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Abstract 18 

The microstructure of cells within human cerebral cortex varies across the cortical ribbon, where 19 

changes in cytoarchitecture and myeloarchitecture are thought to endow each region of cortex 20 

with its unique function. While fine-scale relative to a cell, these population-level changes 21 

impact architectural properties of cortex measurable in vivo by noninvasive MRI, such as the 22 

thickness and myelin content of cortex. This raises the question of whether or not we can use 23 

these in vivo architectural measures to understand cortical organization, function, and 24 

development more broadly. Using human visual cortex as a test bed, we found two architectural 25 

gradients, which not only underlie its structural and functional organization, but additionally 26 

predict the presence of new visual field maps and capture the lifespan trajectory and its 27 

behavioral relevance. These findings provide a more general framework for understanding visual 28 

cortex, showing that architectural gradients are a measurable fingerprint of functional 29 

organization and ontogenetic routines in the human brain. 30 

 31 

 32 

 33 
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A fundamental goal of brain research is to elucidate the functional properties of the 35 

structural elements of the brain, at an appropriate organizational scale. Classical architectural 36 

brain maps including cytoarchitectonic1,2 and myeloarchitectonic3 maps, derived from 37 

postmortem brain sections, have revealed strong correspondence with the functional properties of 38 

the cerebral cortex4,5. Recent observations of spatial gradients in gene expression across human 39 

cortex6,7, especially in genes controlling the shape and distribution of dendrites and myelin, also 40 

suggest that changes in large scale architectural properties necessitate functionally distinct 41 

zones8. However, these maps cannot be built for individual brains in vivo to capture individual 42 

differences, or the functional, behavioral or developmental relevance of these larger scale 43 

organizational principles. MRI technological advances have made it possible to map architectural 44 

correlates in human cortex in a noninvasive, and importantly individual-specific way, to test if 45 

the individual variation in functional organization across brains is reflected in the variation of 46 

architectural features of cortex9–11. In the case of visual cortex, general trend along the cardinal 47 

axis have been observed in architectural features such as myelination in adults12 and infants13 and 48 

cortical thinning14, as well as functional properties of neurons such as receptive field size15,16 and 49 

temporal sensitivity17,18. A model explicitly linking these architectural and functional variations 50 

across the cerebrum, one that can generalize to yet-mapped regions of cortex as well as explain 51 

behavior and dynamics across the lifespan, would be a steppingstone towards bridging structural 52 

and functional properties of the living human brain. 53 

         More explicitly, to what extent do individuals demonstrate shared architectural features 54 

of cortex and how might individual differences in these structural patterns across development or 55 

adulthood capture differences in brain function and behavior11? Answering such a question 56 

would require a large-scale, multimodal MRI dataset to appropriately capture the range in 57 

architectural variation at the level of the population. To that end, we combine three datasets from 58 

the Human Connectome Project (HCP) which together sample the human lifespan from 5 to 100 59 

years of age19–21, and ask if there are shared motifs in architectural features of cortex across 60 

individuals and development. Using visual cortex as a test bed, we focus first on the structural 61 

MRI of HCP young adults (HCP-YA, N=1070, 22-37 years old)20,22. Based on T1-weighted 62 

(T1w) and T2-weighted (T2w) images, we produce for each individual two distinct maps: a map 63 

of cortical thickness23 and a map of the T1w/T2w signal ratio24. While the thickness map is 64 

thought to be attributable to the organization of neuronal, glial, and neuropil tissue25–28, the ratio 65 

map is thought to be sensitive to intracortical density of myelin and neurite structure density24,29. 66 

Importantly, maps of cortical thickness had any variance explainable by curvature removed to 67 

account for known thickness differences between gyri and sulci. Leveraging the field9s deep 68 

understanding of its functional organization relative to cortical folding30–37, we focus here on 69 

visual cortex as a test bed to understand how variation in the structure of the cortical mantle 70 

relates to changes in function. 71 

To extract the concurrent spatial changes of the two architectural measurements across 72 

individuals, the two maps from each hemisphere are concatenated across individuals to perform a 73 

spatial principal component analysis (PCA)38,39 in which participants are features and cortical 74 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.569190doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/


vertices are samples. As a result, the concatenated maps were linearly decomposed into a 75 

collection of orthogonal principal components, consisting of spatial maps (i.e., scores) and 76 

individual weights (i.e., loading) in pairs. The former explains how the structural properties 77 

change across the cortical sheet on each component and the latter describes how individual maps 78 

contribute to each component (Fig. 1a). Because the resulting PCs are very similar for the two 79 

hemispheres (Extended Data Fig. 1), only data from the right hemisphere are presented here for 80 

clarity. The first two PCs (i.e., PC1 and PC2) describe over 50% of the architectural variance 81 

across the cortical sheet (Fig. 1b). The individual weights indicate that each PC relied on an 82 

integration of myelin content and cortical thickness at a given spatial location (Fig. 1c), rather 83 

than a single feature, suggesting that together these two architectural features capture a unique, 84 

holistic structural pattern of human cortex not visible through a single measure alone (Extended 85 

Data Fig. 2). 86 

Both PC1 and PC2 maps form spatial gradients whose values change smoothly as one 87 

traverses the cortical surface (Fig. 1d).  Specifically, gradient 1 (i.e., PC1 score), shows an 88 

increase in scores as one travels from the fundus of the calcarine sulcus either dorsally towards 89 

the intraparietal sulcus or ventrally into the anterior temporal lobe. Higher PC1 vertex values 90 

correspond to lower myelin content and a thicker cortical sheet. Gradient 2 (i.e., PC2 score), on 91 

the other hand, demonstrates alternating score patterns that fluctuate across cortex. Higher PC2 92 

scores correspond to both higher myelin content and thickness. Gradient 2 scores seem to be 93 

broadly organized into four distinct zones, mirroring the visual cortex's division from early 94 

visual field maps40 into the ventral, lateral, and dorsal processing streams of the visual cortex41–
95 

44. The processing stream borders delineated in Figure 1d, while anatomically defined, follow the 96 

ridge of positive weights in gradient 2. Quantitatively, the distribution of scores for gradient 1 97 

shift across the four processing streams while the score distributions of gradient 2 are evenly 98 

sampled within each processing stream (i.e., zero-centered) (Fig. 1e). Furthermore, gradient 2 99 

exhibits a higher spatial frequency in the distribution of its scores. That is, for a given pair of 100 

vertices separated by a short distance, gradient 2 tends to show a larger difference in score values 101 

compared to the more spatially homogenous gradient 1 (Fig. 1f). Collectively, these findings 102 

demonstrate that gradient 1 acts as a global gradient enveloping the entire visual cortex, while 103 

gradient 2 acts as a local gradient specific to individual visual streams. 104 

To get a deeper understanding of the shape of these topographies, we produced simulated 105 

models using cortical geometry for the two spatial gradients. For gradient 1, the calcarine sulcus 106 

was used as the fiducial line, and vertices of the cortical surface were assigned values based on 107 

their minimal geodesic distance to the calcarine sulcus. This simple simulation was able to 108 

capture 57.1% of the explainable variance in the topography of gradient 1 (Fig. 1g, left). 109 

Gradient 2, which was more complicated in shape, could nonetheless be simulated using anchor 110 

points positioned at local minima within each visual processing stream (Fig. 1g, right), and 111 

vertices of the cortical surface were assigned values based on their minimal geodesic distance to 112 

these anchor points. This map of geometric distance also captured a sizeable portion of the 113 
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explainable variance within the gradient 2 map (17.7%, Fig 1g, right). These simulation results 114 

again highlight the global and local characteristics of the two gradients. 115 

  116 
Figure 1: Two architectural gradients scaffold human visual cortex. (a) Principal component analysis 117 

(PCA) on the concatenated cortical thickness and myelin content maps from all participants in HCP-YA to 118 

extract architectural gradients of human visual cortex produced a collection of orthogonal principal 119 

components, consisting of spatial maps (i.e., score) and individual weights (i.e., loading) in pairs. (b) The 120 

explained variance ratio of the top 5 principal components (PCs). The first two PCs (i.e., gradients 1 and 2) 121 

dominate the explainable variance. (c) Contributions of the two architectural measures (thickness and myelin) 122 

to the two gradients. (d) Topographic patterns of the two gradients on a flattened cortical surface. Gradient 1 123 

(PC1) displays roughly monotonic change from negative to positive scores across visual cortex, emanating 124 

from primary visual cortex V1, while gradient 2 (PC2) showed repeated representation in four localities, 125 

mirroring the four visual streams (early, dorsal, lateral, ventral). Black dotted lines: borders where the different 126 

visual streams meet, defined using HCP-MMP label boundaries. A.U. is arbitrary units. (e) Histogram 127 

depicting gradient scores in the four visual stream regions. Gradient 1 is a global gradient increasing from 128 

early to ventral, for example. Gradient 2 is a local gradient sampled evenly within individual visual stream. (f) 129 

The dependence of gradient value differences on geodesic distance are different for the two gradients. Gradient 130 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.569190doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 shows larger changes across vertices separated by a long distance, whereas gradient 2 shows larger changes 131 

for short distances. (g) Geometric models of the two architectural gradients, which were constructed using the 132 

geodesic distance of each vertex of visual cortex to specific anatomical landmarks as anchors. The calcarine 133 

sulcus and eight local minima of gradient 2 were used as anchors to model gradient 1 and 2, respectively. 134 

 135 

Do these architectural gradients reflect the functional organization of visual cortex? 136 

Given gradient 1 acts as a global gradient across the whole of visual cortex, we hypothesized that 137 

gradient 1 recapitulates the hierarchical organization of visual cortex and its constituent 138 

retinotopic maps. To test this, we examined the spatial similarity between the architectural 139 

gradients and the population receptive field (pRF) properties as measured by the HCP 7T 140 

retinotopy dataset45. The pRF represents the portion of visual space in which a stimulus evokes a 141 

response in a given voxel, and pRF size increases along the visual processing hierarchy46–48. We 142 

found that gradient 1 was highly correlated with the pRF size, while gradient 2 was not (Fig. 2a). 143 

Moreover, gradient 1 but not gradient 2 was perfectly correlated with the well-known 144 

hierarchical rank of the visual areas within the ventral stream (Fig. 2b). Thus, gradient 1 strongly 145 

captures the hierarchical organization of visual computations across cortex. 146 

To provide further support for the hypothesis that gradient 1 might act as a broader-scale 147 

scaffold for functional properties of visual cortex, we can ask if it is also capable of describing 148 

temporal properties of functional activity. It is widely recognized that the brain shows a large-149 

scale functional organization of the frequency at which the BOLD signal fluctuates during 150 

resting-state functional MRI18,49,50. This temporal property of the BOLD signal, quantified as a 151 

fractional value of low- versus full-frequency power (fALFF)51, correlates well with temporal 152 

properties of receptive fields in visual cortex17,18,52. Here, we find that this temporal gradient as 153 

measured by fALFF is well-described by gradient 1 (Fig. 2c, right). In comparison, because 154 

gradient 2 acts as a local gradient, showing more spatial inhomogeneity with interdigitating 155 

peaks and valleys of scores within individual visual streams, we hypothesized that it might 156 

underlie the finer-scale division of visual cortex into distinct zones as a complement to gradient 157 

1. 158 

Along these lines, we tested if gradient 2 together with gradient 1, was capable of 159 

differentiating functional areas defined by the HCP multimodal parcellation8. As shown in the 160 

left part of Figure 2c, the combination of gradient 1 and gradient 2 greatly improved the 161 

predictive power of visual areas compared to using gradient 1 or gradient 2 alone. Moreover, as a 162 

separate validation of the hypothesis that gradient 2 scaffolds the fine arealization of visual 163 

cortex instead of global functional brain organization, we found gradient 2 adds little explanatory 164 

power on gradient 1 to a regression predicting fALFF values (Fig. 2c, right). Overall, both 165 

gradients seem to underlie distinct functional features of cortex: Gradient 1 recapitulates the 166 

hierarchical organization of visual cortex, while gradient 2 plays a potential role in fine areal 167 

differentiation of visual cortex. Strikingly, gradient 1 explains functional features of visual cortex 168 

(receptive field size, hierarchical rank) better than the first gradient derived from resting state 169 

functional connectivity (RSFC) within visual cortex (Extended Data Figure 3a-c). Additionally, 170 

the two architectural gradients outperform the first two RSFC gradients in classification of visual 171 

cortex into its constituent parcels (Extended Data Figure 3d). Lastly, if the two architectural 172 
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gradients truly relate to the functional organization of visual cortex in distinct ways, then these 173 

differences should be mirrored in the way cytoarchitecture contributes to each structural 174 

gradient. Based on the BigBrain dataset53, we extracted cell body density data for each of the six 175 

cortical layers. For gradient 1, we find that changes in its structural features correlate strongly 176 

with cell density of layers III and IV, where the pronunciation of layer IV decreases with 177 

increasing distance from the calcarine sulcus. Gradient 2 was most correlated with cell density of 178 

layer I, with positive scores overlapping cortex with thicker superficial layers of cortex (Fig. 2d). 179 

Because the layers III and IV are primarily involved in feedforward connections whereas layer I 180 

majorly plays roles in feedback connections, the finding might suggest that the two gradients 181 

underlie structural fingerprints of feedforward and feedback processing in visual cortex, 182 

respectively. 183 

Given the relatively tight correspondence between these architectural gradients and 184 

function properties of visual cortex, what can we learn about visual cortex organization more 185 

broadly, and more importantly, can this structural-functional coupling generalize to regions of 186 

visual cortex that have not yet been mapped? Upon examination of the topology of gradient 2, a 187 

pattern emerges between the gradient and retinotopic representations. While most of the anchor 188 

points for the gradient 2 map simulation correspond to visual field map clusters which share a 189 

foveal representation (V1-V4, VO1-2, IPS0-1, IPS2-3, TO1-2)40,54, an additional anchor 190 

appeared in the anterior temporal lobe near the location where the occipitotemporal sulcus (OTS) 191 

merges with the collateral sulcus (CoS) more medially (Fig. 1g, right). If we assume a 192 

correspondence between gradient 2 anchors and visual field map clusters, then this anterior-most 193 

anchor would suggest an additional cluster of visual field maps in the anterior temporal lobe, one 194 

which has not yet been described in the literature. To test this hypothesis, and potentially 195 

demonstrate the predictive power of these architectural gradients to unmapped cortex, we 196 

performed pRF mapping46 on 12 participants with high-contrast, socio-ecological images to 197 

better drive neurons of high-level visual cortex often tuned for such complex objects55. 198 

We indeed find a cluster of visual field maps in the anterior temporal lobe located 199 

medially overlapping the CoS and extending laterally towards the OTS usually just beyond the 200 

anterior tip of the fusiform gyrus but sometimes overlapping it (Fig. 2e). This location is 201 

consistent with a previous report of face-selectivity in the anterior temporal lobe56. These maps 202 

were observable in the majority of hemispheres (23/24 hemispheres; see Extended Data Fig. 4).  203 

This cluster of maps shows a clear radial representation of pRF eccentricity, with voxels near the 204 

center of the cluster sampling central visual space, and those near the outer boundary of the 205 

cluster sampling peripheral visual space. Perpendicular to this radial eccentricity representation 206 

was a representation of polar angle, with two upper visual field representations separated by a 207 

shared lower visual field representation, usually oriented at an oblique angle to the CoS but 208 

sometimes parallel with it (Fig. 2f). Consistent with spatial computations in earlier visual field 209 

maps, these anterior temporal maps, which we call here AT-1 and AT-2, have pRF centers that 210 

mainly sample the contralateral visual field16,33,47, although it was not uncommon for pRF centers 211 

to sample ipsilateral visual space (Extended Data Fig. 4). Lastly, a hallmark feature of visual 212 
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pRFs is that they increase in size as one ascends the visual processing hierarchy, and the positive 213 

relationship between pRF eccentricity and size tends to become more dramatic as well15,46–48. To 214 

test this, we extract pRF fits from vertices with variance explained greater than 10%. We find 215 

that consistent with its high position within the processing hierarchy, pRF sizes are significantly 216 

larger than in earlier visual field maps V1 through V3, and the linear function relating pRF 217 

eccentricity and size yielded larger slopes compared to V1-V3 (Fig. 2g). 218 

 219 
Figure 2. The functional and microstructural properties of the two architectural gradients. (a) Gradient 1 220 

was highly correlated with the pRF size (r=0.66), while the gradient 2 was not (r=0.03). (b) Gradient 1 was 221 

perfectly correlated with the hierarchical rank of the 10 visual areas within the ventral visual stream (Spearman 222 

rank ρ=1.00), while gradient 2 was not. (c) The functional significance of the architectural gradients was 223 
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evaluated by measuring to what extent each gradient is related to areal differentiation of the visual cortex (left) 224 

and the global functional organization measured by fractional amplitude of low-frequency fluctuation (fALFF) 225 

from resting-state fMRI (right). The combination of gradients 1 and 2 greatly improved the predictive power of 226 

classifying visual areas compared to using either gradient alone. However, gradient 1 contributes more than 227 

gradient 2 in predicting the global-scale functional organization (i.e., fALFF map). (d) Cell body density from 228 

the BigBrain dataset is quantified for each cortical layer at each vertex and correlated with each gradient map. 229 

Gradient 1 was mainly correlated with cell body density in Layers III and IV, while gradient 2 was mainly 230 

correlated with cell body density in Layer I. (e) The architectural gradient 2 predicts the presence of novel 231 

visual field maps in the anterior temporal lobe. Left: example participant with the pRF eccentricity map 232 

displayed on the inflated cortical surface. The highlighted region (white dotted line) is the subject of the 233 

zoomed insets on the right. The black outline delineates the anatomical region from which pRF data was 234 

extracted. The putative visual field map cluster is outlined on the insets, showing a radial eccentricity 235 

representation, and a perpendicular representation of polar angle travelling roughly medio-anterior to latero-236 

posterior as indicated by the white arrow. (f) Illustration on an inflated cortical surface illustrating that the AT-237 

cluster of retinotopic maps is located near the anterior intersection of the occipitotemporal (OTS) and collateral 238 

sulci (CoS). The AT-cluster field maps demonstrate perpendicular representations of pRF eccentricity and 239 

polar angle. (g) In all 12 participants, pRF size and eccentricity from all above-threshold vertices within the 240 

anatomically-defined region (black solid line from panel e) are extracted, binned by eccentricity, averaged 241 

across participants, and then lines-of-best fit are modeled across the averaged data. Shaded regions represent 242 

bootstrapped 68% confidence intervals. 243 

 244 

If these architectural gradients are capable of extrapolating to functional representations 245 

in broader visual cortex, to what extent can they also describe the behaviors supported by visual 246 

cortex? The PCA approach, in addition to providing spatial maps of scores, provides a weight or 247 

sense of fit describing how a given participant relates to a given gradient. To answer the question 248 

above, canonical correlation analysis (CCA)57 was performed to examine how individual 249 

participant weights for the two gradients can predict the individual behavioral performance from 250 

15 vision-related behavioral tasks58 (Fig. 3a). As shown in Fig. 3b, both gradients show 251 

significant correlation with visual ability, with gradient 2 showing stronger correlation with the 252 

visual ability than gradient 1. Moreover, the two gradients are associated with distinct and 253 

unrelated behavioral profiles (Fig. 3c): Behavioral variables related to attention, visual acuity and 254 

inhibitory control contribute more to gradient 1, while vocabulary comprehension, fluid 255 

intelligence, spatial orientation processing ability, and nonverbal episodic memory ability 256 

contribute more to the gradient 2. The divergent mapping of each gradient onto distinct 257 

behaviors further underscores each architectural gradient9s unique contribution to brain function. 258 

Overall, it seems that gradient 2 involves various complex visual processing abilities, while 259 

gradient 1 involves relatively primary and general visual processing functions. 260 

If these architectural gradients across the cortical sheet correspond to differences in 261 

cortical tissue content, brain function, and behavior, as evidenced above, then they should also 262 

change across the lifespan, given that behavior and neocortical tissue structure develop 263 

dramatically during childhood across visual cortex14,27,59. The two spatial gradients described 264 

above were derived from the young adult dataset. We can therefore repeat the spatial component 265 

analysis at various stages of the lifespan, ask if the first two principal gradients replicate in these 266 

separate stages, and determine how they may change, if at all, across the lifespan using HCP 267 

development (HCP-D) and aging (HCP-A) datasets60. We binned participants in equal-sized 268 
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windows of increasing age, deriving within each window the top PCs and correlating their score 269 

maps with that from the young adult dataset. To distinguish the PCs of each age window from 270 

the PCs of the young adult dataset, we referred those derived from developmental age-bins as 271 

lifespan components (LC). We found that LC1 and LC2 from the developmental (n=652 272 

participants, 351 females, ages 5-21), adult, and aging (n=725 participants, 406 females, ages 36-273 

100) data at every age bin show a high correspondence to gradient 1 and gradient 2 from the 274 

young adult data respectively, compared to other LCs (Fig. 3d). This demonstrates that the two 275 

gradients derived from lifespan data at each window replicate those of the young adult dataset, 276 

allowing us to trace their developmental trajectories. 277 

Examining the correlation between the young adult gradient and LC within each 278 

developmental window, we first found that LCs, as expected, are stable during young adulthood 279 

(Fig. 3e, middle). However, we found a linear change across childhood, with the topography of 280 

LC1 and LC2 becoming more adult-like with maturation (Fig. 3e, left). The trajectory of each 281 

LC was unique. LC2 showed a significantly larger developmental effect than LC1, with an 282 

annualized rate of change (AROC) four times that of LC1(0.86% vs. 0.20%). Finally, if gradients 283 

solidify their structural topography across childhood and adolescence, do they show degeneration 284 

in later adulthood? We can make two a priori hypotheses here: first, that both LCs will show 285 

linear loss of their adult-like topographies and second, that LC2 should show more rapid 286 

degeneration than LC1 potentially consistent with developmental <last-in-first-out= trends 287 

observed in white matter development61. The sliding-window gradient analysis on the aging 288 

dataset revealed that both hypotheses are supported, LC1 and LC2 both show linear loss of their 289 

topographies with LC2 (AROC: -0.17%) showing more dramatic degeneration than LC1 290 

(AROC: -0.04%) (Fig. 3e, right). 291 

 292 
Figure 3. The relevance of the architectural gradients to visual behavior, development, and degeneration 293 

across the lifespan. (a) Canonical correlation analysis (CCA) was used to associate multiple vision-related 294 
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tasks with the two weight-vectors of each architectural gradient in the HCP-YA. CCA finds the linear 295 

combination of variables that best associate measures from the two data domains across participants. (b) Both 296 

architectural gradients can significantly predict individual visual ability. However, gradient 2 showed stronger 297 

correlation with visual behaviors than gradient 1. (c) The normalized magnitude of behavioral factor weights 298 

from CCA indicate that gradient 1 was correlated more with low-level visual abilities, while gradient 2 was 299 

correlated with higher-level visual abilities. (d) Sliding window spatial PCA was performed across the lifespan 300 

(PCA on a given age-bin results in <lifespan component=, LC) to compare how the patterns of gradient 1 and 2 301 

change with the age. The top two LCs (i.e., spatial maps) extracted from each age window correlate strongly 302 

with their respective component from the HCP Young Adult dataset, confirming that the architectural gradients 303 

can be observed across the lifespan. (e) Correlations between LCs and PCs reveal that gradient 2 shows more 304 

development and degeneration across childhood and aging, compared to gradient 1. 305 

 306 

Overall, we provide evidence for mesoscale architectural gradients across human visual 307 

cortex wherein graded changes in both cortical thickness and myelin content scaffold cortex into 308 

a hierarchy of clustered cortical regions. The primary gradient ranges from thin high-myelin 309 

content cortex to thick low-myelin content, while the secondary ranges from cortical regions 310 

which are relatively thin and lightly-myelinated to thick and highly-myelinated. These two 311 

architectural gradients together describe well the broader functional landscape and seem to relate 312 

to unique aspects of cytoarchitecture across cortex. Where the first gradient correlates strongly 313 

with pRF size of the visual system, and is capable of ranking regions into their ground-truth 314 

hierarchical ordering, the second gradient not only predicted the location of a new cluster of 315 

visual field maps, but demonstrated dynamic changes across the lifespan. These data would 316 

suggest that gradient 2 tracks the functional differentiation of visual cortex into unique regions, 317 

wherein regions occupying the same hierarchical level within gradient 1 show distinct values in 318 

gradient 2. Given that gradient 2 shows the strongest relationship to behavior and tracks 319 

developmental changes across the lifespan, it might suggest that developmental differentiation 320 

between cortical regions during childhood more strongly drives maturation of visual behavior, 321 

compared to global structural changes. Future work can examine if functional arealization at 322 

earlier developmental timepoints, as in infancy62, follows this prediction. Likewise, as regions 323 

become architecturally similar in later adulthood and less differentiated compared to young 324 

adulthood, visual behavioral performance decreases. The extent to which these architectural 325 

changes reflect local tissue structure versus connectomic features63 can be clarified in future 326 

work. These findings offer evidence that there are architectural gradients, measurable with MRI, 327 

that are shared across individuals. These shared patterns of cortical sheet morphology track the 328 

functional organization and computations of the underlying cortical sheet across the human 329 

lifespan. These findings provide a normative benchmark for future work examining how 330 

deviations from these shared mesoscale architectural patterns underlie neurological disorders. 331 

  332 

Methods 333 

 334 

Human Connectome Project Data 335 

The publicly-available data from the HCP Young Adult (HCP-YA)20,22, Development 336 

(HCP-D) and Aging (HCP-A)60 were used in the study. The three large-scale brain imaging 337 
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studies collect behavioral and multi-modal MRI data in healthy participants from 5 to 100 years 338 

of age, and thus provide us with opportunities to characterize brain changes across the human 339 

lifespans. Only structural MRI, resting-state fMRI and behavioral data were used in the study. 340 

The use and analyses were approved by the Institutional Review Boards of Beijing Normal 341 

University and Princeton University. 342 

After excluding participants with invalid MSM-All registration and those without any 343 

resting-state functional MRI (rs-fMRI) data, we obtained multi-modal MRI and behavioral data 344 

for 1070 HCP-YA participants (586 females, ages 22-37, S1200 release). For each participant, 345 

T1-weighted (T1w) and T2-weighted (T2w) structural images (0.7mm isotropic voxels) and 346 

functional images (2mm isotropic voxels; TR=720ms) were acquired on the HCP9s customized 347 

3-Tesla Siemens Skyra scanner using a 32-channel head coil. The rs-fMRI paradigm included 348 

two sessions, each session itself including two runs with opposite phase-encoding directions 349 

(R/L and L/R, each 15 minutes long). All the structural and functional MRI data were 350 

preprocessed using the HCP minimal preprocessing pipelines, and more information regarding 351 

data acquisition and preprocessing is available from previous work22,64,65. 352 

The HCP-D and HCP-A datasets were acquired on a 3T Siemens Prisma scanner with 353 

similar protocol as the HCP-YA data19,21. Structural MRI data (0.8mm isotropic) from 652 HCP-354 

D participants (351 females, ages 5-21) and 725 HCP-A participants (406 females, ages 36-100) 355 

were used in this study (Lifespan HCP release 2.0). Preprocessing of these two datasets was 356 

nearly identical to that of the HCP-YA with small adaptations to account for the variability of the 357 

wider age range60. The HCP data used in this study were in fsLR_32k cortical space based on the 358 

MSM-All registration66, and cortical thickness data used in the study have been regressed out to 359 

exclude the linear effect of cortical curvature. 360 

 361 

BigBrain Data 362 

The BigBrain dataset is a volumetric reconstruction (20 μm isotropic) of a histologically 363 

processed postmortem brain of a human male 65 years of age. Sections were stained for cell 364 

bodies, imaged, and digitally reconstructed into 3D volume53. The white and pial surfaces of the 365 

BigBrain were extracted at the gray-white matter boundary and gray matter/cerebrospinal fluid 366 

(CSF) boundary67, respectively. The 3D laminar atlas, including six cortical layers, was also 367 

derived at 20 μm isotropic resolution67,68. Based on the surface registration to the MRI-based 368 

MNI152 template surface, the cytoarchitectural information from each layer of the BigBrain can 369 

be linked to in vivo neuroimaging data. 370 

 371 

Population receptive field (pRF) experiment 372 

We performed pRF mapping on 12 participants with high-contrast, ecological images to 373 

better drive neurons of high-level visual cortex often tuned for such complex objects. We 374 

adapted the experiment used in the HCP 7T Retinotopy Dataset45. Stimuli consisted of slowly-375 

moving bar-shaped apertures of 2-degree width filled with a dynamic colorful texture. Textures 376 

presented within the bar aperture were updated at a rate of 7 Hz. Textures included randomly-377 
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presented cartoon scenes depicting people, animals, characters, text, limbs and objects evenly 378 

spanning the width of the stimulus aperture. Participants were asked to fixate on a central dot 379 

while attending to the bar, monitoring it for the random appearance of a target cartoon stimulus 380 

(a grid of wiggling bumblebees) which appeared for a 500ms duration, 10 times during the 381 

experiment. Each run lasted 300s, and participants completed 3 to 4 runs. 382 

 383 

Data Analysis 384 

Definition of human visual cortex. Human visual cortex was defined by grouping the 44 385 

visual areas from the HCP multimodal parcellation (MMP) atlas8. All of these areas located in 386 

the occipital, parietal and temporal cortices and show a significant BOLD response to visual 387 

objects. According to the well-established model of the visual cortex, these areas are grouped 388 

into four visual processing streams: early stream (V1, V2, V3, V4), lateral stream (V3CD, LO1, 389 

LO2, LO3, V4t, FST, MT, MST, PH); dorsal (V3A, V3B, V6, V6A, V7, IPS1, LIPv, VIP, MIP, 390 

7Am, 7PL, 7Pm, IP0, IP1, DVT, ProS, POS1, POS2, PCV), and ventral (V8, VVC, PIT, FFC, 391 

VMV1, VMV2, VMV3, PeEc, PHA1, PHA2, PHA3, TF). Please see supplementary information 392 

for the detailed descriptions of these areas (Table 1). 393 

 394 

Extracting architectural gradients of human visual cortex. Cortical thickness and cortical 395 

myelin content, the two widely used mesoscale in-vivo architectural measures derived from 396 

structural MRI were used to extract architectural gradients of human visual cortex. Cortical 397 

thickness was measured as the shortest distance between each vertex on the white matter surface 398 

and the pial surface23, while cortical myelin content was measured by the ratio of T1w to T2w24. 399 

For each of hemisphere, individual cortical thickness and myelin content maps from all HCP-YA 400 

participants were concatenated and a principal component analysis (PCA)39 was conducted to 401 

linearly decompose the concatenated maps into a collection of orthogonal principal components 402 

(PCs), consisting of spatial maps (i.e., score) and individual weights (i.e., loading) in pairs. The 403 

score map explains how the structural properties change across the cortical sheet on each 404 

component and the individual weights describe how individual cortical thickness and myelin 405 

content maps contributes to each component. The PCs are sorted in decreasing order according 406 

to the amount of variance explained by each of the component. The contribution ratio of 407 

myelination or thickness for a given PC was calculated by the ratio of the sum of absolute values 408 

of weights of the loading matrix from each measure to the sum of absolute values of weights 409 

from both measures. 410 

 411 

The global hierarchy of the architectural gradients. Two metrics which index the visual 412 

cortical functional hierarchy were used to validate the global hierarchy of the architectural 413 

gradients. 414 

(1) Population receptive field (pRF) size: It is widely known that pRF size progressively 415 

increases as one ascends the processing hierarchy from V1 to high-level visual cortex15,46,47. 416 

We first validated the global hierarchy of the architectural gradients by measuring if the 417 
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gradients show similar spatial pattern to the pRF size across visual areas. Specifically, we 418 

calculated the Pearson correlation coefficients between architectural gradients and pRF size 419 

from the HCP9s 7T retinotopy dataset45. Only the vertices whose eccentricity of pRF within 8 420 

degrees were used because retinotopic mapping stimuli were constrained to a circular region 421 

with a radius of 8 degrees. 422 

(2) Hierarchical rank: As the hierarchical level of the visual areas within the ventral stream has 423 

been widely studied and relatively clear, we reviewed literature describing the hierarchical 424 

relationships of 10 visual areas within the ventral stream7,8,69–82 and ranked them into a 425 

hierarchy from lowest-level to high: V1, V2, V3, V4, V8, PIT, VVC, FFC, TF, and PeEc, 426 

with cortical regions defined using labels of the HCP multimodal atlas8. Spearman's rank 427 

correlation coefficients were then computed between the mean gradient score and the 428 

hierarchical rank of the areas. 429 

 430 

 Geometric models of the architectural gradients. The geometric models of the 431 

architectural gradients were constructed by the geodesic distance of each vertex to a set of 432 

specific references (Fig. 1g). The primary gradient was modeled as the geodesic distance of each 433 

vertex of visual cortex to the calcarine sulcus (CS) anchor. The secondary gradient was modeled 434 

as the minimum geodesic distance from each vertex on the visual cortex to the eight anchors 435 

dispersed among four visual processing streams, which consisted of two local minima in the 436 

early visual cortex, two local minima in the dorsal visual stream, two local minima in the lateral 437 

visual stream, and two local minima in the ventral visual stream (Please see supplementary 438 

information for details, Table 2). 439 

 440 

 The gradient differences between vertices with different spatial distance. The gradient 441 

differences for each pair of vertices were calculated as the absolute difference between their 442 

gradient scores. The spatial distance between each pair of vertices was measured by the geodesic 443 

distance separating them on the cortical surface. The gradient differences between pairs of 444 

vertices were then sorted into 100 groups according to their spatial distance. The mean gradient 445 

differences and geodesic distances were then computed for each group and plotted against each 446 

other to evaluate how the gradient differences depend on spatial distance. 447 

 448 

Functional significance of the architectural gradients. We characterized the functional 449 

significance of the architectural gradients by measuring to what extent each gradient is related to 450 

areal differentiation of the visual cortex8 and the fractional amplitude of low-frequency 451 

fluctuation (fALFF) from resting-state fMRI51. 452 

(1) Predicting visual areas based on the architectural gradients: Logistic Regression classifiers 453 

were trained on the architectural gradients to predict visual cortical areas. Specifically, the 454 

vertices from the visual cortex, with the architectural gradients as features, were used as the 455 

samples and the 44 visual cortical areas from the HCP MMP were used as the true class 456 

labels (i.e., 44-class classification). The areas with more vertices were down sampled to have 457 
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the same number of vertices as the smallest areas to keep the number of samples with each 458 

class constant and thus avoid the imbalance of sample number across different visual areas. 459 

Logistic Regression classifiers were trained and tested on each downsampled data using a 5-460 

fold cross-validation (CV) procedure. 100 random downsamples were performed and the 461 

averaged accuracy was used to measure the classification accuracy. 462 

 463 

(2) Predicting fALFF based on the architectural gradients: The fALFF is calculated as the ratio 464 

of the power spectrum of low-frequency modulations to that of the entire frequency range 465 

and is indicative of the magnitude of spontaneous brain activity49,51. For each rs-fMRI run, 466 

the time series of each vertex was Fourier transformed to a frequency domain without band-467 

pass filtering, and the square root of the power was calculated at each frequency within the 468 

spectrum. fALFF was then computed by dividing the sum of amplitudes across a low-469 

frequency band of the spectrum (0.01–0.1 Hz) by the sum of amplitudes across all 470 

frequencies up to the Nyquist frequency (0–0.625 Hz). The group fALFF map was calculated 471 

by averaging individual fALFF across all valid rfMRI runs within each participant and then 472 

across participants. 100 linear regression analyses using the 5-fold CV procedure were 473 

performed and the averaged R2 was used to characterize to what extent the two architectural 474 

gradients are related to spontaneous functional activity characterized by fALFF. 475 

 476 

Laminar cytoarchitecture underlying the architectural gradients. The BigBrain cortical 477 

surfaces registered to standard surfaces, the surfaces of borders of the six cortical layers in 478 

BigBrain histological space, and the cell body density (CBD) data at 40-μm resolution were used 479 

together to extract laminar cytoarchitecture of the visual cortex. Specifically, for each of six 480 

cortical layers67, we first generated 10 surfaces based on the equivolumetric principle between its 481 

inner and outer borders83 to extract 10 CBD maps in the BigBrain space. Next, the CBD data 482 

from the BigBrain space were resampled to the fsLR_32k space, and then the 10 CBD maps 483 

were averaged to obtain an averaged CBD map for the layer. Finally, the spatial similarity 484 

between the architectural gradients and the averaged CBD map from each of the 6 cortical layers 485 

was measured with Pearson correlation coefficients. 486 

 487 

Population receptive field (pRF) mapping. Functional images were preprocessed using a 488 

similar pipeline to the HCP data, including motion-correction, slice-timing correction, and phase-489 

encoding distortion correction, and then aligned to each participant9s native cortical surface 490 

through FreeSurfer9s FS-FAST pipeline84. The preprocessed data from multiple runs from each 491 

participant were averaged to increase signal-to-noise ratio. The data were finally analyzed by a 492 

pRF model implemented in the VISTA Lab toolbox (github.com/vistalab), with additions for 493 

compressive nonlinearity (cvnlab.net/analyzePRF). The model predicts fMRI time series as the 494 

convolution of the stimulus-related time series and a canonical hemodynamic response function. 495 

The stimulus-related time series are in turn generated by computing the dot product between the 496 

stimulus apertures and a 2D isotropic Gaussian, scaling and applying a static power-law 497 
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nonlinearity85. Several parameters of interest are produced from the pRF model for each vertex 498 

including phase angle, eccentricity, and pRF size. Vertices entered into any analyses presented in 499 

Figure 2 were only included if there was at least 10% variance-explained by the model-fit. 500 

 501 

Behavioral relevance of the architectural gradients. The behavioral significance of the 502 

architectural gradients was examined by measuring how the individual weights from PCA can 503 

account for the individual variation in behavioral performance on related visual tasks. The HCP-504 

YA dataset include behavioral tasks of a range of motor, sensory, cognitive, and emotional 505 

processes. Because our architectural gradients cover the entire visual cortex and may involve into 506 

a variety of cognitive and behavioral abilities, a total of 15 vision-related or vision-based 507 

behavioral tasks58, designed to measure nonverbal episodic memory ability, cognitive flexibility, 508 

inhibitory control and attention ability, fluid intelligence, reading decoding skill, general 509 

vocabulary knowledge, speed of processing, spatial orientation processing ability, sensitivity of 510 

sustained attention, specificity of sustained attention, verbal episodic memory ability, working 511 

memory ability, odor identification ability, visual acuity, and contrast sensitivity, were selected 512 

to examine the behavioral relevance of the gradients (Please see supplementary information for 513 

details, Table 3). 514 

For the two sets of individual weights (i.e., myelin content weights and cortical thickness 515 

weights) associated with each of architectural gradient, we carried out a single integrated 516 

multivariate analysis using canonical correlation analysis (CCA)57, to simultaneously co-analyze 517 

the two sets of gradients along with 15 behavioral variables from all participants. CCA aims to 518 

identify symmetric linear relations between the two sets of variables. That is, we used CCA to 519 

find components that relate the two sets of weights from each gradient to 15 sets of participants9 520 

behavioral measures. Each CCA component identifies a linear combination of two weights and a 521 

linear combination of behavioral variables, where the variation in strength of involvement across 522 

participants is maximally correlated. The normalized magnitude of behavioral weights was used 523 

to characterize the behavioral profile of an architectural gradient and reveal how the two 524 

gradients are different in predicting the same set of behavioral variables. 525 

 526 

The development of the architectural gradients across the lifespan. We divided HCP-D, 527 

HCP-YA, and HCP-A participants into different age windows (subgroups) in ascending order of 528 

age. Among them, the participants of HCP-D and HCP-A were sorted by their age in months, 529 

while HCP-YA sorted in years because no month information was provided. Each window 530 

consisted of 50 participants and had a step size of ten. As a result, there are 61, 103, and 68 age 531 

windows generated for HCP-D, HCP-YA, and HCP-A data, respectively. To characterize the 532 

changes of the architectural gradients across the human lifespan, we conducted PCA on the 533 

stacked myelination and thickness maps of each window as we did in the whole HCP-YA data. 534 

We label the principal components from each age window as lifespan components (LC) to 535 

differentiate them from the original PCs derived from the HCP-YA dataset. To determine if the 536 

observed LCs were similar to the PCs from the HCP-YA data, we calculated the Pearson9s 537 
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correlation coefficients between the HCP-YA PCs and the top ten LCs for each window. The LC 538 

which shows strongest correlation with a PC was considered to be the correspondence LC to the 539 

PC in that age window. Lastly, how the observed gradients from each age window change 540 

relative to the gradient from the HCP-YA was measured by the Pearson9s correlation coefficient 541 

between their score maps. The changes along age were then charted (i.e., developmental 542 

trajectories). A linear model was then constructed to characterize the developmental trajectory 543 

within each of three datasets. The slope of the linear model was defined as the annualized rate of 544 

change (AROC) in the architectural gradients. 545 

 546 

Ethical Compliance 547 

 Data analyzed from the Human Connectome Project follows all necessary privacy and 548 

security guidelines. Data collected from participants at Princeton University followed all 549 

Institutional Review Board ethics and guidelines (protocol number 13074), and all safety 550 

regulations set forth by the Scully Center for the Neuroscience of Mind and Behavior. Informed 551 

consent was collected from every participant involved in this study, and all were reimbursed for 552 

their time. 553 

 554 

Data Availability 555 

 The data from the HCP Young Adult (HCP-YA) are publicly available at the 556 

https://www.humanconnectome.org; The data from the HCP Development (HCP-D) and HCP 557 

Aging (HCP-A) are publicly available at https://nda.nih.gov. Users can access these after 558 

registration. 559 

 560 

Code Availability 561 

 The HCP data were preprocessed using the HCP-Pipeline analyses 562 

(https://github.com/Washington-University/HCPpipelines). Custom code for gradient analysis 563 

can be found at https://github.com/BNUCNL/VisualCortexGradient. Code to reproduce 564 

population receptive field mapping figures can be found at: 565 

https://github.com/gomezj/entorhinal_prf. 566 
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