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Abstract  12 

Increasing interest in seabed resource use in the ocean is introducing new pressures on deep-sea 13 

environments, the ecological impacts of which need to be evaluated carefully. The complexity of 14 

these ecosystems and the dearth of comprehensive data pose significant challenges to predicting 15 

potential impacts. In this study, we demonstrate the use of Bayesian Networks (BNs) as a 16 

modelling framework to address these challenges and enhance the development of robust 17 

quantitative predictions concerning the effects of human activities on deep-seafloor ecosystems. 18 

The approach consists of iterative model building with experts, and quantitative probability 19 

estimates of the relative decrease in abundance of different functional groups of benthos 20 

following seabed mining. The model is then used to evaluate two alternative seabed mining 21 

scenarios to identify the major sources of uncertainty associated with the mining impacts. By 22 

establishing causal connections between the pressures associated with potential mining activities 23 

and various components of the benthic ecosystem, our model offers an improved comprehension 24 

of potential impacts on the seafloor environment. We illustrate this approach using the example 25 

of potential phosphorite nodule mining on the Chatham Rise, offshore Aotearoa/New Zealand, 26 

SW Pacific Ocean, and examine ways to incorporate knowledge from both empirical data and 27 

expert assessments into quantitative risk assessments. We further discuss how ecological risk 28 

assessments can be constructed to better inform decision-making, using metrics relevant to both 29 

ecology and policy. The findings from this study highlight the valuable insights that BNs can 30 

provide in evaluating the potential impacts of human activities. However, continued research and 31 

data collection are crucial for refining and ground truthing these models and improving our 32 

understanding of the long-term consequences of deep-sea mining and other anthropogenic 33 

activities on marine ecosystems. By leveraging such tools, policymakers, researchers, and 34 

stakeholders can work together towards human activities in the deep sea that minimise ecological 35 

harm and ensure the conservation of these environments. 36 

Key words: Bayesian networks, benthic fauna, deep-sea mining, participatory modelling, 37 

quantitative risk assessment, seabed disturbance 38 
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1 Introduction  40 

Interest in seabed mining, deep-sea fishing, and oil and gas exploration is increasing in the deep 41 

sea (Jouffray et al., 2020; Ramirez-Llodra et al., 2011). In order to effectively manage these 42 

activities, predicting their impacts on deep-sea environments and ecosystems prior to resource 43 

consent approval is crucial. However, the complexity of deep-sea ecosystems and the lack of 44 

comprehensive data often make predicting impacts challenging (Smith et al., 2020). It is 45 

therefore important to conduct robust environmental risk assessments (ERAs) that take into 46 

account the potential risks and uncertainties associated with activities that can impact deep-sea 47 

habitats and communities. 48 

Significant mineral resources have been identified in various parts of the global ocean, including 49 

areas of the Pacific, Atlantic, and Indian oceans (Ellis et al., 2017; Miller et al., 2018).  Seabed 50 

mining activities are still in the exploration and development phase and no commercial mining 51 

operations have yet taken place, but concerns have been raised over their potential to harm deep-52 

sea ecosystems (van Dover et al., 2017). Deep-sea mining is expected to have an impact on all 53 

levels of marine ecosystems, from the water column to the seafloor (Drazen et al., 2020; Miljutin 54 

et al., 2011; Orcutt et al., 2020). Many studies have examined the potential environmental 55 

consequences of mining by using field studies, laboratory experiments, and modelling (reviewed 56 

by Jones et al., (2017). However, despite the valuable insights provided by these studies, there is 57 

only a partial understanding of the environmental impacts of deep-sea mining. Current 58 

knowledge gaps include uncertainties about the scale and duration of the effects, the potential for 59 

cumulative impacts over time, and the extent and speed of ecosystem recovery following 60 

disturbance (Amon et al., 2022). Furthermore, it is unclear to what extent the disturbance studies 61 

conducted in a small area or in a laboratory can be scaled up to industrial mining operations 62 
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(Clark, Durden, and Christiansen 2020). Limited baseline data and the difficulty of access to 63 

some of the remote areas where deep-sea mining is proposed make it challenging to accurately 64 

assess the environmental risks associated with such mining activities (Smith et al., 2020). 65 

ERAs are an important tool to help environmental managers evaluate the risks associated with 66 

mining operations. In the deep sea, ERAs can be particularly useful to support decision-making, 67 

due to limitations of baseline data and of information on ecosystem responses to external 68 

disturbances. However, most current ERAs estimate risk based upon the vulnerability of the 69 

environment through semi-quantitative scoring (Boschen-Rose et al., 2021; Washburn et al., 70 

2019), offering an overview of the risks without quantitative estimates of the actual ecosystem 71 

impacts. To account for the uncertainties related to such lack of data, probabilistic modelling has 72 

been increasingly used in ERAs (Kaikkonen et al., 2021). 73 

Bayesian networks (BNs) are graphical probabilistic models that provide an alternative to 74 

commonly used scoring procedures in ERAs (Kelly et al., 2013; Pearl 2010). In a risk assessment 75 

context, BNs illustrate the modelled system as a network of causal influences. BNs are composed 76 

of a directed acyclic graph (the structure of the network) with quantitative connections between 77 

the variables (or nodes). The strength of each connection between variables is described through 78 

conditional probabilities (Pearl 1986), thus representing a joint probability distribution over a set 79 

of variables. The dependencies between variables propagate through the network and influence 80 

the probabilities of other nodes and may be updated as new information about the nodes becomes 81 

available. This facet of the model enables the integration of new data or evidence in the model, 82 

and the network can be queried under different scenarios to calculate the posterior probability of 83 

all other nodes within the BN (Kelly et al., 2013; Pearl 2010). 84 
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Unlike traditional scoring procedures, BNs allow for the estimation of not only the most likely 85 

outcome but also the uncertainty associated with the estimates by providing a probability 86 

distribution over all the possible values of each variable (Fenton and Neil 2012; Nielsen and 87 

Jensen 2009). BNs can synthesise outcomes of multiple scenarios and accommodate inputs from 88 

multiple sources, including simulations, empirical data, and expert knowledge (e.g., Bulmer et 89 

al., 2022; Wade et al., 2021), making them well-suited for data-poor cases. Additionally, given 90 

their modular structure, BNs can support integrative modelling combining different submodels, 91 

such as management decision networks (Marcot and Penman 2019). 92 

In this paper, we apply BNs in a case study focused on potential phosphate nodule mining on the 93 

Chatham Rise, offshore Aotearoa/New Zealand, SW Pacific Ocean. Drawing on a combination 94 

of field observations, laboratory experiments, and expert knowledge, we estimate the likelihoods 95 

of impacts on benthic fauna under a high disturbance and an intermediate disturbance seabed 96 

mining scenarios.  97 

2 Material and methods 98 

2.1 Chatham Rise phosphate nodule mining case study 99 

2.1.1 Background 100 

In 2013, a New Zealand company, Chatham Rock Phosphate (CRP), applied for and was granted 101 

a Minerals Mining Permit by the New Zealand Government for phosphate nodule extraction 102 

from the seafloor on the Chatham Rise, located in the central eastern region of New Zealand's 103 

200 nautical mile Exclusive Economic Zone (EEZ) (Fig.1). The depth of the crest of the 104 

Chatham Rise is 200 to 500 m and its flanks deepen to more than 2000 m to the north and south 105 

(Nodder et al., 2012). The area is characterised by high primary productivity, with dynamic 106 

oceanographic conditions characterised by variable currents and interweaving water masses 107 
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associated with the Subtropical Frontal Zone (Collins et al., 2023; Safi et al., 2023). The 108 

sediments covering the crest are predominantly organic-rich, glauconitic muddy sands and sandy 109 

muds, with phosphorite nodules and hardgrounds on top and within the sediment (Cullen 1987; 110 

Nelson et al., 2022; Norris 1964). The seafloor communities in the area are characterised by a 111 

wide range of invertebrate species, many of which are infaunal, although some species occupy 112 

habitat niches either on top of the sediment (epifauna) or just above the seafloor within the 113 

hyperbenthos (Compton et al., 2013). Corals and other sessile epifaunal organisms, such as 114 

sponges, also live attached to hard substrates such as phosphorite nodules or rock outcrops 115 

(Dawson 1984; Leduc et al., 2015; Nodder et al., 2012; Rowden et al., 2014). 116 

The proposed mining operation was to extract phosphorite nodules from the seafloor using a 117 

trailing suction drag-head and to mechanically process the nodules on board the mining support 118 

vessel. Nodules larger than 2 mm in diameter would be separated from other sediment material 119 

and the waste would then be discharged close to the seafloor via a discharge pipe (Chatham Rock 120 

Phosphate 2014). The mining would be carried out over separate mining blocks, each covering 121 

an area of 5 km by 2 km and taking approximately 14 weeks to complete mining operations. 122 

However, in 2015, the marine consent application to carry out the mining of phosphorite nodules 123 

was denied, due in part to uncertainty surrounding the potentially adverse effects on biological 124 

communities, including impacts caused by suspended and deposited sediment (NZ EPA 2015). 125 

In order to address the scientific uncertainties related to impacts from seabed sediment 126 

disturbance, the “Resilience of deep-sea benthic communities to the effects of sedimentation” 127 

(ROBES) programme gathered information on various environmental factors and benthic fauna. 128 

The programme consisted of both field and laboratory simulations to characterise the benthic 129 

effects of an artificial physical seabed disturbance and associated sediment plume on the 130 
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Chatham Rise crest in the vicinity of the proposed CRP phosphorite mining area (Fig. 1). The 131 

experimental seabed disturbances, although not equivalent to actual seabed mining, were 132 

anticipated to provide important insights into the impacts of deep-sea mining and other 133 

significant benthic disturbances such as bottom trawling (Clark et al., 2018). 134 

 135 

Figure 1. Map of study area on the Chatham Rise, offshore of New Zealand. The numbered 136 

polygons denote the CRP Minerals Mining Permit (55549) and previous Mineral Prospecting 137 

Permit areas. 138 

2.1.2 Data 139 

The data used in this study originate from the field and laboratory measurements collected 140 

through the ROBES programme in 2018–2020. The fieldwork took place on the northern edge of 141 

the Chatham Rise crest at depths of 400–500 m (Fig. 1). The study area was surveyed in 2018 142 
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and 2019, then artificially disturbed using a mechanical disturber and sampled immediately after 143 

the disturbance in 2019 and one year later in June 2020 (Clark et al., 2021).  A diverse range of 144 

data was collected to characterise the site, encompassing oceanographic (Acoustic Doppler 145 

current profiler (ADCP), ocean glider, moorings, conductivity, temperature, and depth (CTD), 146 

acoustics) and nearbed sediment conditions (benthic landers, sediment trap moorings, multicorer, 147 

onboard sediment experiments), and benthic communities. Environmental baseline conditions 148 

were determined using year-long ADCP moorings and glider and CTD deployments during the 149 

ROBES voyages, followed by modelling and analysis of satellite remote-sensing data (Collins et 150 

al., 2023). Information on baseline nearbed particle and organic carbon fluxes were derived from 151 

bi-weekly and daily sampling using moored and lander sediment traps, respectively. 152 

Macroinfauna and meiofauna samples were collected before and after the disturbance using a 153 

multicorer with replicate samples from sites that were directly impacted by the mechanical 154 

disturber and from near-field areas that were expected to be subject to sedimentation (see Clark 155 

et al., 2019; Clark et al., 2021 for details of the sampling protocol). In addition to the field 156 

sampling, live sponges and corals were transported back to the laboratory to assess their response 157 

to different concentrations and frequencies of suspended sediment over time (for details, see 158 

Mobilia et al., 2021, 2023). 159 

2.2 BN modelling 160 

2.2.1 Model development and variable selection 161 

A conceptual influence diagram synthesising the impacts of deep-sea mining on the Chatham 162 

Rise was developed in a series of workshops with experts (Appendix 1, Table S2). Given the 163 

complexity of the Chatham Rise ecosystem we focus only on benthic ecosystem impacts 164 

associated with seabed mining. Due to lack of empirical data, we did not consider impacts from 165 
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noise and vibrations associated with the mining activities in our assessment nor the 166 

environmental effects on certain components of the marine foodweb, such as bacteria, marine 167 

mammals, and seabirds.  168 

The causal network resulting from the expert elicitation was developed into a BN model in an 169 

iterative manner by selecting key variables to evaluate and defining relevant variable states. To 170 

facilitate model quantification and ensure model parsimony, the number of parent nodes was 171 

limited whenever possible (Chen and Pollino, 2012). 172 

Discrete variable states were defined based on data, literature, and expert views (Table 1, full 173 

references in Appendix 1, Table S3). Variable states were chosen to represent likely variations in 174 

the variables of interest in the context of seabed disturbance on the Chatham Rise. For variables 175 

that describe the implementation of the potential mining activity (hereafter ‘operational 176 

variables’), variable states were drawn from the environmental consent application prepared by 177 

CRP (Chatham Rock Phosphate, 2014). The states of the physicochemical variables, describing 178 

the environmental conditions and associated changes from mining, were defined by experts 179 

based on field observations, expert knowledge, and primary literature. For variables that directly 180 

affect benthic fauna, such as suspended sediment concentration, the states were set to reflect 181 

biologically relevant thresholds whenever possible (e.g., Hewitt and Lohrer, 2013; Mobilia et al., 182 

2021, 2023). As a result, the states do not always follow a continuous scale nor cover all possible 183 

values of a variable but were selected to represent likely outcomes from different disturbance 184 

events (see Appendix1 Table S3 for rationale for variable discretisation). 185 

Table 1. Physical and environmental model variables and the methods used to discretise and 186 

parameterise the variables used in the Bayesian Network modelling. Random variables refer to 187 

variables with an associated probability distribution, whereas decision variables describe 188 
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processes that are assumed to be controlled by the party responsible for the extraction activity 189 

and are thus non-random. Full rationale supporting the variable states and parameterisation with 190 

references are contained in Appendix 1. 191 

Variable 
name 

Description Variable 
type 

Variable states Discretisation based 
on 

Parameterisation 
based on 

Depth of 
extracted 
sediment 

Depth of 
sediment 
extracted by the 
mining tool 

Decision 
variable 

<10cm / 10-30 cm / 
>30cm  

Literature, expert 
opinion 

Not applicable 

Processing 
return 
technique 

Depth of 
processing return 
water and 
sediment 

Decision 
variable 

10m from seafloor / at 
the seafloor 

Literature Not applicable 

Mining 
intensity 

Proportion of 
area mined 
within a discrete 
mining block 

Decision 
variable 

50% / 75% / 100% Expert opinion Not applicable  

Distance from 
the mining 
block 

Distance from 
the mining block 

Decision 
variable 

Inside mining block / 
Near-field / Far-field 

Literature, expert 
opinion 

Not applicable 
(decision variable) 

Volume of 
extracted 
sediment 

Volume of 
sediment 
removed by a 
mining operation 
tool (as the initial 
removal) 

Random 
variable 

Low/ Medium /High  Literature, expert 
opinion 

Literature, expert 
assessment 

Particle size 
composition 
of the 
extracted 
sediment  

Proportion of 
fine and coarser 
particles of the 
extracted 
substrate and in 
the composite 
sediment plume 

Random 
variable 

Mostly silt and clay 
(fine) / mix of fine and 
coarse particles / 
mostly coarse (sand 
and gravel) 

Data, expert opinion Field surveys 
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Sediment 
contaminants 

Concentration of 
potentially 
harmful 
substances in the 
sediment and the 
mineral material 
to be extracted 

Random 
variable 

Low/ Medium /High Literature, expert 
opinion 

Literature, expert 
assessment 

Nodule 
removal 

Proportion of 
phosphorite 
nodules removed 
from a discrete 
mining block. 

Decision 
variable 

Yes / No Not applicable Not applicable 
(decision variable)  

Suspended 
sediment 

Total suspended 
solids 
concentration 
near the seafloor 
resulting both 
from the 
processing 
return and 
mining tool 
operation 

Random 
variable 

Low: <10 mg L-1  

/ Moderate: 11-50 mg 
L-1  

/ High:>100 mg L-1 

Data, literature Expert assessment 
informed by 
literature 

 

Sediment 
deposition 

Depth of 
sediment 
deposited from 
the composite 
suspended 
sediment plume 

Random 
variable 

Low: <1-2 cm /  

Moderate: 2-5 cm / 
High:10-25cm  

 

Data, literature Field measurements 
and expert 
assessment 

Contaminant 
release 

Release of 
contaminants 
from the 
sediment plume 
to the seabed 
water column 

Random 
variable 

Nonsignificant / 
Significant release of 
contaminants 

Data, literature  

Expert assessment 
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As the number of species found in the study area is too high to assess the impacts on each 192 

species or taxon separately, we reduced this complexity by grouping organisms into functional 193 

groups (Bremner 2008). The functional groups were assigned based on traits that have been 194 

shown to influence the organisms’ response to seafloor disturbance and recovery potential (e.g., 195 

body size, feeding habit, position in sediment, and mobility; Hewitt et al., 2018), using 196 

previously created groupings for the Chatham Rise as a starting point (Lundquist et al., 2018).  197 

These trait-based groups encompassed a range of faunal groups across meiofauna, macroinfauna, 198 

epibenthos and hyperbenthos (Table 2).  199 

Changes in 
sediment 
characteristics 

Measure of 
changes in the 
sediment 
environment 
affecting habitat 
quality for 
benthic 
organisms. 

Random 
variable 

Minor to no changes / 
Significant changes 

 

Data, expert opinion Field measurements 
and expert 
assessment 
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Table 2. Biological model variables describing the benthic faunal functional groups and the 200 

methods used to discretise and parameterise the variables used in the Bayesian Network 201 

modelling. Random variables refer to variables with an associated probability distribution. Full 202 

rationale supporting the variable states and parameterisation with references are contained in the 203 

conditional probability tables in Appendix 1. 204 

Variable name 
and 

abbreviation 
used in the 

paper 

Example taxa Variable type Variable states Discretisation 
method 

Parameterisation 
method 

Sessile 
encrusting 
suspension 
feeders (SCSF) 

Encrusting bryozoans, 
corals  

Random 
variable 

% decrease in 
abundance 

Expert opinion 

 

 

Expert assessment  

Sessile 
encrusting  

filter-feeders 
(SCFF) 

Encrusting sponges  Random 
variable 

% decrease in 
abundance 

 

Expert opinion 

 

Expert assessment  
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Variable name 
and 

abbreviation 
used in the 

paper 

Example taxa Variable type Variable states Discretisation 
method 

Parameterisation 
method 

Sessile erect 
suspension 
feeders (SESF) 

Branching bryozoans, 
crinoids and corals 
(stony and octocorals) 

Random 
variable 

% decrease in 
abundance 

Expert opinion Laboratory 
experiment and 
expert assessment 

Sessile erect 
filter-feeders 
(SEFF) 

Erect sponges Random 
variable 

% decrease in 
abundance 

Expert opinion Laboratory 
experiment and 
expert assessment 

Soft-bodied 
erect 
suspension and 
filter feeders 
(SSBM) 

Small soft bodied 
hydroids, ascidians, 
small bryozoans 

Random 
variable 

% decrease in 
abundance 

Expert opinion Expert assessment  

Deep 
meiofauna 
(DM) 

Mainly nematodes Random 
variable 

% decrease in 
abundance 

Expert opinion Field 
measurements and 
expert assessment 

Surface 
meiofauna 
(SM) 

Mixed community of 
meiofauna  

Random 
variable 

% decrease in 
abundance 

Expert opinion Field 
measurements and 
expert assessment 

Small sessile 
infauna (SSI) 

Paraonid and capitellid 
polychaetes, small 
bivalves 

Random 
variable 

% decrease in 
abundance 

Expert opinion Field 
measurements and 
expert assessment 

Small mobile 
infauna (SMI) 

Mobile deposit feeders 
and small scavengers 
(amphipods, small 
crustaceans) 

Random 
variable 

% decrease in 
abundance 

Expert opinion Field 
measurements and 
expert assessment 

Large sessile 
infauna (LSI) 

Tube-forming 
polychaetes, tube-
building amphipods, 
large bivalves 

Random 
variable 

% decrease in 
abundance 

Expert opinion Field 
measurements and 
expert assessment 
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Variable name 
and 

abbreviation 
used in the 

paper 

Example taxa Variable type Variable states Discretisation 
method 

Parameterisation 
method 

Large mobile 
macroinfauna 
(LMM) 

Large burrowing 
polychaetes, some 
arthropods, large 
bivalves, asteroids 

Random 
variable 

% decrease in 
abundance 

Expert opinion Field 
measurements and 
expert assessment 

Mobile deposit 
feeding or 
grazing 
epibenthos 
(MGE) 

Mobile deposit 
feeders, surface 
dwelling species, e.g., 
spatangoid echinoids, 
holothurians, 
ophiuroids, gastropods 

Random 
variable 

% decrease in 
abundance 

 

Expert opinion Expert assessment  

Mobile 
predatory 

or scavenging 
epibenthos 
(MPE) 

Mobile surface 
crawling predators & 
scavengers, e.g., squat 
lobsters, crab, scampi, 
gastropods 

Random 
variable 

% decrease in 
abundance 

 

Expert opinion Expert assessment  

Predatory or 
Scavenging 
hyperbenthos 
(PH) 

Small swimming 
crustaceans (mysids, 
amphipods) 

Random 
variable 

% decrease in 
abundance 

 

Expert opinion Expert assessment  

Grazing or 
deposit-feeding 
hyperbenthos 
(GH) 

Holothurians, 
gastropods, others 

Random 
variable 

% decrease in 
abundance 

 

Expert opinion Expert assessment  

2.2.2 Model parameterisation  205 

Within a BN, the magnitudes of impacts are illustrated through conditional dependencies. The 206 

probabilities of each value of the ‘child’ node, conditioned on every possible combination of 207 

values of the ‘parent’ nodes, can be drawn from data, expert opinion, or a combination of these 208 

two inputs (Barber 2012). Conditional probabilities (summarised in conditional probability 209 
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tables, CPTs) were derived from a combination of data and expert assessment (Tables 1-2). 210 

Where data on the impacts were available, we used experimental and field data to inform the 211 

probability distributions and complemented these with expert assessment. As BNs require 212 

probability estimates for all the combinations of variable states, the configurations of parent 213 

variables that were not applied in the field study were estimated by experts through the following 214 

procedure. 215 

In order to generalise the impacts of stressors on the different functional groups and to reduce the 216 

elicitation burden on experts, we applied an interpolation method (Barons et al., 2022) to derive 217 

missing probability distributions. The method assumes that the child node can be estimated 218 

through a beta distribution and requires the user to identify both a "best case" and a "worst case" 219 

distribution for the child node. In this context, "best" and "worst" pertain to distributions where 220 

the parents affecting the node are at their highest and lowest points for the child, respectively. 221 

The probability distributions for all other combinations of parent variables are then inferred by 222 

interpolating between these extremes. This procedure is accomplished using a series of weights 223 

assigned to the parent states, which are employed to interpolate between the parameters of a beta 224 

distribution. 225 

Where data on the impacts were available, empirical data were used as the starting point which 226 

corresponded to the best case scenario, and experts were then asked to estimate: 1) the relative 227 

importance of each of the stressors on each functional group, and 2) the probability distribution 228 

for the relative decrease in abundance (compared to pre-mining abundance) of each functional 229 

group under the worst case scenario (i.e., each stressor at the maximum state). The interpolation 230 

method can be applied to variables with ranked ordinal states (e.g., low to high). For nodes 231 

where such ordinal ranking was not appropriate, we used the Application for Conditional 232 
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probability Elicitation (ACE; Hassall et al., 2019) to initialise the CPTs, which were then 233 

reviewed with experts. All CPTs, as well as a more detailed description of the elicitation 234 

protocol, are available at https://github.com/lkaikkonen/CR-ERA, including comments on the 235 

rationale underlying the probability distributions for each response variable. 236 

All CPTs were reviewed with the experts and adjusted when deemed necessary to ensure 237 

consistency in the estimated impacts. In addition to the probability estimates, experts evaluated 238 

their confidence in the estimates for each of the conditional probability tables. The resulting 239 

CPTs were incorporated in the BN model created in R software. The modelling was conducted 240 

using R 3.6.3, with the R package bnlearn (Scutari 2009).  Full details of the model with the R 241 

scripts and the conditional probability tables are available at https://github.com/lkaikkonen/CR-242 

ERA. 243 

2.2.3 Modelling framework and model structure 244 

We consider three spatial domains in the model: the area inside the mining block that is mined 245 

(inside), areas immediately adjacent to the mining block that are not mined (near-field), and 246 

areas further from the mining area that are still expected to be within the zone impacted by the 247 

mining activities (far-field) (Fig. 2). Unimpacted areas beyond far-field are not included in the 248 

model. In the CRP mining proposal, the mining block covers an area of 5 km by 2 km. For the 249 

purposes of this study, we conceptualise the near-field area to extend approximately 0.5 km from 250 

the mined area and the far-field to extend to 5 km from the mined area. However, it is important 251 

to note that the size of the near-field and far-field are relative to the scale of disturbance (usually 252 

defined by the extent of detectable impacts) and will therefore vary for other types of 253 

disturbances and areas. As our model is not spatially explicit, we assume homogeneous impacts 254 

inside all spatial domains.  255 
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256 
Figure 2. General modelling framework for impacts of seabed mining-related disturbance in 257 

time and space for any given functional group in the BN model. By defining the effects for the 258 

separate time steps, the impacts may be assessed jointly or separately for each discrete area 259 

(depicted by the squares, upper left panel). The lower panel illustrates the spatial and temporal 260 

distribution of the pressures. Immediate impacts consist of direct extraction of sediment and 261 

nodules within the mining block, and elevated suspended sediment concentrations and 262 

redeposition of sediment in all areas. Impacts after one year are a result of the altered 263 

sedimentary environment which affects the recovery potential of benthic organisms. The 264 

magnitude and likelihood of all these changes are variable and included in the probability 265 

assessments (see text for details). 266 

We estimated the impact on benthic fauna as a decrease in abundance relative to the pre-267 

disturbed state. For most faunal groups this decrease in abundance translates to mortality, but as 268 

18 
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our model also includes mobile fauna that may leave the area but are not killed by the 269 

disturbance, we use the term ‘decrease in abundance’ throughout the paper. As a simplification, 270 

we only assess decrease in abundance, although some faunal groups may temporarily increase in 271 

abundance after seabed disturbance (e.g., Bigham et al., 2023; Pranovi et al., 2000). We divided 272 

the abundance variables into two time-steps: immediately after disturbance and one year after 273 

disturbance based on the available data from the ROBES experiments (Fig. 2). We separated the 274 

decrease in abundance immediately after mining into direct and indirect decrease in abundance 275 

(see Appendix 1 for full description of the modelling framework). Within this framework, some 276 

of the organisms will be removed during the direct extraction process (direct impact), depending 277 

on the mining efficiency and depth. The remaining fauna will be exposed to indirect impacts (in 278 

our model these are sedimentation and impacts from toxic substance release) that will describe 279 

the acute impacts on them (details in Appendix 1, following Kaikkonen et al., 2021). Recovery is 280 

assessed separately, and any changes in the seafloor environment (e.g., sediment composition, 281 

nodule removal) only affect the recovery of organisms, not immediate changes in abundance. 282 

Any subsequent time steps will depend on the faunal abundance at the previous time step, 283 

recovery potential of the functional group, and changes in the habitat quality (such as changes in 284 

sediment characteristics and food availability). The division of direct and indirect pressures that 285 

affect the decrease in abundance also allows us to evaluate the impacts of mining in both the 286 

mined and unmined areas within the same model.  287 

2.3 Application: Disturbance scenarios and use of the BN model 288 

BNs enable evaluation of various scenarios and computation of posterior probabilities based on 289 

new knowledge (Pearl 1986). Through BNs, operational parameters can be modified to analyse 290 

the effects of different types of seabed mining (or other types of seabed disturbance) and their 291 
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impact on benthos. The joint probability distribution in the BN can be used to query the effects 292 

of multiple pressures on specific ecosystem components, assess associated risks, and identify the 293 

variables that should be monitored for an improved understanding of the impacts (Carriger et al., 294 

2016). 295 

In order to assess how changes in the magnitude of disturbance affect benthic fauna, we queried 296 

the network on two alternative mining scenarios. These scenarios, which we define as a 297 

combination of specific states of the decision variables that describe the overall mining process, 298 

are assumed to be controlled by the mining operator (Table 3). In the first scenario, hereafter 299 

‘High disturbance’, the entire mined area (Fig. 2) was disturbed, and sediments were disrupted to 300 

deeper than 30 cm. For the second scenario, hereafter ‘Intermediate disturbance’, 50% of the 301 

mined area was disturbed, and sediments were disrupted to less than 10 cm depth. The High 302 

disturbance scenario was defined by experts based on the description of a proposed mining 303 

operation for phosphorite nodules on the Chatham Rise (Chatham Rock Phosphate 2014), while 304 

the Intermediate disturbance scenario was based on the anticipated disturbance from other types 305 

of mining operations (e.g., surface nodule extraction as proposed for polymetallic nodule mining, 306 

e.g., Muñoz-Royo et al., 2022) and could also be applied to describe low-penetration bottom 307 

trawling (Eigaard et al., 2016). All the other variables in the model are further affected by these 308 

decision variables. Note that the model can be queried for any combination of variables, we have 309 

presented only a limited number of possible outcomes. 310 

  311 
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 312 

Table 3. States of the operational variables associated with the two seabed mining disturbance 313 

scenarios. 314 

 

Scenario 

Operational variables 

Area disturbed 
inside the mining 

block 

Depth of sediment 
disturbance 

Plume release 
technique 

Description 

High disturbance 100% >30 cm At the seafloor High impact seabed 
mining operations 

Intermediate 
disturbance 

50% <10 cm At the seafloor Surface collector 
operations  

Developing models in data-limited settings presents a challenge for validating these models 315 

using conventional statistical methods. This difficulty arises from the impossibility of testing the 316 

model against an independent dataset that was not employed during the model's development and 317 

quantification process. In addition, conventional sensitivity analyses do not provide much insight 318 

as the model structure has been defined by experts. Therefore, the BN was qualitatively 319 

evaluated in a series of meetings attended by experts, during which the model and its outcomes 320 

were presented, discussed, and agreed upon. A full overview of the model building, and 321 

application is given in Figure 3. 322 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569078doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569078
http://creativecommons.org/licenses/by/4.0/


 

22

 323 

Figure 3. Overview of modelling process. ERA = environmental risk assessment. 324 

3 Results  325 

The causal mapping and model building process resulted in a BN model for the Chatham Rise 326 

with 73 variables and 154 connections (Fig. 4). The model has seven independent variables 327 

describing the two disturbance scenarios and environmental conditions/pressures caused by 328 

mining that further cascade down to responses in benthic fauna. In this section we present results 329 

on the joint probabilities queried on the two disturbance scenarios for the Chatham Rise 330 

environment. 331 

22 

lts 
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 332 
Figure 4. Bayesian Network model for risks of seabed mining on benthic fauna, showing the 333 

separate variables for the time steps and all functional groups. Purple circles denote operational 334 

variables from the two mining scenarios, yellow circles are pressures arising from mining, green 335 

circles environmental conditions (independent of the mining operation), and light blue circles the 336 

abundance of the benthic fauna in the different functional groups across the four time-steps in the 337 

BN model. For abbreviations of the functional group names, see Table 2. 338 

3.1 Likelihood of pressures from mining 339 

The probability of different levels of sediment deposition varied as a function of the distance 340 

from the mined area and between the two disturbance scenarios. The most likely outcome under 341 

both scenarios was high deposition inside the mining block and low deposition in the far-field 342 

(Fig. 5). Under the High disturbance scenario (100% mining intensity inside the mined area; 343 

Figure 2, Table 3), the probability of high sediment deposition was estimated to be 0.80 inside 344 

the mined area. In the near-field the most likely outcome was moderate sediment deposition with 345 
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a 0.57 probability, and in the far-field the most likely outcome was low sediment deposition 346 

(0.87 probability). For suspended sediment, moderate suspended sediment concentrations (SSC) 347 

were the most likely outcome inside the mined area and in the near-field area. In the far-field, 348 

low SSC levels were the most likely (0.71 probability). The probability of high SSC was 0.08 349 

inside the mined area, 0.07 in the near-field, and 0 in the far-field. 350 

The magnitudes of SSCs and sediment deposition were estimated to be lower under the 351 

Intermediate disturbance scenario (50% mining intensity to the mined area; Figure 2, Table 3), in 352 

which the depth of extracted sediment would be lower than in the High disturbance scenario 353 

(Table 3). Under Intermediate disturbance, the near-field area was expected to receive only a low 354 

sediment deposition (0.57 probability). Similarly, low levels of suspended sediment were the 355 

likeliest outside the mined area, with 0.56 probability of low SSC in the near-field and 0.89 356 

outside in the far-field area. Inside the mining block high levels of SSC and sediment deposition 357 

were the likeliest outcomes, with 0.41 and 0.72 probabilities, respectively.  358 

The largest difference between the two evaluated scenarios was the probability of significant 359 

sediment changes. Under the High disturbance scenario, significant sediment changes were 360 

expected not only inside the mined area (0.99 probability), but also in the near-field (0.23 361 

probability) and in the far-field (0.19 probability). Under the Intermediate disturbance scenario, 362 

the probability of significant changes outside the mining block in the far-field was only 0.03.  363 

As the release of harmful substances was set to be mostly driven by potential concentration of 364 

toxic substances in sediment and the sediment substrate type in the model, there was only a small 365 

difference between the two scenarios for toxin release. The probability of significant 366 

contaminant release from the sediment was low under both scenarios, with a 0.25 probability 367 

inside the mined area and 0.01–0.17 in the near-field and in the far-field in the High disturbance 368 
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scenario, and 0.11 probability inside and zero to 0.08 probability in the near- and far-field areas 369 

under the Intermediate disturbance scenario. 370 

 371 
Figure 5. Probability of the different levels of suspended sediment concentration, sediment 372 

deposition, contaminant release, and sediment changes resulting from mining inside the mined 373 

area, and the near-field and the far-field outside of the mining block under the two disturbance 374 

scenarios (High and Intermediate). 375 

3.2 Impacts on benthic fauna 376 

The various functional groups were assigned differential responses to the direct impacts to, and 377 

subsequent recovery from mining, based on data and expert assessments (Table 4). Mobile 378 

25 
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epifauna and hyperbenthic species are to an extent able to escape the physical disturbance and 379 

thus experience lower decreases in abundance from the direct impacts of mining, whereas sessile 380 

fauna inside the mining area will be removed by the sediment extraction. Aside from 381 

hyperbenthos, meiofauna were estimated to be most tolerant to indirect impacts of mining. Small 382 

infaunal species were estimated to experience moderate to high decreases in abundance from 383 

indirect impacts even under intermediate disturbance but had moderate recovery potential after 384 

one year. Sessile epifauna, such as stony corals, were estimated to experience high decreases in 385 

abundance from direct disturbance, and moderate decreases in abundance from indirect 386 

disturbance, but recovery will be limited. However, small soft-bodied sessile taxa may have the 387 

potential to recolonise the area within one year. In the following section we present a selection of 388 

results of the impacts on benthic fauna, conditional on the mining scenarios and the probability 389 

of the magnitude of the ecosystem pressures as presented above. Full results on the impacts on 390 

all functional groups are contained in the Appendix 2.  391 

3.2.1 Immediate impacts under the High and Intermediate disturbance scenarios 392 

The decrease in abundance immediately after the mining disturbance varied between the 393 

functional groups (Figs. 6–7) and with proximity to the mined area. Under the High disturbance 394 

scenario, all sessile and infaunal organisms were estimated to experience high relative decrease 395 

in abundance inside the mined area (81–100% compared to the pre-disturbance community) (Fig. 396 

6).  397 

In the near-field, the most likely outcome under the High disturbance scenario was 41–60% 398 

reduction in abundance for all infaunal groups. In the far-field, for most infaunal groups the most 399 

likely outcome was 21–40% decrease in abundance. Meiofauna were expected to experience a 400 
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41–60% relative decrease in abundance with a 0.5 probability for both deep and surface 401 

meiofauna.  402 

Sessile epifauna were estimated to decrease in abundance by 0–60% in the near-field and 0–40% 403 

in the far-field, with varying probabilities depending on the functional group. Sessile soft-bodied 404 

organisms were estimated to show 21–40% decrease in abundance with a 0.32 probability in the 405 

near-field under the High disturbance scenario. In the far-field the most likely outcomes were 406 

20–40% decrease in abundance (0.45 probability), and 0–20% decrease (0.42 probability). 407 

Sessile, encrusting organisms were estimated to have higher relative changes in abundance in the 408 

far-field and in the near-field than erect forms for both suspension and filter feeders. For 409 

example, for sessile encrusting suspension feeders, the most likely outcome in the near-field was 410 

41-60% decrease in abundance with 0.29 probability, whereas for erect suspension feeders the 411 

likeliest outcome was 21-40% decrease with a 0.28 probability (full results for all groups in 412 

Appendix 2 Figs. S1–S6). 413 

Mobile epibenthos and hyperbenthic organisms had the lowest decrease in abundance in both the 414 

far- and near-field areas under both disturbance scenarios (Figs. 6–7), with the smallest decrease 415 

in abundance predicted for mobile organisms in the far-field area. For example, for grazing 416 

hyperbenthos, the most likely outcome in the near-field and far-field under the High disturbance 417 

scenario was 21–40% decrease in abundance with 0.42 and 0.47 probabilities, respectively. 418 

Under the Intermediate disturbance, the most likely outcome for hyperbenthos was also 21–40% 419 

decrease in abundance with a probability of 0.45 in the near-field and 0.47 in the far-field. 420 

Similar to the High disturbance scenario, an 81–100% decrease in abundance was the most likely 421 

outcome inside the mined area for infauna and sessile organisms under the Intermediate 422 
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disturbance scenario. However, a large variation in the impacts inside the mined area was 423 

observed under this scenario, with impact estimates for infauna ranging from 40–100% (Fig. 7). 424 

In the near-field, for most groups of infauna the most likely outcome under the Intermediate 425 

disturbance scenario was 21–40% decrease in abundance. For sessile epifauna, the most likely 426 

outcome for all groups was 21–40% decrease in abundance in the near-field and between 0–40% 427 

in the far-field with over 0.4 probabilities for each group. Hyperbenthos were estimated to 428 

experience a 21–40% decline in abundance in both the near-field and the far-field areas. 429 
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 430 

Figure 6.  Probability of relative decrease in abundance of six selected epifaunal functional 431 

groups inside the mining block (left panel), in the near-field area directly adjacent to the mined 432 

area (middle), and in the far-field area outside the mining block (right panel) under the High 433 

disturbance scenario. Immediate impacts are noted in a dark shade and impacts after one year in 434 

a lighter shade. Full results for all functional groups are contained in Appendix 2.  435 
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3.2.2 Impacts after one year 436 

In our model, the probability of decrease in abundance one year following seabed disturbance is 437 

conditional on the initial disturbance-related decrease in abundance and changes in the 438 

environment. The estimates of relative decrease in abundance one year after disturbance 439 

therefore incorporate both a metric of recovery and any additional decrease due to sub-lethal 440 

effects (see Table 4). Recovery was estimated to be more likely across all faunal groups under 441 

the Intermediate disturbance scenario, which resulted in overall lower changes in abundance and 442 

a lower likelihood of significant sediment changes (Fig. 7). Recovery was more likely to occur in 443 

the near-field and the far-field, compared to inside the mined area, as there was less likelihood of 444 

significant sediment changes. Similarly, recovery was more likely under the Intermediate 445 

disturbance scenario when a larger proportion of the original abundance remained and the 446 

sediment changes were smaller, compared to the High disturbance example.  447 

Sessile epifauna had the greatest probability of high relative decrease in abundance (immediate 448 

impacts) and were the least likely to show recovery after one year. Under the High disturbance 449 

scenario, the probability that 80–100% of their original abundance would still be absent after one 450 

year was 0.92–0.97 in the mined area, 0.65 in the near-field, and 0.53 in the far-field for most 451 

sessile organisms (Fig. 6). Under the Intermediate disturbance scenario, the most likely outcome 452 

inside the mined area for most sessile megafauna was also 80–100% decrease in abundance (Fig. 453 

7), but with smaller probabilities than under the High disturbance scenario (0.50–0.68) (Fig. 6). 454 

One exception within this group were the soft-bodied megafauna, which were deemed to 455 

experience a 80–100% decrease in abundance inside the mined area after one year with a 0.67 456 

probability under the High disturbance scenario (Fig. 6) and 0.47 under the Intermediate 457 

disturbance scenario (Fig. 7). In the near-field, this group was deemed to recover nearly fully (0–458 
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20% decrease in abundance) with a 0.43 probability under the Intermediate scenario, whereas 459 

under the High disturbance scenario the corresponding probability was 0.26. In the far-field there 460 

was 0.56–0.60 probability that there would be no observable change in the abundance of soft-461 

bodied megafauna under either disturbance scenario. 462 

Hyperbenthos were estimated to experience a 20–60% abundance change with a 0.77 cumulative 463 

probability inside the mined area after one year. In the near-field the change was estimated to be 464 

smaller, with a 0.95 joint probability for 0–40% decrease in abundance. In the far-field the most 465 

likely outcome was small or no decrease in abundance (0–20%) with a 0.98 probability. Under 466 

Intermediate disturbance scenario changes were much smaller: inside the mined area the most 467 

likely outcome for grazing hyperbenthos was 21–40% decrease in abundance with a 0.54 468 

probability. In the near-field and far-field small to no or little decrease in abundances (0–20% 469 

change) of hyperbenthos were expected after one year with 0.66 and 0.69 probabilities, 470 

respectively. 471 

For small sessile infauna, the probability of 80–100% of the original abundance being lost inside 472 

the mining block was 0.74 under the High disturbance (Fig. 6), compared to 0.47 under the 473 

Intermediate disturbance scenarios (Fig. 7). In the near-field and far-field, the most likely 474 

outcome under both scenarios was a 21–40% decrease in abundance (0.32–0.45 probability 475 

under High and 0.40–0.45 under Intermediate disturbance), with a wider distribution with an 476 

increasing distance from the mined area and probability distributions converging towards the 477 

higher decreases in abundance under the High disturbance scenario. Large mobile macrofauna 478 

showed a similar pattern to small infauna, yet with higher recovery rates: in the far-field the most 479 

likely outcome was 20–40% negative decrease in abundance with a 0.52 probability under both 480 

scenarios.  481 
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 482 

Figure 7.  Probability of relative decrease in abundance of six selected epifaunal functional 483 

groups inside the mining block (left panel), in the near-field area directly adjacent to the mined 484 

area (middle), and the far-field area outside the mining block (right panel) under the Intermediate 485 

disturbance scenario.  Immediate impacts are noted in a dark shade and impacts after one year in 486 

a lighter shade.  Full results of all functional groups are contained in Appendix 2.  487 
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3.2.3 Comparison of scenarios 488 

Inside the mined area, differences between the two disturbance scenarios were particularly 489 

evident for mobile benthos (Fig. 8). In the far-field the differences between the two scenarios 490 

were very small for most functional groups, particularly the sessile megafauna. As the 491 

probabilities of high impact in the far-field were lower under the Intermediate disturbance 492 

scenario, there is less difference between these two spatial domains compared to the differences 493 

observed under the High disturbance scenario. 494 

Under the High disturbance scenario, the probability estimates for the near- and far-field were 495 

more variable. Overall, for both scenarios highest certainties were given to impacts inside the 496 

mined area. 497 

498 

Figure 8. Summary of the most likely outcome for the functional groups in each spatial domain 499 

after one year under the High (left panel) and Intermediate disturbance (right panel) scenarios. 500 

33 
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The points in the scatterplot represent the most probable outcome for each functional group as a 501 

function of its associated probability. The colours depict the three spatial domains (inside minds 502 

area, near-field, far-field), and the broad faunal groups (Functional group: sessile megafauna, 503 

infauna and mobile) are shown in different shapes and icons. 504 

3.3 Model validation and sensitivity 505 

The expert group were satisfied with the BN model's ability to capture the variation in the 506 

impacts across the different seabed mining disturbance scenarios and spatial domains. Reviewing 507 

the model results showed that mining intensity had the highest impact on the magnitude of 508 

physicochemical pressures. As both the model structure and the parameters are largely expert 509 

informed, there was no need to perform a numerical sensitivity analysis to evaluate which 510 

variables had the highest impact on the final outcome (as reflected in a decrease in abundance of 511 

benthic fauna). 512 

The use of probability distributions in BNs allow the uncertainty regarding the variation in a 513 

variable of interest to be directly embedded in the impact estimates. To account for the 514 

uncertainty resulting from the lack of information on the process being evaluated we also 515 

recorded the experts’ certainty in the probability estimates (Table 5).  516 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.569078doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569078
http://creativecommons.org/licenses/by/4.0/


 

35 

Table 5. Overview of the confidence in the variable parameterisation. Full details of information 517 

used is included in Appendix 1. 518 

Variable group In situ data Experimental 
data 

Literature  Confidence 

Sedimentation (SSC 
and sediment 
deposition) 

Yes No Yes (Lescinski et al., 2014) Moderate 

Contaminant release No No Yes (Frontin-Rollet 2017; 
Hauton et al., 2017; Simon et al., 
2022) 

Low 

Mobile megabenthos 
and hyperbenthos 

No No None (baseline information in 
Lörz, 2011). 

Low 

Meiofauna Yes No None  Moderate 

Macroinfauna Yes No None  Moderate 

Sessile megafauna No Yes Yes (Bell et al., 2015; Brooke, 
Holmes, and Young 2009; Leys 
2013; Mobilia et al., 2021; 2023; 
Pineda et al., 2017; Wurz et al., 
2021) 

Moderate 

 519 

For the physicochemical parameters, highest uncertainties were assigned to potential release of 520 

harmful substances from the sediment and extracted phosphatic mineral material (Table 5). 521 

Similarly, the impacts of toxin release on all groups of benthic fauna were ranked as highly 522 

uncertain, as few studies have been published on the topic and the number of potentially harmful 523 

substances is unknown. For this reason, the importance of toxin release received a low weight in 524 

the impact estimates for all benthic functional groups, but this should be considered in future 525 

ERAs as a potentially significant stressor. 526 
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The highest uncertainties within functional groups were assigned to mobile epibenthic organisms 527 

and hyperbenthos (Table 5). This uncertainty is also reflected in the probability estimates, where 528 

hyperbenthos estimates are the most varied (broadest distribution). In turn, meiofauna and small 529 

mobile infauna received highest certainty, as for these taxa both new data and previous studies 530 

could be used to assess the impacts (Tables 2 and 5). 531 

4 Discussion 532 

Uncertainty regarding biological responses of marine organisms to seabed disturbance is a major 533 

concern for estimating the impacts of human activities in the deep sea, which subsequently 534 

impacts upon decision- and policy-making (Kung et al., 2021). To quantify the uncertainties in 535 

biological responses, we developed a probabilistic ecological risk assessment model to describe 536 

the pressures caused by deep seabed mining and the responses of affected benthic ecosystem 537 

components. We estimated the magnitude of the ecosystem responses and probability of 538 

recovery by combining field and experimental data, information from published literature, and 539 

expert knowledge. This type of model can be used to identify the likelihood of ecosystem losses 540 

from seabed disturbance to guide the regulation and management of such activities. 541 

The BN model successfully captured the variation in the likelihood of disturbance from the two 542 

different disturbance scenarios assessed. As the highest pressures were confined to inside the 543 

mined area, largest differences between the scenarios were seen inside the mined area and in the 544 

near-field adjacent to the mining block. Mining intensity and depth of sediment extraction were 545 

the key drivers of the pressures arising from mining, and there was a logical spatial gradient 546 

within the two mining scenarios. In the High disturbance scenario, the model predicted high 547 

levels of suspended sediment and sediment deposition to be unlikely outside the immediate area 548 

of disturbance. Despite the moderate to low levels of physicochemical disturbance, most benthic 549 
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organisms, regardless of their functional group, were predicted to decrease in abundance by 60–550 

100% inside the mined area and by 20–60% in the unmined near-field. The highest levels of 551 

relative changes in abundance in the far-field were for encrusting sessile suspension and filter 552 

feeders. Under the Intermediate disturbance scenario, changes in abundance were lower and 553 

there was more variation in the potential responses of fauna inside the mined area. In the near-554 

field under this scenario, 20–40% decrease in abundance was the most likely outcome for most 555 

groups. In the far-field area the differences between the two scenarios were smaller; overall, after 556 

one year, mobile organisms were expected to experience a 0–20% loss in abundance, whereas for 557 

all other organisms 21–40% decreases were expected. Importantly, we noted increasing levels of 558 

uncertainty in the estimates for biological responses with increasing distance from the mined 559 

area and relatively lower levels of pressures from mining. 560 

Most functional groups evaluated in this study were anticipated to tolerate low levels of 561 

sedimentation relatively well. As high levels of sediment deposition were estimated to be 562 

confined to inside the mining area, most organisms were predicted to experience a decrease of 563 

less than 60% of the original community in the near-field and far-field under both scenarios. 564 

However, it is important to note that the estimates here reflect the characteristics of seafloor 565 

communities in our case study area, and are not necessarily directly applicable to other areas, 566 

such as in regions where abyssal manganese nodules (e.g., Clarion-Clipperton Fracture Zone) or 567 

placer or dredged deposits may be extracted from the seafloor (e.g., offshore Namibia).  568 

The use of separate time steps allowed us to quantify how different organisms react to changes in 569 

their environment directly after mining and one year later, incorporating a simplified metric of 570 

recovery and sub-lethal effects, which are potentially important for the mortality of larger 571 

organisms (e.g., Martins et al., 2022). While some groups of organisms had similar responses to 572 
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the immediate effects inside the mined area (i.e., small infauna and sessile organisms), the 573 

impact estimates after one year showed that mobile fauna and small-sized fauna experienced 574 

fewer negative impacts than large infauna and long-lived sessile megafauna. Sessile organisms 575 

showed little to no recovery within this one-year timeframe (also found in the review by Jones et 576 

al., 2017).  577 

A key underpinning factor leading to the rejection of the CRP mining consent application was 578 

that it did not quantify the scale of effects on benthic communities away from the mining blocks 579 

(NZ EPA 2015). In this model, the inclusion of discrete spatial domains allows the impact of 580 

disturbance on the benthic community to be assessed quantitatively under different disturbance 581 

regimes inside the mined area, in the near-field (adjacent to the mining block), and in the far-582 

field (further away but still within the impact zone). However, the assumption was made that all 583 

mining would be completed within the mining block. The detailed pattern of mining (e.g., 584 

blocks, strips) was not factored into the analysis and we assumed homogeneous impacts inside 585 

each spatial domain. An important addition to this approach that would make it more directly 586 

relevant to a proposed operation would be combining this model with spatially explicit data, such 587 

as sediment plume modelling, to estimate the spatial extent of the suspended sediment 588 

concentrations and sediment deposition from the mining activities as a function of distance from 589 

the mined area (Lescinski et al., 2014; Spearman et al., 2020). A similar approach can be used if 590 

detailed spatial information on the benthic community is available (e.g., Helle et al., 2020), 591 

enabling a more precise spatial representation of potential impacts. It is important to note that 592 

high uncertainties remain regarding effects on mobile taxa.  An improved understanding of 593 

impacts on epibenthos, hyperbenthos, and fishes in future research is essential to fully assess the 594 

extent and magnitude of mining or sediment disturbance (Washburn et al., 2023). 595 
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Incorporating ecological data into ERAs 596 

Despite an increase in research regarding the impacts of seabed disturbance to seafloor 597 

ecosystems (e.g., Gollner et al., 2017; Jones et al., 2017), some experts consider there are few 598 

categories of scientific knowledge comprehensive enough for all the relevant ecosystem 599 

components to enable evidence-based decision-making and robust environmental management of 600 

such activities (Amon et al., 2022). To overcome the inherent data paucity in many deep-sea 601 

environments, it is necessary to use all possible scientific evidence, from other industries (e.g., 602 

Kaikkonen et al., 2018) as well as analogies to shallow-water systems and communities (Van 603 

Der Grient and Drazen 2021). Our approach in combining empirical data and expert assessment 604 

demonstrates that, despite the considerable body of literature on the different aspects of physical 605 

and sedimentation impacts, formulating conclusions on the impacts is not an easy task. In light of 606 

these challenges, the probabilistic approach as employed here proved useful, as the uncertainties 607 

related to the impacts were directly incorporated in the impact estimates. We found that experts 608 

were more comfortable giving uncertain judgements when this aspect was embedded in the 609 

process. Furthermore, the approach provides a method to synthesise information from multiple 610 

sources and move from qualitative risk statements to more quantitative impact estimates. As the 611 

conditional probabilities may be drawn from multiple sources, the model can be continuously 612 

updated as new information becomes available (see Table 5 for used information sources and 613 

evidence gaps).  614 

A major issue with determining the sensitivity of species or groupings of functionally similar 615 

organisms to environmental disturbance is that most deep-sea organisms are poorly studied, thus 616 

detailed information on the ecological responses is limited outside some specific habitats such as 617 

hydrothermal vents (Chapman et al., 2019). Nevertheless, trait-based approaches are useful in 618 
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identifying species responses to direct anthropogenic impacts and other environmental changes 619 

(Baird, Rubach, and Brinkt 2008; Boschen-Rose et al., 2021; Krumhansl et al., 2016; Lundquist 620 

et al., 2018). We found that generalising biological responses using broad functional groups 621 

allows for a pragmatic understanding of how organisms may respond to external stressors, which 622 

could improve development of options for effective management and conservation strategies 623 

(Miatta, Bates, and Snelgrove 2021). The use of broad functional groups facilitates application of 624 

data collected from one area to another, although in such cases, the variation in the trait 625 

expressions associated with biological responses across regions must be carefully evaluated (de 626 

Juan et al., 2022). 627 

Improving probabilistic risk assessments 628 

Human activities may result in multiple complicated changes in the environment with different 629 

spatial and temporal scales, and as a result, modelling such complex systems with any method 630 

comes with drawbacks and often requires simplification to enable a satisfactory result (e.g., 631 

Uusitalo 2007). Handling a large number of variable connections, impact pathways, and 632 

associated evidence is a demanding task, and ensuring that all experts participating in the 633 

assessment understand the study background is a challenge. The increasing complexity of 634 

integrating different types of data and knowledge (biological, technical, geological, geotechnical, 635 

oceanographic) into the chosen model not only poses communication challenges for the 636 

assessment team and between experts, but handling and organising the collected information 637 

requires considerable effort by the experts and the modellers. Model complexity also adds to the 638 

workload for parameterisation of the model, and using an elicitation tool for filling the CPTs is 639 

often the only feasible solution when there are many variables to quantify (Pollino et al., 2007). 640 

However, the use of a parameter-based estimation method (such as the beta interpolation used in 641 
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this study), while easy to carry out, may produce estimates that do not fully reflect the expert’s 642 

complex views on a topic.  643 

To avoid producing incorrect estimates in this BN modelling, all CPTs generated with the 644 

interpolation tool were reviewed both by the expert team and the modeller coordinating the 645 

effort. When these caveats are considered in the quantification process, the use of interpolation 646 

tools provides a useful option for evaluating the effects of multiple stressors, which would 647 

otherwise be impossible to quantify due to the high number of possible probability entries 648 

required. Therefore, while the workload involved in quantifying a large BN model may seem 649 

overwhelming, a similar (or larger) workload applies for any kind of impact assessment where 650 

the complex connections between components are being assessed. Another drawback of using 651 

BNs is their acyclic nature, preventing the inclusion of feedback loops between parent and child 652 

nodes (e.g., for ecosystem interactions; Uusitalo, 2007). This issue can be partially overcome 653 

with the use of splitting nodes, or through Dynamic BN approaches with multiple time steps 654 

(Trifonova et al., 2015).  655 

There are several ways the BN model developed here can be augmented to better estimate the 656 

potential impacts from seafloor disturbance. First, improving recovery estimates of the 657 

geochemical and biological components in the model would be beneficial to account for the 658 

magnitude of the disturbance in the recovery estimates. Even if the pelagic realm remains more 659 

poorly studied than seafloor ecosystems (Bisson et al., 2023; Robison 2004), broadening impact 660 

estimates to account for water column impacts and including other groups of organisms, such as 661 

micro-organisms (Herndl and Reinthaler 2013) and fishes (Drazen et al., 2020), would allow for 662 

more holistic estimation of impacts. Similarly, although our method expands the time horizon of 663 

seabed mining impacts from acute to longer-term impacts by including recovery potential over 664 
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one year, the approach does not include detailed information on the full interactions within the 665 

ecosystem. For example, long-term (multi-decadal) deleterious impacts on ecosystem 666 

functioning have been demonstrated in disturbance experiments in abyssal nodule fields (e.g., 667 

Peru Basin, Vonnahme et al., 2020). As a result, to improve our method, it will be useful to more 668 

carefully examine the interplay between different ecosystem components, such as competitive 669 

food web connections or biogeochemical linkages. The approach further allows the integration of 670 

cumulative impacts in the risk assessment,  e.g., to account for climate change effects (Furlan et 671 

al., 2020). Finally, to overcome the simplification required when using discrete variables, 672 

moving to hybrid networks that allow mixing continuous and discrete variables would provide 673 

opportunities to describe the impacts more precisely (e.g., Moe et al., 2020). 674 

Further applications 675 

Environmental management often requires decision-making under uncertainty regarding the 676 

potential outcomes of activities and the most effective ways to mitigate them. Despite 677 

recommendations for the use of probabilistic methods in risk assessments (Van den Brink et al., 678 

2016), their comprehensive integration into regulatory risk frameworks is still limited. 679 

Deterministic approaches, such as calculating single risk values based on a predicted exposure to 680 

a stressor remain more prevalent (Fairbrother et al., 2016). By utilising a probabilistic model 681 

capable of generating estimates for various scenarios, it would be feasible to identify 682 

management actions that are most likely to minimise stressor inputs in the case of deep-sea 683 

mining, leading to improved chances for the maintenance of the ecological functions of impacted 684 

deep-sea faunal communities. 685 

The probabilistic model described in this study was developed, from a scientific perspective, to 686 

provide a framework for further applications. For a real-world application for management 687 
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purposes, it is important to engage with the relevant regulatory bodies and stakeholders to ensure 688 

that the model framing and metrics align with societal and management needs (e.g., specific 689 

species and habitats or maximum thresholds for allowed impacts). For management purposes, a 690 

useful quality of BN models is that they may be further augmented to incorporate socioeconomic 691 

data (Uusitalo et al., 2022). To ensure the optimal use of the models, such risk assessments 692 

should involve interdisciplinary collaboration between a diverse group of scientists, 693 

policymakers, and stakeholders to ensure that the best available knowledge is integrated into the 694 

decision-making process.  695 

There are important considerations when applying the approach and the results presented here to 696 

other deep-sea ecosystems and forms of disturbance. While the results give some insights to the 697 

broad patterns of how different functional groups of deep-sea organisms may respond to seabed 698 

disturbance, the magnitude of pressures and the responses of biological communities is likely to 699 

vary considerably from one area to another depending on the prevailing environmental 700 

conditions, connectivity of seafloor communities, and the types of disturbance (e.g., Boschen et 701 

al., 2013; Haffert et al., 2020; Jones et al., 2017). Based on the combined laboratory experiments 702 

(Mobilia et al., 2021; 2023) and field data, the biological communities on the Chatham Rise may 703 

be considered to be better adapted to temporary increases in suspended sediment that might 704 

typically be experienced under the Intermediate disturbance scenario than those in more stable 705 

systems (such as abyssal plains). However, the results of the model indicated that most benthic 706 

functional groups of the Chatham Rise were expected to decrease in abundance and were not 707 

expected to recover even from Intermediate disturbance outside the mined area after one year. 708 

The results suggest high uncertainties regarding the impacts, especially outside mined seafloor 709 

areas, and stress the importance of further studies on the recovery dynamics at broader spatial 710 
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and temporal scales. Applying similar quantitative risk assessment models in other areas where 711 

deep-sea mining is considered, such as the Clarion-Clipperton Zone, is therefore important, as it 712 

enables a systematic and data-driven evaluation of potential risks, environmental impacts, and 713 

uncertainties across multiple habitats associated with this emerging industry. 714 
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