for 5 minutes at 6000 rpm. After being washed three times with 1X Phosphate
171 Buffered Saline (PBS), 50X diluted samples were homogenized by pushing the cells through 26-
172 gauge needle syringe 10 times to obtain uniform distribution of cells and then 2.5 ul samples
173 were prepared on optically polished CaF₂ windows ([Laser Optex, Beijing, China](#)). Raman
174 spectra of single-cell were scanned from 400 to 1800 cm⁻¹ by a LabRam HR Evolution Raman
175 microscope equipped with a magnification of x50 objective ([HORIBA, Japan](#)). Spectrums were
176 acquired according to previously published methodologies ^{32,33}. The phenotyping analysis was
177 conducted according to previously published research.³⁴. The spectra data were processed with
178 the smoothing and filtering, background subtraction, baseline correction steps by the software
179 LabSpec 6 (Detailed key parameters were in supporting information [Text S1](#)).

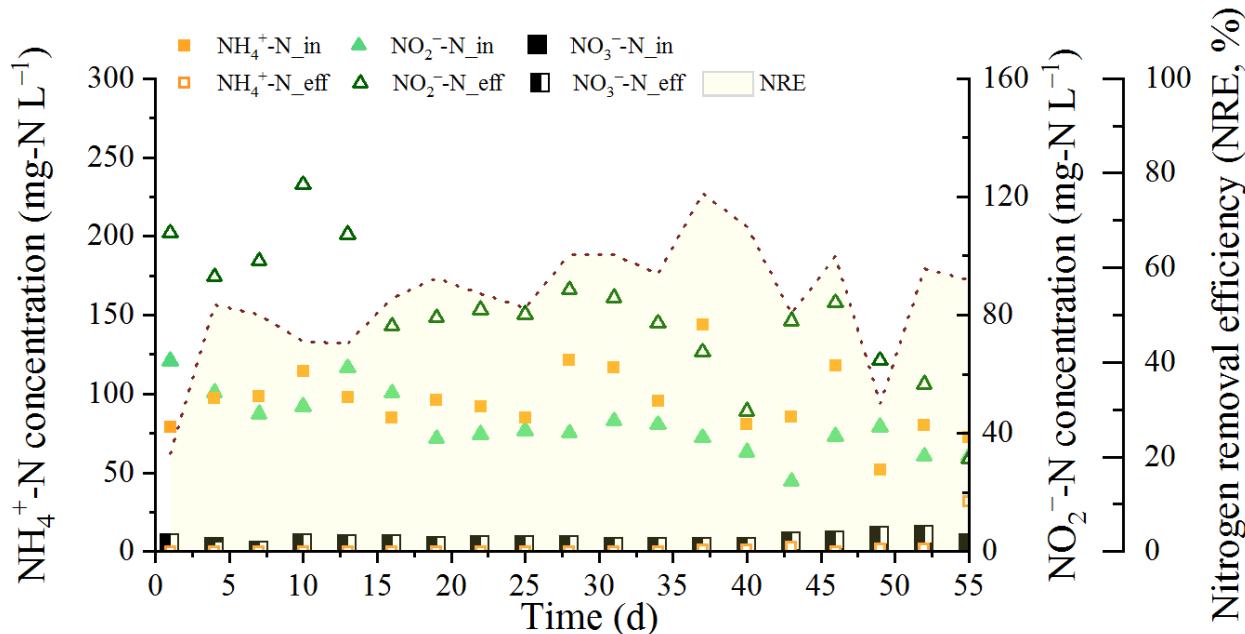
180 The presence of polyhydroxyalkanoates (PHA) in single cells was identified by the signature
181 peaks in the range of 1715-1740 cm⁻¹ and the presence of polyphosphate (poly-P) was identified
182 by the two signature peaks in the range of 685-715 cm⁻¹ and 1150-1180 cm⁻¹ based on previous
183 study ³⁵. The relative intensity of PHA and poly-P for single cell was normalized by the intensity
184 of amide I vibration at 1640-1690 cm⁻¹. The hierarchical clustering analysis (HCA) was applied
185 on all of the single-cell Raman spectra from activated sludge samples to obtain phenotypic
186 profiles based on operational phenotypic units (OPUs) according to our previous study.³⁴ The
187 cosine similarity ($\sqrt{2 - 2r}$, r-correlation efficient) was used to measure metrics between two
188 samples, average linkage was applied to quantify dissimilarities between two clusters and the
189 cutoff threshold for OPUs was set with Akaike information criterion (AIC). The Raman
190 fingerprints of Cte probe ³⁶ hybridized cells were used as the *Comamonadaceae*-labeled
191 reference.

192 **2.7 DNA extraction and 16S rRNA gene amplicon sequencing**

193 To investigate the microbial community dynamics, sludge samples were collected at the end
194 of the aerobic phase periodically and the genomic DNA was extracted using the FastDNA Spin
195 Kit for Soil (MP Biomedical, USA).. The extracted DNA was sent to [University of Connecticut-](#)
196 [MARS facility](#) for PCR amplification and sequencing targeting the V4 region using the primers
197 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGACTACHVGG
198 GTWTCTAAT-3') and the amplicons were sequenced on the Illumina MiSeq with V2 chemistry
199 using paired-end (2 x 250) sequencing. The raw paired-end reads were assembled for each
200 sample and processed in Mothur v. 1.36.1 following the MiSeq standard operating procedure
201 (SOP).³⁷ High-quality reads were obtained after quality control and chimera screening and then
202 clustered at a 97% similarity to obtain the operational taxonomic units (OTUs).

203 **2.8 Process Modeling**

204 The SUMOTM 19 process modeling package by Dynamita (Nyons, France) was used to
205 evaluate the SBR operation. The SUMO2 model utilizing two-step nitrification and
206 denitrification, and the Barker-Dold model for P removal was selected. Chemical precipitation
207 was enabled along with pH and DO calculation.


208 Analysis of phosphorus speciation was further conducted using Visual MINTEQ version
209 3.1.³⁸ For speciation, the input data were concentration of the NH₄⁺-N and NO₂⁻-N, Ca²⁺, Mg²⁺,
210 pH value, ORP, and DOC at the beginning of reaction, the end of anaerobic stage and in the
211 effluent (Table S3). For assessing the ion-binding behavior of humic acids, the NICA-Donnan
212 model was employed with default parameters. This model assumes a continuous distribution of
213 deprotonated carboxylic and phenolic groups and was widely applied in complex wastewater.³⁹

214 **3. Results and Discussion**

215 **3.1 Reactor performance**

216 **3.1.1 Period-I (anaerobic/continuous aeration)**

217 In Period-I, the SBR was operated for 97 days with DO concentration in aerobic phase varied
218 from 2.0 to 6.0 mg/L. The effluent NH₄⁺-N gradually decreased to zero with a stable nitrite
219 accumulation after day 43. The effluent NO₂⁻-N concentration increased to 80.5 ± 21.1 mg-N/L
220 with the effluent NO₃⁻-N of 0-3 mg-N/L (Figure 1). The nitrite accumulation rate (NAR),
221 calculated as the ratio of nitrite to nitrite and nitrate, could reach 97.2 ± 2.1%. The overall total
222 nitrogen removal efficiency (TNRE) is around 53.5 ± 12.2%.

223

224 **Figure 1 Reactor performance in Period-I, dates are readjusted to 1 when the system reached steady state.**

225

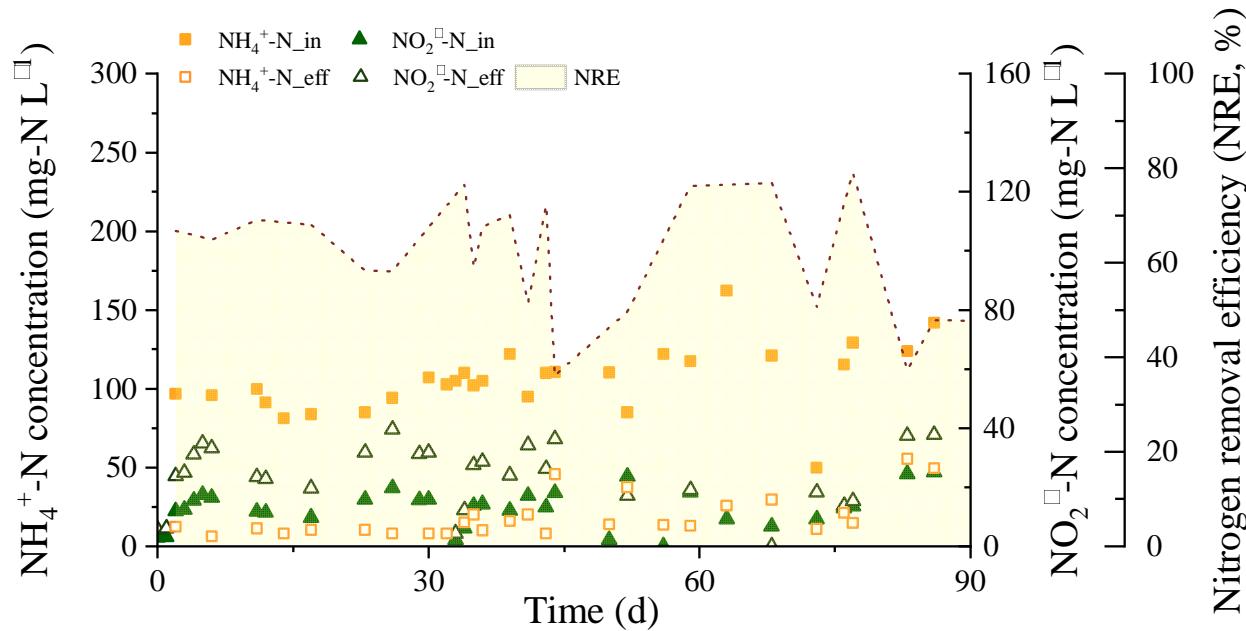
Initially, the PO_4^{3-} -P removal rate could reach 60% upon seeding with EBPR sludge.

226

However, the P removal rate gradually decreased to 20% when the system began to accumulate
227 nitrite. Though a stable P and N removal could be achieved with 20.4 ± 6.4 mg N/L nitrite
228 accumulation in a similar system,¹⁹ the present study encountered a higher nitrite accumulation
229 of nearly 80 ± 21 mg-N/L, which could greatly hamper the activity of both N removal and P
230 accumulating bacteria. To address this issue, the continuous aerobic phase (6 h) was changed
231 into multiple 30/30 mins aerobic/anoxic phases in Period-II to alleviate the possible nitrite
232 inhibition effect.

233

3.1.2 Period-II (anaerobic/Intermittent Ax/Aer)


234

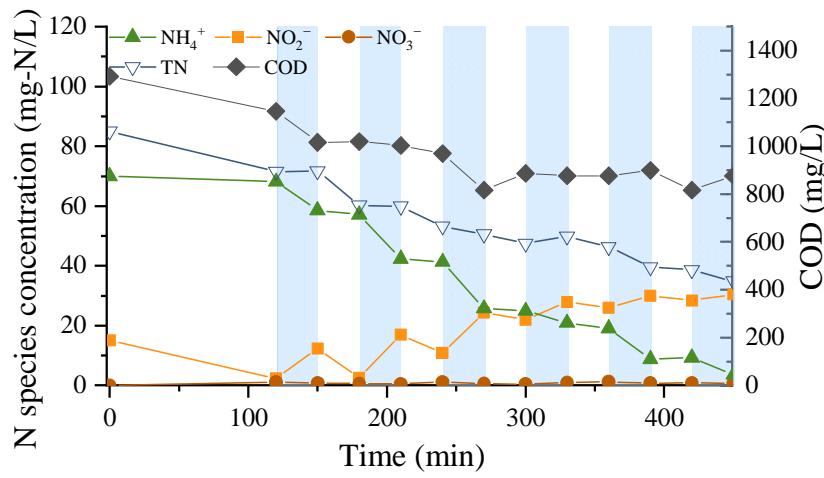
In Period-II, the influent ammonia concentration was maintained the same as in Period-I.

235

Once the reactor reached steady operation, it was maintained for 90 days. Reducing the aeration
236 time to 3 hours resulted in an increase of effluent ammonia to 16 ± 9.5 mg N/L, while the

237 effluent nitrite reduced to 27.6 ± 9.6 mg N/L (Figure 2). There was no detectable nitrate in
238 Period-II with NAR maintained at 100%. The overall TNRE increased to $84.7 \pm 9.4\%$, indicating
239 a stronger denitrification activity facilitated by a prolonged anoxic phase (3 h). The PO_4^{3-} -P
240 removal rate seems higher than in Period-I but that was due to the decrease concentration of
241 soluble P in the raw manure digestate (Table 1). The actual SRP reduction still maintained
242 around 3-5 mg-P/L per cycle, indicating that P removal performance was not influenced by
243 either lower soluble P or the reduced nitrite accumulation in Period-II relative to Period-I.

245 **Figure 2 Reactor performance in Period-II**


246 **3.2 Stable nitrite and N_2O accumulation during an SBR operation cycle in Period-II**

247 **3.2.1 Nitrite accumulation due to partial nitrification**

248 Though the average DO concentration (~ 6 mg/L) in aeration phases are much higher than the
249 setpoint in conventional partial nitrification reactor (0.5~2 mg/L), a constant nitrite accumulation
250 was observed under two periods. SBR operation cycles were analyzed on day 11, 23, 25, 30, and

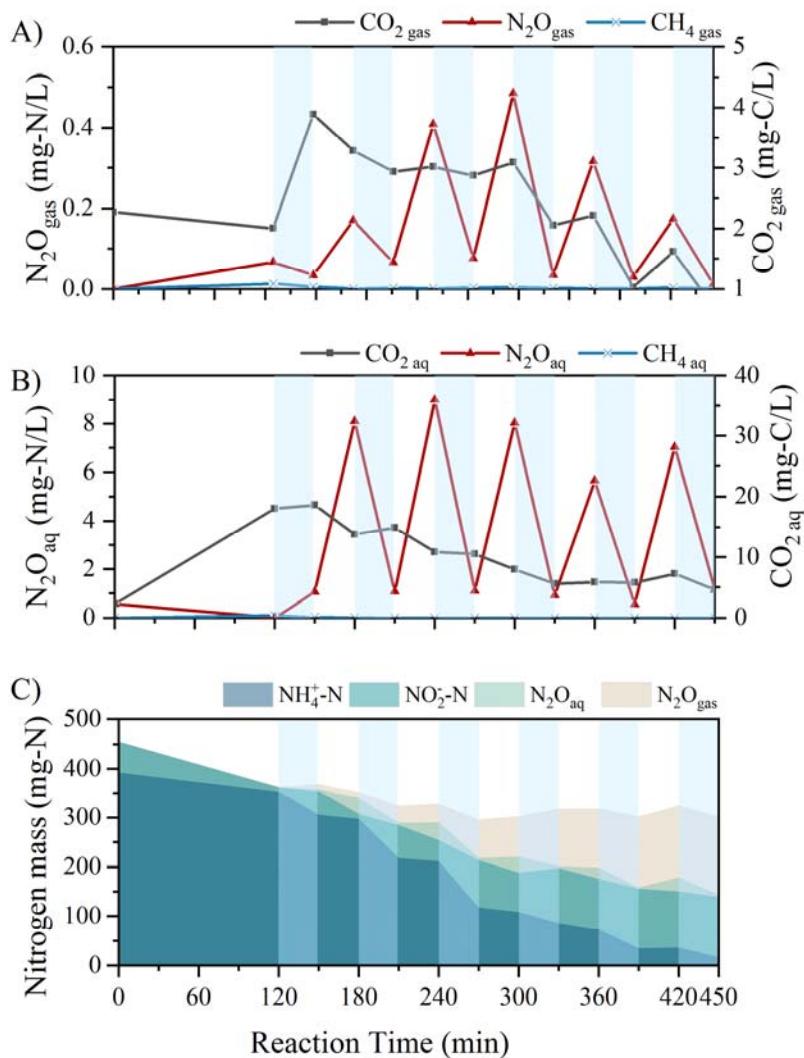
251 40 in Period-II. The residual nitrite from the last aeration stage was fully denitrified in the
252 subsequent 2-h anaerobic phase (Figure 3). DO concentrations in the first three aerobic stages
253 varied from 1.0 to 3.0 mg/L, being similar to the conventional partial nitrification reactor.
254 Subsequently, the DO concentration increased gradually to 8 mg/L during the following three
255 aerobic stages. Around 10-24 mg-N/L NH_4^+ was oxidized into NO_2^- with no nitrate formation
256 throughout the cycle. These results indicated a strong Nitrite Oxidizing Bacteria (NOB)
257 inhibition.

258 In the first several anoxic phases, the NO_2^- reduction could reach~8 mg/L per half hour. As
259 the sCOD no longer decreased in the final two anoxic phases, only ~2 mg/L NO_2^- could be
260 reduced. It's also interesting to find 0.7-1.8 mg-N/L disappeared along with nitrite reduction in
261 anoxic phases, which implies the existence of denitrification and/or anammox activity.

262

263 **Figure 3 sCOD and nitrogen species in a typical cycle in Period-II (day 40)**

264 To further identify the N loss during the aerobic and anoxic phases, we conducted serial
265 batch tests (Table S2). With external acetate addition, nitrate reduction rate was 2.94 ± 0.09 mg-
266 N/g-VSS/h with no nitrite accumulation. Similarly, with acetate and NO_2^- -N as the sole electron
267 acceptor, the NO_2^- -N reduction rate is 2.77 ± 0.13 mg-N/g-VSS/h, being comparable to that of

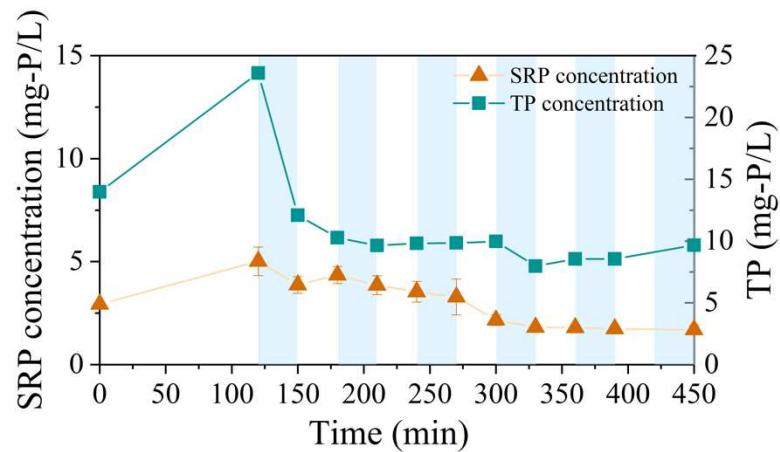

268 NO_3^- -N reduction rate. If acetate was not present in the test media, the denitrification rate is
269 around $0.20 \pm 0.01 \text{ mg-N/g-VSS/h}$, being similar to the normal endogenous denitrification rate in
270 the range of $0.2\text{--}0.6 \text{ mg N/h g MLVSS}$.⁴⁰

271 With ammonia, nitrite and no organic carbon source, we obtained anammox activity as $1.32 \pm 0.03 \text{ mg-N/g-VSS/h}$. If the denitrification and anammox activities were both active in the first
272 two anoxic phases, then $\sim 4100 \text{ mg/L VSS}$ in the reactor could remove $\sim 8.1 \text{ mg/L } \text{NO}_2^-$ -N, in
273 accordance with the anoxic N loss obtained in SBR cycle analysis (Figure 3). When bacteria
274 consume all bioavailable carbon in the first several Aerobic/Anoxic (Aer/Ax) phases,
275 heterotrophic denitrification rate ceased and only leave anammox bacteria for nitrogen removal.
276 Based on calculation, anammox activity alone will contribute to $\sim 2.6 \text{ mg/L TN}$ removal that are
277 similar to the last three anoxic phases (Figure 3). The occurrence of stable partial nitrification in
278 both periods offers a promising opportunity for integrating a downstream anammox process into
279 manure management practices. This integration could serve as an effective strategy to further
280 reduce effluent TN levels.

282 3.2.2 N_2O accumulation profile over the course of a SBR operation cycle

283 In addition to concerns regarding eutrophication resulting from manure wastewater
284 overapplication to croplands, the accumulation of nitrite and the aeration process also raise
285 concerns about greenhouse gas emissions. According to field sampling report for full-scale
286 domestic waste water treatment plants (WWTPs), the N_2O emission factor varies largely from
287 0.0001 to $0.112 \text{ kg N}_2\text{O-N/kg NH}_4^+ \text{-N}_{\text{influent}}$, depending on the reactor configuration and process
288 characteristics and measurement methodologies in a set of 29 WWTPs all over the world.⁴¹ The
289 N_2O emissions from manure digestate has been found to generally be higher than from municipal
290 wastewater, ranging from 8.2-11% of removed $\text{NH}_4^+ \text{-N}$.^{8,42} With synthetic high strength

291 wastewater (1700-1800 mg/L NH_4^+ -N_{inf}), 20–30% of influent nitrogen was emitted as N_2O .⁴³
292 Previous researchers obtained > 90% N_2O emission when they feed nitrite in a simultaneous
293 nitrification, denitrification, and phosphorus removal SBR. In these studies, N_2O was mainly
294 produced under high nitrite and high DO situations.⁴⁴ The characteristics of swine waste was also
295 proven to inherently influence the activity of NOB and/or N_2O production during ammonium
296 oxidation.⁸



297 **Figure 4 (A) Gaseous N_2O , CO_2 , and CH_4 ; B) Dissolved N_2O , CO_2 , and CH_4 ; and C) Nitrogen species mass**
298 **variations in a typical cycle in Period-II (day 85).**

300 Since the solubility of N_2O is relatively high, the N_2O generated in denitrification reactor
301 may dissolve in solution and be stripped out by the following aeration. To evaluate the gas
302 emission in our biological reactor, N_2O , CO_2 and CH_4 concentrations in both dissolved liquid
303 and headspace of our reactor were analyzed during a SBR cycle (Figure 4). At the end of
304 anaerobic stage, only CH_4 accumulated in liquid phase, and it was stripped out within 2 aeration
305 periods (Figure 4A). N_2O concentration at the end of each anoxic phase varies from 5.8-9 mg-
306 N/L. N_2O concentrations at the end of aerobic phases are much lower than anoxic phases,
307 maintaining around 1 mg-N/L. Similar variations were observed for N_2O and CH_4 concentrations
308 in the headspace, although they were consistently 1-2 orders of magnitude lower than the
309 dissolved concentrations. Intensive sampling in aeration phase (Aeration phase 4) confirmed that
310 the N_2O concentrations in headspace peaked when aeration was on, and subsequently decreased
311 exponentially due to air stripping (Figure S2). The total emitted N_2O can be calculated by
312 Equation 1.

313 Taking both aqueous and gaseous nitrogen species into account, the nitrogen conversion
314 during a SBR cycle is summarized in Figure 4C. During the anoxic stages, N_2O accumulated in
315 aqueous phase. Subsequent aeration led to the stripping of dissolved N_2O into the gaseous phase.
316 It is worth noting that the decrease in the mass of dissolved N_2O corresponds closely to the
317 increase observed in the gaseous phase. This observation strongly suggests that the primary
318 source of N_2O is the anoxic phase rather than the aerobic phases. The incomplete denitrification
319 pathway, specifically the conversion of NO_2^- to N_2O , significantly contributes to the presence of
320 N_2O in our system. The N_2O emission factor in total cycle is as high as 0.4 kg $\text{N}_2\text{O-N}/\text{kg NH}_4^+$ -
321 $\text{N}_{\text{influent}}$. Our findings aligns with the CANDO system's approach of using denitrifiers to
322 accumulate N_2O as end products from NO_2^- -rich wastewater.^{12,13}

323 **3.3 Interference of Abiotic Phosphorus Precipitation with Biotic Phosphorus Removal**

324

325 **Figure 5 SRP variations in a typical cycle (Period-II, day 85)**

326 In the presence of PAO activity, intracellular poly-P would be hydrolyzed into
327 orthophosphate in the anaerobic phase to provide energy for Polyhydroxyalkanoates (PHA)
328 synthesis, leading to a notable SRP increase in EBPR system. However, during a typical
329 Anaerobic/Aer/Ax cycle, we only observed 2.08 mg-P/L release at the end of anaerobic phase
330 (Figure 5). Initially, we attributed this limited release to the inhibition caused by high nitrite
331 concentrations. However, when we switched to measuring soluble total phosphorus (STP) using
332 ICP-MS, the results clearly demonstrated a total phosphorus release of 9.6 mg-P/L after the 2-
333 hour anaerobic phase. The discrepancy between STP and SRP measurements suggests that 6.92
334 mg-P/L was released in the form of other P species that cannot be accurately quantified as SRP
335 using molybdate-based methods.

336 Our manure digestate influent contained significant concentrations of Ca^{2+} and Mg^{2+} ions,
337 measuring $68.2 \pm 28.8 \text{ mg/L}$ and $40.0 \pm 16.5 \text{ mg/L}$, respectively. These elevated levels of cations
338 have the potential to influence the metabolic pathways of PAOs⁴⁵ and can also lead to the
339 formation of precipitates when combined with released SRP, thereby affecting PAO activity.

340 SUMO process model adopted the kinetic rate expression to integrate the chemical-physical
341 processes in the same reactor.⁴⁶ It was predicted that the metastable precipitation (i.e.,
342 amorphous calcium phosphate, ACP) would be stable in wastewater instead of transforming to
343 thermodynamically stable species, such as hydroxyapatite. Enabling precipitation calculation,
344 SUMO process model predicts the occurrence of ACP in reactor would be approximately 1100
345 mg/L due to the high Ca²⁺ concentration, representing 12% of the TSS. However, this predicted
346 amount of ACP does not align with our observations. This calculation fails to capture the
347 biological phosphorus release and uptake, as depicted in **Figure S3**. The precipitation processes
348 in wastewater are also influenced by the presence of inorganic and organic ligands. It should be
349 noted that the anaerobic digestion process would lead to an increased proportion of humic-like
350 substances in manure digestate.⁴⁷ The distinct composition of digestate compared to municipal
351 wastewater could have influenced the speciation outcomes in the SUMO model. The elevated
352 proportion of organic matter may have contributed to the stabilization of fine particles within the
353 colloidal size range as indicated previously.⁴⁸ Furthermore, the presence of humic acid can also
354 impact the cationic bridging facilitated by divalent cations such as Ca²⁺ and/or Mg²⁺. This can
355 lead to the formation of bidentate or ternary complexes between phosphate and dissolved organic
356 matter.⁴⁹

357 To gain a better understanding of the influence of organic ligands, we use NICA-Donnan
358 model to calculate P precipitation at different stages of the cycle, including the beginning of the
359 cycle (T0), the end of the anaerobic phase (T120), and the effluent (Eff.) with changes in NH₄⁺-N,
360 NO₂⁻-N, pH, ORP, VFA, TP, SO₄²⁻, Cl⁻, Ca, Al, Mg, and Fe (**Table S3**). We assume that newly
361 the formed ACP and/or humic acid (HA)-Ca-P complexes are in colloidal size fraction and
362 therefore pass through 0.45 um filter. In this context, only SRP is readily bioavailable. If all

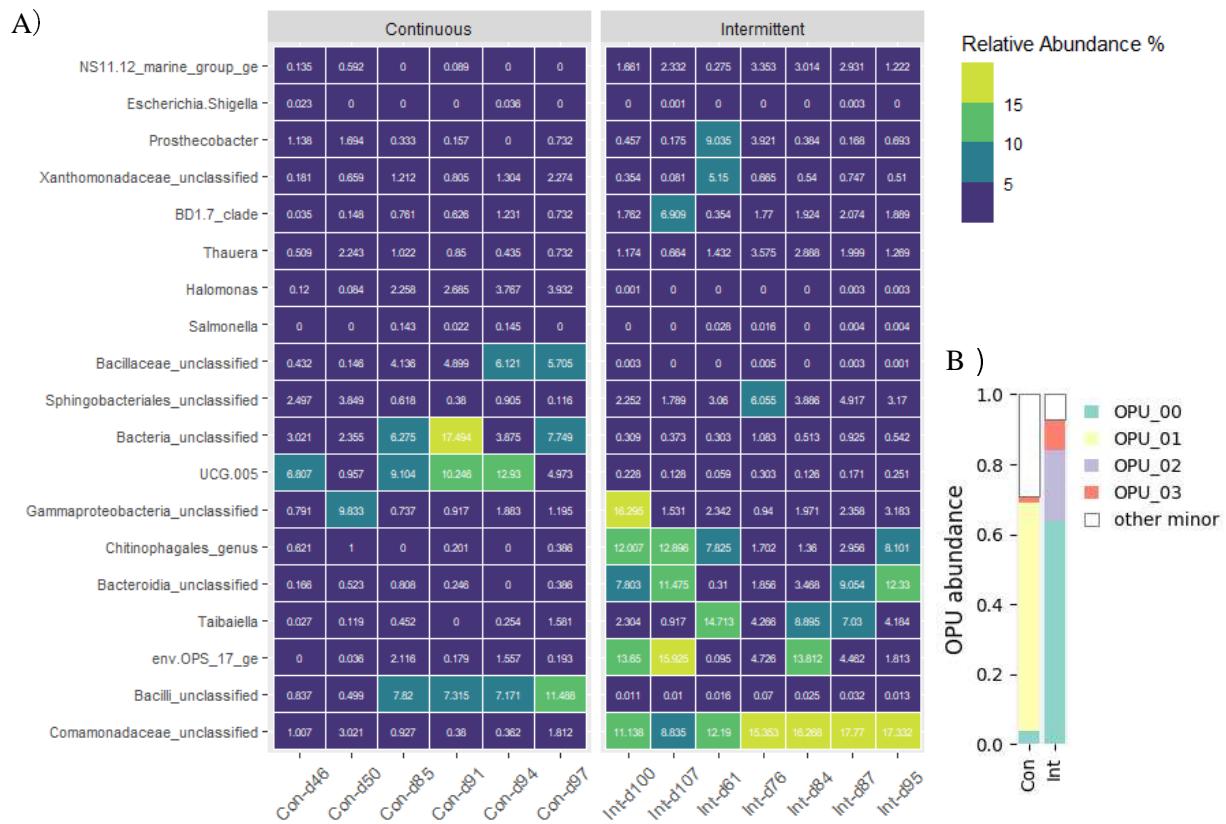

363 organic P in influent is sufficiently hydrolyzed into orthophosphate, then the model would
364 predict 12.1 mg-P/L precipitation as hydroxyapatite (**Table 2**). After 120 min anaerobic phase,
365 TP concentration increased 9.6 mg-P/L, indicating an anaerobic P release activity by PAOs.
366 Accounting the released PO_4^{3-} (**Figure 5**), P precipitation was modelled to increase to 18.82 mg-
367 P/L (**Table 2**). The remaining 4.8 mg/L dissolved PO_4^{3-} is in accordance with the measured SRP
368 at the end of anaerobic phase (5.0 mg-P/L in **Figure 5**). Towards the end of the reaction,
369 ammonia was fully oxidized to nitrite accompanied by a decrease in pH to 6.6, leading to a
370 redissolution of phosphorus precipitates. However, the released phosphate was not captured by
371 either SRP measurement or the STP measurement. It may have been stored intracellularly by
372 bacteria. The precipitation/dissolution of hydroxyapatite in anaerobic/aerobic cycle has also been
373 reported by Zhang et al., (2015).⁴⁵ With precipitation model, the phosphorus release/uptake was
374 calculated as 8.8 and 12.4 mg-P/L, being close to the measured TP release/uptake, indicating that
375 chemical precipitation interferes with the biological phosphorus removal.

Table 2 Phosphorus precipitation calculated by Visual Minteq (mg-P/L)

Time	Measured PO_4^{3-} (SRP)	Obs. SRP Release/uptake	Measured TP	Obs. TP Release/uptake	Model precipitate	Model Release/Uptake
T_0	2.9		14.0		12.1	
T_{120}	5.0	+2.1	23.6	+9.6	18.8	+8.8
Eff	1.7	-3.3	9.7	-13.9	9.8	-12.4

376
377 Therefore, the TP release/uptake was 9.6 and 13.9 mg-P/L, respectively (**Table 2**), resulting
378 an P release and uptake rates of 1.1 and 1.05 mg-P/g-VSS/h. This rate is close to the rates
379 obtained in S2EBPR facilities.^{18,50}

380 **3.4 Nitrite-resistant PAOs and Putative N_2O generator**

381

382 **Figure 6 (A) Time series heatmap of the relative abundances of the bacteria in Period-I (Con-) and Period-II (Int-) at the genus level; (B) relative abundance of each operational phenotypic units (OPUs) clustered by the 383 hierarchical clustering analysis (HCA) in Period-I (con.) and Period-II (Int); Values represent average 384 relative abundances (%)**

386 Based on 16S sequencing, *Nitrosomonas* was the only known ammonia oxidizing bacteria 387 (AOB) genus that could be detected (0.2%-3.2%) and NOB relative abundance was below the 388 detection limit (<0.1%) (Figure 6), which was similar to the results with synthetic manure 389 digestate.¹⁹ These results indicate that partial nitrification in high-strength manure digestate is 390 achieved mainly by successful NOB out-selection.

391 In the synthetic manure digestate reactor, Glycogen Accumulating Organisms (GAOs; 392 *Defluviicoccus* and *Candidatus Competibacter*) (15.6-40.3%) and PAOs (*Candidatus*

393 Accumulibacter) (14.2-33.1%) were the most abundant genus and we postulated that those
394 nitrite-resist PAO members in *Candidatus* Accumulibacter could perform efficient EBPR
395 activities.¹⁹ However, the microbial communities fed with farm-sourced manure digestate are
396 completely different (Figure 6). In the present study, *Candidatus* Accumulibacter cannot be
397 detected and the only detected GAO, *Candidatus* Competibacter, was below 0.1% throughout the
398 operation periods. In contrast, two putative PAOs,⁵¹ *Dechloromonas* and *Gemmatimonas*
399 emerged in Period-II (Intermittent aeration scheme) at abundances ranging from 0.1% to 0.6%,
400 which may contribute to the P release/uptake activities in our reactor. It is important to note that
401 16S sequencing technology can only identify the known PAOs. There is a possibility that there
402 are other bacterial species capable of performing phosphorus uptake and release activities that
403 have not yet been identified. Previous study has demonstrated that Raman spectrum can be
404 employed to differentiate possible PAOs with other Ordinary Heterotrophic Organisms (OHOs)
405 by identify their intracellular poly-P signals at single cell level.^{33,35,32} In the present study, single-
406 cell Raman spectra (SCRS) analysis revealed that approximately 20~30% cells contain poly-P
407 and ~10% cells contain PHA at the end of aeration phase in both Period-I and Period-II (Figure
408 S4A and S4B). The high abundance of PHA/poly-P containing cells by Raman detection and low
409 abundance of known PAOs detected by 16S amplicon sequencing suggested that some unknown
410 nitrite-resistant PAO could survive with 80.5 ± 21.1 mg-N/L nitrite accumulation and still
411 perform EPBR activity.

412 The most abundant group shifted from UCF-005 and Bacilli_unclassified (5%-12.9%, 7.2%-
413 11.5%) to Comamonadaceae_unclassified (8.8%-16.6%), env.OPS_17_ge (3%-15.9%),
414 *Taibaiella* (4.3%-14%), Chitinophagales_genus (1.7%-13%) when aeration scheme was changed
415 to intermittent (Period-II). The less common order Chitinophagales has positive correlation and

416 may serve as bioindicators of high P content but low phosphatase activity in soil.⁵² *Taibaiella* is
417 an group of strictly aerobic bacteria that can reduce nitrate to nitrite when oxygen is gone.⁵³
418 Members in the Family *Comamonadaceae* are denitrifiers that are often detected in EBPR
419 systems,⁵⁴ and some of them can degrade solid phase PHA.^{55,56} Since the internal PHA
420 accumulation is the key factor to ensure the stable N₂O accumulation,^{13,16} the PHA containing
421 cells in our system become the mutual focus of putative nitrite-resistant PAOs and denitrifiers.

422 All SCRS under two operation periods were gathered to identify the main OPUs based on
423 their phenotypic features, following a developed methodology.³⁴ Only one dominant OPU
424 (OPU1) was detected with relative abundance of 11.6% in Period-II (Figure 6B) Corresponding
425 heatmap could be found in Figure S5A. Given that the genus Comamonadaceae_unclassified
426 became dominant in Period-II (Figure 6A), we ran another round OPU analysis by combining all
427 SCRS from present study with the previously obtained SCRS that were labelled with
428 *Comamonadaceae* fluorescent probe. Results showed that OPU1 in the present study is close to
429 the *Comamonadaceae* labelled SCRS (Figure S5B). Notably, all the spectra within OPU1 were
430 featured with poly-P signals in our algorithms, suggesting a potential involvement of these
431 organisms in both P removal and N₂O accumulation. However, additional studies are needed to
432 confirm phenotype conclusively.

433 **3.5 Simultaneous N and P Removal: A promising Application in Manure Management**

Table 3 Nitrogen, phosphorus, and carbon mass balance

	Period-I (g/d)			Period-II (g/d)		
	TN	TP	COD	TN	TP	COD
Inf-soluble	1.13	0.25	6.17	1.13	0.108	8.91
Eff-soluble	0.51	0.11	3.43	0.22	0.053	4.17
Sludge	0.32	0.13	1.39	0.21	0.066	2.18
N ₂ O	0.3	/	/	0.46	/	/
recovery	0%	-4%	-22%	-21%	+10%	-25.6

434

435 In the N mass balance of *in situ* batch activity tests, around 55% to 81% N was removed.

436 Remarkably, when calculating the emitted N₂O by summing up all N₂O present in both mixed
437 liquor and headspace, it was found that a significant amount of all nitrogen was removed through
438 N₂O formation (Table 3). While N₂O has traditionally been considered as hazard intermediates in
439 biological nitrogen removal process due to its high global warming potential, it can also be
440 intentionally stimulated and recovered under well-controlled conditions, like CANDO system, as
441 an oxidant for combustion of biogas methane.^{12,13} The formation of N₂O during the reduction of
442 NO₂⁻ and oxidation of NH₂OH is influenced by the presence of nitrite. In our system, a steady
443 accumulation of nitrite was achieved, ranging from 27.6 ± 9.6 mg N/L to 80.5 ± 21.1 mg-N/L
444 (Figure 1 and Figure 2), which is similar to the reported level in coupled aerobic-anoxic nitrous
445 decomposition operation (CANDO). Such high concentration of nitrite accumulation and the
446 switching between anaerobic/anoxic/aerobic condition may contribute to the high N₂O emission
447 in this study. Considering that manure management often produce biogas through anaerobic
448 digestion,⁸ it is worth exploring the potential to capture N₂O in the subsequent nitrogen removal
449 process and utilize it as the oxidant in biogas combustion. Though integrating N₂O as an oxidant
450 may not align with the processing of biogas to biomethane and its subsequent injection into
451 natural gas pipelines, this approach may be practical for on-farm management of biogas
452 collection on large dairies and hog operations with digestate treatment. In addition, it's crucial to
453 carefully assess the risk of leakage associated with on-farm combustion of a biogas/N₂O mixture
454 for heat and power generation. Nevertheless, harnessing N₂O as an energy source could be an
455 advantageous alternative approach rather than striving to minimize N₂O levels in
456 nitrification/denitrification process.

457 Though the P release/uptake content was low in our system, the P content in sludge is around
458 4~5% (mg/mg-VSS), within the P content in normal EBPR system treating wastewater and
459 manure wastewater (2~12%).^{10,57,58} Except biotic phosphorus removal, abiotic phosphorus
460 removal by chemical precipitation also involved in our system and they contributed to 52%-61%
461 P removal in total (**Table 3**). The chemical precipitation depends on the influent calcium and P
462 concentrations, and the biologically released P concentrations in anaerobic phase. The benefits of
463 integrated partial nitrification/denitrification via N₂O recovery and phosphorus removal includes
464 a reduced aeration requirement, potential of P recovery, and enhanced energy recovery.
465 Additional testing and research such as N₂O recovery by membrane-based stripping,⁵⁹ and
466 phosphorus recovery in forms of chemical phosphorus precipitation or poly-P in Ca-rich manure
467 digestate are needed.

468 **4. Acknowledgements**

469 We acknowledge Dr. Mi Nguyen for contributing the operational data in Period I. We also
470 acknowledge Dr. Ali Akbari for contributing part of the operational data in Period II. This study
471 was supported by the project Manure Management: Enhanced Nutrient Recovery, joint research
472 between the Atkinson Center for a Sustainable Future (Cornell University) and the
473 Environmental Defense Fund (EDF).

474 **5. References**

475 (1) Bryant, C.; Coats, E. R. Integrating Dairy Manure for Enhanced Resource Recovery at a WRRF:
476 Environmental Life Cycle and Pilot-Scale Analyses. *Water Environment Research* **2021**, 93 (10),
477 2034–2050. <https://doi.org/10/gnw5v5>.

478 (2) Liu, Y.; Gu, J.; Zhang, M. *A-B Processes: Towards Energy Self-Sufficient Municipal Wastewater
479 Treatment*; IWA Publishing, 2019.

480 (3) Sharpley, A. N. Agriculture, Nutrient Management and Water Quality. In *Reference Module in Life
481 Sciences*; Elsevier, 2018; p B9780128096338207589.

482 (4) Shober, A. L.; Maguire, R. O. Manure Management. In *Reference Module in Earth Systems and
483 Environmental Sciences*; Elsevier, 2018.

484 (5) Dodds, W. K.; Bouska, W. W.; Eitzmann, J. L.; Pilger, T. J.; Pitts, K. L.; Riley, A. J.; Schloesser, J.
485 T.; Thornbrugh, D. J. Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages.
486 *Environ. Sci. Technol.* **2009**, 43 (1), 12–19. <https://doi.org/10/fsc8z2>.

487 (6) Campos, J. L.; Crutchik, D.; Franchi, Ó.; Pavissich, J. P.; Belmonte, M.; Pedrouso, A.; Mosquera-
488 Corral, A.; Val del Río, Á. Nitrogen and Phosphorus Recovery From Anaerobically Pretreated
489 Agro-Food Wastes: A Review. *Frontiers in Sustainable Food Systems* **2019**, 2.
490 <https://doi.org/10/gqttmp6>.

491 (7) Bonmatí, A.; Flotats, X. Air Stripping of Ammonia from Pig Slurry: Characterisation and
492 Feasibility as a Pre- or Post-Treatment to Mesophilic Anaerobic Digestion. *Waste Management*
493 **2003**, 23 (3), 261–272. <https://doi.org/10/fqknxg>.

494 (8) Staunton, E. T.; Bunk, S. R.; Walters, G. W.; Whalen, S. C.; Rudek, J.; Aitken, M. D. Coupling
495 Nitrogen Removal and Anaerobic Digestion for Energy Recovery from Swine Waste Through
496 Nitrification/Denitrification. *Environmental Engineering Science* **2015**, 32 (9), 741–749.
497 <https://doi.org/10.1089/ees.2015.0057>.

498 (9) Qian, Y.; Chen, F.; Shen, J.; Guo, Y.; Wang, S.; Qiang, H.; Qin, Y.; Li, Y.-Y. Control Strategy and
499 Performance of Simultaneous Removal of Nitrogen and Organic Matter in Treating Swine Manure
500 Digestate Using One Reactor with Airlift and Micro-Granule. *Bioresource Technology* **2022**, 355,
501 127199. <https://doi.org/10/gqs25q>.

502 (10) Liu, Z.; Pruden, A.; Ogejo, J. A.; Knowlton, K. F. Polyphosphate- and Glycogen-Accumulating
503 Organisms in One EBPR System for Liquid Dairy Manure. *Water Environment Research* **2014**, 86
504 (7), 663–671. <https://doi.org/10/f59fvj>.

505 (11) Duan, H.; van den Akker, B.; Thwaites, B. J.; Peng, L.; Herman, C.; Pan, Y.; Ni, B.-J.; Watt, S.;
506 Yuan, Z.; Ye, L. Mitigating Nitrous Oxide Emissions at a Full-Scale Wastewater Treatment Plant.
507 *Water Research* **2020**, 185, 116196. <https://doi.org/10/gqs9bd>.

508 (12) Scherson, Y. D.; Wells, G. F.; Woo, S.-G.; Lee, J.; Park, J.; Cantwell, B. J.; Criddle, C. S. Nitrogen
509 Removal with Energy Recovery through N₂O Decomposition. *Energy Environ. Sci.* **2013**, 6 (1),
510 241–248. <https://doi.org/10/gmkw3m>.

511 (13) Scherson, Y. D.; Woo, S.-G.; Criddle, C. S. Production of Nitrous Oxide From Anaerobic Digester
512 Centrate and Its Use as a Co-Oxidant of Biogas to Enhance Energy Recovery. *Environ. Sci. Technol.*
513 **2014**, 48 (10), 5612–5619. <https://doi.org/10.1021/es501009j>.

514 (14) Gao, H.; Liu, M.; Griffin, J. S.; Xu, L.; Xiang, D.; Scherson, Y. D.; Liu, W.-T.; Wells, G. F.
515 Complete Nutrient Removal Coupled to Nitrous Oxide Production as a Bioenergy Source by
516 Denitrifying Polyphosphate-Accumulating Organisms. *Environ. Sci. Technol.* **2017**, 51 (8), 4531–
517 4540. <https://doi.org/10/ghsv5r>.

518 (15) Myung, J.; Wang, Z.; Yuan, T.; Zhang, P.; Criddle, C. S. Production of Nitrous Oxide from Nitrite
519 in Stable Type II Methanotrophic Enrichments. *Environ. Sci. Technol.* **2015**, 7.
520 <https://doi.org/10/f7r2n2>.

521 (16) Wang, Z.; Woo, S.-G.; Yao, Y.; Cheng, H.-H.; Wu, Y.-J.; Criddle, C. S. Nitrogen Removal as
522 Nitrous Oxide for Energy Recovery: Increased Process Stability and High Nitrous Yields at Short

523 Hydraulic Residence Times. *Water Research* **2020**, *173*, 115575.

524 <https://doi.org/10.1016/j.watres.2020.115575>.

525 (17) Neethling, J. B.; Bakke, B.; Benisch, M.; Gu, A. Z.; Stephens, H.; Stensel, H. D.; Moore, R. *Factors*
526 *Influencing the Reliability of Enhanced Biological Phosphorus Removal*; Final report 01-CTS-3;
527 Alexandria, VA: Water Environment Research Foundation, 2006.
528 <https://doi.org/10.2166/9781780404479> (accessed 2022-01-18).

529 (18) Onnis-Hayden, A.; Srinivasan, V.; Tooker, N. B.; Li, G.; Wang, D.; Barnard, J. L.; Bott, C.;
530 Dombrowski, P.; Schauer, P.; Menniti, A.; Shaw, A.; Stinson, B.; Stevens, G.; Dunlap, P.; Takács, I.;
531 McQuarrie, J.; Phillips, H.; Lambrecht, A.; Analla, H.; Russell, A.; Gu, A. Z. Survey of Full-Scale
532 Sidestream Enhanced Biological Phosphorus Removal (S2EBPR) Systems and Comparison with
533 Conventional EBPRs in North America: Process Stability, Kinetics, and Microbial Populations.
534 *Water Environment Research* **2020**, *92* (3), 403–417. <https://doi.org/10/gn4whz>.

535 (19) Yuan, Z.; Kang, D.; Li, G.; Lee, J.; Han, I.; Wang, D.; Zheng, P.; Reid, M. C.; Gu, A. Z. Combined
536 Enhanced Biological Phosphorus Removal (EBPR) and Nitrite Accumulation for Treating High-
537 Strength Wastewater. **2021**. <https://doi.org/10.1101/2021.01.16.426983>.

538 (20) He, Z.; Griffin, T. S.; Honeycutt, C. W. Phosphorus Distribution in Dairy Manures. *Journal of*
539 *Environmental Quality* **2004**, *33* (4), 1528–1534. <https://doi.org/10.2134/jeq2004.1528>.

540 (21) Ashekuzzaman, S. M.; Forrestal, P.; Richards, K.; Fenton, O. Dairy Industry Derived Wastewater
541 Treatment Sludge: Generation, Type and Characterization of Nutrients and Metals for Agricultural
542 Reuse. *Journal of Cleaner Production* **2019**, *230*, 1266–1275. <https://doi.org/10/gnfng7>.

543 (22) Brooker, M. R.; Longnecker, K.; Kujawinski, E. B.; Evert, M. H.; Mouser, P. J. Discrete Organic
544 Phosphorus Signatures Are Evident in Pollutant Sources within a Lake Erie Tributary. *Environ. Sci.*
545 *Technol.* **2018**, *52* (12), 6771–6779. <https://doi.org/10/gds6kb>.

546 (23) Güngör, K.; Karthikeyan, K. G. Phosphorus Forms and Extractability in Dairy Manure: A Case
547 Study for Wisconsin on-Farm Anaerobic Digesters. *Bioresource Technology* **2008**, *99* (2), 425–436.
548 <https://doi.org/10.1016/j.biortech.2006.11.049>.

549 (24) Sooknah, R. D.; Wilkie, A. C. Nutrient Removal by Floating Aquatic Macrophytes Cultured in
550 Anaerobically Digested Flushed Dairy Manure Wastewater. *Ecological Engineering* **2004**, *22* (1),
551 27–42. <https://doi.org/10.1016/j.ecoleng.2004.01.004>.

552 (25) Vanotti, M. B.; Szogi, A. A.; Millner, P. D.; Loughrin, J. H. Development of a Second-Generation
553 Environmentally Superior Technology for Treatment of Swine Manure in the USA. *Bioresource
554 Technology* **2009**, *100* (22), 5406–5416. <https://doi.org/10/bzch6q>.

555 (26) Yetilmezsoy, K.; Sapci-Zengin, Z. Recovery of Ammonium Nitrogen from the Effluent of UASB
556 Treating Poultry Manure Wastewater by MAP Precipitation as a Slow Release Fertilizer. *Journal of
557 Hazardous Materials* **2009**, *166* (1), 260–269. <https://doi.org/10/fmbqqw>.

558 (27) Zhang, B.; Chen, S. Optimization of Culture Conditions for Chlorella Sorokiniana Using Swine
559 Manure Wastewater. *Journal of Renewable and Sustainable Energy* **2015**, *7* (3), 033129.
560 <https://doi.org/10/f7jr78>.

561 (28) Gu, A. Z.; Saunders, A.; Neethling, J. B.; Stensel, H. D.; Blackall, L. L. Functionally Relevant
562 Microorganisms to Enhanced Biological Phosphorus Removal Performance at Full-Scale
563 Wastewater Treatment Plants in the United States. *Water Environment Research* **2008**, *80* (8), 688–
564 698. <https://doi.org/10/b4n4ss>.

565 (29) Güngör, K.; Müftügil, M. B.; Ogejo, J. A.; Knowlton, K. F.; Love, N. G. Prefermentation of Liquid
566 Dairy Manure to Support Biological Nutrient Removal. *Bioresource Technology* **2009**, *100* (7),
567 2124–2129. <https://doi.org/10/dzh87v>.

568 (30) Randall, C. W.; Barnard, J. L.; Stensel, H. D. *Design and Retrofit of Wastewater Treatment Plants
569 for Biological Nutritient Removal*; CRC Press, 1998.

570 (31) American Public Health Association; others. Standard Methods for the Examination of Water and
571 Wastewater. APHA. *American Water Works Association and Water Environment Federation*, 21st
572 ed.; *American Public Health Association: Washington, DC, USA* **2005**.

573 (32) Majed, N.; Chernenko, T.; Diem, M.; Gu, A. Z. Identification of Functionally Relevant Populations
574 in Enhanced Biological Phosphorus Removal Processes Based On Intracellular Polymers Profiles

575 and Insights into the Metabolic Diversity and Heterogeneity. *Environ. Sci. Technol.* **2012**, *46* (9),
576 5010–5017. <https://doi.org/10/f3xgvj>.

577 (33) Majed, N.; Matthäus, C.; Diem, M.; Gu, A. Z. Evaluation of Intracellular Polyphosphate Dynamics
578 in Enhanced Biological Phosphorus Removal Process Using Raman Microscopy. *Environ. Sci.*
579 *Technol.* **2009**, *43* (14), 5436–5442. <https://doi.org/10/fdjkzq>.

580 (34) Li, Y.; Cope, H. A.; Rahman, S. M.; Li, G.; Nielsen, P. H.; Elfick, A.; Gu, A. Z. Toward Better
581 Understanding of EBPR Systems via Linking Raman-Based Phenotypic Profiling with Phylogenetic
582 Diversity. *Environ. Sci. Technol.* **2018**, *52* (15), 8596–8606. <https://doi.org/10.1021/acs.est.8b01388>.

583 (35) Majed, N.; Gu, A. Z. Application of Raman Microscopy for Simultaneous and Quantitative
584 Evaluation of Multiple Intracellular Polymers Dynamics Functionally Relevant to Enhanced
585 Biological Phosphorus Removal Processes. *Environ. Sci. Technol.* **2010**, *44* (22), 8601–8608.
586 <https://doi.org/10.1021/es1016526>.

587 (36) Alm, E. W.; Oerther, D. B.; Larsen, N.; Stahl, D. A.; Raskin, L. The Oligonucleotide Probe
588 Database. *Applied and Environmental Microbiology* **1996**, *62* (10), 3557–3559.
589 <https://doi.org/10/gsfpm>.

590 (37) Kozich, J. J.; Westcott, S. L.; Baxter, N. T.; Highlander, S. K.; Schloss, P. D. Development of a
591 Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on
592 the MiSeq Illumina Sequencing Platform. *Applied and environmental microbiology* **2013**, *79* (17),
593 5112–5120. <https://doi.org/10/f46m6z>.

594 (38) Gustafsson, J. P. Visual MINTEQ 3.0 User Guide. *KTH, Department of Land and Water Resources,*
595 *Stockholm, Sweden* **2011**, 550.

596 (39) Feizi, M.; Jalali, M.; Renella, G. Assessment of Nutrient and Heavy Metal Content and Speciation
597 in Sewage Sludge from Different Locations in Iran. *Nat Hazards* **2019**, *95* (3), 657–675.
598 <https://doi.org/10/gnz4x4>.

599 (40) Kujawa, K.; Klapwijk, B. A Method to Estimate Denitrification Potential for Predenitrification
600 Systems Using NUR Batch Test. *Water Research* **1999**, *33* (10), 2291–2300.
601 <https://doi.org/10/fgzmhw>.

602 (41) Jeff, F.; Zhiguo, Y.; Elena, S. *N2O and CH4 Emission from Wastewater Collection and Treatment*
603 *Systems Technical Report.*; Global Water Research Coalition c/o International Water Association:
604 London, 2011.

605 (42) Staunton, E. T.; Aitken, M. D. Coupling Nitrogen Removal and Anaerobic Digestion for Energy
606 Recovery from Swine Waste: 2 Nitritation/Anammox. *Environmental Engineering Science* **2015**, *32*
607 (9), 750–760. <https://doi.org/10.1089/ees.2015.0063>.

608 (43) Itokawa, H.; Hanaki, K.; Matsuo, T. Nitrous Oxide Production in High-Loading Biological Nitrogen
609 Removal Process under Low Cod/n Ratio Condition. *Water Research* **2001**, *35* (3), 657–664.
610 [https://doi.org/10.1016/S0043-1354\(00\)00309-2](https://doi.org/10.1016/S0043-1354(00)00309-2).

611 (44) Zeng, R. J.; Lemaire, R.; Yuan, Z.; Keller, J. Simultaneous Nitrification, Denitrification, and
612 Phosphorus Removal in a Lab-Scale Sequencing Batch Reactor. *Biotechnology and Bioengineering*
613 **2003**, *84* (2), 170–178. <https://doi.org/10.1002/bit.10744>.

614 (45) Zhang, H.-L.; Sheng, G.-P.; Fang, W.; Wang, Y.-P.; Fang, C.-Y.; Shao, L.-M.; Yu, H.-Q. Calcium
615 Effect on the Metabolic Pathway of Phosphorus Accumulating Organisms in Enhanced Biological
616 Phosphorus Removal Systems. *Water Research* **2015**, *84*, 171–180. <https://doi.org/10/f7tbnv>.

617 (46) Musvoto, E. V.; Wentzel, M. C.; Ekama, G. A. Integrated Chemical–Physical Processes
618 Modelling—II. Simulating Aeration Treatment of Anaerobic Digester Supernatants. *Water*
619 *Research* **2000**, *34* (6), 1868–1880. <https://doi.org/10/c3fsvx>.

620 (47) Du, X.; Gu, L.; Wang, T.; Kou, H.; Sun, Y. The Relationship between the Molecular Composition
621 of Dissolved Organic Matter and Bioavailability of Digestate during Anaerobic Digestion Process:
622 Characteristics, Transformation and the Key Molecular Interval. *Bioresource Technology* **2021**, *342*,
623 125958. <https://doi.org/10/grm8kz>.

624 (48) Philippe, A.; Schaumann, G. E. Interactions of Dissolved Organic Matter with Natural and
625 Engineered Inorganic Colloids: A Review. *Environ. Sci. Technol.* **2014**, *48* (16), 8946–8962.
626 <https://doi.org/10/f6fbgr>.

627 (49) Audette, Y.; Smith, D. S.; Parsons, C. T.; Chen, W.; Rezanezhad, F.; Van Cappellen, P. Phosphorus
628 Binding to Soil Organic Matter via Ternary Complexes with Calcium. *Chemosphere* **2020**, *260*,
629 127624. <https://doi.org/10/gspm6g>.

630 (50) Gu, A. Z.; Tooker, N.; Onnis-Hayden, A.; Wang, D.; Srinivasan, V.; Li, G.; Takács, I. *Optimization*
631 *and Design of a Side-Stream EBPR Process as a Sustainable Approach for Achieving Stable and*
632 *Efficient Phosphorus Removal*; U1R13/4869; Northeastern University, 2019; p 226.

633 (51) Stokholm-Bjerregaard, M.; McIlroy, S. J.; Nierychlo, M.; Karst, S. M.; Albertsen, M.; Nielsen, P. H.
634 A Critical Assessment of the Microorganisms Proposed to Be Important to Enhanced Biological
635 Phosphorus Removal in Full-Scale Wastewater Treatment Systems. *Frontiers in Microbiology* **2017**,
636 8. <https://doi.org/10.3389/fmicb.2017.00718>.

637 (52) Mason, L. m.; Eagar, A.; Patel, P.; Blackwood, C. b.; DeForest, J. l. Potential Microbial
638 Bioindicators of Phosphorus Mining in a Temperate Deciduous Forest. *Journal of Applied*
639 *Microbiology* **2021**, *130* (1), 109–122. <https://doi.org/10.1111/jam.14761>.

640 (53) Zhang, L.; Wang, Y.; Wei, L.; Wang, Y.; Shen, X.; Li, S. 2013. *Taibaiella Smilacinae* Gen. Nov.,
641 Sp. Nov., an Endophytic Member of the Family Chitinophagaceae Isolated from the Stem of
642 *Smilacina Japonica*, and Emended Description of *Flavihumibacter Petaseus*. *International Journal*
643 *of Systematic and Evolutionary Microbiology* **63** (Pt_10), 3769–3776.
644 <https://doi.org/10.1099/ijjs.0.051607-0>.

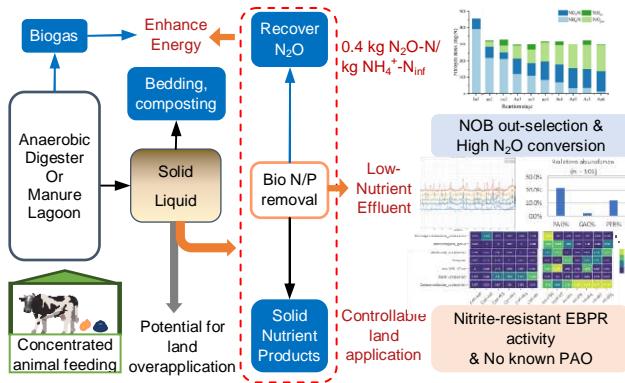
645 (54) Wang, D.; Tooker, N. B.; Srinivasan, V.; Li, G.; Fernandez, L. A.; Schauer, P.; Menniti, A.; Maher,
646 C.; Bott, C. B.; Dombrowski, P.; Barnard, J. L.; Onnis-Hayden, A.; Gu, A. Z. Side-Stream
647 Enhanced Biological Phosphorus Removal (S2EBPR) Process Improves System Performance - A
648 Full-Scale Comparative Study. *Water Research* **2019**, *167*, 115109.
649 <https://doi.org/10.1016/j.watres.2019.115109>.

650 (55) Khan, S. T.; Horiba, Y.; Yamamoto, M.; Hiraishi, A. Members of the Family Comamonadaceae as
651 Primary Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)-Degrading Denitrifiers in Activated
652 Sludge as Revealed by a Polyphasic Approach. *Applied and Environmental Microbiology* **2002**, *68*
653 (7), 3206–3214. <https://doi.org/10/b5xxpp>.

654 (56) Osaka, T.; Yoshie, S.; Tsuneda, S.; Hirata, A.; Iwami, N.; Inamori, Y. Identification of Acetate- or
655 Methanol-Assimilating Bacteria under Nitrate-Reducing Conditions by Stable-Isotope Probing.
656 *Microb Ecol* **2006**, *52* (2), 253–266. <https://doi.org/10.1007/s00248-006-9071-7>.

657 (57) Hong, Y. Enhanced Biological Phosphorus Removal for Liquid Dairy Manure. Thesis, Virginia
658 Tech, 2009. <https://vttechworks.lib.vt.edu/handle/10919/46067> (accessed 2021-12-28).

659 (58) Wang, R.; Li, Y.; Chen, W.; Zou, J.; Chen, Y. Phosphate Release Involving PAOs Activity during
660 Anaerobic Fermentation of EBPR Sludge and the Extension of ADM1. *Chemical Engineering
661 Journal* **2016**, *287*, 436–447. <https://doi.org/10/f78g5j>.


662 (59) Weißbach, M.; Gossler, F.; Drewes, J. E.; Koch, K. Separation of Nitrous Oxide from Aqueous
663 Solutions Applying a Micro Porous Hollow Fiber Membrane Contactor for Energy Recovery.
664 *Separation and Purification Technology* **2018**, *195*, 271–280.
665 <https://doi.org/10.1016/j.seppur.2017.12.016>.

666

667

668

For Table of Content Only

669