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Abstract:

This study, utilizing SBF-SEM, reveals structural alterations in mitochondria and myofibrilsin
human heart failure (HF). Mitochondriain HF show changes in structure, while myofibrils
exhibit increased cross-sectional area and branching. Metabolomic and lipidomic analyses
indicate concomitant dysregulation in key pathways. The findings underscore the need for
personalized treatments considering individualized structural changes in HF.

L etter Text:

Mitochondria are critical in the heart, providing the energy needed for regular heart function;
recent research has identified that mitochondrial dysfunction contributes to heart failure (HF),
and understanding characteristics of mitochondrial dysfunction in failing hearts may assist in
developing new targets for treatment’. In experimental models of HF, mitochondria frequently
become swollen and/or fragmented, with disorganized cristae 2. Alteration in mitochondrial
ultrastructure, may affect the efficiency of ATP production, and may account for mitochondrial
dysfunction in heart failure’. This offers a plausible structural-dependent mechanism by which
mitochondrial dysfunction in HF contributes to pathophysiology.

To explore this paradigm, we used a previously established method of serial block face-scanning
electron microscopy (SBF-SEM) 2, to perform 3D reconstruction of mitochondria in similarly
aged human samples with and without HF (Fig. A). The wide x- and y-plane dimensions of SBF-
SEM make it ideal for studying mitochondrial biogenesis, networks, and alterations across
regions of the heart 3. From the left ventricle, intermyofibrillar mitochondria, which are located
between myofibrils, were manually segmented and analyzed (Fig. A). Mitochondria in HF had
increased volume, surface area, and perimeter, with a tremendous inter-sample variability (Fig.
B). Thisincreased size indicates a greater capacity for ATP generation °. Further consideration of
how mitochondrial complexity alters shows that in HF, mitochondria take much more complex
and less spherical phenotypes (Fig. C). Mitochondrial shapes including donut phenotypes and
nanotunnels occur with HF, while the majority of control samples are more spherical, although
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67  each patient exhibited unique mitochondrial shapes. Thus, mitochondrial structure demonstrates
68 tremendous variability, with certain structures that may be characteristic of HF.

69 From there, the myofibrillar apparatus was considered per previous techniques % The
70  myofibrillar apparatusis the primary site of ATP utilization in the heart and plays a crucial rolein
71  subcelular remodeling including undergoing significant changes at the structural level during the
72  development of HF. Myofibrils in HF had a greater cross-sectional area and reduced circularity
73 per myofibril compared to control myofibrils (Fig. D). The percentage of myofibrils within the
74  field of view of our datasets with at least one branching sarcomere, as well as the frequency of
75  branches (Fig. D) was highest during HF as compared with control. Under control conditions, the
76  myofibrillar apparatus was highly aligned, characterized by a prominent peak at 0° (representing
77 perfect alignment) and another peak at 8° (Fig. D). However, in the HF condition, a greater
78  proportion of myofibrils were observed to be oriented at angles of 0°, 7°, and 45°. Thus,
79  cardiomyocyte sarcomere branching is a pathological feature and reflects parallel remodeling of
80 themaor ATP-producing and utilizing machinery during heart failure.

81 From there, we shifted our atention to how these 3D structural rearrangements concomitantly
82 occur aongside altered metabolomics and lipidomics. As previously established 3, principal
83  component analysis showed tremendous differences in enriched metabolites upon HF (Fig. E).
84 Heatmaps show increased expression of numerous metabolites in HF, notably, pathway
85 enrichment shows upregulation of signaling pathways including aminoacyl-tRNA biosynthesis
86 and pentose phosphate pathway (PPP) (Fig. E). Notably, the PPP plays a critical role in
87 modulating oxidative stress and glucose oxidation®, suggesting dysregulation of it may be
88  associated with abhorrent mitochondrial function characteristic of HF. Beyond this, riboflavin,
89 aso known as vitamin B2, is a precursor for coenzymes flavin mononucleotide and flavin
90 adenine dinucleotide, which is important in energy production °. Through co-activation of acyl-
91 CoA, riboflavin may act in a compensatory mechanism, reducing oxidative stress and alliterating
92  impaired energy production °. Lipidomic analysis further shows that although lipid length did not
93 change, there are differences among individuals with heart failure with upregulation of classes
94 including acylcarnitines (Fig. F). These have previously arisen as key biomarkers in HF .
95 Together, this illustrates that mitochondrial and fiber structural alterations concurrently occur
96 aongside altered enrichment pathways, indicating potential mechanisms to restore pathological
97  dtructure.

98 Given that mitochondrial bioenergetics are necessitated in both systolic and diastolic heart

99  function *?, the mechanisms that govern and alter mitochondriain HF cases remain an intriguing
100 future avenue. Past research has found that in HF, mitochondria exhibit key signs of dysfunction
101 including decreased ETC activity, changes in ion activity, and altered dynamics *. Here, we
102 have also established that varying subpopulations of mitochondria undergo changes in
103  nanotunnels and mitochondrial structural arrangement, while the wider spatial orientation of
104  cardiac myofibrils further changes. Our results highlight the importance of consideration of
105 mitochondria structure in the treatment of HF, which may vary tremendously between
106 individuals, both dependent and independent of HF status. Broadening physiological
107 implications of these unique shapes, and how their relative abundance may be affected by protein
108 quantity and spatial arrangement may offer insight for personalized medicine. While past studies
109  have looked at general age-dependent mitochondrial structural changes 3, equally important is
110 the consideration of mitochondrial remodeling that occurs in an age-dependent manner after
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chalenges including HF. Other types of HF may further display different mitochondrial
organization, metabolism, and lipid distribution which must be further explicated. Consideration
of how mitochondria and myofibril structure change in dependence on pathophysiology, may
offer an avenue for individualized medicine that targets HF through modulation of mitochondrial
structure.

Figureand Legend
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118 (A) Through existing institutional review board approval (#41148), male human heart failure
119 (HF) dilated cardiomyopathy samples (gection fraction between 10-21% and ages between 60-
120  63) and controls (g ection fraction between 69-80% and ages between 62-81) were collected

121  (n=4). Seria block face scanning electron microscopy (SBF-SEM) was utilized for manual

122  contour segmentation of mitochondria from orthoslices. (B) Representative SBF-SEM orthodlice,
123 3D reconstructions of mitochondria, and isolated mitochondriain control and HF. Mitochondrial
124  volume, surface area, and perimeter are all displayed, with the averages of each sample shown to
125 theleft, while the right shows dots representing values of each mitochondrion in samples. (C)
126  Mito-otyping, amethod of organizing mitochondria on the basis of their volume, shows the

127  relative changes in mitochondria structure in HF samples, which are quantified based on

128  sphericity. (D) Raw SBF-SEM image volumes were rotated in 3D to visualize the muscle cell's
129  cross-section. Myofibrillar cross-sectional area (CSA) and circularity were measured by

130 converting the traced structures to binary images and using the Analyze Particles pluginin

131 Imagelfor each dlice throughout the volume (control nCJ=14 humans, 6 cells, 133 myofibrils,
132 1118 sarcomeres, HF n(1=_3 humans, 12 cells, 219 myofibrils, 2428 sarcomeres). The

133  digribution data reflects how much of the myofibrillar volume is perfectly aligned (0°) versus
134  misaligned (away from 0°). (E) Metabolomic analysis comparing Ischemic Cardiomyopathy
135 (ICM), Non-Ischemic Cardiomyopathy (NICM), and donor samples (n=6) from a mixture of age-
136 matched males and females. Principal component analysis and metabolic heatmap showing the
137  relative abundance of metabolitesin control and HF. Enrichment analysis and pathway impact
138 for metabolites enriched in HF. (F) Using the same samples, lipidomic analysis compared HF
139  and control, showing differencesin lipid classes by sex in heatmaps, lipid class (as shown in
140  volcano plots and box plot), and differencesin lipid chain length. For all panels, dot-plots show
141  meantSEM, and the numbers of independent samples are indicated, ****, p < 0.0001; ***, p <
142  0.001; **, p<0.01; *, p < 0.05, calculated with Student’s t-test.
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