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Abstract:  41 

This study, utilizing SBF-SEM, reveals structural alterations in mitochondria and myofibrils in 42 
human heart failure (HF). Mitochondria in HF show changes in structure, while myofibrils 43 
exhibit increased cross-sectional area and branching. Metabolomic and lipidomic analyses 44 
indicate concomitant dysregulation in key pathways. The findings underscore the need for 45 
personalized treatments considering individualized structural changes in HF. 46 

Letter Text:  47 

Mitochondria are critical in the heart, providing the energy needed for regular heart function; 48 
recent research has identified that mitochondrial dysfunction contributes to heart failure (HF), 49 
and understanding characteristics of mitochondrial dysfunction in failing hearts may assist in 50 
developing new targets for treatment1. In experimental models of HF, mitochondria frequently 51 
become swollen and/or fragmented, with disorganized cristae 2. Alteration in mitochondrial 52 
ultrastructure, may affect the efficiency of ATP production, and may account for mitochondrial 53 
dysfunction in heart failure2. This offers a plausible structural-dependent mechanism by which 54 
mitochondrial dysfunction in HF contributes to pathophysiology.  55 

To explore this paradigm, we used a previously established method of serial block face-scanning 56 
electron microscopy (SBF-SEM) 3, to perform 3D reconstruction of mitochondria in similarly 57 
aged human samples with and without HF (Fig. A). The wide x- and y-plane dimensions of SBF-58 
SEM make it ideal for studying mitochondrial biogenesis, networks, and alterations across 59 
regions of the heart 3. From the left ventricle, intermyofibrillar mitochondria, which are located 60 
between myofibrils, were manually segmented and analyzed (Fig. A). Mitochondria in HF had 61 
increased volume, surface area, and perimeter, with a tremendous inter-sample variability (Fig. 62 
B). This increased size indicates a greater capacity for ATP generation 3. Further consideration of 63 
how mitochondrial complexity alters shows that in HF, mitochondria take much more complex 64 
and less spherical phenotypes (Fig. C). Mitochondrial shapes including donut phenotypes and 65 
nanotunnels occur with HF, while the majority of control samples are more spherical, although 66 
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each patient exhibited unique mitochondrial shapes. Thus, mitochondrial structure demonstrates 67 
tremendous variability, with certain structures that may be characteristic of HF. 68 

From there, the myofibrillar apparatus was considered per previous techniques 4. The 69 
myofibrillar apparatus is the primary site of ATP utilization in the heart and plays a crucial role in 70 
subcellular remodeling including undergoing significant changes at the structural level during the 71 
development of HF. Myofibrils in HF had a greater cross-sectional area and reduced circularity 72 
per myofibril compared to control myofibrils (Fig. D). The percentage of myofibrils within the 73 
field of view of our datasets with at least one branching sarcomere, as well as the frequency of 74 
branches (Fig. D) was highest during HF as compared with control. Under control conditions, the 75 
myofibrillar apparatus was highly aligned, characterized by a prominent peak at 0° (representing 76 
perfect alignment) and another peak at 8° (Fig. D). However, in the HF condition, a greater 77 
proportion of myofibrils were observed to be oriented at angles of 0°, 7°, and 45°. Thus, 78 
cardiomyocyte sarcomere branching is a pathological feature and reflects parallel remodeling of 79 
the major ATP-producing and utilizing machinery during heart failure. 80 

From there, we shifted our attention to how these 3D structural rearrangements concomitantly 81 
occur alongside altered metabolomics and lipidomics. As previously established 3, principal 82 
component analysis showed tremendous differences in enriched metabolites upon HF (Fig. E). 83 
Heatmaps show increased expression of numerous metabolites in HF, notably, pathway 84 
enrichment shows upregulation of signaling pathways including aminoacyl-tRNA biosynthesis 85 
and pentose phosphate pathway (PPP) (Fig. E). Notably, the PPP plays a critical role in 86 
modulating oxidative stress and glucose oxidation5, suggesting dysregulation of it may be 87 
associated with abhorrent mitochondrial function characteristic of HF. Beyond this, riboflavin, 88 
also known as vitamin B2, is a precursor for coenzymes flavin mononucleotide and flavin 89 
adenine dinucleotide, which is important in energy production 6. Through co-activation of acyl-90 
CoA, riboflavin may act in a compensatory mechanism, reducing oxidative stress and alliterating 91 
impaired energy production 6. Lipidomic analysis further shows that although lipid length did not 92 
change, there are differences among individuals with heart failure with upregulation of classes 93 
including acylcarnitines (Fig. F). These have previously arisen as key biomarkers in HF 7. 94 
Together, this illustrates that mitochondrial and fiber structural alterations concurrently occur 95 
alongside altered enrichment pathways, indicating potential mechanisms to restore pathological 96 
structure. 97 

Given that mitochondrial bioenergetics are necessitated in both systolic and diastolic heart 98 
function 1,2, the mechanisms that govern and alter mitochondria in HF cases remain an intriguing 99 
future avenue. Past research has found that in HF, mitochondria exhibit key signs of dysfunction 100 
including decreased ETC activity, changes in ion activity, and altered dynamics 1,2. Here, we 101 
have also established that varying subpopulations of mitochondria undergo changes in 102 
nanotunnels and mitochondrial structural arrangement, while the wider spatial orientation of 103 
cardiac myofibrils further changes. Our results highlight the importance of consideration of 104 
mitochondria structure in the treatment of HF, which may vary tremendously between 105 
individuals, both dependent and independent of HF status. Broadening physiological 106 
implications of these unique shapes, and how their relative abundance may be affected by protein 107 
quantity and spatial arrangement may offer insight for personalized medicine. While past studies 108 
have looked at general age-dependent mitochondrial structural changes 3, equally important is 109 
the consideration of mitochondrial remodeling that occurs in an age-dependent manner after 110 
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challenges including HF. Other types of HF may further display different mitochondrial 111 
organization, metabolism, and lipid distribution which must be further explicated. Consideration 112 
of how mitochondria and myofibril structure change in dependence on pathophysiology, may 113 
offer an avenue for individualized medicine that targets HF through modulation of mitochondrial 114 
structure. 115 

Figure and Legend 116 
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(A) Through existing institutional review board approval (#41148), male human heart failure 118 
(HF) dilated cardiomyopathy samples (ejection fraction between 10-21% and ages between 60-119 
63) and controls (ejection fraction between 69-80% and ages between 62-81) were collected 120 
(n=4). Serial block face scanning electron microscopy (SBF-SEM) was utilized for manual 121 
contour segmentation of mitochondria from orthoslices. (B) Representative SBF-SEM orthoslice, 122 
3D reconstructions of mitochondria, and isolated mitochondria in control and HF. Mitochondrial 123 
volume, surface area, and perimeter are all displayed, with the averages of each sample shown to 124 
the left, while the right shows dots representing values of each mitochondrion in samples. (C) 125 
Mito-otyping, a method of organizing mitochondria on the basis of their volume, shows the 126 
relative changes in mitochondria structure in HF samples, which are quantified based on 127 
sphericity. (D) Raw SBF-SEM image volumes were rotated in 3D to visualize the muscle cell's 128 
cross-section. Myofibrillar cross-sectional area (CSA) and circularity were measured by 129 
converting the traced structures to binary images and using the Analyze Particles plugin in 130 
ImageJ for each slice throughout the volume (control n�=�4 humans, 6 cells, 133 myofibrils, 131 
1118 sarcomeres; HF n�=�3 humans, 12 cells, 219 myofibrils, 2428 sarcomeres). The 132 
distribution data reflects how much of the myofibrillar volume is perfectly aligned (0°) versus 133 
misaligned (away from 0°). (E) Metabolomic analysis comparing Ischemic Cardiomyopathy 134 
(ICM), Non-Ischemic Cardiomyopathy (NICM), and donor samples (n=6) from a mixture of age-135 
matched males and females. Principal component analysis and metabolic heatmap showing the 136 
relative abundance of metabolites in control and HF.  Enrichment analysis and pathway impact 137 
for metabolites enriched in HF. (F) Using the same samples, lipidomic analysis compared HF 138 
and control, showing differences in lipid classes by sex in heatmaps, lipid class (as shown in 139 
volcano plots and box plot), and differences in lipid chain length. For all panels, dot-plots show 140 
mean±SEM, and the numbers of independent samples are indicated, ****, p < 0.0001; ***, p < 141 
0.001; **, p < 0.01; *, p < 0.05, calculated with Student’s t-test. 142 
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