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ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has led to a wide range of clinical presentations,
with respiratory symptoms being common. However, emerging evidence suggests that the
gastrointestinal (GI) tract is also affected, with angiotensin-converting enzyme 2, a key receptor for
SARS-CoV-2, abundantly expressed in the ileum and colon. The virus has been detected in GI
tissues and fecal samples, even in cases with negative respiratory results. GI symptoms have been
associated with an increased risk of ICU admission and mortality. The gut microbiome, a complex


https://doi.org/10.1101/2023.11.29.568526
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568526; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ecosystem of around 40 trillion bacteria, plays a crucial role in immunological and metabolic
pathways. Dysbiosis of the gut microbiota, characterized by a loss of beneficial microbes and
decreased microbial diversity, has been observed in COVID-19 patients, potentially contributing to
disease severity. We conducted a comprehensive gut microbiome study in 204 hospitalized COVID-
19 patients using both shallow and deep shotgun sequencing methods. We aimed to track microbiota
composition changes induced by hospitalization, link these alterations to clinical procedures
(antibiotics administration) and outcomes (ICU referral, survival), and assess the predictive potential
of the gut microbiome for COVID-19 prognosis. Shallow shotgun sequencing was evaluated as a
cost-effective diagnostic alternative for clinical settings.
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1. Introduction

The World Health Organization declared the Coronavirus Disease 2019 (COVID-19), caused by the
SARS-CoV-2 coronavirus, to be a pandemic on March 11, 2020. COVID-19 is a respiratory disease
with a wide range of clinical appearances. It may manifest as asymptomatic or mild infection with
cough and fever to severe pneumonia with multiple organ failure and acute respiratory distress
syndrome (Hu et al., 2020).

Besides common pulmonary symptoms of COVID-19, there is data on the infection of the
gastrointestinal tract. Angiotensin-converting enzyme 2, a critical receptor during viral entry of
SARS-CoV-2 to the host cells, is abundantly expressed in the ileum and colon, especially in
differentiated enterocytes (Burguefio et al., 2020). Moreover, SARS-CoV-2 has been found within
the tissues of the entire gastrointestinal (GI) tract, and even in cases when reverse transcription
polymerase chain reaction results from respiratory samples were negative, a large percentage of
patients still shed the virus in their faeces (Chen et al., 2020). Therefore, SARS-CoV-2 infection
directly influences the GI tract, presumably acting as an extrapulmonary location for virus activity
and reproduction (Wolfel et al., 2020; Zhou et al., 2020a). Interestingly, the GI symptoms were
associated with a significantly increased risk of intensive care unit (ICU) admission and mortality
(Woodruff et al., 2020).

In the gastrointestinal tract, it is estimated that there are about 40 trillion bacteria that, along with
their genes, constitute the gut microbiome (Sender et al., 2016; Thursby and Juge, 2017). Through
intricate pathways, the microbiome contributes significantly to the immunological and metabolic
pathways, affecting both the etiology of illnesses and health maintenance (Durack and Lynch, 2019).
This effect of the microbiome on the course of the disease and health management was demonstrated
in COVID-19 patients. Dysbiosis of the gut microbiota, defined as the loss of beneficial microbes,
the proliferation of potentially harmful microbes, and decreased microbial diversity, raises levels of
the SARS-CoV-2 target angiotensin-converting enzyme 2, which causes epithelial damage and
inflammation (Thevaranjan et al., 2018). Moreover, SARS-CoV-2 activates the NLRP3
inflammasome, which triggers a cascade of pro-inflammatory mechanisms (Ratajczak and Kucia,
2020). The gut microbiota can activate or inhibit the NLRP3 inflammasome and thus can condition
the strength of inflammasome stimulation during SARS-CoV-2 virus infection (Dang and Marsland,
2019). Intestinal biocenosis has been found to be altered in COVID-19 patients which manifests as
common GI tract symptoms, such as diarrhoea, vomiting, nausea, or abdominal pain (Cheung et al.,
2020; Redd et al., 2020; Zhou et al., 2020b).

Since the beginning of the pandemic researchers have carried out sequencing experiments of fecal
samples of patients with COVID-19 to uncover a bilateral relationship between COVID-19 and the
gut microbiome. According to both alpha and beta diversity indices, SARS-CoV-2 infection was
linked to changes in the microbiome community in patients as demonstrated in multiple studies (Kim
et al., 2021; Moreira-Rosério et al., 2021; Newsome et al., 2021; Wu et al., 2021; Zhang et al., 2022).
Moreover, the Shannon diversity was identified as a risk variable for severe COVID-19 being higher
in mild COVID-19 individuals compared to moderate and severe cases. (Moreira-Rosario et al.,
2021). Patients hospitalized for COVID-19 have significant changes in stool microbiota composition
characterized by an increase in opportunistic pathogens and a decrease in beneficial commensal
bacteria compared to controls (Zuo et al., 2020, Moreira-Rosdrio et al., 2021, Yeoh et al., 2021;
Zhang et al., 2022).
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There is even more evidence of a change in the taxonomic profile in severely ill patients with
COVID-19 compared to healthy or moderately sick patients, but observations might differ in
individual studies (Hazan et al., 2022; Sun et al., 2022). Li et al. (Li et al., 2021) discovered that
COVID-19 patients had reduced microbial diversity compared to controls, as determined through
shotgun metagenomic sequencing and taxonomy indices. Specific bacteria were unique to COVID-19
patients, such as Streptococcus thermophilus, Bacteroides oleiciplenus, Fusobacterium ulcerans, and
Prevotella bivia. The researchers identified 15 species as microbiological markers for COVID-19 and
found relationships between clinical markers and taxonomy. Notably, certain correlations were
observed, such as Coprococcus catus being positively associated with alanine transaminase levels,
red blood cells, and hemoglobin.

Gut microbiome investigations among patients with COVID-19 to date characterized the makeup and
diversity of the microbiota through one of two sequencing strategies. Either by targeted amplicon
sequencing of a 16S rRNA marker gene (Gu et al., 2020; Tao et al., 2020; Kim et al., 2021; Moreira-
Rosdrio et al., 2021; Newsome et al., 2021; Ward et al., 2021; Wu et al., 2021) or by using deep
whole metagenomic (shotgun) strategy (Zuo et al., 2020; Yeoh et al., 2021; Sun et al., 2022). While
both strategies are widely used in research, they have limitations in clinical applications of the
microbiome as a diagnostic, prognostic, and therapeutic factor in patients with COVID-19. 16S
rRNA gene sequencing is a good choice for large sample sizes and cost-efficient analyses, which
makes it suitable for use in clinics, however, it has poor taxonomical and functional resolution. On
the other side, deep shotgun metagenomics typically costs more but provides greater resolution,
allowing a more precise taxonomic and functional classification of sequences (Jovel et al., 2016). The
latter, however, is still too costly for all but the most well-funded laboratories and research consortia
to implement, creating a potential barrier for diagnostic and prognostic applications that could be
adopted by medical and diagnostic facilities. Shallow shotgun sequencing may be a more affordable
option than deep shotgun sequencing. It offers nearly the same accuracy at the species and functional
level as deep whole metagenome sequencing for known species and genes in five crucial aspects of
microbiome analysis — beta diversity, alpha diversity, species composition, functional composition,
and clinical biomarker discovery (Hillmann Benjamin et al., 2018).

We conducted an extensive gut microbiome study on 204 hospitalized COVID-19 patients in Poland,
employing both shallow and deep shotgun sequencing methods. Our primary objectives were to
observe shifts in microbiota composition due to COVID-19 treatment-related hospitalization and
associating these changes with clinical factors (e.g., antibiotic use, ICU admission, survival). In
comparison to prior studies with smaller cohorts (typically <70 subjects, with a maximum of 115),
our study featured a significantly larger sample size, allowing for potential confirmation of previous
findings.

Additionally, we utilized machine learning techniques to assess the microbiome's predictive potential
for COVID-19 prognosis, comparing its predictive performance with traditional classifiers such as
sex, age, body mass index (BMI) and diagnostic findings from laboratory analyses. Notably, we
evaluated the utility of shallow shotgun sequencing results as a more cost-effective alternative for
clinical diagnostics, benchmarking them against deep shotgun sequencing analysis.

2. Materials and methods

2.1. Subject recruitment and sample collection

The study group comprised 204 adult patients with confirmed SARS-CoV-2 infection through
molecular testing. These patients were hospitalized at the Central Clinical Hospital of the Ministry of
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Interior and Administration in Warsaw or Teaching Hospital no. 1 Pomeranian Medical University in
Szczecin from May 2020 to March 2022. Additional 143 healthy subjects of medical staff working in
the hospitals were included as a control group.

Patients were treated according to Evidence Based Medicine and the Polish Ministry of Health
treatment guidelines for persons with COVID-19 disease. Exclusion criteria included: lack of
consent, a severe clinical condition requiring ICU treatment, and major gastrointestinal and/or
abdominal surgery within the last 6 weeks. Demographic, clinical and treatment data, as well as a
questionnaire on lifestyle, eating habits, co-morbidities and recent antibiotic therapy, were obtained
and managed using REDCap electronic data capture tools (Harris et al., 2009). Stool samples were
collected with a swab from faeces gathered on toilet paper into a sterile Eppendorf tube with 2,5 ml
ethyl alcohol as preservative and stored at —20°C until DNA extraction. Samples from patients were
collected only during hospitalization. A total of 1365 stool samples were gathered, on average 4
(maximum 6) per subject within average 8 days (maximum 70). The study conformed to the
Declaration of Helsinki, and all participants signed an informed consent document prior to
participation. The study was approved by the institutional review board of the Central Clinical
Hospital of the Ministry of Interior and Administration, Warsaw, Poland.

2.2. Stool DNA extraction

Nucleic acid extraction was carried out on 942 out of 1365 fecal swabs using the QIAmp PowerFecal
Pro DNA kit from Qiagen. Swabs retained for extraction were those that were tightly sealed,
ensuring they contained sufficient biological material and preservative inside the tubes. In brief,
material from the swabs was transferred into PowerFecal Bead tubes containing buffer C1, followed
by homogenization using an Omni Bead Ruptor 12 (with 3 cycles of 30 seconds each, with 30-
second breaks in between). Subsequent procedures were conducted following the manufacturer's
instructions. Purified DNA was eluted using 70 puL of the provided elution buffer and quantified
using the Quantifluor ONE dsDNA system from Promega.

2.3. Shallow shotgun metagenomics sequencing

Sequencing libraries were generated with a reduced volume of KAPA Hyper Plus kit reagent
(ROCHE), as described by Sanders et al. in 2019 (Sanders et al., 2019). All steps were carried out in
accordance with the manufacturer's instructions to produce libraries containing metagenomic DNA
fragments of approximately 300 bp in size. Initially, metagenomic DNA samples were normalized to
a concentration of 10 ng input, followed by a 10-minute enzymatic digestion, indexing with KAPA
Unique Dual Indexes (ROCHE), and subjected to 9 cycles of polymerase chain reaction (PCR)
library amplification. Subsequently, libraries were purified and size-selected using electrophoretic
techniques. The size, quantity, and quality of the selected libraries were assessed using fluorometry
with Quantus (Promega) and chip electrophoresis with MultiNA (Shimadzu).

These libraries were further normalized to 2 nM, pooled, denatured with NaOH, and diluted to a final
concentration of 8 pM with HT'1 buffer (Illumina). These prepared libraries were supplemented with
1% PhiX control v3 (Illumina) and then sequenced on an Illumina MiSeq System using a 2x150-
cycles paired-end sequencing strategy, although only the forward reads were used in the subsequent
analysis. The [llumina bcl2fastq2 Conversion Software (version 2.20) was employed for
demultiplexing sequencing data and converting base call files into FASTQ files using default
parameters. On average, 326,385 reads per sample were obtained, with a standard deviation of
93,142.
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In the subsequent analyses, 892 samples containing a minimum of 200,000 R1 (forward) reads were
included. These analyses encompassed shallow shotgun data profiling, machine learning predictions,
and technology comparisons.

2.4. Deep shotgun metagenomics sequencing and quality control

Of the samples collected from patients, a subset of 384 samples were selected for deep shotgun
sequencing. The same sequencing libraries employed for shallow sequencing were also utilized for
deep whole-genome shotgun sequencing of fecal samples, conducted on the [llumina Novaseq6000
platform with a paired-end configuration and a read length of 150 bp. Reads preprocessing was
executed using BBTools (BBMap and BBDuk, version 38.96, available at
https://sourceforge.net/projects/bbmap/), following the Reads QC Workflow version 1.0.1. This
preprocessing involved quality trimming, adapter trimming, and spike-in removal, all carried out
using BBDuk. Additionally, human DNA contamination was eliminated using BBMap.

Both the shallow and deep shotgun sequenced data for this study were submitted to the European
Nucleotide Archive (ENA) at EMBL-EBI and are accessible under the entry number PRJEB64515.

2.5. Shallow shotgun data profiling

Quality control procedures, including the removal of poor-quality reads and adapter trimming (using
the adapter sequence 'AGATCGGAAGAGCACACGTCTGAACTCCAGTCA'), were carried out
using fastp (version 0.20.1). The criteria for base qualification were set at a quality value of 15,
allowing for a maximum of 40% of unqualified bases. Additionally, a low complexity filter was
enabled (Chen et al., 2018). Following quality control, the elimination of human DNA contamination
was initially performed by aligning reads to the human reference genome (GRCh38) using minimap2
(version 2.17). Subsequently, reads that did not align were extracted using samtools (version 1.17)
(Li, 2018; Danecek et al., 2021). The sequences, now free of contaminants, were aligned to the
indexed reference bacterial genome (RefSeq release 82 ( O’Leary et al. in 2016)), using Bowtie2.
Additional parameters for Bowtie2 were applied: '--very-sensitive --no-head --no-unal -k 16 --np 1 --
mp "1,1" --rdg "0,1" --rfg "0,1" --score-min "L,0,-0.05"". These parameters have been specifically
tailored for the purpose of shallow metagenomics, as demonstrated by benchmarking experiments
conducted as part of the SHOGUN framework (Hillmann et al., 2020) and subsequently validated by
Zhu Qiyun et al. (Zhu Qiyun et al., 2022). Next, we performed operational genomic unit (OGU)
profiling using Woltka (https://github.com/qiyunzhu/woltka), obtaining BIOM tables later employed
in statistical analyses of shallow shotgun data and machine learning predictions. OGU, a concept
similar to the extensively utilized operational taxonomic unit, refers to the smallest unit of
microbiome composition that shotgun metagenomic data will permit (Zhu Qiyun et al., 2022). A
Github repository for our custom Snakemake (Molder et al., 2021) pipeline, which implements the
methodology described for shallow shotgun sequencing from quality control to classification, is
available (https://github.com/bioinf-mcb/polish-microbiome-project/tree/main/shallow-shotgun-
analysis-workflow).

2.6. Statistical analysis of shallow shotgun data

For shallow shotgun data after rarefying the read count to 100,000 per sample, which left 682
samples, we used QIIME 2 (version 2020.6, (Bolyen et al., 2019)) packages to calculate the alpha
diversity (Shannon's evenness) and beta diversity (weighted UniFrac distance). Weighted UniFrac
was selected as our metric because it accounts for both sequence abundance and the relationships
among evolutionarily related sequences. To assess the significance of microbial alpha and beta
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diversities, we employed the Kruskal-Wallis H test and permutational multivariate analysis of
variance (PERMANOVA). To examine beta diversity findings, we conducted a principal coordinates
analysis (PCoA) on the weighted UniFrac distances within the QIIME 2 framework. To highlight the
features (OGUs) with significant effects on the principal component axis, we represented them as
arrows in PCoA biplots. To account for changes in the microbiome over time, we conducted pairwise
comparisons of beta diversity for samples collected at different time points from the same patient. To
further analyze these results in terms of distances from the initial time point and day-to-day changes,
we performed linear regressions.

2.7. Machine learning predictions

The dataset used to evaluate whether the microbiome can predict COVID-19 outcomes included three
types of information: OGUs (obtained from OGU BIOM tables created in Woltka), patient details
(like age, sex, and BMI), and clinical test results. We chose this approach to provide the classifier
with as much useful information as possible, while minimizing the risk of leaving out important
traits. However, including irrelevant or duplicate characteristics could make the classifier overly
complex and less able to make accurate predictions for new data. To reduce this risk, we assessed
how well the classifier could make accurate predictions by repeatedly testing it with different subsets
of the dataset in 51 iterations. To train and evaluate the Random Forest algorithm (Ho, 1995) for
disease prediction using microbiota data, we employed a structured approach. We grouped samples
by patients to ensure each patient's data was exclusive to either the training or testing set. In the
training set, all available samples from each patient were utilized to enable the algorithm to learn
from their microbiota data across different time points, potentially enhancing prediction accuracy.

For the test set, only the initial sample from each patient was used to assess the algorithm's capability
to predict disease based on the patient's initial microbiome data. The Random Forest algorithm
autonomously conducted feature selection by evaluating the importance of each feature in predicting
the target variable (ICU admission/death). Feature importance scores were determined using the
mean decrease impurity measure, which quantifies a feature's contribution to reducing impurity, as
measured by the Gini index, in the decision trees of the Random Forest.

We employed AUC-ROC as an evaluation metric to gauge the random forest classifier's
performance. It illustrates the classifier's ability to discriminate between positive and negative
samples by plotting sensitivity against 1-specificity at different thresholds. The AUC-ROC score
ranges from 0.5 (random guessing) to 1 (perfect classification), with higher values denoting better
performance.

2.8. Comparison of shallow and deep shotgun data

The dataset for this section comprised sequenced samples from COVID-19 patients that had
undergone quality control procedures, as previously described, and represented the intersection of
data obtained through both shallow and deep whole metagenome approaches (193 samples). Control
samples were deliberately omitted from the dataset, as the objective of the analysis centered on the
assessment of employing shallow sequencing in lieu of deep sequencing for discerning COVID-19-
associated microbiome modifications. To maintain consistency, all samples in the dataset were
profiled using Metaphlan4 (Blanco-Miguez et al. 2023) with default settings. The comparison of
shallow and deep sequencing was performed using QIIME 2 (Bolyen et al., 2019) or custom Python
scripts. Alpha and beta diversities were compared using QIIME 2 diversity modules, and the metrics
used were Shannon entropy, observed features (alpha diversity) and Bray-Curtis dissimilarity (beta
diversity).
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3. Results

3.1. Demographic and clinical characteristics of the study's subjects

Table 1 lists the demographic and clinical characteristics of patients (n = 204) and controls (n = 143).
All patients were Polish residents. Out of 204 patients, men made up 125 (61.3%), and women 79
(38.7%). The mean * standard error of the mean age in years was 61.2 + 1.3 (range, 17-96) for
patients. A large majority of patients overall (202 or 99.0%) were White. One patient was Latino and
one patient was mixed-race. Antibiotics were administered to 57.4% of the SARS-CoV-2-infected
patients. In terms of the outcome, 170 patients (83.3%) were released from the hospital, and 34
(16.7%) died because of COVID-19 while they were in the hospital. Additionally, 50 patients
(24.5%) were admitted to the ICU, and 154 (75.5%) patients were continuously hospitalized in the
dedicated COVID-19 unit.

3.2. The gut microbiome of COVID patients differs from that of non-COVID controls

We examined changes in the fecal microbial composition of actively infected SARS-CoV-2 patients
over time by comparing weighted UniFrac distances between a patient's (case) initial and subsequent
sample points, in contrast to the control group. Interestingly, the distance between control samples
remained relatively stable over time, while the distance between patient samples increased as time
progressed (Fig. 1A). Furthermore, in our comparison of samples on a day-to-day basis, we observed
that the distances were more substantial for the patient group and exhibited a slower rate of decrease
compared to the control group (Fig. 1B).

We compared the microbiome diversity of patients based on their hospitalization outcomes (survival
or death), ICU referral status (yes or no), and antibiotic treatment (treated or untreated) using their
earliest or post-antibiotic introduction samples, while also including control samples as a separate
category. According to Shannon's evenness analysis, patients who passed away due to COVID-19
differed significantly from those who recovered (p < 0.05). The difference was more pronounced
when comparing surviving patients to controls (p < 0.01), and most significant when contrasting
deceased patients with healthy controls (p < 0.001). While no statistically significant difference in
weighted UniFrac was observed between surviving and non-surviving patients in pairwise
comparisons of beta diversity distances based on hospital outcomes, a level of significance was
detected when comparing patients to controls (p-value for surviving patients vs. controls, p < 0.01;
dead patients vs. controls, p < 0.001).

In terms of ICU admission, the most significant diversity variations were observed between patients
referred to the ICU and those solely in the COVID unit, as well as between ICU-referred patients and
controls (p <0.0001 to 0.001). Regardless of hospitalization type, ICU referral consistently led to
statistically significant differences in weighted UniFrac distances, particularly when compared to
controls.

In contrast, patients not treated with antibiotics showed similar diversity levels as the control group,
while those receiving antibiotics exhibited higher Shannon diversity (p <0.0001 to 0.001) compared
to both untreated patients and controls. The difference was most pronounced in patients who received
antibiotics (p < 0.001). However, there were no significant variations in beta diversity between
treated and untreated patients. (Fig. 1C).

We employed weighted UniFrac-based principal coordinate analysis and looked for any metadata
variables that could explain the behavior of the data points on the PCoA plot (Fig. 1D). 80.48% of


https://doi.org/10.1101/2023.11.29.568526
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568526; this version posted November 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the total variation in the SARS-Cov-2 patients was described by the first three PCoA components (ie.
PC1-PC3). We were unable to identify a single demographic or clinical variable that would explain
the distribution, but by creating a PCoA biplot, we were able to determine which taxa contribute the
most to the PCoA axes (Fig 1D). The presence of Enterococcus faecium in the patient samples
accounts for the major variation. The remaining four OGUs - Bacteroides uniformis, Klebsiella
pneuomoniae, Bacteroides doreii CAG:222, and Prevotella copri, are also largely responsible for the
divergence.

3.3. Machine learning predictions

Our objective was to ascertain the most critical information for accurately predicting patient
outcomes. To accomplish this, we devised six distinct classifiers, each designed to analyze different
sets of input data: baseline, clinical, metadata, microbiome, microbiome combined with clinical, and
microbiome combined with metadata.

Regarding the prognosis of ICU admission, all classifiers outperformed the baseline significantly
based on the ROC-AUC score (Fig. 2A). To further assess and compare these classifiers, we
conducted ANOVA analysis, revealing that their performance was strongly influenced by the
availability of features. Microbiome-based classifiers demonstrated the highest performance, and the
inclusion of additional data, whether clinical or metadata, did not provide a substantial advantage. In
contrast, classifiers that did not utilize microbiome data performed notably worse, with metadata-
based classifiers showing only marginal improvement over the baseline.

In Fig. 2B, the ROC curves of the four main classifier types (clinical, metadata, microbiome, and
baseline) are compared, highlighting that the microbiome classifier's enhanced AUC is primarily
attributed to its ability to achieve a significantly higher True Positive Rate for small False Positive
Rates compared to other classifiers.

Remarkably, only four features (taxa) are necessary to achieve optimal performance for the
microbiome-based classifier (Fig. 2C). The assessment of feature importance revealed that high
concentrations of Orrella dioscoreae and Klebsiella pneumoniae correlated with worse outcomes,
while the presence of Lachnospiraceae bacterium 3-2 was associated with improved patient
prognosis (Fig. 2D).

A comparable analysis of the life/death outcome is available in the supplementary material (Fig. S1).

3.4. Shallow vs deep shotgun comparison

To validate the suitability of using shallow sequencing instead of deep shotgun sequencing in
COVID-19 patients, we conducted a comparative analysis of matched samples from our study.
Shallow and deep sequencing samples exhibited no significant differences in fundamental quality
parameters such as read length or GC content. The relatively higher rate of quality control failures in
deep sequencing reads could be attributed, in part, to a greater duplication rate compared to shallow
sequencing (Fig. S2). While alpha diversity and some observed features were higher in deep
sequencing, there was no distinct separation between the two sequencing types when performing beta
diversity clustering (Fig. 3A, Fig. S3).

A high degree of overlap of species identified in shallow and deep sequencing was observed (Fig.
3B). While substantially more species were found in deep sequencing, all but five species identified
in shallow sequencing were discovered in deep sequencing. The five species unique to shallow
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sequencing were CAG-269_sp900554175, Faeciplasma gallinarum, Klebsiella pneumoniae,
Mediterraneibacter glycyrrhizinilyticus A, Parafannyhessea umbonate and Scatacola A
faecigallinarum. They rarely appear in bioinformatics analyses, and Klebsiella pneumoniae is known
to be frequently misclassified (Arnold et al., 2011). Species identified in both shallow and deep
sequencing had an abundance of at least 0.2% in deep sequencing. Any species below this threshold
were not detected in shallow sequencing (Fig. 3C). Considering that most studies determine 1% as a
cut-off (Cena et al., 2021), our result indicated a similarity between the range of species detected by
both methods. In addition to that, we showed that while the abundance of species was not perfectly
matched between shallow and deep sequencing, the hierarchy of species abundance, even below 1%,
was well maintained (Fig. 3D).

4. Discussion

In the wake of the COVID-19 pandemic, the scientific community has devoted significant effort
towards investigating the pathogenesis of SARS-CoV-2 infection and identifying the risk factors that
contribute to disease outcomes. As part of these efforts, our study explored the potential role of gut
microbiota as a risk factor for ICU referral or mortality in individuals with COVID-19. Using both
shallow and deep sequencing techniques, we studied the gut microbiomes of 204 COVID-19 patients
at two reference hospitals in Poland. We sought to learn how hospitalization affected the makeup of
the microbiota and how these changes related to patient outcomes. The study employed machine
learning to see if microbiome data might predict COVID-19 prognosis more accurately than
conventional predictors like age, sex, and BMI. Using both shallow and deep sequencing techniques
allowed us to contrast their precision, specifically to find out if shallow sequencing can serve as a
potential cost-effective substitute with excellent taxonomic accuracy for COVID-19 patient clinical
outcomes prediction.

The fecal microbial beta diversity of the SARS-CoV-2 patients who are actively infected increases
over time as compared to that of the hospital staff, whose distance almost remains constant over time
(Fig. 1). Additionally, day-to-day comparisons revealed that the distances are greater and are
shrinking more slowly for the patients than for the control group. This suggests that the microbiome
of COVID-19 hospitalized patients is less stable and subject to greater qualitative and quantitative
perturbations over time compared to healthy controls.

We were able to distinguish patients stratified by survivability from healthy subjects when both alpha
(Shannon's evenness) and beta (unweighted UniFrac) heterogeneity were compared, as the
differences between these groups were significant in both cases (Fig. 1). The highest significance was
observed for deceased patients matched against controls. Similarly, the metrics of both diversities,
alpha and beta, are most important for the patients admitted to ICU paired with controls. It should be
noted that although the difference was smaller, we also observe a significant difference between
patients who only stayed in the COVID-19 ward and those who were referred to ICU.

Most of the variation in the unweighted UniFrac PCoA plot can be attributed to the presence of
Enterococcus faecium in patient samples. The plot's divergence is also largely attributable to the
other four OGUs, Bacteroides uniformis, Klebsiella pneuomoniae, Bacteroides dorei CAG:222, and
Prevotella copri.

Using patient metadata, microbiome and clinical data, we carried out an in-depth machine-learning
analysis. Our findings shed light on the varying impacts of different combinations of clinical,
microbiome, and patient metadata on the accuracy of outcome prediction for patients and suggest that
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the AUC-ROC of the classifiers is primarily influenced by their access to microbiological data,
indicating that microbiological data is a more reliable predictor of patient outcomes compared to
clinical or metadata. Our analysis of feature importance additionally proves that only a few of the
taxa are important in the prediction of patients’ outcomes.

However, our results do not allow us to conclude unequivocally that the observed dysbiosis is a
causal factor for the severe course of the disease or a consequence of it. Gastrointestinal dysbiosis in
COVID-19 can occur due to antibiotic therapy, secondary bacterial infections, and enteral nutrition
(Langford et al., 2020; Zaher, 2020). Altered microbiota can cause inflammation in the
gastrointestinal tract, malnutrition (Zaher, 2020), and viral and bacterial infections (Zuo et al., 2020).
COVID-19 patients can also have an altered gut microbiota before the disease and/or hospital
admission (Alberca et al., 2021). In these patients, COVID-19 may exacerbate dysbiosis leading to
different health complications like metabolic disturbances (Alberca et al., 2021).

We have proven that shallow shotgun sequencing is a valid alternative to deep sequencing for
predicting COVID-19. Although deep sequencing detected more species and had higher alpha
diversity, there was no significant difference in beta diversity clustering between the two methods.
The range of species detected by both methods was similar, and the abundance of species was
maintained in a proper hierarchy. Our findings suggest that shallow sequencing may be a viable
substitute for deep sequencing in clinical settings. Shallow shotgun sequencing has been
demonstrated to yield quicker findings in a clinical context, and it also offers better economic
viability when used with popular and widely accessible Illumina platforms like MiSeq. Shallow
shotgun sequencing, which is substantially less expensive than deep shotgun sequencing, provided
lower technical variation and higher taxonomic resolution than 16S sequencing, according to Reau et
al. (La Reau et al., 2023). As bioinformatics techniques are developed and standardized and
computational performance increases, the use of in situ microbiome characterization in the
therapeutic context is becoming more and more accepted.
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Figure captions

Figure 1. The gut microbiome of COVID patients. (A) Subject’s weighted UniFrac distances to
subject’s first sample after rarefaction, showing how the composition of fecal microbes in SARS-
CoV-2 patients change over time compared to the control group. Linear regression models the
relationship between distance and time. (B) Subject’s day-to-day change of weighted UniFrac
distance. Linear regression shows the correlation between the distance and time point. (C)
Microbiome diversity measures - Shannon’s entropy and weighted UniFrac for survivability,
Intensive Care Unit referral and antibiotics usage measured for subject's first sample after rarefaction
(death, icu) or first sample collected after antibiotic introduction (antibiotics) (ns - not significant; * -
0.01 <p <0.05; **-0.001 <p <0.01; ***-0.0001 <p <0.001; **** - p <0.0001) (D) PCoA
biplot of weighted UniFrac of subject's oldest sample after rarefaction coloured by survivability with
taxa contributing to the PCoA axes.

Figure 2. Insights into what influences the predictive power of patients’ outcomes (ICU vs non-
ICU) classifier. (A) Impact of different types of data on the predictive power of the classifiers. This
plot shows that access to microbiome data immensely increases the performance of the classifiers. (B)
ROC curve of classifiers grouped by access to data. (C) Increasing the number of metagenomic features
doesn’t improve ROC-AUC beyond the 7 most important. (D) Shapley values of the most important
features for classification.

Figure 3. Comparison of shallow and deep shotgun sequencing methods. (A) Clustering of samples
based on Bray-Curtis beta diversity. Blue: deep, red: shallow sequencing. (B) Overlap of species
identified in shallow and deep sequencing. (C) KDE plot of species abundance identified uniquely or
commonly in shallow and deep sequencing. (D) Correlation of species abundance in shallow and deep
sequencing, restricted to abundance below 1% in an exemplary sample. Spearman = 0.75, p-value =
0.0, Mean squared error = 9.04, R-squared = 0.71.
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Tables

Table 1. Summary of the COVID-19 patients from the study cohort.
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COVID-19 patients

Before rarefaction

After rarefaction to 100, 000
features per sample

Number of participants 204 176
Age, mean years 61.2 61.2
Sex

Male (%) 125 (61.3) 103 (58.5)
Female (%) 79 (38.7) 68 (41.5)
Ethnicity

White (%) 202 (99.0) 174 (98.8)
Latino (%) 1(0.5) 1 (0.6)
Mixed (%) 1(0.5) 1 (0.6)
Hospitalization outcome

Death (%) 34 (16.7) 28 (15.9)
Survival (%) 170 (83.3) 148 (84.1)
Antibiotics treatment during

hospitalization

Yes (%) 117 (57.4) 98 (55.7)
No (%) 87 (42.6) 78 (44.3)
ICU referral

Yes (%) 50 (24.5) 41 (23.3)
No (%) 154 (75.5) 134 (76.7)
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Abbreviations

AUC-ROC - area under the receiver operating characteristic curve
BMI - body mass index

COVID-19 - Coronavirus Disease 2019

GI - gastrointestinal

ICU - intensive care unit

MAG - metagenome-assembled genome

OGU - operational genomic unit

PCoA - principal coordinates analysis
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