

1
2 **Shared architectural patterns across the human cortical mantle predict visual**
3 **representations and capture behavior across the lifespan**

4
5 Xiayu Chen¹, Xingyu Liu¹, Patricia Maria Hoyos², Edan Daniel Hertz², Jewelia K. Yao², Zonglei
6 Zhen^{1,3*}, Jesse Gomez^{2,4}

7
8 1. Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology,
9 Beijing Normal University, Beijing, China
10 2. Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
11 3. State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute
12 for Brain Research, Beijing Normal University, Beijing, China
13 4. Psychology Department, Princeton University, Princeton, New Jersey, USA

14
15 *Correspondence address: Zonglei Zhen, Ph.D. (zhenzonglei@bnu.edu.cn), Faculty of
16 Psychology, Beijing Normal University, Beijing, 100875, China.

17
18 **Abstract**

19 The microstructure of cells within human cerebral cortex varies across the cortical ribbon, where
20 changes in cytoarchitecture and myeloarchitecture are thought to endow each region of cortex
21 with its unique function. While fine-scale relative to a cell, these population-level changes
22 impact architectural properties of cortex measurable in vivo by noninvasive MRI, such as the
23 thickness and myelin content of cortex. This raises the question of whether or not we can use
24 these in vivo architectural measures to understand cortical organization, function, and
25 development more broadly. Using human visual cortex as a test bed, we found two architectural
26 gradients, which not only underlie its structural and functional organization, but additionally
27 predict the presence of new visual field maps and capture the lifespan trajectory and its
28 behavioral relevance. These findings provide a more general framework for understanding visual
29 cortex, showing that architectural gradients are a measurable fingerprint of functional
30 organization and ontogenetic routines in the human brain.

31
32
33
34

35 A fundamental goal of brain research is to elucidate the functional properties of the
36 structural elements of the brain, at an appropriate organizational scale. Classical architectural
37 brain maps including cytoarchitectonic^{1,2} and myeloarchitectonic³ maps, derived from
38 postmortem brain sections, have revealed strong correspondence with the functional properties of
39 the cerebral cortex^{4,5}. Recent observations of spatial gradients in gene expression across human
40 cortex^{6,7}, especially in genes controlling the shape and distribution of dendrites and myelin, also
41 suggest that changes in large scale architectural properties necessitate functionally distinct
42 zones⁸. However, these maps cannot be built for individual brains *in vivo* to capture individual
43 differences, or the functional, behavioral or developmental relevance of these larger scale
44 organizational principles. MRI technological advances have made it possible to map architectural
45 correlates in human cortex in a noninvasive, and importantly individual-specific way, to test if
46 the individual variation in functional organization across brains is reflected in the variation of
47 architectural features of cortex^{9–11}. In the case of visual cortex, general trend along the cardinal
48 axis have been observed in architectural features such as myelination in adults¹² and infants¹³ and
49 cortical thinning¹⁴, as well as functional properties of neurons such as receptive field size^{15,16} and
50 temporal sensitivity^{17,18}. A model explicitly linking these architectural and functional variations
51 across the cerebrum, one that can generalize to yet-mapped regions of cortex as well as explain
52 behavior and dynamics across the lifespan, would be a steppingstone towards bridging structural
53 and functional properties of the living human brain.

54 More explicitly, to what extent do individuals demonstrate shared architectural features
55 of cortex and how might individual differences in these structural patterns across development or
56 adulthood capture differences in brain function and behavior¹¹? Answering such a question
57 would require a large-scale, multimodal MRI dataset to appropriately capture the range in
58 architectural variation at the level of the population. To that end, we combine three datasets from
59 the Human Connectome Project (HCP) which together sample the human lifespan from 5 to 100
60 years of age^{19–21}, and ask if there are shared motifs in architectural features of cortex across
61 individuals and development. Using visual cortex as a test bed, we focus first on the structural
62 MRI of HCP young adults (HCP-YA, N=1070, 22–37 years old)^{20,22}. Based on T1-weighted
63 (T1w) and T2-weighted (T2w) images, we produce for each individual two distinct maps: a map
64 of cortical thickness²³ and a map of the T1w/T2w signal ratio²⁴. While the thickness map is
65 thought to be attributable to the organization of neuronal, glial, and neuropil tissue^{25–28}, the ratio
66 map is thought to be sensitive to intracortical density of myelin and neurite structure density^{24,29}.
67 Importantly, maps of cortical thickness had any variance explainable by curvature removed to
68 account for known thickness differences between gyri and sulci. Leveraging the field’s deep
69 understanding of its functional organization relative to cortical folding^{30–37}, we focus here on
70 visual cortex as a test bed to understand how variation in the structure of the cortical mantle
71 relates to changes in function.

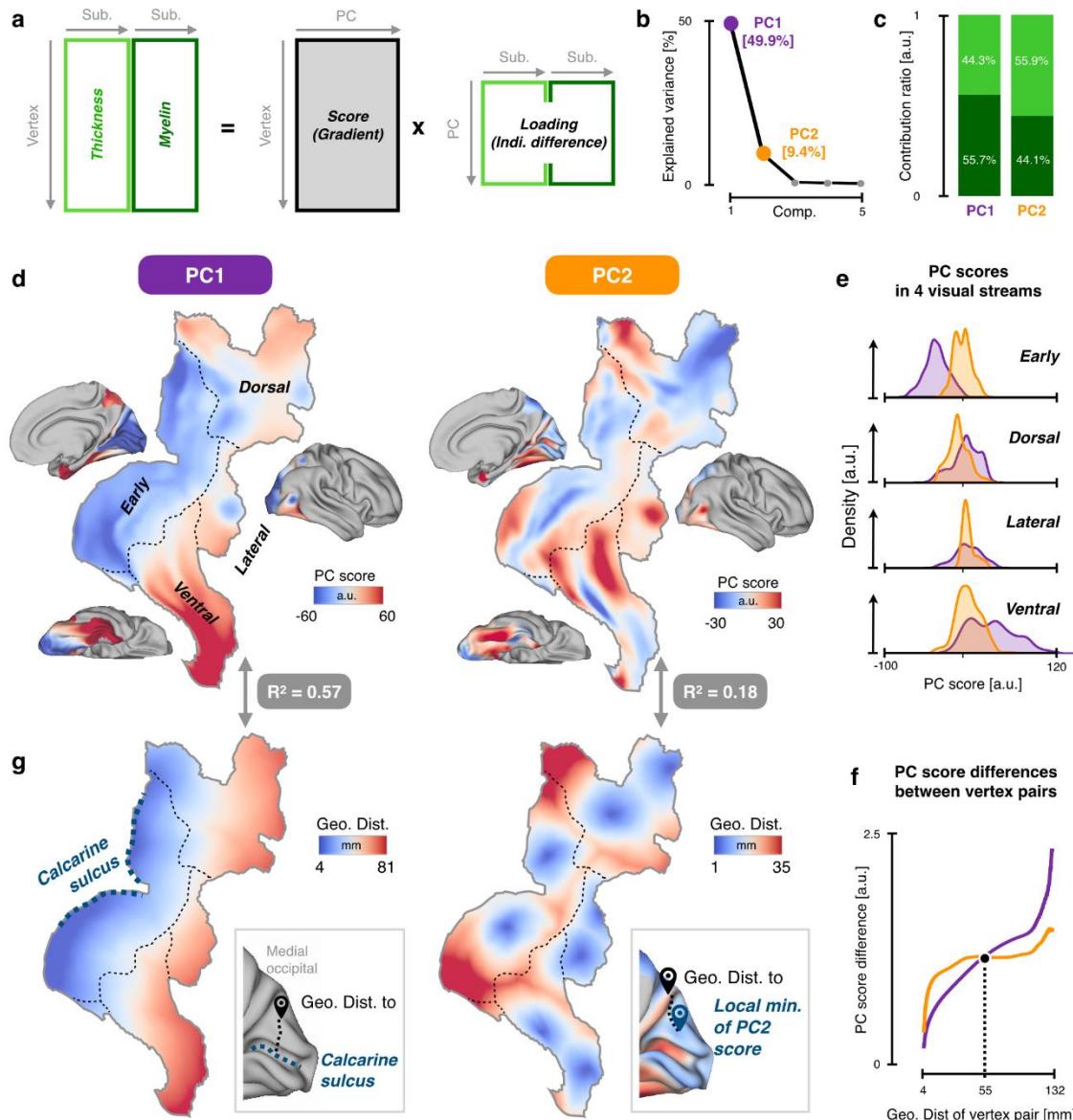
72 To extract the concurrent spatial changes of the two architectural measurements across
73 individuals, the two maps from each hemisphere are concatenated across individuals to perform a
74 spatial principal component analysis (PCA)^{38,39} in which participants are features and cortical

75 vertices are samples. As a result, the concatenated maps were linearly decomposed into a
76 collection of orthogonal principal components, consisting of spatial maps (i.e., scores) and
77 individual weights (i.e., loading) in pairs. The former explains how the structural properties
78 change across the cortical sheet on each component and the latter describes how individual maps
79 contribute to each component (Fig. 1a). Because the resulting PCs are very similar for the two
80 hemispheres (Extended Data Fig. 1), only data from the right hemisphere are presented here for
81 clarity. The first two PCs (i.e., PC1 and PC2) describe over 50% of the architectural variance
82 across the cortical sheet (Fig. 1b). The individual weights indicate that each PC relied on an
83 integration of myelin content and cortical thickness at a given spatial location (Fig. 1c), rather
84 than a single feature, suggesting that together these two architectural features capture a unique,
85 holistic structural pattern of human cortex not visible through a single measure alone (Extended
86 Data Fig. 2).

87 Both PC1 and PC2 maps form spatial gradients whose values change smoothly as one
88 traverses the cortical surface (Fig. 1d). Specifically, gradient 1 (i.e., PC1 score), shows an
89 increase in scores as one travels from the fundus of the calcarine sulcus either dorsally towards
90 the intraparietal sulcus or ventrally into the anterior temporal lobe. Higher PC1 vertex values
91 correspond to lower myelin content and a thicker cortical sheet. Gradient 2 (i.e., PC2 score), on
92 the other hand, demonstrates alternating score patterns that fluctuate across cortex. Higher PC2
93 scores correspond to both higher myelin content and thickness. Gradient 2 scores seem to be
94 broadly organized into four distinct zones, mirroring the visual cortex's division from early
95 visual field maps⁴⁰ into the ventral, lateral, and dorsal processing streams of the visual cortex^{41–}
96 ⁴⁴. The processing stream borders delineated in Figure 1d, while anatomically defined, follow the
97 ridge of positive weights in gradient 2. Quantitatively, the distribution of scores for gradient 1
98 shift across the four processing streams while the score distributions of gradient 2 are evenly
99 sampled within each processing stream (i.e., zero-centered) (Fig. 1e). Furthermore, gradient 2
100 exhibits a higher spatial frequency in the distribution of its scores. That is, for a given pair of
101 vertices separated by a short distance, gradient 2 tends to show a larger difference in score values
102 compared to the more spatially homogenous gradient 1 (Fig. 1f). Collectively, these findings
103 demonstrate that gradient 1 acts as a global gradient enveloping the entire visual cortex, while
104 gradient 2 acts as a local gradient specific to individual visual streams.

105 To get a deeper understanding of the shape of these topographies, we produced simulated
106 models using cortical geometry for the two spatial gradients. For gradient 1, the calcarine sulcus
107 was used as the fiducial line, and vertices of the cortical surface were assigned values based on
108 their minimal geodesic distance to the calcarine sulcus. This simple simulation was able to
109 capture 57.1% of the explainable variance in the topography of gradient 1 (Fig. 1g, left).
110 Gradient 2, which was more complicated in shape, could nonetheless be simulated using anchor
111 points positioned at local minima within each visual processing stream (Fig. 1g, right), and
112 vertices of the cortical surface were assigned values based on their minimal geodesic distance to
113 these anchor points. This map of geometric distance also captured a sizeable portion of the

114 explainable variance within the gradient 2 map (17.7%, Fig 1g, right). These simulation results
 115 again highlight the global and local characteristics of the two gradients.



116
 117 **Figure 1: Two architectural gradients scaffold human visual cortex.** (a) Principal component analysis
 118 (PCA) on the concatenated cortical thickness and myelin content maps from all participants in HCP-YA to
 119 extract architectural gradients of human visual cortex produced a collection of orthogonal principal
 120 components, consisting of spatial maps (i.e., score) and individual weights (i.e., loading) in pairs. (b) The
 121 explained variance ratio of the top 5 principal components (PCs). The first two PCs (i.e., gradients 1 and 2)
 122 dominate the explainable variance. (c) Contributions of the two architectural measures (thickness and myelin)
 123 to the two gradients. (d) Topographic patterns of the two gradients on a flattened cortical surface. Gradient 1
 124 (PC1) displays roughly monotonic change from negative to positive scores across visual cortex, emanating
 125 from primary visual cortex V1, while gradient 2 (PC2) showed repeated representation in four localities,
 126 mirroring the four visual streams (early, dorsal, lateral, ventral). Black dotted lines: borders where the different
 127 visual streams meet, defined using HCP-MMP label boundaries. A.U. is arbitrary units. (e) Histogram
 128 depicting gradient scores in the four visual stream regions. Gradient 1 is a global gradient increasing from
 129 early to ventral, for example. Gradient 2 is a local gradient sampled evenly within individual visual stream. (f)
 130 The dependence of gradient value differences on geodesic distance are different for the two gradients. Gradient

131 1 shows larger changes across vertices separated by a long distance, whereas gradient 2 shows larger changes
132 for short distances. (g) Geometric models of the two architectural gradients, which were constructed using the
133 geodesic distance of each vertex of visual cortex to specific anatomical landmarks as anchors. The calcarine
134 sulcus and eight local minima of gradient 2 were used as anchors to model gradient 1 and 2, respectively.
135

136 Do these architectural gradients reflect the functional organization of visual cortex?
137 Given gradient 1 acts as a global gradient across the whole of visual cortex, we hypothesized that
138 gradient 1 recapitulates the hierarchical organization of visual cortex and its constituent
139 retinotopic maps. To test this, we examined the spatial similarity between the architectural
140 gradients and the population receptive field (pRF) properties as measured by the HCP 7T
141 retinotopy dataset⁴⁵. The pRF represents the portion of visual space in which a stimulus evokes a
142 response in a given voxel, and pRF size increases along the visual processing hierarchy⁴⁶⁻⁴⁸. We
143 found that gradient 1 was highly correlated with the pRF size, while gradient 2 was not (Fig. 2a).
144 Moreover, gradient 1 but not gradient 2 was perfectly correlated with the well-known
145 hierarchical rank of the visual areas within the ventral stream (Fig. 2b). Thus, gradient 1 strongly
146 captures the hierarchical organization of visual computations across cortex.

147 To provide further support for the hypothesis that gradient 1 might act as a broader-scale
148 scaffold for functional properties of visual cortex, we can ask if it is also capable of describing
149 temporal properties of functional activity. It is widely recognized that the brain shows a large-
150 scale functional organization of the frequency at which the BOLD signal fluctuates during
151 resting-state functional MRI^{18,49,50}. This temporal property of the BOLD signal, quantified as a
152 fractional value of low- versus full-frequency power (fALFF)⁵¹, correlates well with temporal
153 properties of receptive fields in visual cortex^{17,18,52}. Here, we find that this temporal gradient as
154 measured by fALFF is well-described by gradient 1 (Fig. 2c, right). In comparison, because
155 gradient 2 acts as a local gradient, showing more spatial inhomogeneity with interdigitating
156 peaks and valleys of scores within individual visual streams, we hypothesized that it might
157 underlie the finer-scale division of visual cortex into distinct zones as a complement to gradient
158 1.

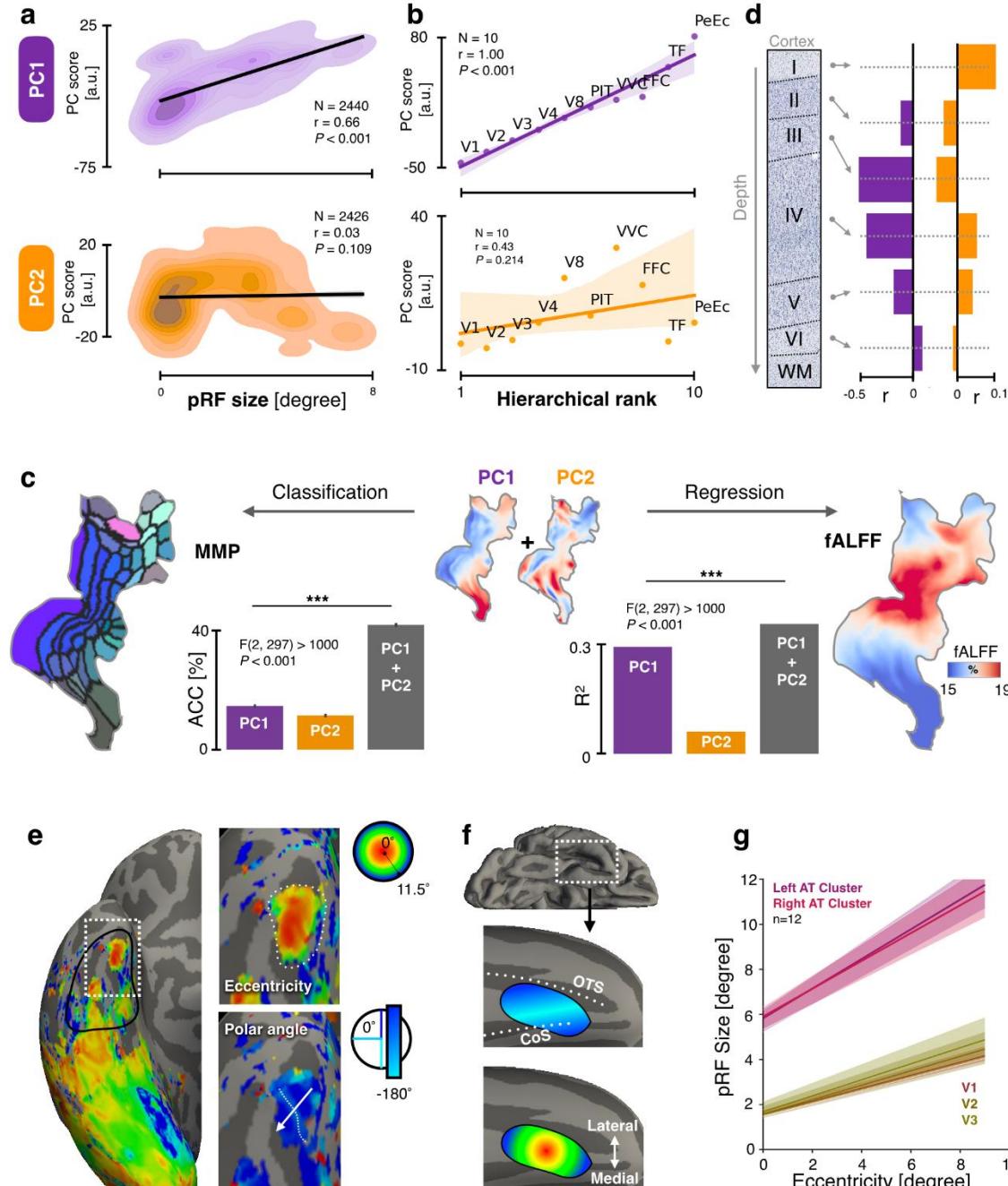
159 Along these lines, we tested if gradient 2 together with gradient 1, was capable of
160 differentiating functional areas defined by the HCP multimodal parcellation⁸. As shown in the
161 left part of Figure 2c, the combination of gradient 1 and gradient 2 greatly improved the
162 predictive power of visual areas compared to using gradient 1 or gradient 2 alone. Moreover, as a
163 separate validation of the hypothesis that gradient 2 scaffolds the fine arealization of visual
164 cortex instead of global functional brain organization, we found gradient 2 adds little explanatory
165 power on gradient 1 to a regression predicting fALFF values (Fig. 2c, right). Overall, both
166 gradients seem to underlie distinct functional features of cortex: Gradient 1 recapitulates the
167 hierarchical organization of visual cortex, while gradient 2 plays a potential role in fine areal
168 differentiation of visual cortex. Strikingly, gradient 1 explains functional features of visual cortex
169 (receptive field size, hierarchical rank) better than the first gradient derived from resting state
170 functional connectivity (RSFC) within visual cortex (Extended Data Figure 3a-c). Additionally,
171 the two architectural gradients outperform the first two RSFC gradients in classification of visual
172 cortex into its constituent parcels (Extended Data Figure 3d). Lastly, if the two architectural

173 gradients truly relate to the functional organization of visual cortex in distinct ways, then these
174 differences should be mirrored in the way cytoarchitecture contributes to each structural
175 gradient. Based on the BigBrain dataset⁵³, we extracted cell body density data for each of the six
176 cortical layers. For gradient 1, we find that changes in its structural features correlate strongly
177 with cell density of layers III and IV, where the pronunciation of layer IV decreases with
178 increasing distance from the calcarine sulcus. Gradient 2 was most correlated with cell density of
179 layer I, with positive scores overlapping cortex with thicker superficial layers of cortex (Fig. 2d).
180 Because the layers III and IV are primarily involved in feedforward connections whereas layer I
181 majorly plays roles in feedback connections, the finding might suggest that the two gradients
182 underlie structural fingerprints of feedforward and feedback processing in visual cortex,
183 respectively.

184 Given the relatively tight correspondence between these architectural gradients and
185 function properties of visual cortex, what can we learn about visual cortex organization more
186 broadly, and more importantly, can this structural-functional coupling generalize to regions of
187 visual cortex that have not yet been mapped? Upon examination of the topology of gradient 2, a
188 pattern emerges between the gradient and retinotopic representations. While most of the anchor
189 points for the gradient 2 map simulation correspond to visual field map clusters which share a
190 foveal representation (V1-V4, VO1-2, IPS0-1, IPS2-3, TO1-2)^{40,54}, an additional anchor
191 appeared in the anterior temporal lobe near the location where the occipitotemporal sulcus (OTS)
192 merges with the collateral sulcus (CoS) more medially (Fig. 1g, right). If we assume a
193 correspondence between gradient 2 anchors and visual field map clusters, then this anterior-most
194 anchor would suggest an additional cluster of visual field maps in the anterior temporal lobe, one
195 which has not yet been described in the literature. To test this hypothesis, and potentially
196 demonstrate the predictive power of these architectural gradients to unmapped cortex, we
197 performed pRF mapping⁴⁶ on 12 participants with high-contrast, socio-ecological images to
198 better drive neurons of high-level visual cortex often tuned for such complex objects⁵⁵.

199 We indeed find a cluster of visual field maps in the anterior temporal lobe located
200 medially overlapping the CoS and extending laterally towards the OTS usually just beyond the
201 anterior tip of the fusiform gyrus but sometimes overlapping it (Fig. 2e). This location is
202 consistent with a previous report of face-selectivity in the anterior temporal lobe⁵⁶. These maps
203 were observable in the majority of hemispheres (23/24 hemispheres; see Extended Data Fig. 4).
204 This cluster of maps shows a clear radial representation of pRF eccentricity, with voxels near the
205 center of the cluster sampling central visual space, and those near the outer boundary of the
206 cluster sampling peripheral visual space. Perpendicular to this radial eccentricity representation
207 was a representation of polar angle, with two upper visual field representations separated by a
208 shared lower visual field representation, usually oriented at an oblique angle to the CoS but
209 sometimes parallel with it (Fig. 2f). Consistent with spatial computations in earlier visual field
210 maps, these anterior temporal maps, which we call here AT-1 and AT-2, have pRF centers that
211 mainly sample the contralateral visual field^{16,33,47}, although it was not uncommon for pRF centers
212 to sample ipsilateral visual space (Extended Data Fig. 4). Lastly, a hallmark feature of visual

213 pRFs is that they increase in size as one ascends the visual processing hierarchy, and the positive
 214 relationship between pRF eccentricity and size tends to become more dramatic as well^{15,46-48}. To
 215 test this, we extract pRF fits from vertices with variance explained greater than 10%. We find
 216 that consistent with its high position within the processing hierarchy, pRF sizes are significantly
 217 larger than in earlier visual field maps V1 through V3, and the linear function relating pRF
 218 eccentricity and size yielded larger slopes compared to V1-V3 (Fig. 2g).



219
 220 **Figure 2. The functional and microstructural properties of the two architectural gradients.** (a) Gradient 1
 221 was highly correlated with the pRF size ($r=0.66$), while the gradient 2 was not ($r=0.03$). (b) Gradient 1 was
 222 perfectly correlated with the hierarchical rank of the 10 visual areas within the ventral visual stream (Spearman
 223 rank $\rho=1.00$), while gradient 2 was not. (c) The functional significance of the architectural gradients was

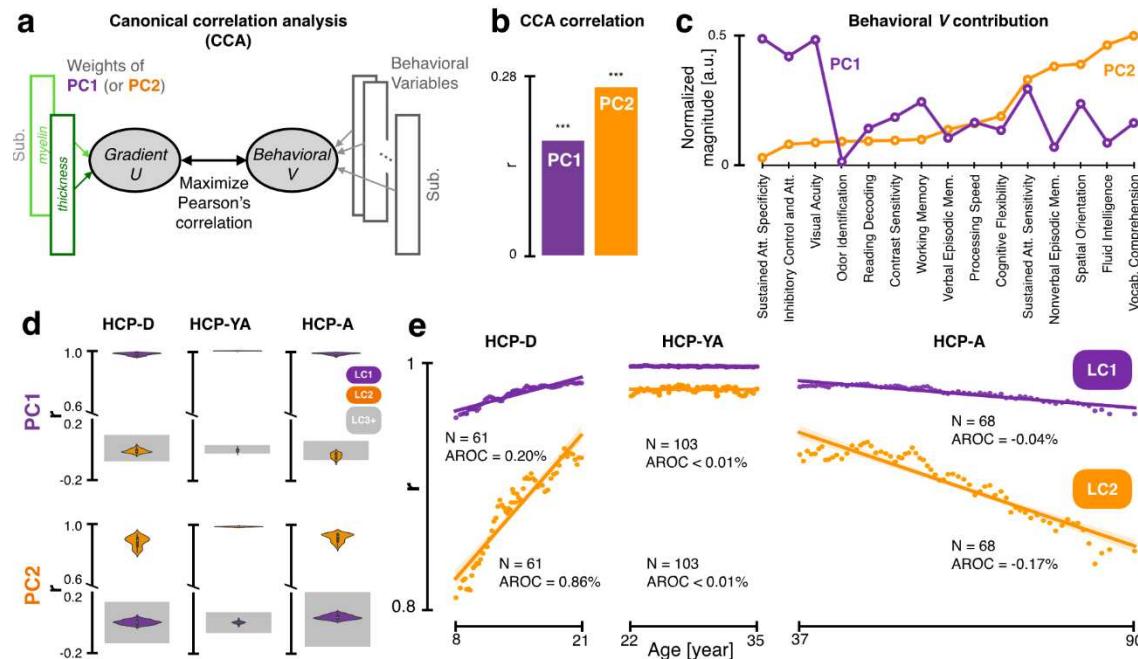
224 evaluated by measuring to what extent each gradient is related to areal differentiation of the visual cortex (left)
225 and the global functional organization measured by fractional amplitude of low-frequency fluctuation (fALFF)
226 from resting-state fMRI (right). The combination of gradients 1 and 2 greatly improved the predictive power of
227 classifying visual areas compared to using either gradient alone. However, gradient 1 contributes more than
228 gradient 2 in predicting the global-scale functional organization (i.e., fALFF map). **(d)** Cell body density from
229 the BigBrain dataset is quantified for each cortical layer at each vertex and correlated with each gradient map.
230 Gradient 1 was mainly correlated with cell body density in Layers III and IV, while gradient 2 was mainly
231 correlated with cell body density in Layer I. **(e)** The architectural gradient 2 predicts the presence of novel
232 visual field maps in the anterior temporal lobe. Left: example participant with the pRF eccentricity map
233 displayed on the inflated cortical surface. The highlighted region (white dotted line) is the subject of the
234 zoomed insets on the right. The black outline delineates the anatomical region from which pRF data was
235 extracted. The putative visual field map cluster is outlined on the insets, showing a radial eccentricity
236 representation, and a perpendicular representation of polar angle travelling roughly medio-anterior to latero-
237 posterior as indicated by the white arrow. **(f)** Illustration on an inflated cortical surface illustrating that the AT-
238 cluster of retinotopic maps is located near the anterior intersection of the occipitotemporal (OTS) and collateral
239 sulci (CoS). The AT-cluster field maps demonstrate perpendicular representations of pRF eccentricity and
240 polar angle. **(g)** In all 12 participants, pRF size and eccentricity from all above-threshold vertices within the
241 anatomically-defined region (black solid line from panel e) are extracted, binned by eccentricity, averaged
242 across participants, and then lines-of-best fit are modeled across the averaged data. Shaded regions represent
243 bootstrapped 68% confidence intervals.
244

245 If these architectural gradients are capable of extrapolating to functional representations
246 in broader visual cortex, to what extent can they also describe the behaviors supported by visual
247 cortex? The PCA approach, in addition to providing spatial maps of scores, provides a weight or
248 sense of fit describing how a given participant relates to a given gradient. To answer the question
249 above, canonical correlation analysis (CCA)⁵⁷ was performed to examine how individual
250 participant weights for the two gradients can predict the individual behavioral performance from
251 15 vision-related behavioral tasks⁵⁸ (Fig. 3a). As shown in Fig. 3b, both gradients show
252 significant correlation with visual ability, with gradient 2 showing stronger correlation with the
253 visual ability than gradient 1. Moreover, the two gradients are associated with distinct and
254 unrelated behavioral profiles (Fig. 3c): Behavioral variables related to attention, visual acuity and
255 inhibitory control contribute more to gradient 1, while vocabulary comprehension, fluid
256 intelligence, spatial orientation processing ability, and nonverbal episodic memory ability
257 contribute more to the gradient 2. The divergent mapping of each gradient onto distinct
258 behaviors further underscores each architectural gradient's unique contribution to brain function.
259 Overall, it seems that gradient 2 involves various complex visual processing abilities, while
260 gradient 1 involves relatively primary and general visual processing functions.

261 If these architectural gradients across the cortical sheet correspond to differences in
262 cortical tissue content, brain function, and behavior, as evidenced above, then they should also
263 change across the lifespan, given that behavior and neocortical tissue structure develop
264 dramatically during childhood across visual cortex^{14,27,59}. The two spatial gradients described
265 above were derived from the young adult dataset. We can therefore repeat the spatial component
266 analysis at various stages of the lifespan, ask if the first two principal gradients replicate in these
267 separate stages, and determine how they may change, if at all, across the lifespan using HCP
268 development (HCP-D) and aging (HCP-A) datasets⁶⁰. We binned participants in equal-sized

269 windows of increasing age, deriving within each window the top PCs and correlating their score
 270 maps with that from the young adult dataset. To distinguish the PCs of each age window from
 271 the PCs of the young adult dataset, we referred those derived from developmental age-bins as
 272 lifespan components (LC). We found that LC1 and LC2 from the developmental (n=652
 273 participants, 351 females, ages 5-21), adult, and aging (n=725 participants, 406 females, ages 36-
 274 100) data at every age bin show a high correspondence to gradient 1 and gradient 2 from the
 275 young adult data respectively, compared to other LCs (Fig. 3d). This demonstrates that the two
 276 gradients derived from lifespan data at each window replicate those of the young adult dataset,
 277 allowing us to trace their developmental trajectories.

278 Examining the correlation between the young adult gradient and LC within each
 279 developmental window, we first found that LCs, as expected, are stable during young adulthood
 280 (Fig. 3e, middle). However, we found a linear change across childhood, with the topography of
 281 LC1 and LC2 becoming more adult-like with maturation (Fig. 3e, left). The trajectory of each
 282 LC was unique. LC2 showed a significantly larger developmental effect than LC1, with an
 283 annualized rate of change (AROC) four times that of LC1(0.86% vs. 0.20%). Finally, if gradients
 284 solidify their structural topography across childhood and adolescence, do they show degeneration
 285 in later adulthood? We can make two a priori hypotheses here: first, that both LCs will show
 286 linear loss of their adult-like topographies and second, that LC2 should show more rapid
 287 degeneration than LC1 potentially consistent with developmental “last-in-first-out” trends
 288 observed in white matter development⁶¹. The sliding-window gradient analysis on the aging
 289 dataset revealed that both hypotheses are supported, LC1 and LC2 both show linear loss of their
 290 topographies with LC2 (AROC: -0.17%) showing more dramatic degeneration than LC1
 291 (AROC: -0.04%) (Fig. 3e, right).



292
 293 **Figure 3. The relevance of the architectural gradients to visual behavior, development, and degeneration**
 294 **across the lifespan.** (a) Canonical correlation analysis (CCA) was used to associate multiple vision-related

295 tasks with the two weight-vectors of each architectural gradient in the HCP-YA. CCA finds the linear
296 combination of variables that best associate measures from the two data domains across participants. **(b)** Both
297 architectural gradients can significantly predict individual visual ability. However, gradient 2 showed stronger
298 correlation with visual behaviors than gradient 1. **(c)** The normalized magnitude of behavioral factor weights
299 from CCA indicate that gradient 1 was correlated more with low-level visual abilities, while gradient 2 was
300 correlated with higher-level visual abilities. **(d)** Sliding window spatial PCA was performed across the lifespan
301 (PCA on a given age-bin results in “lifespan component”, LC) to compare how the patterns of gradient 1 and 2
302 change with the age. The top two LCs (i.e., spatial maps) extracted from each age window correlate strongly
303 with their respective component from the HCP Young Adult dataset, confirming that the architectural gradients
304 can be observed across the lifespan. **(e)** Correlations between LCs and PCs reveal that gradient 2 shows more
305 development and degeneration across childhood and aging, compared to gradient 1.
306

307 Overall, we provide evidence for mesoscale architectural gradients across human visual
308 cortex wherein graded changes in both cortical thickness and myelin content scaffold cortex into
309 a hierarchy of clustered cortical regions. The primary gradient ranges from thin high-myelin
310 content cortex to thick low-myelin content, while the secondary ranges from cortical regions
311 which are relatively thin and lightly-myelinated to thick and highly-myelinated. These two
312 architectural gradients together describe well the broader functional landscape and seem to relate
313 to unique aspects of cytoarchitecture across cortex. Where the first gradient correlates strongly
314 with pRF size of the visual system, and is capable of ranking regions into their ground-truth
315 hierarchical ordering, the second gradient not only predicted the location of a new cluster of
316 visual field maps, but demonstrated dynamic changes across the lifespan. These data would
317 suggest that gradient 2 tracks the functional differentiation of visual cortex into unique regions,
318 wherein regions occupying the same hierarchical level within gradient 1 show distinct values in
319 gradient 2. Given that gradient 2 shows the strongest relationship to behavior and tracks
320 developmental changes across the lifespan, it might suggest that developmental differentiation
321 between cortical regions during childhood more strongly drives maturation of visual behavior,
322 compared to global structural changes. Future work can examine if functional arealization at
323 earlier developmental timepoints, as in infancy⁶², follows this prediction. Likewise, as regions
324 become architecturally similar in later adulthood and less differentiated compared to young
325 adulthood, visual behavioral performance decreases. The extent to which these architectural
326 changes reflect local tissue structure versus connectomic features⁶³ can be clarified in future
327 work. These findings offer evidence that there are architectural gradients, measurable with MRI,
328 that are shared across individuals. These shared patterns of cortical sheet morphology track the
329 functional organization and computations of the underlying cortical sheet across the human
330 lifespan. These findings provide a normative benchmark for future work examining how
331 deviations from these shared mesoscale architectural patterns underlie neurological disorders.
332

333 **Methods**

335 Human Connectome Project Data

336 The publicly-available data from the HCP Young Adult (HCP-YA)^{20,22}, Development
337 (HCP-D) and Aging (HCP-A)⁶⁰ were used in the study. The three large-scale brain imaging

338 studies collect behavioral and multi-modal MRI data in healthy participants from 5 to 100 years
339 of age, and thus provide us with opportunities to characterize brain changes across the human
340 lifespans. Only structural MRI, resting-state fMRI and behavioral data were used in the study.
341 The use and analyses were approved by the Institutional Review Boards of Beijing Normal
342 University and Princeton University.

343 After excluding participants with invalid MSM-All registration and those without any
344 resting-state functional MRI (rs-fMRI) data, we obtained multi-modal MRI and behavioral data
345 for 1070 HCP-YA participants (586 females, ages 22-37, S1200 release). For each participant,
346 T1-weighted (T1w) and T2-weighted (T2w) structural images (0.7mm isotropic voxels) and
347 functional images (2mm isotropic voxels; TR=720ms) were acquired on the HCP's customized
348 3-Tesla Siemens Skyra scanner using a 32-channel head coil. The rs-fMRI paradigm included
349 two sessions, each session itself including two runs with opposite phase-encoding directions
350 (R/L and L/R, each 15 minutes long). All the structural and functional MRI data were
351 preprocessed using the HCP minimal preprocessing pipelines, and more information regarding
352 data acquisition and preprocessing is available from previous work^{22,64,65}.

353 The HCP-D and HCP-A datasets were acquired on a 3T Siemens Prisma scanner with
354 similar protocol as the HCP-YA data^{19,21}. Structural MRI data (0.8mm isotropic) from 652 HCP-
355 D participants (351 females, ages 5-21) and 725 HCP-A participants (406 females, ages 36-100)
356 were used in this study (Lifespan HCP release 2.0). Preprocessing of these two datasets was
357 nearly identical to that of the HCP-YA with small adaptations to account for the variability of the
358 wider age range⁶⁰. The HCP data used in this study were in fsLR_32k cortical space based on the
359 MSM-All registration⁶⁶, and cortical thickness data used in the study have been regressed out to
360 exclude the linear effect of cortical curvature.

361

362 BigBrain Data

363 The BigBrain dataset is a volumetric reconstruction (20 μ m isotropic) of a histologically
364 processed postmortem brain of a human male 65 years of age. Sections were stained for cell
365 bodies, imaged, and digitally reconstructed into 3D volume⁵³. The white and pial surfaces of the
366 BigBrain were extracted at the gray-white matter boundary and gray matter/cerebrospinal fluid
367 (CSF) boundary⁶⁷, respectively. The 3D laminar atlas, including six cortical layers, was also
368 derived at 20 μ m isotropic resolution^{67,68}. Based on the surface registration to the MRI-based
369 MNI152 template surface, the cytoarchitectural information from each layer of the BigBrain can
370 be linked to in vivo neuroimaging data.

371

372 Population receptive field (pRF) experiment

373 We performed pRF mapping on 12 participants with high-contrast, ecological images to
374 better drive neurons of high-level visual cortex often tuned for such complex objects. We
375 adapted the experiment used in the HCP 7T Retinotopy Dataset⁴⁵. Stimuli consisted of slowly-
376 moving bar-shaped apertures of 2-degree width filled with a dynamic colorful texture. Textures
377 presented within the bar aperture were updated at a rate of 7 Hz. Textures included randomly-

378 presented cartoon scenes depicting people, animals, characters, text, limbs and objects evenly
379 spanning the width of the stimulus aperture. Participants were asked to fixate on a central dot
380 while attending to the bar, monitoring it for the random appearance of a target cartoon stimulus
381 (a grid of wiggling bumblebees) which appeared for a 500ms duration, 10 times during the
382 experiment. Each run lasted 300s, and participants completed 3 to 4 runs.
383

384 Data Analysis

385 *Definition of human visual cortex.* Human visual cortex was defined by grouping the 44
386 visual areas from the HCP multimodal parcellation (MMP) atlas⁸. All of these areas located in
387 the occipital, parietal and temporal cortices and show a significant BOLD response to visual
388 objects. According to the well-established model of the visual cortex, these areas are grouped
389 into four visual processing streams: early stream (V1, V2, V3, V4), lateral stream (V3CD, LO1,
390 LO2, LO3, V4t, FST, MT, MST, PH); dorsal (V3A, V3B, V6, V6A, V7, IPS1, LIPv, VIP, MIP,
391 7Am, 7PL, 7Pm, IP0, IP1, DVT, ProS, POS1, POS2, PCV), and ventral (V8, VVC, PIT, FFC,
392 VMV1, VMV2, VMV3, PeEc, PHA1, PHA2, PHA3, TF). Please see supplementary information
393 for the detailed descriptions of these areas (Table 1).
394

395 *Extracting architectural gradients of human visual cortex.* Cortical thickness and cortical
396 myelin content, the two widely used mesoscale in-vivo architectural measures derived from
397 structural MRI were used to extract architectural gradients of human visual cortex. Cortical
398 thickness was measured as the shortest distance between each vertex on the white matter surface
399 and the pial surface²³, while cortical myelin content was measured by the ratio of T1w to T2w²⁴.
400 For each of hemisphere, individual cortical thickness and myelin content maps from all HCP-YA
401 participants were concatenated and a principal component analysis (PCA)³⁹ was conducted to
402 linearly decompose the concatenated maps into a collection of orthogonal principal components
403 (PCs), consisting of spatial maps (i.e., score) and individual weights (i.e., loading) in pairs. The
404 score map explains how the structural properties change across the cortical sheet on each
405 component and the individual weights describe how individual cortical thickness and myelin
406 content maps contributes to each component. The PCs are sorted in decreasing order according
407 to the amount of variance explained by each of the component. The contribution ratio of
408 myelination or thickness for a given PC was calculated by the ratio of the sum of absolute values
409 of weights of the loading matrix from each measure to the sum of absolute values of weights
410 from both measures.
411

412 *The global hierarchy of the architectural gradients.* Two metrics which index the visual
413 cortical functional hierarchy were used to validate the global hierarchy of the architectural
414 gradients.

415 (1) Population receptive field (pRF) size: It is widely known that pRF size progressively
416 increases as one ascends the processing hierarchy from V1 to high-level visual cortex^{15,46,47}.
417 We first validated the global hierarchy of the architectural gradients by measuring if the

418 gradients show similar spatial pattern to the pRF size across visual areas. Specifically, we
419 calculated the Pearson correlation coefficients between architectural gradients and pRF size
420 from the HCP's 7T retinotopy dataset⁴⁵. Only the vertices whose eccentricity of pRF within 8
421 degrees were used because retinotopic mapping stimuli were constrained to a circular region
422 with a radius of 8 degrees.

423 (2) Hierarchical rank: As the hierarchical level of the visual areas within the ventral stream has
424 been widely studied and relatively clear, we reviewed literature describing the hierarchical
425 relationships of 10 visual areas within the ventral stream^{7,8,69-82} and ranked them into a
426 hierarchy from lowest-level to high: V1, V2, V3, V4, V8, PIT, VVC, FFC, TF, and PeEc,
427 with cortical regions defined using labels of the HCP multimodal atlas⁸. Spearman's rank
428 correlation coefficients were then computed between the mean gradient score and the
429 hierarchical rank of the areas.

430

431 *Geometric models of the architectural gradients.* The geometric models of the
432 architectural gradients were constructed by the geodesic distance of each vertex to a set of
433 specific references (Fig. 1g). The primary gradient was modeled as the geodesic distance of each
434 vertex of visual cortex to the calcarine sulcus (CS) anchor. The secondary gradient was modeled
435 as the minimum geodesic distance from each vertex on the visual cortex to the eight anchors
436 dispersed among four visual processing streams, which consisted of two local minima in the
437 early visual cortex, two local minima in the dorsal visual stream, two local minima in the lateral
438 visual stream, and two local minima in the ventral visual stream (Please see supplementary
439 information for details, Table 2).

440

441 *The gradient differences between vertices with different spatial distance.* The gradient
442 differences for each pair of vertices were calculated as the absolute difference between their
443 gradient scores. The spatial distance between each pair of vertices was measured by the geodesic
444 distance separating them on the cortical surface. The gradient differences between pairs of
445 vertices were then sorted into 100 groups according to their spatial distance. The mean gradient
446 differences and geodesic distances were then computed for each group and plotted against each
447 other to evaluate how the gradient differences depend on spatial distance.

448

449 *Functional significance of the architectural gradients.* We characterized the functional
450 significance of the architectural gradients by measuring to what extent each gradient is related to
451 areal differentiation of the visual cortex⁸ and the fractional amplitude of low-frequency
452 fluctuation (fALFF) from resting-state fMRI⁵¹.

453 (1) Predicting visual areas based on the architectural gradients: Logistic Regression classifiers
454 were trained on the architectural gradients to predict visual cortical areas. Specifically, the
455 vertices from the visual cortex, with the architectural gradients as features, were used as the
456 samples and the 44 visual cortical areas from the HCP MMP were used as the true class
457 labels (i.e., 44-class classification). The areas with more vertices were down sampled to have

458 the same number of vertices as the smallest areas to keep the number of samples with each
459 class constant and thus avoid the imbalance of sample number across different visual areas.
460 Logistic Regression classifiers were trained and tested on each downsampled data using a 5-
461 fold cross-validation (CV) procedure. 100 random downsamples were performed and the
462 averaged accuracy was used to measure the classification accuracy.
463

464 (2) Predicting fALFF based on the architectural gradients: The fALFF is calculated as the ratio
465 of the power spectrum of low-frequency modulations to that of the entire frequency range
466 and is indicative of the magnitude of spontaneous brain activity^{49,51}. For each rs-fMRI run,
467 the time series of each vertex was Fourier transformed to a frequency domain without band-
468 pass filtering, and the square root of the power was calculated at each frequency within the
469 spectrum. fALFF was then computed by dividing the sum of amplitudes across a low-
470 frequency band of the spectrum (0.01–0.1 Hz) by the sum of amplitudes across all
471 frequencies up to the Nyquist frequency (0–0.625 Hz). The group fALFF map was calculated
472 by averaging individual fALFF across all valid rfMRI runs within each participant and then
473 across participants. 100 linear regression analyses using the 5-fold CV procedure were
474 performed and the averaged R^2 was used to characterize to what extent the two architectural
475 gradients are related to spontaneous functional activity characterized by fALFF.
476

477 *Laminar cytoarchitecture underlying the architectural gradients.* The BigBrain cortical
478 surfaces registered to standard surfaces, the surfaces of borders of the six cortical layers in
479 BigBrain histological space, and the cell body density (CBD) data at 40- μ m resolution were used
480 together to extract laminar cytoarchitecture of the visual cortex. Specifically, for each of six
481 cortical layers⁶⁷, we first generated 10 surfaces based on the equivolumetric principle between its
482 inner and outer borders⁸³ to extract 10 CBD maps in the BigBrain space. Next, the CBD data
483 from the BigBrain space were resampled to the fsLR_32k space, and then the 10 CBD maps
484 were averaged to obtain an averaged CBD map for the layer. Finally, the spatial similarity
485 between the architectural gradients and the averaged CBD map from each of the 6 cortical layers
486 was measured with Pearson correlation coefficients.
487

488 *Population receptive field (pRF) mapping.* Functional images were preprocessed using a
489 similar pipeline to the HCP data, including motion-correction, slice-timing correction, and phase-
490 encoding distortion correction, and then aligned to each participant's native cortical surface
491 through FreeSurfer's FS-FAST pipeline⁸⁴. The preprocessed data from multiple runs from each
492 participant were averaged to increase signal-to-noise ratio. The data were finally analyzed by a
493 pRF model implemented in the VISTA Lab toolbox (github.com/vistalab), with additions for
494 compressive nonlinearity (cvnlab.net/analyzePRF). The model predicts fMRI time series as the
495 convolution of the stimulus-related time series and a canonical hemodynamic response function.
496 The stimulus-related time series are in turn generated by computing the dot product between the
497 stimulus apertures and a 2D isotropic Gaussian, scaling and applying a static power-law

498 nonlinearity⁸⁵. Several parameters of interest are produced from the pRF model for each vertex
499 including phase angle, eccentricity, and pRF size. Vertices entered into any analyses presented in
500 Figure 2 were only included if there was at least 10% variance-explained by the model-fit.

501

502 *Behavioral relevance of the architectural gradients.* The behavioral significance of the
503 architectural gradients was examined by measuring how the individual weights from PCA can
504 account for the individual variation in behavioral performance on related visual tasks. The HCP-
505 YA dataset include behavioral tasks of a range of motor, sensory, cognitive, and emotional
506 processes. Because our architectural gradients cover the entire visual cortex and may involve into
507 a variety of cognitive and behavioral abilities, a total of 15 vision-related or vision-based
508 behavioral tasks⁵⁸, designed to measure nonverbal episodic memory ability, cognitive flexibility,
509 inhibitory control and attention ability, fluid intelligence, reading decoding skill, general
510 vocabulary knowledge, speed of processing, spatial orientation processing ability, sensitivity of
511 sustained attention, specificity of sustained attention, verbal episodic memory ability, working
512 memory ability, odor identification ability, visual acuity, and contrast sensitivity, were selected
513 to examine the behavioral relevance of the gradients (Please see supplementary information for
514 details, Table 3).

515 For the two sets of individual weights (i.e., myelin content weights and cortical thickness
516 weights) associated with each of architectural gradient, we carried out a single integrated
517 multivariate analysis using canonical correlation analysis (CCA)⁵⁷, to simultaneously co-analyze
518 the two sets of gradients along with 15 behavioral variables from all participants. CCA aims to
519 identify symmetric linear relations between the two sets of variables. That is, we used CCA to
520 find components that relate the two sets of weights from each gradient to 15 sets of participants'
521 behavioral measures. Each CCA component identifies a linear combination of two weights and a
522 linear combination of behavioral variables, where the variation in strength of involvement across
523 participants is maximally correlated. The normalized magnitude of behavioral weights was used
524 to characterize the behavioral profile of an architectural gradient and reveal how the two
525 gradients are different in predicting the same set of behavioral variables.

526

527 *The development of the architectural gradients across the lifespan.* We divided HCP-D,
528 HCP-YA, and HCP-A participants into different age windows (subgroups) in ascending order of
529 age. Among them, the participants of HCP-D and HCP-A were sorted by their age in months,
530 while HCP-YA sorted in years because no month information was provided. Each window
531 consisted of 50 participants and had a step size of ten. As a result, there are 61, 103, and 68 age
532 windows generated for HCP-D, HCP-YA, and HCP-A data, respectively. To characterize the
533 changes of the architectural gradients across the human lifespan, we conducted PCA on the
534 stacked myelination and thickness maps of each window as we did in the whole HCP-YA data.
535 We label the principal components from each age window as lifespan components (LC) to
536 differentiate them from the original PCs derived from the HCP-YA dataset. To determine if the
537 observed LCs were similar to the PCs from the HCP-YA data, we calculated the Pearson's

538 correlation coefficients between the HCP-YA PCs and the top ten LCs for each window. The LC
539 which shows strongest correlation with a PC was considered to be the correspondence LC to the
540 PC in that age window. Lastly, how the observed gradients from each age window change
541 relative to the gradient from the HCP-YA was measured by the Pearson's correlation coefficient
542 between their score maps. The changes along age were then charted (i.e., developmental
543 trajectories). A linear model was then constructed to characterize the developmental trajectory
544 within each of three datasets. The slope of the linear model was defined as the annualized rate of
545 change (AROC) in the architectural gradients.

546

547 **Ethical Compliance**

548 Data analyzed from the Human Connectome Project follows all necessary privacy and
549 security guidelines. Data collected from participants at Princeton University followed all
550 Institutional Review Board ethics and guidelines (protocol number 13074), and all safety
551 regulations set forth by the Scully Center for the Neuroscience of Mind and Behavior. Informed
552 consent was collected from every participant involved in this study, and all were reimbursed for
553 their time.

554

555 **Data Availability**

556 The data from the HCP Young Adult (HCP-YA) are publicly available at the
557 <https://www.humanconnectome.org>; The data from the HCP Development (HCP-D) and HCP
558 Aging (HCP-A) are publicly available at <https://nda.nih.gov>. Users can access these after
559 registration.

560

561 **Code Availability**

562 The HCP data were preprocessed using the HCP-Pipeline analyses
563 (<https://github.com/Washington-University/HCPpipelines>). Custom code for gradient analysis
564 can be found at <https://github.com/BNUCNL/VisualCortexGradient>. Code to reproduce
565 population receptive field mapping figures can be found at:
566 https://github.com/gomezj/entorhinal_prf.

567

568 **Acknowledgements**

569 We thank Youyi Liu and the Brain Development Lab for several useful discussions. This
570 research was supported by Child Brain-Mind Development Cohort Study in the China Brain
571 Initiative (2021ZD0200534) and the National Natural Science Foundation of China (31771251)
572 to ZZ. This research was supported by start-up funds from the Princeton Neuroscience Institute
573 to JG.

574

575 **Author Contributions**

576 JG and ZZ conceived of the idea and design of the study. XC and XL compiled the data,
577 performed the analyses, and prepared visualizations. PH, ED, and JY performed the analyses.

578 JG, XC, XL, and ZZ drafted and revised the manuscript with input from all authors. JG and ZZ
579 supervised the research.

580

581 **Competing Interests Statement**

582 The authors declare no competing interests.

583

584 **References**

- 585 1. Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf
586 Grund des Zellenbaues / von K. Brodmann. (1909).
- 587 2. Brodmann, K. & Gary, L. J. Brodmann's localisation in the cerebral cortex: the principles of
588 comparative localisation in the cerebral cortex based on cytoarchitectonics. (Springer, 2006).
- 589 3. Vogt, C. & Vogt, O. Allgemeine ergebnisse unserer hirnforschung. vol. 25 (JA Barth, 1919).
- 590 4. Amunts, K. & Zilles, K. Architectonic Mapping of the Human Brain beyond Brodmann.
591 *Neuron* **88**, 1086–1107 (2015).
- 592 5. Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: A 3D probabilistic atlas of
593 the human brain's cytoarchitecture. *Science* **369**, 988–992 (2020).
- 594 6. Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by
595 structural neuroimaging topography. *Nat. Neurosci.* **21**, 1251–1259 (2018).
- 596 7. Gomez, J., Zhen, Z. & Weiner, K. S. Human visual cortex is organized along two genetically
597 opposed hierarchical gradients with unique developmental and evolutionary origins. *PLOS*
598 *Biol.* **17**, e3000362 (2019).
- 599 8. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. *Nature* **536**, 171–
600 178 (2016).
- 601 9. Lerch, J. P. et al. Studying neuroanatomy using MRI. *Nat. Neurosci.* **20**, 314–326 (2017).
- 602 10. Sebenius, I. et al. Robust estimation of cortical similarity networks from brain MRI. *Nat.*
603 *Neurosci.* **26**, 1461–1471 (2023).
- 604 11. Genon, S., Eickhoff, S. B. & Kharabian, S. Linking interindividual variability in brain
605 structure to behaviour. *Nat. Rev. Neurosci.* **23**, 307–318 (2022).
- 606 12. Miller, J. A., Voorhies, W. I., Lurie, D. J., D'Esposito, M. & Weiner, K. S. Overlooked
607 Tertiary Sulci Serve as a Meso-Scale Link between Microstructural and Functional
608 Properties of Human Lateral Prefrontal Cortex. *J. Neurosci. Off. J. Soc. Neurosci.* **41**, 2229–
609 2244 (2021).
- 610 13. Grotheer, M. et al. White matter myelination during early infancy is linked to spatial
611 gradients and myelin content at birth. *Nat. Commun.* **13**, 997 (2022).
- 612 14. Sowell, E. R. et al. Longitudinal Mapping of Cortical Thickness and Brain Growth in
613 Normal Children. *J. Neurosci.* **24**, 8223–8231 (2004).
- 614 15. Wandell, B. A. & Winawer, J. Computational neuroimaging and population receptive fields.
615 *Trends Cogn. Sci.* **19**, 349–357 (2015).
- 616 16. Gomez, J., Natu, V., Jeska, B., Barnett, M. & Grill-Spector, K. Development differentially
617 sculpts receptive fields across early and high-level human visual cortex. *Nat. Commun.* **9**,
618 788 (2018).
- 619 17. Stigliani, A., Weiner, K. S. & Grill-Spector, K. Temporal Processing Capacity in High-Level
620 Visual Cortex Is Domain Specific. *J. Neurosci. Off. J. Soc. Neurosci.* **35**, 12412–12424
621 (2015).
- 622 18. Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal
623 receptive windows in human cortex. *J. Neurosci.* **28**, 2539–2550 (2008).

624 19. Bookheimer, S. Y. et al. The Lifespan Human Connectome Project in Aging: An overview.
625 *NeuroImage* **185**, 335–348 (2019).

626 20. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: An overview.
627 *NeuroImage* **80**, 62–79 (2013).

628 21. Somerville, L. H. et al. The Lifespan Human Connectome Project in Development: A large-
629 scale study of brain connectivity development in 5-21 year olds. *NeuroImage* **183**, 456–468
630 (2018).

631 22. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome
632 Project. *NeuroImage* **80**, 105–124 (2013).

633 23. Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from
634 magnetic resonance images. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 11050–11055 (2000).

635 24. Glasser, M. F. & Essen, D. C. V. Mapping Human Cortical Areas In Vivo Based on Myelin
636 Content as Revealed by T1- and T2-Weighted MRI. *J. Neurosci.* **31**, 11597–11616 (2011).

637 25. Carlo, C. N. & Stevens, C. F. Structural uniformity of neocortex, revisited. *Proc. Natl. Acad.*
638 *Sci. U. S. A.* **110**, 1488–1493 (2013).

639 26. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human
640 cerebral cortex. *J. Comp. Neurol.* **387**, 167–178 (1997).

641 27. Natu, V. S. et al. Apparent thinning of human visual cortex during childhood is associated
642 with myelination. *Proc. Natl. Acad. Sci.* **116**, 20750–20759 (2019).

643 28. Bo, T. et al. Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical
644 morphology in macaque monkeys. *Nat. Commun.* **14**, 1499 (2023).

645 29. Preziosa, P. et al. Neurite density explains cortical T1-weighted/T2-weighted ratio in
646 multiple sclerosis. *J. Neurol. Neurosurg. Psychiatry* **92**, 790–792 (2021).

647 30. Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex
648 and its role in categorization. *Nat. Rev. Neurosci.* **15**, 536–548 (2014).

649 31. Witthoft, N. et al. Where is human V4? Predicting the location of hV4 and VO1 from
650 cortical folding. *Cereb. Cortex N. Y. N 1991* **24**, 2401–2408 (2014).

651 32. Dumoulin, S. O. et al. A new anatomical landmark for reliable identification of human area
652 V5/MT: a quantitative analysis of sulcal patterning. *Cereb. Cortex N. Y. N 1991* **10**, 454–
653 463 (2000).

654 33. Gomez, J. et al. Development of population receptive fields in the lateral visual stream
655 improves spatial coding amid stable structural-functional coupling. *NeuroImage* **188**, 59–69
656 (2019).

657 34. Konkle, T. & Caramazza, A. Tripartite organization of the ventral stream by animacy and
658 object size. *J. Neurosci. Off. J. Soc. Neurosci.* **33**, 10235–10242 (2013).

659 35. Wandell, B. A. & Winawer, J. Imaging retinotopic maps in the human brain. *Vision Res.* **51**,
660 718–737 (2011).

661 36. Benson, N. C. & Winawer, J. Bayesian analysis of retinotopic maps. *eLife* **7**, e40224 (2018).

662 37. Konen, C. S. & Kastner, S. Representation of eye movements and stimulus motion in
663 topographically organized areas of human posterior parietal cortex. *J. Neurosci. Off. J. Soc.*
664 *Neurosci.* **28**, 8361–8375 (2008).

665 38. Hong, S.-J. et al. Toward a connectivity gradient-based framework for reproducible
666 biomarker discovery. *NeuroImage* **223**, 117322 (2020).

667 39. Lever, J., Krzywinski, M. & Altman, N. Principal component analysis. *Nature Methods* vol.
668 14 641–642 <https://www.nature.com/articles/nmeth.4346> (2017).

669 40. Wandell, B. A., Dumoulin, S. O. & Brewer, A. A. Visual Field Maps in Human Cortex.
670 *Neuron* **56**, 366–383 (2007).

671 41. Pitcher, D. & Ungerleider, L. G. Evidence for a Third Visual Pathway Specialized for Social
672 Perception. *Trends Cogn. Sci.* **25**, 100–110 (2021).

673 42. Weiner, K. S. & Gomez, J. Third Visual Pathway, Anatomy, and Cognition across Species.
674 *Trends Cogn. Sci.* **25**, 548–549 (2021).

675 43. Ungerleider, L. G. & Haxby, J. V. ‘What’ and ‘where’ in the human brain. *Curr. Opin.*
676 *Neurobiol.* **4**, 157–165 (1994).

677 44. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. *Trends*
678 *Neurosci.* **15**, 20–25 (1992).

679 45. Benson, N. C. et al. The Human Connectome Project 7 Tesla retinotopy dataset: Description
680 and population receptive field analysis. *J. Vis.* **18**, 23 (2018).

681 46. Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual
682 cortex. *NeuroImage* **39**, 647–660 (2008).

683 47. Amano, K., Wandell, B. A. & Dumoulin, S. O. Visual field maps, population receptive field
684 sizes, and visual field coverage in the human MT+ complex. *J. Neurophysiol.* **102**, 2704–
685 2718 (2009).

686 48. Harvey, B. M. & Dumoulin, S. O. The relationship between cortical magnification factor and
687 population receptive field size in human visual cortex: constancies in cortical architecture. *J.*
688 *Neurosci. Off. J. Soc. Neurosci.* **31**, 13604–13612 (2011).

689 49. Shmuel, A. & Leopold, D. A. Neuronal correlates of spontaneous fluctuations in fMRI
690 signals in monkey visual cortex: Implications for functional connectivity at rest. *Hum. Brain*
691 *Mapp.* **29**, 751–761 (2008).

692 50. Sydnor, V. J. et al. Intrinsic activity development unfolds along a sensorimotor-association
693 cortical axis in youth. *Nat. Neurosci.* **26**, 638–649 (2023).

694 51. Zou, Q.-H. et al. An improved approach to detection of amplitude of low-frequency
695 fluctuation (ALFF) for resting-state fMRI: fractional ALFF. *J. Neurosci. Methods* **172**, 137–
696 141 (2008).

697 52. Stigliani, A., Jeska, B. & Grill-Spector, K. Encoding model of temporal processing in human
698 visual cortex. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E11047–E11056 (2017).

699 53. Amunts, K. et al. BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. *Science* **340**,
700 1472–1475 (2013).

701 54. Brewer, A. A., Liu, J., Wade, A. R. & Wandell, B. A. Visual field maps and stimulus
702 selectivity in human ventral occipital cortex. *Nat. Neurosci.* **8**, 1102–1109 (2005).

703 55. Finzi, D. et al. Differential spatial computations in ventral and lateral face-selective regions
704 are scaffolded by structural connections. *Nat. Commun.* **12**, 2278 (2021).

705 56. Axelrod, V. & Yovel, G. The challenge of localizing the anterior temporal face area: a
706 possible solution. *NeuroImage* **81**, 371–380 (2013).

707 57. Wang, H.-T. et al. Finding the needle in a high-dimensional haystack: Canonical correlation
708 analysis for neuroscientists. *NeuroImage* **216**, 116745 (2020).

709 58. Barch, D. M. et al. Function in the human connectome: task-fMRI and individual differences
710 in behavior. *NeuroImage* **80**, 169–189 (2013).

711 59. Gomez, J. et al. Microstructural proliferation in human cortex is coupled with the
712 development of face processing. *Science* **355**, 68–71 (2017).

713 60. Harms, M. P. et al. Extending the Human Connectome Project across ages: Imaging
714 protocols for the Lifespan Development and Aging projects. *NeuroImage* **183**, 972–984
715 (2018).

716 61. Yeatman, J. D., Wandell, B. A. & Mezer, A. A. Lifespan maturation and degeneration of
717 human brain white matter. *Nat. Commun.* **5**, 4932 (2014).

718 62. Wang, F. et al. Fine-grained functional parcellation maps of the infant cerebral cortex. *eLife*
719 **12**, e75401 (2023).

720 63. Sarwar, T., Tian, Y., Yeo, B. T. T., Ramamohanarao, K. & Zalesky, A. Structure-function
721 coupling in the human connectome: A machine learning approach. *NeuroImage* **226**, 117609
722 (2021).

723 64. Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective.
724 *NeuroImage* **62**, 2222–2231 (2012).

725 65. Glasser, M. F. et al. The Human Connectome Project's neuroimaging approach. *Nat.*
726 *Neurosci.* **19**, 1175–1187 (2016).

727 66. Robinson, E. C. et al. Multimodal surface matching with higher-order smoothness
728 constraints. *NeuroImage* **167**, 453–465 (2018).

729 67. Wagstyl, K. et al. Mapping Cortical Laminar Structure in the 3D BigBrain. *Cereb. Cortex N.*
730 *Y. N 1991* **28**, 2551–2562 (2018).

731 68. Wagstyl, K. et al. BigBrain 3D atlas of cortical layers: Cortical and laminar thickness
732 gradients diverge in sensory and motor cortices. *PLoS Biol.* **18**, e3000678 (2020).

733 69. Abdollahi, R. O. et al. Correspondences between retinotopic areas and myelin maps in
734 human visual cortex. *NeuroImage* **99**, 509–524 (2014).

735 70. Beauchamp, M. S., Yasar, N. E., Frye, R. E. & Ro, T. Touch, sound and vision in human
736 superior temporal sulcus. *NeuroImage* **41**, 1011–1020 (2008).

737 71. Felleman, D. J. & Van Essen, D. C. Distributed Hierarchical Processing in the Primate
738 Cerebral Cortex. *Cereb. Cortex* **1**, 1–47 (1991).

739 72. Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color
740 sensitivity in human visual cortical area V8. *Nat. Neurosci.* **1**, 235–241 (1998).

741 73. Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. The distributed human neural system for face
742 perception. *Trends Cogn. Sci.* **4**, 223–233 (2000).

743 74. Kolster, H., Peeters, R. & Orban, G. A. The retinotopic organization of the human middle
744 temporal area MT/V5 and its cortical neighbors. *J. Neurosci. Off. J. Soc. Neurosci.* **30**,
745 9801–9820 (2010).

746 75. Larsson, J. & Heeger, D. J. Two retinotopic visual areas in human lateral occipital cortex. *J.*
747 *Neurosci. Off. J. Soc. Neurosci.* **26**, 13128–13142 (2006).

748 76. Moreno-Ortega, M. et al. Resting state functional connectivity predictors of treatment
749 response to electroconvulsive therapy in depression. *Sci. Rep.* **9**, 5071 (2019).

750 77. Nunn, J. A. et al. Functional magnetic resonance imaging of synesthesia: activation of
751 V4/V8 by spoken words. *Nat. Neurosci.* **5**, 371–375 (2002).

752 78. Orban, G. A., Van Essen, D. & Vanduffel, W. Comparative mapping of higher visual areas
753 in monkeys and humans. *Trends Cogn. Sci.* **8**, 315–324 (2004).

754 79. Sellal, F. Anatomical and neurophysiological basis of face recognition. *Rev. Neurol. (Paris)*
755 **178**, 649–653 (2022).

756 80. Tootell, R. B. et al. Functional analysis of V3A and related areas in human visual cortex. *J.*
757 *Neurosci. Off. J. Soc. Neurosci.* **17**, 7060–7078 (1997).

758 81. Tootell, R. B. H., Tsao, D. & Vanduffel, W. Neuroimaging Weighs In: Humans Meet
759 Macaques in “Primate” Visual Cortex. *J. Neurosci.* **23**, 3981–3989 (2003).

760 82. Weiner, K. S. et al. The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic
761 and functional divisions of human ventral temporal cortex. *NeuroImage* **84**, 453–465 (2014).

762 83. Waehnert, M. D. et al. Anatomically motivated modeling of cortical laminae. *NeuroImage*
763 **93 Pt 2**, 210–220 (2014).

764 84. Fischl, B. FreeSurfer. *NeuroImage* **62**, 774–781 (2012).

765 85. Kay, K. N., Winawer, J., Mezer, A. & Wandell, B. A. Compressive spatial summation in
766 human visual cortex. *J. Neurophysiol.* **110**, 481–494 (2013).

767