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Abstract

In the wild, any population is likely to be spatially structured. Whereas we deeply
understand evolutionary dynamics in well-mixed populations, our understanding of evo-
lutionary dynamics in subdivided populations needs to be improved. In this work, I
quantify the impact of genotype-dependent gene flow on the evolutionary dynamics of a
subdivided population. Specifically, I build a model of a population structured as the
island or the stepping stone model in which genotype-dependent gene flow is represented
by individuals migrating between its sub-populations at a rate depending on their geno-
type. I analytically calculate the fixation probability and time of a mutation arising in
the subdivided population under the low migration limit, which I validate with numerical
simulations. I find that the island and the stepping stone models lead to the same fixation
probability. Moreover, comparing the fixation probability in these models to the one in
a well-mixed population of the same total census size allows me to identify an effective
selection coefficient and population size. In the island and the stepping stone models, the
effective selection coefficient differs from the selection coefficient if the wild-type and the
mutant migration rates are different, whereas the effective population size equals the total
census size. Finally, I show that genotype-dependent gene flow increases the fixation time,
which allows for distinguishing the island and the stepping stone models, as opposed to
the fixation probability.

Introduction

In the wild, any population has a certain degree of spatial structure. For example, human ac-
tivity leads to fragmentations of natural habitats, causing animal populations to be subdivided
into sub-populations [1, 2]. Although habitats resulting from fragmentations are isolated, some
individuals may migrate from one sub-population to another, a process called gene flow [3].
Like mutations, gene flow is an important mechanism in evolutionary biology as it increases
genetic diversity, as opposed to natural selection and genetic drift. However, gene flow the-
oretically has a disruptive effect on adaptation by counteracting selection and promoting the
fixation of deleterious mutations [4], although some empirical evidence showed the opposite [5].
Thus, whereas we understand the impact of natural selection and genetic drift on evolutionary
dynamics in a well-mixed population (at least in the absence of epistasis [6]), considering spatial
structure and gene flow makes predicting evolutionary outcomes more challenging.

This challenge has been addressed since the beginning of theoretical population genetics by
calculating the fixation probability of a mutation in a subdivided population [7]. Tt was long
believed that most spatial structures would give the same fixation probability as in well-mixed
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populations [8, 9, 10, 11, 12]. However, further studies pointed out that this result emerges
from the conservative gene flow assumption (i.e., migration of individuals does not change sub-
population sizes), and challenged this long-standing belief by considering more complex cases.
For example, a meta-population model, including local extinctions and colonizations, led to a
fixation probability of beneficial mutations different from that in well-mixed populations [13].
A more recent model showed that some spatial structures could either decrease the fixation
probability of deleterious mutations and increase that of beneficial mutations or do the opposite
depending on the gene flow pattern [14], which indicates that some spatial structures impact
the efficacy of natural selection.

The efficacy of natural selection in subdivided populations is related to the effective popu-
lation size [15, 16]. As explained in [17], if the effective population size of a spatially structured
population is larger than its total census size, the structure increases the efficacy of natural
selection, i.e., it increases the fixation probability of beneficial mutations and decreases that of
deleterious mutations compared to a well-mixed population. Conversely, if the effective popu-
lation size of a spatially structured population is lower than its total census size, the structure
decreases the efficacy of natural selection, i.e., it decreases the fixation probability of beneficial
mutations and increases that of deleterious mutations compared to a well-mixed population.
This link between the effective population size and the fixation probability of a mutation in a
subdivided population explains why so much effort has gone into deriving the former [17, 18].

Whereas the impact of the population structure topology on evolutionary dynamics has re-
ceived much attention, for example, through evolutionary graph theory [20], much less is known
about the impact of genotype-dependent gene flow. In particular, numerous theoretical studies
investigating evolutionary dynamics in subdivided populations assume genotype-independent
gene flow [3, 4, 21]. Yet, there is empirical evidence that genotype-dependent gene flow occurs
in nature [22], e.g., in aquatic species [23, 24], butterflies [25, 26], and plants [27]. For example,
Glanville fritillary butterflies (Melitaea cinxia) carrying a specific allele of the metabolic enzyme
phosphoglucose isomerase have higher metabolic flight rates and, thus, higher dispersal rates
[25]. Therefore, there is a need to better understand the impact of genotype-dependent gene
flow on the evolutionary dynamics of subdivided populations.

In this paper, I investigate the evolutionary dynamics of a subdivided population, focusing
on the impact of genotype-dependent gene flow on their evolutionary outcome. To do so, I build
a model describing a population subdivided as the island or the stepping stone model in which
gene flow is modeled by individuals migrating between the sub-populations at a rate depending
on their genotype. To quantify the evolutionary dynamics of the subdivided population, I
derive analytical predictions for the fixation probability, the number of (fixed) migrants, and
the fixation time of a mutation, which I compare to numerical simulations.

Model and Methods

Subdivided population model. I build a continuous-time model with overlapping gener-
ations in which each life cycle event (i.e., reproduction, death, migration) is decoupled from
each other and occurs at random. I consider an asexual haploid population of total census
size Nioy subdivided into D well-mixed (or homogeneous) demes whose census sizes, although
varying over time, are limited by a carrying capacity N. The carrying capacity can result
from, for example, limited space or nutrients. I focus on a single locus where two alleles exist,
namely wild-type (W) and mutant (M), resulting in genotypes whose intrinsic birth rates are
denoted by bw = 1 and by = 1 + s, respectively, where s is the selection coefficient. The sign
of the selection coefficient s describes whether the mutation is beneficial (i.e., s > 0), neutral
(i.e., s = 0), or deleterious (i.e., s < 0). I also define an intrinsic death rate d, identical for
both genotypes, and genotype-dependent migration rates per individual, denoted by mw and
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Well-mixed model Island model Stepping stone model

Figure 1: Some examples of subdivided populations. The well-mixed population model
and two models of populations that are subdivided into a finite number of demes in which
there are two genotypes, namely wild-type (W) and mutant (M). The island model represents a
subdivided population in which each deme is connected to all the others, allowing its individuals
to migrate between any pair of demes at a rate depending on their genotype (i.e., my; and myy
for the mutants and the wild types, respectively). The stepping stone model represents a
subdivided population arranged on a ring in which each deme is connected to its two adjacent
neighbors, allowing its individuals to migrate between adjacent demes at a rate depending on
their genotype (i.e., my and my for the mutants and the wild types, respectively). Parameter
values: number of demes D = 5, wild-type deme size Nw = 12, mutant deme size Ny = 12,
total census size N = 60.

my. 1 do not consider de novo mutations, which is equivalent to considering a zero mutation
probability upon reproduction. Similarly to [11, 14, 28, 29|, I assume a low migration limit so
that no migration occurs during the fixation of either genotype in a deme. In this limit, the
migration rate is much lower than the fixation rate, so each deme can be assumed to be fully
wild-type or mutant most of the time. Within each deme, the population follows a continuous-
time logistic growth with density-dependent birth rates and density-independent death rates.
More specifically, the wild-type and mutant per capita birth rates satisfy by (1 — Nw/N) and
bum(1— Ny /N), respectively, whereas the wild-type and mutant per capita death rates are equal
to d. I focus on the saturation phase in which the census size fluctuates around its equilibrium,
that is, Nw = N(1 — d/bw) for the wild-type demes and Ny = N(1 — d/by) for the mutant
demes. I consider timescales much shorter than those of extinctions resulting from demographic
stochasticity [30].

Fixation dynamics in a single deme. I shall recall some known results about the fixation
dynamics of either genotype in a single well-mixed deme assuming no migration, which will be
useful for the following analytical derivations. Although I deal with size-varying demes, their
size fluctuates around their equilibrium, which allows me to use the Moran process to derive
the fixation probabilities and times [31]. Suppose I consider a wild-type deme of size Ny in
which there is a single mutant. This mutant takes over the deme with a probability equal to

11—t .
Um = 11 W (1)
N otherwise,
W

where 7 = 1 + s is the relative fitness of the mutant (see the supplement of [32] for a full
derivation). Similarly, the fixation probability of a wild type in a mutant deme of size Ny is
given by

1—
uw = 1_ r (2)
—NM otherwise.
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Applying the weak selection assumption to the fixation probabilities uw and uy (i.e., |s| < 1),
in addition to considering that the deme sizes satisfy Ny = . N and Nw =~ J N, leads to

by > bw >
1—e°
——  if s #£0,
uy & Qe (3)
Isl<1 N otherwise,
and ] .
eNs if s #£0,
wy ~ < L—e (4)
lsl<1 | 1 .
N otherwise.

The form of Equations 3 and 4 is similar to the well-known fixation probability in a Wright-
Fisher population obtained in the Kimura’s diffusion limit [33, 31]. Both fixation probabilities
can be compared by computing the ratio uw /uy, which assuming N|s| > 1 gives

Uw _
I (5)
Un 18I N|[s[>1

Since I want to focus on the low migration limit so that no migration disturbs a fixation
process within a deme, I need to recall the mean fixation time of either genotype, namely wild-
type and mutant. The fixation time of a mutant in a wild-type deme reads (see the supplement
of [32] for a full derivation)

E ifs=0

d )

Thx = 1 NL(NA+5) —is)(1— (14 5)7)(1 = (14 s)N) |
ds(1—(1+s)~N) ; i(N —4) otherwise.

(6)
Similarly, one can compute the mean fixation time of a wild type in a mutant deme, but it is
equal to that of a mutant in a wild-type deme. In other words, the fixation time of a mutation
is the same as for a wild type with the same strength of selection (i.e., |s|), a result shown in

[9]-

Fixation probability in the well-mixed model. Before considering spatially structured
populations, I shall recall the fixation probability of a mutant fraction p in a well-mixed popu-
lation of total census size Ny (see Figure 1 left), which reads

1 — e_Ntot5p

—  ifs#0,
Uwm(p) oy 1 L= e ’ v
|s| <1, Neot |s]> otherwise.

The fixation probability of a mutation in a well-mixed population will serve as a basis to assess
the impact of spatial structure on the evolutionary dynamics of subdivided populations.

Fixation dynamics in the island model. The island model is a subdivided population
model in which each deme is connected to all the others, resulting in D(D — 1) migration paths
(see Figure 1 center). In the island model, the fixation probability of a mutation starting from
a fraction of fully mutant demes p reads in the low migration limit
_ 7#Dp
— ifr#£1
Up) =17 HTFL )

P otherwise,
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where 7 = (myuy Ny ) /(mwuw Nw) is the relative fitness of mutant demes (Equation 8 was
derived in [14] but I extended it to genotype-dependent migration rates). I can simplify Equa-
tion 8 by considering that by > d and by > d, which implies Ny =& N and Nw ~ N, as well
as |s| < 1 and NJs| > 1, which implies uw /uy =~ e~V*. These assumptions allow me to write

Equation 8 as N
1 — e~ Nesep
~ 1N if so # 0, (9)
Is|<LN]s|>1 otherwise,
where N, = D x N = Ny is the effective population size and s, = s —log(a)) /N is the effective
selection coefficient with o = myw/my. I defined the effective population size and selection
coefficient, i.e., N, and s, respectively, to make the fixation probability U have the same form
as Uww (see Equations 7 and 9).

To further characterize the dynamics of mutation fixation, I want to compute the mean
number of fixed migrants, regardless of their genotype, until the fixation of a mutation, given
this mutation becomes fixed. More specifically, a fixed migrant is a migrant fixing in a deme
of the other genotype, leading to a change in the number of wild-type and mutant demes. To
compute the number of fixed migrants, I analyze the evolutionary dynamics of the subdivided
population by using a Markov process tracking the number of mutants demes i [34, 35]. Since
I focus on the low migration limit, only two events can change the number of mutant demes.
Either a wild type migrates from one of the D —i wild-type demes to one of the ¢ mutant demes
and becomes fixed, decreasing the number of mutant demes by 1 (i.e., i — i — 1), or a mutant
migrates from one the ¢ mutant demes to one of the D — i wild-type demes and becomes fixed,
increasing the number of mutant demes by 1 (i.e., ¢ — i 4+ 1). The probabilities that these

events occur upon a migration leading to a fixation within a deme are given by

, (10)

Hi i—1 = N - . N
—il mwNWuw(D — Z)Z + mMNMuMz(D — ’L) mWNWuW -+ mMNMuM

and

(11)

Hz‘ i — s . . N )
—iH mwNWuwl(D — Z) + mMNMuMz(D — Z) mWNWuW -+ mMNMuM
respectively. Then, using Equation 1.39 from [36] allows me to compute the mean number
of fixed migrants ng, starting from a fraction of fully mutant demes p until the fixation of a
mutation, given it fixes, which reads

A7 A+ P) L+ 72) —p(=1+ 7 P) (A + 7 P))D #1
(=1 +71)(—=1 4+ 7DPp)(=1 47 D) )

otherwise.

nﬁx(p> - D2(1 . p2)

3

An additional interesting quantity to characterize the dynamics of mutation fixation is the
mean number of migrants, which, as opposed to the mean number of fixed migrants, does not
distinguish between migrants fixing and those going extinct (i.e., does not distinguish between
migrants leading to a change in the number of wild-type and mutant demes and those leaving
the number of wild-type and mutant demes unchanged). In this case, I need to modify the
probabilities I introduced earlier. Although the events changing the number of mutant demes
are still the same, the probabilities that these events occur upon a migration, regardless of
whether the migrant fixes or goes extinct, are given by

i1 = — _ iy =
—il mwNw(D — Z)Z -+ mMNMZ(D — Z) mwNW + mMNM

5
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and
mMNMZ(D — Z) mMNM

ﬁi—)iJrl = umM - (14)
By applying the same method as for the mean number of fixed migrants (i.e., by using Equation
1.39 of [36]), I obtain the mean number of migrants until the fixation of a mutation, given it
fixes, which reads

(L FP) 1472 —p(1 4 PP F PN+ FID

n0) = 9§ pagy 4y ey T (15)

6UM

otherwise,

where rg = TTLMNM/(mwNw)

To quantify the timescales associated with mutation fixation, I compute the mean fixation
time of a mutation, given it fixes. The reasoning is similar to the one I applied for the number
of (fixed) migrants, but here, I employ the transition rates rather than the probabilities. The
transition rates satisfy

TR = mwNwuw (D — )i, (16)
and
T = maNaun (D — )i, (17)

and lead to the fixation time

land land 7D _ 7=Dp 1 £ ok f_k
tlS an — 1s an 1 D 18
(p) ( / ) 1 —7Dp * mMNMuM(l — i Dr k—Xp:DlZ; l ’ ( )
where . 1 Dol k pl=k _ 5k
1s and (1 /) ’ 19
(1/D) = l—rDmMNMUMJ;zz; "

Finally, to make sure I choose parameter values corresponding to the low migration limit,
and also to rigorously compare different population structures, I need to compute the total
migration rate in the island model. Since I consider genotype-dependent migration rates, the
total migration rate will depend on the number of mutant demes in the subdivided population,
which is why I focus on the total migration rate averaged over the number of mutant demes,
which is given by

(mw + mM)D(D - 1)N

) .
Note that I considered that by > d and bw > d, which implies Nyy & N and Nw ~ N.

island __
T, =

(20)

Fixation dynamics in the stepping stone model. The stepping stone model is a subdi-
vided population model in which each deme is arranged on a ring and connected to their left
and right neighbors, resulting in 2D migration paths (see Figure 1). The fixation probability in
the stepping stone model starting from a fraction of fully mutant demes p in the low migration
limit has exactly the same form as the island model (see Equation 8) [14].

Similarly, the probabilities that the number of mutant demes changes in the stepping stone
model are the same as the island model (see Equations 10, 11, 13, and 14). This result may
seem surprising since, in the island model, there are i(D — i) migration paths that can lead to
a change in the number of mutant demes i, whereas there are 2 in the stepping stone model.
However, in both models, the number of migration paths in the probability that the number
of mutant demes increases by one is the same as the probability that the number of mutant
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demes decreases by 1, which makes it vanish. As a result, both models have the same mean
number of fixed migrants ng, and the same mean number of migrants n.

Now, I compute the mean fixation time of the mutation in the stepping stone model, given
it fixes. The reasoning is similar to the one I applied for the island model, but the transition
rates in the stepping stone model differ from those in the island model. The transition rates in
the stepping stone model satisfy

stepping—stone
T35 = 2mw Nwuw , (21)

and

stepping—stone __
T = 2my Ny (22)

which lead to the fixation time
(L+7P)Y(=1+7PP) —p(=1+7P)1+7PP)D

i 7,
tStepping—Stone _ QmMNMuM(—l + 7:_1)(—1 + f_D)(—l + F_DP) ?é 923
o) — | 2
— otherwise.
12mMNMuM

Similarly to the island model, I compute the total migration rate averaged over the number
of mutant demes in the stepping stone model, which reads

Tritepping—stone — (mW + mM)DN ’ (24)
where I considered that by > d and bw > d, which implies Nyt = N and Nyw ~ N.

Numerical simulations. To ensure my analytical predictions are correct, I compare them
to numerical simulations based on a Gillespie algorithm [37, 38]. Since I focus on the low
migration limit, I can simply simulate the stochastic dynamics of the number of mutant demes,
denoted by i. The elementary events that can happen are an increase or a decrease in the
number of mutant demes (i.e., i — ¢ + 1 and ¢ — i — 1, respectively)

 Tisigr . . . ig N
o i =4 i+1: Increase in the number of mutant demes with rate 751204 = my Nyjung (D —1)i

in the island model and rate T*sPP™8 ™" = 2my Nypuy in the stepping stone model.
CTisio1 . . . i
e i =5'i—1: Decrease in the number of mutant demes with rate T;5%"% = my Nywuw (D —

i)i in the island model and T*PPE5" — 9 Ny in the stepping stone model.
The total rate of events is given by T; = T;_,;4+1 + T;_;_1, and simulation steps are as follows

1. Initialization: At time t = 0, I start with D — 1 wild-type demes and one mutant deme.

2. Monte Carlo step: Time t is incremented by At, which is sampled from an exponential
distribution with mean 1/7;. The next event to occur is chosen proportionally to its
probability (i.e., T; ,;11/T; and T;_;_1/T; for an increase and a decrease in the number of
mutant demes, respectively), and is executed.

3. T go back to Step 2 unless only one genotype, either wild-type or mutant, remains in
the meta-population, which corresponds to the fixation of one genotype. In other words,
simulation is ended when fixation occurs.

Simulations were performed with Matlab (version R2021a). Annotated codes to repeat the
simulations and visualizations are available on GitHub (https://github.com/LceMre). Through-
out this work, I will consider parameter values such that the total migration rates averaged
over the number of mutant demes in the island and the steeping stone models are equal (i.e.,
Tisland — 7pstepping=stone — 77 - s0e FEquations 20, and 24). Also, I will choose parameter values
such that the fixation time of either genotype within a deme is much shorter than the time
between two migrations (i.e., 1/Ty, > Tgy; see Equations 6, 20, and 24).

7
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Figure 2: The fixation probability sheds light on an effective selection coefficient.
A The fixation probability U of a mutation starting from one fully mutant deme is plotted
against the selection coefficient s for different ratios a = myy/myy of the wild-type and mutant
migration rates. The solid lines represent the analytical predictions whereas the dashed lines
show the approximated predictions (i.e., Equations 8 and 9, respectively). The markers are
simulated data averaged over 10* replicates. The vertical dotted lines show the effectively
neutral case (i.e., se = 0, where s, = s — log(a)) /N with a = mw /mu), whereas the horizontal
dotted line corresponds to the fixation probability of a neutral mutation, that is, the initial
fraction p of mutant demes. Parameter values: number of demes D = 5, deme size N = 100,
wild-type birth rate by = 1, death rate d = 0.1, wild-type and mutant migration rates for the
island model (mw, my) x 1078 = {(2.06, 10.3), (4.11,8.23), (6.17,6.17), (8.23,4.11), (10.3,2.06) }
(from top to bottom), wild-type and mutant migration rates for the stepping stone model
(mw, my) x 1078 = {(4.12,20.6), (8.23,16.5), (12.3,12.3), (16.5, 8.23), (20.6,4.12)} (from top to
bottom).

Fixation probability. The fixation probability is a key quantity in population genetics, as it
determines whether a mutation will likely take over a population and, thus, reach a frequency
of 1 [7]. My analytical predictions derived in the Model and Methods section allowed me to
obtain an equation for the fixation probability U of a fraction p of mutants in a subdivided
population of D demes of size N. The fixation probability U given by Equation 9 is the same
for the island and the stepping stone models, and has the same form as the fixation probability
in a Wright-Fisher population obtained in the Kimura’s diffusion limit [31, 33]. Therefore, the
fixation probability is a quantity that does not allow for distinguishing between the two models.
Interestingly, my analytical derivations enabled me to identify an effective selection coefficient
s. that differs from the selection coefficient s if the wild-type and mutant migration rates differ
(i.e., se # s if my # myw). Thus, the well-known fixation probability of a neutral mutation,
which is equal to the initial fraction of fully mutant demes p, is obtained when s, = 0 rather
than s = 0. As shown in Figure 2, genotype-dependent migration rates induce a shift in the
fixation probability U, when plotted as a function of the selection coefficient s, toward lower
or higher selection coefficient s depending on the value of the ratio a of the wild-type and
mutant migration rates. This result highlights that the birth rates alone do not suffice to assess
the fitness of a mutation in a subdivided population. For instance, a mutant reproducing less
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frequently than the wild type could still take over the entire population if it can migrate more
often than the wild type.

Moreover, I find that the effective population size N, equals the total census size Nyoz =
D x N, which shows that genotype-dependent migration rates do not decrease or increase
the efficacy of natural selection in the island and the stepping stone models, as opposed to
asymmetric migration rates in some subdivided populations [14]. The absence of decrease and
increase of the efficacy of natural selection explains why the curves in Figure 2, which show
the fixation probability U as a function of the selection coefficient s for different ratios « of the
wild-type and mutant migration rates, have the same shape.

A = o B - o
0 a= & =
9 ) — + a=1/5 1200 7 y — * a=1/5
& €D a=1/2 1 oA A G &) a=1/2
<8 d a=1 < 1000 - a=1
2 2 w" ] a=2
© v = 4 v =
g 7 \ L ass S 800 L o=°
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o2 PAN £ 400
el 3 ]
3+————————————7 e LI A A I L A
-0.05 0 0.05 0.1 -0.05 0 0.05 0.1

Selection coefficient, s Selection coefficient, s

Figure 3: Genotype-dependent migration rates increase the number of migrants
but not the number of fixed migrants. A The number of fixed migrants ng, starting
from one fully mutant deme is plotted against the selection coefficient s for different ratios
a = mw/my of the wild-type and mutant migration rates. B The number of migrants n is
plotted against the selection coefficient s for different ratios a = mw /my of the wild-type and
mutant migration rates. In both panels, the solid lines represent the analytical predictions (i.e.,
Equations 12 and 15), the markers are simulated data averaged over 10* replicates, and the
vertical dotted lines show the effectively neutral case (i.e., s = 0, where s, = s — log(a)/N
with & = mw/my). Parameter values: number of demes D = 5, deme size N = 100, wild-
type birth rate byy = 1, death rate d = 0.1, wild-type and mutant migration rates for the
island model (mw, my) x 1078 = {(2.06, 10.3), (4.11, 8.23), (6.17,6.17), (8.23,4.11), (10.3,2.06) }
(from top to bottom), wild-type and mutant migration rates for the stepping stone model
(mw, my) x 1078 = {(4.12,20.6), (8.23,16.5), (12.3,12.3), (16.5, 8.23), (20.6,4.12)} (from top to
bottom).

Number of fixed migrants until mutation fixation. The fixation probability does not
provide an exhaustive picture of the dynamics of mutation fixation. In particular, the fixation
probability does not provide any insights into the timescales involved in evolutionary dynamics.
Yet, the timescales associated with fixation processes are important to quantify. For example,
comparing the timescale of mutation fixation to that of environmental changes allows for as-
sessing the adaptation and persistence of a population undergoing changing environments. 1|
found that the fixation probability is the same for the island and the stepping stone models,
thus requiring additional quantities to distinguish them. For these reasons, I now focus on
the number of fixed migrants, whether wild-type or mutant, until the fixation of a mutation,
given this mutation gets fixed. As a reminder, a fixed migrant is a migrant fixing in a deme
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of the other genotype, leading to a change in the number of wild-type and mutant demes. As
shown in Figure 3A and Equation 12, the number of fixed migrants ng, is the same for the
island and the stepping stone models, and also depends on an effective selection coefficient s..
Although the number of fixed migrants ng, does not allow for distinguishing both structures,
it provides insights into the mutation fixation dynamics. More specifically, the number of fixed
migrants ng, ranges from D(1 — p), obtained for large and low effective selection coefficients s,
to (D? — 1)/3, obtained for the effectively neutral case (i.e., so = 0). This result confirms that
the effectively neutral case is governed by strong stochasticity, resulting from genetic drift, and
leads to several fixations of either genotype within demes before the mutation takes over the
entire population, given the mutation becomes fixed. Conversely, the cases in which the effec-
tive selection coefficient s, is nonzero are driven by the deterministic force of natural selection,
which leads to a sequential fixation of mutants within each deme until the mutation takes over
the entire population, while no wild type fixes.

Number of migrants until mutation fixation. In the previous paragraph, I focused on the
number of fixed migrants until the mutation takes over the entire population, given it becomes
fixed. This quantity only provides a partial picture of migration events since it focuses only on
migrations leading to a change in the number of mutant demes. Now, I turn my attention to the
total number of migrants until the fixation of a mutation, given this mutation fixes, regardless
of whether migrants lead to a change in the number of mutant demes. As shown in Figure 3
and Equation 15, the number of migrants n is the same for the island and the stepping stone
models, as the fixation probability U and the number of fixed migrants ng., and depends on
an effective selection coefficient s,. However, as opposed to the number of fixed migrants ngy,
the largest value of the number of migrants n, obtained for the effectively neutral case (i.e.,
se = 0), depends on the ratio a of the wild-type and mutant migration rates. More specifically,
the larger the difference between the wild-type and mutant migration rates, i.e., myw and myy,
respectively, the larger the maximum value of the number of migrants n obtained for s, = 0.

Fixation time. Calculating the number of (fixed) migrants until the fixation of a mutation,
given this mutation becomes fixed, allowed one to get insights into the evolutionary dynamics
of subdivided populations. Now, I take a step further by considering the fixation time of a
mutation. Figure 4 and Equations 18 and 23 show that the island and the stepping stone
models have different fixation times, as opposed to the fixation probability and the number
of (fixed) migrants. Thus, the fixation time is a quantity that allows for distinguishing both
models. Specifically, as shown in Figure 4C, the fixation dynamics are faster in the island model
than in the stepping stone model, although the ratio between both ranges only from 1.2 to
1.25. The difference between both models may appear surprising for two reasons: i) I set the
same total migration rate for both models, and ii) I showed that both models have the same
number of (fixed) migrants until mutation fixation (see Figure 3). This difference is due to the
fact that the island and the stepping stone models do not have the same number of migration
paths. For example, an island model with a single mutant deme has D — 1 migration paths
to increase the number of mutant demes, whereas the stepping stone model has 2 migrations
paths.

Discussion
Whether on a microscopic or macroscopic scale, many populations are spatially structured.

One type of spatial structure is a population subdivided into sub-populations, between which
individuals can migrate, a process akin to gene flow. Whereas we understand the evolution-
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Figure 4: The fixation time allows for distinguishing the island and the stepping
stone models. A The fixation time in the island model #5414 starting from one fully mutant
deme is plotted against the selection coefficient s for different ratios e = my /my of the wild-
type and mutant migration rates. B The fixation time £5PP"&5" gtarting from one fully
mutant deme is plotted against the selection coefficient s for different ratios o = myw/my of
the wild-type and mutant migration rates. C The ratio of the fixation times #3_° /#5804 (with s-s
standing for stepping-stone) starting from one fully mutant deme is plotted against the selection
coefficient s for different ratios o = my /my of the wild-type and mutant migration rates. In all
the panels, the solid lines represent the analytical predictions ("Th." standing for "Theory"), the
markers are simulated data averaged over 10? replicates ("Sim." standing for "Simulations"), and
the vertical dotted lines show the effectively neutral case (i.e., se = 0, where s, = s —log(a)/N
with & = mw/my). Parameter values: number of demes D = 5, deme size N = 100, wild-
type birth rate by = 1, death rate d = 0.1, wild-type and mutant migration rates for the
island model (my, my) x 1078 = {(2.06,10.3), (4.11,8.23), (6.17,6.17), (8.23, 4.11), (10.3,2.06)}
(from top to bottom), wild-type and mutant migration rates for the stepping stone model

(may, mar) x 1078 = {(4.12,20.6), (8.23,16.5), (12.3, 12.3), (16.5,8.23), (20.6, 4.12)} (from top to
bottom).

ary dynamics of well-mixed populations, those of spatially structured populations need to be
better understood. In this work, I quantified the impact of genotype-dependent gene flow on
the fixation dynamics of a mutation in a population structured as the island or the stepping
stone model. In particular, I combined analytical and numerical tools to compute the fixation
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probability of a mutation, the number of (fixed) migrants until the fixation of a mutation, and
the fixation time of a mutation.

The fixation probability of a mutation in the island and the stepping stone models
exhibits an effective population size and selection coefficient. While evolutionary
dynamics in subdivided populations have received much attention, much theoretical work has
focused on the impact of population structure topology and gene flow pattern [14, 20]. One
of the original features of my work is that I have introduced genotype-dependent gene flow by
making the wild type and mutant have different migration rates. Deriving an equation for the
fixation probability of a mutation in the island and stepping stone models and comparing it
to the one in a well-mixed population allowed me to identify an effective selection coefficient
and population size. Specifically, the effective selection coefficient differs from the selection
coefficient if the wild-type and the mutant migration rates are different, whereas the effective
population size equals the total census size. The effective selection coefficient shows that it
is essential to consider the ability of a genotype to migrate when assessing its fitness. As a
matter of example, a genotype reproducing less than another may still have greater fitness if it
migrates more often and, thus, may take over the meta-population. This result confirms that,
in some cases, gene flow can favor the fixation of locally deleterious mutations and, thus, limit
natural selection [4].

For a long time, one of the key quantities for assessing the impact of a spatial structure on
the evolutionary dynamics of a subdivided population has been the effective population size
[15, 16]. Specifically, comparing the effective population size to the total census size allows
for classifying the corresponding spatial structure as increasing or decreasing the efficacy of
natural selection (i.e., a structure increasing the fixation probability of beneficial mutations
and decreasing that of deleterious mutations or the other way round, respectively) [17, 18].
However, whereas it is well established that spatial structure can make the effective population
size larger or lower than the total census size, its impact on the effective selection coefficient
has been less studied. Yet, a theoretical work in which a diffusion approximation was applied
to an island model with many demes exchanging migrants found that the population structure
increases the effective population size and reduces the effective selection coefficient while keeping
their product equal to the product of the total census size and the selection coefficient (i.e.,
NeSe = Niot$, but No > Nyop and s, < s) [19]. This result explains why the fixation probability
in a subdivided population is the same as in a well-mixed population under some conditions
[8, 9, 10, 11, 12]. This result also underlines that considering the effective population size
alone is not enough to understand the impact of a spatial structure on the fate of a mutation
but also requires the effective selection coefficient. In my study, I found that the effective
population size is equal to the total census size in the island and stepping stone models. In
other words, the spatial structure of these models does not increase or decrease the efficacy
of natural selection. In contrast, the spatial structure can increase or decrease the effective
selection coefficient, making the product N,s, either larger or lower than Ny s, thus impacting
the fixation probability of a mutation.

Genotype-dependent gene flow increases the number of migrants until mutation
fixation and the fixation time. The fixation time is often more difficult to calculate an-
alytically than the fixation probability (see, e.g., [11, 17]). Yet, the fixation time allows for
assessing the timescales involved in evolutionary dynamics, which can be crucial when evaluat-
ing the adaptation ability of a population undergoing environmental changes. In this work, I
calculated the number of migrants until mutation fixation and the fixation time, given that the
mutation becomes fixed. Interestingly, I found that genotype-dependent gene flow can increase
the number of migrants and the fixation time.
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In a well-mixed population, the fixation time of a beneficial mutation is the same as for a
deleterious mutation with the same strength of selection (i.e., |s|) [9], although a deleterious
mutation is very unlikely to fix. My model allowed me to extend this symmetry to subdivided
populations with genotype-dependent gene flow such that the fixation time of beneficial and
deleterious mutations are equal if they have the same effective strength of selection (i.e., |se]|).
Also, whereas the population structure impacts the fixation time in the same way as the effective
population size (e.g., a decrease in the effective population size decreases the fixation time) [17],
I showed that genotype-dependent gene flow induces an increase in the fixation time. More
specifically, the larger the difference between the wild-type and the mutant migration rates, the
longer the fixation time.

The fixation time allows for distinguishing the island and the stepping stone mod-
els as opposed to the fixation probability. My study and others showed that the fixation
probability does not always allow for distinguishing different population structures. For exam-
ple, the island and the stepping stone models give the same fixation probability, which makes
them indistinguishable [14]. In this work, I derived an expression for the fixation time of a
mutation in the island and the stepping stone models under the low migration limit. I showed
that both models have different fixation times. More specifically, the fixation time is longer in
the stepping stone model than in the island model, which can be explained by the number of
migration paths [39].

This result was already numerically established in evolutionary graph theory [40]. This
theory involves discrete-time models in which a subdivided population is structured on a graph
with one individual at each node and probabilities that their offspring replaces a neighbor along
each edge. The fact that this theory involves discrete-time models implies choosing dynamics,
i.e., whether the first individual selected at each iteration reproduces or dies [41]. The prob-
lem with this theory is that the choice of dynamics impacts the evolutionary outcome [42],
which raises universality issues. My model overcomes this choice of dynamics by considering
continuous time, uncoupled reproduction, death, and migration events, in addition to consid-
ering sub-populations of variable size instead of single individuals. Moreover, my model allows
for setting the total migration rate, enabling a rigorous comparison between different spatial
population structures. Also, I went beyond numerical resolutions by deriving analytical pre-
dictions for the fixation time in the island and the stepping stone model (see [43] for numerical
calculations in evolutionary graph theory).

Theoretical perspectives. My work opens the door to several extensions. A first extension
would be to consider other spatial structures and quantify the impact of genotype-dependent
gene flow on the effective population size and selection coefficient. In the case of a continent-
island model, in which a central deme is connected to peripheral demes, the effective population
size could differ from the total census size if migration is asymmetric [14], but it is difficult to
predict what value would take the effective selection coefficient. A second extension would be
to relax the low migration limit hypothesis and investigate to what extent the predictions made
in this work hold in the intermediate and strong migration limits. A third extension would be
to adapt my model to make the link with experimental data more obvious. For example, in [44],
the authors investigated the impact of asymmetric migrations on the fixation of a mutation in
a spatially structured population by building a model inspired by batch culture experiments.

Experimental perspectives. [ believe my work can open the way to more quantitative
comparisons between theoretical predictions and experimental results on the evolutionary dy-
namics of subdivided populations. Although experimental studies have focused on the impact
of population subdivision on the magnitude of adaptation change [45, 46, 47, 48, 49, 50, 51],
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and the emergence and persistence of diversity [52, 53, 54, 55], more recent work has investi-
gated its impact on the fixation probability and time [56]. Additional experiments could be
performed with microfluidic devices [57], which would regulate gene flow between different sub-
populations, or with microtiter plates [49, 50, 55], allowing migrations to be controlled with a
liquid-handling robot.
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