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Abstract

The microstructure of cells within human cerebral cortex varies across the cortical ribbon, where
changes in cytoarchitecture and myeloarchitecture are thought to endow each region of cortex
with its unique function. While fine-scale relative to a cell, these population-level changes
impact architectural properties of cortex measurable in vivo by noninvasive MRI, such as the
thickness and myelin content of cortex. This raises the question of whether or not we can use
these in vivo architectural measures to understand cortical organization, function, and
development more broadly. Using human visual cortex as a test bed, we found two architectural
gradients, which not only underlie its structural and functional organization, but additionally
predict the presence of new visual field maps and capture the lifespan trajectory and its
behavioral relevance. These findings provide a more general framework for understanding visual
cortex, showing that architectural gradients are a measurable fingerprint of functional
organization and ontogenetic routines in the human brain.
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A fundamental goal of brain research is to elucidate the functional properties of the
structural elements of the brain, at an appropriate organizational scale. Classical architectural
brain maps including cytoarchitectonic'* and myeloarchitectonic® maps, derived from
postmortem brain sections, have revealed strong correspondence with the functional properties of
the cerebral cortex*>. Recent observations of spatial gradients in gene expression across human
cortex®’, especially in genes controlling the shape and distribution of dendrites and myelin, also
suggest that changes in large scale architectural properties necessitate functionally distinct
zones®. However, these maps cannot be built for individual brains in vivo to capture individual
differences, or the functional, behavioral or developmental relevance of these larger scale
organizational principles. MRI technological advances have made it possible to map architectural
correlates in human cortex in a noninvasive, and importantly individual-specific way, to test if
the individual variation in functional organization across brains is reflected in the variation of
architectural features of cortex”’!!. In the case of visual cortex, general trend along the cardinal
axis have been observed in architectural features such as myelination in adults'? and infants'® and
cortical thinning!'4, as well as functional properties of neurons such as receptive field size'>!¢ and
temporal sensitivity!”!8. A model explicitly linking these architectural and functional variations
across the cerebrum, one that can generalize to yet-mapped regions of cortex as well as explain
behavior and dynamics across the lifespan, would be a steppingstone towards bridging structural
and functional properties of the living human brain.

More explicitly, to what extent do individuals demonstrate shared architectural features
of cortex and how might individual differences in these structural patterns across development or
adulthood capture differences in brain function and behavior'!'? Answering such a question
would require a large-scale, multimodal MRI dataset to appropriately capture the range in
architectural variation at the level of the population. To that end, we combine three datasets from
the Human Connectome Project (HCP) which together sample the human lifespan from 5 to 100
years of age!'®?!
individuals and development. Using visual cortex as a test bed, we focus first on the structural
MRI of HCP young adults (HCP-YA, N=1070, 22-37 years old)*>**>. Based on T1-weighted
(T1w) and T2-weighted (T2w) images, we produce for each individual two distinct maps: a map
of cortical thickness*® and a map of the T1w/T2w signal ratio**. While the thickness map is
thought to be attributable to the organization of neuronal, glial, and neuropil tissue> 28, the ratio
map is thought to be sensitive to intracortical density of myelin and neurite structure density>*?’.

, and ask if there are shared motifs in architectural features of cortex across

Importantly, maps of cortical thickness had any variance explainable by curvature removed to
account for known thickness differences between gyri and sulci. Leveraging the field’s deep
understanding of its functional organization relative to cortical folding®*’, we focus here on
visual cortex as a test bed to understand how variation in the structure of the cortical mantle
relates to changes in function.

To extract the concurrent spatial changes of the two architectural measurements across
individuals, the two maps from each hemisphere are concatenated across individuals to perform a
spatial principal component analysis (PCA)**? in which participants are features and cortical
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75  vertices are samples. As a result, the concatenated maps were linearly decomposed into a
76  collection of orthogonal principal components, consisting of spatial maps (i.e., scores) and
77  individual weights (i.e., loading) in pairs. The former explains how the structural properties
78  change across the cortical sheet on each component and the latter describes how individual maps
79  contribute to each component (Fig. 1a). Because the resulting PCs are very similar for the two
80  hemispheres (Extended Data Fig. 1), only data from the right hemisphere are presented here for
81  clarity. The first two PCs (i.e., PC1 and PC2) describe over 50% of the architectural variance
82  across the cortical sheet (Fig. 1b). The individual weights indicate that each PC relied on an
83 integration of myelin content and cortical thickness at a given spatial location (Fig. 1c), rather
84  than a single feature, suggesting that together these two architectural features capture a unique,
85  holistic structural pattern of human cortex not visible through a single measure alone (Extended
86  Data Fig. 2).
87 Both PC1 and PC2 maps form spatial gradients whose values change smoothly as one
88 traverses the cortical surface (Fig. 1d). Specifically, gradient 1 (i.e., PC1 score), shows an
89 increase in scores as one travels from the fundus of the calcarine sulcus either dorsally towards
90 the intraparietal sulcus or ventrally into the anterior temporal lobe. Higher PC1 vertex values
91 correspond to lower myelin content and a thicker cortical sheet. Gradient 2 (i.e., PC2 score), on
92  the other hand, demonstrates alternating score patterns that fluctuate across cortex. Higher PC2
93  scores correspond to both higher myelin content and thickness. Gradient 2 scores seem to be
94  broadly organized into four distinct zones, mirroring the visual cortex's division from early
95  wvisual field maps40 into the ventral, lateral, and dorsal processing streams of the visual cortex*!~
96  *. The processing stream borders delineated in Figure 1d, while anatomically defined, follow the
97  ridge of positive weights in gradient 2. Quantitatively, the distribution of scores for gradient 1
98  shift across the four processing streams while the score distributions of gradient 2 are evenly
99  sampled within each processing stream (i.e., zero-centered) (Fig. 1e). Furthermore, gradient 2
100  exhibits a higher spatial frequency in the distribution of its scores. That 1s, for a given pair of
101  vertices separated by a short distance, gradient 2 tends to show a larger difference in score values
102  compared to the more spatially homogenous gradient 1 (Fig. 1f). Collectively, these findings
103  demonstrate that gradient 1 acts as a global gradient enveloping the entire visual cortex, while
104  gradient 2 acts as a local gradient specific to individual visual streams.
105 To get a deeper understanding of the shape of these topographies, we produced simulated
106  models using cortical geometry for the two spatial gradients. For gradient 1, the calcarine sulcus
107  was used as the fiducial line, and vertices of the cortical surface were assigned values based on
108  their minimal geodesic distance to the calcarine sulcus. This simple simulation was able to
109  capture 57.1% of the explainable variance in the topography of gradient 1 (Fig. 1g, left).
110  Gradient 2, which was more complicated in shape, could nonetheless be simulated using anchor
111 points positioned at local minima within each visual processing stream (Fig. 1g, right), and
112 vertices of the cortical surface were assigned values based on their minimal geodesic distance to
113  these anchor points. This map of geometric distance also captured a sizeable portion of the
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114  explainable variance within the gradient 2 map (17.7%, Fig 1g, right). These simulation results
115 again highlight the global and local characteristics of the two gradients.
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117  Figure 1: Two architectural gradients scaffold human visual cortex. (a) Principal component analysis

118  (PCA) on the concatenated cortical thickness and myelin content maps from all participants in HCP-YA to
119  extract architectural gradients of human visual cortex produced a collection of orthogonal principal

120  components, consisting of spatial maps (i.e., score) and individual weights (i.e., loading) in pairs. (b) The

121 explained variance ratio of the top 5 principal components (PCs). The first two PCs (i.e., gradients 1 and 2)
122 dominate the explainable variance. (¢) Contributions of the two architectural measures (thickness and myelin)
123 to the two gradients. (d) Topographic patterns of the two gradients on a flattened cortical surface. Gradient 1
124  (PC1) displays roughly monotonic change from negative to positive scores across visual cortex, emanating
125  from primary visual cortex V1, while gradient 2 (PC2) showed repeated representation in four localities,

126 mirroring the four visual streams (early, dorsal, lateral, ventral). Black dotted lines: borders where the different
127  visual streams meet, defined using HCP-MMP label boundaries. A.U. is arbitrary units. (e) Histogram

128  depicting gradient scores in the four visual stream regions. Gradient 1 is a global gradient increasing from

129  early to ventral, for example. Gradient 2 is a local gradient sampled evenly within individual visual stream. (f)
130  The dependence of gradient value differences on geodesic distance are different for the two gradients. Gradient
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131 1 shows larger changes across vertices separated by a long distance, whereas gradient 2 shows larger changes
132 for short distances. (g) Geometric models of the two architectural gradients, which were constructed using the
133  geodesic distance of each vertex of visual cortex to specific anatomical landmarks as anchors. The calcarine
134 sulcus and eight local minima of gradient 2 were used as anchors to model gradient 1 and 2, respectively.

135
136 Do these architectural gradients reflect the functional organization of visual cortex?

137  Given gradient 1 acts as a global gradient across the whole of visual cortex, we hypothesized that
138  gradient 1 recapitulates the hierarchical organization of visual cortex and its constituent

139  retinotopic maps. To test this, we examined the spatial similarity between the architectural

140  gradients and the population receptive field (pRF) properties as measured by the HCP 7T

141 retinotopy dataset®. The pRF represents the portion of visual space in which a stimulus evokes a
142  response in a given voxel, and pRF size increases along the visual processing hierarchy*®“%. We
143  found that gradient 1 was highly correlated with the pRF size, while gradient 2 was not (Fig. 2a).
144  Moreover, gradient 1 but not gradient 2 was perfectly correlated with the well-known

145  hierarchical rank of the visual areas within the ventral stream (Fig. 2b). Thus, gradient 1 strongly
146  captures the hierarchical organization of visual computations across cortex.

147 To provide further support for the hypothesis that gradient 1 might act as a broader-scale
148  scaffold for functional properties of visual cortex, we can ask if it is also capable of describing
149  temporal properties of functional activity. It is widely recognized that the brain shows a large-
150  scale functional organization of the frequency at which the BOLD signal fluctuates during

151 resting-state functional MRI'®#*0, This temporal property of the BOLD signal, quantified as a
152 fractional value of low- versus full-frequency power (FALFF)’!, correlates well with temporal
153  properties of receptive fields in visual cortex!”!82, Here, we find that this temporal gradient as
154  measured by fALFF is well-described by gradient 1 (Fig. 2c, right). In comparison, because

155  gradient 2 acts as a local gradient, showing more spatial inhomogeneity with interdigitating

156  peaks and valleys of scores within individual visual streams, we hypothesized that it might

157  underlie the finer-scale division of visual cortex into distinct zones as a complement to gradient
158 1.

159 Along these lines, we tested if gradient 2 together with gradient 1, was capable of

160  differentiating functional areas defined by the HCP multimodal parcellation®. As shown in the
161 left part of Figure 2c, the combination of gradient 1 and gradient 2 greatly improved the

162  predictive power of visual areas compared to using gradient 1 or gradient 2 alone. Moreover, as a
163  separate validation of the hypothesis that gradient 2 scaffolds the fine arealization of visual

164  cortex instead of global functional brain organization, we found gradient 2 adds little explanatory
165  power on gradient 1 to a regression predicting fALFF values (Fig. 2c, right). Overall, both

166  gradients seem to underlie distinct functional features of cortex: Gradient 1 recapitulates the

167  hierarchical organization of visual cortex, while gradient 2 plays a potential role in fine areal

168  differentiation of visual cortex. Strikingly, gradient 1 explains functional features of visual cortex
169  (receptive field size, hierarchical rank) better than the first gradient derived from resting state
170  functional connectivity (RSFC) within visual cortex (Extended Data Figure 3a-c). Additionally,
171 the two architectural gradients outperform the first two RSFC gradients in classification of visual
172 cortex into its constituent parcels (Extended Data Figure 3d). Lastly, if the two architectural
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173  gradients truly relate to the functional organization of visual cortex in distinct ways, then these
174  differences should be mirrored in the way cytoarchitecture contributes to each structural

175  gradient. Based on the BigBrain dataset™, we extracted cell body density data for each of the six
176  cortical layers. For gradient 1, we find that changes in its structural features correlate strongly
177  with cell density of layers III and IV, where the pronunciation of layer IV decreases with

178  increasing distance from the calcarine sulcus. Gradient 2 was most correlated with cell density of
179  layer I, with positive scores overlapping cortex with thicker superficial layers of cortex (Fig. 2d).
180  Because the layers III and IV are primarily involved in feedforward connections whereas layer I
181  majorly plays roles in feedback connections, the finding might suggest that the two gradients
182  underlie structural fingerprints of feedforward and feedback processing in visual cortex,

183  respectively.

184 Given the relatively tight correspondence between these architectural gradients and

185  function properties of visual cortex, what can we learn about visual cortex organization more
186  broadly, and more importantly, can this structural-functional coupling generalize to regions of
187  visual cortex that have not yet been mapped? Upon examination of the topology of gradient 2, a
188  pattern emerges between the gradient and retinotopic representations. While most of the anchor
189  points for the gradient 2 map simulation correspond to visual field map clusters which share a
190 foveal representation (V1-V4, VO1-2, IPSO-1, IPS2-3, TO1-2)*%*  an additional anchor

191  appeared in the anterior temporal lobe near the location where the occipitotemporal sulcus (OTS)
192  merges with the collateral sulcus (CoS) more medially (Fig. 1g, right). If we assume a

193  correspondence between gradient 2 anchors and visual field map clusters, then this anterior-most
194  anchor would suggest an additional cluster of visual field maps in the anterior temporal lobe, one
195  which has not yet been described in the literature. To test this hypothesis, and potentially

196  demonstrate the predictive power of these architectural gradients to unmapped cortex, we

197  performed pRF mapping*® on 12 participants with high-contrast, socio-ecological images to

198  better drive neurons of high-level visual cortex often tuned for such complex objects’>.

199 We indeed find a cluster of visual field maps in the anterior temporal lobe located

200 medially overlapping the CoS and extending laterally towards the OTS usually just beyond the
201  anterior tip of the fusiform gyrus but sometimes overlapping it (Fig. 2e). This location is

202  consistent with a previous report of face-selectivity in the anterior temporal lobe>®. These maps
203  were observable in the majority of hemispheres (23/24 hemispheres; see Extended Data Fig. 4).
204  This cluster of maps shows a clear radial representation of pRF eccentricity, with voxels near the
205  center of the cluster sampling central visual space, and those near the outer boundary of the

206  cluster sampling peripheral visual space. Perpendicular to this radial eccentricity representation
207  was a representation of polar angle, with two upper visual field representations separated by a
208  shared lower visual field representation, usually oriented at an oblique angle to the CoS but

209  sometimes parallel with it (Fig. 2f). Consistent with spatial computations in earlier visual field
210  maps, these anterior temporal maps, which we call here AT-1 and AT-2, have pRF centers that
211 mainly sample the contralateral visual field'®***’, although it was not uncommon for pRF centers
212  to sample ipsilateral visual space (Extended Data Fig. 4). Lastly, a hallmark feature of visual
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213  pRFs is that they increase in size as one ascends the visual processing hierarchy, and the positive
214  relationship between pRF eccentricity and size tends to become more dramatic as well'>#¢*¥_ To
215  test this, we extract pRF fits from vertices with variance explained greater than 10%. We find
216  that consistent with its high position within the processing hierarchy, pRF sizes are significantly
217  larger than in earlier visual field maps V1 through V3, and the linear function relating pRF

218  eccentricity and size yielded larger slopes compared to V1-V3 (Fig. 2g).
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220  Figure 2. The functional and microstructural properties of the two architectural gradients. (a) Gradient 1
221 was highly correlated with the pRF size (r=0.66), while the gradient 2 was not (r=0.03). (b) Gradient 1 was
222  perfectly correlated with the hierarchical rank of the 10 visual areas within the ventral visual stream (Spearman
223  rank p=1.00), while gradient 2 was not. (¢) The functional significance of the architectural gradients was
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224  evaluated by measuring to what extent each gradient is related to areal differentiation of the visual cortex (left)
225  and the global functional organization measured by fractional amplitude of low-frequency fluctuation (fALFF)
226  from resting-state fMRI (right). The combination of gradients 1 and 2 greatly improved the predictive power of
227  classifying visual areas compared to using either gradient alone. However, gradient 1 contributes more than
228  gradient 2 in predicting the global-scale functional organization (i.e., fALFF map). (d) Cell body density from
229  the BigBrain dataset is quantified for each cortical layer at each vertex and correlated with each gradient map.
230  Gradient 1 was mainly correlated with cell body density in Layers IIT and IV, while gradient 2 was mainly
231 correlated with cell body density in Layer 1. (e) The architectural gradient 2 predicts the presence of novel
232  visual field maps in the anterior temporal lobe. Left: example participant with the pRF eccentricity map

233  displayed on the inflated cortical surface. The highlighted region (white dotted line) is the subject of the

234  zoomed insets on the right. The black outline delineates the anatomical region from which pRF data was

235  extracted. The putative visual field map cluster is outlined on the insets, showing a radial eccentricity

236  representation, and a perpendicular representation of polar angle travelling roughly medio-anterior to latero-
237  posterior as indicated by the white arrow. (f) Illustration on an inflated cortical surface illustrating that the AT-
238  cluster of retinotopic maps is located near the anterior intersection of the occipitotemporal (OTS) and collateral
239 sulci (CoS). The AT-cluster field maps demonstrate perpendicular representations of pRF eccentricity and
240  polar angle. (g) In all 12 participants, pRF size and eccentricity from all above-threshold vertices within the
241 anatomically-defined region (black solid line from panel e) are extracted, binned by eccentricity, averaged
242 across participants, and then lines-of-best fit are modeled across the averaged data. Shaded regions represent
243  Dbootstrapped 68% confidence intervals.

244

245 If these architectural gradients are capable of extrapolating to functional representations
246  in broader visual cortex, to what extent can they also describe the behaviors supported by visual
247  cortex? The PCA approach, in addition to providing spatial maps of scores, provides a weight or
248  sense of fit describing how a given participant relates to a given gradient. To answer the question
249  above, canonical correlation analysis (CCA)>’ was performed to examine how individual

250  participant weights for the two gradients can predict the individual behavioral performance from
251 15 vision-related behavioral tasks>® (Fig. 3a). As shown in Fig. 3b, both gradients show

252  significant correlation with visual ability, with gradient 2 showing stronger correlation with the
253  visual ability than gradient 1. Moreover, the two gradients are associated with distinct and

254  unrelated behavioral profiles (Fig. 3c): Behavioral variables related to attention, visual acuity and
255  inhibitory control contribute more to gradient 1, while vocabulary comprehension, fluid

256 intelligence, spatial orientation processing ability, and nonverbal episodic memory ability

257  contribute more to the gradient 2. The divergent mapping of each gradient onto distinct

258  behaviors further underscores each architectural gradient’s unique contribution to brain function.
259  Overall, it seems that gradient 2 involves various complex visual processing abilities, while

260 gradient 1 involves relatively primary and general visual processing functions.

261 If these architectural gradients across the cortical sheet correspond to differences in

262  cortical tissue content, brain function, and behavior, as evidenced above, then they should also
263  change across the lifespan, given that behavior and neocortical tissue structure develop

264  dramatically during childhood across visual cortex'**”?. The two spatial gradients described
265  above were derived from the young adult dataset. We can therefore repeat the spatial component
266  analysis at various stages of the lifespan, ask if the first two principal gradients replicate in these
267  separate stages, and determine how they may change, if at all, across the lifespan using HCP
268  development (HCP-D) and aging (HCP-A) datasets®’. We binned participants in equal-sized
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269  windows of increasing age, deriving within each window the top PCs and correlating their score
270  maps with that from the young adult dataset. To distinguish the PCs of each age window from
271  the PCs of the young adult dataset, we referred those derived from developmental age-bins as
272  lifespan components (LC). We found that LC1 and LC2 from the developmental (n=652

273  participants, 351 females, ages 5-21), adult, and aging (n=725 participants, 406 females, ages 36-
274  100) data at every age bin show a high correspondence to gradient 1 and gradient 2 from the

275  young adult data respectively, compared to other LCs (Fig. 3d). This demonstrates that the two
276  gradients derived from lifespan data at each window replicate those of the young adult dataset,
277  allowing us to trace their developmental trajectories.

278 Examining the correlation between the young adult gradient and LC within each

279  developmental window, we first found that LCs, as expected, are stable during young adulthood
280  (Fig. 3e, middle). However, we found a linear change across childhood, with the topography of
281  LCl1 and LC2 becoming more adult-like with maturation (Fig. 3e, left). The trajectory of each
282  LC was unique. LC2 showed a significantly larger developmental effect than LC1, with an

283  annualized rate of change (AROC) four times that of LC1(0.86% vs. 0.20%). Finally, if gradients
284  solidify their structural topography across childhood and adolescence, do they show degeneration
285  1n later adulthood? We can make two a priori hypotheses here: first, that both LCs will show

286  linear loss of their adult-like topographies and second, that LC2 should show more rapid

287  degeneration than LC1 potentially consistent with developmental “last-in-first-out” trends

288  observed in white matter development®!. The sliding-window gradient analysis on the aging

289  dataset revealed that both hypotheses are supported, LC1 and LC2 both show linear loss of their
290  topographies with LC2 (AROC: -0.17%) showing more dramatic degeneration than LC1

291  (AROC: -0.04%) (Fig. 3e, right).
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293  Figure 3. The relevance of the architectural gradients to visual behavior, development, and degeneration
294  across the lifespan. (a) Canonical correlation analysis (CCA) was used to associate multiple vision-related
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295  tasks with the two weight-vectors of each architectural gradient in the HCP-YA. CCA finds the linear

296  combination of variables that best associate measures from the two data domains across participants. (b) Both
297 architectural gradients can significantly predict individual visual ability. However, gradient 2 showed stronger
298  correlation with visual behaviors than gradient 1. (¢) The normalized magnitude of behavioral factor weights
299  from CCA indicate that gradient 1 was correlated more with low-level visual abilities, while gradient 2 was
300  correlated with higher-level visual abilities. (d) Sliding window spatial PCA was performed across the lifespan
301 (PCA on a given age-bin results in “lifespan component”, LC) to compare how the patterns of gradient 1 and 2
302  change with the age. The top two LCs (i.e., spatial maps) extracted from each age window correlate strongly
303  with their respective component from the HCP Young Adult dataset, confirming that the architectural gradients
304  can be observed across the lifespan. (e) Correlations between LCs and PCs reveal that gradient 2 shows more
305  development and degeneration across childhood and aging, compared to gradient 1.

306
307 Overall, we provide evidence for mesoscale architectural gradients across human visual

308  cortex wherein graded changes in both cortical thickness and myelin content scaffold cortex into
309  a hierarchy of clustered cortical regions. The primary gradient ranges from thin high-myelin
310  content cortex to thick low-myelin content, while the secondary ranges from cortical regions
311 which are relatively thin and lightly-myelinated to thick and highly-myelinated. These two

312  architectural gradients together describe well the broader functional landscape and seem to relate
313  to unique aspects of cytoarchitecture across cortex. Where the first gradient correlates strongly
314  with pREF size of the visual system, and is capable of ranking regions into their ground-truth

315  hierarchical ordering, the second gradient not only predicted the location of a new cluster of
316  visual field maps, but demonstrated dynamic changes across the lifespan. These data would

317  suggest that gradient 2 tracks the functional differentiation of visual cortex into unique regions,
318  wherein regions occupying the same hierarchical level within gradient 1 show distinct values in
319  gradient 2. Given that gradient 2 shows the strongest relationship to behavior and tracks

320 developmental changes across the lifespan, it might suggest that developmental differentiation
321  between cortical regions during childhood more strongly drives maturation of visual behavior,
322  compared to global structural changes. Future work can examine if functional arealization at
323  earlier developmental timepoints, as in infancy®?, follows this prediction. Likewise, as regions
324  become architecturally similar in later adulthood and less differentiated compared to young

325  adulthood, visual behavioral performance decreases. The extent to which these architectural
326  changes reflect local tissue structure versus connectomic features®® can be clarified in future
327  work. These findings offer evidence that there are architectural gradients, measurable with MRI,
328  that are shared across individuals. These shared patterns of cortical sheet morphology track the
329 functional organization and computations of the underlying cortical sheet across the human

330 lifespan. These findings provide a normative benchmark for future work examining how

331  deviations from these shared mesoscale architectural patterns underlie neurological disorders.
332

333  Methods

334
335 Human Connectome Project Data
336 The publicly-available data from the HCP Young Adult (HCP-YA)?°??, Development

337 (HCP-D) and Aging (HCP-A)® were used in the study. The three large-scale brain imaging
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338  studies collect behavioral and multi-modal MRI data in healthy participants from 5 to 100 years
339  of age, and thus provide us with opportunities to characterize brain changes across the human
340 lifespans. Only structural MRI, resting-state fMRI and behavioral data were used in the study.
341  The use and analyses were approved by the Institutional Review Boards of Beijing Normal

342  University and Princeton University.

343 After excluding participants with invalid MSM-AII registration and those without any
344  resting-state functional MRI (rs-fMRI) data, we obtained multi-modal MRI and behavioral data
345  for 1070 HCP-YA participants (586 females, ages 22-37, S1200 release). For each participant,
346  Tl-weighted (T1w) and T2-weighted (T2w) structural images (0.7mm isotropic voxels) and

347  functional images (2mm isotropic voxels; TR=720ms) were acquired on the HCP’s customized
348  3-Tesla Siemens Skyra scanner using a 32-channel head coil. The rs-fMRI paradigm included
349  two sessions, each session itself including two runs with opposite phase-encoding directions

350 (R/L and L/R, each 15 minutes long). All the structural and functional MRI data were

351  preprocessed using the HCP minimal preprocessing pipelines, and more information regarding
352  data acquisition and preprocessing is available from previous work?26463,

353 The HCP-D and HCP-A datasets were acquired on a 3T Siemens Prisma scanner with
354  similar protocol as the HCP-YA data'®2!. Structural MRI data (0.8mm isotropic) from 652 HCP-
355 D participants (351 females, ages 5-21) and 725 HCP-A participants (406 females, ages 36-100)
356  were used in this study (Lifespan HCP release 2.0). Preprocessing of these two datasets was

357  nearly identical to that of the HCP-Y A with small adaptations to account for the variability of the
358  wider age range®’. The HCP data used in this study were in fsSLR_32k cortical space based on the
359  MSM-AIll registration®, and cortical thickness data used in the study have been regressed out to
360 exclude the linear effect of cortical curvature.

361
362  BigBrain Data
363 The BigBrain dataset is a volumetric reconstruction (20 pm isotropic) of a histologically

364  processed postmortem brain of a human male 65 years of age. Sections were stained for cell
365 bodies, imaged, and digitally reconstructed into 3D volume®®. The white and pial surfaces of the
366  BigBrain were extracted at the gray-white matter boundary and gray matter/cerebrospinal fluid
367 (CSF) boundary®’, respectively. The 3D laminar atlas, including six cortical layers, was also
368  derived at 20 um isotropic resolution®”-%®. Based on the surface registration to the MRI-based
369  MNII52 template surface, the cytoarchitectural information from each layer of the BigBrain can
370  be linked to in vivo neuroimaging data.

371
372  Population receptive field (pRF) experiment
373 We performed pRF mapping on 12 participants with high-contrast, ecological images to

374  better drive neurons of high-level visual cortex often tuned for such complex objects. We

375 adapted the experiment used in the HCP 7T Retinotopy Dataset*. Stimuli consisted of slowly-
376  moving bar-shaped apertures of 2-degree width filled with a dynamic colorful texture. Textures
377  presented within the bar aperture were updated at a rate of 7 Hz. Textures included randomly-


https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.569190; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

378  presented cartoon scenes depicting people, animals, characters, text, limbs and objects evenly
379  spanning the width of the stimulus aperture. Participants were asked to fixate on a central dot
380  while attending to the bar, monitoring it for the random appearance of a target cartoon stimulus
381  (a grid of wiggling bumblebees) which appeared for a 500ms duration, 10 times during the

382  experiment. Each run lasted 300s, and participants completed 3 to 4 runs.

383
384  Data Analysis
385 Definition of human visual cortex. Human visual cortex was defined by grouping the 44

386  visual areas from the HCP multimodal parcellation (MMP) atlas®. All of these areas located in
387  the occipital, parietal and temporal cortices and show a significant BOLD response to visual

388  objects. According to the well-established model of the visual cortex, these areas are grouped
389 into four visual processing streams: early stream (V1, V2, V3, V4), lateral stream (V3CD, LOI1,
390 LO2,L03, V4t, FST, MT, MST, PH); dorsal (V3A, V3B, V6, V6A, V7, IPS1, LIPv, VIP, MIP,
391  7Am, 7PL, 7Pm, IPO, IP1, DVT, ProS, POS1, POS2, PCV), and ventral (V8, VVC, PIT, FFC,
392 VMVI1, VMV2, VMV3, PeEc, PHAI, PHA2, PHA3, TF). Please see supplementary information
393  for the detailed descriptions of these areas (Table 1).

394

395 Extracting architectural gradients of human visual cortex. Cortical thickness and cortical
396  myelin content, the two widely used mesoscale in-vivo architectural measures derived from

397  structural MRI were used to extract architectural gradients of human visual cortex. Cortical

398  thickness was measured as the shortest distance between each vertex on the white matter surface
399  and the pial surface?, while cortical myelin content was measured by the ratio of T1w to T2w?*.
400  For each of hemisphere, individual cortical thickness and myelin content maps from all HCP-YA
401  participants were concatenated and a principal component analysis (PCA)** was conducted to
402  linearly decompose the concatenated maps into a collection of orthogonal principal components
403  (PCs), consisting of spatial maps (i.e., score) and individual weights (i.e., loading) in pairs. The
404  score map explains how the structural properties change across the cortical sheet on each

405  component and the individual weights describe how individual cortical thickness and myelin
406  content maps contributes to each component. The PCs are sorted in decreasing order according
407  to the amount of variance explained by each of the component. The contribution ratio of

408 myelination or thickness for a given PC was calculated by the ratio of the sum of absolute values
409  of weights of the loading matrix from each measure to the sum of absolute values of weights
410  from both measures.

411

412 The global hierarchy of the architectural gradients. Two metrics which index the visual
413  cortical functional hierarchy were used to validate the global hierarchy of the architectural

414  gradients.

415 (1) Population receptive field (pRF) size: It is widely known that pRF size progressively
416 increases as one ascends the processing hierarchy from V1 to high-level visual cortex
417 We first validated the global hierarchy of the architectural gradients by measuring if the

15,46,47
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418 gradients show similar spatial pattern to the pRF size across visual areas. Specifically, we
419 calculated the Pearson correlation coefficients between architectural gradients and pRF size
420 from the HCP’s 7T retinotopy dataset*. Only the vertices whose eccentricity of pRF within 8
421 degrees were used because retinotopic mapping stimuli were constrained to a circular region
422 with a radius of 8 degrees.

423  (2) Hierarchical rank: As the hierarchical level of the visual areas within the ventral stream has
424 been widely studied and relatively clear, we reviewed literature describing the hierarchical
425 relationships of 10 visual areas within the ventral stream’3%-%2 and ranked them into a

426 hierarchy from lowest-level to high: V1, V2, V3, V4, V8, PIT, VVC, FFC, TF, and PeEc,
427 with cortical regions defined using labels of the HCP multimodal atlas®. Spearman's rank
428 correlation coefficients were then computed between the mean gradient score and the

429 hierarchical rank of the areas.

430

431 Geometric models of the architectural gradients. The geometric models of the

432  architectural gradients were constructed by the geodesic distance of each vertex to a set of

433  specific references (Fig. 1g). The primary gradient was modeled as the geodesic distance of each
434  vertex of visual cortex to the calcarine sulcus (CS) anchor. The secondary gradient was modeled
435  as the minimum geodesic distance from each vertex on the visual cortex to the eight anchors
436  dispersed among four visual processing streams, which consisted of two local minima in the
437  early visual cortex, two local minima in the dorsal visual stream, two local minima in the lateral
438  visual stream, and two local minima in the ventral visual stream (Please see supplementary

439 information for details, Table 2).

440

441 The gradient differences between vertices with different spatial distance. The gradient
442  differences for each pair of vertices were calculated as the absolute difference between their

443  gradient scores. The spatial distance between each pair of vertices was measured by the geodesic
444  distance separating them on the cortical surface. The gradient differences between pairs of

445  vertices were then sorted into 100 groups according to their spatial distance. The mean gradient
446  differences and geodesic distances were then computed for each group and plotted against each
447  other to evaluate how the gradient differences depend on spatial distance.

448

449 Functional significance of the architectural gradients. We characterized the functional
450 significance of the architectural gradients by measuring to what extent each gradient is related to
451  areal differentiation of the visual cortex® and the fractional amplitude of low-frequency

452  fluctuation (FALFF) from resting-state fMRI’!,

453 (1) Predicting visual areas based on the architectural gradients: Logistic Regression classifiers

454 were trained on the architectural gradients to predict visual cortical areas. Specifically, the
455 vertices from the visual cortex, with the architectural gradients as features, were used as the
456 samples and the 44 visual cortical areas from the HCP MMP were used as the true class

457 labels (i.e., 44-class classification). The areas with more vertices were down sampled to have
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458 the same number of vertices as the smallest areas to keep the number of samples with each
459 class constant and thus avoid the imbalance of sample number across different visual areas.
460 Logistic Regression classifiers were trained and tested on each downsampled data using a 5-
461 fold cross-validation (CV) procedure. 100 random downsamples were performed and the
462 averaged accuracy was used to measure the classification accuracy.

463

464  (2) Predicting fALFF based on the architectural gradients: The fALFF is calculated as the ratio
465 of the power spectrum of low-frequency modulations to that of the entire frequency range
466 and is indicative of the magnitude of spontaneous brain activity**>!. For each rs-fMRI run,
467 the time series of each vertex was Fourier transformed to a frequency domain without band-
468 pass filtering, and the square root of the power was calculated at each frequency within the
469 spectrum. fALFF was then computed by dividing the sum of amplitudes across a low-

470 frequency band of the spectrum (0.01-0.1 Hz) by the sum of amplitudes across all

471 frequencies up to the Nyquist frequency (0-0.625 Hz). The group fALFF map was calculated
472 by averaging individual fALFF across all valid rfMRI runs within each participant and then
473 across participants. 100 linear regression analyses using the 5-fold CV procedure were

474 performed and the averaged R? was used to characterize to what extent the two architectural
475 gradients are related to spontaneous functional activity characterized by fALFF.

476

477 Laminar cytoarchitecture underlying the architectural gradients. The BigBrain cortical

478  surfaces registered to standard surfaces, the surfaces of borders of the six cortical layers in

479  BigBrain histological space, and the cell body density (CBD) data at 40-um resolution were used
480  together to extract laminar cytoarchitecture of the visual cortex. Specifically, for each of six

481  cortical layers®’, we first generated 10 surfaces based on the equivolumetric principle between its
482  inner and outer borders®’ to extract 10 CBD maps in the BigBrain space. Next, the CBD data
483  from the BigBrain space were resampled to the fsSLR_32k space, and then the 10 CBD maps

484  were averaged to obtain an averaged CBD map for the layer. Finally, the spatial similarity

485  between the architectural gradients and the averaged CBD map from each of the 6 cortical layers
486  was measured with Pearson correlation coefficients.

487

488 Population receptive field (pRF) mapping. Functional images were preprocessed using a
489  similar pipeline to the HCP data, including motion-correction, slice-timing correction, and phase-
490 encoding distortion correction, and then aligned to each participant’s native cortical surface

491  through FreeSurfer’s FS-FAST pipeline®*. The preprocessed data from multiple runs from each
492  participant were averaged to increase signal-to-noise ratio. The data were finally analyzed by a
493  pRF model implemented in the VISTA Lab toolbox (github.com/vistalab), with additions for
494  compressive nonlinearity (cvnlab.net/analyzePRF). The model predicts fMRI time series as the
495  convolution of the stimulus-related time series and a canonical hemodynamic response function.
496  The stimulus-related time series are in turn generated by computing the dot product between the
497  stimulus apertures and a 2D isotropic Gaussian, scaling and applying a static power-law
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498  nonlinearity®. Several parameters of interest are produced from the pRF model for each vertex
499 including phase angle, eccentricity, and pRF size. Vertices entered into any analyses presented in
500  Figure 2 were only included if there was at least 10% variance-explained by the model-fit.

501

502 Behavioral relevance of the architectural gradients. The behavioral significance of the
503 architectural gradients was examined by measuring how the individual weights from PCA can
504  account for the individual variation in behavioral performance on related visual tasks. The HCP-
505 YA dataset include behavioral tasks of a range of motor, sensory, cognitive, and emotional

506  processes. Because our architectural gradients cover the entire visual cortex and may involve into
507  avariety of cognitive and behavioral abilities, a total of 15 vision-related or vision-based

508  behavioral tasks®, designed to measure nonverbal episodic memory ability, cognitive flexibility,
509 inhibitory control and attention ability, fluid intelligence, reading decoding skill, general

510  vocabulary knowledge, speed of processing, spatial orientation processing ability, sensitivity of
511  sustained attention, specificity of sustained attention, verbal episodic memory ability, working
512  memory ability, odor identification ability, visual acuity, and contrast sensitivity, were selected
513 to examine the behavioral relevance of the gradients (Please see supplementary information for
514  details, Table 3).

515 For the two sets of individual weights (i.e., myelin content weights and cortical thickness
516  weights) associated with each of architectural gradient, we carried out a single integrated

517  multivariate analysis using canonical correlation analysis (CCA)>’, to simultaneously co-analyze
518 the two sets of gradients along with 15 behavioral variables from all participants. CCA aims to
519  identify symmetric linear relations between the two sets of variables. That is, we used CCA to
520 find components that relate the two sets of weights from each gradient to 15 sets of participants’
521  behavioral measures. Each CCA component identifies a linear combination of two weights and a
522  linear combination of behavioral variables, where the variation in strength of involvement across
523  participants is maximally correlated. The normalized magnitude of behavioral weights was used
524  to characterize the behavioral profile of an architectural gradient and reveal how the two

525  gradients are different in predicting the same set of behavioral variables.

526

527 The development of the architectural gradients across the lifespan. We divided HCP-D,
528 HCP-YA, and HCP-A participants into different age windows (subgroups) in ascending order of
529  age. Among them, the participants of HCP-D and HCP-A were sorted by their age in months,
530  while HCP-YA sorted in years because no month information was provided. Each window

531  consisted of 50 participants and had a step size of ten. As a result, there are 61, 103, and 68 age
532  windows generated for HCP-D, HCP-YA, and HCP-A data, respectively. To characterize the
533  changes of the architectural gradients across the human lifespan, we conducted PCA on the

534  stacked myelination and thickness maps of each window as we did in the whole HCP-Y A data.
535  We label the principal components from each age window as lifespan components (LC) to

536  differentiate them from the original PCs derived from the HCP-Y A dataset. To determine if the
537  observed LCs were similar to the PCs from the HCP-YA data, we calculated the Pearson’s
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538 correlation coefficients between the HCP-YA PCs and the top ten LCs for each window. The LC
539  which shows strongest correlation with a PC was considered to be the correspondence LC to the
540  PC in that age window. Lastly, how the observed gradients from each age window change

541  relative to the gradient from the HCP-YA was measured by the Pearson’s correlation coefficient
542  between their score maps. The changes along age were then charted (i.e., developmental

543  trajectories). A linear model was then constructed to characterize the developmental trajectory
544  within each of three datasets. The slope of the linear model was defined as the annualized rate of
545  change (AROC) in the architectural gradients.

546
547  Ethical Compliance
548 Data analyzed from the Human Connectome Project follows all necessary privacy and

549  security guidelines. Data collected from participants at Princeton University followed all

550 Institutional Review Board ethics and guidelines (protocol number 13074), and all safety

551  regulations set forth by the Scully Center for the Neuroscience of Mind and Behavior. Informed
552  consent was collected from every participant involved in this study, and all were reimbursed for
553  their time.

554
555  Data Availability
556 The data from the HCP Young Adult (HCP-YA) are publicly available at the

557  https://www.humanconnectome.org; The data from the HCP Development (HCP-D) and HCP
558  Aging (HCP-A) are publicly available at https://nda.nih.gov. Users can access these after
559  registration.

560
561  Code Availability
562 The HCP data were preprocessed using the HCP-Pipeline analyses

563  (https://github.com/Washington-University/HCPpipelines). Custom code for gradient analysis
564  can be found at https://github.com/BNUCNL/VisualCortexGradient. Code to reproduce

565  population receptive field mapping figures can be found at:

566  https://github.com/gomezj/entorhinal_prf.

567
568 Acknowledgements
569 We thank Youyi Liu and the Brain Development Lab for several useful discussions. This

570  research was supported by Child Brain-Mind Development Cohort Study in the China Brain
571  Initiative (2021ZD0200534) and the National Natural Science Foundation of China (31771251)
572  to ZZ. This research was supported by start-up funds from the Princeton Neuroscience Institute
573 t0JG.

574
575  Author Contributions
576 JG and ZZ conceived of the idea and design of the study. XC and XL compiled the data,

577  performed the analyses, and prepared visualizations. PH, ED, and JY performed the analyses.


https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/

578
579
580
581
582
583

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.569190; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

JG, XC, XL, and ZZ drafted and revised the manuscript with input from all authors. JG and ZZ
supervised the research.

Competing Interests Statement
The authors declare no competing interests.


https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.569190; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

References

1. Vergleichende Lokalisationslehre der GroBhirnrinde : in ihren Prinzipien dargestellt auf
Grund des Zellenbaues / von K. Brodmann. (1909).

2. Brodmann, K. & Gary, L. J. Brodmann’s localisation in the cerebral cortex: the principles of
comparative localisation in the cerebral cortex based on cytoarchitectonics. (Springer, 2006).

3. Vogt, C. & Vogt, O. Allgemeine ergebnisse unserer hirnforschung. vol. 25 (JA Barth, 1919).

4. Amunts, K. & Zilles, K. Architectonic Mapping of the Human Brain beyond Brodmann.
Neuron 88, 10861107 (2015).

5. Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: A 3D probabilistic atlas of
the human brain’s cytoarchitecture. Science 369, 988—992 (2020).

6. Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by
structural neuroimaging topography. Nat. Neurosci. 21, 1251-1259 (2018).

7. Gomez, J., Zhen, Z. & Weiner, K. S. Human visual cortex is organized along two genetically
opposed hierarchical gradients with unique developmental and evolutionary origins. PLOS
Biol. 17, 3000362 (2019).

8. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171—
178 (2016).

9. Lerch, J. P. et al. Studying neuroanatomy using MRI. Nat. Neurosci. 20, 314-326 (2017).

10. Sebenius, 1. et al. Robust estimation of cortical similarity networks from brain MRI. Nat.
Neurosci. 26, 1461-1471 (2023).

11. Genon, S., Eickhoff, S. B. & Kharabian, S. Linking interindividual variability in brain
structure to behaviour. Nat. Rev. Neurosci. 23, 307-318 (2022).

12. Miller, J. A., Voorhies, W. 1., Lurie, D. J., D’Esposito, M. & Weiner, K. S. Overlooked
Tertiary Sulci Serve as a Meso-Scale Link between Microstructural and Functional
Properties of Human Lateral Prefrontal Cortex. J. Neurosci. Off. J. Soc. Neurosci. 41, 2229—
2244 (2021).

13. Grotheer, M. et al. White matter myelination during early infancy is linked to spatial
gradients and myelin content at birth. Nat. Commun. 13, 997 (2022).

14. Sowell, E. R. et al. Longitudinal Mapping of Cortical Thickness and Brain Growth in
Normal Children. J. Neurosci. 24, 8223-8231 (2004).

15. Wandell, B. A. & Winawer, J. Computational neuroimaging and population receptive fields.
Trends Cogn. Sci. 19, 349-357 (2015).

16. Gomez, J., Natu, V., Jeska, B., Barnett, M. & Grill-Spector, K. Development differentially
sculpts receptive fields across early and high-level human visual cortex. Nat. Commun. 9,
788 (2018).

17. Stigliani, A., Weiner, K. S. & Grill-Spector, K. Temporal Processing Capacity in High-Level
Visual Cortex Is Domain Specific. J. Neurosci. Off. J. Soc. Neurosci. 35, 12412—-12424
(2015).

18. Hasson, U., Yang, E., Vallines, 1., Heeger, D. J. & Rubin, N. A hierarchy of temporal

receptive windows in human cortex. J. Neurosci. 28, 2539-2550 (2008).


https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.569190; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

available under aCC-BY-NC-ND 4.0 International license.

Bookheimer, S. Y. et al. The Lifespan Human Connectome Project in Aging: An overview.
Neurolmage 185, 335-348 (2019).

Van Essen, D. C. et al. The WU-Minn Human Connectome Project: An overview.
Neurolmage 80, 62-79 (2013).

Somerville, L. H. et al. The Lifespan Human Connectome Project in Development: A large-
scale study of brain connectivity development in 5-21 year olds. Neurolmage 183, 456468
(2018).

Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome
Project. Neurolmage 80, 105-124 (2013).

Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc. Natl. Acad. Sci. U. S. A. 97, 11050-11055 (2000).
Glasser, M. F. & Essen, D. C. V. Mapping Human Cortical Areas In Vivo Based on Myelin
Content as Revealed by T1- and T2-Weighted MRI. J. Neurosci. 31, 11597-11616 (2011).
Carlo, C. N. & Stevens, C. F. Structural uniformity of neocortex, revisited. Proc. Natl. Acad.
Sci. U. S. A. 110, 1488-1493 (2013).

Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human
cerebral cortex. J. Comp. Neurol. 387, 167-178 (1997).

Natu, V. S. et al. Apparent thinning of human visual cortex during childhood is associated
with myelination. Proc. Natl. Acad. Sci. 116, 20750-20759 (2019).

Bo, T. et al. Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical
morphology in macaque monkeys. Nat. Commun. 14, 1499 (2023).

Preziosa, P. et al. Neurite density explains cortical T1-weighted/T2-weighted ratio in
multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 92, 790-792 (2021).

Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex
and its role in categorization. Nat. Rev. Neurosci. 15, 536548 (2014).

Witthoft, N. et al. Where is human V4? Predicting the location of hV4 and VOI1 from
cortical folding. Cereb. Cortex N. Y. N 1991 24, 2401-2408 (2014).

Dumoulin, S. O. et al. A new anatomical landmark for reliable identification of human area
V5/MT: a quantitative analysis of sulcal patterning. Cereb. Cortex N. Y. N 1991 10, 454—
463 (2000).

Gomez, J. et al. Development of population receptive fields in the lateral visual stream
improves spatial coding amid stable structural-functional coupling. Neurolmage 188, 59-69
(2019).

Konkle, T. & Caramazza, A. Tripartite organization of the ventral stream by animacy and
object size. J. Neurosci. Off. J. Soc. Neurosci. 33, 10235-10242 (2013).

Wandell, B. A. & Winawer, J. Imaging retinotopic maps in the human brain. Vision Res. 51,
718-737 (2011).

Benson, N. C. & Winawer, J. Bayesian analysis of retinotopic maps. eLife 7, e40224 (2018).


https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.569190; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

available under aCC-BY-NC-ND 4.0 International license.

Konen, C. S. & Kastner, S. Representation of eye movements and stimulus motion in
topographically organized areas of human posterior parietal cortex. J. Neurosci. Off. J. Soc.
Neurosci. 28, 8361-8375 (2008).

Hong, S.-J. et al. Toward a connectivity gradient-based framework for reproducible
biomarker discovery. Neurolmage 223, 117322 (2020).

Lever, J., Krzywinski, M. & Altman, N. Principal component analysis. Nature Methods vol.
14 641-642 https://www.nature.com/articles/nmeth.4346 (2017).

Wandell, B. A., Dumoulin, S. O. & Brewer, A. A. Visual Field Maps in Human Cortex.
Neuron 56, 366383 (2007).

Pitcher, D. & Ungerleider, L. G. Evidence for a Third Visual Pathway Specialized for Social
Perception. Trends Cogn. Sci. 25, 100-110 (2021).

Weiner, K. S. & Gomez, J. Third Visual Pathway, Anatomy, and Cognition across Species.
Trends Cogn. Sci. 25, 548-549 (2021).

Ungerleider, L. G. & Haxby, J. V. ‘What’ and ‘where’ in the human brain. Curr. Opin.
Neurobiol. 4, 157-165 (1994).

Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends
Neurosci. 15, 20-25 (1992).

Benson, N. C. et al. The Human Connectome Project 7 Tesla retinotopy dataset: Description
and population receptive field analysis. J. Vis. 18, 23 (2018).

Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual
cortex. Neurolmage 39, 647—-660 (2008).

Amano, K., Wandell, B. A. & Dumoulin, S. O. Visual field maps, population receptive field
sizes, and visual field coverage in the human MT+ complex. J. Neurophysiol. 102, 2704—
2718 (2009).

Harvey, B. M. & Dumoulin, S. O. The relationship between cortical magnification factor and
population receptive field size in human visual cortex: constancies in cortical architecture. J.
Neurosci. Off. J. Soc. Neurosci. 31, 13604—13612 (2011).

Shmuel, A. & Leopold, D. A. Neuronal correlates of spontaneous fluctuations in fMRI
signals in monkey visual cortex: Implications for functional connectivity at rest. Hum. Brain
Mapp. 29, 751-761 (2008).

Sydnor, V. J. et al. Intrinsic activity development unfolds along a sensorimotor-association
cortical axis in youth. Nat. Neurosci. 26, 638—-649 (2023).

Zou, Q.-H. et al. An improved approach to detection of amplitude of low-frequency
fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172, 137—
141 (2008).

Stigliani, A., Jeska, B. & Grill-Spector, K. Encoding model of temporal processing in human
visual cortex. Proc. Natl. Acad. Sci. U. S. A. 114, E11047-E11056 (2017).

Amunts, K. et al. BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. Science 340,
1472-1475 (2013).


https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.569190; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

available under aCC-BY-NC-ND 4.0 International license.

Brewer, A. A., Liu, J., Wade, A. R. & Wandell, B. A. Visual field maps and stimulus
selectivity in human ventral occipital cortex. Nat. Neurosci. 8, 1102—-1109 (2005).

Finzi, D. et al. Differential spatial computations in ventral and lateral face-selective regions
are scaffolded by structural connections. Nat. Commun. 12, 2278 (2021).

Axelrod, V. & Yovel, G. The challenge of localizing the anterior temporal face area: a
possible solution. NeuroImage 81, 371-380 (2013).

Wang, H.-T. et al. Finding the needle in a high-dimensional haystack: Canonical correlation
analysis for neuroscientists. Neurolmage 216, 116745 (2020).

Barch, D. M. et al. Function in the human connectome: task-fMRI and individual differences
in behavior. NeuroImage 80, 169-189 (2013).

Gomez, J. et al. Microstructural proliferation in human cortex is coupled with the
development of face processing. Science 355, 68—71 (2017).

Harms, M. P. et al. Extending the Human Connectome Project across ages: Imaging
protocols for the Lifespan Development and Aging projects. Neurolmage 183, 972-984
(2018).

Yeatman, J. D., Wandell, B. A. & Mezer, A. A. Lifespan maturation and degeneration of
human brain white matter. Nat. Commun. 5, 4932 (2014).

Wang, F. et al. Fine-grained functional parcellation maps of the infant cerebral cortex. eLife
12, €75401 (2023).

Sarwar, T., Tian, Y., Yeo, B. T. T., Ramamohanarao, K. & Zalesky, A. Structure-function
coupling in the human connectome: A machine learning approach. Neurolmage 226, 117609
(2021).

Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective.
Neurolmage 62, 22222231 (2012).

Glasser, M. F. et al. The Human Connectome Project’s neuroimaging approach. Nat.
Neurosci. 19, 1175-1187 (2016).

Robinson, E. C. et al. Multimodal surface matching with higher-order smoothness
constraints. Neurolmage 167, 453—465 (2018).

Wagstyl, K. et al. Mapping Cortical Laminar Structure in the 3D BigBrain. Cereb. Cortex N.
Y. N 1991 28, 2551-2562 (2018).

Wagstyl, K. et al. BigBrain 3D atlas of cortical layers: Cortical and laminar thickness
gradients diverge in sensory and motor cortices. PLoS Biol. 18, 3000678 (2020).
Abdollahi, R. O. et al. Correspondences between retinotopic areas and myelin maps in
human visual cortex. Neurolmage 99, 509-524 (2014).

Beauchamp, M. S., Yasar, N. E., Frye, R. E. & Ro, T. Touch, sound and vision in human
superior temporal sulcus. Neurolmage 41, 1011-1020 (2008).

Felleman, D. J. & Van Essen, D. C. Distributed Hierarchical Processing in the Primate
Cerebral Cortex. Cereb. Cortex 1, 1-47 (1991).

Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color
sensitivity in human visual cortical area V8. Nat. Neurosci. 1, 235-241 (1998).


https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.569190; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.
85.

available under aCC-BY-NC-ND 4.0 International license.

Haxby, J. V., Hoffman, E. A. & Gobbini, M. L. The distributed human neural system for face
perception. Trends Cogn. Sci. 4, 223-233 (2000).

Kolster, H., Peeters, R. & Orban, G. A. The retinotopic organization of the human middle
temporal area MT/V5 and its cortical neighbors. J. Neurosci. Off. J. Soc. Neurosci. 30,
9801-9820 (2010).

Larsson, J. & Heeger, D. J. Two retinotopic visual areas in human lateral occipital cortex. J.
Neurosci. Off. J. Soc. Neurosci. 26, 13128-13142 (2006).

Moreno-Ortega, M. et al. Resting state functional connectivity predictors of treatment
response to electroconvulsive therapy in depression. Sci. Rep. 9, 5071 (2019).

Nunn, J. A. et al. Functional magnetic resonance imaging of synesthesia: activation of
V4/V8 by spoken words. Nat. Neurosci. 5, 371-375 (2002).

Orban, G. A., Van Essen, D. & Vanduffel, W. Comparative mapping of higher visual areas
in monkeys and humans. Trends Cogn. Sci. 8, 315-324 (2004).

Sellal, F. Anatomical and neurophysiological basis of face recognition. Rev. Neurol. (Paris)
178, 649-653 (2022).

Tootell, R. B. et al. Functional analysis of V3A and related areas in human visual cortex. J.
Neurosci. Off. J. Soc. Neurosci. 17, 7060-7078 (1997).

Tootell, R. B. H., Tsao, D. & Vanduffel, W. Neuroimaging Weighs In: Humans Meet
Macaques in “Primate” Visual Cortex. J. Neurosci. 23, 3981-3989 (2003).

Weiner, K. S. et al. The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic
and functional divisions of human ventral temporal cortex. Neurolmage 84, 453—465 (2014).
Waehnert, M. D. et al. Anatomically motivated modeling of cortical laminae. Neurolmage
93 Pt 2, 210-220 (2014).

Fischl, B. FreeSurfer. Neurolmage 62, 774781 (2012).

Kay, K. N., Winawer, J., Mezer, A. & Wandell, B. A. Compressive spatial summation in
human visual cortex. J. Neurophysiol. 110, 481494 (2013).


https://doi.org/10.1101/2023.11.29.569190
http://creativecommons.org/licenses/by-nc-nd/4.0/

