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ABSTRACT 

The COVID-19 pandemic caused by SARS-CoV-2 has led to a wide range of clinical presentations, 

with respiratory symptoms being common. However, emerging evidence suggests that the 

gastrointestinal (GI) tract is also affected, with angiotensin-converting enzyme 2, a key receptor for 

SARS-CoV-2, abundantly expressed in the ileum and colon. The virus has been detected in GI 

tissues and fecal samples, even in cases with negative respiratory results. GI symptoms have been 

associated with an increased risk of ICU admission and mortality. The gut microbiome, a complex 
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ecosystem of around 40 trillion bacteria, plays a crucial role in immunological and metabolic 

pathways. Dysbiosis of the gut microbiota, characterized by a loss of beneficial microbes and 

decreased microbial diversity, has been observed in COVID-19 patients, potentially contributing to 

disease severity. We conducted a comprehensive gut microbiome study in 204 hospitalized COVID-

19 patients using both shallow and deep shotgun sequencing methods. We aimed to track microbiota 

composition changes induced by hospitalization, link these alterations to clinical procedures 

(antibiotics administration) and outcomes (ICU referral, survival), and assess the predictive potential 

of the gut microbiome for COVID-19 prognosis. Shallow shotgun sequencing was evaluated as a 

cost-effective diagnostic alternative for clinical settings.  
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1. Introduction 

The World Health Organization declared the Coronavirus Disease 2019 (COVID-19), caused by the 

SARS-CoV-2 coronavirus, to be a pandemic on March 11, 2020. COVID-19 is a respiratory disease 

with a wide range of clinical appearances. It may manifest as asymptomatic or mild infection with 

cough and fever to severe pneumonia with multiple organ failure and acute respiratory distress 

syndrome (Hu et al., 2020). 

Besides common pulmonary symptoms of COVID-19, there is data on the infection of the 

gastrointestinal tract. Angiotensin-converting enzyme 2, a critical receptor during viral entry of 

SARS-CoV-2 to the host cells, is abundantly expressed in the ileum and colon, especially in 

differentiated enterocytes (Burgueño et al., 2020). Moreover, SARS-CoV-2 has been found within 

the tissues of the entire gastrointestinal (GI) tract, and even in cases when reverse transcription 

polymerase chain reaction results from respiratory samples were negative, a large percentage of 

patients still shed the virus in their faeces (Chen et al., 2020). Therefore, SARS-CoV-2 infection 

directly influences the GI tract, presumably acting as an extrapulmonary location for virus activity 

and reproduction (Wölfel et al., 2020; Zhou et al., 2020a). Interestingly, the GI symptoms were 

associated with a significantly increased risk of intensive care unit (ICU) admission and mortality 

(Woodruff et al., 2020). 

In the gastrointestinal tract, it is estimated that there are about 40 trillion bacteria that, along with 

their genes, constitute the gut microbiome (Sender et al., 2016; Thursby and Juge, 2017). Through 

intricate pathways, the microbiome contributes significantly to the immunological and metabolic 

pathways, affecting both the etiology of illnesses and health maintenance (Durack and Lynch, 2019). 

This effect of the microbiome on the course of the disease and health management was demonstrated 

in COVID-19 patients. Dysbiosis of the gut microbiota, defined as the loss of beneficial microbes, 

the proliferation of potentially harmful microbes, and decreased microbial diversity, raises levels of 

the SARS-CoV-2 target angiotensin-converting enzyme 2, which causes epithelial damage and 

inflammation (Thevaranjan et al., 2018). Moreover, SARS-CoV-2 activates the NLRP3 

inflammasome, which triggers a cascade of pro-inflammatory mechanisms (Ratajczak and Kucia, 

2020). The gut microbiota can activate or inhibit the NLRP3 inflammasome and thus can condition 

the strength of inflammasome stimulation during SARS-CoV-2 virus infection (Dang and Marsland, 

2019).  Intestinal biocenosis has been found to be altered in COVID-19 patients which manifests as 

common GI tract symptoms, such as diarrhoea, vomiting, nausea, or abdominal pain (Cheung et al., 

2020; Redd et al., 2020; Zhou et al., 2020b).   

Since the beginning of the pandemic researchers have carried out sequencing experiments of fecal 

samples of patients with COVID-19 to uncover a bilateral relationship between COVID-19 and the 

gut microbiome. According to both alpha and beta diversity indices, SARS-CoV-2 infection was 

linked to changes in the microbiome community in patients as demonstrated in multiple studies (Kim 

et al., 2021; Moreira-Rosário et al., 2021; Newsome et al., 2021; Wu et al., 2021; Zhang et al., 2022). 

Moreover, the Shannon diversity was identified as a risk variable for severe COVID-19 being higher 

in mild COVID-19 individuals compared to moderate and severe cases. (Moreira-Rosário et al., 

2021). Patients hospitalized for COVID-19 have significant changes in stool microbiota composition 

characterized by an increase in opportunistic pathogens and a decrease in beneficial commensal 

bacteria compared to controls (Zuo et al., 2020, Moreira-Rosário et al., 2021, Yeoh et al., 2021; 

Zhang et al., 2022).   
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There is even more evidence of a change in the taxonomic profile in severely ill patients with 

COVID-19 compared to healthy or moderately sick patients, but observations might differ in 

individual studies (Hazan et al., 2022; Sun et al., 2022). Li et al. (Li et al., 2021) discovered that 

COVID-19 patients had reduced microbial diversity compared to controls, as determined through 

shotgun metagenomic sequencing and taxonomy indices. Specific bacteria were unique to COVID-19 

patients, such as Streptococcus thermophilus, Bacteroides oleiciplenus, Fusobacterium ulcerans, and 

Prevotella bivia. The researchers identified 15 species as microbiological markers for COVID-19 and 

found relationships between clinical markers and taxonomy. Notably, certain correlations were 

observed, such as Coprococcus catus being positively associated with alanine transaminase levels, 

red blood cells, and hemoglobin.  

Gut microbiome investigations among patients with COVID-19 to date characterized the makeup and 

diversity of the microbiota through one of two sequencing strategies. Either by targeted amplicon 

sequencing of a 16S rRNA marker gene (Gu et al., 2020; Tao et al., 2020; Kim et al., 2021; Moreira-

Rosário et al., 2021; Newsome et al., 2021; Ward et al., 2021; Wu et al., 2021) or by using deep 

whole metagenomic (shotgun) strategy (Zuo et al., 2020; Yeoh et al., 2021; Sun et al., 2022). While 

both strategies are widely used in research, they have limitations in clinical applications of the 

microbiome as a diagnostic, prognostic, and therapeutic factor in patients with COVID-19. 16S 

rRNA gene sequencing is a good choice for large sample sizes and cost-efficient analyses, which 

makes it suitable for use in clinics, however, it has poor taxonomical and functional resolution. On 

the other side, deep shotgun metagenomics typically costs more but provides greater resolution, 

allowing a more precise taxonomic and functional classification of sequences (Jovel et al., 2016). The 

latter, however, is still too costly for all but the most well-funded laboratories and research consortia 

to implement, creating a potential barrier for diagnostic and prognostic applications that could be 

adopted by medical and diagnostic facilities. Shallow shotgun sequencing may be a more affordable 

option than deep shotgun sequencing. It offers nearly the same accuracy at the species and functional 

level as deep whole metagenome sequencing for known species and genes in five crucial aspects of 

microbiome analysis 4 beta diversity, alpha diversity, species composition, functional composition, 

and clinical biomarker discovery (Hillmann Benjamin et al., 2018).  

We conducted an extensive gut microbiome study on 204 hospitalized COVID-19 patients in Poland, 

employing both shallow and deep shotgun sequencing methods. Our primary objectives were to 

observe shifts in microbiota composition due to COVID-19 treatment-related hospitalization and 

associating these changes with clinical factors (e.g., antibiotic use, ICU admission, survival). In 

comparison to prior studies with smaller cohorts (typically ≤70 subjects, with a maximum of 115), 
our study featured a significantly larger sample size, allowing for potential confirmation of previous 

findings. 

Additionally, we utilized machine learning techniques to assess the microbiome's predictive potential 

for COVID-19 prognosis, comparing its predictive performance with traditional classifiers such as 

sex, age, body mass index (BMI) and diagnostic findings from laboratory analyses. Notably, we 

evaluated the utility of shallow shotgun sequencing results as a more cost-effective alternative for 

clinical diagnostics, benchmarking them against deep shotgun sequencing analysis. 

2. Materials and methods 

2.1. Subject recruitment and sample collection 

The study group comprised 204 adult patients with confirmed SARS-CoV-2 infection through 

molecular testing. These patients were hospitalized at the Central Clinical Hospital of the Ministry of 
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Interior and Administration in Warsaw or Teaching Hospital no. 1 Pomeranian Medical University in 

Szczecin from May 2020 to March 2022. Additional 143 healthy subjects of medical staff working in 

the hospitals were included as a control group.  

Patients were treated according to Evidence Based Medicine and the Polish Ministry of Health 

treatment guidelines for persons with COVID-19 disease. Exclusion criteria included: lack of 

consent, a severe clinical condition requiring ICU treatment, and major gastrointestinal and/or 

abdominal surgery within the last 6 weeks. Demographic, clinical and treatment data, as well as a 

questionnaire on lifestyle, eating habits, co-morbidities and recent antibiotic therapy, were obtained 

and managed using REDCap electronic data capture tools (Harris et al., 2009). Stool samples were 

collected with a swab from faeces gathered on toilet paper into a sterile Eppendorf tube with 2,5 ml 

ethyl alcohol as preservative and stored at −20°C until DNA extraction. Samples from patients were 

collected only during hospitalization. A total of 1365 stool samples were gathered, on average 4 

(maximum 6) per subject within average 8 days (maximum 70). The study conformed to the 

Declaration of Helsinki, and all participants signed an informed consent document prior to 

participation. The study was approved by the institutional review board of the Central Clinical 

Hospital of the Ministry of Interior and Administration, Warsaw, Poland.  

2.2. Stool DNA extraction 

Nucleic acid extraction was carried out on 942 out of 1365 fecal swabs using the QIAmp PowerFecal 

Pro DNA kit from Qiagen. Swabs retained for extraction were those that were tightly sealed, 

ensuring they contained sufficient biological material and preservative inside the tubes. In brief, 

material from the swabs was transferred into PowerFecal Bead tubes containing buffer C1, followed 

by homogenization using an Omni Bead Ruptor 12 (with 3 cycles of 30 seconds each, with 30-

second breaks in between). Subsequent procedures were conducted following the manufacturer's 

instructions. Purified DNA was eluted using 70 µL of the provided elution buffer and quantified 

using the Quantifluor ONE dsDNA system from Promega. 

2.3. Shallow shotgun metagenomics sequencing 

Sequencing libraries were generated with a reduced volume of KAPA Hyper Plus kit reagent 

(ROCHE), as described by Sanders et al. in 2019 (Sanders et al., 2019). All steps were carried out in 

accordance with the manufacturer's instructions to produce libraries containing metagenomic DNA 

fragments of approximately 300 bp in size. Initially, metagenomic DNA samples were normalized to 

a concentration of 10 ng input, followed by a 10-minute enzymatic digestion, indexing with KAPA 

Unique Dual Indexes (ROCHE), and subjected to 9 cycles of polymerase chain reaction (PCR) 

library amplification. Subsequently, libraries were purified and size-selected using electrophoretic 

techniques. The size, quantity, and quality of the selected libraries were assessed using fluorometry 

with Quantus (Promega) and chip electrophoresis with MultiNA (Shimadzu). 

These libraries were further normalized to 2 nM, pooled, denatured with NaOH, and diluted to a final 

concentration of 8 pM with HT1 buffer (Illumina). These prepared libraries were supplemented with 

1% PhiX control v3 (Illumina) and then sequenced on an Illumina MiSeq System using a 2x150-

cycles paired-end sequencing strategy, although only the forward reads were used in the subsequent 

analysis. The Illumina bcl2fastq2 Conversion Software (version 2.20) was employed for 

demultiplexing sequencing data and converting base call files into FASTQ files using default 

parameters. On average, 326,385 reads per sample were obtained, with a standard deviation of 

93,142.  
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In the subsequent analyses, 892 samples containing a minimum of 200,000 R1 (forward) reads were 

included. These analyses encompassed shallow shotgun data profiling, machine learning predictions, 

and technology comparisons. 

2.4. Deep shotgun metagenomics sequencing and quality control 

Of the samples collected from patients, a subset of 384 samples were selected for deep shotgun 

sequencing. The same sequencing libraries employed for shallow sequencing were also utilized for 

deep whole-genome shotgun sequencing of fecal samples, conducted on the Illumina Novaseq6000 

platform with a paired-end configuration and a read length of 150 bp. Reads preprocessing was 
executed using BBTools (BBMap and BBDuk, version 38.96, available at 

https://sourceforge.net/projects/bbmap/), following the Reads QC Workflow version 1.0.1. This 

preprocessing involved quality trimming, adapter trimming, and spike-in removal, all carried out 

using BBDuk. Additionally, human DNA contamination was eliminated using BBMap. 

Both the shallow and deep shotgun sequenced data for this study were submitted to the European 

Nucleotide Archive (ENA) at EMBL-EBI and are accessible under the entry number PRJEB64515. 

2.5. Shallow shotgun data profiling 

Quality control procedures, including the removal of poor-quality reads and adapter trimming (using 

the adapter sequence 'AGATCGGAAGAGCACACGTCTGAACTCCAGTCA'), were carried out 

using fastp (version 0.20.1). The criteria for base qualification were set at a quality value of 15, 

allowing for a maximum of 40% of unqualified bases. Additionally, a low complexity filter was 

enabled (Chen et al., 2018). Following quality control, the elimination of human DNA contamination 

was initially performed by aligning reads to the human reference genome (GRCh38) using minimap2 

(version 2.17). Subsequently, reads that did not align were extracted using samtools (version 1.17) 

(Li, 2018; Danecek et al., 2021). The sequences, now free of contaminants, were aligned to the 

indexed reference bacterial genome (RefSeq release 82 ( O’Leary et al. in 2016)), using Bowtie2. 
Additional parameters for Bowtie2 were applied: '--very-sensitive --no-head --no-unal -k 16 --np 1 --

mp "1,1" --rdg "0,1" --rfg "0,1" --score-min "L,0,-0.05"'. These parameters have been specifically 

tailored for the purpose of shallow metagenomics, as demonstrated by benchmarking experiments 

conducted as part of the SHOGUN framework (Hillmann et al., 2020) and subsequently validated by 

Zhu Qiyun et al. (Zhu Qiyun et al., 2022). Next, we performed operational genomic unit (OGU) 

profiling using Woltka (https://github.com/qiyunzhu/woltka), obtaining BIOM tables later employed 

in statistical analyses of shallow shotgun data and machine learning predictions. OGU, a concept 

similar to the extensively utilized operational taxonomic unit, refers to the smallest unit of 

microbiome composition that shotgun metagenomic data will permit (Zhu Qiyun et al., 2022). A 

Github repository for our custom Snakemake (Mölder et al., 2021) pipeline, which implements the 

methodology described for shallow shotgun sequencing from quality control to classification, is 

available (https://github.com/bioinf-mcb/polish-microbiome-project/tree/main/shallow-shotgun-

analysis-workflow). 

2.6. Statistical analysis of shallow shotgun data 

For shallow shotgun data after rarefying the read count to 100,000 per sample, which left 682 

samples, we used QIIME 2 (version 2020.6, (Bolyen et al., 2019)) packages to calculate the alpha 

diversity (Shannon's evenness) and beta diversity (weighted UniFrac distance). Weighted UniFrac 

was selected as our metric because it accounts for both sequence abundance and the relationships 

among evolutionarily related sequences. To assess the significance of microbial alpha and beta 
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diversities, we employed the Kruskal-Wallis H test and permutational multivariate analysis of 

variance (PERMANOVA). To examine beta diversity findings, we conducted a principal coordinates 

analysis (PCoA) on the weighted UniFrac distances within the QIIME 2 framework. To highlight the 

features (OGUs) with significant effects on the principal component axis, we represented them as 

arrows in PCoA biplots. To account for changes in the microbiome over time, we conducted pairwise 

comparisons of beta diversity for samples collected at different time points from the same patient. To 

further analyze these results in terms of distances from the initial time point and day-to-day changes, 

we performed linear regressions. 

2.7. Machine learning predictions 

The dataset used to evaluate whether the microbiome can predict COVID-19 outcomes included three 

types of information: OGUs (obtained from OGU BIOM tables created in Woltka), patient details 

(like age, sex, and BMI), and clinical test results. We chose this approach to provide the classifier 

with as much useful information as possible, while minimizing the risk of leaving out important 

traits. However, including irrelevant or duplicate characteristics could make the classifier overly 

complex and less able to make accurate predictions for new data. To reduce this risk, we assessed 

how well the classifier could make accurate predictions by repeatedly testing it with different subsets 

of the dataset in 51 iterations. To train and evaluate the Random Forest algorithm (Ho, 1995) for 

disease prediction using microbiota data, we employed a structured approach. We grouped samples 

by patients to ensure each patient's data was exclusive to either the training or testing set. In the 

training set, all available samples from each patient were utilized to enable the algorithm to learn 

from their microbiota data across different time points, potentially enhancing prediction accuracy. 

For the test set, only the initial sample from each patient was used to assess the algorithm's capability 

to predict disease based on the patient's initial microbiome data. The Random Forest algorithm 

autonomously conducted feature selection by evaluating the importance of each feature in predicting 

the target variable (ICU admission/death). Feature importance scores were determined using the 

mean decrease impurity measure, which quantifies a feature's contribution to reducing impurity, as 

measured by the Gini index, in the decision trees of the Random Forest.  

We employed AUC-ROC as an evaluation metric to gauge the random forest classifier's 

performance. It illustrates the classifier's ability to discriminate between positive and negative 

samples by plotting sensitivity against 1-specificity at different thresholds. The AUC-ROC score 

ranges from 0.5 (random guessing) to 1 (perfect classification), with higher values denoting better 

performance. 

2.8. Comparison of shallow and deep shotgun data 

The dataset for this section comprised sequenced samples from COVID-19 patients that had 

undergone quality control procedures, as previously described, and represented the intersection of 

data obtained through both shallow and deep whole metagenome approaches (193 samples). Control 

samples were deliberately omitted from the dataset, as the objective of the analysis centered on the 

assessment of employing shallow sequencing in lieu of deep sequencing for discerning COVID-19-

associated microbiome modifications. To maintain consistency, all samples in the dataset were 

profiled using Metaphlan4 (Blanco-Míguez et al. 2023) with default settings. The comparison of 

shallow and deep sequencing was performed using QIIME 2 (Bolyen et al., 2019) or custom Python 

scripts. Alpha and beta diversities were compared using QIIME 2 diversity modules, and the metrics 

used were Shannon entropy, observed features (alpha diversity) and Bray-Curtis dissimilarity (beta 

diversity).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.568526doi: bioRxiv preprint 

https://paperpile.com/c/I5JzrK/WfUW
https://doi.org/10.1101/2023.11.29.568526
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

3. Results 

3.1. Demographic and clinical characteristics of the study's subjects 

Table 1 lists the demographic and clinical characteristics of patients (n = 204) and controls (n = 143). 

All patients were Polish residents. Out of 204 patients, men made up 125 (61.3%), and women 79 

(38.7%). The mean ± standard error of the mean age in years was 61.2 ± 1.3 (range, 17396) for 

patients. A large majority of patients overall (202 or 99.0%) were White. One patient was Latino and 

one patient was mixed-race. Antibiotics were administered to 57.4% of the SARS-CoV-2-infected 

patients. In terms of the outcome, 170 patients (83.3%) were released from the hospital, and 34 

(16.7%) died because of COVID-19 while they were in the hospital. Additionally, 50 patients 

(24.5%) were admitted to the ICU, and 154 (75.5%) patients were continuously hospitalized in the 

dedicated COVID-19 unit. 

3.2. The gut microbiome of COVID patients differs from that of non-COVID controls 

We examined changes in the fecal microbial composition of actively infected SARS-CoV-2 patients 

over time by comparing weighted UniFrac distances between a patient's (case) initial and subsequent 

sample points, in contrast to the control group. Interestingly, the distance between control samples 

remained relatively stable over time, while the distance between patient samples increased as time 

progressed (Fig. 1A). Furthermore, in our comparison of samples on a day-to-day basis, we observed 

that the distances were more substantial for the patient group and exhibited a slower rate of decrease 

compared to the control group (Fig. 1B). 

We compared the microbiome diversity of patients based on their hospitalization outcomes (survival 

or death), ICU referral status (yes or no), and antibiotic treatment (treated or untreated) using their 

earliest or post-antibiotic introduction samples, while also including control samples as a separate 

category. According to Shannon's evenness analysis, patients who passed away due to COVID-19 

differed significantly from those who recovered (p ≤ 0.05). The difference was more pronounced 
when comparing surviving patients to controls (p ≤ 0.01), and most significant when contrasting 
deceased patients with healthy controls (p ≤ 0.001). While no statistically significant difference in 
weighted UniFrac was observed between surviving and non-surviving patients in pairwise 

comparisons of beta diversity distances based on hospital outcomes, a level of significance was 

detected when comparing patients to controls (p-value for surviving patients vs. controls, p ≤ 0.01; 
dead patients vs. controls, p ≤ 0.001). 
 

In terms of ICU admission, the most significant diversity variations were observed between patients 

referred to the ICU and those solely in the COVID unit, as well as between ICU-referred patients and 

controls (p ≤ 0.0001 to 0.001). Regardless of hospitalization type, ICU referral consistently led to 

statistically significant differences in weighted UniFrac distances, particularly when compared to 

controls. 

In contrast, patients not treated with antibiotics showed similar diversity levels as the control group, 

while those receiving antibiotics exhibited higher Shannon diversity (p ≤ 0.0001 to 0.001) compared 
to both untreated patients and controls. The difference was most pronounced in patients who received 

antibiotics (p ≤ 0.001). However, there were no significant variations in beta diversity between 

treated and untreated patients. (Fig. 1C).  

We employed weighted UniFrac-based principal coordinate analysis and looked for any metadata 

variables that could explain the behavior of the data points on the PCoA plot (Fig. 1D). 80.48% of 
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the total variation in the SARS-Cov-2 patients was described by the first three PCoA components (ie. 

PC1-PC3). We were unable to identify a single demographic or clinical variable that would explain 

the distribution, but by creating a PCoA biplot, we were able to determine which taxa contribute the 

most to the PCoA axes (Fig 1D). The presence of Enterococcus faecium in the patient samples 

accounts for the major variation. The remaining four OGUs - Bacteroides uniformis, Klebsiella 

pneuomoniae, Bacteroides doreii CAG:222, and Prevotella copri, are also largely responsible for the 

divergence. 

3.3. Machine learning predictions 

Our objective was to ascertain the most critical information for accurately predicting patient 

outcomes. To accomplish this, we devised six distinct classifiers, each designed to analyze different 

sets of input data: baseline, clinical, metadata, microbiome, microbiome combined with clinical, and 

microbiome combined with metadata. 

Regarding the prognosis of ICU admission, all classifiers outperformed the baseline significantly 

based on the ROC-AUC score (Fig. 2A). To further assess and compare these classifiers, we 

conducted ANOVA analysis, revealing that their performance was strongly influenced by the 

availability of features. Microbiome-based classifiers demonstrated the highest performance, and the 

inclusion of additional data, whether clinical or metadata, did not provide a substantial advantage. In 

contrast, classifiers that did not utilize microbiome data performed notably worse, with metadata-

based classifiers showing only marginal improvement over the baseline. 

In Fig. 2B, the ROC curves of the four main classifier types (clinical, metadata, microbiome, and 

baseline) are compared, highlighting that the microbiome classifier's enhanced AUC is primarily 

attributed to its ability to achieve a significantly higher True Positive Rate for small False Positive 

Rates compared to other classifiers. 

Remarkably, only four features (taxa) are necessary to achieve optimal performance for the 

microbiome-based classifier (Fig. 2C). The assessment of feature importance revealed that high 

concentrations of Orrella dioscoreae and Klebsiella pneumoniae correlated with worse outcomes, 

while the presence of Lachnospiraceae bacterium 3-2 was associated with improved patient 

prognosis (Fig. 2D). 

A comparable analysis of the life/death outcome is available in the supplementary material (Fig. S1). 

3.4. Shallow vs deep shotgun comparison 

 

To validate the suitability of using shallow sequencing instead of deep shotgun sequencing in 

COVID-19 patients, we conducted a comparative analysis of matched samples from our study. 

Shallow and deep sequencing samples exhibited no significant differences in fundamental quality 

parameters such as read length or GC content. The relatively higher rate of quality control failures in 

deep sequencing reads could be attributed, in part, to a greater duplication rate compared to shallow 

sequencing (Fig. S2). While alpha diversity and some observed features were higher in deep 

sequencing, there was no distinct separation between the two sequencing types when performing beta 

diversity clustering (Fig. 3A, Fig. S3). 

A high degree of overlap of species identified in shallow and deep sequencing was observed (Fig. 

3B). While substantially more species were found in deep sequencing, all but five species identified 

in shallow sequencing were discovered in deep sequencing. The five species unique to shallow 
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sequencing were CAG-269_sp900554175, Faeciplasma gallinarum, Klebsiella pneumoniae, 

Mediterraneibacter glycyrrhizinilyticus A, Parafannyhessea umbonate and Scatacola A 

faecigallinarum. They rarely appear in bioinformatics analyses, and Klebsiella pneumoniae is known 

to be frequently misclassified (Arnold et al., 2011). Species identified in both shallow and deep 

sequencing had an abundance of at least 0.2% in deep sequencing. Any species below this threshold 

were not detected in shallow sequencing (Fig. 3C). Considering that most studies determine 1% as a 

cut-off (Cena et al., 2021), our result indicated a similarity between the range of species detected by 

both methods. In addition to that, we showed that while the abundance of species was not perfectly 

matched between shallow and deep sequencing, the hierarchy of species abundance, even below 1%, 

was well maintained (Fig. 3D). 

4. Discussion 

In the wake of the COVID-19 pandemic, the scientific community has devoted significant effort 

towards investigating the pathogenesis of SARS-CoV-2 infection and identifying the risk factors that 

contribute to disease outcomes. As part of these efforts, our study explored the potential role of gut 

microbiota as a risk factor for ICU referral or mortality in individuals with COVID-19. Using both 

shallow and deep sequencing techniques, we studied the gut microbiomes of 204 COVID-19 patients 

at two reference hospitals in Poland. We sought to learn how hospitalization affected the makeup of 

the microbiota and how these changes related to patient outcomes. The study employed machine 

learning to see if microbiome data might predict COVID-19 prognosis more accurately than 

conventional predictors like age, sex, and BMI. Using both shallow and deep sequencing techniques 

allowed us to contrast their precision, specifically to find out if shallow sequencing can serve as a 

potential cost-effective substitute with excellent taxonomic accuracy for COVID-19 patient clinical 

outcomes prediction. 

The fecal microbial beta diversity of the SARS-CoV-2 patients who are actively infected increases 

over time as compared to that of the hospital staff, whose distance almost remains constant over time 

(Fig. 1). Additionally, day-to-day comparisons revealed that the distances are greater and are 

shrinking more slowly for the patients than for the control group. This suggests that the microbiome 

of COVID-19 hospitalized patients is less stable and subject to greater qualitative and quantitative 

perturbations over time compared to healthy controls. 

We were able to distinguish patients stratified by survivability from healthy subjects when both alpha 

(Shannon's evenness) and beta (unweighted UniFrac) heterogeneity were compared, as the 

differences between these groups were significant in both cases (Fig. 1). The highest significance was 

observed for deceased patients matched against controls. Similarly, the metrics of both diversities, 

alpha and beta, are most important for the patients admitted to ICU paired with controls. It should be 

noted that although the difference was smaller, we also observe a significant difference between 

patients who only stayed in the COVID-19 ward and those who were referred to ICU. 

Most of the variation in the unweighted UniFrac PCoA plot can be attributed to the presence of 

Enterococcus faecium in patient samples. The plot's divergence is also largely attributable to the 

other four OGUs, Bacteroides uniformis, Klebsiella pneuomoniae, Bacteroides dorei CAG:222, and 

Prevotella copri. 

Using patient metadata, microbiome and clinical data, we carried out an in-depth machine-learning 

analysis. Our findings shed light on the varying impacts of different combinations of clinical, 

microbiome, and patient metadata on the accuracy of outcome prediction for patients and suggest that 
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the AUC-ROC of the classifiers is primarily influenced by their access to microbiological data, 

indicating that microbiological data is a more reliable predictor of patient outcomes compared to 

clinical or metadata. Our analysis of feature importance additionally proves that only a few of the 

taxa are important in the prediction of patients’ outcomes. 

However, our results do not allow us to conclude unequivocally that the observed dysbiosis is a 

causal factor for the severe course of the disease or a consequence of it. Gastrointestinal dysbiosis in 

COVID-19 can occur due to antibiotic therapy, secondary bacterial infections, and enteral nutrition 

(Langford et al., 2020; Zaher, 2020). Altered microbiota can cause inflammation in the 

gastrointestinal tract, malnutrition (Zaher, 2020), and viral and bacterial infections (Zuo et al., 2020). 

COVID-19 patients can also have an altered gut microbiota before the disease and/or hospital 

admission (Alberca et al., 2021). In these patients, COVID-19 may exacerbate dysbiosis leading to 

different health complications like metabolic disturbances (Alberca et al., 2021). 

We have proven that shallow shotgun sequencing is a valid alternative to deep sequencing for 

predicting COVID-19. Although deep sequencing detected more species and had higher alpha 

diversity, there was no significant difference in beta diversity clustering between the two methods. 

The range of species detected by both methods was similar, and the abundance of species was 

maintained in a proper hierarchy. Our findings suggest that shallow sequencing may be a viable 

substitute for deep sequencing in clinical settings. Shallow shotgun sequencing has been 

demonstrated to yield quicker findings in a clinical context, and it also offers better economic 

viability when used with popular and widely accessible Illumina platforms like MiSeq. Shallow 

shotgun sequencing, which is substantially less expensive than deep shotgun sequencing, provided 

lower technical variation and higher taxonomic resolution than 16S sequencing, according to Reau et 

al. (La Reau et al., 2023). As bioinformatics techniques are developed and standardized and 

computational performance increases, the use of in situ microbiome characterization in the 

therapeutic context is becoming more and more accepted. 
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Figure captions 

Figure 1. The gut microbiome of COVID patients. (A) Subject’s weighted UniFrac distances to 
subject’s first sample after rarefaction, showing how the composition of fecal microbes in SARS-

CoV-2 patients change over time compared to the control group. Linear regression models the 

relationship between distance and time. (B) Subject’s day-to-day change of weighted UniFrac 

distance. Linear regression shows the correlation between the distance and time point. (C) 

Microbiome diversity measures - Shannon’s entropy and weighted UniFrac for survivability, 
Intensive Care Unit referral and antibiotics usage measured for subject's first sample after rarefaction 

(death, icu) or first sample collected after antibiotic introduction (antibiotics) (ns - not significant; * -  

0.01 < p  ≤ 0.05; ** - 0.001 < p  ≤ 0.01; *** - 0.0001 < p  ≤ 0.001; **** - p  ≤ 0.0001) (D) PCoA 
biplot of weighted UniFrac of subject's oldest sample after rarefaction coloured by survivability with 

taxa contributing to the PCoA axes. 

Figure 2. Insights into what influences the predictive power of patients’ outcomes (ICU vs non-

ICU) classifier. (A) Impact of different types of data on the predictive power of the classifiers. This 

plot shows that access to microbiome data immensely increases the performance of the classifiers. (B) 

ROC curve of classifiers grouped by access to data. (C) Increasing the number of metagenomic features 

doesn’t improve ROC-AUC beyond the 7 most important. (D) Shapley values of the most important 

features for classification. 

Figure 3. Comparison of shallow and deep shotgun sequencing methods. (A) Clustering of samples 

based on Bray-Curtis beta diversity. Blue: deep, red: shallow sequencing. (B) Overlap of species 

identified in shallow and deep sequencing. (C) KDE plot of species abundance identified uniquely or 

commonly in shallow and deep sequencing. (D) Correlation of species abundance in shallow and deep 

sequencing, restricted to abundance below 1% in an exemplary sample. Spearman = 0.75, p-value = 

0.0, Mean squared error = 9.04, R-squared = 0.71. 
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Tables 

Table 1. Summary of the COVID-19 patients from the study cohort. 

 COVID-19 patients 

 Before rarefaction After rarefaction to 100, 000 

features per sample 

Number of participants 204 176 

Age, mean years 61.2 61.2 

Sex  

Male (%) 125 (61.3) 103 (58.5) 

Female (%) 79 (38.7) 68 (41.5) 

Ethnicity  

White (%) 202 (99.0) 174 (98.8) 

Latino (%) 1 (0.5) 1 (0.6) 

Mixed (%) 1 (0.5) 1 (0.6) 

Hospitalization outcome  

Death (%) 34 (16.7) 28 (15.9) 

Survival (%) 170 (83.3) 148 (84.1) 

Antibiotics treatment during 

hospitalization 
 

Yes (%) 117 (57.4) 98 (55.7) 

No (%) 87 (42.6) 78 (44.3) 

ICU referral  

Yes (%) 50 (24.5) 41 (23.3) 

No (%) 154 (75.5) 134 (76.7) 
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Abbreviations 

AUC-ROC - area under the receiver operating characteristic curve 

BMI - body mass index 

COVID-19 - Coronavirus Disease 2019 

GI - gastrointestinal 

ICU - intensive care unit 

MAG - metagenome-assembled genome 

OGU - operational genomic unit 

PCoA - principal coordinates analysis 
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