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Abstract

There is a current interest in quantifying time-varying connectivity (TVC) based on neuroim-
aging data such as fMRI. Many methods have been proposed, and are being applied,
revealing new insight into the brain’s dynamics. However, given that the ground truth for
TVC in the brain is unknown, many concerns remain regarding the accuracy of proposed
estimates. Since there exist many TVC methods it is difficult to assess differences in time-
varying connectivity between studies. In this paper, we present tvc_benchmarker, which is a
Python package containing four simulations to test TVC methods. Here, we evaluate five dif-
ferent methods that together represent a wide spectrum of current approaches to estimating
TVC (sliding window, tapered sliding window, multiplication of temporal derivatives, spatial
distance and jackknife correlation). These simulations were designed to test each method’s
ability to track changes in covariance over time, which is a key property in TVC analysis. We
found that all tested methods correlated positively with each other, but there were large dif-
ferences in the strength of the correlations between methods. To facilitate comparisons with
future TVC methods, we propose that the described simulations can act as benchmark tests
for evaluation of methods. Using tve_benchmarker researchers can easily add, compare
and submit their own TVC methods to evaluate its performance.

Author summary

Time-varying connectivity attempts to quantify the fluctuating covariance relationship
between two or more regions through time. In recent years, it has become popular to do
this with fMRI neuroimaging data. There have been many methods proposed to quantify
time-varying connectivity, but very few attempts to systematically compare them. In this
paper, we present tvc_benchmarker, which is a python package that consists of four simu-
lations. The parameters of the data are justified on fMRI signal properties. Five different
methods are evaluated in this paper, but other researchers can use tvc_benchmarker to
evaluate their methodologies and their results can be submitted to be included in future
reports. Methods are evaluated on their ability to track a fluctuating covariance parameter
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between time series. Of the evaluated methods, the jackknife correlation method per-
formed the best at tracking a fluctuating covariance parameter in these four simulations.

Introduction

Time-varying connectivity (TVC) is being applied to an increasing number of topics studying
the brain’s networks. Topics that have been explored with TVC include development [1], vari-
ous pathologies [2, 3], affect [4], attention [5], levels of consciousness [6], and temporal prop-
erties of the brain’s networks [7-9]. There are many concerns raised regarding methodological
issues. These issues span biased variance [10, 11], movement artefacts [12], and appropriate
statistics [13, 14].

Methods used to derive TVC estimates are as diverse as its range of applications. Examples
of different methods include: the sliding window method, sometimes tapered [15], multipli-
cation of temporal derivatives [16], methods using Euclidean distance between spatial config-
urations [8], k-means clustering methods [7, 17], eigenconnectivities [18], point process
methods [19, 20], Kalman filters [21, 22], flexible least squares [23], temporal ICA [24], slid-
ing window ICA [25], dynamic conditional correlation [26], phase differences [27] wavelet
coherence [4], hidden Markov models [28], and variational Bayes hidden Markov models
[29]. This list of TVC methods is not exhaustive, and even more methods can be found in the
literature.

While these methods and their applications may offer new insights into the functions of the
brain and cognition, it becomes difficult to compare results when different studies use differ-
ent methods to estimate brain dynamics. Each method is often introduced and evaluated by
the authors’ own simulations, empirical demonstrations, and/or theoretical arguments. How-
ever, apparent differences in time-varying connectivity in different studies may have been
influenced, or even caused, by differences in the underlying methodology used to derive con-
nectivity estimates.

In order to maximize reproducibility of reported findings, it is important that comparisons
of proposed TVC methods can be made with a common set of simulations. To this end,
we have developed four simulations that aim to show how well results from different TVC
methods correlate with each other and evaluate their performance of tracking time varying
covariance. The proposed methods and simulations are included in the Python package
tvc_benchmarker, (available at www.github.com/wiheto/tvc_benchmarker). Researchers can
evaluate their own TVC methods in tvc_benchmarker. The software also allows for new meth-
ods to be submitted to us for inclusion in future reports. Here we demonstrate the functional-
ity and results obtained by tvc_benchmarker by evaluating the performance of the following
five methods: sliding window (SW), tapered sliding window (TSW), spatial distance (SD),
jackknife correlation (JC), and multiplication of temporal derivatives (MTD).

Methods
Software used

All methods for TVC derivation were implemented in Teneto v0.2.7b [8]. Bayesian statistics
for evaluating performance of TVC methods were calculated in PyMC3 V3.1 [30], simulations
and analysis were done using Numpy V1.13.1 [31], Scipy V0.19.1 [32], and Pandas V0.19.2.
Matplotlib V2.0.2 [33] and Seaborn V0.7.1 [34] were used for figure creation.
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Time-varying connectivity methods

As discussed in the introduction, the list of published TVC methods that are designed to be
applied to fMRI imaging data is long. In an ideal world all methods will be contrasted under
the same conditions such that an evaluation of those methods that give appropriate results can
be performed. However, it was not our intention to provide a complete comparison of all pub-
lished methods. Instead we have made all simulation tools freely available so that researchers
can evaluate their own TVC methods. Before describing the simulations and the results, we
provide a brief overview of the five methods that are evaluated in this article.

Sliding window (SW). The SW method is one of the most commonly used methods to
estimate TVC. The sliding window method uses a continuous subsection of the data, estimates
the degree of correlation (Pearson correlation), slides the window one step in the time series,
and repeats. This creates a smooth connectivity time series as neighbouring estimates of con-
nectivity share all but two data points. The SW method is based on the assumption that nearby
temporal points are helpful to estimate the covariance. In our simulations, two different win-
dow lengths were chosen: 15 and 29 (when necessary these are referred to as SW-15 and SW-
29). Given the common choice of a time resolution (TR) of 2 seconds in fMRI, this results in a
window length of 30 and 58 seconds which touches the upper and lower bound for rule-of-
thumb window lengths that has been suggested [35]. The reason for choosing odd number
window lengths is to ensure that the center of each window corresponds to a specific time-
point.

Tapered sliding window (TSW). The TSW method can be described as a weighted Pear-
son correlation where the weights are set to zero except for the data points residing inside the
window. This procedure is identical to the SW method except that a larger weight is placed on
time points closer to the centre of the window (#). Often, the weights are distributed according
to a Gaussian distribution centred at t. In our simulations using the TSW method, we used a
Gaussian distribution with a variance of 10 time-points. The window lengths were the same as
for the SW method (centered at t) and referred to as TSW-15 and TSW-29. See also [15] for an
example of usage of the TSW method.

Spatial distance (SD). In the sliding window methods, temporally adjacent data points
are used to estimate the covariance. An alternative is to use time points that have similar spatial
profiles. There are two steps to this method: first, a weight vector is calculated for each time
point using the spatial distance between all other time points; second, a weighted Pearson cor-
relation is used to derive the connectivity estimate at .

To calculate the weight vector for t (w,), each weight is based on the distance of the spatial
dimensions and another time point. In functional neuroimaging data the “spatial dimensions”
correspond to the amplitude of the signal for the voxels or regions of interest. While the
weights can be derived in multiple ways, [8] took the inverse of a distance function between
the spatial dimension amplitudes at t and for each other time point (u):

1
wl) =5 t#u (1)

where the Euclidean distance was selected for D. This entails that time points that have a simi-
lar activation profiles close to t will get larger weights. The weight vectors are each subse-

quently scaled between 0 and 1. The “self weights” (w\") are set to 1. Each time point gets its
own weight vector (w,) which is the length of the time series.

After the weight vector has been calculated, the connectivity estimate at ¢ is the weighted
Pearson correlation where each time point is weighted by w®. This entails that points that are
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spatially close are considered. For more details of the SD method, see [8]. See [36] for a detailed
discussion how the SD method differs in its assumptions from the sliding window methods.

There is an important difference in [8] and the simulations here. [8] uses all regions of
interest (not just two time series) to calculate the weight vector. As there are only two time
series in all the simulations in this paper, this might be considered closer to a bivariate version
of the SD method where each edge has its own collection of weight vectors (i.e. the bivariate
SD method will have a weight vector for each edge and time point while the multivariate SD
method will have a weight vector for each time point). S1 Appendix demonstrates that, on
fMRI data, there is a large correlation between the bivariate and multivariate methods (mean
Spearman rank (p): 0.76 (from 38,503 edges)).

Jackknife correlation (JC). The JC method has previously been shown on electrocortico-
graphic data for single trial coherence and Granger causality [37]. To the best of our knowl-
edge, the jackknife correlation method has not yet been utilized in the TVC literature. Thus,
we provide a more detailed description of its logic and workings. The jackknife correlation
method is outlined in more detail and contrasted to a binning approach (which is akin to the
sliding window method) in [37]. The JC method, when applied to single time point covariance
estimates of signals x and y at t computes the Pearson correlation between the two signals
using all time points in x and y with the exception of x, and y,:

Zi (%, — %) —¥.) ) it (2)

JC = — T — 2 ~T —\2
(Zi (xz'*xt) Zi (yi*yt)

Of note, the inclusion of the minus sign in the equation above is to correct for the inversion
caused by the leave-n-out process (see below). The X, and y, are the expected values, excluding
data at time point t:

_ 1< .
X, = ﬁin 1 7é t (3)

To demonstrate the JC method, 10,000 time points were drawn from a multivariate Gauss-
ian distribution with a mean of 0 and a variance of 1 to generate the two time series shown in
Fig 1A. Additionally, the time series were constructed so that the covariance between the two
varied as a function of time. For the first 2,000 time points, the covariance was set to 0.8 and
then further decreased in steps of 0.2 for every 2,000th time point (Fig 1B).

The relative connectivity time series are similar (but inverted) for a leave-n-out compared
to a window-length-#n methods (Fig 1C). The JC method corresponds to the case when n =1,
i.e. aleave-1-out approach after correcting for the inversion (all leave-n-out estimates are mul-
tiplied by -1 to correct for the inversion in Fig 1). All possible choices of n were computed for
the leave-n-out method: (i.e. a leave-1-out to a leave-9,998-out. The window-of-length-n was
computer for n = 2 to n = 9,998 (see Fig 1D and 1E). Note that the window-length method
could be 9,999 and 10,000 but was not used as the leave-n-out method cannot do this.

As shown in Fig 1G, the Spearman correlation between the two methods is close to 1 for
various choices of n. However, their correspondence in covariance estimates between the two
methods departs at the tails (Fig 1F and 1H). These deviations occur for two reasons: (1) when
n is very small it implies there is little data to work with for the window-length-»n method. On
the other hand, low values of # do not hamper the performance of the leave-n-out method. (2)
Large values of n will result in few estimates for covariance for each time point, which makes
the correlation between the two methods less stable. In sum, while it is impossible to create
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Fig 1. Illustration of jackknife correlation and leave-n-out/window-length-n symmetry. (A) Two time series drawn
from a multi-variate Gaussian distribution, stretching over 10,000 time points with their covariance parameter
changing every 2,000th time point. (B) The covariance parameter of the two time series in A. (C) Depiction of how the
window-length-n and leave-n-out relate to each other. Shaded region indicates time points used in the correlation
estimate at time point t. (D) The correlation estimate per time point for varying n of the leave-n-out method
(correcting for the inversion by multiplying with -1). The time series for each # is scaled between 0 and 1. (E) Same as
D, but for the window-length-n method. (F-H) Correlation between the time series of connectivity estimates for
window-length-# and leave-n-out methods for different values of n. (F) Shows # between 1-50 (G) Shows n over the
entire time series. (H) Shows n between 9,950 and 10,000. (I) The correlate of the amplitude of the two time series. 49
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time points were sampled from a multivariate Gaussian distribution with a covariance of 0.5. (J) Illustration of the
jackknife correlation estimate for different possible values, relative to the 49 time points in L.

https://doi.org/10.1371/journal.pcbi.1006196.9001

estimates for window-of-length-1, it is however possible to use a leave-1-out method as an
approximation for a window-length-1 due to the symmetry between the two methods.

When estimating the TVC, the two major aims are to accurately measure the covariance
and to be sensitive to changes in the covariance. In the case of the leave-1-out (i.e. the jackknife
correlation) approach, we achieve a unique connectivity estimate per time point that is more
reliable than using a smaller window size (due to the fact that more data is used). Usually, the
SW method has to find a balance between the two aims. In this respect, the JC method is an
optimal sliding window method as it does not have to compromise between temporal sensitiv-
ity on the one hand and accuracy on the other.

The time point based TVC estimate obtained with the JC method should be interpreted as
the relative difference in connectivity at any particular data point compared to all other data
points in the time series. This is because the covariance for each data point is estimated based
on its relationship to all other data points. To illustrate this effect, consider the 49 data points
randomly sampled from a Gaussian distribution with a mean of 0 and a covariance of 0.5 as
shown in Fig 11. If we assume that the 49 time points are used to compute the JC estimate for
the covariance for a 50th time point, the value of this new data point will have no impact on its
JC covariance estimate because the other 49 points are used. What the 50th time point does is
change the JC estimate for the other 49 points. This means that the relative position of the 50th
point changes in relation to the rest of the time series. The standardized JC estimate of covari-
ance for all possible values of the 50th time point is shown in Fig 1]. What this example shows
is that an individual JC estimate has little meaning by itself and only becomes meaningful rela-
tive to the other JC estimates in the time series.

When using the JC method to estimate TVC, it is important to keep in mind that it leads to
a compression of the variance. Furthermore, the amount of compression is proportional to the
length of the time series. It is often helpful to scale or standardize the connectivity time series
derived by the JC method before any subsequent analysis. Finally, while a Pearson correlation
was used in this study for the JC, it is possible to use other correlation methods such as the
Spearman Rank instead.

Multiplication of temporal derivatives (MTD). The MTD approach to estimate TVC
was first introduced in [16]. In brief, the multiplication of temporal derivatives method first
computes the temporal derivative of a time series as:

dfi =x,, —x;, (4)

Next, the coupling between the signal sources i and j is defined as the product of the two
derivatives df; and df; for each time point t, divided by the product of the standard deviation
for df; and df;:

_ dfdf,

MTD,., = 5
4 gy (5)

The MTD method is often used together with a smoothing function in the form of a win-
dow function. In our simulations, a window length of 7 was chosen, since this was considered
optimal in [16].

Post-processing for TVC estimates. After each of the TVC methods were applied to the
simulated data a Fisher transform was applied to the connectivity time series (except for the
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MTD method). To illustrate the variance compression that results from the JC method, the
TVC for the JC method was not standardized in Simulation 1.

The SW, TSW and MTD methods should all be greatly affected by any autocorrelation
existing in the signal as they all use windows of neighboring time points. The SD and JC meth-
ods are more robust to affects of autocorrelation since these two methods are permutation-
invariant (i.e. they will return the same estimates even if the order of the time series is shuf-
fled), unlike SW, TSW, and MTD.

Simulations

This section provides an overview of the simulations that are conducted and the general meth-
odology used. See each simulation’s subsection in the results section for full details of each
simulation.

To compare accuracy and performance for the five TVC methods, we performed four dif-
ferent simulations. The first simulation investigated the similarity of the different TVC meth-
ods by correlating their respective connectivity estimates. The second simulation targeted how
well the different methods were able to track a fluctuating covariance parameter. The third
simulation tested how robust the estimated fluctuating covariance is when the mean of the
time series fluctuates, mimicking the haemodynamic response function. The forth simulation
considered whether TVC methods can accurately track abrupt changes in covariance.

All simulations considered two time series each consisting of 10,000 samples generated
from multivariate Gaussian distributions. At each time point, the covariance between the time
series could vary (see below). A full account of all model assumptions made as well as a justifi-
cation for our model parameter settings for the four simulations models used in the present
study are given in S2 Appendix.

Simulations 2, 3, and 4 all consisted of a fluctuating covariance parameter (r,) that was used
to generate the covariance between the time series. TVC methods were evaluated based on
their ability to track the r, parameter. How r, was generated could vary for different simula-
tions. In simulation 2, r, varied throughout the time course based on a normal distribution.
The simulation was run multiple times allowing for different autocorrelation of r, through
time. In simulation 3, r, varied in the same way as simulation 2 but it was applied to time series
that had a non-stationary mean that mimicked a HRF. This simulation was also run multiple
times with different autocorrelations. In simulation 4, r, varied based on two different “states”
that lasted for varying amounts of time. This method was run two times when states could be
short (2-6 time points long) or long (20-60 time points long). By evaluating the correlation of
different TVC methods with each simulation’s r;, we can evaluate which time varying proper-
ties a method is sensitive to.

Simulation 1-3 have all their parameters justified on empirical data in S2 Appendix. Simula-
tion 4 has its state lengths based on what has been identified by different TVC studies. It is
important to stress that these different state lengths may have been identified due to the meth-
ods which were used and may not reflect real dynamic properties.

Statistics

In principle, it is possible to simply correlate the results from the different TVC methods with
the r, values of each simulation to statistically evaluate their performance. However given the
inherent, but known, uncertainty in r;, we deemed it was appropriate to create a statistical
model which accounts for this uncertainty. Thus, for each TVC method, a Bayesian statistical
model was created to evaluate the relationship between the TVC estimate and the signal
covariance.
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The Bayesian model aims to predict y, which is the vector of the known sampled covari-
ances (i.e. r;) with x, which is the connectivity estimate for each TVC model.

yi~ N, 0)

1 = o+ px;
a~N(0,1) (6)

B~ N(0,1)

7 ~ Nyue(0,1)

All TVC estimates and the values of r; were standardized prior to calculating the models
with a mean of zero and standard deviation of one. This was done to facilitate the interpreta-
tion of the posterior distribution parameter 5. The different TVC methods vary in the number
of time points estimated (e.g. the beginning and end of the time series cannot be estimated
with the sliding window method). In order to facilitate model comparison between methods,
we restrained the simulations to include only the time points that had estimates from all TVC
methods (i.e the limit was set by the SW and TSW methods which can estimate the covariance
for 9,972 out of 10,000 time points).

The statistical models were estimated through 5,500 draws from a Markov Chain Monte
Carlo (MCMC) with a No-U-Turn Sampler [38] sampler implemented in pymc3. The first 500
samples were burned.

The statistical models for the different TVC methods can be contrasted in two ways: (1)
model comparison by examining the model fit; (2) by comparing the posterior distribution of
B for the different TVC methods. To evaluate the model fit, the Watanabe-Akaike information
criterion (WAIC, [39]) was used. The posterior distribution of 3 illustrates the size and uncer-
tainty of the relationship between x and y. To aid the interpretation of these results for readers
unfamiliar with Bayesian statistics, the mode of the distribution corresponds approximately to
a maximum-likelihood estimated § value in a linear regression (if uniform priors are used for
the parameters the posterior mode and the maximum-likelihood estimator would have been
exactly the same).

In simulation 1, the different TVC estimates are compared with each other to evaluate
how similar these estimates are. To do this, a Spearman correlation is used to evaluate the
relationship.

Results
Simulation 1

The first simulation aimed to quantify the similarity of the different TVC time series estimates.
If two TVC methods are strongly correlated, this is a positive sign that they are estimating sim-
ilar aspects of the evolving relationship between time series. A negative correlation between
two methods would suggest that they do not capture the same dynamics of the signal.

In this simulation we created two time series (X), each consisting of 10,000 time points in
length. The time series were constructed by:

X =0X, _,+e¢ (7)

The autocorrelation with lag of 1 is determined by aX;_; and the covariance at ¢ is deter-
mined by . € was sampled from a multivariate Gaussian distribution (N):

e~ N(u,X) (8)
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where 4 is the mean and X being the covariance matrix of the multivariate Gaussian distribu-
tion. Both time series were set to have a mean of 0, variance of 1 and a covariance of 0.5. In
summary:

n=20,0
1 05
s ( ) 9)
05 1

The autoregressive parameter ¢ controls the size of the autocorrelation in relation to the
preceding time point (i.e. the proportion of the previous time point that is kept). Here, it was
set to 0.8 which was deemed to be an appropriate degree of autocorrelation for BOLD time
series (see S2 Appendix). A portion of the two simulated time series is found in Fig 2A together
with the plots of their respective autocorrelation (Fig 2B and 2C) and a plot of the correlation
between the two time series (Fig 2D).

The resulting connectivity time series for the different TVC methods when applied to the
simulated data is shown in Fig 3. From Fig 3, several qualitative observations can be made
about the methods. Firstly, there was a very strong similarity between the SD and JC methods,

despite the fact that they consist of quite different assumptions. Further, the SD, JC, and MTD
methods were all able to capture considerably quicker transitions than the SW and TSW
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Fig 2. Simulated data in Simulation 1. (A) Two correlated time series were generated (a total of 10,000 time points were simulated, only the first 100
time points shown in the figure for illustration purposes). (B-C) Autocorrelation of both time series (colors corresponding to respective time series
given in (A)) for up to 10 lags. (D) Kernel density estimation illustrating the covariance between two time series (r = 0.51).

https://doi.org/10.1371/journal.pcbi.1006196.9002
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TSW-29. Only the first 500 time points are shown for illustration purposes.

https://doi.org/10.1371/journal.pchi.1006196.9003

methods. The long window lengths (SW-29 and TSW-29) were smoother than the SW-15 and
TSW-15 methods. Finally, the variance of the JC method was considerably smaller than all
other methods, illustrating the variance compression as previously discussed.

To assess the degree of similarity of the estimates of functional connectivity time series
obtained from all TVC methods, a Spearman correlation was computed for each TVC method
pairing (Fig 4). The connectivity time series estimates from all methods correlated positively
with each other (Fig 4). Some methods showed strikingly strong correlations (SD & JC: 0.976;
SW-15 & TSW-15: 0.999; SW-29 & TSW-29: 0.978). Between the different window lengths the
correlation was slightly smaller (SW: 0.644; TSW: 0.755). The lowest correlation was found
between the JC and MTD methods (p = 0.138).

The results from Simulation 1 showed that the connectivity estimates provided by the tested
methods are, to a varying extent, correlated positively with each other. It also illustrated how
the different methods differ in their resulting smoothness of the connectivity time series. The
results from this simulation cannot validate whether any TVC method is superior to any other,
it merely highlights which methods produce similar connectivity time series.
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Fig 4. The degree of similarity of functional connectivity estimates for all tested TVC methods computed with the
Spearman correlation coefficient in Simulation 1.

https://doi.org/10.1371/journal.pchi.1006196.9004

Simulation 2

In Simulation 1, it was not possible to evaluate how well the different TVC methods perform.
To evaluate the performance, the simulated data must change its covariance over time and
how this changes must be known beforehand. The aim of this simulation was to see how well
the derived TVC estimates can infer the covariance that the data was sampled from when the
covariance is fluctuating.

Two time series were generated (X). Each time point ¢ is sampled from a multivariate
Gaussian distribution:

X, ~ N(:u7 Zt) (10)

where the covariance matrix was defined as:

% = ( ) (11)

and where the variance, 0 = 1, was set to 1. At each time point, r, was sampled from another
Gaussian distribution:

ro~N(y,,o0,) (12)

The mean of the time series (4) was set to 0, the mean of the covariance (y,) was set to 0.2.
The simulation was run three times where the parameter for the variance of the fluctuating
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covariance (o,) was set to three different values {0.08, 0.1, 0.12}. This ensured that the different
TVC methods are robust to different variances of connectivity changes.

The covariance at time (r,) was sampled from a Gaussian distribution. Each time point
received a new value of r,. This allowed us to compare each TVC method’s connectivity esti-
mate in relation to the time varying covariance parameter ;. Note, that at each time point the
relationship between the two time series is dictated by a single realization from a Gaussian dis-
tribution where r, is the covariance. Thus, we should not expect the connectivity estimate from
any method to correlate perfectly with r,. However, it is possible to compare which method
correlate better or worse with r, to evaluate the overall performance.

The above model will have a temporally fluctuating covariance. It fails to include any auto-
correlation in the time series. Not accounting for this may bias the results for some of the
tested methods that utilize nearby temporal points to assist estimating the covariance. Merely
adding an autocorrelation, like in Simulation 1, will also increase the covariance between the
two time series and this will not be tracked by r,. To account for this, we placed a 1-lag autore-
gressive model for the fluctuating covariance at ry:

r,=or,_, +e (13)

e~N(u,a,) (14)

Where a is the autocorrelation parameter. The values for y, and o, were the same as above.
When ¢ =1, e was set to 0.

This revised formulation of our simulation model allowed for the covariance to fluctuate,
but with an added autocorrelation on the covariance parameter. In simulation 2, three differ-
ent settings of the parameter o were used (¢ = 0, 0.25, 0.5). When o = 0 it is equivalent to the
original model outlined above with no autocorrelation. With an increased o it entails a greater
influence of the covariance from ¢ — 1 in sampling the covariance at t. @ = 0.5 is reasonable
given highly correlated BOLD time series. An @ = 0 is more to be expected when time series
are less correlated. 10,000 time points were sampled for each of the three different settings of
the autocorrelation parameter. See also S2 Appendix for a justification of the parameter set-
tings chosen here based on empirical fMRI data.

Simulation 2 was run with 9 different simulation parameter combinations: three different
values of @ and three different values of g,. A sample of time series generated with the model
using different settings for the autocorrelation parameter « is shown in Fig 5A, 5D and 5G.
Due to the varying degree of autocorrelation, the mean covariance for time series changes as a
function of ¢, but r, still depicts a Gaussian distribution (Fig 5B, 5E and 5H). The degree of
crosscorrelation between the two time series followed the specified a parameter for the auto-
correlation of the covariances (Fig 5C, 5F and 5I).

The results from Simulation 2 are shown in Tables 1-3 (for ¢, = 0.1) and Tables A-F in S3
Appendix (for o, = 0.08 and 0.12). The JC method had the lowest WAIC score for all settings
of o, followed by the SD method. The MTD method came in third place for all but one param-
eter configurations. All WAIC values, their standard error and A WAIC scores are shown in
Tables 1-3.

The posterior distribution of the § parameter for each of the TVC methods for all parameter
choices are shown in Fig 6 when o, = 0.1 (for other values of o, see Figs A-B in S3 Appendix).
Larger values in the § distribution for a method (i.e. correlating more with ;) conforms with
the best fitting models (i.e. lower WAIC score). The SW-15, SW-29, TSW-15, TSW-29 and
MTD methods performed equally poor when o = 0, and all improved as & increased. The
MTD method improved the most as the ¢ value increased, followed by the TSW-15 and SW-
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Fig 5. A sample of fluctuating covariance generated in Simulation 2. (A-C) o = 0 and 0, = 0.1. (A) An example of r, fluctuating over time, showing
only first 500 time points shown for illustration purposes. (B) Distribution of the fluctuating covariance parameter (r,) (C) Autocorrelation of , for 10
lags. (D-F) Same as A-C but with a = 0.25. (G-I) Same as A-C but with a = 0.5.

https://doi.org/10.1371/journal.pcbi.1006196.g005

Table 1. Results of Simulation 2 where @ = 0.0 and o, = 0.1. Tables shows WAIC, WAIC standard error, and differ-

ence in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE AWAIC
JC 28103.6 142.963 0
SD 28104.3 143.047 0.687371
TD 28200.4 143.872 96.7158
TSW 28201.9 143.896 98.2981
SW 28205.8 143.956 102.192

https://doi.org/10.1371/journal.pcbi.1006196.t001

Table 2. Results of Simulation 2 where @ = 0.25 and 5, =0.1. Tables shows WAIC, WAIC standard error, and differ-

ence in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE AWAIC
JC 28104.6 139.337 0
SD 28117.6 139.386 12.9322
TD 28168.1 139.483 63.5039
TSW 28181.8 139.501 77.1804
SW 28195.7 139.752 91.0829

https://doi.org/10.1371/journal.pcbi.1006196.t002
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Table 3. Results of Simulation 2 where @ = 0.5 and ¢, = 0.1. Tables shows WAIC, WAIC standard error, and differ-
ence in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE AWAIC
JC 28037.2 141.83 0
SD 28053.5 141.797 16.2988
D 28120.2 141.398 82.9943
TSW 28148.7 141.628 111.464
SW 28201.2 142.018 163.961

https://doi.org/10.1371/journal.pchi.1006196.t003

15 methods. SD and JC showed the best performance, with similar posterior distributions of §,
although the JC was always slightly higher. There was little difference between the methods
when changing the variance of the fluctuating covariance (o,) (See S3 Appendix). The j values
do however scale when o, changes. When o, is smaller, 5 values decrease due to there being
more uncertainty when sampling each realization from similar distributions.

At times parts of the posterior distributions of the SW, TSW and MTD methods were
below 0 to the extent that they would be not classed as “significant”. For example, these meth-
ods performed worst when o, = 0.08 and a = 0. Here the percentage of the posterior distribu-
tion above 0 was: SW-15: 80%, SW-29: 47%, TSW-15: 84%, TSW-29: 54%, MTD: 89%. The JC
and SD methods always had the entire posterior distributions above 0.

In sum, the JC method, followed closely by the SD method, showed the best performance in
terms of tracking a fluctuating covariance between two time series as performed in Simulation
2. The MTD method ranked in third place when there is a higher crosscorrelation between the
time series present. The SW and TSW methods showed the worst performance, both in the
WAIC score and posterior distributions of 5.

a=0 a=0.25 a=0.5

SW-15 SD JC

SW-29

MTD

TSW-29 TSW-15

0 0.04 0.08 0.12 0 0.04 0.08 0.12 0.04 0.08 0.12 0.16
Posterior (B) Posterior (B) Posterior (B)

Fig 6. Posterior distributions of the # parameter of the Bayesian linear regression models in Simulation 2. The figure shows the results for varying
values of the autocorrelation parameter () where the variance of the fluctuating covariance (g,) is equal to 0.1. See S1 Appendix for other values of g,.
For each parameter configuration, a model was created for each TVC method. The TVC estimate was the independent variable estimating the
fluctuating covariance (r;) between the two time series.

https://doi.org/10.1371/journal.pchi.1006196.9006
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Simulation 3
The aim of Simulation 3 was to examine the behaviour of different TVC methods when there
were non-stationarities present in the data. A typical scenario when this will occur is in a TVC
analysis in task fMRI. Simulation 3 is identical in structure to Simulation 2 apart from the fol-
lowing two changes: (1) A non-stationarity, aimed to mimic the occurrence of an event related
haemodynamic response function (HRF). Specifically y, which was set to 0 for both time series
in Simulation 2, received a different value at each t (see next paragraph). (2) o, was set to 0.1
instead of varying across multiple values. This is because Simulation 2 showed no large differ-
ences when varying o,.
U was set, for both time series, according to the value of a simulated HRF, that was twenty
time points in length and repeated throughout the simulation. The HRF was simulated, with a
TR of 2, using the canonical HRF function as implemented in SPM12 using the default param-
eters [40]. This HRF, which has a length of 17 time points, was padded with an additional 3
zeros. The amplitude of the normalized HRF was multiplied by 10 to have a high amplitude
fluctuations compared to the rest of the data. y, is thus the padded HRF repeated throughout
the entire simulated time series. This represents a time series that includes 250 “trials” that
each lasts 40 seconds. This simulation helps illustrate how well TVC methods could be imple-
mented in task based fMRI. Examples of the time series generated using different autocorrela-
tion are shown in Fig 7.
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Fig 7. Examples of time series used in Simulation 3 where the mean of the time series is sampled from a time series that included a train of
simulated event related HRF fMRI responses (spaced apart every 20 time points). Only the first 100 time points are shown for illustration purposes.
(A)a=0,(B)a=0.25,(C) a=0.5.

https://doi.org/10.1371/journal.pcbi.1006196.9007
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Fig 8. Posterior distributions of the f parameter of the Bayesian linear regression models in Simulation 3. Fig. shows a 1x3 grid with the varying
values of the autocorrelation (c). For each parameter configuration, a model was created for each TVC method. The TVC estimate was the independent
variable estimating the fluctuating covariance (r,) between the two time series.

https://doi.org/10.1371/journal.pchi.1006196.g008

The results from Simulation 3 are shown in Fig 8 (posterior distributions of ) and Tables
4-6 (model fit) which evaluated each TVC’s method performance at tracking the fluctuating
covariance (r;). Results were similar with Simulation 2. In the case when the autocorrelation of
the covariance was 0, the SW, TSW and MTD methods performed quite poorly, but again all

Table 4. Results of Simulation 3 where a = 0.0. Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE AWAIC
JC 28175.3 142.323 0
SD 28184 142.346 8.68954
TD 28207.1 142.591 31.7657
TSW 28207.5 142.661 32.2356
SW 28207.6 142.653 32.2856

https://doi.org/10.1371/journal.pcbi.1006196.t004

Table 5. Results of Simulation 3 where o = 0.25. Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE AWAIC
JC 28138.3 142.606 0
SD 28160.5 142.749 22.2079
D 28184.1 143.06 45.8161
TSW 28190.6 143.249 52.3508
SW 28202 143.265 63.7404

https://doi.org/10.1371/journal.pcbi.1006196.t005
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Table 6. Results of Simulation 3 where o = 0.5. Tables shows WAIC, WAIC standard error, and difference in WAIC
from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE AWAIC
JC 28106.1 139.883 0
SD 28136.7 139.769 30.6289
D 28150.5 139.587 44.4145

TSW 28177.2 139.546 71.1701
SW 28203 139.717 96.9538

https://doi.org/10.1371/journal.pchi.1006196.t006

improved to varying degrees as this increased. The longer windows (SW-29 and TSW-29)
methods were generally the worst method, followed by shorter sliding window methods (SW-
15 and TSW-15). The MTD method came in third place. The JC method has the best perfor-
mance, followed closely by the SD method, in all parameter conditions. When a = 0, some
methods had only portions of their posterior distribution above 0 (SW-15: 73%, SW:-29: 30%,
TSW-15: 78%, TSW-29: 65%, MTD: 84%). The JC and SD methods had 100% of their distribu-
tions above 0 for all parameter conditions.

In sum, the results from Simulations 2 and 3 suggests that the JC method has the best per-
formance in terms of detecting fluctuations in covariance compared to the other four TVC
methods. This result also holds when a non-stationary event related haemodynamic response
was added to the mean of the time series.

Simulation 4

Simulation 4 aimed to test how sensitive different TVC methods are to large and sudden
changes in covariance (i.e. changes in “brain state”) that previously have been postulated to
exist in fMRI data (e.g. [11, 15, 17]). We here start in a similar fashion as we did in Simulation
2 where samples for the two time series are drawn from a multivariate Gaussian distribution

X~ N(w,Z) (15)

zt=<a ) (16)
r, o

Similar to simulation 2, we set ¢, = 0 and o = 1. The covariance parameter r, was sampled
from a Gaussian distribution where the mean was shifted

rt ~ N(fustatet’ O_r) (17)

and where 0, = 1. At each state transition, .., was randomly chosen from a set M (M = {0.2,
0.6}). The duration of each state was randomly sampled from L. Two different scenarios for
state transitions were simulated. In the fast transition condition L = {2, 3, 4, 5, 6} and in the
slow transition condition L = {20, 30, 40, 50, 60}. These values correspond to the number of
time points a “state” lasts. Beginning at £ = 1, fi;,.., t0 /i, , was randomly sampled from M
where [ was sampled from L. This procedure was continued until X, was 10,000 samples long.

These choices for brain state changes provide time scales of state transitions between 40-
120 seconds (slow condition) or 4-12 seconds (fast condition) in simulated fMRI data with a
TR of 2 (Fig 9A and 9D). The statistical model for evaluating the different TVC methods per-
formance was the same as Simulation 2 and 3. A summary of data generated in Simulation 4 is
shown in Fig 9.
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Fig 9. A sample of fluctuating covariance generated in Simulation 4. (A-C) Quick state transitions (between 2-6 time points long). (A) An example of
r, fluctuating over time, showing only first 500 time points shown for illustration purposes. (B) Distribution of the fluctuating covariance parameter (r,)
(C) Autocorrelation of r; for 10 lags. (D-F) Same as A-C but with the long state transitions (between 20-60 time points long).

https://doi.org/10.1371/journal.pchi.1006196.9009

The results from Simulation 4 are shown in Fig 10 and Tables 7 and 8. In the quick transi-
tion condition, the JC and the SD showed the best performance for both the WAIC scores and
the posterior distribution of § (Fig 10A; Table 7). This was followed by the SW-15 and TSW-
15 methods. In the slow transition condition the two sliding window methods outperformed
the other methods (Fig 10B; Table 8), with the longer windows (TSW-29 and SW-29) being
outperforming the shorter windows. The JC and SD methods perform similarly for both con-
ditions. Thus, when there are shifts in covariance that occur relatively slowly, the sliding win-
dow methods are sensitive at tracking these changes. All methods had 100% of their posterior
distributions above 0.

Discussion

In this study we have developed four simulations to test the performance of different proposed
time-varying connectivity methods. The first simulation showed which methods yield similar
connectivity time series. Notably, all methods correlated positively with each other, but to a
varying degree. The second simulation generated data in which the autocorrelated covariance
between simulated time series varied in time. In this case, the JC method, followed closely by
the SD method, showed the best performance. In the third simulation, the generated time
series contained a non-stationary mean related to haemodynamic responses. Again, our simu-
lations suggested that the JC method performed best. The fourth simulation included nonlin-
ear shifts in covariance (in an attempt to simulate brain state shifts). When the states changes
were quick, the JC method performed best. When the state changes were slow, the TSW (fol-
lowed by the SW) performed best.

In a previous simulation that evaluated the sliding window method, the sensitivity of the
SW and TSW methods was found to be good at detecting state shifts [41]. Here, at least when
the transitions are slow, we found similar results. The sliding window methods is optimal if
there are slow state changes. However it is unclear if “state changes” are the best yardstick for
time-varying connectivity. In particular, non-stationarities in time-varying connectivity have
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Fig 10. Posterior distributions of the § parameter of the Bayesian linear regression models in Simulation 4. Fig. shows
a 1x2 grid with the varying values of the state length. For each parameter configuration, a model was created for each TVC
method. The TVC estimate was the independent variable estimating the fluctuating covariance (r;) between the two time

series.

https://doi.org/10.1371/journal.pchi.1006196.9010

Table 7. Results of Simulation 4 where state length = {2,3,4,5,6}. Tables shows WAIC, WAIC standard error, and dif-
ference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE AWAIC
JC 27548.3 92.0207 0
SD 27571.1 92.7548 22.8124
TD 27741.6 93.5845 193.243
TSW 27749.5 93.3275 201.18
SW 28072.5 87.9986 524.197

https://doi.org/10.1371/journal.pcbi.1006196.t007

Table 8. Results of Simulation 4 where state length = {20,30,40,50,60}. Tables shows WAIC, WAIC standard error,

and difference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE AWAIC
TSW 21730.5 144.261 0
SW 22796.5 139.927 1065.97
TD 26630.8 106.131 4900.32
JC 27478.9 92.087 5748.42
SD 27503.1 93.3021 5772.6

https://doi.org/10.1371/journal.pchi.1006196.t008
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been attributed to spurious sources such as movement [12]. Given the unknowns of the “true”
connectivity, methods which are robust over conditions are more likely the safer options—in
this case the JC or SD method performed similarly in both conditions. However, as mentioned
in the methods section, the SD method tested here is the bivariate version of the method and
not the multivariate version previously proposed in [8] (see also S1 Appendix for more the
relationship between these methods).

Opverall the jackknife correlation method performed the best across all simulations. We
have shown it to be robust to numerous changes in parameters. However, the JC method is
not without some considerations. First, it introduces variance compression that reduces the
absolute variance, while preserving the relative variance within the time series. This variance
compression also scales with the length of the time series. The consequence of this is that direct
comparisons of the TVC variance between cohorts/conditions become hard to interpret as
time-varying fluctuations, especially when the length of the data varies. However, this is the
case for most methods and it should be remembered that the variance is proportional to the
static functional connectivity [7, 9, 10]. Simply put, the JC method (like all other methods)
should not be used for a direct contrast of the variance of TVC time series. Second, the JC
method sensitivity means that noise will be carried over per time point instead of being
smeared out over multiple time points. This is actually beneficial as it allows for further pro-
cessing steps to be applied that aim to remove any remaining noise (e.g. motion) which cannot
be done when the noise has been smeared across the connectivity time series (e.g. in windowed
methods).

The simulations and results presented in this study should not be taken as an exhaustive
and complete assessment of all aspects of a given method to conduct TVC. Rather, the four
simulations described here represents a subset of possible scenarios in terms of different meth-
odological characteristics that might be of interest. The current four simulations are marked
tvc_benchmarker simulation routine V1.0. If modifications or additional scenarios are consid-
ered to be improvements to the current simulations, these will get an updated version number.
Many additional simulations could be conceived on top of this original routine. For example,
one could include multiple time series, adding movement type artifacts, adding frequency rele-
vant characteristics, a stationary global signal etc. These have not been included here, as the
focus in these simulations was to primarily assess tracking of a fluctuating covariance. Input
from researchers about appropriate additions to the simulations is welcome.

We encourage researchers designing TVC methods to benchmark their own results with
tve_benchmarker (www.github.com/wiheto/tvc_benchmarker). Researchers need only to
write a Python function for their method and use it as an input for tve benchmarker.
run_simulations () and their method will be compared to the TVC methods presented
in this paper (see online documentation). Functions can then be submitted through the func-
tion tve_benchmarker.send method ().All valid methods submitted will be released
in summaries of the submitted benchmarked results so that researchers can contrast the per-
formance of different methodologies.
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